thp: file pages support for split_huge_page()
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34
35 #include <asm/tlb.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38
39 enum scan_result {
40 SCAN_FAIL,
41 SCAN_SUCCEED,
42 SCAN_PMD_NULL,
43 SCAN_EXCEED_NONE_PTE,
44 SCAN_PTE_NON_PRESENT,
45 SCAN_PAGE_RO,
46 SCAN_NO_REFERENCED_PAGE,
47 SCAN_PAGE_NULL,
48 SCAN_SCAN_ABORT,
49 SCAN_PAGE_COUNT,
50 SCAN_PAGE_LRU,
51 SCAN_PAGE_LOCK,
52 SCAN_PAGE_ANON,
53 SCAN_PAGE_COMPOUND,
54 SCAN_ANY_PROCESS,
55 SCAN_VMA_NULL,
56 SCAN_VMA_CHECK,
57 SCAN_ADDRESS_RANGE,
58 SCAN_SWAP_CACHE_PAGE,
59 SCAN_DEL_PAGE_LRU,
60 SCAN_ALLOC_HUGE_PAGE_FAIL,
61 SCAN_CGROUP_CHARGE_FAIL,
62 SCAN_EXCEED_SWAP_PTE
63 };
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67
68 /*
69 * By default transparent hugepage support is disabled in order that avoid
70 * to risk increase the memory footprint of applications without a guaranteed
71 * benefit. When transparent hugepage support is enabled, is for all mappings,
72 * and khugepaged scans all mappings.
73 * Defrag is invoked by khugepaged hugepage allocations and by page faults
74 * for all hugepage allocations.
75 */
76 unsigned long transparent_hugepage_flags __read_mostly =
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
78 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
79 #endif
80 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
81 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
82 #endif
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
85 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
86
87 /* default scan 8*512 pte (or vmas) every 30 second */
88 static unsigned int khugepaged_pages_to_scan __read_mostly;
89 static unsigned int khugepaged_pages_collapsed;
90 static unsigned int khugepaged_full_scans;
91 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
92 /* during fragmentation poll the hugepage allocator once every minute */
93 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
94 static unsigned long khugepaged_sleep_expire;
95 static struct task_struct *khugepaged_thread __read_mostly;
96 static DEFINE_MUTEX(khugepaged_mutex);
97 static DEFINE_SPINLOCK(khugepaged_mm_lock);
98 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
99 /*
100 * default collapse hugepages if there is at least one pte mapped like
101 * it would have happened if the vma was large enough during page
102 * fault.
103 */
104 static unsigned int khugepaged_max_ptes_none __read_mostly;
105 static unsigned int khugepaged_max_ptes_swap __read_mostly;
106
107 static int khugepaged(void *none);
108 static int khugepaged_slab_init(void);
109 static void khugepaged_slab_exit(void);
110
111 #define MM_SLOTS_HASH_BITS 10
112 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
113
114 static struct kmem_cache *mm_slot_cache __read_mostly;
115
116 /**
117 * struct mm_slot - hash lookup from mm to mm_slot
118 * @hash: hash collision list
119 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
120 * @mm: the mm that this information is valid for
121 */
122 struct mm_slot {
123 struct hlist_node hash;
124 struct list_head mm_node;
125 struct mm_struct *mm;
126 };
127
128 /**
129 * struct khugepaged_scan - cursor for scanning
130 * @mm_head: the head of the mm list to scan
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 *
134 * There is only the one khugepaged_scan instance of this cursor structure.
135 */
136 struct khugepaged_scan {
137 struct list_head mm_head;
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 };
141 static struct khugepaged_scan khugepaged_scan = {
142 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
143 };
144
145 static struct shrinker deferred_split_shrinker;
146
147 static void set_recommended_min_free_kbytes(void)
148 {
149 struct zone *zone;
150 int nr_zones = 0;
151 unsigned long recommended_min;
152
153 for_each_populated_zone(zone)
154 nr_zones++;
155
156 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
157 recommended_min = pageblock_nr_pages * nr_zones * 2;
158
159 /*
160 * Make sure that on average at least two pageblocks are almost free
161 * of another type, one for a migratetype to fall back to and a
162 * second to avoid subsequent fallbacks of other types There are 3
163 * MIGRATE_TYPES we care about.
164 */
165 recommended_min += pageblock_nr_pages * nr_zones *
166 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
167
168 /* don't ever allow to reserve more than 5% of the lowmem */
169 recommended_min = min(recommended_min,
170 (unsigned long) nr_free_buffer_pages() / 20);
171 recommended_min <<= (PAGE_SHIFT-10);
172
173 if (recommended_min > min_free_kbytes) {
174 if (user_min_free_kbytes >= 0)
175 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
176 min_free_kbytes, recommended_min);
177
178 min_free_kbytes = recommended_min;
179 }
180 setup_per_zone_wmarks();
181 }
182
183 static int start_stop_khugepaged(void)
184 {
185 int err = 0;
186 if (khugepaged_enabled()) {
187 if (!khugepaged_thread)
188 khugepaged_thread = kthread_run(khugepaged, NULL,
189 "khugepaged");
190 if (IS_ERR(khugepaged_thread)) {
191 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
192 err = PTR_ERR(khugepaged_thread);
193 khugepaged_thread = NULL;
194 goto fail;
195 }
196
197 if (!list_empty(&khugepaged_scan.mm_head))
198 wake_up_interruptible(&khugepaged_wait);
199
200 set_recommended_min_free_kbytes();
201 } else if (khugepaged_thread) {
202 kthread_stop(khugepaged_thread);
203 khugepaged_thread = NULL;
204 }
205 fail:
206 return err;
207 }
208
209 static atomic_t huge_zero_refcount;
210 struct page *huge_zero_page __read_mostly;
211
212 struct page *get_huge_zero_page(void)
213 {
214 struct page *zero_page;
215 retry:
216 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
217 return READ_ONCE(huge_zero_page);
218
219 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
220 HPAGE_PMD_ORDER);
221 if (!zero_page) {
222 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
223 return NULL;
224 }
225 count_vm_event(THP_ZERO_PAGE_ALLOC);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
228 preempt_enable();
229 __free_pages(zero_page, compound_order(zero_page));
230 goto retry;
231 }
232
233 /* We take additional reference here. It will be put back by shrinker */
234 atomic_set(&huge_zero_refcount, 2);
235 preempt_enable();
236 return READ_ONCE(huge_zero_page);
237 }
238
239 void put_huge_zero_page(void)
240 {
241 /*
242 * Counter should never go to zero here. Only shrinker can put
243 * last reference.
244 */
245 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
246 }
247
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249 struct shrink_control *sc)
250 {
251 /* we can free zero page only if last reference remains */
252 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256 struct shrink_control *sc)
257 {
258 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259 struct page *zero_page = xchg(&huge_zero_page, NULL);
260 BUG_ON(zero_page == NULL);
261 __free_pages(zero_page, compound_order(zero_page));
262 return HPAGE_PMD_NR;
263 }
264
265 return 0;
266 }
267
268 static struct shrinker huge_zero_page_shrinker = {
269 .count_objects = shrink_huge_zero_page_count,
270 .scan_objects = shrink_huge_zero_page_scan,
271 .seeks = DEFAULT_SEEKS,
272 };
273
274 #ifdef CONFIG_SYSFS
275
276 static ssize_t triple_flag_store(struct kobject *kobj,
277 struct kobj_attribute *attr,
278 const char *buf, size_t count,
279 enum transparent_hugepage_flag enabled,
280 enum transparent_hugepage_flag deferred,
281 enum transparent_hugepage_flag req_madv)
282 {
283 if (!memcmp("defer", buf,
284 min(sizeof("defer")-1, count))) {
285 if (enabled == deferred)
286 return -EINVAL;
287 clear_bit(enabled, &transparent_hugepage_flags);
288 clear_bit(req_madv, &transparent_hugepage_flags);
289 set_bit(deferred, &transparent_hugepage_flags);
290 } else if (!memcmp("always", buf,
291 min(sizeof("always")-1, count))) {
292 clear_bit(deferred, &transparent_hugepage_flags);
293 clear_bit(req_madv, &transparent_hugepage_flags);
294 set_bit(enabled, &transparent_hugepage_flags);
295 } else if (!memcmp("madvise", buf,
296 min(sizeof("madvise")-1, count))) {
297 clear_bit(enabled, &transparent_hugepage_flags);
298 clear_bit(deferred, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 clear_bit(deferred, &transparent_hugepage_flags);
305 } else
306 return -EINVAL;
307
308 return count;
309 }
310
311 static ssize_t enabled_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313 {
314 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
315 return sprintf(buf, "[always] madvise never\n");
316 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
317 return sprintf(buf, "always [madvise] never\n");
318 else
319 return sprintf(buf, "always madvise [never]\n");
320 }
321
322 static ssize_t enabled_store(struct kobject *kobj,
323 struct kobj_attribute *attr,
324 const char *buf, size_t count)
325 {
326 ssize_t ret;
327
328 ret = triple_flag_store(kobj, attr, buf, count,
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_FLAG,
331 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
332
333 if (ret > 0) {
334 int err;
335
336 mutex_lock(&khugepaged_mutex);
337 err = start_stop_khugepaged();
338 mutex_unlock(&khugepaged_mutex);
339
340 if (err)
341 ret = err;
342 }
343
344 return ret;
345 }
346 static struct kobj_attribute enabled_attr =
347 __ATTR(enabled, 0644, enabled_show, enabled_store);
348
349 static ssize_t single_flag_show(struct kobject *kobj,
350 struct kobj_attribute *attr, char *buf,
351 enum transparent_hugepage_flag flag)
352 {
353 return sprintf(buf, "%d\n",
354 !!test_bit(flag, &transparent_hugepage_flags));
355 }
356
357 static ssize_t single_flag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count,
360 enum transparent_hugepage_flag flag)
361 {
362 unsigned long value;
363 int ret;
364
365 ret = kstrtoul(buf, 10, &value);
366 if (ret < 0)
367 return ret;
368 if (value > 1)
369 return -EINVAL;
370
371 if (value)
372 set_bit(flag, &transparent_hugepage_flags);
373 else
374 clear_bit(flag, &transparent_hugepage_flags);
375
376 return count;
377 }
378
379 /*
380 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
381 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
382 * memory just to allocate one more hugepage.
