Merge branch 'topic/docs-next' into v4l_for_linus
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
73 */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static unsigned long khugepaged_sleep_expire;
93 static struct task_struct *khugepaged_thread __read_mostly;
94 static DEFINE_MUTEX(khugepaged_mutex);
95 static DEFINE_SPINLOCK(khugepaged_mm_lock);
96 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
97 /*
98 * default collapse hugepages if there is at least one pte mapped like
99 * it would have happened if the vma was large enough during page
100 * fault.
101 */
102 static unsigned int khugepaged_max_ptes_none __read_mostly;
103
104 static int khugepaged(void *none);
105 static int khugepaged_slab_init(void);
106 static void khugepaged_slab_exit(void);
107
108 #define MM_SLOTS_HASH_BITS 10
109 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
110
111 static struct kmem_cache *mm_slot_cache __read_mostly;
112
113 /**
114 * struct mm_slot - hash lookup from mm to mm_slot
115 * @hash: hash collision list
116 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
117 * @mm: the mm that this information is valid for
118 */
119 struct mm_slot {
120 struct hlist_node hash;
121 struct list_head mm_node;
122 struct mm_struct *mm;
123 };
124
125 /**
126 * struct khugepaged_scan - cursor for scanning
127 * @mm_head: the head of the mm list to scan
128 * @mm_slot: the current mm_slot we are scanning
129 * @address: the next address inside that to be scanned
130 *
131 * There is only the one khugepaged_scan instance of this cursor structure.
132 */
133 struct khugepaged_scan {
134 struct list_head mm_head;
135 struct mm_slot *mm_slot;
136 unsigned long address;
137 };
138 static struct khugepaged_scan khugepaged_scan = {
139 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
140 };
141
142 static struct shrinker deferred_split_shrinker;
143
144 static void set_recommended_min_free_kbytes(void)
145 {
146 struct zone *zone;
147 int nr_zones = 0;
148 unsigned long recommended_min;
149
150 for_each_populated_zone(zone)
151 nr_zones++;
152
153 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
154 recommended_min = pageblock_nr_pages * nr_zones * 2;
155
156 /*
157 * Make sure that on average at least two pageblocks are almost free
158 * of another type, one for a migratetype to fall back to and a
159 * second to avoid subsequent fallbacks of other types There are 3
160 * MIGRATE_TYPES we care about.
161 */
162 recommended_min += pageblock_nr_pages * nr_zones *
163 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
164
165 /* don't ever allow to reserve more than 5% of the lowmem */
166 recommended_min = min(recommended_min,
167 (unsigned long) nr_free_buffer_pages() / 20);
168 recommended_min <<= (PAGE_SHIFT-10);
169
170 if (recommended_min > min_free_kbytes) {
171 if (user_min_free_kbytes >= 0)
172 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
175 min_free_kbytes = recommended_min;
176 }
177 setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182 int err = 0;
183 if (khugepaged_enabled()) {
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
187 if (IS_ERR(khugepaged_thread)) {
188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
191 goto fail;
192 }
193
194 if (!list_empty(&khugepaged_scan.mm_head))
195 wake_up_interruptible(&khugepaged_wait);
196
197 set_recommended_min_free_kbytes();
198 } else if (khugepaged_thread) {
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
202 fail:
203 return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211 struct page *zero_page;
212 retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 return READ_ONCE(huge_zero_page);
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 HPAGE_PMD_ORDER);
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 return NULL;
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
223 preempt_disable();
224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 preempt_enable();
226 __free_pages(zero_page, compound_order(zero_page));
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
233 return READ_ONCE(huge_zero_page);
234 }
235
236 void put_huge_zero_page(void)
237 {
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
247 {
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254 {
255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
258 __free_pages(zero_page, compound_order(zero_page));
259 return HPAGE_PMD_NR;
260 }
261
262 return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
268 .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t triple_flag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count,
276 enum transparent_hugepage_flag enabled,
277 enum transparent_hugepage_flag deferred,
278 enum transparent_hugepage_flag req_madv)
279 {
280 if (!memcmp("defer", buf,
281 min(sizeof("defer")-1, count))) {
282 if (enabled == deferred)
283 return -EINVAL;
284 clear_bit(enabled, &transparent_hugepage_flags);
285 clear_bit(req_madv, &transparent_hugepage_flags);
286 set_bit(deferred, &transparent_hugepage_flags);
287 } else if (!memcmp("always", buf,
288 min(sizeof("always")-1, count))) {
289 clear_bit(deferred, &transparent_hugepage_flags);
290 clear_bit(req_madv, &transparent_hugepage_flags);
291 set_bit(enabled, &transparent_hugepage_flags);
292 } else if (!memcmp("madvise", buf,
293 min(sizeof("madvise")-1, count))) {
294 clear_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(deferred, &transparent_hugepage_flags);
296 set_bit(req_madv, &transparent_hugepage_flags);
297 } else if (!memcmp("never", buf,
298 min(sizeof("never")-1, count))) {
299 clear_bit(enabled, &transparent_hugepage_flags);
300 clear_bit(req_madv, &transparent_hugepage_flags);
301 clear_bit(deferred, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
306 }
307
308 static ssize_t enabled_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf)
310 {
311 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
312 return sprintf(buf, "[always] madvise never\n");
313 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "always [madvise] never\n");
315 else
316 return sprintf(buf, "always madvise [never]\n");
317 }
318
319 static ssize_t enabled_store(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 const char *buf, size_t count)
322 {
323 ssize_t ret;
324
325 ret = triple_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_FLAG,
327 TRANSPARENT_HUGEPAGE_FLAG,
328 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329
330 if (ret > 0) {
331 int err;
332
333 mutex_lock(&khugepaged_mutex);
334 err = start_stop_khugepaged();
335 mutex_unlock(&khugepaged_mutex);
336
337 if (err)
338 ret = err;
339 }
340
341 return ret;
342 }
343 static struct kobj_attribute enabled_attr =
344 __ATTR(enabled, 0644, enabled_show, enabled_store);
345
346 static ssize_t single_flag_show(struct kobject *kobj,
347 struct kobj_attribute *attr, char *buf,
348 enum transparent_hugepage_flag flag)
349 {
350 return sprintf(buf, "%d\n",
351 !!test_bit(flag, &transparent_hugepage_flags));
352 }
353
354 static ssize_t single_flag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count,
357 enum transparent_hugepage_flag flag)
358 {
359 unsigned long value;
360 int ret;
361
362 ret = kstrtoul(buf, 10, &value);
363 if (ret < 0)
364 return ret;
365 if (value > 1)
366 return -EINVAL;
367
368 if (value)
369 set_bit(flag, &transparent_hugepage_flags);
370 else
371 clear_bit(flag, &transparent_hugepage_flags);
372
373 return count;
374 }
375
376 /*
377 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379 * memory just to allocate one more hugepage.
380 */
381 static ssize_t defrag_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383 {
384 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
385 return sprintf(buf, "[always] defer madvise never\n");
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "always [defer] madvise never\n");
388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always defer [madvise] never\n");
390 else
391 return sprintf(buf, "always defer madvise [never]\n");
392
393 }
394 static ssize_t defrag_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397 {
398 return triple_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
400 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
401 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
402 }
403 static struct kobj_attribute defrag_attr =
404 __ATTR(defrag, 0644, defrag_show, defrag_store);
405
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408 {
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411 }
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 struct kobj_attribute *attr, const char *buf, size_t count)
414 {
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417 }
418 static struct kobj_attribute use_zero_page_attr =
419 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
420 #ifdef CONFIG_DEBUG_VM
421 static ssize_t debug_cow_show(struct kobject *kobj,
422 struct kobj_attribute *attr, char *buf)
423 {
424 return single_flag_show(kobj, attr, buf,
425 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426 }
427 static ssize_t debug_cow_store(struct kobject *kobj,
428 struct kobj_attribute *attr,
429 const char *buf, size_t count)
430 {
431 return single_flag_store(kobj, attr, buf, count,
432 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
433 }
434 static struct kobj_attribute debug_cow_attr =
435 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
436 #endif /* CONFIG_DEBUG_VM */
437
438 static struct attribute *hugepage_attr[] = {
439 &enabled_attr.attr,
440 &defrag_attr.attr,
441 &use_zero_page_attr.attr,
442 #ifdef CONFIG_DEBUG_VM
443 &debug_cow_attr.attr,
444 #endif
445 NULL,
446 };
447
448 static struct attribute_group hugepage_attr_group = {
449 .attrs = hugepage_attr,
450 };
451
452 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
453 struct kobj_attribute *attr,
454 char *buf)
455 {
456 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
457 }
458
459 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
460 struct kobj_attribute *attr,
461 const char *buf, size_t count)
462 {
463 unsigned long msecs;
464 int err;
465
466 err = kstrtoul(buf, 10, &msecs);
467 if (err || msecs > UINT_MAX)
468 return -EINVAL;
469
470 khugepaged_scan_sleep_millisecs = msecs;
471 khugepaged_sleep_expire = 0;
472 wake_up_interruptible(&khugepaged_wait);
473
474 return count;
475 }
476 static struct kobj_attribute scan_sleep_millisecs_attr =
477 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
478 scan_sleep_millisecs_store);
479
480 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
481 struct kobj_attribute *attr,
482 char *buf)
483 {
484 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
485 }
486
487 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
488 struct kobj_attribute *attr,
489 const char *buf, size_t count)
490 {
491 unsigned long msecs;
492 int err;
493
494 err = kstrtoul(buf, 10, &msecs);
495 if (err || msecs > UINT_MAX)
496 return -EINVAL;
497
498 khugepaged_alloc_sleep_millisecs = msecs;
499 khugepaged_sleep_expire = 0;
500 wake_up_interruptible(&khugepaged_wait);
501
502 return count;
503 }
504 static struct kobj_attribute alloc_sleep_millisecs_attr =
505 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
506 alloc_sleep_millisecs_store);
507
508 static ssize_t pages_to_scan_show(struct kobject *kobj,
509 struct kobj_attribute *attr,
510 char *buf)
511 {
512 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
513 }
514 static ssize_t pages_to_scan_store(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 const char *buf, size_t count)
517 {
518 int err;
519 unsigned long pages;
520
521 err = kstrtoul(buf, 10, &pages);
522 if (err || !pages || pages > UINT_MAX)
523 return -EINVAL;
524
525 khugepaged_pages_to_scan = pages;
526
527 return count;
528 }
529 static struct kobj_attribute pages_to_scan_attr =
530 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
531 pages_to_scan_store);
532
533 static ssize_t pages_collapsed_show(struct kobject *kobj,
534 struct kobj_attribute *attr,
535 char *buf)
536 {
537 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
538 }
539 static struct kobj_attribute pages_collapsed_attr =
540 __ATTR_RO(pages_collapsed);
541
542 static ssize_t full_scans_show(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 char *buf)
545 {
546 return sprintf(buf, "%u\n", khugepaged_full_scans);
547 }
548 static struct kobj_attribute full_scans_attr =
549 __ATTR_RO(full_scans);
550
551 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
552 struct kobj_attribute *attr, char *buf)
553 {
554 return single_flag_show(kobj, attr, buf,
555 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
556 }
557 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
558 struct kobj_attribute *attr,
559 const char *buf, size_t count)
560 {
561 return single_flag_store(kobj, attr, buf, count,
562 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
563 }
564 static struct kobj_attribute khugepaged_defrag_attr =
565 __ATTR(defrag, 0644, khugepaged_defrag_show,
566 khugepaged_defrag_store);
567
568 /*
569 * max_ptes_none controls if khugepaged should collapse hugepages over
570 * any unmapped ptes in turn potentially increasing the memory
571 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
572 * reduce the available free memory in the system as it
573 * runs. Increasing max_ptes_none will instead potentially reduce the
574 * free memory in the system during the khugepaged scan.
