thp: prepare change_huge_pmd() for file thp
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
62 };
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66
67 /*
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
74 */
75 unsigned long transparent_hugepage_flags __read_mostly =
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
78 #endif
79 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81 #endif
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
85
86 /* default scan 8*512 pte (or vmas) every 30 second */
87 static unsigned int khugepaged_pages_to_scan __read_mostly;
88 static unsigned int khugepaged_pages_collapsed;
89 static unsigned int khugepaged_full_scans;
90 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91 /* during fragmentation poll the hugepage allocator once every minute */
92 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
93 static unsigned long khugepaged_sleep_expire;
94 static struct task_struct *khugepaged_thread __read_mostly;
95 static DEFINE_MUTEX(khugepaged_mutex);
96 static DEFINE_SPINLOCK(khugepaged_mm_lock);
97 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98 /*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
103 static unsigned int khugepaged_max_ptes_none __read_mostly;
104 static unsigned int khugepaged_max_ptes_swap __read_mostly;
105
106 static int khugepaged(void *none);
107 static int khugepaged_slab_init(void);
108 static void khugepaged_slab_exit(void);
109
110 #define MM_SLOTS_HASH_BITS 10
111 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
113 static struct kmem_cache *mm_slot_cache __read_mostly;
114
115 /**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135 struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 };
140 static struct khugepaged_scan khugepaged_scan = {
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142 };
143
144 static struct shrinker deferred_split_shrinker;
145
146 static void set_recommended_min_free_kbytes(void)
147 {
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
151
152 for_each_populated_zone(zone)
153 nr_zones++;
154
155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
175 min_free_kbytes, recommended_min);
176
177 min_free_kbytes = recommended_min;
178 }
179 setup_per_zone_wmarks();
180 }
181
182 static int start_stop_khugepaged(void)
183 {
184 int err = 0;
185 if (khugepaged_enabled()) {
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
189 if (IS_ERR(khugepaged_thread)) {
190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
193 goto fail;
194 }
195
196 if (!list_empty(&khugepaged_scan.mm_head))
197 wake_up_interruptible(&khugepaged_wait);
198
199 set_recommended_min_free_kbytes();
200 } else if (khugepaged_thread) {
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
204 fail:
205 return err;
206 }
207
208 static atomic_t huge_zero_refcount;
209 struct page *huge_zero_page __read_mostly;
210
211 struct page *get_huge_zero_page(void)
212 {
213 struct page *zero_page;
214 retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return READ_ONCE(huge_zero_page);
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return NULL;
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
225 preempt_disable();
226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
227 preempt_enable();
228 __free_pages(zero_page, compound_order(zero_page));
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
235 return READ_ONCE(huge_zero_page);
236 }
237
238 void put_huge_zero_page(void)
239 {
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
245 }
246
247 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
249 {
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252 }
253
254 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256 {
257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
260 __free_pages(zero_page, compound_order(zero_page));
261 return HPAGE_PMD_NR;
262 }
263
264 return 0;
265 }
266
267 static struct shrinker huge_zero_page_shrinker = {
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
270 .seeks = DEFAULT_SEEKS,
271 };
272
273 #ifdef CONFIG_SYSFS
274
275 static ssize_t triple_flag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
279 enum transparent_hugepage_flag deferred,
280 enum transparent_hugepage_flag req_madv)
281 {
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
290 min(sizeof("always")-1, count))) {
291 clear_bit(deferred, &transparent_hugepage_flags);
292 clear_bit(req_madv, &transparent_hugepage_flags);
293 set_bit(enabled, &transparent_hugepage_flags);
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(deferred, &transparent_hugepage_flags);
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
303 clear_bit(deferred, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
319 }
320
321 static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324 {
325 ssize_t ret;
326
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
336 err = start_stop_khugepaged();
337 mutex_unlock(&khugepaged_mutex);
338
339 if (err)
340 ret = err;
341 }
342
343 return ret;
344 }
345 static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348 static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351 {
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
354 }
355
356 static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360 {
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
371 set_bit(flag, &transparent_hugepage_flags);
372 else
373 clear_bit(flag, &transparent_hugepage_flags);
374
375 return count;
376 }
377
378 /*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383 static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385 {
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
395 }
396 static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399 {
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404 }
405 static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
408 static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410 {
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413 }
414 static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416 {
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419 }
420 static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
422 #ifdef CONFIG_DEBUG_VM
423 static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425 {
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428 }
429 static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432 {
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435 }
436 static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438 #endif /* CONFIG_DEBUG_VM */
439
440 static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
443 &use_zero_page_attr.attr,
444 #ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446 #endif
447 NULL,
448 };
449
450 static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
452 };
453
454 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457 {
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459 }
460
461 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464 {
465 unsigned long msecs;
466 int err;
467
468 err = kstrtoul(buf, 10, &msecs);
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
473 khugepaged_sleep_expire = 0;
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477 }
478 static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485 {
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487 }
488
489 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492 {
493 unsigned long msecs;
494 int err;
495
496 err = kstrtoul(buf, 10, &msecs);
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
501 khugepaged_sleep_expire = 0;
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505 }
506 static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510 static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513 {
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515 }
516 static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519 {
520 int err;
521 unsigned long pages;
522
523 err = kstrtoul(buf, 10, &pages);
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530 }
531 static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535 static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538 {
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540 }
541 static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544 static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547 {
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549 }
550 static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555 {
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558 }
559 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562 {
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565 }
566 static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570 /*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581 {
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583 }
584 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587 {
588 int err;
589 unsigned long max_ptes_none;
590
591 err = kstrtoul(buf, 10, &max_ptes_none);
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598 }
599 static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
603 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606 {
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608 }
609
610 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613 {
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624 }
625
626 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
630 static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
638 &khugepaged_max_ptes_swap_attr.attr,
639 NULL,
640 };
641
642 static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
645 };
646
647 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
648 {
649 int err;
650
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
653 pr_err("failed to create transparent hugepage kobject\n");
654 return -ENOMEM;
655 }
656
657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
658 if (err) {
659 pr_err("failed to register transparent hugepage group\n");
660 goto delete_obj;
661 }
662
663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
664 if (err) {
665 pr_err("failed to register transparent hugepage group\n");
666 goto remove_hp_group;
667 }
668
669 return 0;
670
671 remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673 delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676 }
677
678 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679 {
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683 }
684 #else
685 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686 {
687 return 0;
688 }
689
690 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691 {
692 }
693 #endif /* CONFIG_SYSFS */
694
695 static int __init hugepage_init(void)
696 {
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
720 goto err_sysfs;
721
722 err = khugepaged_slab_init();
723 if (err)
724 goto err_slab;
725
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
732
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
739 transparent_hugepage_flags = 0;
740 return 0;
741 }
742
743 err = start_stop_khugepaged();
744 if (err)
745 goto err_khugepaged;
746
747 return 0;
748 err_khugepaged:
749 unregister_shrinker(&deferred_split_shrinker);
750 err_split_shrinker:
751 unregister_shrinker(&huge_zero_page_shrinker);
752 err_hzp_shrinker:
753 khugepaged_slab_exit();
754 err_slab:
755 hugepage_exit_sysfs(hugepage_kobj);
756 err_sysfs:
757 return err;
758 }
759 subsys_initcall(hugepage_init);
760
761 static int __init setup_transparent_hugepage(char *str)
762 {
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785 out:
786 if (!ret)
787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
788 return ret;
789 }
790 __setup("transparent_hugepage=", setup_transparent_hugepage);
791
792 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
793 {
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797 }
798
799 static inline struct list_head *page_deferred_list(struct page *page)
800 {
801 /*
802 * ->lru in the tail pages is occupied by compound_head.
803 * Let's use ->mapping + ->index in the second tail page as list_head.
804 */
805 return (struct list_head *)&page[2].mapping;
806 }
807
808 void prep_transhuge_page(struct page *page)
809 {
810 /*
811 * we use page->mapping and page->indexlru in second tail page
812 * as list_head: assuming THP order >= 2
813 */
814
815 INIT_LIST_HEAD(page_deferred_list(page));
816 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
817 }
818
819 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
820 gfp_t gfp)
821 {
822 struct vm_area_struct *vma = fe->vma;
823 struct mem_cgroup *memcg;
824 pgtable_t pgtable;
825 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
826
827 VM_BUG_ON_PAGE(!PageCompound(page), page);
828
829 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
830 put_page(page);
831 count_vm_event(THP_FAULT_FALLBACK);
832 return VM_FAULT_FALLBACK;
833 }
834
835 pgtable = pte_alloc_one(vma->vm_mm, haddr);
836 if (unlikely(!pgtable)) {
837 mem_cgroup_cancel_charge(page, memcg, true);
838 put_page(page);
839 return VM_FAULT_OOM;
840 }
841
842 clear_huge_page(page, haddr, HPAGE_PMD_NR);
843 /*
844 * The memory barrier inside __SetPageUptodate makes sure that
845 * clear_huge_page writes become visible before the set_pmd_at()
846 * write.
847 */
848 __SetPageUptodate(page);
849
850 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
851 if (unlikely(!pmd_none(*fe->pmd))) {
852 spin_unlock(fe->ptl);
853 mem_cgroup_cancel_charge(page, memcg, true);
854 put_page(page);
855 pte_free(vma->vm_mm, pgtable);
856 } else {
857 pmd_t entry;
858
859 /* Deliver the page fault to userland */
860 if (userfaultfd_missing(vma)) {
861 int ret;
862
863 spin_unlock(fe->ptl);
864 mem_cgroup_cancel_charge(page, memcg, true);
865 put_page(page);
866 pte_free(vma->vm_mm, pgtable);
867 ret = handle_userfault(fe, VM_UFFD_MISSING);
868 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
869 return ret;
870 }
871
872 entry = mk_huge_pmd(page, vma->vm_page_prot);
873 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
874 page_add_new_anon_rmap(page, vma, haddr, true);
875 mem_cgroup_commit_charge(page, memcg, false, true);
876 lru_cache_add_active_or_unevictable(page, vma);
877 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
878 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
879 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
880 atomic_long_inc(&vma->vm_mm->nr_ptes);
881 spin_unlock(fe->ptl);
882 count_vm_event(THP_FAULT_ALLOC);
883 }
884
885 return 0;
886 }
887
888 /*
889 * If THP is set to always then directly reclaim/compact as necessary
890 * If set to defer then do no reclaim and defer to khugepaged
891 * If set to madvise and the VMA is flagged then directly reclaim/compact
892 */
893 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
894 {
895 gfp_t reclaim_flags = 0;
896
897 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
898 (vma->vm_flags & VM_HUGEPAGE))
899 reclaim_flags = __GFP_DIRECT_RECLAIM;
900 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
901 reclaim_flags = __GFP_KSWAPD_RECLAIM;
902 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
903 reclaim_flags = __GFP_DIRECT_RECLAIM;
904
905 return GFP_TRANSHUGE | reclaim_flags;
906 }
907
908 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
909 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
910 {
911 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
912 }
913
914 /* Caller must hold page table lock. */
915 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
916 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
917 struct page *zero_page)
918 {
919 pmd_t entry;
920 if (!pmd_none(*pmd))
921 return false;
922 entry = mk_pmd(zero_page, vma->vm_page_prot);
923 entry = pmd_mkhuge(entry);
924 if (pgtable)
925 pgtable_trans_huge_deposit(mm, pmd, pgtable);
926 set_pmd_at(mm, haddr, pmd, entry);
927 atomic_long_inc(&mm->nr_ptes);
928 return true;
929 }
930
931 int do_huge_pmd_anonymous_page(struct fault_env *fe)
932 {
933 struct vm_area_struct *vma = fe->vma;
934 gfp_t gfp;
935 struct page *page;
936 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
937
938 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
939 return VM_FAULT_FALLBACK;
940 if (unlikely(anon_vma_prepare(vma)))
941 return VM_FAULT_OOM;
942 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
943 return VM_FAULT_OOM;
944 if (!(fe->flags & FAULT_FLAG_WRITE) &&
945 !mm_forbids_zeropage(vma->vm_mm) &&
946 transparent_hugepage_use_zero_page()) {
947 pgtable_t pgtable;
948 struct page *zero_page;
949 bool set;
950 int ret;
951 pgtable = pte_alloc_one(vma->vm_mm, haddr);
952 if (unlikely(!pgtable))
953 return VM_FAULT_OOM;
954 zero_page = get_huge_zero_page();
955 if (unlikely(!zero_page)) {
956 pte_free(vma->vm_mm, pgtable);
957 count_vm_event(THP_FAULT_FALLBACK);
958 return VM_FAULT_FALLBACK;
959 }
960 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
961 ret = 0;
962 set = false;
963 if (pmd_none(*fe->pmd)) {
964 if (userfaultfd_missing(vma)) {
965 spin_unlock(fe->ptl);
966 ret = handle_userfault(fe, VM_UFFD_MISSING);
967 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
968 } else {
969 set_huge_zero_page(pgtable, vma->vm_mm, vma,
970 haddr, fe->pmd, zero_page);
971 spin_unlock(fe->ptl);
972 set = true;
973 }
974 } else
975 spin_unlock(fe->ptl);
976 if (!set) {
977 pte_free(vma->vm_mm, pgtable);
978 put_huge_zero_page();
979 }
980 return ret;
981 }
982 gfp = alloc_hugepage_direct_gfpmask(vma);
983 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
984 if (unlikely(!page)) {
985 count_vm_event(THP_FAULT_FALLBACK);
986 return VM_FAULT_FALLBACK;
987 }
988 prep_transhuge_page(page);
989 return __do_huge_pmd_anonymous_page(fe, page, gfp);
990 }
991
992 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
993 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
994 {
995 struct mm_struct *mm = vma->vm_mm;
996 pmd_t entry;
997 spinlock_t *ptl;
998
999 ptl = pmd_lock(mm, pmd);
1000 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1001 if (pfn_t_devmap(pfn))
1002 entry = pmd_mkdevmap(entry);
1003 if (write) {
1004 entry = pmd_mkyoung(pmd_mkdirty(entry));
1005 entry = maybe_pmd_mkwrite(entry, vma);
1006 }
1007 set_pmd_at(mm, addr, pmd, entry);
1008 update_mmu_cache_pmd(vma, addr, pmd);
1009 spin_unlock(ptl);
1010 }
1011
1012 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1013 pmd_t *pmd, pfn_t pfn, bool write)
1014 {
1015 pgprot_t pgprot = vma->vm_page_prot;
1016 /*
1017 * If we had pmd_special, we could avoid all these restrictions,
1018 * but we need to be consistent with PTEs and architectures that
1019 * can't support a 'special' bit.