383 */
384 static ssize_t defrag_show(struct kobject *kobj,
385 struct kobj_attribute *attr, char *buf)
386 {
387 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
388 return sprintf(buf, "[always] defer madvise never\n");
389 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
390 return sprintf(buf, "always [defer] madvise never\n");
391 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
392 return sprintf(buf, "always defer [madvise] never\n");
393 else
394 return sprintf(buf, "always defer madvise [never]\n");
395
396 }
397 static ssize_t defrag_store(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 const char *buf, size_t count)
400 {
401 return triple_flag_store(kobj, attr, buf, count,
402 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
403 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
404 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
405 }
406 static struct kobj_attribute defrag_attr =
407 __ATTR(defrag, 0644, defrag_show, defrag_store);
408
409 static ssize_t use_zero_page_show(struct kobject *kobj,
410 struct kobj_attribute *attr, char *buf)
411 {
412 return single_flag_show(kobj, attr, buf,
413 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
414 }
415 static ssize_t use_zero_page_store(struct kobject *kobj,
416 struct kobj_attribute *attr, const char *buf, size_t count)
417 {
418 return single_flag_store(kobj, attr, buf, count,
419 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
420 }
421 static struct kobj_attribute use_zero_page_attr =
422 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
423 #ifdef CONFIG_DEBUG_VM
424 static ssize_t debug_cow_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426 {
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
429 }
430 static ssize_t debug_cow_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433 {
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
436 }
437 static struct kobj_attribute debug_cow_attr =
438 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
439 #endif /* CONFIG_DEBUG_VM */
440
441 static struct attribute *hugepage_attr[] = {
442 &enabled_attr.attr,
443 &defrag_attr.attr,
444 &use_zero_page_attr.attr,
445 #ifdef CONFIG_DEBUG_VM
446 &debug_cow_attr.attr,
447 #endif
448 NULL,
449 };
450
451 static struct attribute_group hugepage_attr_group = {
452 .attrs = hugepage_attr,
453 };
454
455 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 char *buf)
458 {
459 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
460 }
461
462 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
463 struct kobj_attribute *attr,
464 const char *buf, size_t count)
465 {
466 unsigned long msecs;
467 int err;
468
469 err = kstrtoul(buf, 10, &msecs);
470 if (err || msecs > UINT_MAX)
471 return -EINVAL;
472
473 khugepaged_scan_sleep_millisecs = msecs;
474 khugepaged_sleep_expire = 0;
475 wake_up_interruptible(&khugepaged_wait);
476
477 return count;
478 }
479 static struct kobj_attribute scan_sleep_millisecs_attr =
480 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
481 scan_sleep_millisecs_store);
482
483 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
484 struct kobj_attribute *attr,
485 char *buf)
486 {
487 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
488 }
489
490 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 const char *buf, size_t count)
493 {
494 unsigned long msecs;
495 int err;
496
497 err = kstrtoul(buf, 10, &msecs);
498 if (err || msecs > UINT_MAX)
499 return -EINVAL;
500
501 khugepaged_alloc_sleep_millisecs = msecs;
502 khugepaged_sleep_expire = 0;
503 wake_up_interruptible(&khugepaged_wait);
504
505 return count;
506 }
507 static struct kobj_attribute alloc_sleep_millisecs_attr =
508 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
509 alloc_sleep_millisecs_store);
510
511 static ssize_t pages_to_scan_show(struct kobject *kobj,
512 struct kobj_attribute *attr,
513 char *buf)
514 {
515 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
516 }
517 static ssize_t pages_to_scan_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520 {
521 int err;
522 unsigned long pages;
523
524 err = kstrtoul(buf, 10, &pages);
525 if (err || !pages || pages > UINT_MAX)
526 return -EINVAL;
527
528 khugepaged_pages_to_scan = pages;
529
530 return count;
531 }
532 static struct kobj_attribute pages_to_scan_attr =
533 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
534 pages_to_scan_store);
535
536 static ssize_t pages_collapsed_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539 {
540 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
541 }
542 static struct kobj_attribute pages_collapsed_attr =
543 __ATTR_RO(pages_collapsed);
544
545 static ssize_t full_scans_show(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 char *buf)
548 {
549 return sprintf(buf, "%u\n", khugepaged_full_scans);
550 }
551 static struct kobj_attribute full_scans_attr =
552 __ATTR_RO(full_scans);
553
554 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
555 struct kobj_attribute *attr, char *buf)
556 {
557 return single_flag_show(kobj, attr, buf,
558 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
559 }
560 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
561 struct kobj_attribute *attr,
562 const char *buf, size_t count)
563 {
564 return single_flag_store(kobj, attr, buf, count,
565 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
566 }
567 static struct kobj_attribute khugepaged_defrag_attr =
568 __ATTR(defrag, 0644, khugepaged_defrag_show,
569 khugepaged_defrag_store);
570
571 /*
572 * max_ptes_none controls if khugepaged should collapse hugepages over
573 * any unmapped ptes in turn potentially increasing the memory
574 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
575 * reduce the available free memory in the system as it
576 * runs. Increasing max_ptes_none will instead potentially reduce the
577 * free memory in the system during the khugepaged scan.
578 */
579 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
580 struct kobj_attribute *attr,
581 char *buf)
582 {
583 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
584 }
585 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
586 struct kobj_attribute *attr,
587 const char *buf, size_t count)
588 {
589 int err;
590 unsigned long max_ptes_none;
591
592 err = kstrtoul(buf, 10, &max_ptes_none);
593 if (err || max_ptes_none > HPAGE_PMD_NR-1)
594 return -EINVAL;
595
596 khugepaged_max_ptes_none = max_ptes_none;
597
598 return count;
599 }
600 static struct kobj_attribute khugepaged_max_ptes_none_attr =
601 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
602 khugepaged_max_ptes_none_store);
603
604 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
605 struct kobj_attribute *attr,
606 char *buf)
607 {
608 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
609 }
610
611 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
612 struct kobj_attribute *attr,
613 const char *buf, size_t count)
614 {
615 int err;
616 unsigned long max_ptes_swap;
617
618 err = kstrtoul(buf, 10, &max_ptes_swap);
619 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
620 return -EINVAL;
621
622 khugepaged_max_ptes_swap = max_ptes_swap;
623
624 return count;
625 }
626
627 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
628 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
629 khugepaged_max_ptes_swap_store);
630
631 static struct attribute *khugepaged_attr[] = {
632 &khugepaged_defrag_attr.attr,
633 &khugepaged_max_ptes_none_attr.attr,
634 &pages_to_scan_attr.attr,
635 &pages_collapsed_attr.attr,
636 &full_scans_attr.attr,
637 &scan_sleep_millisecs_attr.attr,
638 &alloc_sleep_millisecs_attr.attr,
639 &khugepaged_max_ptes_swap_attr.attr,
640 NULL,
641 };
642
643 static struct attribute_group khugepaged_attr_group = {
644 .attrs = khugepaged_attr,
645 .name = "khugepaged",
646 };
647
648 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
649 {
650 int err;
651
652 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
653 if (unlikely(!*hugepage_kobj)) {
654 pr_err("failed to create transparent hugepage kobject\n");
655 return -ENOMEM;
656 }
657
658 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
659 if (err) {
660 pr_err("failed to register transparent hugepage group\n");
661 goto delete_obj;
662 }
663
664 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
665 if (err) {
666 pr_err("failed to register transparent hugepage group\n");
667 goto remove_hp_group;
668 }
669
670 return 0;
671
672 remove_hp_group:
673 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
674 delete_obj:
675 kobject_put(*hugepage_kobj);
676 return err;
677 }
678
679 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
680 {
681 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
682 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
683 kobject_put(hugepage_kobj);
684 }
685 #else
686 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
687 {
688 return 0;
689 }
690
691 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
692 {
693 }
694 #endif /* CONFIG_SYSFS */
695
696 static int __init hugepage_init(void)
697 {
698 int err;
699 struct kobject *hugepage_kobj;
700
701 if (!has_transparent_hugepage()) {
702 transparent_hugepage_flags = 0;
703 return -EINVAL;
704 }
705
706 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
707 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
708 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
709 /*
710 * hugepages can't be allocated by the buddy allocator
711 */
712 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
713 /*
714 * we use page->mapping and page->index in second tail page
715 * as list_head: assuming THP order >= 2
716 */
717 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
718
719 err = hugepage_init_sysfs(&hugepage_kobj);
720 if (err)
721 goto err_sysfs;
722
723 err = khugepaged_slab_init();
724 if (err)
725 goto err_slab;
726
727 err = register_shrinker(&huge_zero_page_shrinker);
728 if (err)
729 goto err_hzp_shrinker;
730 err = register_shrinker(&deferred_split_shrinker);
731 if (err)
732 goto err_split_shrinker;
733
734 /*
735 * By default disable transparent hugepages on smaller systems,
736 * where the extra memory used could hurt more than TLB overhead
737 * is likely to save. The admin can still enable it through /sys.
738 */
739 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
740 transparent_hugepage_flags = 0;
741 return 0;
742 }
743
744 err = start_stop_khugepaged();
745 if (err)
746 goto err_khugepaged;
747
748 return 0;
749 err_khugepaged:
750 unregister_shrinker(&deferred_split_shrinker);
751 err_split_shrinker:
752 unregister_shrinker(&huge_zero_page_shrinker);
753 err_hzp_shrinker:
754 khugepaged_slab_exit();
755 err_slab:
756 hugepage_exit_sysfs(hugepage_kobj);
757 err_sysfs:
758 return err;
759 }
760 subsys_initcall(hugepage_init);
761
762 static int __init setup_transparent_hugepage(char *str)
763 {
764 int ret = 0;
765 if (!str)
766 goto out;
767 if (!strcmp(str, "always")) {
768 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
769 &transparent_hugepage_flags);
770 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
771 &transparent_hugepage_flags);
772 ret = 1;
773 } else if (!strcmp(str, "madvise")) {
774 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
775 &transparent_hugepage_flags);
776 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
777 &transparent_hugepage_flags);
778 ret = 1;
779 } else if (!strcmp(str, "never")) {
780 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
781 &transparent_hugepage_flags);
782 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
783 &transparent_hugepage_flags);
784 ret = 1;
785 }
786 out:
787 if (!ret)
788 pr_warn("transparent_hugepage= cannot parse, ignored\n");
789 return ret;
790 }
791 __setup("transparent_hugepage=", setup_transparent_hugepage);
792
793 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
794 {
795 if (likely(vma->vm_flags & VM_WRITE))
796 pmd = pmd_mkwrite(pmd);
797 return pmd;
798 }
799
800 static inline struct list_head *page_deferred_list(struct page *page)
801 {
802 /*
803 * ->lru in the tail pages is occupied by compound_head.
