Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24
25 /*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
32 unsigned long transparent_hugepage_flags __read_mostly =
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
35 #endif
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38 #endif
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42 /* default scan 8*512 pte (or vmas) every 30 second */
43 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44 static unsigned int khugepaged_pages_collapsed;
45 static unsigned int khugepaged_full_scans;
46 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47 /* during fragmentation poll the hugepage allocator once every minute */
48 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49 static struct task_struct *khugepaged_thread __read_mostly;
50 static DEFINE_MUTEX(khugepaged_mutex);
51 static DEFINE_SPINLOCK(khugepaged_mm_lock);
52 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
53 /*
54 * default collapse hugepages if there is at least one pte mapped like
55 * it would have happened if the vma was large enough during page
56 * fault.
57 */
58 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
59
60 static int khugepaged(void *none);
61 static int mm_slots_hash_init(void);
62 static int khugepaged_slab_init(void);
63 static void khugepaged_slab_free(void);
64
65 #define MM_SLOTS_HASH_HEADS 1024
66 static struct hlist_head *mm_slots_hash __read_mostly;
67 static struct kmem_cache *mm_slot_cache __read_mostly;
68
69 /**
70 * struct mm_slot - hash lookup from mm to mm_slot
71 * @hash: hash collision list
72 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
73 * @mm: the mm that this information is valid for
74 */
75 struct mm_slot {
76 struct hlist_node hash;
77 struct list_head mm_node;
78 struct mm_struct *mm;
79 };
80
81 /**
82 * struct khugepaged_scan - cursor for scanning
83 * @mm_head: the head of the mm list to scan
84 * @mm_slot: the current mm_slot we are scanning
85 * @address: the next address inside that to be scanned
86 *
87 * There is only the one khugepaged_scan instance of this cursor structure.
88 */
89 struct khugepaged_scan {
90 struct list_head mm_head;
91 struct mm_slot *mm_slot;
92 unsigned long address;
93 };
94 static struct khugepaged_scan khugepaged_scan = {
95 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
96 };
97
98
99 static int set_recommended_min_free_kbytes(void)
100 {
101 struct zone *zone;
102 int nr_zones = 0;
103 unsigned long recommended_min;
104 extern int min_free_kbytes;
105
106 if (!khugepaged_enabled())
107 return 0;
108
109 for_each_populated_zone(zone)
110 nr_zones++;
111
112 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113 recommended_min = pageblock_nr_pages * nr_zones * 2;
114
115 /*
116 * Make sure that on average at least two pageblocks are almost free
117 * of another type, one for a migratetype to fall back to and a
118 * second to avoid subsequent fallbacks of other types There are 3
119 * MIGRATE_TYPES we care about.
120 */
121 recommended_min += pageblock_nr_pages * nr_zones *
122 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
123
124 /* don't ever allow to reserve more than 5% of the lowmem */
125 recommended_min = min(recommended_min,
126 (unsigned long) nr_free_buffer_pages() / 20);
127 recommended_min <<= (PAGE_SHIFT-10);
128
129 if (recommended_min > min_free_kbytes)
130 min_free_kbytes = recommended_min;
131 setup_per_zone_wmarks();
132 return 0;
133 }
134 late_initcall(set_recommended_min_free_kbytes);
135
136 static int start_khugepaged(void)
137 {
138 int err = 0;
139 if (khugepaged_enabled()) {
140 if (!khugepaged_thread)
141 khugepaged_thread = kthread_run(khugepaged, NULL,
142 "khugepaged");
143 if (unlikely(IS_ERR(khugepaged_thread))) {
144 printk(KERN_ERR
145 "khugepaged: kthread_run(khugepaged) failed\n");
146 err = PTR_ERR(khugepaged_thread);
147 khugepaged_thread = NULL;
148 }
149
150 if (!list_empty(&khugepaged_scan.mm_head))
151 wake_up_interruptible(&khugepaged_wait);
152
153 set_recommended_min_free_kbytes();
154 } else if (khugepaged_thread) {
155 kthread_stop(khugepaged_thread);
156 khugepaged_thread = NULL;
157 }
158
159 return err;
160 }
161
162 #ifdef CONFIG_SYSFS
163
164 static ssize_t double_flag_show(struct kobject *kobj,
165 struct kobj_attribute *attr, char *buf,
166 enum transparent_hugepage_flag enabled,
167 enum transparent_hugepage_flag req_madv)
168 {
169 if (test_bit(enabled, &transparent_hugepage_flags)) {
170 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
171 return sprintf(buf, "[always] madvise never\n");
172 } else if (test_bit(req_madv, &transparent_hugepage_flags))
173 return sprintf(buf, "always [madvise] never\n");
174 else
175 return sprintf(buf, "always madvise [never]\n");
176 }
177 static ssize_t double_flag_store(struct kobject *kobj,
178 struct kobj_attribute *attr,
179 const char *buf, size_t count,
180 enum transparent_hugepage_flag enabled,
181 enum transparent_hugepage_flag req_madv)
182 {
183 if (!memcmp("always", buf,
184 min(sizeof("always")-1, count))) {
185 set_bit(enabled, &transparent_hugepage_flags);
186 clear_bit(req_madv, &transparent_hugepage_flags);
187 } else if (!memcmp("madvise", buf,
188 min(sizeof("madvise")-1, count))) {
189 clear_bit(enabled, &transparent_hugepage_flags);
190 set_bit(req_madv, &transparent_hugepage_flags);
191 } else if (!memcmp("never", buf,
192 min(sizeof("never")-1, count))) {
193 clear_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else
196 return -EINVAL;
197
198 return count;
199 }
200
201 static ssize_t enabled_show(struct kobject *kobj,
202 struct kobj_attribute *attr, char *buf)
203 {
204 return double_flag_show(kobj, attr, buf,
205 TRANSPARENT_HUGEPAGE_FLAG,
206 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
207 }
208 static ssize_t enabled_store(struct kobject *kobj,
209 struct kobj_attribute *attr,
210 const char *buf, size_t count)
211 {
212 ssize_t ret;
213
214 ret = double_flag_store(kobj, attr, buf, count,
215 TRANSPARENT_HUGEPAGE_FLAG,
216 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
217
218 if (ret > 0) {
219 int err;
220
221 mutex_lock(&khugepaged_mutex);
222 err = start_khugepaged();
223 mutex_unlock(&khugepaged_mutex);
224
225 if (err)
226 ret = err;
227 }
228
229 return ret;
230 }
231 static struct kobj_attribute enabled_attr =
232 __ATTR(enabled, 0644, enabled_show, enabled_store);
233
234 static ssize_t single_flag_show(struct kobject *kobj,
235 struct kobj_attribute *attr, char *buf,
236 enum transparent_hugepage_flag flag)
237 {
238 return sprintf(buf, "%d\n",
239 !!test_bit(flag, &transparent_hugepage_flags));
240 }
241
242 static ssize_t single_flag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count,
245 enum transparent_hugepage_flag flag)
246 {
247 unsigned long value;
248 int ret;
249
250 ret = kstrtoul(buf, 10, &value);
251 if (ret < 0)
252 return ret;
253 if (value > 1)
254 return -EINVAL;
255
256 if (value)
257 set_bit(flag, &transparent_hugepage_flags);
258 else
259 clear_bit(flag, &transparent_hugepage_flags);
260
261 return count;
262 }
263
264 /*
265 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
266 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
267 * memory just to allocate one more hugepage.