1020 */
1021 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1022 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1023 (VM_PFNMAP|VM_MIXEDMAP));
1024 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1025 BUG_ON(!pfn_t_devmap(pfn));
1026
1027 if (addr < vma->vm_start || addr >= vma->vm_end)
1028 return VM_FAULT_SIGBUS;
1029 if (track_pfn_insert(vma, &pgprot, pfn))
1030 return VM_FAULT_SIGBUS;
1031 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1032 return VM_FAULT_NOPAGE;
1033 }
1034 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1035
1036 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 pmd_t *pmd)
1038 {
1039 pmd_t _pmd;
1040
1041 /*
1042 * We should set the dirty bit only for FOLL_WRITE but for now
1043 * the dirty bit in the pmd is meaningless. And if the dirty
1044 * bit will become meaningful and we'll only set it with
1045 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1046 * set the young bit, instead of the current set_pmd_at.
1047 */
1048 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1049 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1050 pmd, _pmd, 1))
1051 update_mmu_cache_pmd(vma, addr, pmd);
1052 }
1053
1054 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1055 pmd_t *pmd, int flags)
1056 {
1057 unsigned long pfn = pmd_pfn(*pmd);
1058 struct mm_struct *mm = vma->vm_mm;
1059 struct dev_pagemap *pgmap;
1060 struct page *page;
1061
1062 assert_spin_locked(pmd_lockptr(mm, pmd));
1063
1064 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1065 return NULL;
1066
1067 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1068 /* pass */;
1069 else
1070 return NULL;
1071
1072 if (flags & FOLL_TOUCH)
1073 touch_pmd(vma, addr, pmd);
1074
1075 /*
1076 * device mapped pages can only be returned if the
1077 * caller will manage the page reference count.
1078 */
1079 if (!(flags & FOLL_GET))
1080 return ERR_PTR(-EEXIST);
1081
1082 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1083 pgmap = get_dev_pagemap(pfn, NULL);
1084 if (!pgmap)
1085 return ERR_PTR(-EFAULT);
1086 page = pfn_to_page(pfn);
1087 get_page(page);
1088 put_dev_pagemap(pgmap);
1089
1090 return page;
1091 }
1092
1093 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1095 struct vm_area_struct *vma)
1096 {
1097 spinlock_t *dst_ptl, *src_ptl;
1098 struct page *src_page;
1099 pmd_t pmd;
1100 pgtable_t pgtable = NULL;
1101 int ret = -ENOMEM;
1102
1103 /* Skip if can be re-fill on fault */
1104 if (!vma_is_anonymous(vma))
1105 return 0;
1106
1107 pgtable = pte_alloc_one(dst_mm, addr);
1108 if (unlikely(!pgtable))
1109 goto out;
1110
1111 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1112 src_ptl = pmd_lockptr(src_mm, src_pmd);
1113 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1114
1115 ret = -EAGAIN;
1116 pmd = *src_pmd;
1117 if (unlikely(!pmd_trans_huge(pmd))) {
1118 pte_free(dst_mm, pgtable);
1119 goto out_unlock;
1120 }
1121 /*
1122 * When page table lock is held, the huge zero pmd should not be
1123 * under splitting since we don't split the page itself, only pmd to
1124 * a page table.
1125 */
1126 if (is_huge_zero_pmd(pmd)) {
1127 struct page *zero_page;
1128 /*
1129 * get_huge_zero_page() will never allocate a new page here,
1130 * since we already have a zero page to copy. It just takes a
1131 * reference.
1132 */
1133 zero_page = get_huge_zero_page();
1134 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1135 zero_page);
1136 ret = 0;
1137 goto out_unlock;
1138 }
1139
1140 src_page = pmd_page(pmd);
1141 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1142 get_page(src_page);
1143 page_dup_rmap(src_page, true);
1144 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1145 atomic_long_inc(&dst_mm->nr_ptes);
1146 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1147
1148 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1149 pmd = pmd_mkold(pmd_wrprotect(pmd));
1150 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1151
1152 ret = 0;
1153 out_unlock:
1154 spin_unlock(src_ptl);
1155 spin_unlock(dst_ptl);
1156 out:
1157 return ret;
1158 }
1159
1160 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1161 {
1162 pmd_t entry;
1163 unsigned long haddr;
1164
1165 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1166 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1167 goto unlock;
1168
1169 entry = pmd_mkyoung(orig_pmd);
1170 haddr = fe->address & HPAGE_PMD_MASK;
1171 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1172 fe->flags & FAULT_FLAG_WRITE))
1173 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1174
1175 unlock:
1176 spin_unlock(fe->ptl);
1177 }
1178
1179 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1180 struct page *page)
1181 {
1182 struct vm_area_struct *vma = fe->vma;
1183 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1184 struct mem_cgroup *memcg;
1185 pgtable_t pgtable;
1186 pmd_t _pmd;
1187 int ret = 0, i;
1188 struct page **pages;
1189 unsigned long mmun_start; /* For mmu_notifiers */
1190 unsigned long mmun_end; /* For mmu_notifiers */
1191
1192 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1193 GFP_KERNEL);
1194 if (unlikely(!pages)) {
1195 ret |= VM_FAULT_OOM;
1196 goto out;
1197 }
1198
1199 for (i = 0; i < HPAGE_PMD_NR; i++) {
1200 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1201 __GFP_OTHER_NODE, vma,
1202 fe->address, page_to_nid(page));
1203 if (unlikely(!pages[i] ||
1204 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1205 GFP_KERNEL, &memcg, false))) {
1206 if (pages[i])
1207 put_page(pages[i]);
1208 while (--i >= 0) {
1209 memcg = (void *)page_private(pages[i]);
1210 set_page_private(pages[i], 0);
1211 mem_cgroup_cancel_charge(pages[i], memcg,
1212 false);
1213 put_page(pages[i]);
1214 }
1215 kfree(pages);
1216 ret |= VM_FAULT_OOM;
1217 goto out;
1218 }
1219 set_page_private(pages[i], (unsigned long)memcg);
1220 }
1221
1222 for (i = 0; i < HPAGE_PMD_NR; i++) {
1223 copy_user_highpage(pages[i], page + i,
1224 haddr + PAGE_SIZE * i, vma);
1225 __SetPageUptodate(pages[i]);
1226 cond_resched();
1227 }
1228
1229 mmun_start = haddr;
1230 mmun_end = haddr + HPAGE_PMD_SIZE;
1231 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1232
1233 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1234 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1235 goto out_free_pages;
1236 VM_BUG_ON_PAGE(!PageHead(page), page);
1237
1238 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1239 /* leave pmd empty until pte is filled */
1240
1241 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1242 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1243
1244 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1245 pte_t entry;
1246 entry = mk_pte(pages[i], vma->vm_page_prot);
1247 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1248 memcg = (void *)page_private(pages[i]);
1249 set_page_private(pages[i], 0);
1250 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1251 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1252 lru_cache_add_active_or_unevictable(pages[i], vma);
1253 fe->pte = pte_offset_map(&_pmd, haddr);
1254 VM_BUG_ON(!pte_none(*fe->pte));
1255 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1256 pte_unmap(fe->pte);
1257 }
1258 kfree(pages);
1259
1260 smp_wmb(); /* make pte visible before pmd */
1261 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1262 page_remove_rmap(page, true);
1263 spin_unlock(fe->ptl);
1264
1265 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1266
1267 ret |= VM_FAULT_WRITE;
1268 put_page(page);
1269
1270 out:
1271 return ret;
1272
1273 out_free_pages:
1274 spin_unlock(fe->ptl);
1275 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1276 for (i = 0; i < HPAGE_PMD_NR; i++) {
1277 memcg = (void *)page_private(pages[i]);
1278 set_page_private(pages[i], 0);
1279 mem_cgroup_cancel_charge(pages[i], memcg, false);
1280 put_page(pages[i]);
1281 }
1282 kfree(pages);
1283 goto out;
1284 }
1285
1286 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1287 {
1288 struct vm_area_struct *vma = fe->vma;
1289 struct page *page = NULL, *new_page;
1290 struct mem_cgroup *memcg;
1291 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1292 unsigned long mmun_start; /* For mmu_notifiers */
1293 unsigned long mmun_end; /* For mmu_notifiers */
1294 gfp_t huge_gfp; /* for allocation and charge */
1295 int ret = 0;
1296
1297 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1298 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1299 if (is_huge_zero_pmd(orig_pmd))
1300 goto alloc;
1301 spin_lock(fe->ptl);
1302 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1303 goto out_unlock;
1304
1305 page = pmd_page(orig_pmd);
1306 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1307 /*
1308 * We can only reuse the page if nobody else maps the huge page or it's
1309 * part.