804 * Let's use ->mapping + ->index in the second tail page as list_head.
805 */
806 return (struct list_head *)&page[2].mapping;
807 }
808
809 void prep_transhuge_page(struct page *page)
810 {
811 /*
812 * we use page->mapping and page->indexlru in second tail page
813 * as list_head: assuming THP order >= 2
814 */
815
816 INIT_LIST_HEAD(page_deferred_list(page));
817 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
818 }
819
820 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
821 gfp_t gfp)
822 {
823 struct vm_area_struct *vma = fe->vma;
824 struct mem_cgroup *memcg;
825 pgtable_t pgtable;
826 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
827
828 VM_BUG_ON_PAGE(!PageCompound(page), page);
829
830 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
834 }
835
836 pgtable = pte_alloc_one(vma->vm_mm, haddr);
837 if (unlikely(!pgtable)) {
838 mem_cgroup_cancel_charge(page, memcg, true);
839 put_page(page);
840 return VM_FAULT_OOM;
841 }
842
843 clear_huge_page(page, haddr, HPAGE_PMD_NR);
844 /*
845 * The memory barrier inside __SetPageUptodate makes sure that
846 * clear_huge_page writes become visible before the set_pmd_at()
847 * write.
848 */
849 __SetPageUptodate(page);
850
851 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
852 if (unlikely(!pmd_none(*fe->pmd))) {
853 spin_unlock(fe->ptl);
854 mem_cgroup_cancel_charge(page, memcg, true);
855 put_page(page);
856 pte_free(vma->vm_mm, pgtable);
857 } else {
858 pmd_t entry;
859
860 /* Deliver the page fault to userland */
861 if (userfaultfd_missing(vma)) {
862 int ret;
863
864 spin_unlock(fe->ptl);
865 mem_cgroup_cancel_charge(page, memcg, true);
866 put_page(page);
867 pte_free(vma->vm_mm, pgtable);
868 ret = handle_userfault(fe, VM_UFFD_MISSING);
869 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
870 return ret;
871 }
872
873 entry = mk_huge_pmd(page, vma->vm_page_prot);
874 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
875 page_add_new_anon_rmap(page, vma, haddr, true);
876 mem_cgroup_commit_charge(page, memcg, false, true);
877 lru_cache_add_active_or_unevictable(page, vma);
878 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
879 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
880 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
881 atomic_long_inc(&vma->vm_mm->nr_ptes);
882 spin_unlock(fe->ptl);
883 count_vm_event(THP_FAULT_ALLOC);
884 }
885
886 return 0;
887 }
888
889 /*
890 * If THP is set to always then directly reclaim/compact as necessary
891 * If set to defer then do no reclaim and defer to khugepaged
892 * If set to madvise and the VMA is flagged then directly reclaim/compact
893 */
894 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
895 {
896 gfp_t reclaim_flags = 0;
897
898 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
899 (vma->vm_flags & VM_HUGEPAGE))
900 reclaim_flags = __GFP_DIRECT_RECLAIM;
901 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
902 reclaim_flags = __GFP_KSWAPD_RECLAIM;
903 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
904 reclaim_flags = __GFP_DIRECT_RECLAIM;
905
906 return GFP_TRANSHUGE | reclaim_flags;
907 }
908
909 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
910 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
911 {
912 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
913 }
914
915 /* Caller must hold page table lock. */
916 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
917 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
918 struct page *zero_page)
919 {
920 pmd_t entry;
921 if (!pmd_none(*pmd))
922 return false;
923 entry = mk_pmd(zero_page, vma->vm_page_prot);
924 entry = pmd_mkhuge(entry);
925 if (pgtable)
926 pgtable_trans_huge_deposit(mm, pmd, pgtable);
927 set_pmd_at(mm, haddr, pmd, entry);
928 atomic_long_inc(&mm->nr_ptes);
929 return true;
930 }
931
932 int do_huge_pmd_anonymous_page(struct fault_env *fe)
933 {
934 struct vm_area_struct *vma = fe->vma;
935 gfp_t gfp;
936 struct page *page;
937 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
938
939 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
940 return VM_FAULT_FALLBACK;
941 if (unlikely(anon_vma_prepare(vma)))
942 return VM_FAULT_OOM;
943 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
944 return VM_FAULT_OOM;
945 if (!(fe->flags & FAULT_FLAG_WRITE) &&
946 !mm_forbids_zeropage(vma->vm_mm) &&
947 transparent_hugepage_use_zero_page()) {
948 pgtable_t pgtable;
949 struct page *zero_page;
950 bool set;
951 int ret;
952 pgtable = pte_alloc_one(vma->vm_mm, haddr);
953 if (unlikely(!pgtable))
954 return VM_FAULT_OOM;
955 zero_page = get_huge_zero_page();
956 if (unlikely(!zero_page)) {
957 pte_free(vma->vm_mm, pgtable);
958 count_vm_event(THP_FAULT_FALLBACK);
959 return VM_FAULT_FALLBACK;
960 }
961 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
962 ret = 0;
963 set = false;
964 if (pmd_none(*fe->pmd)) {
965 if (userfaultfd_missing(vma)) {
966 spin_unlock(fe->ptl);
967 ret = handle_userfault(fe, VM_UFFD_MISSING);
968 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
969 } else {
970 set_huge_zero_page(pgtable, vma->vm_mm, vma,
971 haddr, fe->pmd, zero_page);
972 spin_unlock(fe->ptl);
973 set = true;
974 }
975 } else
976 spin_unlock(fe->ptl);
977 if (!set) {
978 pte_free(vma->vm_mm, pgtable);
979 put_huge_zero_page();
980 }
981 return ret;
982 }
983 gfp = alloc_hugepage_direct_gfpmask(vma);
984 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
985 if (unlikely(!page)) {
986 count_vm_event(THP_FAULT_FALLBACK);
987 return VM_FAULT_FALLBACK;
988 }
989 prep_transhuge_page(page);
990 return __do_huge_pmd_anonymous_page(fe, page, gfp);
991 }
992
993 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
994 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
995 {
996 struct mm_struct *mm = vma->vm_mm;
997 pmd_t entry;
998 spinlock_t *ptl;
999
1000 ptl = pmd_lock(mm, pmd);
1001 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1002 if (pfn_t_devmap(pfn))
1003 entry = pmd_mkdevmap(entry);
1004 if (write) {
1005 entry = pmd_mkyoung(pmd_mkdirty(entry));
1006 entry = maybe_pmd_mkwrite(entry, vma);
1007 }
1008 set_pmd_at(mm, addr, pmd, entry);
1009 update_mmu_cache_pmd(vma, addr, pmd);
1010 spin_unlock(ptl);
1011 }
1012
1013 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1014 pmd_t *pmd, pfn_t pfn, bool write)
1015 {
1016 pgprot_t pgprot = vma->vm_page_prot;
1017 /*
1018 * If we had pmd_special, we could avoid all these restrictions,
1019 * but we need to be consistent with PTEs and architectures that
1020 * can't support a 'special' bit.
1021 */
1022 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1023 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1024 (VM_PFNMAP|VM_MIXEDMAP));
1025 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1026 BUG_ON(!pfn_t_devmap(pfn));
1027
1028 if (addr < vma->vm_start || addr >= vma->vm_end)
1029 return VM_FAULT_SIGBUS;
1030 if (track_pfn_insert(vma, &pgprot, pfn))
1031 return VM_FAULT_SIGBUS;
1032 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1033 return VM_FAULT_NOPAGE;
1034 }
1035 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1036
1037 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1038 pmd_t *pmd)
1039 {
1040 pmd_t _pmd;
1041
1042 /*
1043 * We should set the dirty bit only for FOLL_WRITE but for now
1044 * the dirty bit in the pmd is meaningless. And if the dirty
1045 * bit will become meaningful and we'll only set it with
1046 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1047 * set the young bit, instead of the current set_pmd_at.
1048 */
1049 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1050 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1051 pmd, _pmd, 1))
1052 update_mmu_cache_pmd(vma, addr, pmd);
1053 }
1054
1055 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1056 pmd_t *pmd, int flags)
1057 {
1058 unsigned long pfn = pmd_pfn(*pmd);
1059 struct mm_struct *mm = vma->vm_mm;
1060 struct dev_pagemap *pgmap;
1061 struct page *page;
1062
1063 assert_spin_locked(pmd_lockptr(mm, pmd));
1064
1065 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1066 return NULL;
1067
1068 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1069 /* pass */;
1070 else
1071 return NULL;
1072
1073 if (flags & FOLL_TOUCH)
1074 touch_pmd(vma, addr, pmd);
1075
1076 /*
1077 * device mapped pages can only be returned if the
1078 * caller will manage the page reference count.
1079 */
1080 if (!(flags & FOLL_GET))
1081 return ERR_PTR(-EEXIST);
1082
1083 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1084 pgmap = get_dev_pagemap(pfn, NULL);
1085 if (!pgmap)
1086 return ERR_PTR(-EFAULT);
1087 page = pfn_to_page(pfn);
1088 get_page(page);
1089 put_dev_pagemap(pgmap);
1090
1091 return page;
1092 }
1093
1094 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1095 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1096 struct vm_area_struct *vma)
1097 {
1098 spinlock_t *dst_ptl, *src_ptl;
1099 struct page *src_page;
1100 pmd_t pmd;
1101 pgtable_t pgtable = NULL;
1102 int ret = -ENOMEM;
1103
1104 /* Skip if can be re-fill on fault */
1105 if (!vma_is_anonymous(vma))
1106 return 0;
1107
1108 pgtable = pte_alloc_one(dst_mm, addr);
1109 if (unlikely(!pgtable))
1110 goto out;
1111
1112 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1113 src_ptl = pmd_lockptr(src_mm, src_pmd);
1114 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1115
1116 ret = -EAGAIN;
1117 pmd = *src_pmd;
1118 if (unlikely(!pmd_trans_huge(pmd))) {
1119 pte_free(dst_mm, pgtable);
1120 goto out_unlock;
1121 }
1122 /*
1123 * When page table lock is held, the huge zero pmd should not be
1124 * under splitting since we don't split the page itself, only pmd to
1125 * a page table.
1126 */
1127 if (is_huge_zero_pmd(pmd)) {
1128 struct page *zero_page;
1129 /*
1130 * get_huge_zero_page() will never allocate a new page here,
1131 * since we already have a zero page to copy. It just takes a
1132 * reference.