268 */
269 static ssize_t defrag_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
271 {
272 return double_flag_show(kobj, attr, buf,
273 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
274 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
275 }
276 static ssize_t defrag_store(struct kobject *kobj,
277 struct kobj_attribute *attr,
278 const char *buf, size_t count)
279 {
280 return double_flag_store(kobj, attr, buf, count,
281 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
282 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
283 }
284 static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
287 #ifdef CONFIG_DEBUG_VM
288 static ssize_t debug_cow_show(struct kobject *kobj,
289 struct kobj_attribute *attr, char *buf)
290 {
291 return single_flag_show(kobj, attr, buf,
292 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
293 }
294 static ssize_t debug_cow_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297 {
298 return single_flag_store(kobj, attr, buf, count,
299 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
300 }
301 static struct kobj_attribute debug_cow_attr =
302 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
303 #endif /* CONFIG_DEBUG_VM */
304
305 static struct attribute *hugepage_attr[] = {
306 &enabled_attr.attr,
307 &defrag_attr.attr,
308 #ifdef CONFIG_DEBUG_VM
309 &debug_cow_attr.attr,
310 #endif
311 NULL,
312 };
313
314 static struct attribute_group hugepage_attr_group = {
315 .attrs = hugepage_attr,
316 };
317
318 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 char *buf)
321 {
322 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
323 }
324
325 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
326 struct kobj_attribute *attr,
327 const char *buf, size_t count)
328 {
329 unsigned long msecs;
330 int err;
331
332 err = strict_strtoul(buf, 10, &msecs);
333 if (err || msecs > UINT_MAX)
334 return -EINVAL;
335
336 khugepaged_scan_sleep_millisecs = msecs;
337 wake_up_interruptible(&khugepaged_wait);
338
339 return count;
340 }
341 static struct kobj_attribute scan_sleep_millisecs_attr =
342 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
343 scan_sleep_millisecs_store);
344
345 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 char *buf)
348 {
349 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
350 }
351
352 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count)
355 {
356 unsigned long msecs;
357 int err;
358
359 err = strict_strtoul(buf, 10, &msecs);
360 if (err || msecs > UINT_MAX)
361 return -EINVAL;
362
363 khugepaged_alloc_sleep_millisecs = msecs;
364 wake_up_interruptible(&khugepaged_wait);
365
366 return count;
367 }
368 static struct kobj_attribute alloc_sleep_millisecs_attr =
369 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
370 alloc_sleep_millisecs_store);
371
372 static ssize_t pages_to_scan_show(struct kobject *kobj,
373 struct kobj_attribute *attr,
374 char *buf)
375 {
376 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
377 }
378 static ssize_t pages_to_scan_store(struct kobject *kobj,
379 struct kobj_attribute *attr,
380 const char *buf, size_t count)
381 {
382 int err;
383 unsigned long pages;
384
385 err = strict_strtoul(buf, 10, &pages);
386 if (err || !pages || pages > UINT_MAX)
387 return -EINVAL;
388
389 khugepaged_pages_to_scan = pages;
390
391 return count;
392 }
393 static struct kobj_attribute pages_to_scan_attr =
394 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
395 pages_to_scan_store);
396
397 static ssize_t pages_collapsed_show(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 char *buf)
400 {
401 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
402 }
403 static struct kobj_attribute pages_collapsed_attr =
404 __ATTR_RO(pages_collapsed);
405
406 static ssize_t full_scans_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409 {
410 return sprintf(buf, "%u\n", khugepaged_full_scans);
411 }
412 static struct kobj_attribute full_scans_attr =
413 __ATTR_RO(full_scans);
414
415 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
416 struct kobj_attribute *attr, char *buf)
417 {
418 return single_flag_show(kobj, attr, buf,
419 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
420 }
421 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424 {
425 return single_flag_store(kobj, attr, buf, count,
426 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
427 }
428 static struct kobj_attribute khugepaged_defrag_attr =
429 __ATTR(defrag, 0644, khugepaged_defrag_show,
430 khugepaged_defrag_store);
431
432 /*
433 * max_ptes_none controls if khugepaged should collapse hugepages over
434 * any unmapped ptes in turn potentially increasing the memory
435 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
436 * reduce the available free memory in the system as it
437 * runs. Increasing max_ptes_none will instead potentially reduce the
438 * free memory in the system during the khugepaged scan.
439 */
440 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 char *buf)
443 {
444 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
445 }
446 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449 {
450 int err;
451 unsigned long max_ptes_none;
452
453 err = strict_strtoul(buf, 10, &max_ptes_none);
454 if (err || max_ptes_none > HPAGE_PMD_NR-1)
455 return -EINVAL;
456
457 khugepaged_max_ptes_none = max_ptes_none;
458
459 return count;
460 }
461 static struct kobj_attribute khugepaged_max_ptes_none_attr =
462 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
463 khugepaged_max_ptes_none_store);
464
465 static struct attribute *khugepaged_attr[] = {
466 &khugepaged_defrag_attr.attr,
467 &khugepaged_max_ptes_none_attr.attr,
468 &pages_to_scan_attr.attr,
469 &pages_collapsed_attr.attr,
470 &full_scans_attr.attr,
471 &scan_sleep_millisecs_attr.attr,
472 &alloc_sleep_millisecs_attr.attr,
473 NULL,
474 };
475
476 static struct attribute_group khugepaged_attr_group = {
477 .attrs = khugepaged_attr,
478 .name = "khugepaged",
479 };
480
481 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
482 {
483 int err;
484
485 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
486 if (unlikely(!*hugepage_kobj)) {
487 printk(KERN_ERR "hugepage: failed kobject create\n");
488 return -ENOMEM;
489 }
490
491 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
492 if (err) {
493 printk(KERN_ERR "hugepage: failed register hugeage group\n");
494 goto delete_obj;
495 }
496
497 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
498 if (err) {
499 printk(KERN_ERR "hugepage: failed register hugeage group\n");
500 goto remove_hp_group;
501 }
502
503 return 0;
504
505 remove_hp_group:
506 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
507 delete_obj:
508 kobject_put(*hugepage_kobj);
509 return err;
510 }
511
512 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
513 {
514 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
515 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
516 kobject_put(hugepage_kobj);
517 }
518 #else
519 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
520 {
521 return 0;
522 }
523
524 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
525 {
526 }
527 #endif /* CONFIG_SYSFS */
528
529 static int __init hugepage_init(void)
530 {
531 int err;
532 struct kobject *hugepage_kobj;
533
534 if (!has_transparent_hugepage()) {
535 transparent_hugepage_flags = 0;
536 return -EINVAL;
537 }
538
539 err = hugepage_init_sysfs(&hugepage_kobj);
540 if (err)
541 return err;
542
543 err = khugepaged_slab_init();
544 if (err)
545 goto out;
546
547 err = mm_slots_hash_init();
548 if (err) {
549 khugepaged_slab_free();
550 goto out;
551 }
552
553 /*
554 * By default disable transparent hugepages on smaller systems,
555 * where the extra memory used could hurt more than TLB overhead
556 * is likely to save. The admin can still enable it through /sys.
557 */
558 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
559 transparent_hugepage_flags = 0;
560
561 start_khugepaged();
562
563 return 0;
564 out:
565 hugepage_exit_sysfs(hugepage_kobj);
566 return err;
567 }
568 module_init(hugepage_init)
569
570 static int __init setup_transparent_hugepage(char *str)
571 {
572 int ret = 0;
573 if (!str)
574 goto out;
575 if (!strcmp(str, "always")) {
576 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
577 &transparent_hugepage_flags);
578 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
579 &transparent_hugepage_flags);
580 ret = 1;
581 } else if (!strcmp(str, "madvise")) {
582 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
583 &transparent_hugepage_flags);
584 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
585 &transparent_hugepage_flags);
586 ret = 1;
587 } else if (!strcmp(str, "never")) {
588 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 &transparent_hugepage_flags);
590 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 &transparent_hugepage_flags);
592 ret = 1;
593 }
594 out:
595 if (!ret)
596 printk(KERN_WARNING
597 "transparent_hugepage= cannot parse, ignored\n");
598 return ret;
599 }
600 __setup("transparent_hugepage=", setup_transparent_hugepage);
601
602 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
603 {
604 if (likely(vma->vm_flags & VM_WRITE))
605 pmd = pmd_mkwrite(pmd);
606 return pmd;
607 }
608
609 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
610 {
611 pmd_t entry;
612 entry = mk_pmd(page, vma->vm_page_prot);
613 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
614 entry = pmd_mkhuge(entry);
615 return entry;
616 }
617
618 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
619 struct vm_area_struct *vma,
620 unsigned long haddr, pmd_t *pmd,
621 struct page *page)
622 {
623 pgtable_t pgtable;
624
625 VM_BUG_ON(!PageCompound(page));
626 pgtable = pte_alloc_one(mm, haddr);
627 if (unlikely(!pgtable))
628 return VM_FAULT_OOM;
629
630 clear_huge_page(page, haddr, HPAGE_PMD_NR);
631 __SetPageUptodate(page);
632
633 spin_lock(&mm->page_table_lock);
634 if (unlikely(!pmd_none(*pmd))) {
635 spin_unlock(&mm->page_table_lock);
636 mem_cgroup_uncharge_page(page);
637 put_page(page);
638 pte_free(mm, pgtable);
639 } else {
640 pmd_t entry;
641 entry = mk_huge_pmd(page, vma);
642 /*
643 * The spinlocking to take the lru_lock inside
644 * page_add_new_anon_rmap() acts as a full memory
645 * barrier to be sure clear_huge_page writes become
646 * visible after the set_pmd_at() write.
647 */
648 page_add_new_anon_rmap(page, vma, haddr);
649 set_pmd_at(mm, haddr, pmd, entry);
650 pgtable_trans_huge_deposit(mm, pgtable);
651 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
652 mm->nr_ptes++;
653 spin_unlock(&mm->page_table_lock);
654 }
655
656 return 0;
657 }
658
659 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
660 {
661 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
662 }
663
664 static inline struct page *alloc_hugepage_vma(int defrag,
665 struct vm_area_struct *vma,
666 unsigned long haddr, int nd,
667 gfp_t extra_gfp)
668 {
669 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
670 HPAGE_PMD_ORDER, vma, haddr, nd);
671 }
672
673 #ifndef CONFIG_NUMA
674 static inline struct page *alloc_hugepage(int defrag)
675 {
676 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
677 HPAGE_PMD_ORDER);
678 }
679 #endif
680
681 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
682 unsigned long address, pmd_t *pmd,
683 unsigned int flags)
684 {
685 struct page *page;
686 unsigned long haddr = address & HPAGE_PMD_MASK;
687 pte_t *pte;
688
689 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
690 if (unlikely(anon_vma_prepare(vma)))
691 return VM_FAULT_OOM;
692 if (unlikely(khugepaged_enter(vma)))
693 return VM_FAULT_OOM;
694 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
695 vma, haddr, numa_node_id(), 0);
696 if (unlikely(!page)) {
697 count_vm_event(THP_FAULT_FALLBACK);
698 goto out;
699 }
700 count_vm_event(THP_FAULT_ALLOC);
701 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
702 put_page(page);
703 goto out;
704 }
705 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
706 page))) {
707 mem_cgroup_uncharge_page(page);
708 put_page(page);
709 goto out;
710 }
711
712 return 0;
713 }
714 out:
715 /*
716 * Use __pte_alloc instead of pte_alloc_map, because we can't
717 * run pte_offset_map on the pmd, if an huge pmd could
718 * materialize from under us from a different thread.