1310 */
1311 if (page_trans_huge_mapcount(page, NULL) == 1) {
1312 pmd_t entry;
1313 entry = pmd_mkyoung(orig_pmd);
1314 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1315 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1316 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1317 ret |= VM_FAULT_WRITE;
1318 goto out_unlock;
1319 }
1320 get_page(page);
1321 spin_unlock(fe->ptl);
1322 alloc:
1323 if (transparent_hugepage_enabled(vma) &&
1324 !transparent_hugepage_debug_cow()) {
1325 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1326 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1327 } else
1328 new_page = NULL;
1329
1330 if (likely(new_page)) {
1331 prep_transhuge_page(new_page);
1332 } else {
1333 if (!page) {
1334 split_huge_pmd(vma, fe->pmd, fe->address);
1335 ret |= VM_FAULT_FALLBACK;
1336 } else {
1337 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1338 if (ret & VM_FAULT_OOM) {
1339 split_huge_pmd(vma, fe->pmd, fe->address);
1340 ret |= VM_FAULT_FALLBACK;
1341 }
1342 put_page(page);
1343 }
1344 count_vm_event(THP_FAULT_FALLBACK);
1345 goto out;
1346 }
1347
1348 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1349 huge_gfp, &memcg, true))) {
1350 put_page(new_page);
1351 split_huge_pmd(vma, fe->pmd, fe->address);
1352 if (page)
1353 put_page(page);
1354 ret |= VM_FAULT_FALLBACK;
1355 count_vm_event(THP_FAULT_FALLBACK);
1356 goto out;
1357 }
1358
1359 count_vm_event(THP_FAULT_ALLOC);
1360
1361 if (!page)
1362 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1363 else
1364 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1365 __SetPageUptodate(new_page);
1366
1367 mmun_start = haddr;
1368 mmun_end = haddr + HPAGE_PMD_SIZE;
1369 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1370
1371 spin_lock(fe->ptl);
1372 if (page)
1373 put_page(page);
1374 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1375 spin_unlock(fe->ptl);
1376 mem_cgroup_cancel_charge(new_page, memcg, true);
1377 put_page(new_page);
1378 goto out_mn;
1379 } else {
1380 pmd_t entry;
1381 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1382 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1383 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1384 page_add_new_anon_rmap(new_page, vma, haddr, true);
1385 mem_cgroup_commit_charge(new_page, memcg, false, true);
1386 lru_cache_add_active_or_unevictable(new_page, vma);
1387 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1388 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1389 if (!page) {
1390 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1391 put_huge_zero_page();
1392 } else {
1393 VM_BUG_ON_PAGE(!PageHead(page), page);
1394 page_remove_rmap(page, true);
1395 put_page(page);
1396 }
1397 ret |= VM_FAULT_WRITE;
1398 }
1399 spin_unlock(fe->ptl);
1400 out_mn:
1401 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1402 out:
1403 return ret;
1404 out_unlock:
1405 spin_unlock(fe->ptl);
1406 return ret;
1407 }
1408
1409 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1410 unsigned long addr,
1411 pmd_t *pmd,
1412 unsigned int flags)
1413 {
1414 struct mm_struct *mm = vma->vm_mm;
1415 struct page *page = NULL;
1416
1417 assert_spin_locked(pmd_lockptr(mm, pmd));
1418
1419 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1420 goto out;
1421
1422 /* Avoid dumping huge zero page */
1423 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1424 return ERR_PTR(-EFAULT);
1425
1426 /* Full NUMA hinting faults to serialise migration in fault paths */
1427 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1428 goto out;
1429
1430 page = pmd_page(*pmd);
1431 VM_BUG_ON_PAGE(!PageHead(page), page);
1432 if (flags & FOLL_TOUCH)
1433 touch_pmd(vma, addr, pmd);
1434 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1435 /*
1436 * We don't mlock() pte-mapped THPs. This way we can avoid
1437 * leaking mlocked pages into non-VM_LOCKED VMAs.
1438 *
1439 * In most cases the pmd is the only mapping of the page as we
1440 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1441 * writable private mappings in populate_vma_page_range().
1442 *
1443 * The only scenario when we have the page shared here is if we
1444 * mlocking read-only mapping shared over fork(). We skip
1445 * mlocking such pages.
1446 */
1447 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1448 page->mapping && trylock_page(page)) {
1449 lru_add_drain();
1450 if (page->mapping)
1451 mlock_vma_page(page);
1452 unlock_page(page);
1453 }
1454 }
1455 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1456 VM_BUG_ON_PAGE(!PageCompound(page), page);
1457 if (flags & FOLL_GET)
1458 get_page(page);
1459
1460 out:
1461 return page;
1462 }
1463
1464 /* NUMA hinting page fault entry point for trans huge pmds */
1465 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1466 {
1467 struct vm_area_struct *vma = fe->vma;
1468 struct anon_vma *anon_vma = NULL;
1469 struct page *page;
1470 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1471 int page_nid = -1, this_nid = numa_node_id();
1472 int target_nid, last_cpupid = -1;
1473 bool page_locked;
1474 bool migrated = false;
1475 bool was_writable;
1476 int flags = 0;
1477
1478 /* A PROT_NONE fault should not end up here */
1479 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1480
1481 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1482 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1483 goto out_unlock;
1484
1485 /*
1486 * If there are potential migrations, wait for completion and retry
1487 * without disrupting NUMA hinting information. Do not relock and
1488 * check_same as the page may no longer be mapped.
1489 */
1490 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1491 page = pmd_page(*fe->pmd);
1492 spin_unlock(fe->ptl);
1493 wait_on_page_locked(page);
1494 goto out;
1495 }
1496
1497 page = pmd_page(pmd);
1498 BUG_ON(is_huge_zero_page(page));
1499 page_nid = page_to_nid(page);
1500 last_cpupid = page_cpupid_last(page);
1501 count_vm_numa_event(NUMA_HINT_FAULTS);
1502 if (page_nid == this_nid) {
1503 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1504 flags |= TNF_FAULT_LOCAL;
1505 }
1506
1507 /* See similar comment in do_numa_page for explanation */
1508 if (!(vma->vm_flags & VM_WRITE))
1509 flags |= TNF_NO_GROUP;
1510
1511 /*
1512 * Acquire the page lock to serialise THP migrations but avoid dropping
1513 * page_table_lock if at all possible
1514 */
1515 page_locked = trylock_page(page);
1516 target_nid = mpol_misplaced(page, vma, haddr);
1517 if (target_nid == -1) {
1518 /* If the page was locked, there are no parallel migrations */
1519 if (page_locked)
1520 goto clear_pmdnuma;
1521 }
1522
1523 /* Migration could have started since the pmd_trans_migrating check */
1524 if (!page_locked) {
1525 spin_unlock(fe->ptl);
1526 wait_on_page_locked(page);
1527 page_nid = -1;
1528 goto out;
1529 }
1530
1531 /*
1532 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533 * to serialises splits
1534 */
1535 get_page(page);
1536 spin_unlock(fe->ptl);
1537 anon_vma = page_lock_anon_vma_read(page);
1538
1539 /* Confirm the PMD did not change while page_table_lock was released */
1540 spin_lock(fe->ptl);
1541 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1542 unlock_page(page);
1543 put_page(page);
1544 page_nid = -1;
1545 goto out_unlock;
1546 }
1547
1548 /* Bail if we fail to protect against THP splits for any reason */
1549 if (unlikely(!anon_vma)) {
1550 put_page(page);
1551 page_nid = -1;
1552 goto clear_pmdnuma;
1553 }
1554
1555 /*
1556 * Migrate the THP to the requested node, returns with page unlocked
1557 * and access rights restored.
1558 */
1559 spin_unlock(fe->ptl);
1560 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1561 fe->pmd, pmd, fe->address, page, target_nid);
1562 if (migrated) {
1563 flags |= TNF_MIGRATED;
1564 page_nid = target_nid;
1565 } else
1566 flags |= TNF_MIGRATE_FAIL;
1567
1568 goto out;
1569 clear_pmdnuma:
1570 BUG_ON(!PageLocked(page));
1571 was_writable = pmd_write(pmd);
1572 pmd = pmd_modify(pmd, vma->vm_page_prot);
1573 pmd = pmd_mkyoung(pmd);
1574 if (was_writable)
1575 pmd = pmd_mkwrite(pmd);
1576 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1577 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1578 unlock_page(page);
1579 out_unlock:
1580 spin_unlock(fe->ptl);
1581
1582 out:
1583 if (anon_vma)
1584 page_unlock_anon_vma_read(anon_vma);
1585
1586 if (page_nid != -1)
1587 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1588
1589 return 0;
1590 }
1591
1592 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1593 pmd_t *pmd, unsigned long addr, unsigned long next)
1594
1595 {
1596 spinlock_t *ptl;
1597 pmd_t orig_pmd;
1598 struct page *page;
1599 struct mm_struct *mm = tlb->mm;
1600 int ret = 0;
1601
1602 ptl = pmd_trans_huge_lock(pmd, vma);
1603 if (!ptl)
1604 goto out_unlocked;
1605
1606 orig_pmd = *pmd;
1607 if (is_huge_zero_pmd(orig_pmd)) {
1608 ret = 1;
1609 goto out;
1610 }
1611
1612 page = pmd_page(orig_pmd);
1613 /*
1614 * If other processes are mapping this page, we couldn't discard
1615 * the page unless they all do MADV_FREE so let's skip the page.
1616 */
1617 if (page_mapcount(page) != 1)
1618 goto out;
1619
1620 if (!trylock_page(page))
1621 goto out;
1622
1623 /*
1624 * If user want to discard part-pages of THP, split it so MADV_FREE
1625 * will deactivate only them.
1626 */
1627 if (next - addr != HPAGE_PMD_SIZE) {
1628 get_page(page);
1629 spin_unlock(ptl);
1630 split_huge_page(page);
1631 put_page(page);
1632 unlock_page(page);
1633 goto out_unlocked;
1634 }
1635
1636 if (PageDirty(page))
1637 ClearPageDirty(page);
1638 unlock_page(page);
1639
1640 if (PageActive(page))
1641 deactivate_page(page);
1642
1643 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1644 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1645 tlb->fullmm);
1646 orig_pmd = pmd_mkold(orig_pmd);
1647 orig_pmd = pmd_mkclean(orig_pmd);
1648
1649 set_pmd_at(mm, addr, pmd, orig_pmd);
1650 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1651 }
1652 ret = 1;
1653 out:
1654 spin_unlock(ptl);
1655 out_unlocked:
1656 return ret;
1657 }
1658
1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1660 pmd_t *pmd, unsigned long addr)
1661 {
1662 pmd_t orig_pmd;
1663 spinlock_t *ptl;
1664
1665 ptl = __pmd_trans_huge_lock(pmd, vma);
1666 if (!ptl)
1667 return 0;
1668 /*
1669 * For architectures like ppc64 we look at deposited pgtable
1670 * when calling pmdp_huge_get_and_clear. So do the
1671 * pgtable_trans_huge_withdraw after finishing pmdp related
1672 * operations.
1673 */
1674 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1675 tlb->fullmm);
1676 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1677 if (vma_is_dax(vma)) {
1678 spin_unlock(ptl);
1679 if (is_huge_zero_pmd(orig_pmd))
1680 tlb_remove_page(tlb, pmd_page(orig_pmd));
1681 } else if (is_huge_zero_pmd(orig_pmd)) {
1682 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1683 atomic_long_dec(&tlb->mm->nr_ptes);
1684 spin_unlock(ptl);
1685 tlb_remove_page(tlb, pmd_page(orig_pmd));
1686 } else {
1687 struct page *page = pmd_page(orig_pmd);
1688 page_remove_rmap(page, true);
1689 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1690 VM_BUG_ON_PAGE(!PageHead(page), page);
1691 if (PageAnon(page)) {
1692 pgtable_t pgtable;
1693 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1694 pte_free(tlb->mm, pgtable);
1695 atomic_long_dec(&tlb->mm->nr_ptes);
1696 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1697 } else {
1698 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1699 }
1700 spin_unlock(ptl);
1701 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1702 }
1703 return 1;
1704 }
1705
1706 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1707 unsigned long new_addr, unsigned long old_end,
1708 pmd_t *old_pmd, pmd_t *new_pmd)
1709 {
1710 spinlock_t *old_ptl, *new_ptl;
1711 pmd_t pmd;
1712 struct mm_struct *mm = vma->vm_mm;
1713
1714 if ((old_addr & ~HPAGE_PMD_MASK) ||
1715 (new_addr & ~HPAGE_PMD_MASK) ||
1716 old_end - old_addr < HPAGE_PMD_SIZE)
1717 return false;
1718
1719 /*
1720 * The destination pmd shouldn't be established, free_pgtables()
1721 * should have release it.