575 */
576 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
577 struct kobj_attribute *attr,
578 char *buf)
579 {
580 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
581 }
582 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
583 struct kobj_attribute *attr,
584 const char *buf, size_t count)
585 {
586 int err;
587 unsigned long max_ptes_none;
588
589 err = kstrtoul(buf, 10, &max_ptes_none);
590 if (err || max_ptes_none > HPAGE_PMD_NR-1)
591 return -EINVAL;
592
593 khugepaged_max_ptes_none = max_ptes_none;
594
595 return count;
596 }
597 static struct kobj_attribute khugepaged_max_ptes_none_attr =
598 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
599 khugepaged_max_ptes_none_store);
600
601 static struct attribute *khugepaged_attr[] = {
602 &khugepaged_defrag_attr.attr,
603 &khugepaged_max_ptes_none_attr.attr,
604 &pages_to_scan_attr.attr,
605 &pages_collapsed_attr.attr,
606 &full_scans_attr.attr,
607 &scan_sleep_millisecs_attr.attr,
608 &alloc_sleep_millisecs_attr.attr,
609 NULL,
610 };
611
612 static struct attribute_group khugepaged_attr_group = {
613 .attrs = khugepaged_attr,
614 .name = "khugepaged",
615 };
616
617 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
618 {
619 int err;
620
621 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
622 if (unlikely(!*hugepage_kobj)) {
623 pr_err("failed to create transparent hugepage kobject\n");
624 return -ENOMEM;
625 }
626
627 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
628 if (err) {
629 pr_err("failed to register transparent hugepage group\n");
630 goto delete_obj;
631 }
632
633 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
634 if (err) {
635 pr_err("failed to register transparent hugepage group\n");
636 goto remove_hp_group;
637 }
638
639 return 0;
640
641 remove_hp_group:
642 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
643 delete_obj:
644 kobject_put(*hugepage_kobj);
645 return err;
646 }
647
648 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
651 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
652 kobject_put(hugepage_kobj);
653 }
654 #else
655 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
656 {
657 return 0;
658 }
659
660 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
661 {
662 }
663 #endif /* CONFIG_SYSFS */
664
665 static int __init hugepage_init(void)
666 {
667 int err;
668 struct kobject *hugepage_kobj;
669
670 if (!has_transparent_hugepage()) {
671 transparent_hugepage_flags = 0;
672 return -EINVAL;
673 }
674
675 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
676 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
677 /*
678 * hugepages can't be allocated by the buddy allocator
679 */
680 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
681 /*
682 * we use page->mapping and page->index in second tail page
683 * as list_head: assuming THP order >= 2
684 */
685 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
686
687 err = hugepage_init_sysfs(&hugepage_kobj);
688 if (err)
689 goto err_sysfs;
690
691 err = khugepaged_slab_init();
692 if (err)
693 goto err_slab;
694
695 err = register_shrinker(&huge_zero_page_shrinker);
696 if (err)
697 goto err_hzp_shrinker;
698 err = register_shrinker(&deferred_split_shrinker);
699 if (err)
700 goto err_split_shrinker;
701
702 /*
703 * By default disable transparent hugepages on smaller systems,
704 * where the extra memory used could hurt more than TLB overhead
705 * is likely to save. The admin can still enable it through /sys.
706 */
707 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
708 transparent_hugepage_flags = 0;
709 return 0;
710 }
711
712 err = start_stop_khugepaged();
713 if (err)
714 goto err_khugepaged;
715
716 return 0;
717 err_khugepaged:
718 unregister_shrinker(&deferred_split_shrinker);
719 err_split_shrinker:
720 unregister_shrinker(&huge_zero_page_shrinker);
721 err_hzp_shrinker:
722 khugepaged_slab_exit();
723 err_slab:
724 hugepage_exit_sysfs(hugepage_kobj);
725 err_sysfs:
726 return err;
727 }
728 subsys_initcall(hugepage_init);
729
730 static int __init setup_transparent_hugepage(char *str)
731 {
732 int ret = 0;
733 if (!str)
734 goto out;
735 if (!strcmp(str, "always")) {
736 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
737 &transparent_hugepage_flags);
738 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739 &transparent_hugepage_flags);
740 ret = 1;
741 } else if (!strcmp(str, "madvise")) {
742 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
743 &transparent_hugepage_flags);
744 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
745 &transparent_hugepage_flags);
746 ret = 1;
747 } else if (!strcmp(str, "never")) {
748 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
749 &transparent_hugepage_flags);
750 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
751 &transparent_hugepage_flags);
752 ret = 1;
753 }
754 out:
755 if (!ret)
756 pr_warn("transparent_hugepage= cannot parse, ignored\n");
757 return ret;
758 }
759 __setup("transparent_hugepage=", setup_transparent_hugepage);
760
761 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
762 {
763 if (likely(vma->vm_flags & VM_WRITE))
764 pmd = pmd_mkwrite(pmd);
765 return pmd;
766 }
767
768 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
769 {
770 return pmd_mkhuge(mk_pmd(page, prot));
771 }
772
773 static inline struct list_head *page_deferred_list(struct page *page)
774 {
775 /*
776 * ->lru in the tail pages is occupied by compound_head.
777 * Let's use ->mapping + ->index in the second tail page as list_head.
778 */
779 return (struct list_head *)&page[2].mapping;
780 }
781
782 void prep_transhuge_page(struct page *page)
783 {
784 /*
785 * we use page->mapping and page->indexlru in second tail page
786 * as list_head: assuming THP order >= 2
787 */
788
789 INIT_LIST_HEAD(page_deferred_list(page));
790 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
791 }
792
793 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
794 struct vm_area_struct *vma,
795 unsigned long address, pmd_t *pmd,
796 struct page *page, gfp_t gfp,
797 unsigned int flags)
798 {
799 struct mem_cgroup *memcg;
800 pgtable_t pgtable;
801 spinlock_t *ptl;
802 unsigned long haddr = address & HPAGE_PMD_MASK;
803
804 VM_BUG_ON_PAGE(!PageCompound(page), page);
805
806 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
807 put_page(page);
808 count_vm_event(THP_FAULT_FALLBACK);
809 return VM_FAULT_FALLBACK;
810 }
811
812 pgtable = pte_alloc_one(mm, haddr);
813 if (unlikely(!pgtable)) {
814 mem_cgroup_cancel_charge(page, memcg, true);
815 put_page(page);
816 return VM_FAULT_OOM;
817 }
818
819 clear_huge_page(page, haddr, HPAGE_PMD_NR);
820 /*
821 * The memory barrier inside __SetPageUptodate makes sure that
822 * clear_huge_page writes become visible before the set_pmd_at()
823 * write.
824 */
825 __SetPageUptodate(page);
826
827 ptl = pmd_lock(mm, pmd);
828 if (unlikely(!pmd_none(*pmd))) {
829 spin_unlock(ptl);
830 mem_cgroup_cancel_charge(page, memcg, true);
831 put_page(page);
832 pte_free(mm, pgtable);
833 } else {
834 pmd_t entry;
835
836 /* Deliver the page fault to userland */
837 if (userfaultfd_missing(vma)) {
838 int ret;
839
840 spin_unlock(ptl);
841 mem_cgroup_cancel_charge(page, memcg, true);
842 put_page(page);
843 pte_free(mm, pgtable);
844 ret = handle_userfault(vma, address, flags,
845 VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 return ret;
848 }
849
850 entry = mk_huge_pmd(page, vma->vm_page_prot);
851 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852 page_add_new_anon_rmap(page, vma, haddr, true);
853 mem_cgroup_commit_charge(page, memcg, false, true);
854 lru_cache_add_active_or_unevictable(page, vma);
855 pgtable_trans_huge_deposit(mm, pmd, pgtable);
856 set_pmd_at(mm, haddr, pmd, entry);
857 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
858 atomic_long_inc(&mm->nr_ptes);
859 spin_unlock(ptl);
860 count_vm_event(THP_FAULT_ALLOC);
861 }
862
863 return 0;
864 }
865
866 /*
867 * If THP is set to always then directly reclaim/compact as necessary
868 * If set to defer then do no reclaim and defer to khugepaged
869 * If set to madvise and the VMA is flagged then directly reclaim/compact
870 */
871 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
872 {
873 gfp_t reclaim_flags = 0;
874
875 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
876 (vma->vm_flags & VM_HUGEPAGE))
877 reclaim_flags = __GFP_DIRECT_RECLAIM;
878 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
879 reclaim_flags = __GFP_KSWAPD_RECLAIM;
880 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
881 reclaim_flags = __GFP_DIRECT_RECLAIM;
882
883 return GFP_TRANSHUGE | reclaim_flags;
884 }
885
886 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
887 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
888 {
889 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
890 }
891
892 /* Caller must hold page table lock. */
893 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
894 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
895 struct page *zero_page)
896 {
897 pmd_t entry;
898 if (!pmd_none(*pmd))
899 return false;
900 entry = mk_pmd(zero_page, vma->vm_page_prot);
901 entry = pmd_mkhuge(entry);
902 if (pgtable)
903 pgtable_trans_huge_deposit(mm, pmd, pgtable);
904 set_pmd_at(mm, haddr, pmd, entry);
905 atomic_long_inc(&mm->nr_ptes);
906 return true;
907 }
908
909 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
910 unsigned long address, pmd_t *pmd,
911 unsigned int flags)
912 {
913 gfp_t gfp;
914 struct page *page;
915 unsigned long haddr = address & HPAGE_PMD_MASK;
916
917 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
918 return VM_FAULT_FALLBACK;
919 if (unlikely(anon_vma_prepare(vma)))
920 return VM_FAULT_OOM;
921 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
922 return VM_FAULT_OOM;
923 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
924 transparent_hugepage_use_zero_page()) {
925 spinlock_t *ptl;
926 pgtable_t pgtable;
927 struct page *zero_page;
928 bool set;
929 int ret;
930 pgtable = pte_alloc_one(mm, haddr);
931 if (unlikely(!pgtable))
932 return VM_FAULT_OOM;
933 zero_page = get_huge_zero_page();
934 if (unlikely(!zero_page)) {
935 pte_free(mm, pgtable);
936 count_vm_event(THP_FAULT_FALLBACK);
937 return VM_FAULT_FALLBACK;
938 }
939 ptl = pmd_lock(mm, pmd);
940 ret = 0;
941 set = false;
942 if (pmd_none(*pmd)) {
943 if (userfaultfd_missing(vma)) {
944 spin_unlock(ptl);
945 ret = handle_userfault(vma, address, flags,
946 VM_UFFD_MISSING);
947 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
948 } else {
949 set_huge_zero_page(pgtable, mm, vma,
950 haddr, pmd,
951 zero_page);
952 spin_unlock(ptl);
953 set = true;
954 }
955 } else
956 spin_unlock(ptl);
957 if (!set) {
958 pte_free(mm, pgtable);
959 put_huge_zero_page();
960 }
961 return ret;
962 }
963 gfp = alloc_hugepage_direct_gfpmask(vma);
964 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
965 if (unlikely(!page)) {
966 count_vm_event(THP_FAULT_FALLBACK);
967 return VM_FAULT_FALLBACK;
968 }
969 prep_transhuge_page(page);
970 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
971 flags);
972 }
973
974 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
975 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
976 {
977 struct mm_struct *mm = vma->vm_mm;
978 pmd_t entry;
979 spinlock_t *ptl;
980
981 ptl = pmd_lock(mm, pmd);
982 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
983 if (pfn_t_devmap(pfn))
984 entry = pmd_mkdevmap(entry);
985 if (write) {
986 entry = pmd_mkyoung(pmd_mkdirty(entry));
987 entry = maybe_pmd_mkwrite(entry, vma);
988 }
989 set_pmd_at(mm, addr, pmd, entry);
990 update_mmu_cache_pmd(vma, addr, pmd);
991 spin_unlock(ptl);
992 }
993
994 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
995 pmd_t *pmd, pfn_t pfn, bool write)
996 {
997 pgprot_t pgprot = vma->vm_page_prot;
998 /*
999 * If we had pmd_special, we could avoid all these restrictions,
1000 * but we need to be consistent with PTEs and architectures that
1001 * can't support a 'special' bit.
1002 */
1003 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 (VM_PFNMAP|VM_MIXEDMAP));
1006 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 BUG_ON(!pfn_t_devmap(pfn));
1008
1009 if (addr < vma->vm_start || addr >= vma->vm_end)
1010 return VM_FAULT_SIGBUS;
1011 if (track_pfn_insert(vma, &pgprot, pfn))
1012 return VM_FAULT_SIGBUS;
1013 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014 return VM_FAULT_NOPAGE;
1015 }
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1017
1018 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1019 pmd_t *pmd)
1020 {
1021 pmd_t _pmd;
1022
1023 /*
1024 * We should set the dirty bit only for FOLL_WRITE but for now
1025 * the dirty bit in the pmd is meaningless. And if the dirty
1026 * bit will become meaningful and we'll only set it with
1027 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1028 * set the young bit, instead of the current set_pmd_at.
1029 */
1030 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1031 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1032 pmd, _pmd, 1))
1033 update_mmu_cache_pmd(vma, addr, pmd);
1034 }
1035
1036 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 pmd_t *pmd, int flags)
1038 {
1039 unsigned long pfn = pmd_pfn(*pmd);
1040 struct mm_struct *mm = vma->vm_mm;
1041 struct dev_pagemap *pgmap;
1042 struct page *page;
1043
1044 assert_spin_locked(pmd_lockptr(mm, pmd));
1045
1046 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1047 return NULL;
1048
1049 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1050 /* pass */;
1051 else
1052 return NULL;
1053
1054 if (flags & FOLL_TOUCH)
1055 touch_pmd(vma, addr, pmd);
1056
1057 /*
1058 * device mapped pages can only be returned if the
1059 * caller will manage the page reference count.