719 */
720 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
721 return VM_FAULT_OOM;
722 /* if an huge pmd materialized from under us just retry later */
723 if (unlikely(pmd_trans_huge(*pmd)))
724 return 0;
725 /*
726 * A regular pmd is established and it can't morph into a huge pmd
727 * from under us anymore at this point because we hold the mmap_sem
728 * read mode and khugepaged takes it in write mode. So now it's
729 * safe to run pte_offset_map().
730 */
731 pte = pte_offset_map(pmd, address);
732 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
733 }
734
735 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
736 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
737 struct vm_area_struct *vma)
738 {
739 struct page *src_page;
740 pmd_t pmd;
741 pgtable_t pgtable;
742 int ret;
743
744 ret = -ENOMEM;
745 pgtable = pte_alloc_one(dst_mm, addr);
746 if (unlikely(!pgtable))
747 goto out;
748
749 spin_lock(&dst_mm->page_table_lock);
750 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
751
752 ret = -EAGAIN;
753 pmd = *src_pmd;
754 if (unlikely(!pmd_trans_huge(pmd))) {
755 pte_free(dst_mm, pgtable);
756 goto out_unlock;
757 }
758 if (unlikely(pmd_trans_splitting(pmd))) {
759 /* split huge page running from under us */
760 spin_unlock(&src_mm->page_table_lock);
761 spin_unlock(&dst_mm->page_table_lock);
762 pte_free(dst_mm, pgtable);
763
764 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
765 goto out;
766 }
767 src_page = pmd_page(pmd);
768 VM_BUG_ON(!PageHead(src_page));
769 get_page(src_page);
770 page_dup_rmap(src_page);
771 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
772
773 pmdp_set_wrprotect(src_mm, addr, src_pmd);
774 pmd = pmd_mkold(pmd_wrprotect(pmd));
775 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
776 pgtable_trans_huge_deposit(dst_mm, pgtable);
777 dst_mm->nr_ptes++;
778
779 ret = 0;
780 out_unlock:
781 spin_unlock(&src_mm->page_table_lock);
782 spin_unlock(&dst_mm->page_table_lock);
783 out:
784 return ret;
785 }
786
787 void huge_pmd_set_accessed(struct mm_struct *mm,
788 struct vm_area_struct *vma,
789 unsigned long address,
790 pmd_t *pmd, pmd_t orig_pmd,
791 int dirty)
792 {
793 pmd_t entry;
794 unsigned long haddr;
795
796 spin_lock(&mm->page_table_lock);
797 if (unlikely(!pmd_same(*pmd, orig_pmd)))
798 goto unlock;
799
800 entry = pmd_mkyoung(orig_pmd);
801 haddr = address & HPAGE_PMD_MASK;
802 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
803 update_mmu_cache_pmd(vma, address, pmd);
804
805 unlock:
806 spin_unlock(&mm->page_table_lock);
807 }
808
809 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
810 struct vm_area_struct *vma,
811 unsigned long address,
812 pmd_t *pmd, pmd_t orig_pmd,
813 struct page *page,
814 unsigned long haddr)
815 {
816 pgtable_t pgtable;
817 pmd_t _pmd;
818 int ret = 0, i;
819 struct page **pages;
820 unsigned long mmun_start; /* For mmu_notifiers */
821 unsigned long mmun_end; /* For mmu_notifiers */
822
823 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
824 GFP_KERNEL);
825 if (unlikely(!pages)) {
826 ret |= VM_FAULT_OOM;
827 goto out;
828 }
829
830 for (i = 0; i < HPAGE_PMD_NR; i++) {
831 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
832 __GFP_OTHER_NODE,
833 vma, address, page_to_nid(page));
834 if (unlikely(!pages[i] ||
835 mem_cgroup_newpage_charge(pages[i], mm,
836 GFP_KERNEL))) {
837 if (pages[i])
838 put_page(pages[i]);
839 mem_cgroup_uncharge_start();
840 while (--i >= 0) {
841 mem_cgroup_uncharge_page(pages[i]);
842 put_page(pages[i]);
843 }
844 mem_cgroup_uncharge_end();
845 kfree(pages);
846 ret |= VM_FAULT_OOM;
847 goto out;
848 }
849 }
850
851 for (i = 0; i < HPAGE_PMD_NR; i++) {
852 copy_user_highpage(pages[i], page + i,
853 haddr + PAGE_SIZE * i, vma);
854 __SetPageUptodate(pages[i]);
855 cond_resched();
856 }
857
858 mmun_start = haddr;
859 mmun_end = haddr + HPAGE_PMD_SIZE;
860 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
861
862 spin_lock(&mm->page_table_lock);
863 if (unlikely(!pmd_same(*pmd, orig_pmd)))
864 goto out_free_pages;
865 VM_BUG_ON(!PageHead(page));
866
867 pmdp_clear_flush(vma, haddr, pmd);
868 /* leave pmd empty until pte is filled */
869
870 pgtable = pgtable_trans_huge_withdraw(mm);
871 pmd_populate(mm, &_pmd, pgtable);
872
873 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
874 pte_t *pte, entry;
875 entry = mk_pte(pages[i], vma->vm_page_prot);
876 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
877 page_add_new_anon_rmap(pages[i], vma, haddr);
878 pte = pte_offset_map(&_pmd, haddr);
879 VM_BUG_ON(!pte_none(*pte));
880 set_pte_at(mm, haddr, pte, entry);
881 pte_unmap(pte);
882 }
883 kfree(pages);
884
885 smp_wmb(); /* make pte visible before pmd */
886 pmd_populate(mm, pmd, pgtable);
887 page_remove_rmap(page);
888 spin_unlock(&mm->page_table_lock);
889
890 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
891
892 ret |= VM_FAULT_WRITE;
893 put_page(page);
894
895 out:
896 return ret;
897
898 out_free_pages:
899 spin_unlock(&mm->page_table_lock);
900 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
901 mem_cgroup_uncharge_start();
902 for (i = 0; i < HPAGE_PMD_NR; i++) {
903 mem_cgroup_uncharge_page(pages[i]);
904 put_page(pages[i]);
905 }
906 mem_cgroup_uncharge_end();
907 kfree(pages);
908 goto out;
909 }
910
911 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
912 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
913 {
914 int ret = 0;
915 struct page *page, *new_page;
916 unsigned long haddr;
917 unsigned long mmun_start; /* For mmu_notifiers */
918 unsigned long mmun_end; /* For mmu_notifiers */
919
920 VM_BUG_ON(!vma->anon_vma);
921 spin_lock(&mm->page_table_lock);
922 if (unlikely(!pmd_same(*pmd, orig_pmd)))
923 goto out_unlock;
924
925 page = pmd_page(orig_pmd);
926 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
927 haddr = address & HPAGE_PMD_MASK;
928 if (page_mapcount(page) == 1) {
929 pmd_t entry;
930 entry = pmd_mkyoung(orig_pmd);
931 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
932 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
933 update_mmu_cache_pmd(vma, address, pmd);
934 ret |= VM_FAULT_WRITE;
935 goto out_unlock;
936 }
937 get_page(page);
938 spin_unlock(&mm->page_table_lock);
939
940 if (transparent_hugepage_enabled(vma) &&
941 !transparent_hugepage_debug_cow())
942 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
943 vma, haddr, numa_node_id(), 0);
944 else
945 new_page = NULL;
946
947 if (unlikely(!new_page)) {
948 count_vm_event(THP_FAULT_FALLBACK);
949 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
950 pmd, orig_pmd, page, haddr);
951 if (ret & VM_FAULT_OOM)
952 split_huge_page(page);
953 put_page(page);
954 goto out;
955 }
956 count_vm_event(THP_FAULT_ALLOC);
957
958 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
959 put_page(new_page);
960 split_huge_page(page);
961 put_page(page);
962 ret |= VM_FAULT_OOM;
963 goto out;
964 }
965
966 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
967 __SetPageUptodate(new_page);
968
969 mmun_start = haddr;
970 mmun_end = haddr + HPAGE_PMD_SIZE;
971 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
972
973 spin_lock(&mm->page_table_lock);
974 put_page(page);
975 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
976 spin_unlock(&mm->page_table_lock);
977 mem_cgroup_uncharge_page(new_page);
978 put_page(new_page);
979 goto out_mn;
980 } else {
981 pmd_t entry;
982 VM_BUG_ON(!PageHead(page));
983 entry = mk_huge_pmd(new_page, vma);
984 pmdp_clear_flush(vma, haddr, pmd);
985 page_add_new_anon_rmap(new_page, vma, haddr);
986 set_pmd_at(mm, haddr, pmd, entry);
987 update_mmu_cache_pmd(vma, address, pmd);
988 page_remove_rmap(page);
989 put_page(page);
990 ret |= VM_FAULT_WRITE;
991 }
992 spin_unlock(&mm->page_table_lock);
993 out_mn:
994 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995 out:
996 return ret;
997 out_unlock:
998 spin_unlock(&mm->page_table_lock);
999 return ret;
1000 }
1001
1002 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1003 unsigned long addr,
1004 pmd_t *pmd,
1005 unsigned int flags)
1006 {
1007 struct mm_struct *mm = vma->vm_mm;
1008 struct page *page = NULL;
1009
1010 assert_spin_locked(&mm->page_table_lock);
1011
1012 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1013 goto out;
1014
1015 page = pmd_page(*pmd);
1016 VM_BUG_ON(!PageHead(page));
1017 if (flags & FOLL_TOUCH) {
1018 pmd_t _pmd;
1019 /*
1020 * We should set the dirty bit only for FOLL_WRITE but
1021 * for now the dirty bit in the pmd is meaningless.