1722 */
1723 if (WARN_ON(!pmd_none(*new_pmd))) {
1724 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1725 return false;
1726 }
1727
1728 /*
1729 * We don't have to worry about the ordering of src and dst
1730 * ptlocks because exclusive mmap_sem prevents deadlock.
1731 */
1732 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1733 if (old_ptl) {
1734 new_ptl = pmd_lockptr(mm, new_pmd);
1735 if (new_ptl != old_ptl)
1736 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1737 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1738 VM_BUG_ON(!pmd_none(*new_pmd));
1739
1740 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1741 vma_is_anonymous(vma)) {
1742 pgtable_t pgtable;
1743 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1744 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1745 }
1746 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1747 if (new_ptl != old_ptl)
1748 spin_unlock(new_ptl);
1749 spin_unlock(old_ptl);
1750 return true;
1751 }
1752 return false;
1753 }
1754
1755 /*
1756 * Returns
1757 * - 0 if PMD could not be locked
1758 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1759 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1760 */
1761 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1762 unsigned long addr, pgprot_t newprot, int prot_numa)
1763 {
1764 struct mm_struct *mm = vma->vm_mm;
1765 spinlock_t *ptl;
1766 int ret = 0;
1767
1768 ptl = __pmd_trans_huge_lock(pmd, vma);
1769 if (ptl) {
1770 pmd_t entry;
1771 bool preserve_write = prot_numa && pmd_write(*pmd);
1772 ret = 1;
1773
1774 /*
1775 * Avoid trapping faults against the zero page. The read-only
1776 * data is likely to be read-cached on the local CPU and
1777 * local/remote hits to the zero page are not interesting.
1778 */
1779 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1780 spin_unlock(ptl);
1781 return ret;
1782 }
1783
1784 if (!prot_numa || !pmd_protnone(*pmd)) {
1785 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1786 entry = pmd_modify(entry, newprot);
1787 if (preserve_write)
1788 entry = pmd_mkwrite(entry);
1789 ret = HPAGE_PMD_NR;
1790 set_pmd_at(mm, addr, pmd, entry);
1791 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1792 pmd_write(entry));
1793 }
1794 spin_unlock(ptl);
1795 }
1796
1797 return ret;
1798 }
1799
1800 /*
1801 * Returns true if a given pmd maps a thp, false otherwise.
1802 *
1803 * Note that if it returns true, this routine returns without unlocking page
1804 * table lock. So callers must unlock it.
1805 */
1806 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1807 {
1808 spinlock_t *ptl;
1809 ptl = pmd_lock(vma->vm_mm, pmd);
1810 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1811 return ptl;
1812 spin_unlock(ptl);
1813 return NULL;
1814 }
1815
1816 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1817
1818 int hugepage_madvise(struct vm_area_struct *vma,
1819 unsigned long *vm_flags, int advice)
1820 {
1821 switch (advice) {
1822 case MADV_HUGEPAGE:
1823 #ifdef CONFIG_S390
1824 /*
1825 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1826 * can't handle this properly after s390_enable_sie, so we simply
1827 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1828 */
1829 if (mm_has_pgste(vma->vm_mm))
1830 return 0;
1831 #endif
1832 /*
1833 * Be somewhat over-protective like KSM for now!
1834 */
1835 if (*vm_flags & VM_NO_THP)
1836 return -EINVAL;
1837 *vm_flags &= ~VM_NOHUGEPAGE;
1838 *vm_flags |= VM_HUGEPAGE;
1839 /*
1840 * If the vma become good for khugepaged to scan,
1841 * register it here without waiting a page fault that
1842 * may not happen any time soon.
1843 */
1844 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1845 return -ENOMEM;
1846 break;
1847 case MADV_NOHUGEPAGE:
1848 /*
1849 * Be somewhat over-protective like KSM for now!
1850 */
1851 if (*vm_flags & VM_NO_THP)
1852 return -EINVAL;
1853 *vm_flags &= ~VM_HUGEPAGE;
1854 *vm_flags |= VM_NOHUGEPAGE;
1855 /*
1856 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1857 * this vma even if we leave the mm registered in khugepaged if
1858 * it got registered before VM_NOHUGEPAGE was set.
1859 */
1860 break;
1861 }
1862
1863 return 0;
1864 }
1865
1866 static int __init khugepaged_slab_init(void)
1867 {
1868 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1869 sizeof(struct mm_slot),
1870 __alignof__(struct mm_slot), 0, NULL);
1871 if (!mm_slot_cache)
1872 return -ENOMEM;
1873
1874 return 0;
1875 }
1876
1877 static void __init khugepaged_slab_exit(void)
1878 {
1879 kmem_cache_destroy(mm_slot_cache);
1880 }
1881
1882 static inline struct mm_slot *alloc_mm_slot(void)
1883 {
1884 if (!mm_slot_cache) /* initialization failed */
1885 return NULL;
1886 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1887 }
1888
1889 static inline void free_mm_slot(struct mm_slot *mm_slot)
1890 {
1891 kmem_cache_free(mm_slot_cache, mm_slot);
1892 }
1893
1894 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1895 {
1896 struct mm_slot *mm_slot;
1897
1898 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1899 if (mm == mm_slot->mm)
1900 return mm_slot;
1901
1902 return NULL;
1903 }
1904
1905 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1906 struct mm_slot *mm_slot)
1907 {
1908 mm_slot->mm = mm;
1909 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1910 }
1911
1912 static inline int khugepaged_test_exit(struct mm_struct *mm)
1913 {
1914 return atomic_read(&mm->mm_users) == 0;
1915 }
1916
1917 int __khugepaged_enter(struct mm_struct *mm)
1918 {
1919 struct mm_slot *mm_slot;
1920 int wakeup;
1921
1922 mm_slot = alloc_mm_slot();
1923 if (!mm_slot)
1924 return -ENOMEM;
1925
1926 /* __khugepaged_exit() must not run from under us */
1927 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1928 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1929 free_mm_slot(mm_slot);
1930 return 0;
1931 }
1932
1933 spin_lock(&khugepaged_mm_lock);
1934 insert_to_mm_slots_hash(mm, mm_slot);
1935 /*
1936 * Insert just behind the scanning cursor, to let the area settle
1937 * down a little.
1938 */
1939 wakeup = list_empty(&khugepaged_scan.mm_head);
1940 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1941 spin_unlock(&khugepaged_mm_lock);
1942
1943 atomic_inc(&mm->mm_count);
1944 if (wakeup)
1945 wake_up_interruptible(&khugepaged_wait);
1946
1947 return 0;
1948 }
1949
1950 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1951 unsigned long vm_flags)
1952 {
1953 unsigned long hstart, hend;
1954 if (!vma->anon_vma)
1955 /*
1956 * Not yet faulted in so we will register later in the
1957 * page fault if needed.
1958 */
1959 return 0;
1960 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1961 /* khugepaged not yet working on file or special mappings */
1962 return 0;
1963 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1964 hend = vma->vm_end & HPAGE_PMD_MASK;
1965 if (hstart < hend)
1966 return khugepaged_enter(vma, vm_flags);
1967 return 0;
1968 }
1969
1970 void __khugepaged_exit(struct mm_struct *mm)
1971 {
1972 struct mm_slot *mm_slot;
1973 int free = 0;
1974
1975 spin_lock(&khugepaged_mm_lock);
1976 mm_slot = get_mm_slot(mm);
1977 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1978 hash_del(&mm_slot->hash);
1979 list_del(&mm_slot->mm_node);
1980 free = 1;
1981 }
1982 spin_unlock(&khugepaged_mm_lock);
1983
1984 if (free) {
1985 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1986 free_mm_slot(mm_slot);
1987 mmdrop(mm);
1988 } else if (mm_slot) {
1989 /*
1990 * This is required to serialize against
1991 * khugepaged_test_exit() (which is guaranteed to run
1992 * under mmap sem read mode). Stop here (after we
1993 * return all pagetables will be destroyed) until
1994 * khugepaged has finished working on the pagetables
1995 * under the mmap_sem.
1996 */
1997 down_write(&mm->mmap_sem);
1998 up_write(&mm->mmap_sem);
1999 }
2000 }
2001
2002 static void release_pte_page(struct page *page)
2003 {
2004 /* 0 stands for page_is_file_cache(page) == false */
2005 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2006 unlock_page(page);
2007 putback_lru_page(page);
2008 }
2009
2010 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2011 {
2012 while (--_pte >= pte) {
2013 pte_t pteval = *_pte;
2014 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2015 release_pte_page(pte_page(pteval));
2016 }
2017 }
2018
2019 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2020 unsigned long address,
2021 pte_t *pte)
2022 {
2023 struct page *page = NULL;
2024 pte_t *_pte;
2025 int none_or_zero = 0, result = 0;
2026 bool referenced = false, writable = false;
2027
2028 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2029 _pte++, address += PAGE_SIZE) {
2030 pte_t pteval = *_pte;
2031 if (pte_none(pteval) || (pte_present(pteval) &&
2032 is_zero_pfn(pte_pfn(pteval)))) {
2033 if (!userfaultfd_armed(vma) &&
2034 ++none_or_zero <= khugepaged_max_ptes_none) {
2035 continue;
2036 } else {
2037 result = SCAN_EXCEED_NONE_PTE;
2038 goto out;
2039 }
2040 }
2041 if (!pte_present(pteval)) {
2042 result = SCAN_PTE_NON_PRESENT;
2043 goto out;
2044 }
2045 page = vm_normal_page(vma, address, pteval);
2046 if (unlikely(!page)) {
2047 result = SCAN_PAGE_NULL;
2048 goto out;
2049 }
2050
2051 VM_BUG_ON_PAGE(PageCompound(page), page);
2052 VM_BUG_ON_PAGE(!PageAnon(page), page);
2053 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2054
2055 /*
2056 * We can do it before isolate_lru_page because the
2057 * page can't be freed from under us. NOTE: PG_lock
2058 * is needed to serialize against split_huge_page
2059 * when invoked from the VM.
2060 */
2061 if (!trylock_page(page)) {
2062 result = SCAN_PAGE_LOCK;
2063 goto out;
2064 }
2065
2066 /*
2067 * cannot use mapcount: can't collapse if there's a gup pin.
2068 * The page must only be referenced by the scanned process
2069 * and page swap cache.
2070 */
2071 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2072 unlock_page(page);
2073 result = SCAN_PAGE_COUNT;
2074 goto out;
2075 }
2076 if (pte_write(pteval)) {
2077 writable = true;
2078 } else {
2079 if (PageSwapCache(page) &&
2080 !reuse_swap_page(page, NULL)) {
2081 unlock_page(page);
2082 result = SCAN_SWAP_CACHE_PAGE;
2083 goto out;
2084 }
2085 /*
2086 * Page is not in the swap cache. It can be collapsed
2087 * into a THP.
2088 */
2089 }
2090
2091 /*
2092 * Isolate the page to avoid collapsing an hugepage
2093 * currently in use by the VM.
2094 */
2095 if (isolate_lru_page(page)) {
2096 unlock_page(page);
2097 result = SCAN_DEL_PAGE_LRU;
2098 goto out;
2099 }
2100 /* 0 stands for page_is_file_cache(page) == false */
2101 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2102 VM_BUG_ON_PAGE(!PageLocked(page), page);
2103 VM_BUG_ON_PAGE(PageLRU(page), page);
2104
2105 /* If there is no mapped pte young don't collapse the page */
2106 if (pte_young(pteval) ||
2107 page_is_young(page) || PageReferenced(page) ||
2108 mmu_notifier_test_young(vma->vm_mm, address))
2109 referenced = true;
2110 }
2111 if (likely(writable)) {
2112 if (likely(referenced)) {
2113 result = SCAN_SUCCEED;
2114 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2115 referenced, writable, result);
2116 return 1;
2117 }
2118 } else {
2119 result = SCAN_PAGE_RO;
2120 }
2121
2122 out:
2123 release_pte_pages(pte, _pte);
2124 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2125 referenced, writable, result);
2126 return 0;
2127 }
2128
2129 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2130 struct vm_area_struct *vma,
2131 unsigned long address,
2132 spinlock_t *ptl)
2133 {
2134 pte_t *_pte;
2135 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2136 pte_t pteval = *_pte;
2137 struct page *src_page;
2138
2139 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2140 clear_user_highpage(page, address);
2141 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2142 if (is_zero_pfn(pte_pfn(pteval))) {
2143 /*
2144 * ptl mostly unnecessary.