1133 */
1134 zero_page = get_huge_zero_page();
1135 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1136 zero_page);
1137 ret = 0;
1138 goto out_unlock;
1139 }
1140
1141 src_page = pmd_page(pmd);
1142 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1143 get_page(src_page);
1144 page_dup_rmap(src_page, true);
1145 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 atomic_long_inc(&dst_mm->nr_ptes);
1147 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1148
1149 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1150 pmd = pmd_mkold(pmd_wrprotect(pmd));
1151 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1152
1153 ret = 0;
1154 out_unlock:
1155 spin_unlock(src_ptl);
1156 spin_unlock(dst_ptl);
1157 out:
1158 return ret;
1159 }
1160
1161 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1162 {
1163 pmd_t entry;
1164 unsigned long haddr;
1165
1166 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1167 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1168 goto unlock;
1169
1170 entry = pmd_mkyoung(orig_pmd);
1171 haddr = fe->address & HPAGE_PMD_MASK;
1172 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1173 fe->flags & FAULT_FLAG_WRITE))
1174 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1175
1176 unlock:
1177 spin_unlock(fe->ptl);
1178 }
1179
1180 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1181 struct page *page)
1182 {
1183 struct vm_area_struct *vma = fe->vma;
1184 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1185 struct mem_cgroup *memcg;
1186 pgtable_t pgtable;
1187 pmd_t _pmd;
1188 int ret = 0, i;
1189 struct page **pages;
1190 unsigned long mmun_start; /* For mmu_notifiers */
1191 unsigned long mmun_end; /* For mmu_notifiers */
1192
1193 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1194 GFP_KERNEL);
1195 if (unlikely(!pages)) {
1196 ret |= VM_FAULT_OOM;
1197 goto out;
1198 }
1199
1200 for (i = 0; i < HPAGE_PMD_NR; i++) {
1201 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1202 __GFP_OTHER_NODE, vma,
1203 fe->address, page_to_nid(page));
1204 if (unlikely(!pages[i] ||
1205 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1206 GFP_KERNEL, &memcg, false))) {
1207 if (pages[i])
1208 put_page(pages[i]);
1209 while (--i >= 0) {
1210 memcg = (void *)page_private(pages[i]);
1211 set_page_private(pages[i], 0);
1212 mem_cgroup_cancel_charge(pages[i], memcg,
1213 false);
1214 put_page(pages[i]);
1215 }
1216 kfree(pages);
1217 ret |= VM_FAULT_OOM;
1218 goto out;
1219 }
1220 set_page_private(pages[i], (unsigned long)memcg);
1221 }
1222
1223 for (i = 0; i < HPAGE_PMD_NR; i++) {
1224 copy_user_highpage(pages[i], page + i,
1225 haddr + PAGE_SIZE * i, vma);
1226 __SetPageUptodate(pages[i]);
1227 cond_resched();
1228 }
1229
1230 mmun_start = haddr;
1231 mmun_end = haddr + HPAGE_PMD_SIZE;
1232 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1233
1234 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1235 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1236 goto out_free_pages;
1237 VM_BUG_ON_PAGE(!PageHead(page), page);
1238
1239 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1240 /* leave pmd empty until pte is filled */
1241
1242 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1243 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1244
1245 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1246 pte_t entry;
1247 entry = mk_pte(pages[i], vma->vm_page_prot);
1248 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1249 memcg = (void *)page_private(pages[i]);
1250 set_page_private(pages[i], 0);
1251 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1252 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1253 lru_cache_add_active_or_unevictable(pages[i], vma);
1254 fe->pte = pte_offset_map(&_pmd, haddr);
1255 VM_BUG_ON(!pte_none(*fe->pte));
1256 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1257 pte_unmap(fe->pte);
1258 }
1259 kfree(pages);
1260
1261 smp_wmb(); /* make pte visible before pmd */
1262 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1263 page_remove_rmap(page, true);
1264 spin_unlock(fe->ptl);
1265
1266 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1267
1268 ret |= VM_FAULT_WRITE;
1269 put_page(page);
1270
1271 out:
1272 return ret;
1273
1274 out_free_pages:
1275 spin_unlock(fe->ptl);
1276 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1277 for (i = 0; i < HPAGE_PMD_NR; i++) {
1278 memcg = (void *)page_private(pages[i]);
1279 set_page_private(pages[i], 0);
1280 mem_cgroup_cancel_charge(pages[i], memcg, false);
1281 put_page(pages[i]);
1282 }
1283 kfree(pages);
1284 goto out;
1285 }
1286
1287 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1288 {
1289 struct vm_area_struct *vma = fe->vma;
1290 struct page *page = NULL, *new_page;
1291 struct mem_cgroup *memcg;
1292 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1293 unsigned long mmun_start; /* For mmu_notifiers */
1294 unsigned long mmun_end; /* For mmu_notifiers */
1295 gfp_t huge_gfp; /* for allocation and charge */
1296 int ret = 0;
1297
1298 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1299 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1300 if (is_huge_zero_pmd(orig_pmd))
1301 goto alloc;
1302 spin_lock(fe->ptl);
1303 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1304 goto out_unlock;
1305
1306 page = pmd_page(orig_pmd);
1307 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1308 /*
1309 * We can only reuse the page if nobody else maps the huge page or it's
1310 * part.
1311 */
1312 if (page_trans_huge_mapcount(page, NULL) == 1) {
1313 pmd_t entry;
1314 entry = pmd_mkyoung(orig_pmd);
1315 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1316 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1317 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1318 ret |= VM_FAULT_WRITE;
1319 goto out_unlock;
1320 }
1321 get_page(page);
1322 spin_unlock(fe->ptl);
1323 alloc:
1324 if (transparent_hugepage_enabled(vma) &&
1325 !transparent_hugepage_debug_cow()) {
1326 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1327 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1328 } else
1329 new_page = NULL;
1330
1331 if (likely(new_page)) {
1332 prep_transhuge_page(new_page);
1333 } else {
1334 if (!page) {
1335 split_huge_pmd(vma, fe->pmd, fe->address);
1336 ret |= VM_FAULT_FALLBACK;
1337 } else {
1338 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1339 if (ret & VM_FAULT_OOM) {
1340 split_huge_pmd(vma, fe->pmd, fe->address);
1341 ret |= VM_FAULT_FALLBACK;
1342 }
1343 put_page(page);
1344 }
1345 count_vm_event(THP_FAULT_FALLBACK);
1346 goto out;
1347 }
1348
1349 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1350 huge_gfp, &memcg, true))) {
1351 put_page(new_page);
1352 split_huge_pmd(vma, fe->pmd, fe->address);
1353 if (page)
1354 put_page(page);
1355 ret |= VM_FAULT_FALLBACK;
1356 count_vm_event(THP_FAULT_FALLBACK);
1357 goto out;
1358 }
1359
1360 count_vm_event(THP_FAULT_ALLOC);
1361
1362 if (!page)
1363 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1364 else
1365 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1366 __SetPageUptodate(new_page);
1367
1368 mmun_start = haddr;
1369 mmun_end = haddr + HPAGE_PMD_SIZE;
1370 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1371
1372 spin_lock(fe->ptl);
1373 if (page)
1374 put_page(page);
1375 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1376 spin_unlock(fe->ptl);
1377 mem_cgroup_cancel_charge(new_page, memcg, true);
1378 put_page(new_page);
1379 goto out_mn;
1380 } else {
1381 pmd_t entry;
1382 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1383 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1384 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1385 page_add_new_anon_rmap(new_page, vma, haddr, true);
1386 mem_cgroup_commit_charge(new_page, memcg, false, true);
1387 lru_cache_add_active_or_unevictable(new_page, vma);
1388 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1389 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1390 if (!page) {
1391 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1392 put_huge_zero_page();
1393 } else {
1394 VM_BUG_ON_PAGE(!PageHead(page), page);
1395 page_remove_rmap(page, true);
1396 put_page(page);
1397 }
1398 ret |= VM_FAULT_WRITE;
1399 }
1400 spin_unlock(fe->ptl);
1401 out_mn:
1402 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1403 out:
1404 return ret;
1405 out_unlock:
1406 spin_unlock(fe->ptl);
1407 return ret;
1408 }
1409
1410 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1411 unsigned long addr,
1412 pmd_t *pmd,
1413 unsigned int flags)
1414 {
1415 struct mm_struct *mm = vma->vm_mm;
1416 struct page *page = NULL;
1417
1418 assert_spin_locked(pmd_lockptr(mm, pmd));
1419
1420 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1421 goto out;
1422
1423 /* Avoid dumping huge zero page */
1424 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1425 return ERR_PTR(-EFAULT);
1426
1427 /* Full NUMA hinting faults to serialise migration in fault paths */
1428 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1429 goto out;
1430
1431 page = pmd_page(*pmd);
1432 VM_BUG_ON_PAGE(!PageHead(page), page);
1433 if (flags & FOLL_TOUCH)
1434 touch_pmd(vma, addr, pmd);
1435 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1436 /*
1437 * We don't mlock() pte-mapped THPs. This way we can avoid
1438 * leaking mlocked pages into non-VM_LOCKED VMAs.
1439 *
1440 * In most cases the pmd is the only mapping of the page as we
1441 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1442 * writable private mappings in populate_vma_page_range().
1443 *
1444 * The only scenario when we have the page shared here is if we
1445 * mlocking read-only mapping shared over fork(). We skip
1446 * mlocking such pages.
1447 */
1448 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1449 page->mapping && trylock_page(page)) {
1450 lru_add_drain();
1451 if (page->mapping)
1452 mlock_vma_page(page);
1453 unlock_page(page);
1454 }
1455 }
1456 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1457 VM_BUG_ON_PAGE(!PageCompound(page), page);
1458 if (flags & FOLL_GET)
1459 get_page(page);
1460
1461 out:
1462 return page;
1463 }
1464
1465 /* NUMA hinting page fault entry point for trans huge pmds */
1466 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1467 {
1468 struct vm_area_struct *vma = fe->vma;
1469 struct anon_vma *anon_vma = NULL;
1470 struct page *page;
1471 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1472 int page_nid = -1, this_nid = numa_node_id();
1473 int target_nid, last_cpupid = -1;
1474 bool page_locked;
1475 bool migrated = false;
1476 bool was_writable;
1477 int flags = 0;
1478
1479 /* A PROT_NONE fault should not end up here */
1480 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1481
1482 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1483 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1484 goto out_unlock;
1485
1486 /*
1487 * If there are potential migrations, wait for completion and retry
1488 * without disrupting NUMA hinting information. Do not relock and
1489 * check_same as the page may no longer be mapped.