1022 * And if the dirty bit will become meaningful and
1023 * we'll only set it with FOLL_WRITE, an atomic
1024 * set_bit will be required on the pmd to set the
1025 * young bit, instead of the current set_pmd_at.
1026 */
1027 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1028 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1029 }
1030 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1031 if (page->mapping && trylock_page(page)) {
1032 lru_add_drain();
1033 if (page->mapping)
1034 mlock_vma_page(page);
1035 unlock_page(page);
1036 }
1037 }
1038 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1039 VM_BUG_ON(!PageCompound(page));
1040 if (flags & FOLL_GET)
1041 get_page_foll(page);
1042
1043 out:
1044 return page;
1045 }
1046
1047 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1048 pmd_t *pmd, unsigned long addr)
1049 {
1050 int ret = 0;
1051
1052 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1053 struct page *page;
1054 pgtable_t pgtable;
1055 pmd_t orig_pmd;
1056 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1057 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1058 page = pmd_page(orig_pmd);
1059 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1060 page_remove_rmap(page);
1061 VM_BUG_ON(page_mapcount(page) < 0);
1062 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1063 VM_BUG_ON(!PageHead(page));
1064 tlb->mm->nr_ptes--;
1065 spin_unlock(&tlb->mm->page_table_lock);
1066 tlb_remove_page(tlb, page);
1067 pte_free(tlb->mm, pgtable);
1068 ret = 1;
1069 }
1070 return ret;
1071 }
1072
1073 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1074 unsigned long addr, unsigned long end,
1075 unsigned char *vec)
1076 {
1077 int ret = 0;
1078
1079 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1080 /*
1081 * All logical pages in the range are present
1082 * if backed by a huge page.
1083 */
1084 spin_unlock(&vma->vm_mm->page_table_lock);
1085 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1086 ret = 1;
1087 }
1088
1089 return ret;
1090 }
1091
1092 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1093 unsigned long old_addr,
1094 unsigned long new_addr, unsigned long old_end,
1095 pmd_t *old_pmd, pmd_t *new_pmd)
1096 {
1097 int ret = 0;
1098 pmd_t pmd;
1099
1100 struct mm_struct *mm = vma->vm_mm;
1101
1102 if ((old_addr & ~HPAGE_PMD_MASK) ||
1103 (new_addr & ~HPAGE_PMD_MASK) ||
1104 old_end - old_addr < HPAGE_PMD_SIZE ||
1105 (new_vma->vm_flags & VM_NOHUGEPAGE))
1106 goto out;
1107
1108 /*
1109 * The destination pmd shouldn't be established, free_pgtables()
1110 * should have release it.
1111 */
1112 if (WARN_ON(!pmd_none(*new_pmd))) {
1113 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1114 goto out;
1115 }
1116
1117 ret = __pmd_trans_huge_lock(old_pmd, vma);
1118 if (ret == 1) {
1119 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1120 VM_BUG_ON(!pmd_none(*new_pmd));
1121 set_pmd_at(mm, new_addr, new_pmd, pmd);
1122 spin_unlock(&mm->page_table_lock);
1123 }
1124 out:
1125 return ret;
1126 }
1127
1128 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1129 unsigned long addr, pgprot_t newprot)
1130 {
1131 struct mm_struct *mm = vma->vm_mm;
1132 int ret = 0;
1133
1134 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1135 pmd_t entry;
1136 entry = pmdp_get_and_clear(mm, addr, pmd);
1137 entry = pmd_modify(entry, newprot);
1138 set_pmd_at(mm, addr, pmd, entry);
1139 spin_unlock(&vma->vm_mm->page_table_lock);
1140 ret = 1;
1141 }
1142
1143 return ret;
1144 }
1145
1146 /*
1147 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1148 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1149 *
1150 * Note that if it returns 1, this routine returns without unlocking page
1151 * table locks. So callers must unlock them.
1152 */
1153 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1154 {
1155 spin_lock(&vma->vm_mm->page_table_lock);
1156 if (likely(pmd_trans_huge(*pmd))) {
1157 if (unlikely(pmd_trans_splitting(*pmd))) {
1158 spin_unlock(&vma->vm_mm->page_table_lock);
1159 wait_split_huge_page(vma->anon_vma, pmd);
1160 return -1;
1161 } else {
1162 /* Thp mapped by 'pmd' is stable, so we can
1163 * handle it as it is. */
1164 return 1;
1165 }
1166 }
1167 spin_unlock(&vma->vm_mm->page_table_lock);
1168 return 0;
1169 }
1170
1171 pmd_t *page_check_address_pmd(struct page *page,
1172 struct mm_struct *mm,
1173 unsigned long address,
1174 enum page_check_address_pmd_flag flag)
1175 {
1176 pmd_t *pmd, *ret = NULL;
1177
1178 if (address & ~HPAGE_PMD_MASK)
1179 goto out;
1180
1181 pmd = mm_find_pmd(mm, address);
1182 if (!pmd)
1183 goto out;
1184 if (pmd_none(*pmd))
1185 goto out;
1186 if (pmd_page(*pmd) != page)
1187 goto out;
1188 /*
1189 * split_vma() may create temporary aliased mappings. There is
1190 * no risk as long as all huge pmd are found and have their
1191 * splitting bit set before __split_huge_page_refcount
1192 * runs. Finding the same huge pmd more than once during the
1193 * same rmap walk is not a problem.
1194 */
1195 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1196 pmd_trans_splitting(*pmd))
1197 goto out;
1198 if (pmd_trans_huge(*pmd)) {
1199 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1200 !pmd_trans_splitting(*pmd));
1201 ret = pmd;
1202 }
1203 out:
1204 return ret;
1205 }
1206
1207 static int __split_huge_page_splitting(struct page *page,
1208 struct vm_area_struct *vma,
1209 unsigned long address)
1210 {
1211 struct mm_struct *mm = vma->vm_mm;
1212 pmd_t *pmd;
1213 int ret = 0;
1214 /* For mmu_notifiers */
1215 const unsigned long mmun_start = address;
1216 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1217
1218 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1219 spin_lock(&mm->page_table_lock);
1220 pmd = page_check_address_pmd(page, mm, address,
1221 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1222 if (pmd) {
1223 /*
1224 * We can't temporarily set the pmd to null in order
1225 * to split it, the pmd must remain marked huge at all
1226 * times or the VM won't take the pmd_trans_huge paths
1227 * and it won't wait on the anon_vma->root->mutex to
1228 * serialize against split_huge_page*.
1229 */
1230 pmdp_splitting_flush(vma, address, pmd);
1231 ret = 1;
1232 }
1233 spin_unlock(&mm->page_table_lock);
1234 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1235
1236 return ret;
1237 }
1238
1239 static void __split_huge_page_refcount(struct page *page)
1240 {
1241 int i;
1242 struct zone *zone = page_zone(page);
1243 struct lruvec *lruvec;
1244 int tail_count = 0;
1245
1246 /* prevent PageLRU to go away from under us, and freeze lru stats */
1247 spin_lock_irq(&zone->lru_lock);
1248 lruvec = mem_cgroup_page_lruvec(page, zone);
1249
1250 compound_lock(page);
1251 /* complete memcg works before add pages to LRU */
1252 mem_cgroup_split_huge_fixup(page);
1253
1254 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1255 struct page *page_tail = page + i;
1256
1257 /* tail_page->_mapcount cannot change */
1258 BUG_ON(page_mapcount(page_tail) < 0);
1259 tail_count += page_mapcount(page_tail);
1260 /* check for overflow */
1261 BUG_ON(tail_count < 0);
1262 BUG_ON(atomic_read(&page_tail->_count) != 0);
1263 /*
1264 * tail_page->_count is zero and not changing from
1265 * under us. But get_page_unless_zero() may be running
1266 * from under us on the tail_page. If we used
1267 * atomic_set() below instead of atomic_add(), we
1268 * would then run atomic_set() concurrently with
1269 * get_page_unless_zero(), and atomic_set() is
1270 * implemented in C not using locked ops. spin_unlock
1271 * on x86 sometime uses locked ops because of PPro
1272 * errata 66, 92, so unless somebody can guarantee
1273 * atomic_set() here would be safe on all archs (and
1274 * not only on x86), it's safer to use atomic_add().