2145 */
2146 spin_lock(ptl);
2147 /*
2148 * paravirt calls inside pte_clear here are
2149 * superfluous.
2150 */
2151 pte_clear(vma->vm_mm, address, _pte);
2152 spin_unlock(ptl);
2153 }
2154 } else {
2155 src_page = pte_page(pteval);
2156 copy_user_highpage(page, src_page, address, vma);
2157 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2158 release_pte_page(src_page);
2159 /*
2160 * ptl mostly unnecessary, but preempt has to
2161 * be disabled to update the per-cpu stats
2162 * inside page_remove_rmap().
2163 */
2164 spin_lock(ptl);
2165 /*
2166 * paravirt calls inside pte_clear here are
2167 * superfluous.
2168 */
2169 pte_clear(vma->vm_mm, address, _pte);
2170 page_remove_rmap(src_page, false);
2171 spin_unlock(ptl);
2172 free_page_and_swap_cache(src_page);
2173 }
2174
2175 address += PAGE_SIZE;
2176 page++;
2177 }
2178 }
2179
2180 static void khugepaged_alloc_sleep(void)
2181 {
2182 DEFINE_WAIT(wait);
2183
2184 add_wait_queue(&khugepaged_wait, &wait);
2185 freezable_schedule_timeout_interruptible(
2186 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187 remove_wait_queue(&khugepaged_wait, &wait);
2188 }
2189
2190 static int khugepaged_node_load[MAX_NUMNODES];
2191
2192 static bool khugepaged_scan_abort(int nid)
2193 {
2194 int i;
2195
2196 /*
2197 * If zone_reclaim_mode is disabled, then no extra effort is made to
2198 * allocate memory locally.
2199 */
2200 if (!zone_reclaim_mode)
2201 return false;
2202
2203 /* If there is a count for this node already, it must be acceptable */
2204 if (khugepaged_node_load[nid])
2205 return false;
2206
2207 for (i = 0; i < MAX_NUMNODES; i++) {
2208 if (!khugepaged_node_load[i])
2209 continue;
2210 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2211 return true;
2212 }
2213 return false;
2214 }
2215
2216 #ifdef CONFIG_NUMA
2217 static int khugepaged_find_target_node(void)
2218 {
2219 static int last_khugepaged_target_node = NUMA_NO_NODE;
2220 int nid, target_node = 0, max_value = 0;
2221
2222 /* find first node with max normal pages hit */
2223 for (nid = 0; nid < MAX_NUMNODES; nid++)
2224 if (khugepaged_node_load[nid] > max_value) {
2225 max_value = khugepaged_node_load[nid];
2226 target_node = nid;
2227 }
2228
2229 /* do some balance if several nodes have the same hit record */
2230 if (target_node <= last_khugepaged_target_node)
2231 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2232 nid++)
2233 if (max_value == khugepaged_node_load[nid]) {
2234 target_node = nid;
2235 break;
2236 }
2237
2238 last_khugepaged_target_node = target_node;
2239 return target_node;
2240 }
2241
2242 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2243 {
2244 if (IS_ERR(*hpage)) {
2245 if (!*wait)
2246 return false;
2247
2248 *wait = false;
2249 *hpage = NULL;
2250 khugepaged_alloc_sleep();
2251 } else if (*hpage) {
2252 put_page(*hpage);
2253 *hpage = NULL;
2254 }
2255
2256 return true;
2257 }
2258
2259 static struct page *
2260 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2261 unsigned long address, int node)
2262 {
2263 VM_BUG_ON_PAGE(*hpage, *hpage);
2264
2265 /*
2266 * Before allocating the hugepage, release the mmap_sem read lock.
2267 * The allocation can take potentially a long time if it involves
2268 * sync compaction, and we do not need to hold the mmap_sem during
2269 * that. We will recheck the vma after taking it again in write mode.
2270 */
2271 up_read(&mm->mmap_sem);
2272
2273 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2274 if (unlikely(!*hpage)) {
2275 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2276 *hpage = ERR_PTR(-ENOMEM);
2277 return NULL;
2278 }
2279
2280 prep_transhuge_page(*hpage);
2281 count_vm_event(THP_COLLAPSE_ALLOC);
2282 return *hpage;
2283 }
2284 #else
2285 static int khugepaged_find_target_node(void)
2286 {
2287 return 0;
2288 }
2289
2290 static inline struct page *alloc_khugepaged_hugepage(void)
2291 {
2292 struct page *page;
2293
2294 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2295 HPAGE_PMD_ORDER);
2296 if (page)
2297 prep_transhuge_page(page);
2298 return page;
2299 }
2300
2301 static struct page *khugepaged_alloc_hugepage(bool *wait)
2302 {
2303 struct page *hpage;
2304
2305 do {
2306 hpage = alloc_khugepaged_hugepage();
2307 if (!hpage) {
2308 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2309 if (!*wait)
2310 return NULL;
2311
2312 *wait = false;
2313 khugepaged_alloc_sleep();
2314 } else
2315 count_vm_event(THP_COLLAPSE_ALLOC);
2316 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2317
2318 return hpage;
2319 }
2320
2321 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2322 {
2323 if (!*hpage)
2324 *hpage = khugepaged_alloc_hugepage(wait);
2325
2326 if (unlikely(!*hpage))
2327 return false;
2328
2329 return true;
2330 }
2331
2332 static struct page *
2333 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2334 unsigned long address, int node)
2335 {
2336 up_read(&mm->mmap_sem);
2337 VM_BUG_ON(!*hpage);
2338
2339 return *hpage;
2340 }
2341 #endif
2342
2343 static bool hugepage_vma_check(struct vm_area_struct *vma)
2344 {
2345 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2346 (vma->vm_flags & VM_NOHUGEPAGE))
2347 return false;
2348 if (!vma->anon_vma || vma->vm_ops)
2349 return false;
2350 if (is_vma_temporary_stack(vma))
2351 return false;
2352 return !(vma->vm_flags & VM_NO_THP);
2353 }
2354
2355 /*
2356 * If mmap_sem temporarily dropped, revalidate vma
2357 * before taking mmap_sem.
2358 * Return 0 if succeeds, otherwise return none-zero
2359 * value (scan code).
2360 */
2361
2362 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2363 {
2364 struct vm_area_struct *vma;
2365 unsigned long hstart, hend;
2366
2367 if (unlikely(khugepaged_test_exit(mm)))
2368 return SCAN_ANY_PROCESS;
2369
2370 vma = find_vma(mm, address);
2371 if (!vma)
2372 return SCAN_VMA_NULL;
2373
2374 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2375 hend = vma->vm_end & HPAGE_PMD_MASK;
2376 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2377 return SCAN_ADDRESS_RANGE;
2378 if (!hugepage_vma_check(vma))
2379 return SCAN_VMA_CHECK;
2380 return 0;
2381 }
2382
2383 /*
2384 * Bring missing pages in from swap, to complete THP collapse.
2385 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2386 *
2387 * Called and returns without pte mapped or spinlocks held,
2388 * but with mmap_sem held to protect against vma changes.
2389 */
2390
2391 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2392 struct vm_area_struct *vma,
2393 unsigned long address, pmd_t *pmd)
2394 {
2395 pte_t pteval;
2396 int swapped_in = 0, ret = 0;
2397 struct fault_env fe = {
2398 .vma = vma,
2399 .address = address,
2400 .flags = FAULT_FLAG_ALLOW_RETRY,
2401 .pmd = pmd,
2402 };
2403
2404 fe.pte = pte_offset_map(pmd, address);
2405 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2406 fe.pte++, fe.address += PAGE_SIZE) {
2407 pteval = *fe.pte;
2408 if (!is_swap_pte(pteval))
2409 continue;
2410 swapped_in++;
2411 ret = do_swap_page(&fe, pteval);
2412 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2413 if (ret & VM_FAULT_RETRY) {
2414 down_read(&mm->mmap_sem);
2415 /* vma is no longer available, don't continue to swapin */
2416 if (hugepage_vma_revalidate(mm, address))
2417 return false;
2418 /* check if the pmd is still valid */
2419 if (mm_find_pmd(mm, address) != pmd)
2420 return false;
2421 }
2422 if (ret & VM_FAULT_ERROR) {
2423 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2424 return false;
2425 }
2426 /* pte is unmapped now, we need to map it */
2427 fe.pte = pte_offset_map(pmd, fe.address);
2428 }
2429 fe.pte--;
2430 pte_unmap(fe.pte);
2431 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2432 return true;
2433 }
2434
2435 static void collapse_huge_page(struct mm_struct *mm,
2436 unsigned long address,
2437 struct page **hpage,
2438 struct vm_area_struct *vma,
2439 int node)
2440 {
2441 pmd_t *pmd, _pmd;
2442 pte_t *pte;
2443 pgtable_t pgtable;
2444 struct page *new_page;
2445 spinlock_t *pmd_ptl, *pte_ptl;
2446 int isolated = 0, result = 0;
2447 struct mem_cgroup *memcg;
2448 unsigned long mmun_start; /* For mmu_notifiers */
2449 unsigned long mmun_end; /* For mmu_notifiers */
2450 gfp_t gfp;
2451
2452 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2453
2454 /* Only allocate from the target node */
2455 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2456
2457 /* release the mmap_sem read lock. */
2458 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2459 if (!new_page) {
2460 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2461 goto out_nolock;
2462 }
2463
2464 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2465 result = SCAN_CGROUP_CHARGE_FAIL;
2466 goto out_nolock;
2467 }
2468
2469 down_read(&mm->mmap_sem);
2470 result = hugepage_vma_revalidate(mm, address);
2471 if (result) {
2472 mem_cgroup_cancel_charge(new_page, memcg, true);
2473 up_read(&mm->mmap_sem);
2474 goto out_nolock;
2475 }
2476
2477 pmd = mm_find_pmd(mm, address);
2478 if (!pmd) {
2479 result = SCAN_PMD_NULL;
2480 mem_cgroup_cancel_charge(new_page, memcg, true);
2481 up_read(&mm->mmap_sem);
2482 goto out_nolock;
2483 }
2484
2485 /*
2486 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2487 * If it fails, release mmap_sem and jump directly out.
2488 * Continuing to collapse causes inconsistency.
2489 */
2490 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2491 mem_cgroup_cancel_charge(new_page, memcg, true);
2492 up_read(&mm->mmap_sem);
2493 goto out_nolock;
2494 }
2495
2496 up_read(&mm->mmap_sem);
2497 /*
2498 * Prevent all access to pagetables with the exception of
2499 * gup_fast later handled by the ptep_clear_flush and the VM
2500 * handled by the anon_vma lock + PG_lock.
2501 */
2502 down_write(&mm->mmap_sem);
2503 result = hugepage_vma_revalidate(mm, address);
2504 if (result)
2505 goto out;
2506 /* check if the pmd is still valid */
2507 if (mm_find_pmd(mm, address) != pmd)
2508 goto out;
2509
2510 anon_vma_lock_write(vma->anon_vma);
2511
2512 pte = pte_offset_map(pmd, address);
2513 pte_ptl = pte_lockptr(mm, pmd);
2514
2515 mmun_start = address;
2516 mmun_end = address + HPAGE_PMD_SIZE;
2517 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2518 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2519 /*
2520 * After this gup_fast can't run anymore. This also removes
2521 * any huge TLB entry from the CPU so we won't allow
2522 * huge and small TLB entries for the same virtual address
2523 * to avoid the risk of CPU bugs in that area.