1490 */
1491 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1492 page = pmd_page(*fe->pmd);
1493 spin_unlock(fe->ptl);
1494 wait_on_page_locked(page);
1495 goto out;
1496 }
1497
1498 page = pmd_page(pmd);
1499 BUG_ON(is_huge_zero_page(page));
1500 page_nid = page_to_nid(page);
1501 last_cpupid = page_cpupid_last(page);
1502 count_vm_numa_event(NUMA_HINT_FAULTS);
1503 if (page_nid == this_nid) {
1504 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1505 flags |= TNF_FAULT_LOCAL;
1506 }
1507
1508 /* See similar comment in do_numa_page for explanation */
1509 if (!(vma->vm_flags & VM_WRITE))
1510 flags |= TNF_NO_GROUP;
1511
1512 /*
1513 * Acquire the page lock to serialise THP migrations but avoid dropping
1514 * page_table_lock if at all possible
1515 */
1516 page_locked = trylock_page(page);
1517 target_nid = mpol_misplaced(page, vma, haddr);
1518 if (target_nid == -1) {
1519 /* If the page was locked, there are no parallel migrations */
1520 if (page_locked)
1521 goto clear_pmdnuma;
1522 }
1523
1524 /* Migration could have started since the pmd_trans_migrating check */
1525 if (!page_locked) {
1526 spin_unlock(fe->ptl);
1527 wait_on_page_locked(page);
1528 page_nid = -1;
1529 goto out;
1530 }
1531
1532 /*
1533 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1534 * to serialises splits
1535 */
1536 get_page(page);
1537 spin_unlock(fe->ptl);
1538 anon_vma = page_lock_anon_vma_read(page);
1539
1540 /* Confirm the PMD did not change while page_table_lock was released */
1541 spin_lock(fe->ptl);
1542 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1543 unlock_page(page);
1544 put_page(page);
1545 page_nid = -1;
1546 goto out_unlock;
1547 }
1548
1549 /* Bail if we fail to protect against THP splits for any reason */
1550 if (unlikely(!anon_vma)) {
1551 put_page(page);
1552 page_nid = -1;
1553 goto clear_pmdnuma;
1554 }
1555
1556 /*
1557 * Migrate the THP to the requested node, returns with page unlocked
1558 * and access rights restored.
1559 */
1560 spin_unlock(fe->ptl);
1561 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1562 fe->pmd, pmd, fe->address, page, target_nid);
1563 if (migrated) {
1564 flags |= TNF_MIGRATED;
1565 page_nid = target_nid;
1566 } else
1567 flags |= TNF_MIGRATE_FAIL;
1568
1569 goto out;
1570 clear_pmdnuma:
1571 BUG_ON(!PageLocked(page));
1572 was_writable = pmd_write(pmd);
1573 pmd = pmd_modify(pmd, vma->vm_page_prot);
1574 pmd = pmd_mkyoung(pmd);
1575 if (was_writable)
1576 pmd = pmd_mkwrite(pmd);
1577 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1578 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1579 unlock_page(page);
1580 out_unlock:
1581 spin_unlock(fe->ptl);
1582
1583 out:
1584 if (anon_vma)
1585 page_unlock_anon_vma_read(anon_vma);
1586
1587 if (page_nid != -1)
1588 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1589
1590 return 0;
1591 }
1592
1593 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1594 pmd_t *pmd, unsigned long addr, unsigned long next)
1595
1596 {
1597 spinlock_t *ptl;
1598 pmd_t orig_pmd;
1599 struct page *page;
1600 struct mm_struct *mm = tlb->mm;
1601 int ret = 0;
1602
1603 ptl = pmd_trans_huge_lock(pmd, vma);
1604 if (!ptl)
1605 goto out_unlocked;
1606
1607 orig_pmd = *pmd;
1608 if (is_huge_zero_pmd(orig_pmd)) {
1609 ret = 1;
1610 goto out;
1611 }
1612
1613 page = pmd_page(orig_pmd);
1614 /*
1615 * If other processes are mapping this page, we couldn't discard
1616 * the page unless they all do MADV_FREE so let's skip the page.
1617 */
1618 if (page_mapcount(page) != 1)
1619 goto out;
1620
1621 if (!trylock_page(page))
1622 goto out;
1623
1624 /*
1625 * If user want to discard part-pages of THP, split it so MADV_FREE
1626 * will deactivate only them.
1627 */
1628 if (next - addr != HPAGE_PMD_SIZE) {
1629 get_page(page);
1630 spin_unlock(ptl);
1631 split_huge_page(page);
1632 put_page(page);
1633 unlock_page(page);
1634 goto out_unlocked;
1635 }
1636
1637 if (PageDirty(page))
1638 ClearPageDirty(page);
1639 unlock_page(page);
1640
1641 if (PageActive(page))
1642 deactivate_page(page);
1643
1644 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646 tlb->fullmm);
1647 orig_pmd = pmd_mkold(orig_pmd);
1648 orig_pmd = pmd_mkclean(orig_pmd);
1649
1650 set_pmd_at(mm, addr, pmd, orig_pmd);
1651 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652 }
1653 ret = 1;
1654 out:
1655 spin_unlock(ptl);
1656 out_unlocked:
1657 return ret;
1658 }
1659
1660 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661 pmd_t *pmd, unsigned long addr)
1662 {
1663 pmd_t orig_pmd;
1664 spinlock_t *ptl;
1665
1666 ptl = __pmd_trans_huge_lock(pmd, vma);
1667 if (!ptl)
1668 return 0;
1669 /*
1670 * For architectures like ppc64 we look at deposited pgtable
1671 * when calling pmdp_huge_get_and_clear. So do the
1672 * pgtable_trans_huge_withdraw after finishing pmdp related
1673 * operations.
1674 */
1675 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676 tlb->fullmm);
1677 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678 if (vma_is_dax(vma)) {
1679 spin_unlock(ptl);
1680 if (is_huge_zero_pmd(orig_pmd))
1681 tlb_remove_page(tlb, pmd_page(orig_pmd));
1682 } else if (is_huge_zero_pmd(orig_pmd)) {
1683 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684 atomic_long_dec(&tlb->mm->nr_ptes);
1685 spin_unlock(ptl);
1686 tlb_remove_page(tlb, pmd_page(orig_pmd));
1687 } else {
1688 struct page *page = pmd_page(orig_pmd);
1689 page_remove_rmap(page, true);
1690 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691 VM_BUG_ON_PAGE(!PageHead(page), page);
1692 if (PageAnon(page)) {
1693 pgtable_t pgtable;
1694 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1695 pte_free(tlb->mm, pgtable);
1696 atomic_long_dec(&tlb->mm->nr_ptes);
1697 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1698 } else {
1699 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1700 }
1701 spin_unlock(ptl);
1702 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1703 }
1704 return 1;
1705 }
1706
1707 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1708 unsigned long new_addr, unsigned long old_end,
1709 pmd_t *old_pmd, pmd_t *new_pmd)
1710 {
1711 spinlock_t *old_ptl, *new_ptl;
1712 pmd_t pmd;
1713 struct mm_struct *mm = vma->vm_mm;
1714
1715 if ((old_addr & ~HPAGE_PMD_MASK) ||
1716 (new_addr & ~HPAGE_PMD_MASK) ||
1717 old_end - old_addr < HPAGE_PMD_SIZE)
1718 return false;
1719
1720 /*
1721 * The destination pmd shouldn't be established, free_pgtables()
1722 * should have release it.
1723 */
1724 if (WARN_ON(!pmd_none(*new_pmd))) {
1725 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1726 return false;
1727 }
1728
1729 /*
1730 * We don't have to worry about the ordering of src and dst
1731 * ptlocks because exclusive mmap_sem prevents deadlock.
1732 */
1733 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1734 if (old_ptl) {
1735 new_ptl = pmd_lockptr(mm, new_pmd);
1736 if (new_ptl != old_ptl)
1737 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1738 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1739 VM_BUG_ON(!pmd_none(*new_pmd));
1740
1741 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1742 vma_is_anonymous(vma)) {
1743 pgtable_t pgtable;
1744 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1745 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1746 }
1747 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1748 if (new_ptl != old_ptl)
1749 spin_unlock(new_ptl);
1750 spin_unlock(old_ptl);
1751 return true;
1752 }
1753 return false;
1754 }
1755
1756 /*
1757 * Returns
1758 * - 0 if PMD could not be locked
1759 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1760 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1761 */
1762 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1763 unsigned long addr, pgprot_t newprot, int prot_numa)
1764 {
1765 struct mm_struct *mm = vma->vm_mm;
1766 spinlock_t *ptl;
1767 int ret = 0;
1768
1769 ptl = __pmd_trans_huge_lock(pmd, vma);
1770 if (ptl) {
1771 pmd_t entry;
1772 bool preserve_write = prot_numa && pmd_write(*pmd);
1773 ret = 1;
1774
1775 /*
1776 * Avoid trapping faults against the zero page. The read-only
1777 * data is likely to be read-cached on the local CPU and
1778 * local/remote hits to the zero page are not interesting.
1779 */
1780 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1781 spin_unlock(ptl);
1782 return ret;
1783 }
1784
1785 if (!prot_numa || !pmd_protnone(*pmd)) {
1786 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1787 entry = pmd_modify(entry, newprot);
1788 if (preserve_write)
1789 entry = pmd_mkwrite(entry);
1790 ret = HPAGE_PMD_NR;
1791 set_pmd_at(mm, addr, pmd, entry);
1792 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1793 pmd_write(entry));
1794 }
1795 spin_unlock(ptl);
1796 }
1797
1798 return ret;
1799 }
1800
1801 /*
1802 * Returns true if a given pmd maps a thp, false otherwise.
1803 *
1804 * Note that if it returns true, this routine returns without unlocking page
1805 * table lock. So callers must unlock it.
1806 */
1807 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1808 {
1809 spinlock_t *ptl;
1810 ptl = pmd_lock(vma->vm_mm, pmd);
1811 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1812 return ptl;
1813 spin_unlock(ptl);
1814 return NULL;
1815 }
1816
1817 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1818
1819 int hugepage_madvise(struct vm_area_struct *vma,
1820 unsigned long *vm_flags, int advice)
1821 {
1822 switch (advice) {
1823 case MADV_HUGEPAGE:
1824 #ifdef CONFIG_S390
1825 /*
1826 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1827 * can't handle this properly after s390_enable_sie, so we simply
1828 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1829 */
1830 if (mm_has_pgste(vma->vm_mm))
1831 return 0;
1832 #endif
1833 /*
1834 * Be somewhat over-protective like KSM for now!