1275 */
1276 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1277 &page_tail->_count);
1278
1279 /* after clearing PageTail the gup refcount can be released */
1280 smp_mb();
1281
1282 /*
1283 * retain hwpoison flag of the poisoned tail page:
1284 * fix for the unsuitable process killed on Guest Machine(KVM)
1285 * by the memory-failure.
1286 */
1287 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1288 page_tail->flags |= (page->flags &
1289 ((1L << PG_referenced) |
1290 (1L << PG_swapbacked) |
1291 (1L << PG_mlocked) |
1292 (1L << PG_uptodate)));
1293 page_tail->flags |= (1L << PG_dirty);
1294
1295 /* clear PageTail before overwriting first_page */
1296 smp_wmb();
1297
1298 /*
1299 * __split_huge_page_splitting() already set the
1300 * splitting bit in all pmd that could map this
1301 * hugepage, that will ensure no CPU can alter the
1302 * mapcount on the head page. The mapcount is only
1303 * accounted in the head page and it has to be
1304 * transferred to all tail pages in the below code. So
1305 * for this code to be safe, the split the mapcount
1306 * can't change. But that doesn't mean userland can't
1307 * keep changing and reading the page contents while
1308 * we transfer the mapcount, so the pmd splitting
1309 * status is achieved setting a reserved bit in the
1310 * pmd, not by clearing the present bit.
1311 */
1312 page_tail->_mapcount = page->_mapcount;
1313
1314 BUG_ON(page_tail->mapping);
1315 page_tail->mapping = page->mapping;
1316
1317 page_tail->index = page->index + i;
1318
1319 BUG_ON(!PageAnon(page_tail));
1320 BUG_ON(!PageUptodate(page_tail));
1321 BUG_ON(!PageDirty(page_tail));
1322 BUG_ON(!PageSwapBacked(page_tail));
1323
1324 lru_add_page_tail(page, page_tail, lruvec);
1325 }
1326 atomic_sub(tail_count, &page->_count);
1327 BUG_ON(atomic_read(&page->_count) <= 0);
1328
1329 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1330 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1331
1332 ClearPageCompound(page);
1333 compound_unlock(page);
1334 spin_unlock_irq(&zone->lru_lock);
1335
1336 for (i = 1; i < HPAGE_PMD_NR; i++) {
1337 struct page *page_tail = page + i;
1338 BUG_ON(page_count(page_tail) <= 0);
1339 /*
1340 * Tail pages may be freed if there wasn't any mapping
1341 * like if add_to_swap() is running on a lru page that
1342 * had its mapping zapped. And freeing these pages
1343 * requires taking the lru_lock so we do the put_page
1344 * of the tail pages after the split is complete.
1345 */
1346 put_page(page_tail);
1347 }
1348
1349 /*
1350 * Only the head page (now become a regular page) is required
1351 * to be pinned by the caller.
1352 */
1353 BUG_ON(page_count(page) <= 0);
1354 }
1355
1356 static int __split_huge_page_map(struct page *page,
1357 struct vm_area_struct *vma,
1358 unsigned long address)
1359 {
1360 struct mm_struct *mm = vma->vm_mm;
1361 pmd_t *pmd, _pmd;
1362 int ret = 0, i;
1363 pgtable_t pgtable;
1364 unsigned long haddr;
1365
1366 spin_lock(&mm->page_table_lock);
1367 pmd = page_check_address_pmd(page, mm, address,
1368 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1369 if (pmd) {
1370 pgtable = pgtable_trans_huge_withdraw(mm);
1371 pmd_populate(mm, &_pmd, pgtable);
1372
1373 haddr = address;
1374 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1375 pte_t *pte, entry;
1376 BUG_ON(PageCompound(page+i));
1377 entry = mk_pte(page + i, vma->vm_page_prot);
1378 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1379 if (!pmd_write(*pmd))
1380 entry = pte_wrprotect(entry);
1381 else
1382 BUG_ON(page_mapcount(page) != 1);
1383 if (!pmd_young(*pmd))
1384 entry = pte_mkold(entry);
1385 pte = pte_offset_map(&_pmd, haddr);
1386 BUG_ON(!pte_none(*pte));
1387 set_pte_at(mm, haddr, pte, entry);
1388 pte_unmap(pte);
1389 }
1390
1391 smp_wmb(); /* make pte visible before pmd */
1392 /*
1393 * Up to this point the pmd is present and huge and
1394 * userland has the whole access to the hugepage
1395 * during the split (which happens in place). If we
1396 * overwrite the pmd with the not-huge version
1397 * pointing to the pte here (which of course we could
1398 * if all CPUs were bug free), userland could trigger
1399 * a small page size TLB miss on the small sized TLB
1400 * while the hugepage TLB entry is still established
1401 * in the huge TLB. Some CPU doesn't like that. See
1402 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1403 * Erratum 383 on page 93. Intel should be safe but is
1404 * also warns that it's only safe if the permission
1405 * and cache attributes of the two entries loaded in
1406 * the two TLB is identical (which should be the case
1407 * here). But it is generally safer to never allow
1408 * small and huge TLB entries for the same virtual
1409 * address to be loaded simultaneously. So instead of
1410 * doing "pmd_populate(); flush_tlb_range();" we first
1411 * mark the current pmd notpresent (atomically because
1412 * here the pmd_trans_huge and pmd_trans_splitting
1413 * must remain set at all times on the pmd until the
1414 * split is complete for this pmd), then we flush the
1415 * SMP TLB and finally we write the non-huge version
1416 * of the pmd entry with pmd_populate.
1417 */
1418 pmdp_invalidate(vma, address, pmd);
1419 pmd_populate(mm, pmd, pgtable);
1420 ret = 1;
1421 }
1422 spin_unlock(&mm->page_table_lock);
1423
1424 return ret;
1425 }
1426
1427 /* must be called with anon_vma->root->mutex hold */
1428 static void __split_huge_page(struct page *page,
1429 struct anon_vma *anon_vma)
1430 {
1431 int mapcount, mapcount2;
1432 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1433 struct anon_vma_chain *avc;
1434
1435 BUG_ON(!PageHead(page));
1436 BUG_ON(PageTail(page));
1437
1438 mapcount = 0;
1439 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1440 struct vm_area_struct *vma = avc->vma;
1441 unsigned long addr = vma_address(page, vma);
1442 BUG_ON(is_vma_temporary_stack(vma));
1443 mapcount += __split_huge_page_splitting(page, vma, addr);
1444 }
1445 /*
1446 * It is critical that new vmas are added to the tail of the
1447 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1448 * and establishes a child pmd before
1449 * __split_huge_page_splitting() freezes the parent pmd (so if
1450 * we fail to prevent copy_huge_pmd() from running until the
1451 * whole __split_huge_page() is complete), we will still see
1452 * the newly established pmd of the child later during the
1453 * walk, to be able to set it as pmd_trans_splitting too.
1454 */
1455 if (mapcount != page_mapcount(page))
1456 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1457 mapcount, page_mapcount(page));
1458 BUG_ON(mapcount != page_mapcount(page));
1459
1460 __split_huge_page_refcount(page);
1461
1462 mapcount2 = 0;
1463 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1464 struct vm_area_struct *vma = avc->vma;
1465 unsigned long addr = vma_address(page, vma);
1466 BUG_ON(is_vma_temporary_stack(vma));
1467 mapcount2 += __split_huge_page_map(page, vma, addr);
1468 }
1469 if (mapcount != mapcount2)
1470 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1471 mapcount, mapcount2, page_mapcount(page));
1472 BUG_ON(mapcount != mapcount2);
1473 }
1474
1475 int split_huge_page(struct page *page)
1476 {
1477 struct anon_vma *anon_vma;
1478 int ret = 1;
1479
1480 BUG_ON(!PageAnon(page));
1481 anon_vma = page_lock_anon_vma(page);
1482 if (!anon_vma)
1483 goto out;
1484 ret = 0;
1485 if (!PageCompound(page))
1486 goto out_unlock;
1487
1488 BUG_ON(!PageSwapBacked(page));
1489 __split_huge_page(page, anon_vma);
1490 count_vm_event(THP_SPLIT);
1491
1492 BUG_ON(PageCompound(page));
1493 out_unlock:
1494 page_unlock_anon_vma(anon_vma);
1495 out:
1496 return ret;
1497 }
1498
1499 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1500
1501 int hugepage_madvise(struct vm_area_struct *vma,
1502 unsigned long *vm_flags, int advice)
1503 {
1504 struct mm_struct *mm = vma->vm_mm;
1505
1506 switch (advice) {
1507 case MADV_HUGEPAGE:
1508 /*
1509 * Be somewhat over-protective like KSM for now!
1510 */
1511 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1512 return -EINVAL;
1513 if (mm->def_flags & VM_NOHUGEPAGE)
1514 return -EINVAL;
1515 *vm_flags &= ~VM_NOHUGEPAGE;
1516 *vm_flags |= VM_HUGEPAGE;
1517 /*
1518 * If the vma become good for khugepaged to scan,
1519 * register it here without waiting a page fault that
1520 * may not happen any time soon.