2524 */
2525 _pmd = pmdp_collapse_flush(vma, address, pmd);
2526 spin_unlock(pmd_ptl);
2527 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2528
2529 spin_lock(pte_ptl);
2530 isolated = __collapse_huge_page_isolate(vma, address, pte);
2531 spin_unlock(pte_ptl);
2532
2533 if (unlikely(!isolated)) {
2534 pte_unmap(pte);
2535 spin_lock(pmd_ptl);
2536 BUG_ON(!pmd_none(*pmd));
2537 /*
2538 * We can only use set_pmd_at when establishing
2539 * hugepmds and never for establishing regular pmds that
2540 * points to regular pagetables. Use pmd_populate for that
2541 */
2542 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2543 spin_unlock(pmd_ptl);
2544 anon_vma_unlock_write(vma->anon_vma);
2545 result = SCAN_FAIL;
2546 goto out;
2547 }
2548
2549 /*
2550 * All pages are isolated and locked so anon_vma rmap
2551 * can't run anymore.
2552 */
2553 anon_vma_unlock_write(vma->anon_vma);
2554
2555 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2556 pte_unmap(pte);
2557 __SetPageUptodate(new_page);
2558 pgtable = pmd_pgtable(_pmd);
2559
2560 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2561 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2562
2563 /*
2564 * spin_lock() below is not the equivalent of smp_wmb(), so
2565 * this is needed to avoid the copy_huge_page writes to become
2566 * visible after the set_pmd_at() write.
2567 */
2568 smp_wmb();
2569
2570 spin_lock(pmd_ptl);
2571 BUG_ON(!pmd_none(*pmd));
2572 page_add_new_anon_rmap(new_page, vma, address, true);
2573 mem_cgroup_commit_charge(new_page, memcg, false, true);
2574 lru_cache_add_active_or_unevictable(new_page, vma);
2575 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2576 set_pmd_at(mm, address, pmd, _pmd);
2577 update_mmu_cache_pmd(vma, address, pmd);
2578 spin_unlock(pmd_ptl);
2579
2580 *hpage = NULL;
2581
2582 khugepaged_pages_collapsed++;
2583 result = SCAN_SUCCEED;
2584 out_up_write:
2585 up_write(&mm->mmap_sem);
2586 out_nolock:
2587 trace_mm_collapse_huge_page(mm, isolated, result);
2588 return;
2589 out:
2590 mem_cgroup_cancel_charge(new_page, memcg, true);
2591 goto out_up_write;
2592 }
2593
2594 static int khugepaged_scan_pmd(struct mm_struct *mm,
2595 struct vm_area_struct *vma,
2596 unsigned long address,
2597 struct page **hpage)
2598 {
2599 pmd_t *pmd;
2600 pte_t *pte, *_pte;
2601 int ret = 0, none_or_zero = 0, result = 0;
2602 struct page *page = NULL;
2603 unsigned long _address;
2604 spinlock_t *ptl;
2605 int node = NUMA_NO_NODE, unmapped = 0;
2606 bool writable = false, referenced = false;
2607
2608 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2609
2610 pmd = mm_find_pmd(mm, address);
2611 if (!pmd) {
2612 result = SCAN_PMD_NULL;
2613 goto out;
2614 }
2615
2616 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2617 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2618 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2619 _pte++, _address += PAGE_SIZE) {
2620 pte_t pteval = *_pte;
2621 if (is_swap_pte(pteval)) {
2622 if (++unmapped <= khugepaged_max_ptes_swap) {
2623 continue;
2624 } else {
2625 result = SCAN_EXCEED_SWAP_PTE;
2626 goto out_unmap;
2627 }
2628 }
2629 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2630 if (!userfaultfd_armed(vma) &&
2631 ++none_or_zero <= khugepaged_max_ptes_none) {
2632 continue;
2633 } else {
2634 result = SCAN_EXCEED_NONE_PTE;
2635 goto out_unmap;
2636 }
2637 }
2638 if (!pte_present(pteval)) {
2639 result = SCAN_PTE_NON_PRESENT;
2640 goto out_unmap;
2641 }
2642 if (pte_write(pteval))
2643 writable = true;
2644
2645 page = vm_normal_page(vma, _address, pteval);
2646 if (unlikely(!page)) {
2647 result = SCAN_PAGE_NULL;
2648 goto out_unmap;
2649 }
2650
2651 /* TODO: teach khugepaged to collapse THP mapped with pte */
2652 if (PageCompound(page)) {
2653 result = SCAN_PAGE_COMPOUND;
2654 goto out_unmap;
2655 }
2656
2657 /*
2658 * Record which node the original page is from and save this
2659 * information to khugepaged_node_load[].
2660 * Khupaged will allocate hugepage from the node has the max
2661 * hit record.
2662 */
2663 node = page_to_nid(page);
2664 if (khugepaged_scan_abort(node)) {
2665 result = SCAN_SCAN_ABORT;
2666 goto out_unmap;
2667 }
2668 khugepaged_node_load[node]++;
2669 if (!PageLRU(page)) {
2670 result = SCAN_PAGE_LRU;
2671 goto out_unmap;
2672 }
2673 if (PageLocked(page)) {
2674 result = SCAN_PAGE_LOCK;
2675 goto out_unmap;
2676 }
2677 if (!PageAnon(page)) {
2678 result = SCAN_PAGE_ANON;
2679 goto out_unmap;
2680 }
2681
2682 /*
2683 * cannot use mapcount: can't collapse if there's a gup pin.
2684 * The page must only be referenced by the scanned process
2685 * and page swap cache.
2686 */
2687 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2688 result = SCAN_PAGE_COUNT;
2689 goto out_unmap;
2690 }
2691 if (pte_young(pteval) ||
2692 page_is_young(page) || PageReferenced(page) ||
2693 mmu_notifier_test_young(vma->vm_mm, address))
2694 referenced = true;
2695 }
2696 if (writable) {
2697 if (referenced) {
2698 result = SCAN_SUCCEED;
2699 ret = 1;
2700 } else {
2701 result = SCAN_NO_REFERENCED_PAGE;
2702 }
2703 } else {
2704 result = SCAN_PAGE_RO;
2705 }
2706 out_unmap:
2707 pte_unmap_unlock(pte, ptl);
2708 if (ret) {
2709 node = khugepaged_find_target_node();
2710 /* collapse_huge_page will return with the mmap_sem released */
2711 collapse_huge_page(mm, address, hpage, vma, node);
2712 }
2713 out:
2714 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2715 none_or_zero, result, unmapped);
2716 return ret;
2717 }
2718
2719 static void collect_mm_slot(struct mm_slot *mm_slot)
2720 {
2721 struct mm_struct *mm = mm_slot->mm;
2722
2723 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2724
2725 if (khugepaged_test_exit(mm)) {
2726 /* free mm_slot */
2727 hash_del(&mm_slot->hash);
2728 list_del(&mm_slot->mm_node);
2729
2730 /*
2731 * Not strictly needed because the mm exited already.
2732 *
2733 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2734 */
2735
2736 /* khugepaged_mm_lock actually not necessary for the below */
2737 free_mm_slot(mm_slot);
2738 mmdrop(mm);
2739 }
2740 }
2741
2742 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2743 struct page **hpage)
2744 __releases(&khugepaged_mm_lock)
2745 __acquires(&khugepaged_mm_lock)
2746 {
2747 struct mm_slot *mm_slot;
2748 struct mm_struct *mm;
2749 struct vm_area_struct *vma;
2750 int progress = 0;
2751
2752 VM_BUG_ON(!pages);
2753 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2754
2755 if (khugepaged_scan.mm_slot)
2756 mm_slot = khugepaged_scan.mm_slot;
2757 else {
2758 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2759 struct mm_slot, mm_node);
2760 khugepaged_scan.address = 0;
2761 khugepaged_scan.mm_slot = mm_slot;
2762 }
2763 spin_unlock(&khugepaged_mm_lock);
2764
2765 mm = mm_slot->mm;
2766 down_read(&mm->mmap_sem);
2767 if (unlikely(khugepaged_test_exit(mm)))
2768 vma = NULL;
2769 else
2770 vma = find_vma(mm, khugepaged_scan.address);
2771
2772 progress++;
2773 for (; vma; vma = vma->vm_next) {
2774 unsigned long hstart, hend;
2775
2776 cond_resched();
2777 if (unlikely(khugepaged_test_exit(mm))) {
2778 progress++;
2779 break;
2780 }
2781 if (!hugepage_vma_check(vma)) {
2782 skip:
2783 progress++;
2784 continue;
2785 }
2786 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2787 hend = vma->vm_end & HPAGE_PMD_MASK;
2788 if (hstart >= hend)
2789 goto skip;
2790 if (khugepaged_scan.address > hend)
2791 goto skip;
2792 if (khugepaged_scan.address < hstart)
2793 khugepaged_scan.address = hstart;
2794 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2795
2796 while (khugepaged_scan.address < hend) {
2797 int ret;
2798 cond_resched();
2799 if (unlikely(khugepaged_test_exit(mm)))
2800 goto breakouterloop;
2801
2802 VM_BUG_ON(khugepaged_scan.address < hstart ||
2803 khugepaged_scan.address + HPAGE_PMD_SIZE >
2804 hend);
2805 ret = khugepaged_scan_pmd(mm, vma,
2806 khugepaged_scan.address,
2807 hpage);
2808 /* move to next address */
2809 khugepaged_scan.address += HPAGE_PMD_SIZE;
2810 progress += HPAGE_PMD_NR;
2811 if (ret)
2812 /* we released mmap_sem so break loop */
2813 goto breakouterloop_mmap_sem;
2814 if (progress >= pages)
2815 goto breakouterloop;
2816 }
2817 }
2818 breakouterloop:
2819 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2820 breakouterloop_mmap_sem:
2821
2822 spin_lock(&khugepaged_mm_lock);
2823 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2824 /*
2825 * Release the current mm_slot if this mm is about to die, or
2826 * if we scanned all vmas of this mm.
2827 */
2828 if (khugepaged_test_exit(mm) || !vma) {
2829 /*
2830 * Make sure that if mm_users is reaching zero while
2831 * khugepaged runs here, khugepaged_exit will find
2832 * mm_slot not pointing to the exiting mm.