1060 */
1061 if (!(flags & FOLL_GET))
1062 return ERR_PTR(-EEXIST);
1063
1064 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065 pgmap = get_dev_pagemap(pfn, NULL);
1066 if (!pgmap)
1067 return ERR_PTR(-EFAULT);
1068 page = pfn_to_page(pfn);
1069 get_page(page);
1070 put_dev_pagemap(pgmap);
1071
1072 return page;
1073 }
1074
1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 struct vm_area_struct *vma)
1078 {
1079 spinlock_t *dst_ptl, *src_ptl;
1080 struct page *src_page;
1081 pmd_t pmd;
1082 pgtable_t pgtable = NULL;
1083 int ret;
1084
1085 if (!vma_is_dax(vma)) {
1086 ret = -ENOMEM;
1087 pgtable = pte_alloc_one(dst_mm, addr);
1088 if (unlikely(!pgtable))
1089 goto out;
1090 }
1091
1092 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1093 src_ptl = pmd_lockptr(src_mm, src_pmd);
1094 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095
1096 ret = -EAGAIN;
1097 pmd = *src_pmd;
1098 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1099 pte_free(dst_mm, pgtable);
1100 goto out_unlock;
1101 }
1102 /*
1103 * When page table lock is held, the huge zero pmd should not be
1104 * under splitting since we don't split the page itself, only pmd to
1105 * a page table.
1106 */
1107 if (is_huge_zero_pmd(pmd)) {
1108 struct page *zero_page;
1109 /*
1110 * get_huge_zero_page() will never allocate a new page here,
1111 * since we already have a zero page to copy. It just takes a
1112 * reference.
1113 */
1114 zero_page = get_huge_zero_page();
1115 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1116 zero_page);
1117 ret = 0;
1118 goto out_unlock;
1119 }
1120
1121 if (!vma_is_dax(vma)) {
1122 /* thp accounting separate from pmd_devmap accounting */
1123 src_page = pmd_page(pmd);
1124 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1125 get_page(src_page);
1126 page_dup_rmap(src_page, true);
1127 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1128 atomic_long_inc(&dst_mm->nr_ptes);
1129 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1130 }
1131
1132 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1133 pmd = pmd_mkold(pmd_wrprotect(pmd));
1134 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1135
1136 ret = 0;
1137 out_unlock:
1138 spin_unlock(src_ptl);
1139 spin_unlock(dst_ptl);
1140 out:
1141 return ret;
1142 }
1143
1144 void huge_pmd_set_accessed(struct mm_struct *mm,
1145 struct vm_area_struct *vma,
1146 unsigned long address,
1147 pmd_t *pmd, pmd_t orig_pmd,
1148 int dirty)
1149 {
1150 spinlock_t *ptl;
1151 pmd_t entry;
1152 unsigned long haddr;
1153
1154 ptl = pmd_lock(mm, pmd);
1155 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1156 goto unlock;
1157
1158 entry = pmd_mkyoung(orig_pmd);
1159 haddr = address & HPAGE_PMD_MASK;
1160 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1161 update_mmu_cache_pmd(vma, address, pmd);
1162
1163 unlock:
1164 spin_unlock(ptl);
1165 }
1166
1167 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1168 struct vm_area_struct *vma,
1169 unsigned long address,
1170 pmd_t *pmd, pmd_t orig_pmd,
1171 struct page *page,
1172 unsigned long haddr)
1173 {
1174 struct mem_cgroup *memcg;
1175 spinlock_t *ptl;
1176 pgtable_t pgtable;
1177 pmd_t _pmd;
1178 int ret = 0, i;
1179 struct page **pages;
1180 unsigned long mmun_start; /* For mmu_notifiers */
1181 unsigned long mmun_end; /* For mmu_notifiers */
1182
1183 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1184 GFP_KERNEL);
1185 if (unlikely(!pages)) {
1186 ret |= VM_FAULT_OOM;
1187 goto out;
1188 }
1189
1190 for (i = 0; i < HPAGE_PMD_NR; i++) {
1191 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1192 __GFP_OTHER_NODE,
1193 vma, address, page_to_nid(page));
1194 if (unlikely(!pages[i] ||
1195 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1196 &memcg, false))) {
1197 if (pages[i])
1198 put_page(pages[i]);
1199 while (--i >= 0) {
1200 memcg = (void *)page_private(pages[i]);
1201 set_page_private(pages[i], 0);
1202 mem_cgroup_cancel_charge(pages[i], memcg,
1203 false);
1204 put_page(pages[i]);
1205 }
1206 kfree(pages);
1207 ret |= VM_FAULT_OOM;
1208 goto out;
1209 }
1210 set_page_private(pages[i], (unsigned long)memcg);
1211 }
1212
1213 for (i = 0; i < HPAGE_PMD_NR; i++) {
1214 copy_user_highpage(pages[i], page + i,
1215 haddr + PAGE_SIZE * i, vma);
1216 __SetPageUptodate(pages[i]);
1217 cond_resched();
1218 }
1219
1220 mmun_start = haddr;
1221 mmun_end = haddr + HPAGE_PMD_SIZE;
1222 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1223
1224 ptl = pmd_lock(mm, pmd);
1225 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1226 goto out_free_pages;
1227 VM_BUG_ON_PAGE(!PageHead(page), page);
1228
1229 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1230 /* leave pmd empty until pte is filled */
1231
1232 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1233 pmd_populate(mm, &_pmd, pgtable);
1234
1235 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1236 pte_t *pte, entry;
1237 entry = mk_pte(pages[i], vma->vm_page_prot);
1238 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1239 memcg = (void *)page_private(pages[i]);
1240 set_page_private(pages[i], 0);
1241 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1242 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1243 lru_cache_add_active_or_unevictable(pages[i], vma);
1244 pte = pte_offset_map(&_pmd, haddr);
1245 VM_BUG_ON(!pte_none(*pte));
1246 set_pte_at(mm, haddr, pte, entry);
1247 pte_unmap(pte);
1248 }
1249 kfree(pages);
1250
1251 smp_wmb(); /* make pte visible before pmd */
1252 pmd_populate(mm, pmd, pgtable);
1253 page_remove_rmap(page, true);
1254 spin_unlock(ptl);
1255
1256 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1257
1258 ret |= VM_FAULT_WRITE;
1259 put_page(page);
1260
1261 out:
1262 return ret;
1263
1264 out_free_pages:
1265 spin_unlock(ptl);
1266 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1267 for (i = 0; i < HPAGE_PMD_NR; i++) {
1268 memcg = (void *)page_private(pages[i]);
1269 set_page_private(pages[i], 0);
1270 mem_cgroup_cancel_charge(pages[i], memcg, false);
1271 put_page(pages[i]);
1272 }
1273 kfree(pages);
1274 goto out;
1275 }
1276
1277 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1278 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1279 {
1280 spinlock_t *ptl;
1281 int ret = 0;
1282 struct page *page = NULL, *new_page;
1283 struct mem_cgroup *memcg;
1284 unsigned long haddr;
1285 unsigned long mmun_start; /* For mmu_notifiers */
1286 unsigned long mmun_end; /* For mmu_notifiers */
1287 gfp_t huge_gfp; /* for allocation and charge */
1288
1289 ptl = pmd_lockptr(mm, pmd);
1290 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1291 haddr = address & HPAGE_PMD_MASK;
1292 if (is_huge_zero_pmd(orig_pmd))
1293 goto alloc;
1294 spin_lock(ptl);
1295 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1296 goto out_unlock;
1297
1298 page = pmd_page(orig_pmd);
1299 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1300 /*
1301 * We can only reuse the page if nobody else maps the huge page or it's
1302 * part.
1303 */
1304 if (page_trans_huge_mapcount(page, NULL) == 1) {
1305 pmd_t entry;
1306 entry = pmd_mkyoung(orig_pmd);
1307 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1308 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1309 update_mmu_cache_pmd(vma, address, pmd);
1310 ret |= VM_FAULT_WRITE;
1311 goto out_unlock;
1312 }
1313 get_page(page);
1314 spin_unlock(ptl);
1315 alloc:
1316 if (transparent_hugepage_enabled(vma) &&
1317 !transparent_hugepage_debug_cow()) {
1318 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1319 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1320 } else
1321 new_page = NULL;
1322
1323 if (likely(new_page)) {
1324 prep_transhuge_page(new_page);
1325 } else {
1326 if (!page) {
1327 split_huge_pmd(vma, pmd, address);
1328 ret |= VM_FAULT_FALLBACK;
1329 } else {
1330 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1331 pmd, orig_pmd, page, haddr);
1332 if (ret & VM_FAULT_OOM) {
1333 split_huge_pmd(vma, pmd, address);
1334 ret |= VM_FAULT_FALLBACK;
1335 }
1336 put_page(page);
1337 }
1338 count_vm_event(THP_FAULT_FALLBACK);
1339 goto out;
1340 }
1341
1342 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1343 true))) {
1344 put_page(new_page);
1345 if (page) {
1346 split_huge_pmd(vma, pmd, address);
1347 put_page(page);
1348 } else
1349 split_huge_pmd(vma, pmd, address);
1350 ret |= VM_FAULT_FALLBACK;
1351 count_vm_event(THP_FAULT_FALLBACK);
1352 goto out;
1353 }
1354
1355 count_vm_event(THP_FAULT_ALLOC);
1356
1357 if (!page)
1358 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1359 else
1360 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1361 __SetPageUptodate(new_page);
1362
1363 mmun_start = haddr;
1364 mmun_end = haddr + HPAGE_PMD_SIZE;
1365 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1366
1367 spin_lock(ptl);
1368 if (page)
1369 put_page(page);
1370 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1371 spin_unlock(ptl);
1372 mem_cgroup_cancel_charge(new_page, memcg, true);
1373 put_page(new_page);
1374 goto out_mn;
1375 } else {
1376 pmd_t entry;
1377 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1378 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1379 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1380 page_add_new_anon_rmap(new_page, vma, haddr, true);
1381 mem_cgroup_commit_charge(new_page, memcg, false, true);
1382 lru_cache_add_active_or_unevictable(new_page, vma);
1383 set_pmd_at(mm, haddr, pmd, entry);
1384 update_mmu_cache_pmd(vma, address, pmd);
1385 if (!page) {
1386 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1387 put_huge_zero_page();
1388 } else {
1389 VM_BUG_ON_PAGE(!PageHead(page), page);
1390 page_remove_rmap(page, true);
1391 put_page(page);
1392 }
1393 ret |= VM_FAULT_WRITE;
1394 }
1395 spin_unlock(ptl);
1396 out_mn:
1397 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1398 out:
1399 return ret;
1400 out_unlock:
1401 spin_unlock(ptl);
1402 return ret;
1403 }
1404
1405 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1406 unsigned long addr,
1407 pmd_t *pmd,
1408 unsigned int flags)
1409 {
1410 struct mm_struct *mm = vma->vm_mm;
1411 struct page *page = NULL;
1412
1413 assert_spin_locked(pmd_lockptr(mm, pmd));
1414
1415 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1416 goto out;
1417
1418 /* Avoid dumping huge zero page */
1419 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1420 return ERR_PTR(-EFAULT);
1421
1422 /* Full NUMA hinting faults to serialise migration in fault paths */
1423 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1424 goto out;
1425
1426 page = pmd_page(*pmd);
1427 VM_BUG_ON_PAGE(!PageHead(page), page);
1428 if (flags & FOLL_TOUCH)
1429 touch_pmd(vma, addr, pmd);
1430 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1431 /*
1432 * We don't mlock() pte-mapped THPs. This way we can avoid
1433 * leaking mlocked pages into non-VM_LOCKED VMAs.
1434 *
1435 * In most cases the pmd is the only mapping of the page as we
1436 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 * writable private mappings in populate_vma_page_range().
1438 *
1439 * The only scenario when we have the page shared here is if we
1440 * mlocking read-only mapping shared over fork(). We skip
1441 * mlocking such pages.
1442 */
1443 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1444 page->mapping && trylock_page(page)) {
1445 lru_add_drain();
1446 if (page->mapping)
1447 mlock_vma_page(page);
1448 unlock_page(page);
1449 }
1450 }
1451 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1452 VM_BUG_ON_PAGE(!PageCompound(page), page);
1453 if (flags & FOLL_GET)
1454 get_page(page);
1455
1456 out:
1457 return page;
1458 }
1459
1460 /* NUMA hinting page fault entry point for trans huge pmds */
1461 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1462 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1463 {
1464 spinlock_t *ptl;
1465 struct anon_vma *anon_vma = NULL;
1466 struct page *page;
1467 unsigned long haddr = addr & HPAGE_PMD_MASK;
1468 int page_nid = -1, this_nid = numa_node_id();
1469 int target_nid, last_cpupid = -1;
1470 bool page_locked;
1471 bool migrated = false;
1472 bool was_writable;
1473 int flags = 0;
1474
1475 /* A PROT_NONE fault should not end up here */
1476 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1477
1478 ptl = pmd_lock(mm, pmdp);
1479 if (unlikely(!pmd_same(pmd, *pmdp)))
1480 goto out_unlock;
1481
1482 /*
1483 * If there are potential migrations, wait for completion and retry
1484 * without disrupting NUMA hinting information. Do not relock and
1485 * check_same as the page may no longer be mapped.