1521 */
1522 if (unlikely(khugepaged_enter_vma_merge(vma)))
1523 return -ENOMEM;
1524 break;
1525 case MADV_NOHUGEPAGE:
1526 /*
1527 * Be somewhat over-protective like KSM for now!
1528 */
1529 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1530 return -EINVAL;
1531 *vm_flags &= ~VM_HUGEPAGE;
1532 *vm_flags |= VM_NOHUGEPAGE;
1533 /*
1534 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1535 * this vma even if we leave the mm registered in khugepaged if
1536 * it got registered before VM_NOHUGEPAGE was set.
1537 */
1538 break;
1539 }
1540
1541 return 0;
1542 }
1543
1544 static int __init khugepaged_slab_init(void)
1545 {
1546 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1547 sizeof(struct mm_slot),
1548 __alignof__(struct mm_slot), 0, NULL);
1549 if (!mm_slot_cache)
1550 return -ENOMEM;
1551
1552 return 0;
1553 }
1554
1555 static void __init khugepaged_slab_free(void)
1556 {
1557 kmem_cache_destroy(mm_slot_cache);
1558 mm_slot_cache = NULL;
1559 }
1560
1561 static inline struct mm_slot *alloc_mm_slot(void)
1562 {
1563 if (!mm_slot_cache) /* initialization failed */
1564 return NULL;
1565 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1566 }
1567
1568 static inline void free_mm_slot(struct mm_slot *mm_slot)
1569 {
1570 kmem_cache_free(mm_slot_cache, mm_slot);
1571 }
1572
1573 static int __init mm_slots_hash_init(void)
1574 {
1575 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1576 GFP_KERNEL);
1577 if (!mm_slots_hash)
1578 return -ENOMEM;
1579 return 0;
1580 }
1581
1582 #if 0
1583 static void __init mm_slots_hash_free(void)
1584 {
1585 kfree(mm_slots_hash);
1586 mm_slots_hash = NULL;
1587 }
1588 #endif
1589
1590 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1591 {
1592 struct mm_slot *mm_slot;
1593 struct hlist_head *bucket;
1594 struct hlist_node *node;
1595
1596 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1597 % MM_SLOTS_HASH_HEADS];
1598 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1599 if (mm == mm_slot->mm)
1600 return mm_slot;
1601 }
1602 return NULL;
1603 }
1604
1605 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1606 struct mm_slot *mm_slot)
1607 {
1608 struct hlist_head *bucket;
1609
1610 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1611 % MM_SLOTS_HASH_HEADS];
1612 mm_slot->mm = mm;
1613 hlist_add_head(&mm_slot->hash, bucket);
1614 }
1615
1616 static inline int khugepaged_test_exit(struct mm_struct *mm)
1617 {
1618 return atomic_read(&mm->mm_users) == 0;
1619 }
1620
1621 int __khugepaged_enter(struct mm_struct *mm)
1622 {
1623 struct mm_slot *mm_slot;
1624 int wakeup;
1625
1626 mm_slot = alloc_mm_slot();
1627 if (!mm_slot)
1628 return -ENOMEM;
1629
1630 /* __khugepaged_exit() must not run from under us */
1631 VM_BUG_ON(khugepaged_test_exit(mm));
1632 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1633 free_mm_slot(mm_slot);
1634 return 0;
1635 }
1636
1637 spin_lock(&khugepaged_mm_lock);
1638 insert_to_mm_slots_hash(mm, mm_slot);
1639 /*
1640 * Insert just behind the scanning cursor, to let the area settle
1641 * down a little.
1642 */
1643 wakeup = list_empty(&khugepaged_scan.mm_head);
1644 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1645 spin_unlock(&khugepaged_mm_lock);
1646
1647 atomic_inc(&mm->mm_count);
1648 if (wakeup)
1649 wake_up_interruptible(&khugepaged_wait);
1650
1651 return 0;
1652 }
1653
1654 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1655 {
1656 unsigned long hstart, hend;
1657 if (!vma->anon_vma)
1658 /*
1659 * Not yet faulted in so we will register later in the
1660 * page fault if needed.
1661 */
1662 return 0;
1663 if (vma->vm_ops)
1664 /* khugepaged not yet working on file or special mappings */
1665 return 0;
1666 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1667 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1668 hend = vma->vm_end & HPAGE_PMD_MASK;
1669 if (hstart < hend)
1670 return khugepaged_enter(vma);
1671 return 0;
1672 }
1673
1674 void __khugepaged_exit(struct mm_struct *mm)
1675 {
1676 struct mm_slot *mm_slot;
1677 int free = 0;
1678
1679 spin_lock(&khugepaged_mm_lock);
1680 mm_slot = get_mm_slot(mm);
1681 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1682 hlist_del(&mm_slot->hash);
1683 list_del(&mm_slot->mm_node);
1684 free = 1;
1685 }
1686 spin_unlock(&khugepaged_mm_lock);
1687
1688 if (free) {
1689 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1690 free_mm_slot(mm_slot);
1691 mmdrop(mm);
1692 } else if (mm_slot) {
1693 /*
1694 * This is required to serialize against
1695 * khugepaged_test_exit() (which is guaranteed to run
1696 * under mmap sem read mode). Stop here (after we
1697 * return all pagetables will be destroyed) until
1698 * khugepaged has finished working on the pagetables
1699 * under the mmap_sem.
1700 */
1701 down_write(&mm->mmap_sem);
1702 up_write(&mm->mmap_sem);
1703 }
1704 }
1705
1706 static void release_pte_page(struct page *page)
1707 {
1708 /* 0 stands for page_is_file_cache(page) == false */
1709 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1710 unlock_page(page);
1711 putback_lru_page(page);
1712 }
1713
1714 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1715 {
1716 while (--_pte >= pte) {
1717 pte_t pteval = *_pte;
1718 if (!pte_none(pteval))
1719 release_pte_page(pte_page(pteval));
1720 }
1721 }
1722
1723 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1724 unsigned long address,
1725 pte_t *pte)
1726 {
1727 struct page *page;
1728 pte_t *_pte;
1729 int referenced = 0, none = 0;
1730 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1731 _pte++, address += PAGE_SIZE) {
1732 pte_t pteval = *_pte;
1733 if (pte_none(pteval)) {
1734 if (++none <= khugepaged_max_ptes_none)
1735 continue;
1736 else
1737 goto out;
1738 }
1739 if (!pte_present(pteval) || !pte_write(pteval))
1740 goto out;
1741 page = vm_normal_page(vma, address, pteval);
1742 if (unlikely(!page))
1743 goto out;
1744
1745 VM_BUG_ON(PageCompound(page));
1746 BUG_ON(!PageAnon(page));
1747 VM_BUG_ON(!PageSwapBacked(page));
1748
1749 /* cannot use mapcount: can't collapse if there's a gup pin */
1750 if (page_count(page) != 1)
1751 goto out;
1752 /*
1753 * We can do it before isolate_lru_page because the
1754 * page can't be freed from under us. NOTE: PG_lock
1755 * is needed to serialize against split_huge_page
1756 * when invoked from the VM.
1757 */
1758 if (!trylock_page(page))
1759 goto out;
1760 /*
1761 * Isolate the page to avoid collapsing an hugepage
1762 * currently in use by the VM.
1763 */
1764 if (isolate_lru_page(page)) {
1765 unlock_page(page);
1766 goto out;
1767 }
1768 /* 0 stands for page_is_file_cache(page) == false */
1769 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1770 VM_BUG_ON(!PageLocked(page));
1771 VM_BUG_ON(PageLRU(page));
1772
1773 /* If there is no mapped pte young don't collapse the page */
1774 if (pte_young(pteval) || PageReferenced(page) ||
1775 mmu_notifier_test_young(vma->vm_mm, address))
1776 referenced = 1;
1777 }
1778 if (likely(referenced))
1779 return 1;
1780 out:
1781 release_pte_pages(pte, _pte);
1782 return 0;
1783 }
1784
1785 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1786 struct vm_area_struct *vma,
1787 unsigned long address,
1788 spinlock_t *ptl)
1789 {
1790 pte_t *_pte;
1791 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1792 pte_t pteval = *_pte;
1793 struct page *src_page;
1794
1795 if (pte_none(pteval)) {
1796 clear_user_highpage(page, address);
1797 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1798 } else {
1799 src_page = pte_page(pteval);
1800 copy_user_highpage(page, src_page, address, vma);
1801 VM_BUG_ON(page_mapcount(src_page) != 1);
1802 release_pte_page(src_page);
1803 /*
1804 * ptl mostly unnecessary, but preempt has to
1805 * be disabled to update the per-cpu stats
1806 * inside page_remove_rmap().
1807 */
1808 spin_lock(ptl);
1809 /*
1810 * paravirt calls inside pte_clear here are
1811 * superfluous.