2833 */
2834 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2835 khugepaged_scan.mm_slot = list_entry(
2836 mm_slot->mm_node.next,
2837 struct mm_slot, mm_node);
2838 khugepaged_scan.address = 0;
2839 } else {
2840 khugepaged_scan.mm_slot = NULL;
2841 khugepaged_full_scans++;
2842 }
2843
2844 collect_mm_slot(mm_slot);
2845 }
2846
2847 return progress;
2848 }
2849
2850 static int khugepaged_has_work(void)
2851 {
2852 return !list_empty(&khugepaged_scan.mm_head) &&
2853 khugepaged_enabled();
2854 }
2855
2856 static int khugepaged_wait_event(void)
2857 {
2858 return !list_empty(&khugepaged_scan.mm_head) ||
2859 kthread_should_stop();
2860 }
2861
2862 static void khugepaged_do_scan(void)
2863 {
2864 struct page *hpage = NULL;
2865 unsigned int progress = 0, pass_through_head = 0;
2866 unsigned int pages = khugepaged_pages_to_scan;
2867 bool wait = true;
2868
2869 barrier(); /* write khugepaged_pages_to_scan to local stack */
2870
2871 while (progress < pages) {
2872 if (!khugepaged_prealloc_page(&hpage, &wait))
2873 break;
2874
2875 cond_resched();
2876
2877 if (unlikely(kthread_should_stop() || try_to_freeze()))
2878 break;
2879
2880 spin_lock(&khugepaged_mm_lock);
2881 if (!khugepaged_scan.mm_slot)
2882 pass_through_head++;
2883 if (khugepaged_has_work() &&
2884 pass_through_head < 2)
2885 progress += khugepaged_scan_mm_slot(pages - progress,
2886 &hpage);
2887 else
2888 progress = pages;
2889 spin_unlock(&khugepaged_mm_lock);
2890 }
2891
2892 if (!IS_ERR_OR_NULL(hpage))
2893 put_page(hpage);
2894 }
2895
2896 static bool khugepaged_should_wakeup(void)
2897 {
2898 return kthread_should_stop() ||
2899 time_after_eq(jiffies, khugepaged_sleep_expire);
2900 }
2901
2902 static void khugepaged_wait_work(void)
2903 {
2904 if (khugepaged_has_work()) {
2905 const unsigned long scan_sleep_jiffies =
2906 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2907
2908 if (!scan_sleep_jiffies)
2909 return;
2910
2911 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2912 wait_event_freezable_timeout(khugepaged_wait,
2913 khugepaged_should_wakeup(),
2914 scan_sleep_jiffies);
2915 return;
2916 }
2917
2918 if (khugepaged_enabled())
2919 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2920 }
2921
2922 static int khugepaged(void *none)
2923 {
2924 struct mm_slot *mm_slot;
2925
2926 set_freezable();
2927 set_user_nice(current, MAX_NICE);
2928
2929 while (!kthread_should_stop()) {
2930 khugepaged_do_scan();
2931 khugepaged_wait_work();
2932 }
2933
2934 spin_lock(&khugepaged_mm_lock);
2935 mm_slot = khugepaged_scan.mm_slot;
2936 khugepaged_scan.mm_slot = NULL;
2937 if (mm_slot)
2938 collect_mm_slot(mm_slot);
2939 spin_unlock(&khugepaged_mm_lock);
2940 return 0;
2941 }
2942
2943 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2944 unsigned long haddr, pmd_t *pmd)
2945 {
2946 struct mm_struct *mm = vma->vm_mm;
2947 pgtable_t pgtable;
2948 pmd_t _pmd;
2949 int i;
2950
2951 /* leave pmd empty until pte is filled */
2952 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2953
2954 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2955 pmd_populate(mm, &_pmd, pgtable);
2956
2957 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2958 pte_t *pte, entry;
2959 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2960 entry = pte_mkspecial(entry);
2961 pte = pte_offset_map(&_pmd, haddr);
2962 VM_BUG_ON(!pte_none(*pte));
2963 set_pte_at(mm, haddr, pte, entry);
2964 pte_unmap(pte);
2965 }
2966 smp_wmb(); /* make pte visible before pmd */
2967 pmd_populate(mm, pmd, pgtable);
2968 put_huge_zero_page();
2969 }
2970
2971 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2972 unsigned long haddr, bool freeze)
2973 {
2974 struct mm_struct *mm = vma->vm_mm;
2975 struct page *page;
2976 pgtable_t pgtable;
2977 pmd_t _pmd;
2978 bool young, write, dirty;
2979 unsigned long addr;
2980 int i;
2981
2982 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2983 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2984 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2985 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2986
2987 count_vm_event(THP_SPLIT_PMD);
2988
2989 if (!vma_is_anonymous(vma)) {
2990 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2991 if (is_huge_zero_pmd(_pmd))
2992 put_huge_zero_page();
2993 if (vma_is_dax(vma))
2994 return;
2995 page = pmd_page(_pmd);
2996 if (!PageReferenced(page) && pmd_young(_pmd))
2997 SetPageReferenced(page);
2998 page_remove_rmap(page, true);
2999 put_page(page);
3000 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
3001 return;
3002 } else if (is_huge_zero_pmd(*pmd)) {
3003 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3004 }
3005
3006 page = pmd_page(*pmd);
3007 VM_BUG_ON_PAGE(!page_count(page), page);
3008 page_ref_add(page, HPAGE_PMD_NR - 1);
3009 write = pmd_write(*pmd);
3010 young = pmd_young(*pmd);
3011 dirty = pmd_dirty(*pmd);
3012
3013 pmdp_huge_split_prepare(vma, haddr, pmd);
3014 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3015 pmd_populate(mm, &_pmd, pgtable);
3016
3017 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3018 pte_t entry, *pte;
3019 /*
3020 * Note that NUMA hinting access restrictions are not
3021 * transferred to avoid any possibility of altering
3022 * permissions across VMAs.
3023 */
3024 if (freeze) {
3025 swp_entry_t swp_entry;
3026 swp_entry = make_migration_entry(page + i, write);
3027 entry = swp_entry_to_pte(swp_entry);
3028 } else {
3029 entry = mk_pte(page + i, vma->vm_page_prot);
3030 entry = maybe_mkwrite(entry, vma);
3031 if (!write)
3032 entry = pte_wrprotect(entry);
3033 if (!young)
3034 entry = pte_mkold(entry);
3035 }
3036 if (dirty)
3037 SetPageDirty(page + i);
3038 pte = pte_offset_map(&_pmd, addr);
3039 BUG_ON(!pte_none(*pte));
3040 set_pte_at(mm, addr, pte, entry);
3041 atomic_inc(&page[i]._mapcount);
3042 pte_unmap(pte);
3043 }
3044
3045 /*
3046 * Set PG_double_map before dropping compound_mapcount to avoid
3047 * false-negative page_mapped().
3048 */
3049 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3050 for (i = 0; i < HPAGE_PMD_NR; i++)
3051 atomic_inc(&page[i]._mapcount);
3052 }
3053
3054 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3055 /* Last compound_mapcount is gone. */
3056 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3057 if (TestClearPageDoubleMap(page)) {
3058 /* No need in mapcount reference anymore */
3059 for (i = 0; i < HPAGE_PMD_NR; i++)
3060 atomic_dec(&page[i]._mapcount);
3061 }
3062 }
3063
3064 smp_wmb(); /* make pte visible before pmd */
3065 /*
3066 * Up to this point the pmd is present and huge and userland has the
3067 * whole access to the hugepage during the split (which happens in
3068 * place). If we overwrite the pmd with the not-huge version pointing
3069 * to the pte here (which of course we could if all CPUs were bug
3070 * free), userland could trigger a small page size TLB miss on the
3071 * small sized TLB while the hugepage TLB entry is still established in
3072 * the huge TLB. Some CPU doesn't like that.
3073 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3074 * 383 on page 93. Intel should be safe but is also warns that it's
3075 * only safe if the permission and cache attributes of the two entries
3076 * loaded in the two TLB is identical (which should be the case here).
3077 * But it is generally safer to never allow small and huge TLB entries
3078 * for the same virtual address to be loaded simultaneously. So instead
3079 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3080 * current pmd notpresent (atomically because here the pmd_trans_huge
3081 * and pmd_trans_splitting must remain set at all times on the pmd
3082 * until the split is complete for this pmd), then we flush the SMP TLB
3083 * and finally we write the non-huge version of the pmd entry with
3084 * pmd_populate.
3085 */
3086 pmdp_invalidate(vma, haddr, pmd);
3087 pmd_populate(mm, pmd, pgtable);
3088
3089 if (freeze) {
3090 for (i = 0; i < HPAGE_PMD_NR; i++) {
3091 page_remove_rmap(page + i, false);
3092 put_page(page + i);
3093 }
3094 }
3095 }
3096
3097 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3098 unsigned long address, bool freeze, struct page *page)
3099 {
3100 spinlock_t *ptl;
3101 struct mm_struct *mm = vma->vm_mm;
3102 unsigned long haddr = address & HPAGE_PMD_MASK;
3103
3104 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3105 ptl = pmd_lock(mm, pmd);
3106
3107 /*
3108 * If caller asks to setup a migration entries, we need a page to check
3109 * pmd against. Otherwise we can end up replacing wrong page.
3110 */
3111 VM_BUG_ON(freeze && !page);
3112 if (page && page != pmd_page(*pmd))
3113 goto out;
3114
3115 if (pmd_trans_huge(*pmd)) {
3116 page = pmd_page(*pmd);
3117 if (PageMlocked(page))
3118 clear_page_mlock(page);
3119 } else if (!pmd_devmap(*pmd))
3120 goto out;
3121 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3122 out:
3123 spin_unlock(ptl);
3124 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3125 }
3126
3127 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3128 bool freeze, struct page *page)
3129 {
3130 pgd_t *pgd;
3131 pud_t *pud;
3132 pmd_t *pmd;
3133
3134 pgd = pgd_offset(vma->vm_mm, address);
3135 if (!pgd_present(*pgd))
3136 return;
3137
3138 pud = pud_offset(pgd, address);
3139 if (!pud_present(*pud))
3140 return;
3141
3142 pmd = pmd_offset(pud, address);
3143
3144 __split_huge_pmd(vma, pmd, address, freeze, page);
3145 }
3146
3147 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3148 unsigned long start,
3149 unsigned long end,
3150 long adjust_next)
3151 {
3152 /*
3153 * If the new start address isn't hpage aligned and it could
3154 * previously contain an hugepage: check if we need to split
3155 * an huge pmd.
3156 */
3157 if (start & ~HPAGE_PMD_MASK &&
3158 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3159 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3160 split_huge_pmd_address(vma, start, false, NULL);
3161
3162 /*
3163 * If the new end address isn't hpage aligned and it could
3164 * previously contain an hugepage: check if we need to split
3165 * an huge pmd.
3166 */
3167 if (end & ~HPAGE_PMD_MASK &&
3168 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3169 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3170 split_huge_pmd_address(vma, end, false, NULL);
3171
3172 /*
3173 * If we're also updating the vma->vm_next->vm_start, if the new
3174 * vm_next->vm_start isn't page aligned and it could previously
3175 * contain an hugepage: check if we need to split an huge pmd.
3176 */
3177 if (adjust_next > 0) {
3178 struct vm_area_struct *next = vma->vm_next;
3179 unsigned long nstart = next->vm_start;
3180 nstart += adjust_next << PAGE_SHIFT;
3181 if (nstart & ~HPAGE_PMD_MASK &&
3182 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3183 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3184 split_huge_pmd_address(next, nstart, false, NULL);
3185 }
3186 }
3187
3188 static void freeze_page(struct page *page)
3189 {
3190 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3191 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3192 int i, ret;
3193
3194 VM_BUG_ON_PAGE(!PageHead(page), page);
3195
3196 /* We only need TTU_SPLIT_HUGE_PMD once */
3197 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3198 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3199 /* Cut short if the page is unmapped */
3200 if (page_count(page) == 1)
3201 return;
3202
3203 ret = try_to_unmap(page + i, ttu_flags);
3204 }
3205 VM_BUG_ON(ret);
3206 }
3207
3208 static void unfreeze_page(struct page *page)
3209 {
3210 int i;
3211
3212 for (i = 0; i < HPAGE_PMD_NR; i++)
3213 remove_migration_ptes(page + i, page + i, true);
3214 }
3215
3216 static void __split_huge_page_tail(struct page *head, int tail,
3217 struct lruvec *lruvec, struct list_head *list)
3218 {
3219 struct page *page_tail = head + tail;
3220
3221 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3222 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3223
3224 /*
3225 * tail_page->_refcount is zero and not changing from under us. But
3226 * get_page_unless_zero() may be running from under us on the
3227 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3228 * would then run atomic_set() concurrently with
3229 * get_page_unless_zero(), and atomic_set() is implemented in C not
3230 * using locked ops. spin_unlock on x86 sometime uses locked ops
3231 * because of PPro errata 66, 92, so unless somebody can guarantee
3232 * atomic_set() here would be safe on all archs (and not only on x86),
3233 * it's safer to use atomic_inc().
3234 */
3235 page_ref_inc(page_tail);
3236
3237 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3238 page_tail->flags |= (head->flags &
3239 ((1L << PG_referenced) |
3240 (1L << PG_swapbacked) |
3241 (1L << PG_mlocked) |
3242 (1L << PG_uptodate) |
3243 (1L << PG_active) |
3244 (1L << PG_locked) |
3245 (1L << PG_unevictable) |
3246 (1L << PG_dirty)));
3247
3248 /*
3249 * After clearing PageTail the gup refcount can be released.
3250 * Page flags also must be visible before we make the page non-compound.