1486 */
1487 if (unlikely(pmd_trans_migrating(*pmdp))) {
1488 page = pmd_page(*pmdp);
1489 spin_unlock(ptl);
1490 wait_on_page_locked(page);
1491 goto out;
1492 }
1493
1494 page = pmd_page(pmd);
1495 BUG_ON(is_huge_zero_page(page));
1496 page_nid = page_to_nid(page);
1497 last_cpupid = page_cpupid_last(page);
1498 count_vm_numa_event(NUMA_HINT_FAULTS);
1499 if (page_nid == this_nid) {
1500 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501 flags |= TNF_FAULT_LOCAL;
1502 }
1503
1504 /* See similar comment in do_numa_page for explanation */
1505 if (!(vma->vm_flags & VM_WRITE))
1506 flags |= TNF_NO_GROUP;
1507
1508 /*
1509 * Acquire the page lock to serialise THP migrations but avoid dropping
1510 * page_table_lock if at all possible
1511 */
1512 page_locked = trylock_page(page);
1513 target_nid = mpol_misplaced(page, vma, haddr);
1514 if (target_nid == -1) {
1515 /* If the page was locked, there are no parallel migrations */
1516 if (page_locked)
1517 goto clear_pmdnuma;
1518 }
1519
1520 /* Migration could have started since the pmd_trans_migrating check */
1521 if (!page_locked) {
1522 spin_unlock(ptl);
1523 wait_on_page_locked(page);
1524 page_nid = -1;
1525 goto out;
1526 }
1527
1528 /*
1529 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530 * to serialises splits
1531 */
1532 get_page(page);
1533 spin_unlock(ptl);
1534 anon_vma = page_lock_anon_vma_read(page);
1535
1536 /* Confirm the PMD did not change while page_table_lock was released */
1537 spin_lock(ptl);
1538 if (unlikely(!pmd_same(pmd, *pmdp))) {
1539 unlock_page(page);
1540 put_page(page);
1541 page_nid = -1;
1542 goto out_unlock;
1543 }
1544
1545 /* Bail if we fail to protect against THP splits for any reason */
1546 if (unlikely(!anon_vma)) {
1547 put_page(page);
1548 page_nid = -1;
1549 goto clear_pmdnuma;
1550 }
1551
1552 /*
1553 * Migrate the THP to the requested node, returns with page unlocked
1554 * and access rights restored.
1555 */
1556 spin_unlock(ptl);
1557 migrated = migrate_misplaced_transhuge_page(mm, vma,
1558 pmdp, pmd, addr, page, target_nid);
1559 if (migrated) {
1560 flags |= TNF_MIGRATED;
1561 page_nid = target_nid;
1562 } else
1563 flags |= TNF_MIGRATE_FAIL;
1564
1565 goto out;
1566 clear_pmdnuma:
1567 BUG_ON(!PageLocked(page));
1568 was_writable = pmd_write(pmd);
1569 pmd = pmd_modify(pmd, vma->vm_page_prot);
1570 pmd = pmd_mkyoung(pmd);
1571 if (was_writable)
1572 pmd = pmd_mkwrite(pmd);
1573 set_pmd_at(mm, haddr, pmdp, pmd);
1574 update_mmu_cache_pmd(vma, addr, pmdp);
1575 unlock_page(page);
1576 out_unlock:
1577 spin_unlock(ptl);
1578
1579 out:
1580 if (anon_vma)
1581 page_unlock_anon_vma_read(anon_vma);
1582
1583 if (page_nid != -1)
1584 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1585
1586 return 0;
1587 }
1588
1589 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1590 pmd_t *pmd, unsigned long addr, unsigned long next)
1591
1592 {
1593 spinlock_t *ptl;
1594 pmd_t orig_pmd;
1595 struct page *page;
1596 struct mm_struct *mm = tlb->mm;
1597 int ret = 0;
1598
1599 ptl = pmd_trans_huge_lock(pmd, vma);
1600 if (!ptl)
1601 goto out_unlocked;
1602
1603 orig_pmd = *pmd;
1604 if (is_huge_zero_pmd(orig_pmd)) {
1605 ret = 1;
1606 goto out;
1607 }
1608
1609 page = pmd_page(orig_pmd);
1610 /*
1611 * If other processes are mapping this page, we couldn't discard
1612 * the page unless they all do MADV_FREE so let's skip the page.
1613 */
1614 if (page_mapcount(page) != 1)
1615 goto out;
1616
1617 if (!trylock_page(page))
1618 goto out;
1619
1620 /*
1621 * If user want to discard part-pages of THP, split it so MADV_FREE
1622 * will deactivate only them.
1623 */
1624 if (next - addr != HPAGE_PMD_SIZE) {
1625 get_page(page);
1626 spin_unlock(ptl);
1627 split_huge_page(page);
1628 put_page(page);
1629 unlock_page(page);
1630 goto out_unlocked;
1631 }
1632
1633 if (PageDirty(page))
1634 ClearPageDirty(page);
1635 unlock_page(page);
1636
1637 if (PageActive(page))
1638 deactivate_page(page);
1639
1640 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 tlb->fullmm);
1643 orig_pmd = pmd_mkold(orig_pmd);
1644 orig_pmd = pmd_mkclean(orig_pmd);
1645
1646 set_pmd_at(mm, addr, pmd, orig_pmd);
1647 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648 }
1649 ret = 1;
1650 out:
1651 spin_unlock(ptl);
1652 out_unlocked:
1653 return ret;
1654 }
1655
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657 pmd_t *pmd, unsigned long addr)
1658 {
1659 pmd_t orig_pmd;
1660 spinlock_t *ptl;
1661
1662 ptl = __pmd_trans_huge_lock(pmd, vma);
1663 if (!ptl)
1664 return 0;
1665 /*
1666 * For architectures like ppc64 we look at deposited pgtable
1667 * when calling pmdp_huge_get_and_clear. So do the
1668 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 * operations.
1670 */
1671 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672 tlb->fullmm);
1673 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674 if (vma_is_dax(vma)) {
1675 spin_unlock(ptl);
1676 if (is_huge_zero_pmd(orig_pmd))
1677 tlb_remove_page(tlb, pmd_page(orig_pmd));
1678 } else if (is_huge_zero_pmd(orig_pmd)) {
1679 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680 atomic_long_dec(&tlb->mm->nr_ptes);
1681 spin_unlock(ptl);
1682 tlb_remove_page(tlb, pmd_page(orig_pmd));
1683 } else {
1684 struct page *page = pmd_page(orig_pmd);
1685 page_remove_rmap(page, true);
1686 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688 VM_BUG_ON_PAGE(!PageHead(page), page);
1689 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 atomic_long_dec(&tlb->mm->nr_ptes);
1691 spin_unlock(ptl);
1692 tlb_remove_page(tlb, page);
1693 }
1694 return 1;
1695 }
1696
1697 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1698 unsigned long new_addr, unsigned long old_end,
1699 pmd_t *old_pmd, pmd_t *new_pmd)
1700 {
1701 spinlock_t *old_ptl, *new_ptl;
1702 pmd_t pmd;
1703 struct mm_struct *mm = vma->vm_mm;
1704
1705 if ((old_addr & ~HPAGE_PMD_MASK) ||
1706 (new_addr & ~HPAGE_PMD_MASK) ||
1707 old_end - old_addr < HPAGE_PMD_SIZE)
1708 return false;
1709
1710 /*
1711 * The destination pmd shouldn't be established, free_pgtables()
1712 * should have release it.
1713 */
1714 if (WARN_ON(!pmd_none(*new_pmd))) {
1715 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1716 return false;
1717 }
1718
1719 /*
1720 * We don't have to worry about the ordering of src and dst
1721 * ptlocks because exclusive mmap_sem prevents deadlock.
1722 */
1723 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1724 if (old_ptl) {
1725 new_ptl = pmd_lockptr(mm, new_pmd);
1726 if (new_ptl != old_ptl)
1727 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1728 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1729 VM_BUG_ON(!pmd_none(*new_pmd));
1730
1731 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1732 vma_is_anonymous(vma)) {
1733 pgtable_t pgtable;
1734 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1735 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1736 }
1737 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1738 if (new_ptl != old_ptl)
1739 spin_unlock(new_ptl);
1740 spin_unlock(old_ptl);
1741 return true;
1742 }
1743 return false;
1744 }
1745
1746 /*
1747 * Returns
1748 * - 0 if PMD could not be locked
1749 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1750 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1751 */
1752 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1753 unsigned long addr, pgprot_t newprot, int prot_numa)
1754 {
1755 struct mm_struct *mm = vma->vm_mm;
1756 spinlock_t *ptl;
1757 int ret = 0;
1758
1759 ptl = __pmd_trans_huge_lock(pmd, vma);
1760 if (ptl) {
1761 pmd_t entry;
1762 bool preserve_write = prot_numa && pmd_write(*pmd);
1763 ret = 1;
1764
1765 /*
1766 * Avoid trapping faults against the zero page. The read-only
1767 * data is likely to be read-cached on the local CPU and
1768 * local/remote hits to the zero page are not interesting.
1769 */
1770 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1771 spin_unlock(ptl);
1772 return ret;
1773 }
1774
1775 if (!prot_numa || !pmd_protnone(*pmd)) {
1776 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1777 entry = pmd_modify(entry, newprot);
1778 if (preserve_write)
1779 entry = pmd_mkwrite(entry);
1780 ret = HPAGE_PMD_NR;
1781 set_pmd_at(mm, addr, pmd, entry);
1782 BUG_ON(!preserve_write && pmd_write(entry));
1783 }
1784 spin_unlock(ptl);
1785 }
1786
1787 return ret;
1788 }
1789
1790 /*
1791 * Returns true if a given pmd maps a thp, false otherwise.
1792 *
1793 * Note that if it returns true, this routine returns without unlocking page
1794 * table lock. So callers must unlock it.
1795 */
1796 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1797 {
1798 spinlock_t *ptl;
1799 ptl = pmd_lock(vma->vm_mm, pmd);
1800 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1801 return ptl;
1802 spin_unlock(ptl);
1803 return NULL;
1804 }
1805
1806 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1807
1808 int hugepage_madvise(struct vm_area_struct *vma,
1809 unsigned long *vm_flags, int advice)
1810 {
1811 switch (advice) {
1812 case MADV_HUGEPAGE:
1813 #ifdef CONFIG_S390
1814 /*
1815 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1816 * can't handle this properly after s390_enable_sie, so we simply
1817 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1818 */
1819 if (mm_has_pgste(vma->vm_mm))
1820 return 0;
1821 #endif
1822 /*
1823 * Be somewhat over-protective like KSM for now!
1824 */
1825 if (*vm_flags & VM_NO_THP)
1826 return -EINVAL;
1827 *vm_flags &= ~VM_NOHUGEPAGE;
1828 *vm_flags |= VM_HUGEPAGE;
1829 /*
1830 * If the vma become good for khugepaged to scan,
1831 * register it here without waiting a page fault that
1832 * may not happen any time soon.
1833 */
1834 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1835 return -ENOMEM;
1836 break;
1837 case MADV_NOHUGEPAGE:
1838 /*
1839 * Be somewhat over-protective like KSM for now!
1840 */
1841 if (*vm_flags & VM_NO_THP)
1842 return -EINVAL;
1843 *vm_flags &= ~VM_HUGEPAGE;
1844 *vm_flags |= VM_NOHUGEPAGE;
1845 /*
1846 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1847 * this vma even if we leave the mm registered in khugepaged if
1848 * it got registered before VM_NOHUGEPAGE was set.
1849 */
1850 break;
1851 }
1852
1853 return 0;
1854 }
1855
1856 static int __init khugepaged_slab_init(void)
1857 {
1858 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1859 sizeof(struct mm_slot),
1860 __alignof__(struct mm_slot), 0, NULL);
1861 if (!mm_slot_cache)
1862 return -ENOMEM;
1863
1864 return 0;
1865 }
1866
1867 static void __init khugepaged_slab_exit(void)
1868 {
1869 kmem_cache_destroy(mm_slot_cache);
1870 }
1871
1872 static inline struct mm_slot *alloc_mm_slot(void)
1873 {
1874 if (!mm_slot_cache) /* initialization failed */
1875 return NULL;
1876 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1877 }
1878
1879 static inline void free_mm_slot(struct mm_slot *mm_slot)
1880 {
1881 kmem_cache_free(mm_slot_cache, mm_slot);
1882 }
1883
1884 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1885 {
1886 struct mm_slot *mm_slot;
1887
1888 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1889 if (mm == mm_slot->mm)
1890 return mm_slot;
1891
1892 return NULL;
1893 }
1894
1895 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1896 struct mm_slot *mm_slot)
1897 {
1898 mm_slot->mm = mm;
1899 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1900 }
1901
1902 static inline int khugepaged_test_exit(struct mm_struct *mm)
1903 {
1904 return atomic_read(&mm->mm_users) == 0;
1905 }
1906
1907 int __khugepaged_enter(struct mm_struct *mm)
1908 {
1909 struct mm_slot *mm_slot;
1910 int wakeup;
1911
1912 mm_slot = alloc_mm_slot();
1913 if (!mm_slot)
1914 return -ENOMEM;
1915
1916 /* __khugepaged_exit() must not run from under us */
1917 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1918 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1919 free_mm_slot(mm_slot);
1920 return 0;
1921 }
1922
1923 spin_lock(&khugepaged_mm_lock);
1924 insert_to_mm_slots_hash(mm, mm_slot);
1925 /*
1926 * Insert just behind the scanning cursor, to let the area settle
1927 * down a little.