1835 */
1836 if (*vm_flags & VM_NO_THP)
1837 return -EINVAL;
1838 *vm_flags &= ~VM_NOHUGEPAGE;
1839 *vm_flags |= VM_HUGEPAGE;
1840 /*
1841 * If the vma become good for khugepaged to scan,
1842 * register it here without waiting a page fault that
1843 * may not happen any time soon.
1844 */
1845 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1846 return -ENOMEM;
1847 break;
1848 case MADV_NOHUGEPAGE:
1849 /*
1850 * Be somewhat over-protective like KSM for now!
1851 */
1852 if (*vm_flags & VM_NO_THP)
1853 return -EINVAL;
1854 *vm_flags &= ~VM_HUGEPAGE;
1855 *vm_flags |= VM_NOHUGEPAGE;
1856 /*
1857 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1858 * this vma even if we leave the mm registered in khugepaged if
1859 * it got registered before VM_NOHUGEPAGE was set.
1860 */
1861 break;
1862 }
1863
1864 return 0;
1865 }
1866
1867 static int __init khugepaged_slab_init(void)
1868 {
1869 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1870 sizeof(struct mm_slot),
1871 __alignof__(struct mm_slot), 0, NULL);
1872 if (!mm_slot_cache)
1873 return -ENOMEM;
1874
1875 return 0;
1876 }
1877
1878 static void __init khugepaged_slab_exit(void)
1879 {
1880 kmem_cache_destroy(mm_slot_cache);
1881 }
1882
1883 static inline struct mm_slot *alloc_mm_slot(void)
1884 {
1885 if (!mm_slot_cache) /* initialization failed */
1886 return NULL;
1887 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1888 }
1889
1890 static inline void free_mm_slot(struct mm_slot *mm_slot)
1891 {
1892 kmem_cache_free(mm_slot_cache, mm_slot);
1893 }
1894
1895 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1896 {
1897 struct mm_slot *mm_slot;
1898
1899 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1900 if (mm == mm_slot->mm)
1901 return mm_slot;
1902
1903 return NULL;
1904 }
1905
1906 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1907 struct mm_slot *mm_slot)
1908 {
1909 mm_slot->mm = mm;
1910 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1911 }
1912
1913 static inline int khugepaged_test_exit(struct mm_struct *mm)
1914 {
1915 return atomic_read(&mm->mm_users) == 0;
1916 }
1917
1918 int __khugepaged_enter(struct mm_struct *mm)
1919 {
1920 struct mm_slot *mm_slot;
1921 int wakeup;
1922
1923 mm_slot = alloc_mm_slot();
1924 if (!mm_slot)
1925 return -ENOMEM;
1926
1927 /* __khugepaged_exit() must not run from under us */
1928 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1929 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1930 free_mm_slot(mm_slot);
1931 return 0;
1932 }
1933
1934 spin_lock(&khugepaged_mm_lock);
1935 insert_to_mm_slots_hash(mm, mm_slot);
1936 /*
1937 * Insert just behind the scanning cursor, to let the area settle
1938 * down a little.
1939 */
1940 wakeup = list_empty(&khugepaged_scan.mm_head);
1941 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1942 spin_unlock(&khugepaged_mm_lock);
1943
1944 atomic_inc(&mm->mm_count);
1945 if (wakeup)
1946 wake_up_interruptible(&khugepaged_wait);
1947
1948 return 0;
1949 }
1950
1951 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1952 unsigned long vm_flags)
1953 {
1954 unsigned long hstart, hend;
1955 if (!vma->anon_vma)
1956 /*
1957 * Not yet faulted in so we will register later in the
1958 * page fault if needed.
1959 */
1960 return 0;
1961 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1962 /* khugepaged not yet working on file or special mappings */
1963 return 0;
1964 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1965 hend = vma->vm_end & HPAGE_PMD_MASK;
1966 if (hstart < hend)
1967 return khugepaged_enter(vma, vm_flags);
1968 return 0;
1969 }
1970
1971 void __khugepaged_exit(struct mm_struct *mm)
1972 {
1973 struct mm_slot *mm_slot;
1974 int free = 0;
1975
1976 spin_lock(&khugepaged_mm_lock);
1977 mm_slot = get_mm_slot(mm);
1978 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1979 hash_del(&mm_slot->hash);
1980 list_del(&mm_slot->mm_node);
1981 free = 1;
1982 }
1983 spin_unlock(&khugepaged_mm_lock);
1984
1985 if (free) {
1986 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1987 free_mm_slot(mm_slot);
1988 mmdrop(mm);
1989 } else if (mm_slot) {
1990 /*
1991 * This is required to serialize against
1992 * khugepaged_test_exit() (which is guaranteed to run
1993 * under mmap sem read mode). Stop here (after we
1994 * return all pagetables will be destroyed) until
1995 * khugepaged has finished working on the pagetables
1996 * under the mmap_sem.
1997 */
1998 down_write(&mm->mmap_sem);
1999 up_write(&mm->mmap_sem);
2000 }
2001 }
2002
2003 static void release_pte_page(struct page *page)
2004 {
2005 /* 0 stands for page_is_file_cache(page) == false */
2006 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2007 unlock_page(page);
2008 putback_lru_page(page);
2009 }
2010
2011 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2012 {
2013 while (--_pte >= pte) {
2014 pte_t pteval = *_pte;
2015 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2016 release_pte_page(pte_page(pteval));
2017 }
2018 }
2019
2020 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2021 unsigned long address,
2022 pte_t *pte)
2023 {
2024 struct page *page = NULL;
2025 pte_t *_pte;
2026 int none_or_zero = 0, result = 0;
2027 bool referenced = false, writable = false;
2028
2029 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2030 _pte++, address += PAGE_SIZE) {
2031 pte_t pteval = *_pte;
2032 if (pte_none(pteval) || (pte_present(pteval) &&
2033 is_zero_pfn(pte_pfn(pteval)))) {
2034 if (!userfaultfd_armed(vma) &&
2035 ++none_or_zero <= khugepaged_max_ptes_none) {
2036 continue;
2037 } else {
2038 result = SCAN_EXCEED_NONE_PTE;
2039 goto out;
2040 }
2041 }
2042 if (!pte_present(pteval)) {
2043 result = SCAN_PTE_NON_PRESENT;
2044 goto out;
2045 }
2046 page = vm_normal_page(vma, address, pteval);
2047 if (unlikely(!page)) {
2048 result = SCAN_PAGE_NULL;
2049 goto out;
2050 }
2051
2052 VM_BUG_ON_PAGE(PageCompound(page), page);
2053 VM_BUG_ON_PAGE(!PageAnon(page), page);
2054 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2055
2056 /*
2057 * We can do it before isolate_lru_page because the
2058 * page can't be freed from under us. NOTE: PG_lock
2059 * is needed to serialize against split_huge_page
2060 * when invoked from the VM.
2061 */
2062 if (!trylock_page(page)) {
2063 result = SCAN_PAGE_LOCK;
2064 goto out;
2065 }
2066
2067 /*
2068 * cannot use mapcount: can't collapse if there's a gup pin.
2069 * The page must only be referenced by the scanned process
2070 * and page swap cache.
2071 */
2072 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2073 unlock_page(page);
2074 result = SCAN_PAGE_COUNT;
2075 goto out;
2076 }
2077 if (pte_write(pteval)) {
2078 writable = true;
2079 } else {
2080 if (PageSwapCache(page) &&
2081 !reuse_swap_page(page, NULL)) {
2082 unlock_page(page);
2083 result = SCAN_SWAP_CACHE_PAGE;
2084 goto out;
2085 }
2086 /*
2087 * Page is not in the swap cache. It can be collapsed
2088 * into a THP.
2089 */
2090 }
2091
2092 /*
2093 * Isolate the page to avoid collapsing an hugepage
2094 * currently in use by the VM.
2095 */
2096 if (isolate_lru_page(page)) {
2097 unlock_page(page);
2098 result = SCAN_DEL_PAGE_LRU;
2099 goto out;
2100 }
2101 /* 0 stands for page_is_file_cache(page) == false */
2102 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2103 VM_BUG_ON_PAGE(!PageLocked(page), page);
2104 VM_BUG_ON_PAGE(PageLRU(page), page);
2105
2106 /* If there is no mapped pte young don't collapse the page */
2107 if (pte_young(pteval) ||
2108 page_is_young(page) || PageReferenced(page) ||
2109 mmu_notifier_test_young(vma->vm_mm, address))
2110 referenced = true;
2111 }
2112 if (likely(writable)) {
2113 if (likely(referenced)) {
2114 result = SCAN_SUCCEED;
2115 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2116 referenced, writable, result);
2117 return 1;
2118 }
2119 } else {
2120 result = SCAN_PAGE_RO;
2121 }
2122
2123 out:
2124 release_pte_pages(pte, _pte);
2125 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2126 referenced, writable, result);
2127 return 0;
2128 }
2129
2130 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2131 struct vm_area_struct *vma,
2132 unsigned long address,
2133 spinlock_t *ptl)
2134 {
2135 pte_t *_pte;
2136 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2137 pte_t pteval = *_pte;
2138 struct page *src_page;
2139
2140 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2141 clear_user_highpage(page, address);
2142 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2143 if (is_zero_pfn(pte_pfn(pteval))) {
2144 /*
2145 * ptl mostly unnecessary.
2146 */
2147 spin_lock(ptl);
2148 /*
2149 * paravirt calls inside pte_clear here are
2150 * superfluous.
2151 */
2152 pte_clear(vma->vm_mm, address, _pte);
2153 spin_unlock(ptl);
2154 }
2155 } else {
2156 src_page = pte_page(pteval);
2157 copy_user_highpage(page, src_page, address, vma);
2158 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2159 release_pte_page(src_page);
2160 /*
2161 * ptl mostly unnecessary, but preempt has to
2162 * be disabled to update the per-cpu stats
2163 * inside page_remove_rmap().
2164 */
2165 spin_lock(ptl);
2166 /*
2167 * paravirt calls inside pte_clear here are
2168 * superfluous.
2169 */
2170 pte_clear(vma->vm_mm, address, _pte);
2171 page_remove_rmap(src_page, false);
2172 spin_unlock(ptl);
2173 free_page_and_swap_cache(src_page);
2174 }
2175
2176 address += PAGE_SIZE;
2177 page++;
2178 }
2179 }
2180
2181 static void khugepaged_alloc_sleep(void)
2182 {
2183 DEFINE_WAIT(wait);
2184
2185 add_wait_queue(&khugepaged_wait, &wait);
2186 freezable_schedule_timeout_interruptible(
2187 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2188 remove_wait_queue(&khugepaged_wait, &wait);
2189 }
2190
2191 static int khugepaged_node_load[MAX_NUMNODES];
2192
2193 static bool khugepaged_scan_abort(int nid)
2194 {
2195 int i;
2196
2197 /*
2198 * If zone_reclaim_mode is disabled, then no extra effort is made to
2199 * allocate memory locally.