3251 */
3252 smp_wmb();
3253
3254 clear_compound_head(page_tail);
3255
3256 if (page_is_young(head))
3257 set_page_young(page_tail);
3258 if (page_is_idle(head))
3259 set_page_idle(page_tail);
3260
3261 /* ->mapping in first tail page is compound_mapcount */
3262 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3263 page_tail);
3264 page_tail->mapping = head->mapping;
3265
3266 page_tail->index = head->index + tail;
3267 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3268 lru_add_page_tail(head, page_tail, lruvec, list);
3269 }
3270
3271 static void __split_huge_page(struct page *page, struct list_head *list)
3272 {
3273 struct page *head = compound_head(page);
3274 struct zone *zone = page_zone(head);
3275 struct lruvec *lruvec;
3276 int i;
3277
3278 /* prevent PageLRU to go away from under us, and freeze lru stats */
3279 spin_lock_irq(&zone->lru_lock);
3280 lruvec = mem_cgroup_page_lruvec(head, zone);
3281
3282 /* complete memcg works before add pages to LRU */
3283 mem_cgroup_split_huge_fixup(head);
3284
3285 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3286 __split_huge_page_tail(head, i, lruvec, list);
3287
3288 ClearPageCompound(head);
3289 spin_unlock_irq(&zone->lru_lock);
3290
3291 unfreeze_page(head);
3292
3293 for (i = 0; i < HPAGE_PMD_NR; i++) {
3294 struct page *subpage = head + i;
3295 if (subpage == page)
3296 continue;
3297 unlock_page(subpage);
3298
3299 /*
3300 * Subpages may be freed if there wasn't any mapping
3301 * like if add_to_swap() is running on a lru page that
3302 * had its mapping zapped. And freeing these pages
3303 * requires taking the lru_lock so we do the put_page
3304 * of the tail pages after the split is complete.
3305 */
3306 put_page(subpage);
3307 }
3308 }
3309
3310 int total_mapcount(struct page *page)
3311 {
3312 int i, compound, ret;
3313
3314 VM_BUG_ON_PAGE(PageTail(page), page);
3315
3316 if (likely(!PageCompound(page)))
3317 return atomic_read(&page->_mapcount) + 1;
3318
3319 compound = compound_mapcount(page);
3320 if (PageHuge(page))
3321 return compound;
3322 ret = compound;
3323 for (i = 0; i < HPAGE_PMD_NR; i++)
3324 ret += atomic_read(&page[i]._mapcount) + 1;
3325 /* File pages has compound_mapcount included in _mapcount */
3326 if (!PageAnon(page))
3327 return ret - compound * HPAGE_PMD_NR;
3328 if (PageDoubleMap(page))
3329 ret -= HPAGE_PMD_NR;
3330 return ret;
3331 }
3332
3333 /*
3334 * This calculates accurately how many mappings a transparent hugepage
3335 * has (unlike page_mapcount() which isn't fully accurate). This full
3336 * accuracy is primarily needed to know if copy-on-write faults can
3337 * reuse the page and change the mapping to read-write instead of
3338 * copying them. At the same time this returns the total_mapcount too.
3339 *
3340 * The function returns the highest mapcount any one of the subpages
3341 * has. If the return value is one, even if different processes are
3342 * mapping different subpages of the transparent hugepage, they can
3343 * all reuse it, because each process is reusing a different subpage.
3344 *
3345 * The total_mapcount is instead counting all virtual mappings of the
3346 * subpages. If the total_mapcount is equal to "one", it tells the
3347 * caller all mappings belong to the same "mm" and in turn the
3348 * anon_vma of the transparent hugepage can become the vma->anon_vma
3349 * local one as no other process may be mapping any of the subpages.
3350 *
3351 * It would be more accurate to replace page_mapcount() with
3352 * page_trans_huge_mapcount(), however we only use
3353 * page_trans_huge_mapcount() in the copy-on-write faults where we
3354 * need full accuracy to avoid breaking page pinning, because
3355 * page_trans_huge_mapcount() is slower than page_mapcount().
3356 */
3357 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3358 {
3359 int i, ret, _total_mapcount, mapcount;
3360
3361 /* hugetlbfs shouldn't call it */
3362 VM_BUG_ON_PAGE(PageHuge(page), page);
3363
3364 if (likely(!PageTransCompound(page))) {
3365 mapcount = atomic_read(&page->_mapcount) + 1;
3366 if (total_mapcount)
3367 *total_mapcount = mapcount;
3368 return mapcount;
3369 }
3370
3371 page = compound_head(page);
3372
3373 _total_mapcount = ret = 0;
3374 for (i = 0; i < HPAGE_PMD_NR; i++) {
3375 mapcount = atomic_read(&page[i]._mapcount) + 1;
3376 ret = max(ret, mapcount);
3377 _total_mapcount += mapcount;
3378 }
3379 if (PageDoubleMap(page)) {
3380 ret -= 1;
3381 _total_mapcount -= HPAGE_PMD_NR;
3382 }
3383 mapcount = compound_mapcount(page);
3384 ret += mapcount;
3385 _total_mapcount += mapcount;
3386 if (total_mapcount)
3387 *total_mapcount = _total_mapcount;
3388 return ret;
3389 }
3390
3391 /*
3392 * This function splits huge page into normal pages. @page can point to any
3393 * subpage of huge page to split. Split doesn't change the position of @page.
3394 *
3395 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3396 * The huge page must be locked.
3397 *
3398 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3399 *
3400 * Both head page and tail pages will inherit mapping, flags, and so on from
3401 * the hugepage.
3402 *
3403 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3404 * they are not mapped.
3405 *
3406 * Returns 0 if the hugepage is split successfully.
3407 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3408 * us.
3409 */
3410 int split_huge_page_to_list(struct page *page, struct list_head *list)
3411 {
3412 struct page *head = compound_head(page);
3413 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3414 struct anon_vma *anon_vma;
3415 int count, mapcount, ret;
3416 bool mlocked;
3417 unsigned long flags;
3418
3419 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3420 VM_BUG_ON_PAGE(!PageAnon(page), page);
3421 VM_BUG_ON_PAGE(!PageLocked(page), page);
3422 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3423 VM_BUG_ON_PAGE(!PageCompound(page), page);
3424
3425 /*
3426 * The caller does not necessarily hold an mmap_sem that would prevent
3427 * the anon_vma disappearing so we first we take a reference to it
3428 * and then lock the anon_vma for write. This is similar to
3429 * page_lock_anon_vma_read except the write lock is taken to serialise
3430 * against parallel split or collapse operations.
3431 */
3432 anon_vma = page_get_anon_vma(head);
3433 if (!anon_vma) {
3434 ret = -EBUSY;
3435 goto out;
3436 }
3437 anon_vma_lock_write(anon_vma);
3438
3439 /*
3440 * Racy check if we can split the page, before freeze_page() will
3441 * split PMDs
3442 */
3443 if (total_mapcount(head) != page_count(head) - 1) {
3444 ret = -EBUSY;
3445 goto out_unlock;
3446 }
3447
3448 mlocked = PageMlocked(page);
3449 freeze_page(head);
3450 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3451
3452 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3453 if (mlocked)
3454 lru_add_drain();
3455
3456 /* Prevent deferred_split_scan() touching ->_refcount */
3457 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3458 count = page_count(head);
3459 mapcount = total_mapcount(head);
3460 if (!mapcount && count == 1) {
3461 if (!list_empty(page_deferred_list(head))) {
3462 pgdata->split_queue_len--;
3463 list_del(page_deferred_list(head));
3464 }
3465 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3466 __split_huge_page(page, list);
3467 ret = 0;
3468 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3469 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3470 pr_alert("total_mapcount: %u, page_count(): %u\n",
3471 mapcount, count);
3472 if (PageTail(page))
3473 dump_page(head, NULL);
3474 dump_page(page, "total_mapcount(head) > 0");
3475 BUG();
3476 } else {
3477 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3478 unfreeze_page(head);
3479 ret = -EBUSY;
3480 }
3481
3482 out_unlock:
3483 anon_vma_unlock_write(anon_vma);
3484 put_anon_vma(anon_vma);
3485 out:
3486 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3487 return ret;
3488 }
3489
3490 void free_transhuge_page(struct page *page)
3491 {
3492 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3493 unsigned long flags;
3494
3495 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3496 if (!list_empty(page_deferred_list(page))) {
3497 pgdata->split_queue_len--;
3498 list_del(page_deferred_list(page));
3499 }
3500 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3501 free_compound_page(page);
3502 }
3503
3504 void deferred_split_huge_page(struct page *page)
3505 {
3506 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3507 unsigned long flags;
3508
3509 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3510
3511 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3512 if (list_empty(page_deferred_list(page))) {
3513 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3514 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3515 pgdata->split_queue_len++;
3516 }
3517 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3518 }
3519
3520 static unsigned long deferred_split_count(struct shrinker *shrink,
3521 struct shrink_control *sc)
3522 {
3523 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3524 return ACCESS_ONCE(pgdata->split_queue_len);
3525 }
3526
3527 static unsigned long deferred_split_scan(struct shrinker *shrink,
3528 struct shrink_control *sc)
3529 {
3530 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3531 unsigned long flags;
3532 LIST_HEAD(list), *pos, *next;
3533 struct page *page;
3534 int split = 0;
3535
3536 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3537 /* Take pin on all head pages to avoid freeing them under us */
3538 list_for_each_safe(pos, next, &pgdata->split_queue) {
3539 page = list_entry((void *)pos, struct page, mapping);
3540 page = compound_head(page);
3541 if (get_page_unless_zero(page)) {
3542 list_move(page_deferred_list(page), &list);
3543 } else {
3544 /* We lost race with put_compound_page() */
3545 list_del_init(page_deferred_list(page));
3546 pgdata->split_queue_len--;
3547 }
3548 if (!--sc->nr_to_scan)
3549 break;
3550 }
3551 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3552
3553 list_for_each_safe(pos, next, &list) {
3554 page = list_entry((void *)pos, struct page, mapping);
3555 lock_page(page);
3556 /* split_huge_page() removes page from list on success */
3557 if (!split_huge_page(page))
3558 split++;
3559 unlock_page(page);
3560 put_page(page);
3561 }
3562
3563 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3564 list_splice_tail(&list, &pgdata->split_queue);
3565 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3566
3567 /*
3568 * Stop shrinker if we didn't split any page, but the queue is empty.
3569 * This can happen if pages were freed under us.
3570 */
3571 if (!split && list_empty(&pgdata->split_queue))
3572 return SHRINK_STOP;
3573 return split;
3574 }
3575
3576 static struct shrinker deferred_split_shrinker = {
3577 .count_objects = deferred_split_count,
3578 .scan_objects = deferred_split_scan,
3579 .seeks = DEFAULT_SEEKS,
3580 .flags = SHRINKER_NUMA_AWARE,
3581 };
3582
3583 #ifdef CONFIG_DEBUG_FS
3584 static int split_huge_pages_set(void *data, u64 val)
3585 {
3586 struct zone *zone;
3587 struct page *page;
3588 unsigned long pfn, max_zone_pfn;
3589 unsigned long total = 0, split = 0;
3590
3591 if (val != 1)
3592 return -EINVAL;
3593
3594 for_each_populated_zone(zone) {
3595 max_zone_pfn = zone_end_pfn(zone);
3596 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3597 if (!pfn_valid(pfn))
3598 continue;
3599
3600 page = pfn_to_page(pfn);
3601 if (!get_page_unless_zero(page))
3602 continue;
3603
3604 if (zone != page_zone(page))
3605 goto next;
3606
3607 if (!PageHead(page) || !PageAnon(page) ||
3608 PageHuge(page))
3609 goto next;
3610
3611 total++;
3612 lock_page(page);
3613 if (!split_huge_page(page))
3614 split++;
3615 unlock_page(page);
3616 next:
3617 put_page(page);
3618 }
3619 }
3620
3621 pr_info("%lu of %lu THP split\n", split, total);
3622
3623 return 0;
3624 }
3625 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3626 "%llu\n");
3627
3628 static int __init split_huge_pages_debugfs(void)
3629 {
3630 void *ret;
3631
3632 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3633 &split_huge_pages_fops);
3634 if (!ret)
3635 pr_warn("Failed to create split_huge_pages in debugfs");
3636 return 0;
3637 }
3638 late_initcall(split_huge_pages_debugfs);
3639 #endif
This page took 0.20235 seconds and 6 git commands to generate.