1928 */
1929 wakeup = list_empty(&khugepaged_scan.mm_head);
1930 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1931 spin_unlock(&khugepaged_mm_lock);
1932
1933 atomic_inc(&mm->mm_count);
1934 if (wakeup)
1935 wake_up_interruptible(&khugepaged_wait);
1936
1937 return 0;
1938 }
1939
1940 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1941 unsigned long vm_flags)
1942 {
1943 unsigned long hstart, hend;
1944 if (!vma->anon_vma)
1945 /*
1946 * Not yet faulted in so we will register later in the
1947 * page fault if needed.
1948 */
1949 return 0;
1950 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1951 /* khugepaged not yet working on file or special mappings */
1952 return 0;
1953 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1954 hend = vma->vm_end & HPAGE_PMD_MASK;
1955 if (hstart < hend)
1956 return khugepaged_enter(vma, vm_flags);
1957 return 0;
1958 }
1959
1960 void __khugepaged_exit(struct mm_struct *mm)
1961 {
1962 struct mm_slot *mm_slot;
1963 int free = 0;
1964
1965 spin_lock(&khugepaged_mm_lock);
1966 mm_slot = get_mm_slot(mm);
1967 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1968 hash_del(&mm_slot->hash);
1969 list_del(&mm_slot->mm_node);
1970 free = 1;
1971 }
1972 spin_unlock(&khugepaged_mm_lock);
1973
1974 if (free) {
1975 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1976 free_mm_slot(mm_slot);
1977 mmdrop(mm);
1978 } else if (mm_slot) {
1979 /*
1980 * This is required to serialize against
1981 * khugepaged_test_exit() (which is guaranteed to run
1982 * under mmap sem read mode). Stop here (after we
1983 * return all pagetables will be destroyed) until
1984 * khugepaged has finished working on the pagetables
1985 * under the mmap_sem.
1986 */
1987 down_write(&mm->mmap_sem);
1988 up_write(&mm->mmap_sem);
1989 }
1990 }
1991
1992 static void release_pte_page(struct page *page)
1993 {
1994 /* 0 stands for page_is_file_cache(page) == false */
1995 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1996 unlock_page(page);
1997 putback_lru_page(page);
1998 }
1999
2000 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2001 {
2002 while (--_pte >= pte) {
2003 pte_t pteval = *_pte;
2004 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2005 release_pte_page(pte_page(pteval));
2006 }
2007 }
2008
2009 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2010 unsigned long address,
2011 pte_t *pte)
2012 {
2013 struct page *page = NULL;
2014 pte_t *_pte;
2015 int none_or_zero = 0, result = 0;
2016 bool referenced = false, writable = false;
2017
2018 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2019 _pte++, address += PAGE_SIZE) {
2020 pte_t pteval = *_pte;
2021 if (pte_none(pteval) || (pte_present(pteval) &&
2022 is_zero_pfn(pte_pfn(pteval)))) {
2023 if (!userfaultfd_armed(vma) &&
2024 ++none_or_zero <= khugepaged_max_ptes_none) {
2025 continue;
2026 } else {
2027 result = SCAN_EXCEED_NONE_PTE;
2028 goto out;
2029 }
2030 }
2031 if (!pte_present(pteval)) {
2032 result = SCAN_PTE_NON_PRESENT;
2033 goto out;
2034 }
2035 page = vm_normal_page(vma, address, pteval);
2036 if (unlikely(!page)) {
2037 result = SCAN_PAGE_NULL;
2038 goto out;
2039 }
2040
2041 VM_BUG_ON_PAGE(PageCompound(page), page);
2042 VM_BUG_ON_PAGE(!PageAnon(page), page);
2043 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2044
2045 /*
2046 * We can do it before isolate_lru_page because the
2047 * page can't be freed from under us. NOTE: PG_lock
2048 * is needed to serialize against split_huge_page
2049 * when invoked from the VM.
2050 */
2051 if (!trylock_page(page)) {
2052 result = SCAN_PAGE_LOCK;
2053 goto out;
2054 }
2055
2056 /*
2057 * cannot use mapcount: can't collapse if there's a gup pin.
2058 * The page must only be referenced by the scanned process
2059 * and page swap cache.
2060 */
2061 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2062 unlock_page(page);
2063 result = SCAN_PAGE_COUNT;
2064 goto out;
2065 }
2066 if (pte_write(pteval)) {
2067 writable = true;
2068 } else {
2069 if (PageSwapCache(page) &&
2070 !reuse_swap_page(page, NULL)) {
2071 unlock_page(page);
2072 result = SCAN_SWAP_CACHE_PAGE;
2073 goto out;
2074 }
2075 /*
2076 * Page is not in the swap cache. It can be collapsed
2077 * into a THP.
2078 */
2079 }
2080
2081 /*
2082 * Isolate the page to avoid collapsing an hugepage
2083 * currently in use by the VM.
2084 */
2085 if (isolate_lru_page(page)) {
2086 unlock_page(page);
2087 result = SCAN_DEL_PAGE_LRU;
2088 goto out;
2089 }
2090 /* 0 stands for page_is_file_cache(page) == false */
2091 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2092 VM_BUG_ON_PAGE(!PageLocked(page), page);
2093 VM_BUG_ON_PAGE(PageLRU(page), page);
2094
2095 /* If there is no mapped pte young don't collapse the page */
2096 if (pte_young(pteval) ||
2097 page_is_young(page) || PageReferenced(page) ||
2098 mmu_notifier_test_young(vma->vm_mm, address))
2099 referenced = true;
2100 }
2101 if (likely(writable)) {
2102 if (likely(referenced)) {
2103 result = SCAN_SUCCEED;
2104 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2105 referenced, writable, result);
2106 return 1;
2107 }
2108 } else {
2109 result = SCAN_PAGE_RO;
2110 }
2111
2112 out:
2113 release_pte_pages(pte, _pte);
2114 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2115 referenced, writable, result);
2116 return 0;
2117 }
2118
2119 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2120 struct vm_area_struct *vma,
2121 unsigned long address,
2122 spinlock_t *ptl)
2123 {
2124 pte_t *_pte;
2125 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2126 pte_t pteval = *_pte;
2127 struct page *src_page;
2128
2129 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2130 clear_user_highpage(page, address);
2131 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2132 if (is_zero_pfn(pte_pfn(pteval))) {
2133 /*
2134 * ptl mostly unnecessary.
2135 */
2136 spin_lock(ptl);
2137 /*
2138 * paravirt calls inside pte_clear here are
2139 * superfluous.
2140 */
2141 pte_clear(vma->vm_mm, address, _pte);
2142 spin_unlock(ptl);
2143 }
2144 } else {
2145 src_page = pte_page(pteval);
2146 copy_user_highpage(page, src_page, address, vma);
2147 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2148 release_pte_page(src_page);
2149 /*
2150 * ptl mostly unnecessary, but preempt has to
2151 * be disabled to update the per-cpu stats
2152 * inside page_remove_rmap().
2153 */
2154 spin_lock(ptl);
2155 /*
2156 * paravirt calls inside pte_clear here are
2157 * superfluous.
2158 */
2159 pte_clear(vma->vm_mm, address, _pte);
2160 page_remove_rmap(src_page, false);
2161 spin_unlock(ptl);
2162 free_page_and_swap_cache(src_page);
2163 }
2164
2165 address += PAGE_SIZE;
2166 page++;
2167 }
2168 }
2169
2170 static void khugepaged_alloc_sleep(void)
2171 {
2172 DEFINE_WAIT(wait);
2173
2174 add_wait_queue(&khugepaged_wait, &wait);
2175 freezable_schedule_timeout_interruptible(
2176 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2177 remove_wait_queue(&khugepaged_wait, &wait);
2178 }
2179
2180 static int khugepaged_node_load[MAX_NUMNODES];
2181
2182 static bool khugepaged_scan_abort(int nid)
2183 {
2184 int i;
2185
2186 /*
2187 * If zone_reclaim_mode is disabled, then no extra effort is made to
2188 * allocate memory locally.
2189 */
2190 if (!zone_reclaim_mode)
2191 return false;
2192
2193 /* If there is a count for this node already, it must be acceptable */
2194 if (khugepaged_node_load[nid])
2195 return false;
2196
2197 for (i = 0; i < MAX_NUMNODES; i++) {
2198 if (!khugepaged_node_load[i])
2199 continue;
2200 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2201 return true;
2202 }
2203 return false;
2204 }
2205
2206 #ifdef CONFIG_NUMA
2207 static int khugepaged_find_target_node(void)
2208 {
2209 static int last_khugepaged_target_node = NUMA_NO_NODE;
2210 int nid, target_node = 0, max_value = 0;
2211
2212 /* find first node with max normal pages hit */
2213 for (nid = 0; nid < MAX_NUMNODES; nid++)
2214 if (khugepaged_node_load[nid] > max_value) {
2215 max_value = khugepaged_node_load[nid];
2216 target_node = nid;
2217 }
2218
2219 /* do some balance if several nodes have the same hit record */
2220 if (target_node <= last_khugepaged_target_node)
2221 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2222 nid++)
2223 if (max_value == khugepaged_node_load[nid]) {
2224 target_node = nid;
2225 break;
2226 }
2227
2228 last_khugepaged_target_node = target_node;
2229 return target_node;
2230 }
2231
2232 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233 {
2234 if (IS_ERR(*hpage)) {
2235 if (!*wait)
2236 return false;
2237
2238 *wait = false;
2239 *hpage = NULL;
2240 khugepaged_alloc_sleep();
2241 } else if (*hpage) {
2242 put_page(*hpage);
2243 *hpage = NULL;
2244 }
2245
2246 return true;
2247 }
2248
2249 static struct page *
2250 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2251 unsigned long address, int node)
2252 {
2253 VM_BUG_ON_PAGE(*hpage, *hpage);
2254
2255 /*
2256 * Before allocating the hugepage, release the mmap_sem read lock.
2257 * The allocation can take potentially a long time if it involves
2258 * sync compaction, and we do not need to hold the mmap_sem during
2259 * that. We will recheck the vma after taking it again in write mode.
2260 */
2261 up_read(&mm->mmap_sem);
2262
2263 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2264 if (unlikely(!*hpage)) {
2265 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2266 *hpage = ERR_PTR(-ENOMEM);
2267 return NULL;
2268 }
2269
2270 prep_transhuge_page(*hpage);
2271 count_vm_event(THP_COLLAPSE_ALLOC);
2272 return *hpage;
2273 }
2274 #else
2275 static int khugepaged_find_target_node(void)
2276 {
2277 return 0;
2278 }
2279
2280 static inline struct page *alloc_khugepaged_hugepage(void)
2281 {
2282 struct page *page;
2283
2284 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2285 HPAGE_PMD_ORDER);
2286 if (page)
2287 prep_transhuge_page(page);
2288 return page;
2289 }
2290
2291 static struct page *khugepaged_alloc_hugepage(bool *wait)
2292 {
2293 struct page *hpage;
2294
2295 do {
2296 hpage = alloc_khugepaged_hugepage();
2297 if (!hpage) {
2298 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2299 if (!*wait)
2300 return NULL;
2301
2302 *wait = false;
2303 khugepaged_alloc_sleep();
2304 } else
2305 count_vm_event(THP_COLLAPSE_ALLOC);
2306 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2307
2308 return hpage;
2309 }
2310
2311 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2312 {
2313 if (!*hpage)
2314 *hpage = khugepaged_alloc_hugepage(wait);
2315
2316 if (unlikely(!*hpage))
2317 return false;
2318
2319 return true;
2320 }
2321
2322 static struct page *
2323 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2324 unsigned long address, int node)
2325 {
2326 up_read(&mm->mmap_sem);
2327 VM_BUG_ON(!*hpage);
2328
2329 return *hpage;
2330 }
2331 #endif
2332
2333 static bool hugepage_vma_check(struct vm_area_struct *vma)
2334 {
2335 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2336 (vma->vm_flags & VM_NOHUGEPAGE))
2337 return false;
2338 if (!vma->anon_vma || vma->vm_ops)
2339 return false;
2340 if (is_vma_temporary_stack(vma))
2341 return false;
2342 return !(vma->vm_flags & VM_NO_THP);
2343 }
2344
2345 static void collapse_huge_page(struct mm_struct *mm,
2346 unsigned long address,
2347 struct page **hpage,
2348 struct vm_area_struct *vma,
2349 int node)
2350 {
2351 pmd_t *pmd, _pmd;
2352 pte_t *pte;
2353 pgtable_t pgtable;
2354 struct page *new_page;
2355 spinlock_t *pmd_ptl, *pte_ptl;
2356 int isolated = 0, result = 0;
2357 unsigned long hstart, hend;
2358 struct mem_cgroup *memcg;
2359 unsigned long mmun_start; /* For mmu_notifiers */
2360 unsigned long mmun_end; /* For mmu_notifiers */
2361 gfp_t gfp;
2362
2363 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2364
2365 /* Only allocate from the target node */
2366 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2367
2368 /* release the mmap_sem read lock. */
2369 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2370 if (!new_page) {
2371 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2372 goto out_nolock;
2373 }
2374
2375 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2376 result = SCAN_CGROUP_CHARGE_FAIL;
2377 goto out_nolock;
2378 }
2379
2380 /*
2381 * Prevent all access to pagetables with the exception of
2382 * gup_fast later hanlded by the ptep_clear_flush and the VM
2383 * handled by the anon_vma lock + PG_lock.