2200 */
2201 if (!zone_reclaim_mode)
2202 return false;
2203
2204 /* If there is a count for this node already, it must be acceptable */
2205 if (khugepaged_node_load[nid])
2206 return false;
2207
2208 for (i = 0; i < MAX_NUMNODES; i++) {
2209 if (!khugepaged_node_load[i])
2210 continue;
2211 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2212 return true;
2213 }
2214 return false;
2215 }
2216
2217 #ifdef CONFIG_NUMA
2218 static int khugepaged_find_target_node(void)
2219 {
2220 static int last_khugepaged_target_node = NUMA_NO_NODE;
2221 int nid, target_node = 0, max_value = 0;
2222
2223 /* find first node with max normal pages hit */
2224 for (nid = 0; nid < MAX_NUMNODES; nid++)
2225 if (khugepaged_node_load[nid] > max_value) {
2226 max_value = khugepaged_node_load[nid];
2227 target_node = nid;
2228 }
2229
2230 /* do some balance if several nodes have the same hit record */
2231 if (target_node <= last_khugepaged_target_node)
2232 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2233 nid++)
2234 if (max_value == khugepaged_node_load[nid]) {
2235 target_node = nid;
2236 break;
2237 }
2238
2239 last_khugepaged_target_node = target_node;
2240 return target_node;
2241 }
2242
2243 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2244 {
2245 if (IS_ERR(*hpage)) {
2246 if (!*wait)
2247 return false;
2248
2249 *wait = false;
2250 *hpage = NULL;
2251 khugepaged_alloc_sleep();
2252 } else if (*hpage) {
2253 put_page(*hpage);
2254 *hpage = NULL;
2255 }
2256
2257 return true;
2258 }
2259
2260 static struct page *
2261 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2262 unsigned long address, int node)
2263 {
2264 VM_BUG_ON_PAGE(*hpage, *hpage);
2265
2266 /*
2267 * Before allocating the hugepage, release the mmap_sem read lock.
2268 * The allocation can take potentially a long time if it involves
2269 * sync compaction, and we do not need to hold the mmap_sem during
2270 * that. We will recheck the vma after taking it again in write mode.
2271 */
2272 up_read(&mm->mmap_sem);
2273
2274 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2275 if (unlikely(!*hpage)) {
2276 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2277 *hpage = ERR_PTR(-ENOMEM);
2278 return NULL;
2279 }
2280
2281 prep_transhuge_page(*hpage);
2282 count_vm_event(THP_COLLAPSE_ALLOC);
2283 return *hpage;
2284 }
2285 #else
2286 static int khugepaged_find_target_node(void)
2287 {
2288 return 0;
2289 }
2290
2291 static inline struct page *alloc_khugepaged_hugepage(void)
2292 {
2293 struct page *page;
2294
2295 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2296 HPAGE_PMD_ORDER);
2297 if (page)
2298 prep_transhuge_page(page);
2299 return page;
2300 }
2301
2302 static struct page *khugepaged_alloc_hugepage(bool *wait)
2303 {
2304 struct page *hpage;
2305
2306 do {
2307 hpage = alloc_khugepaged_hugepage();
2308 if (!hpage) {
2309 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2310 if (!*wait)
2311 return NULL;
2312
2313 *wait = false;
2314 khugepaged_alloc_sleep();
2315 } else
2316 count_vm_event(THP_COLLAPSE_ALLOC);
2317 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2318
2319 return hpage;
2320 }
2321
2322 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2323 {
2324 if (!*hpage)
2325 *hpage = khugepaged_alloc_hugepage(wait);
2326
2327 if (unlikely(!*hpage))
2328 return false;
2329
2330 return true;
2331 }
2332
2333 static struct page *
2334 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2335 unsigned long address, int node)
2336 {
2337 up_read(&mm->mmap_sem);
2338 VM_BUG_ON(!*hpage);
2339
2340 return *hpage;
2341 }
2342 #endif
2343
2344 static bool hugepage_vma_check(struct vm_area_struct *vma)
2345 {
2346 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2347 (vma->vm_flags & VM_NOHUGEPAGE))
2348 return false;
2349 if (!vma->anon_vma || vma->vm_ops)
2350 return false;
2351 if (is_vma_temporary_stack(vma))
2352 return false;
2353 return !(vma->vm_flags & VM_NO_THP);
2354 }
2355
2356 /*
2357 * If mmap_sem temporarily dropped, revalidate vma
2358 * before taking mmap_sem.
2359 * Return 0 if succeeds, otherwise return none-zero
2360 * value (scan code).
2361 */
2362
2363 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2364 {
2365 struct vm_area_struct *vma;
2366 unsigned long hstart, hend;
2367
2368 if (unlikely(khugepaged_test_exit(mm)))
2369 return SCAN_ANY_PROCESS;
2370
2371 vma = find_vma(mm, address);
2372 if (!vma)
2373 return SCAN_VMA_NULL;
2374
2375 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2376 hend = vma->vm_end & HPAGE_PMD_MASK;
2377 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2378 return SCAN_ADDRESS_RANGE;
2379 if (!hugepage_vma_check(vma))
2380 return SCAN_VMA_CHECK;
2381 return 0;
2382 }
2383
2384 /*
2385 * Bring missing pages in from swap, to complete THP collapse.
2386 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2387 *
2388 * Called and returns without pte mapped or spinlocks held,
2389 * but with mmap_sem held to protect against vma changes.
2390 */
2391
2392 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2393 struct vm_area_struct *vma,
2394 unsigned long address, pmd_t *pmd)
2395 {
2396 pte_t pteval;
2397 int swapped_in = 0, ret = 0;
2398 struct fault_env fe = {
2399 .vma = vma,
2400 .address = address,
2401 .flags = FAULT_FLAG_ALLOW_RETRY,
2402 .pmd = pmd,
2403 };
2404
2405 fe.pte = pte_offset_map(pmd, address);
2406 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2407 fe.pte++, fe.address += PAGE_SIZE) {
2408 pteval = *fe.pte;
2409 if (!is_swap_pte(pteval))
2410 continue;
2411 swapped_in++;
2412 ret = do_swap_page(&fe, pteval);
2413 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2414 if (ret & VM_FAULT_RETRY) {
2415 down_read(&mm->mmap_sem);
2416 /* vma is no longer available, don't continue to swapin */
2417 if (hugepage_vma_revalidate(mm, address))
2418 return false;
2419 /* check if the pmd is still valid */
2420 if (mm_find_pmd(mm, address) != pmd)
2421 return false;
2422 }
2423 if (ret & VM_FAULT_ERROR) {
2424 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2425 return false;
2426 }
2427 /* pte is unmapped now, we need to map it */
2428 fe.pte = pte_offset_map(pmd, fe.address);
2429 }
2430 fe.pte--;
2431 pte_unmap(fe.pte);
2432 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2433 return true;
2434 }
2435
2436 static void collapse_huge_page(struct mm_struct *mm,
2437 unsigned long address,
2438 struct page **hpage,
2439 struct vm_area_struct *vma,
2440 int node)
2441 {
2442 pmd_t *pmd, _pmd;
2443 pte_t *pte;
2444 pgtable_t pgtable;
2445 struct page *new_page;
2446 spinlock_t *pmd_ptl, *pte_ptl;
2447 int isolated = 0, result = 0;
2448 struct mem_cgroup *memcg;
2449 unsigned long mmun_start; /* For mmu_notifiers */
2450 unsigned long mmun_end; /* For mmu_notifiers */
2451 gfp_t gfp;
2452
2453 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2454
2455 /* Only allocate from the target node */
2456 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2457
2458 /* release the mmap_sem read lock. */
2459 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2460 if (!new_page) {
2461 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2462 goto out_nolock;
2463 }
2464
2465 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2466 result = SCAN_CGROUP_CHARGE_FAIL;
2467 goto out_nolock;
2468 }
2469
2470 down_read(&mm->mmap_sem);
2471 result = hugepage_vma_revalidate(mm, address);
2472 if (result) {
2473 mem_cgroup_cancel_charge(new_page, memcg, true);
2474 up_read(&mm->mmap_sem);
2475 goto out_nolock;
2476 }
2477
2478 pmd = mm_find_pmd(mm, address);
2479 if (!pmd) {
2480 result = SCAN_PMD_NULL;
2481 mem_cgroup_cancel_charge(new_page, memcg, true);
2482 up_read(&mm->mmap_sem);
2483 goto out_nolock;
2484 }
2485
2486 /*
2487 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2488 * If it fails, release mmap_sem and jump directly out.
2489 * Continuing to collapse causes inconsistency.
2490 */
2491 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2492 mem_cgroup_cancel_charge(new_page, memcg, true);
2493 up_read(&mm->mmap_sem);
2494 goto out_nolock;
2495 }
2496
2497 up_read(&mm->mmap_sem);
2498 /*
2499 * Prevent all access to pagetables with the exception of
2500 * gup_fast later handled by the ptep_clear_flush and the VM
2501 * handled by the anon_vma lock + PG_lock.
2502 */
2503 down_write(&mm->mmap_sem);
2504 result = hugepage_vma_revalidate(mm, address);
2505 if (result)
2506 goto out;
2507 /* check if the pmd is still valid */
2508 if (mm_find_pmd(mm, address) != pmd)
2509 goto out;
2510
2511 anon_vma_lock_write(vma->anon_vma);
2512
2513 pte = pte_offset_map(pmd, address);
2514 pte_ptl = pte_lockptr(mm, pmd);
2515
2516 mmun_start = address;
2517 mmun_end = address + HPAGE_PMD_SIZE;
2518 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2519 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2520 /*
2521 * After this gup_fast can't run anymore. This also removes
2522 * any huge TLB entry from the CPU so we won't allow
2523 * huge and small TLB entries for the same virtual address
2524 * to avoid the risk of CPU bugs in that area.