1812 */
1813 pte_clear(vma->vm_mm, address, _pte);
1814 page_remove_rmap(src_page);
1815 spin_unlock(ptl);
1816 free_page_and_swap_cache(src_page);
1817 }
1818
1819 address += PAGE_SIZE;
1820 page++;
1821 }
1822 }
1823
1824 static void khugepaged_alloc_sleep(void)
1825 {
1826 wait_event_freezable_timeout(khugepaged_wait, false,
1827 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1828 }
1829
1830 #ifdef CONFIG_NUMA
1831 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1832 {
1833 if (IS_ERR(*hpage)) {
1834 if (!*wait)
1835 return false;
1836
1837 *wait = false;
1838 *hpage = NULL;
1839 khugepaged_alloc_sleep();
1840 } else if (*hpage) {
1841 put_page(*hpage);
1842 *hpage = NULL;
1843 }
1844
1845 return true;
1846 }
1847
1848 static struct page
1849 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1850 struct vm_area_struct *vma, unsigned long address,
1851 int node)
1852 {
1853 VM_BUG_ON(*hpage);
1854 /*
1855 * Allocate the page while the vma is still valid and under
1856 * the mmap_sem read mode so there is no memory allocation
1857 * later when we take the mmap_sem in write mode. This is more
1858 * friendly behavior (OTOH it may actually hide bugs) to
1859 * filesystems in userland with daemons allocating memory in
1860 * the userland I/O paths. Allocating memory with the
1861 * mmap_sem in read mode is good idea also to allow greater
1862 * scalability.
1863 */
1864 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1865 node, __GFP_OTHER_NODE);
1866
1867 /*
1868 * After allocating the hugepage, release the mmap_sem read lock in
1869 * preparation for taking it in write mode.
1870 */
1871 up_read(&mm->mmap_sem);
1872 if (unlikely(!*hpage)) {
1873 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1874 *hpage = ERR_PTR(-ENOMEM);
1875 return NULL;
1876 }
1877
1878 count_vm_event(THP_COLLAPSE_ALLOC);
1879 return *hpage;
1880 }
1881 #else
1882 static struct page *khugepaged_alloc_hugepage(bool *wait)
1883 {
1884 struct page *hpage;
1885
1886 do {
1887 hpage = alloc_hugepage(khugepaged_defrag());
1888 if (!hpage) {
1889 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1890 if (!*wait)
1891 return NULL;
1892
1893 *wait = false;
1894 khugepaged_alloc_sleep();
1895 } else
1896 count_vm_event(THP_COLLAPSE_ALLOC);
1897 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1898
1899 return hpage;
1900 }
1901
1902 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1903 {
1904 if (!*hpage)
1905 *hpage = khugepaged_alloc_hugepage(wait);
1906
1907 if (unlikely(!*hpage))
1908 return false;
1909
1910 return true;
1911 }
1912
1913 static struct page
1914 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1915 struct vm_area_struct *vma, unsigned long address,
1916 int node)
1917 {
1918 up_read(&mm->mmap_sem);
1919 VM_BUG_ON(!*hpage);
1920 return *hpage;
1921 }
1922 #endif
1923
1924 static bool hugepage_vma_check(struct vm_area_struct *vma)
1925 {
1926 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1927 (vma->vm_flags & VM_NOHUGEPAGE))
1928 return false;
1929
1930 if (!vma->anon_vma || vma->vm_ops)
1931 return false;
1932 if (is_vma_temporary_stack(vma))
1933 return false;
1934 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1935 return true;
1936 }
1937
1938 static void collapse_huge_page(struct mm_struct *mm,
1939 unsigned long address,
1940 struct page **hpage,
1941 struct vm_area_struct *vma,
1942 int node)
1943 {
1944 pmd_t *pmd, _pmd;
1945 pte_t *pte;
1946 pgtable_t pgtable;
1947 struct page *new_page;
1948 spinlock_t *ptl;
1949 int isolated;
1950 unsigned long hstart, hend;
1951 unsigned long mmun_start; /* For mmu_notifiers */
1952 unsigned long mmun_end; /* For mmu_notifiers */
1953
1954 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1955
1956 /* release the mmap_sem read lock. */
1957 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1958 if (!new_page)
1959 return;
1960
1961 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1962 return;
1963
1964 /*
1965 * Prevent all access to pagetables with the exception of
1966 * gup_fast later hanlded by the ptep_clear_flush and the VM
1967 * handled by the anon_vma lock + PG_lock.
1968 */
1969 down_write(&mm->mmap_sem);
1970 if (unlikely(khugepaged_test_exit(mm)))
1971 goto out;
1972
1973 vma = find_vma(mm, address);
1974 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1975 hend = vma->vm_end & HPAGE_PMD_MASK;
1976 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1977 goto out;
1978 if (!hugepage_vma_check(vma))
1979 goto out;
1980 pmd = mm_find_pmd(mm, address);
1981 if (!pmd)
1982 goto out;
1983 if (pmd_trans_huge(*pmd))
1984 goto out;
1985
1986 anon_vma_lock(vma->anon_vma);
1987
1988 pte = pte_offset_map(pmd, address);
1989 ptl = pte_lockptr(mm, pmd);
1990
1991 mmun_start = address;
1992 mmun_end = address + HPAGE_PMD_SIZE;
1993 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1994 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1995 /*
1996 * After this gup_fast can't run anymore. This also removes
1997 * any huge TLB entry from the CPU so we won't allow
1998 * huge and small TLB entries for the same virtual address
1999 * to avoid the risk of CPU bugs in that area.
2000 */
2001 _pmd = pmdp_clear_flush(vma, address, pmd);
2002 spin_unlock(&mm->page_table_lock);
2003 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2004
2005 spin_lock(ptl);
2006 isolated = __collapse_huge_page_isolate(vma, address, pte);
2007 spin_unlock(ptl);
2008
2009 if (unlikely(!isolated)) {
2010 pte_unmap(pte);
2011 spin_lock(&mm->page_table_lock);
2012 BUG_ON(!pmd_none(*pmd));
2013 set_pmd_at(mm, address, pmd, _pmd);
2014 spin_unlock(&mm->page_table_lock);
2015 anon_vma_unlock(vma->anon_vma);
2016 goto out;
2017 }
2018
2019 /*
2020 * All pages are isolated and locked so anon_vma rmap
2021 * can't run anymore.
2022 */
2023 anon_vma_unlock(vma->anon_vma);
2024
2025 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2026 pte_unmap(pte);
2027 __SetPageUptodate(new_page);
2028 pgtable = pmd_pgtable(_pmd);
2029
2030 _pmd = mk_huge_pmd(new_page, vma);
2031
2032 /*
2033 * spin_lock() below is not the equivalent of smp_wmb(), so
2034 * this is needed to avoid the copy_huge_page writes to become
2035 * visible after the set_pmd_at() write.
2036 */
2037 smp_wmb();
2038
2039 spin_lock(&mm->page_table_lock);
2040 BUG_ON(!pmd_none(*pmd));
2041 page_add_new_anon_rmap(new_page, vma, address);
2042 set_pmd_at(mm, address, pmd, _pmd);
2043 update_mmu_cache_pmd(vma, address, pmd);
2044 pgtable_trans_huge_deposit(mm, pgtable);
2045 spin_unlock(&mm->page_table_lock);
2046
2047 *hpage = NULL;
2048
2049 khugepaged_pages_collapsed++;
2050 out_up_write:
2051 up_write(&mm->mmap_sem);
2052 return;
2053
2054 out:
2055 mem_cgroup_uncharge_page(new_page);
2056 goto out_up_write;
2057 }
2058
2059 static int khugepaged_scan_pmd(struct mm_struct *mm,
2060 struct vm_area_struct *vma,
2061 unsigned long address,
2062 struct page **hpage)
2063 {
2064 pmd_t *pmd;
2065 pte_t *pte, *_pte;
2066 int ret = 0, referenced = 0, none = 0;
2067 struct page *page;
2068 unsigned long _address;
2069 spinlock_t *ptl;
2070 int node = -1;
2071
2072 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2073
2074 pmd = mm_find_pmd(mm, address);
2075 if (!pmd)
2076 goto out;
2077 if (pmd_trans_huge(*pmd))
2078 goto out;
2079
2080 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2081 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2082 _pte++, _address += PAGE_SIZE) {
2083 pte_t pteval = *_pte;
2084 if (pte_none(pteval)) {
2085 if (++none <= khugepaged_max_ptes_none)
2086 continue;
2087 else
2088 goto out_unmap;
2089 }
2090 if (!pte_present(pteval) || !pte_write(pteval))
2091 goto out_unmap;
2092 page = vm_normal_page(vma, _address, pteval);
2093 if (unlikely(!page))
2094 goto out_unmap;
2095 /*
2096 * Chose the node of the first page. This could
2097 * be more sophisticated and look at more pages,
2098 * but isn't for now.
2099 */
2100 if (node == -1)
2101 node = page_to_nid(page);
2102 VM_BUG_ON(PageCompound(page));
2103 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2104 goto out_unmap;
2105 /* cannot use mapcount: can't collapse if there's a gup pin */
2106 if (page_count(page) != 1)
2107 goto out_unmap;
2108 if (pte_young(pteval) || PageReferenced(page) ||
2109 mmu_notifier_test_young(vma->vm_mm, address))
2110 referenced = 1;
2111 }
2112 if (referenced)
2113 ret = 1;
2114 out_unmap:
2115 pte_unmap_unlock(pte, ptl);
2116 if (ret)
2117 /* collapse_huge_page will return with the mmap_sem released */
2118 collapse_huge_page(mm, address, hpage, vma, node);
2119 out:
2120 return ret;
2121 }
2122
2123 static void collect_mm_slot(struct mm_slot *mm_slot)
2124 {
2125 struct mm_struct *mm = mm_slot->mm;
2126
2127 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2128
2129 if (khugepaged_test_exit(mm)) {
2130 /* free mm_slot */
2131 hlist_del(&mm_slot->hash);
2132 list_del(&mm_slot->mm_node);
2133
2134 /*
2135 * Not strictly needed because the mm exited already.