2384 */
2385 down_write(&mm->mmap_sem);
2386 if (unlikely(khugepaged_test_exit(mm))) {
2387 result = SCAN_ANY_PROCESS;
2388 goto out;
2389 }
2390
2391 vma = find_vma(mm, address);
2392 if (!vma) {
2393 result = SCAN_VMA_NULL;
2394 goto out;
2395 }
2396 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2397 hend = vma->vm_end & HPAGE_PMD_MASK;
2398 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2399 result = SCAN_ADDRESS_RANGE;
2400 goto out;
2401 }
2402 if (!hugepage_vma_check(vma)) {
2403 result = SCAN_VMA_CHECK;
2404 goto out;
2405 }
2406 pmd = mm_find_pmd(mm, address);
2407 if (!pmd) {
2408 result = SCAN_PMD_NULL;
2409 goto out;
2410 }
2411
2412 anon_vma_lock_write(vma->anon_vma);
2413
2414 pte = pte_offset_map(pmd, address);
2415 pte_ptl = pte_lockptr(mm, pmd);
2416
2417 mmun_start = address;
2418 mmun_end = address + HPAGE_PMD_SIZE;
2419 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2420 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2421 /*
2422 * After this gup_fast can't run anymore. This also removes
2423 * any huge TLB entry from the CPU so we won't allow
2424 * huge and small TLB entries for the same virtual address
2425 * to avoid the risk of CPU bugs in that area.
2426 */
2427 _pmd = pmdp_collapse_flush(vma, address, pmd);
2428 spin_unlock(pmd_ptl);
2429 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2430
2431 spin_lock(pte_ptl);
2432 isolated = __collapse_huge_page_isolate(vma, address, pte);
2433 spin_unlock(pte_ptl);
2434
2435 if (unlikely(!isolated)) {
2436 pte_unmap(pte);
2437 spin_lock(pmd_ptl);
2438 BUG_ON(!pmd_none(*pmd));
2439 /*
2440 * We can only use set_pmd_at when establishing
2441 * hugepmds and never for establishing regular pmds that
2442 * points to regular pagetables. Use pmd_populate for that
2443 */
2444 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2445 spin_unlock(pmd_ptl);
2446 anon_vma_unlock_write(vma->anon_vma);
2447 result = SCAN_FAIL;
2448 goto out;
2449 }
2450
2451 /*
2452 * All pages are isolated and locked so anon_vma rmap
2453 * can't run anymore.
2454 */
2455 anon_vma_unlock_write(vma->anon_vma);
2456
2457 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2458 pte_unmap(pte);
2459 __SetPageUptodate(new_page);
2460 pgtable = pmd_pgtable(_pmd);
2461
2462 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2463 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2464
2465 /*
2466 * spin_lock() below is not the equivalent of smp_wmb(), so
2467 * this is needed to avoid the copy_huge_page writes to become
2468 * visible after the set_pmd_at() write.
2469 */
2470 smp_wmb();
2471
2472 spin_lock(pmd_ptl);
2473 BUG_ON(!pmd_none(*pmd));
2474 page_add_new_anon_rmap(new_page, vma, address, true);
2475 mem_cgroup_commit_charge(new_page, memcg, false, true);
2476 lru_cache_add_active_or_unevictable(new_page, vma);
2477 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2478 set_pmd_at(mm, address, pmd, _pmd);
2479 update_mmu_cache_pmd(vma, address, pmd);
2480 spin_unlock(pmd_ptl);
2481
2482 *hpage = NULL;
2483
2484 khugepaged_pages_collapsed++;
2485 result = SCAN_SUCCEED;
2486 out_up_write:
2487 up_write(&mm->mmap_sem);
2488 trace_mm_collapse_huge_page(mm, isolated, result);
2489 return;
2490
2491 out_nolock:
2492 trace_mm_collapse_huge_page(mm, isolated, result);
2493 return;
2494 out:
2495 mem_cgroup_cancel_charge(new_page, memcg, true);
2496 goto out_up_write;
2497 }
2498
2499 static int khugepaged_scan_pmd(struct mm_struct *mm,
2500 struct vm_area_struct *vma,
2501 unsigned long address,
2502 struct page **hpage)
2503 {
2504 pmd_t *pmd;
2505 pte_t *pte, *_pte;
2506 int ret = 0, none_or_zero = 0, result = 0;
2507 struct page *page = NULL;
2508 unsigned long _address;
2509 spinlock_t *ptl;
2510 int node = NUMA_NO_NODE;
2511 bool writable = false, referenced = false;
2512
2513 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2514
2515 pmd = mm_find_pmd(mm, address);
2516 if (!pmd) {
2517 result = SCAN_PMD_NULL;
2518 goto out;
2519 }
2520
2521 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2522 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2523 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2524 _pte++, _address += PAGE_SIZE) {
2525 pte_t pteval = *_pte;
2526 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2527 if (!userfaultfd_armed(vma) &&
2528 ++none_or_zero <= khugepaged_max_ptes_none) {
2529 continue;
2530 } else {
2531 result = SCAN_EXCEED_NONE_PTE;
2532 goto out_unmap;
2533 }
2534 }
2535 if (!pte_present(pteval)) {
2536 result = SCAN_PTE_NON_PRESENT;
2537 goto out_unmap;
2538 }
2539 if (pte_write(pteval))
2540 writable = true;
2541
2542 page = vm_normal_page(vma, _address, pteval);
2543 if (unlikely(!page)) {
2544 result = SCAN_PAGE_NULL;
2545 goto out_unmap;
2546 }
2547
2548 /* TODO: teach khugepaged to collapse THP mapped with pte */
2549 if (PageCompound(page)) {
2550 result = SCAN_PAGE_COMPOUND;
2551 goto out_unmap;
2552 }
2553
2554 /*
2555 * Record which node the original page is from and save this
2556 * information to khugepaged_node_load[].
2557 * Khupaged will allocate hugepage from the node has the max
2558 * hit record.
2559 */
2560 node = page_to_nid(page);
2561 if (khugepaged_scan_abort(node)) {
2562 result = SCAN_SCAN_ABORT;
2563 goto out_unmap;
2564 }
2565 khugepaged_node_load[node]++;
2566 if (!PageLRU(page)) {
2567 result = SCAN_PAGE_LRU;
2568 goto out_unmap;
2569 }
2570 if (PageLocked(page)) {
2571 result = SCAN_PAGE_LOCK;
2572 goto out_unmap;
2573 }
2574 if (!PageAnon(page)) {
2575 result = SCAN_PAGE_ANON;
2576 goto out_unmap;
2577 }
2578
2579 /*
2580 * cannot use mapcount: can't collapse if there's a gup pin.
2581 * The page must only be referenced by the scanned process
2582 * and page swap cache.
2583 */
2584 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2585 result = SCAN_PAGE_COUNT;
2586 goto out_unmap;
2587 }
2588 if (pte_young(pteval) ||
2589 page_is_young(page) || PageReferenced(page) ||
2590 mmu_notifier_test_young(vma->vm_mm, address))
2591 referenced = true;
2592 }
2593 if (writable) {
2594 if (referenced) {
2595 result = SCAN_SUCCEED;
2596 ret = 1;
2597 } else {
2598 result = SCAN_NO_REFERENCED_PAGE;
2599 }
2600 } else {
2601 result = SCAN_PAGE_RO;
2602 }
2603 out_unmap:
2604 pte_unmap_unlock(pte, ptl);
2605 if (ret) {
2606 node = khugepaged_find_target_node();
2607 /* collapse_huge_page will return with the mmap_sem released */
2608 collapse_huge_page(mm, address, hpage, vma, node);
2609 }
2610 out:
2611 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2612 none_or_zero, result);
2613 return ret;
2614 }
2615
2616 static void collect_mm_slot(struct mm_slot *mm_slot)
2617 {
2618 struct mm_struct *mm = mm_slot->mm;
2619
2620 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2621
2622 if (khugepaged_test_exit(mm)) {
2623 /* free mm_slot */
2624 hash_del(&mm_slot->hash);
2625 list_del(&mm_slot->mm_node);
2626
2627 /*
2628 * Not strictly needed because the mm exited already.
2629 *
2630 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2631 */
2632
2633 /* khugepaged_mm_lock actually not necessary for the below */
2634 free_mm_slot(mm_slot);
2635 mmdrop(mm);
2636 }
2637 }
2638
2639 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2640 struct page **hpage)
2641 __releases(&khugepaged_mm_lock)
2642 __acquires(&khugepaged_mm_lock)
2643 {
2644 struct mm_slot *mm_slot;
2645 struct mm_struct *mm;
2646 struct vm_area_struct *vma;
2647 int progress = 0;
2648
2649 VM_BUG_ON(!pages);
2650 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2651
2652 if (khugepaged_scan.mm_slot)
2653 mm_slot = khugepaged_scan.mm_slot;
2654 else {
2655 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2656 struct mm_slot, mm_node);
2657 khugepaged_scan.address = 0;
2658 khugepaged_scan.mm_slot = mm_slot;
2659 }
2660 spin_unlock(&khugepaged_mm_lock);
2661
2662 mm = mm_slot->mm;
2663 down_read(&mm->mmap_sem);
2664 if (unlikely(khugepaged_test_exit(mm)))
2665 vma = NULL;
2666 else
2667 vma = find_vma(mm, khugepaged_scan.address);
2668
2669 progress++;
2670 for (; vma; vma = vma->vm_next) {
2671 unsigned long hstart, hend;
2672
2673 cond_resched();
2674 if (unlikely(khugepaged_test_exit(mm))) {
2675 progress++;
2676 break;
2677 }
2678 if (!hugepage_vma_check(vma)) {
2679 skip:
2680 progress++;
2681 continue;
2682 }
2683 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2684 hend = vma->vm_end & HPAGE_PMD_MASK;
2685 if (hstart >= hend)
2686 goto skip;
2687 if (khugepaged_scan.address > hend)
2688 goto skip;
2689 if (khugepaged_scan.address < hstart)
2690 khugepaged_scan.address = hstart;
2691 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2692
2693 while (khugepaged_scan.address < hend) {
2694 int ret;
2695 cond_resched();
2696 if (unlikely(khugepaged_test_exit(mm)))
2697 goto breakouterloop;
2698
2699 VM_BUG_ON(khugepaged_scan.address < hstart ||
2700 khugepaged_scan.address + HPAGE_PMD_SIZE >
2701 hend);
2702 ret = khugepaged_scan_pmd(mm, vma,
2703 khugepaged_scan.address,
2704 hpage);
2705 /* move to next address */
2706 khugepaged_scan.address += HPAGE_PMD_SIZE;
2707 progress += HPAGE_PMD_NR;
2708 if (ret)
2709 /* we released mmap_sem so break loop */
2710 goto breakouterloop_mmap_sem;
2711 if (progress >= pages)
2712 goto breakouterloop;
2713 }
2714 }
2715 breakouterloop:
2716 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2717 breakouterloop_mmap_sem:
2718
2719 spin_lock(&khugepaged_mm_lock);
2720 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2721 /*
2722 * Release the current mm_slot if this mm is about to die, or
2723 * if we scanned all vmas of this mm.
2724 */
2725 if (khugepaged_test_exit(mm) || !vma) {
2726 /*
2727 * Make sure that if mm_users is reaching zero while
2728 * khugepaged runs here, khugepaged_exit will find
2729 * mm_slot not pointing to the exiting mm.
2730 */
2731 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2732 khugepaged_scan.mm_slot = list_entry(
2733 mm_slot->mm_node.next,
2734 struct mm_slot, mm_node);
2735 khugepaged_scan.address = 0;
2736 } else {
2737 khugepaged_scan.mm_slot = NULL;
2738 khugepaged_full_scans++;
2739 }
2740
2741 collect_mm_slot(mm_slot);
2742 }
2743
2744 return progress;
2745 }
2746
2747 static int khugepaged_has_work(void)
2748 {
2749 return !list_empty(&khugepaged_scan.mm_head) &&
2750 khugepaged_enabled();
2751 }
2752
2753 static int khugepaged_wait_event(void)
2754 {
2755 return !list_empty(&khugepaged_scan.mm_head) ||
2756 kthread_should_stop();
2757 }
2758
2759 static void khugepaged_do_scan(void)
2760 {
2761 struct page *hpage = NULL;
2762 unsigned int progress = 0, pass_through_head = 0;
2763 unsigned int pages = khugepaged_pages_to_scan;
2764 bool wait = true;
2765
2766 barrier(); /* write khugepaged_pages_to_scan to local stack */
2767
2768 while (progress < pages) {
2769 if (!khugepaged_prealloc_page(&hpage, &wait))
2770 break;
2771
2772 cond_resched();
2773
2774 if (unlikely(kthread_should_stop() || try_to_freeze()))
2775 break;
2776
2777 spin_lock(&khugepaged_mm_lock);
2778 if (!khugepaged_scan.mm_slot)
2779 pass_through_head++;
2780 if (khugepaged_has_work() &&
2781 pass_through_head < 2)
2782 progress += khugepaged_scan_mm_slot(pages - progress,
2783 &hpage);
2784 else
2785 progress = pages;
2786 spin_unlock(&khugepaged_mm_lock);
2787 }
2788
2789 if (!IS_ERR_OR_NULL(hpage))
2790 put_page(hpage);
2791 }
2792
2793 static bool khugepaged_should_wakeup(void)
2794 {
2795 return kthread_should_stop() ||
2796 time_after_eq(jiffies, khugepaged_sleep_expire);
2797 }
2798
2799 static void khugepaged_wait_work(void)
2800 {
2801 if (khugepaged_has_work()) {
2802 const unsigned long scan_sleep_jiffies =
2803 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2804
2805 if (!scan_sleep_jiffies)
2806 return;
2807
2808 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2809 wait_event_freezable_timeout(khugepaged_wait,
2810 khugepaged_should_wakeup(),
2811 scan_sleep_jiffies);
2812 return;
2813 }
2814
2815 if (khugepaged_enabled())
2816 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2817 }
2818
2819 static int khugepaged(void *none)
2820 {
2821 struct mm_slot *mm_slot;
2822
2823 set_freezable();
2824 set_user_nice(current, MAX_NICE);
2825
2826 while (!kthread_should_stop()) {
2827 khugepaged_do_scan();
2828 khugepaged_wait_work();
2829 }
2830
2831 spin_lock(&khugepaged_mm_lock);
2832 mm_slot = khugepaged_scan.mm_slot;
2833 khugepaged_scan.mm_slot = NULL;
2834 if (mm_slot)
2835 collect_mm_slot(mm_slot);
2836 spin_unlock(&khugepaged_mm_lock);
2837 return 0;
2838 }
2839
2840 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2841 unsigned long haddr, pmd_t *pmd)
2842 {
2843 struct mm_struct *mm = vma->vm_mm;
2844 pgtable_t pgtable;
2845 pmd_t _pmd;
2846 int i;
2847
2848 /* leave pmd empty until pte is filled */
2849 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2850
2851 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2852 pmd_populate(mm, &_pmd, pgtable);
2853
2854 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2855 pte_t *pte, entry;
2856 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2857 entry = pte_mkspecial(entry);
2858 pte = pte_offset_map(&_pmd, haddr);
2859 VM_BUG_ON(!pte_none(*pte));
2860 set_pte_at(mm, haddr, pte, entry);
2861 pte_unmap(pte);
2862 }
2863 smp_wmb(); /* make pte visible before pmd */
2864 pmd_populate(mm, pmd, pgtable);
2865 put_huge_zero_page();
2866 }
2867
2868 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2869 unsigned long haddr, bool freeze)
2870 {
2871 struct mm_struct *mm = vma->vm_mm;
2872 struct page *page;
2873 pgtable_t pgtable;
2874 pmd_t _pmd;
2875 bool young, write, dirty;
2876 unsigned long addr;
2877 int i;
2878
2879 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2880 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2881 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2882 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2883
2884 count_vm_event(THP_SPLIT_PMD);
2885
2886 if (vma_is_dax(vma)) {
2887 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2888 if (is_huge_zero_pmd(_pmd))
2889 put_huge_zero_page();
2890 return;
2891 } else if (is_huge_zero_pmd(*pmd)) {
2892 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2893 }
2894
2895 page = pmd_page(*pmd);
2896 VM_BUG_ON_PAGE(!page_count(page), page);
2897 page_ref_add(page, HPAGE_PMD_NR - 1);
2898 write = pmd_write(*pmd);
2899 young = pmd_young(*pmd);
2900 dirty = pmd_dirty(*pmd);
2901
2902 pmdp_huge_split_prepare(vma, haddr, pmd);
2903 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2904 pmd_populate(mm, &_pmd, pgtable);
2905
2906 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2907 pte_t entry, *pte;
2908 /*
2909 * Note that NUMA hinting access restrictions are not
2910 * transferred to avoid any possibility of altering
2911 * permissions across VMAs.
2912 */
2913 if (freeze) {
2914 swp_entry_t swp_entry;
2915 swp_entry = make_migration_entry(page + i, write);
2916 entry = swp_entry_to_pte(swp_entry);
2917 } else {
2918 entry = mk_pte(page + i, vma->vm_page_prot);
2919 entry = maybe_mkwrite(entry, vma);
2920 if (!write)
2921 entry = pte_wrprotect(entry);
2922 if (!young)
2923 entry = pte_mkold(entry);
2924 }
2925 if (dirty)
2926 SetPageDirty(page + i);
2927 pte = pte_offset_map(&_pmd, addr);
2928 BUG_ON(!pte_none(*pte));
2929 set_pte_at(mm, addr, pte, entry);
2930 atomic_inc(&page[i]._mapcount);
2931 pte_unmap(pte);
2932 }
2933
2934 /*
2935 * Set PG_double_map before dropping compound_mapcount to avoid
2936 * false-negative page_mapped().
2937 */
2938 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2939 for (i = 0; i < HPAGE_PMD_NR; i++)
2940 atomic_inc(&page[i]._mapcount);
2941 }
2942
2943 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2944 /* Last compound_mapcount is gone. */
2945 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2946 if (TestClearPageDoubleMap(page)) {
2947 /* No need in mapcount reference anymore */
2948 for (i = 0; i < HPAGE_PMD_NR; i++)
2949 atomic_dec(&page[i]._mapcount);
2950 }
2951 }
2952
2953 smp_wmb(); /* make pte visible before pmd */
2954 /*
2955 * Up to this point the pmd is present and huge and userland has the
2956 * whole access to the hugepage during the split (which happens in
2957 * place). If we overwrite the pmd with the not-huge version pointing
2958 * to the pte here (which of course we could if all CPUs were bug
2959 * free), userland could trigger a small page size TLB miss on the
2960 * small sized TLB while the hugepage TLB entry is still established in
2961 * the huge TLB. Some CPU doesn't like that.
2962 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2963 * 383 on page 93. Intel should be safe but is also warns that it's
2964 * only safe if the permission and cache attributes of the two entries
2965 * loaded in the two TLB is identical (which should be the case here).
2966 * But it is generally safer to never allow small and huge TLB entries
2967 * for the same virtual address to be loaded simultaneously. So instead
2968 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2969 * current pmd notpresent (atomically because here the pmd_trans_huge
2970 * and pmd_trans_splitting must remain set at all times on the pmd
2971 * until the split is complete for this pmd), then we flush the SMP TLB
2972 * and finally we write the non-huge version of the pmd entry with
2973 * pmd_populate.
2974 */
2975 pmdp_invalidate(vma, haddr, pmd);
2976 pmd_populate(mm, pmd, pgtable);
2977
2978 if (freeze) {
2979 for (i = 0; i < HPAGE_PMD_NR; i++) {
2980 page_remove_rmap(page + i, false);
2981 put_page(page + i);
2982 }
2983 }
2984 }
2985
2986 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2987 unsigned long address, bool freeze, struct page *page)
2988 {
2989 spinlock_t *ptl;
2990 struct mm_struct *mm = vma->vm_mm;
2991 unsigned long haddr = address & HPAGE_PMD_MASK;
2992
2993 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2994 ptl = pmd_lock(mm, pmd);
2995
2996 /*
2997 * If caller asks to setup a migration entries, we need a page to check
2998 * pmd against. Otherwise we can end up replacing wrong page.
2999 */
3000 VM_BUG_ON(freeze && !page);
3001 if (page && page != pmd_page(*pmd))
3002 goto out;
3003
3004 if (pmd_trans_huge(*pmd)) {
3005 page = pmd_page(*pmd);
3006 if (PageMlocked(page))
3007 clear_page_mlock(page);
3008 } else if (!pmd_devmap(*pmd))
3009 goto out;
3010 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3011 out:
3012 spin_unlock(ptl);
3013 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3014 }
3015
3016 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3017 bool freeze, struct page *page)
3018 {
3019 pgd_t *pgd;
3020 pud_t *pud;
3021 pmd_t *pmd;
3022
3023 pgd = pgd_offset(vma->vm_mm, address);
3024 if (!pgd_present(*pgd))
3025 return;
3026
3027 pud = pud_offset(pgd, address);
3028 if (!pud_present(*pud))
3029 return;
3030
3031 pmd = pmd_offset(pud, address);
3032
3033 __split_huge_pmd(vma, pmd, address, freeze, page);
3034 }
3035
3036 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3037 unsigned long start,
3038 unsigned long end,
3039 long adjust_next)
3040 {
3041 /*
3042 * If the new start address isn't hpage aligned and it could
3043 * previously contain an hugepage: check if we need to split
3044 * an huge pmd.
3045 */
3046 if (start & ~HPAGE_PMD_MASK &&
3047 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3048 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3049 split_huge_pmd_address(vma, start, false, NULL);
3050
3051 /*
3052 * If the new end address isn't hpage aligned and it could
3053 * previously contain an hugepage: check if we need to split
3054 * an huge pmd.
3055 */
3056 if (end & ~HPAGE_PMD_MASK &&
3057 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3058 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3059 split_huge_pmd_address(vma, end, false, NULL);
3060
3061 /*
3062 * If we're also updating the vma->vm_next->vm_start, if the new
3063 * vm_next->vm_start isn't page aligned and it could previously
3064 * contain an hugepage: check if we need to split an huge pmd.
3065 */
3066 if (adjust_next > 0) {
3067 struct vm_area_struct *next = vma->vm_next;
3068 unsigned long nstart = next->vm_start;
3069 nstart += adjust_next << PAGE_SHIFT;
3070 if (nstart & ~HPAGE_PMD_MASK &&
3071 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3072 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3073 split_huge_pmd_address(next, nstart, false, NULL);
3074 }
3075 }
3076
3077 static void freeze_page(struct page *page)
3078 {
3079 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3080 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3081 int i, ret;
3082
3083 VM_BUG_ON_PAGE(!PageHead(page), page);
3084
3085 /* We only need TTU_SPLIT_HUGE_PMD once */
3086 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3087 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3088 /* Cut short if the page is unmapped */
3089 if (page_count(page) == 1)
3090 return;
3091
3092 ret = try_to_unmap(page + i, ttu_flags);
3093 }
3094 VM_BUG_ON(ret);
3095 }
3096
3097 static void unfreeze_page(struct page *page)
3098 {
3099 int i;
3100
3101 for (i = 0; i < HPAGE_PMD_NR; i++)
3102 remove_migration_ptes(page + i, page + i, true);
3103 }
3104
3105 static void __split_huge_page_tail(struct page *head, int tail,
3106 struct lruvec *lruvec, struct list_head *list)
3107 {
3108 struct page *page_tail = head + tail;
3109
3110 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3111 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3112
3113 /*
3114 * tail_page->_refcount is zero and not changing from under us. But
3115 * get_page_unless_zero() may be running from under us on the
3116 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3117 * would then run atomic_set() concurrently with
3118 * get_page_unless_zero(), and atomic_set() is implemented in C not
3119 * using locked ops. spin_unlock on x86 sometime uses locked ops
3120 * because of PPro errata 66, 92, so unless somebody can guarantee
3121 * atomic_set() here would be safe on all archs (and not only on x86),
3122 * it's safer to use atomic_inc().