2136 *
2137 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2138 */
2139
2140 /* khugepaged_mm_lock actually not necessary for the below */
2141 free_mm_slot(mm_slot);
2142 mmdrop(mm);
2143 }
2144 }
2145
2146 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2147 struct page **hpage)
2148 __releases(&khugepaged_mm_lock)
2149 __acquires(&khugepaged_mm_lock)
2150 {
2151 struct mm_slot *mm_slot;
2152 struct mm_struct *mm;
2153 struct vm_area_struct *vma;
2154 int progress = 0;
2155
2156 VM_BUG_ON(!pages);
2157 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2158
2159 if (khugepaged_scan.mm_slot)
2160 mm_slot = khugepaged_scan.mm_slot;
2161 else {
2162 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2163 struct mm_slot, mm_node);
2164 khugepaged_scan.address = 0;
2165 khugepaged_scan.mm_slot = mm_slot;
2166 }
2167 spin_unlock(&khugepaged_mm_lock);
2168
2169 mm = mm_slot->mm;
2170 down_read(&mm->mmap_sem);
2171 if (unlikely(khugepaged_test_exit(mm)))
2172 vma = NULL;
2173 else
2174 vma = find_vma(mm, khugepaged_scan.address);
2175
2176 progress++;
2177 for (; vma; vma = vma->vm_next) {
2178 unsigned long hstart, hend;
2179
2180 cond_resched();
2181 if (unlikely(khugepaged_test_exit(mm))) {
2182 progress++;
2183 break;
2184 }
2185 if (!hugepage_vma_check(vma)) {
2186 skip:
2187 progress++;
2188 continue;
2189 }
2190 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2191 hend = vma->vm_end & HPAGE_PMD_MASK;
2192 if (hstart >= hend)
2193 goto skip;
2194 if (khugepaged_scan.address > hend)
2195 goto skip;
2196 if (khugepaged_scan.address < hstart)
2197 khugepaged_scan.address = hstart;
2198 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2199
2200 while (khugepaged_scan.address < hend) {
2201 int ret;
2202 cond_resched();
2203 if (unlikely(khugepaged_test_exit(mm)))
2204 goto breakouterloop;
2205
2206 VM_BUG_ON(khugepaged_scan.address < hstart ||
2207 khugepaged_scan.address + HPAGE_PMD_SIZE >
2208 hend);
2209 ret = khugepaged_scan_pmd(mm, vma,
2210 khugepaged_scan.address,
2211 hpage);
2212 /* move to next address */
2213 khugepaged_scan.address += HPAGE_PMD_SIZE;
2214 progress += HPAGE_PMD_NR;
2215 if (ret)
2216 /* we released mmap_sem so break loop */
2217 goto breakouterloop_mmap_sem;
2218 if (progress >= pages)
2219 goto breakouterloop;
2220 }
2221 }
2222 breakouterloop:
2223 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2224 breakouterloop_mmap_sem:
2225
2226 spin_lock(&khugepaged_mm_lock);
2227 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2228 /*
2229 * Release the current mm_slot if this mm is about to die, or
2230 * if we scanned all vmas of this mm.
2231 */
2232 if (khugepaged_test_exit(mm) || !vma) {
2233 /*
2234 * Make sure that if mm_users is reaching zero while
2235 * khugepaged runs here, khugepaged_exit will find
2236 * mm_slot not pointing to the exiting mm.
2237 */
2238 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2239 khugepaged_scan.mm_slot = list_entry(
2240 mm_slot->mm_node.next,
2241 struct mm_slot, mm_node);
2242 khugepaged_scan.address = 0;
2243 } else {
2244 khugepaged_scan.mm_slot = NULL;
2245 khugepaged_full_scans++;
2246 }
2247
2248 collect_mm_slot(mm_slot);
2249 }
2250
2251 return progress;
2252 }
2253
2254 static int khugepaged_has_work(void)
2255 {
2256 return !list_empty(&khugepaged_scan.mm_head) &&
2257 khugepaged_enabled();
2258 }
2259
2260 static int khugepaged_wait_event(void)
2261 {
2262 return !list_empty(&khugepaged_scan.mm_head) ||
2263 kthread_should_stop();
2264 }
2265
2266 static void khugepaged_do_scan(void)
2267 {
2268 struct page *hpage = NULL;
2269 unsigned int progress = 0, pass_through_head = 0;
2270 unsigned int pages = khugepaged_pages_to_scan;
2271 bool wait = true;
2272
2273 barrier(); /* write khugepaged_pages_to_scan to local stack */
2274
2275 while (progress < pages) {
2276 if (!khugepaged_prealloc_page(&hpage, &wait))
2277 break;
2278
2279 cond_resched();
2280
2281 if (unlikely(kthread_should_stop() || freezing(current)))
2282 break;
2283
2284 spin_lock(&khugepaged_mm_lock);
2285 if (!khugepaged_scan.mm_slot)
2286 pass_through_head++;
2287 if (khugepaged_has_work() &&
2288 pass_through_head < 2)
2289 progress += khugepaged_scan_mm_slot(pages - progress,
2290 &hpage);
2291 else
2292 progress = pages;
2293 spin_unlock(&khugepaged_mm_lock);
2294 }
2295
2296 if (!IS_ERR_OR_NULL(hpage))
2297 put_page(hpage);
2298 }
2299
2300 static void khugepaged_wait_work(void)
2301 {
2302 try_to_freeze();
2303
2304 if (khugepaged_has_work()) {
2305 if (!khugepaged_scan_sleep_millisecs)
2306 return;
2307
2308 wait_event_freezable_timeout(khugepaged_wait,
2309 kthread_should_stop(),
2310 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2311 return;
2312 }
2313
2314 if (khugepaged_enabled())
2315 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2316 }
2317
2318 static int khugepaged(void *none)
2319 {
2320 struct mm_slot *mm_slot;
2321
2322 set_freezable();
2323 set_user_nice(current, 19);
2324
2325 while (!kthread_should_stop()) {
2326 khugepaged_do_scan();
2327 khugepaged_wait_work();
2328 }
2329
2330 spin_lock(&khugepaged_mm_lock);
2331 mm_slot = khugepaged_scan.mm_slot;
2332 khugepaged_scan.mm_slot = NULL;
2333 if (mm_slot)
2334 collect_mm_slot(mm_slot);
2335 spin_unlock(&khugepaged_mm_lock);
2336 return 0;
2337 }
2338
2339 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2340 {
2341 struct page *page;
2342
2343 spin_lock(&mm->page_table_lock);
2344 if (unlikely(!pmd_trans_huge(*pmd))) {
2345 spin_unlock(&mm->page_table_lock);
2346 return;
2347 }
2348 page = pmd_page(*pmd);
2349 VM_BUG_ON(!page_count(page));
2350 get_page(page);
2351 spin_unlock(&mm->page_table_lock);
2352
2353 split_huge_page(page);
2354
2355 put_page(page);
2356 BUG_ON(pmd_trans_huge(*pmd));
2357 }
2358
2359 static void split_huge_page_address(struct mm_struct *mm,
2360 unsigned long address)
2361 {
2362 pmd_t *pmd;
2363
2364 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2365
2366 pmd = mm_find_pmd(mm, address);
2367 if (!pmd)
2368 return;
2369 /*
2370 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2371 * materialize from under us.
2372 */
2373 split_huge_page_pmd(mm, pmd);
2374 }
2375
2376 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2377 unsigned long start,
2378 unsigned long end,
2379 long adjust_next)
2380 {
2381 /*
2382 * If the new start address isn't hpage aligned and it could
2383 * previously contain an hugepage: check if we need to split
2384 * an huge pmd.
2385 */
2386 if (start & ~HPAGE_PMD_MASK &&
2387 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2388 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2389 split_huge_page_address(vma->vm_mm, start);
2390
2391 /*
2392 * If the new end address isn't hpage aligned and it could
2393 * previously contain an hugepage: check if we need to split
2394 * an huge pmd.
2395 */
2396 if (end & ~HPAGE_PMD_MASK &&
2397 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2398 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2399 split_huge_page_address(vma->vm_mm, end);
2400
2401 /*
2402 * If we're also updating the vma->vm_next->vm_start, if the new
2403 * vm_next->vm_start isn't page aligned and it could previously
2404 * contain an hugepage: check if we need to split an huge pmd.
2405 */
2406 if (adjust_next > 0) {
2407 struct vm_area_struct *next = vma->vm_next;
2408 unsigned long nstart = next->vm_start;
2409 nstart += adjust_next << PAGE_SHIFT;
2410 if (nstart & ~HPAGE_PMD_MASK &&
2411 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2412 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2413 split_huge_page_address(next->vm_mm, nstart);
2414 }
2415 }
This page took 0.076346 seconds and 6 git commands to generate.