3123 */
3124 page_ref_inc(page_tail);
3125
3126 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3127 page_tail->flags |= (head->flags &
3128 ((1L << PG_referenced) |
3129 (1L << PG_swapbacked) |
3130 (1L << PG_mlocked) |
3131 (1L << PG_uptodate) |
3132 (1L << PG_active) |
3133 (1L << PG_locked) |
3134 (1L << PG_unevictable) |
3135 (1L << PG_dirty)));
3136
3137 /*
3138 * After clearing PageTail the gup refcount can be released.
3139 * Page flags also must be visible before we make the page non-compound.
3140 */
3141 smp_wmb();
3142
3143 clear_compound_head(page_tail);
3144
3145 if (page_is_young(head))
3146 set_page_young(page_tail);
3147 if (page_is_idle(head))
3148 set_page_idle(page_tail);
3149
3150 /* ->mapping in first tail page is compound_mapcount */
3151 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3152 page_tail);
3153 page_tail->mapping = head->mapping;
3154
3155 page_tail->index = head->index + tail;
3156 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3157 lru_add_page_tail(head, page_tail, lruvec, list);
3158 }
3159
3160 static void __split_huge_page(struct page *page, struct list_head *list)
3161 {
3162 struct page *head = compound_head(page);
3163 struct zone *zone = page_zone(head);
3164 struct lruvec *lruvec;
3165 int i;
3166
3167 /* prevent PageLRU to go away from under us, and freeze lru stats */
3168 spin_lock_irq(&zone->lru_lock);
3169 lruvec = mem_cgroup_page_lruvec(head, zone);
3170
3171 /* complete memcg works before add pages to LRU */
3172 mem_cgroup_split_huge_fixup(head);
3173
3174 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3175 __split_huge_page_tail(head, i, lruvec, list);
3176
3177 ClearPageCompound(head);
3178 spin_unlock_irq(&zone->lru_lock);
3179
3180 unfreeze_page(head);
3181
3182 for (i = 0; i < HPAGE_PMD_NR; i++) {
3183 struct page *subpage = head + i;
3184 if (subpage == page)
3185 continue;
3186 unlock_page(subpage);
3187
3188 /*
3189 * Subpages may be freed if there wasn't any mapping
3190 * like if add_to_swap() is running on a lru page that
3191 * had its mapping zapped. And freeing these pages
3192 * requires taking the lru_lock so we do the put_page
3193 * of the tail pages after the split is complete.
3194 */
3195 put_page(subpage);
3196 }
3197 }
3198
3199 int total_mapcount(struct page *page)
3200 {
3201 int i, ret;
3202
3203 VM_BUG_ON_PAGE(PageTail(page), page);
3204
3205 if (likely(!PageCompound(page)))
3206 return atomic_read(&page->_mapcount) + 1;
3207
3208 ret = compound_mapcount(page);
3209 if (PageHuge(page))
3210 return ret;
3211 for (i = 0; i < HPAGE_PMD_NR; i++)
3212 ret += atomic_read(&page[i]._mapcount) + 1;
3213 if (PageDoubleMap(page))
3214 ret -= HPAGE_PMD_NR;
3215 return ret;
3216 }
3217
3218 /*
3219 * This calculates accurately how many mappings a transparent hugepage
3220 * has (unlike page_mapcount() which isn't fully accurate). This full
3221 * accuracy is primarily needed to know if copy-on-write faults can
3222 * reuse the page and change the mapping to read-write instead of
3223 * copying them. At the same time this returns the total_mapcount too.
3224 *
3225 * The function returns the highest mapcount any one of the subpages
3226 * has. If the return value is one, even if different processes are
3227 * mapping different subpages of the transparent hugepage, they can
3228 * all reuse it, because each process is reusing a different subpage.
3229 *
3230 * The total_mapcount is instead counting all virtual mappings of the
3231 * subpages. If the total_mapcount is equal to "one", it tells the
3232 * caller all mappings belong to the same "mm" and in turn the
3233 * anon_vma of the transparent hugepage can become the vma->anon_vma
3234 * local one as no other process may be mapping any of the subpages.
3235 *
3236 * It would be more accurate to replace page_mapcount() with
3237 * page_trans_huge_mapcount(), however we only use
3238 * page_trans_huge_mapcount() in the copy-on-write faults where we
3239 * need full accuracy to avoid breaking page pinning, because
3240 * page_trans_huge_mapcount() is slower than page_mapcount().
3241 */
3242 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3243 {
3244 int i, ret, _total_mapcount, mapcount;
3245
3246 /* hugetlbfs shouldn't call it */
3247 VM_BUG_ON_PAGE(PageHuge(page), page);
3248
3249 if (likely(!PageTransCompound(page))) {
3250 mapcount = atomic_read(&page->_mapcount) + 1;
3251 if (total_mapcount)
3252 *total_mapcount = mapcount;
3253 return mapcount;
3254 }
3255
3256 page = compound_head(page);
3257
3258 _total_mapcount = ret = 0;
3259 for (i = 0; i < HPAGE_PMD_NR; i++) {
3260 mapcount = atomic_read(&page[i]._mapcount) + 1;
3261 ret = max(ret, mapcount);
3262 _total_mapcount += mapcount;
3263 }
3264 if (PageDoubleMap(page)) {
3265 ret -= 1;
3266 _total_mapcount -= HPAGE_PMD_NR;
3267 }
3268 mapcount = compound_mapcount(page);
3269 ret += mapcount;
3270 _total_mapcount += mapcount;
3271 if (total_mapcount)
3272 *total_mapcount = _total_mapcount;
3273 return ret;
3274 }
3275
3276 /*
3277 * This function splits huge page into normal pages. @page can point to any
3278 * subpage of huge page to split. Split doesn't change the position of @page.
3279 *
3280 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3281 * The huge page must be locked.
3282 *
3283 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3284 *
3285 * Both head page and tail pages will inherit mapping, flags, and so on from
3286 * the hugepage.
3287 *
3288 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3289 * they are not mapped.
3290 *
3291 * Returns 0 if the hugepage is split successfully.
3292 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3293 * us.
3294 */
3295 int split_huge_page_to_list(struct page *page, struct list_head *list)
3296 {
3297 struct page *head = compound_head(page);
3298 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3299 struct anon_vma *anon_vma;
3300 int count, mapcount, ret;
3301 bool mlocked;
3302 unsigned long flags;
3303
3304 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3305 VM_BUG_ON_PAGE(!PageAnon(page), page);
3306 VM_BUG_ON_PAGE(!PageLocked(page), page);
3307 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3308 VM_BUG_ON_PAGE(!PageCompound(page), page);
3309
3310 /*
3311 * The caller does not necessarily hold an mmap_sem that would prevent
3312 * the anon_vma disappearing so we first we take a reference to it
3313 * and then lock the anon_vma for write. This is similar to
3314 * page_lock_anon_vma_read except the write lock is taken to serialise
3315 * against parallel split or collapse operations.
3316 */
3317 anon_vma = page_get_anon_vma(head);
3318 if (!anon_vma) {
3319 ret = -EBUSY;
3320 goto out;
3321 }
3322 anon_vma_lock_write(anon_vma);
3323
3324 /*
3325 * Racy check if we can split the page, before freeze_page() will
3326 * split PMDs
3327 */
3328 if (total_mapcount(head) != page_count(head) - 1) {
3329 ret = -EBUSY;
3330 goto out_unlock;
3331 }
3332
3333 mlocked = PageMlocked(page);
3334 freeze_page(head);
3335 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3336
3337 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3338 if (mlocked)
3339 lru_add_drain();
3340
3341 /* Prevent deferred_split_scan() touching ->_refcount */
3342 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3343 count = page_count(head);
3344 mapcount = total_mapcount(head);
3345 if (!mapcount && count == 1) {
3346 if (!list_empty(page_deferred_list(head))) {
3347 pgdata->split_queue_len--;
3348 list_del(page_deferred_list(head));
3349 }
3350 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3351 __split_huge_page(page, list);
3352 ret = 0;
3353 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3354 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3355 pr_alert("total_mapcount: %u, page_count(): %u\n",
3356 mapcount, count);
3357 if (PageTail(page))
3358 dump_page(head, NULL);
3359 dump_page(page, "total_mapcount(head) > 0");
3360 BUG();
3361 } else {
3362 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3363 unfreeze_page(head);
3364 ret = -EBUSY;
3365 }
3366
3367 out_unlock:
3368 anon_vma_unlock_write(anon_vma);
3369 put_anon_vma(anon_vma);
3370 out:
3371 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3372 return ret;
3373 }
3374
3375 void free_transhuge_page(struct page *page)
3376 {
3377 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3378 unsigned long flags;
3379
3380 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3381 if (!list_empty(page_deferred_list(page))) {
3382 pgdata->split_queue_len--;
3383 list_del(page_deferred_list(page));
3384 }
3385 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3386 free_compound_page(page);
3387 }
3388
3389 void deferred_split_huge_page(struct page *page)
3390 {
3391 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3392 unsigned long flags;
3393
3394 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3395
3396 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3397 if (list_empty(page_deferred_list(page))) {
3398 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3399 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3400 pgdata->split_queue_len++;
3401 }
3402 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3403 }
3404
3405 static unsigned long deferred_split_count(struct shrinker *shrink,
3406 struct shrink_control *sc)
3407 {
3408 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3409 return ACCESS_ONCE(pgdata->split_queue_len);
3410 }
3411
3412 static unsigned long deferred_split_scan(struct shrinker *shrink,
3413 struct shrink_control *sc)
3414 {
3415 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3416 unsigned long flags;
3417 LIST_HEAD(list), *pos, *next;
3418 struct page *page;
3419 int split = 0;
3420
3421 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3422 /* Take pin on all head pages to avoid freeing them under us */
3423 list_for_each_safe(pos, next, &pgdata->split_queue) {
3424 page = list_entry((void *)pos, struct page, mapping);
3425 page = compound_head(page);
3426 if (get_page_unless_zero(page)) {
3427 list_move(page_deferred_list(page), &list);
3428 } else {
3429 /* We lost race with put_compound_page() */
3430 list_del_init(page_deferred_list(page));
3431 pgdata->split_queue_len--;
3432 }
3433 if (!--sc->nr_to_scan)
3434 break;
3435 }
3436 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3437
3438 list_for_each_safe(pos, next, &list) {
3439 page = list_entry((void *)pos, struct page, mapping);
3440 lock_page(page);
3441 /* split_huge_page() removes page from list on success */
3442 if (!split_huge_page(page))
3443 split++;
3444 unlock_page(page);
3445 put_page(page);
3446 }
3447
3448 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3449 list_splice_tail(&list, &pgdata->split_queue);
3450 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3451
3452 /*
3453 * Stop shrinker if we didn't split any page, but the queue is empty.
3454 * This can happen if pages were freed under us.
3455 */
3456 if (!split && list_empty(&pgdata->split_queue))
3457 return SHRINK_STOP;
3458 return split;
3459 }
3460
3461 static struct shrinker deferred_split_shrinker = {
3462 .count_objects = deferred_split_count,
3463 .scan_objects = deferred_split_scan,
3464 .seeks = DEFAULT_SEEKS,
3465 .flags = SHRINKER_NUMA_AWARE,
3466 };
3467
3468 #ifdef CONFIG_DEBUG_FS
3469 static int split_huge_pages_set(void *data, u64 val)
3470 {
3471 struct zone *zone;
3472 struct page *page;
3473 unsigned long pfn, max_zone_pfn;
3474 unsigned long total = 0, split = 0;
3475
3476 if (val != 1)
3477 return -EINVAL;
3478
3479 for_each_populated_zone(zone) {
3480 max_zone_pfn = zone_end_pfn(zone);
3481 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3482 if (!pfn_valid(pfn))
3483 continue;
3484
3485 page = pfn_to_page(pfn);
3486 if (!get_page_unless_zero(page))
3487 continue;
3488
3489 if (zone != page_zone(page))
3490 goto next;
3491
3492 if (!PageHead(page) || !PageAnon(page) ||
3493 PageHuge(page))
3494 goto next;
3495
3496 total++;
3497 lock_page(page);
3498 if (!split_huge_page(page))
3499 split++;
3500 unlock_page(page);
3501 next:
3502 put_page(page);
3503 }
3504 }
3505
3506 pr_info("%lu of %lu THP split\n", split, total);
3507
3508 return 0;
3509 }
3510 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3511 "%llu\n");
3512
3513 static int __init split_huge_pages_debugfs(void)
3514 {
3515 void *ret;
3516
3517 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3518 &split_huge_pages_fops);
3519 if (!ret)
3520 pr_warn("Failed to create split_huge_pages in debugfs");
3521 return 0;
3522 }
3523 late_initcall(split_huge_pages_debugfs);
3524 #endif
This page took 0.096313 seconds and 6 git commands to generate.