2525 */
2526 _pmd = pmdp_collapse_flush(vma, address, pmd);
2527 spin_unlock(pmd_ptl);
2528 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2529
2530 spin_lock(pte_ptl);
2531 isolated = __collapse_huge_page_isolate(vma, address, pte);
2532 spin_unlock(pte_ptl);
2533
2534 if (unlikely(!isolated)) {
2535 pte_unmap(pte);
2536 spin_lock(pmd_ptl);
2537 BUG_ON(!pmd_none(*pmd));
2538 /*
2539 * We can only use set_pmd_at when establishing
2540 * hugepmds and never for establishing regular pmds that
2541 * points to regular pagetables. Use pmd_populate for that
2542 */
2543 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2544 spin_unlock(pmd_ptl);
2545 anon_vma_unlock_write(vma->anon_vma);
2546 result = SCAN_FAIL;
2547 goto out;
2548 }
2549
2550 /*
2551 * All pages are isolated and locked so anon_vma rmap
2552 * can't run anymore.
2553 */
2554 anon_vma_unlock_write(vma->anon_vma);
2555
2556 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2557 pte_unmap(pte);
2558 __SetPageUptodate(new_page);
2559 pgtable = pmd_pgtable(_pmd);
2560
2561 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2562 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2563
2564 /*
2565 * spin_lock() below is not the equivalent of smp_wmb(), so
2566 * this is needed to avoid the copy_huge_page writes to become
2567 * visible after the set_pmd_at() write.
2568 */
2569 smp_wmb();
2570
2571 spin_lock(pmd_ptl);
2572 BUG_ON(!pmd_none(*pmd));
2573 page_add_new_anon_rmap(new_page, vma, address, true);
2574 mem_cgroup_commit_charge(new_page, memcg, false, true);
2575 lru_cache_add_active_or_unevictable(new_page, vma);
2576 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2577 set_pmd_at(mm, address, pmd, _pmd);
2578 update_mmu_cache_pmd(vma, address, pmd);
2579 spin_unlock(pmd_ptl);
2580
2581 *hpage = NULL;
2582
2583 khugepaged_pages_collapsed++;
2584 result = SCAN_SUCCEED;
2585 out_up_write:
2586 up_write(&mm->mmap_sem);
2587 out_nolock:
2588 trace_mm_collapse_huge_page(mm, isolated, result);
2589 return;
2590 out:
2591 mem_cgroup_cancel_charge(new_page, memcg, true);
2592 goto out_up_write;
2593 }
2594
2595 static int khugepaged_scan_pmd(struct mm_struct *mm,
2596 struct vm_area_struct *vma,
2597 unsigned long address,
2598 struct page **hpage)
2599 {
2600 pmd_t *pmd;
2601 pte_t *pte, *_pte;
2602 int ret = 0, none_or_zero = 0, result = 0;
2603 struct page *page = NULL;
2604 unsigned long _address;
2605 spinlock_t *ptl;
2606 int node = NUMA_NO_NODE, unmapped = 0;
2607 bool writable = false, referenced = false;
2608
2609 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2610
2611 pmd = mm_find_pmd(mm, address);
2612 if (!pmd) {
2613 result = SCAN_PMD_NULL;
2614 goto out;
2615 }
2616
2617 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2618 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2619 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2620 _pte++, _address += PAGE_SIZE) {
2621 pte_t pteval = *_pte;
2622 if (is_swap_pte(pteval)) {
2623 if (++unmapped <= khugepaged_max_ptes_swap) {
2624 continue;
2625 } else {
2626 result = SCAN_EXCEED_SWAP_PTE;
2627 goto out_unmap;
2628 }
2629 }
2630 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2631 if (!userfaultfd_armed(vma) &&
2632 ++none_or_zero <= khugepaged_max_ptes_none) {
2633 continue;
2634 } else {
2635 result = SCAN_EXCEED_NONE_PTE;
2636 goto out_unmap;
2637 }
2638 }
2639 if (!pte_present(pteval)) {
2640 result = SCAN_PTE_NON_PRESENT;
2641 goto out_unmap;
2642 }
2643 if (pte_write(pteval))
2644 writable = true;
2645
2646 page = vm_normal_page(vma, _address, pteval);
2647 if (unlikely(!page)) {
2648 result = SCAN_PAGE_NULL;
2649 goto out_unmap;
2650 }
2651
2652 /* TODO: teach khugepaged to collapse THP mapped with pte */
2653 if (PageCompound(page)) {
2654 result = SCAN_PAGE_COMPOUND;
2655 goto out_unmap;
2656 }
2657
2658 /*
2659 * Record which node the original page is from and save this
2660 * information to khugepaged_node_load[].
2661 * Khupaged will allocate hugepage from the node has the max
2662 * hit record.
2663 */
2664 node = page_to_nid(page);
2665 if (khugepaged_scan_abort(node)) {
2666 result = SCAN_SCAN_ABORT;
2667 goto out_unmap;
2668 }
2669 khugepaged_node_load[node]++;
2670 if (!PageLRU(page)) {
2671 result = SCAN_PAGE_LRU;
2672 goto out_unmap;
2673 }
2674 if (PageLocked(page)) {
2675 result = SCAN_PAGE_LOCK;
2676 goto out_unmap;
2677 }
2678 if (!PageAnon(page)) {
2679 result = SCAN_PAGE_ANON;
2680 goto out_unmap;
2681 }
2682
2683 /*
2684 * cannot use mapcount: can't collapse if there's a gup pin.
2685 * The page must only be referenced by the scanned process
2686 * and page swap cache.
2687 */
2688 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2689 result = SCAN_PAGE_COUNT;
2690 goto out_unmap;
2691 }
2692 if (pte_young(pteval) ||
2693 page_is_young(page) || PageReferenced(page) ||
2694 mmu_notifier_test_young(vma->vm_mm, address))
2695 referenced = true;
2696 }
2697 if (writable) {
2698 if (referenced) {
2699 result = SCAN_SUCCEED;
2700 ret = 1;
2701 } else {
2702 result = SCAN_NO_REFERENCED_PAGE;
2703 }
2704 } else {
2705 result = SCAN_PAGE_RO;
2706 }
2707 out_unmap:
2708 pte_unmap_unlock(pte, ptl);
2709 if (ret) {
2710 node = khugepaged_find_target_node();
2711 /* collapse_huge_page will return with the mmap_sem released */
2712 collapse_huge_page(mm, address, hpage, vma, node);
2713 }
2714 out:
2715 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2716 none_or_zero, result, unmapped);
2717 return ret;
2718 }
2719
2720 static void collect_mm_slot(struct mm_slot *mm_slot)
2721 {
2722 struct mm_struct *mm = mm_slot->mm;
2723
2724 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2725
2726 if (khugepaged_test_exit(mm)) {
2727 /* free mm_slot */
2728 hash_del(&mm_slot->hash);
2729 list_del(&mm_slot->mm_node);
2730
2731 /*
2732 * Not strictly needed because the mm exited already.
2733 *
2734 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2735 */
2736
2737 /* khugepaged_mm_lock actually not necessary for the below */
2738 free_mm_slot(mm_slot);
2739 mmdrop(mm);
2740 }
2741 }
2742
2743 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2744 struct page **hpage)
2745 __releases(&khugepaged_mm_lock)
2746 __acquires(&khugepaged_mm_lock)
2747 {
2748 struct mm_slot *mm_slot;
2749 struct mm_struct *mm;
2750 struct vm_area_struct *vma;
2751 int progress = 0;
2752
2753 VM_BUG_ON(!pages);
2754 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2755
2756 if (khugepaged_scan.mm_slot)
2757 mm_slot = khugepaged_scan.mm_slot;
2758 else {
2759 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2760 struct mm_slot, mm_node);
2761 khugepaged_scan.address = 0;
2762 khugepaged_scan.mm_slot = mm_slot;
2763 }
2764 spin_unlock(&khugepaged_mm_lock);
2765
2766 mm = mm_slot->mm;
2767 down_read(&mm->mmap_sem);
2768 if (unlikely(khugepaged_test_exit(mm)))
2769 vma = NULL;
2770 else
2771 vma = find_vma(mm, khugepaged_scan.address);
2772
2773 progress++;
2774 for (; vma; vma = vma->vm_next) {
2775 unsigned long hstart, hend;
2776
2777 cond_resched();
2778 if (unlikely(khugepaged_test_exit(mm))) {
2779 progress++;
2780 break;
2781 }
2782 if (!hugepage_vma_check(vma)) {
2783 skip:
2784 progress++;
2785 continue;
2786 }
2787 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2788 hend = vma->vm_end & HPAGE_PMD_MASK;
2789 if (hstart >= hend)
2790 goto skip;
2791 if (khugepaged_scan.address > hend)
2792 goto skip;
2793 if (khugepaged_scan.address < hstart)
2794 khugepaged_scan.address = hstart;
2795 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2796
2797 while (khugepaged_scan.address < hend) {
2798 int ret;
2799 cond_resched();
2800 if (unlikely(khugepaged_test_exit(mm)))
2801 goto breakouterloop;
2802
2803 VM_BUG_ON(khugepaged_scan.address < hstart ||
2804 khugepaged_scan.address + HPAGE_PMD_SIZE >
2805 hend);
2806 ret = khugepaged_scan_pmd(mm, vma,
2807 khugepaged_scan.address,
2808 hpage);
2809 /* move to next address */
2810 khugepaged_scan.address += HPAGE_PMD_SIZE;
2811 progress += HPAGE_PMD_NR;
2812 if (ret)
2813 /* we released mmap_sem so break loop */
2814 goto breakouterloop_mmap_sem;
2815 if (progress >= pages)
2816 goto breakouterloop;
2817 }
2818 }
2819 breakouterloop:
2820 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2821 breakouterloop_mmap_sem:
2822
2823 spin_lock(&khugepaged_mm_lock);
2824 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2825 /*
2826 * Release the current mm_slot if this mm is about to die, or
2827 * if we scanned all vmas of this mm.
2828 */
2829 if (khugepaged_test_exit(mm) || !vma) {
2830 /*
2831 * Make sure that if mm_users is reaching zero while
2832 * khugepaged runs here, khugepaged_exit will find
2833 * mm_slot not pointing to the exiting mm.
2834 */
2835 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2836 khugepaged_scan.mm_slot = list_entry(
2837 mm_slot->mm_node.next,
2838 struct mm_slot, mm_node);
2839 khugepaged_scan.address = 0;
2840 } else {
2841 khugepaged_scan.mm_slot = NULL;
2842 khugepaged_full_scans++;
2843 }
2844
2845 collect_mm_slot(mm_slot);
2846 }
2847
2848 return progress;
2849 }
2850
2851 static int khugepaged_has_work(void)
2852 {
2853 return !list_empty(&khugepaged_scan.mm_head) &&
2854 khugepaged_enabled();
2855 }
2856
2857 static int khugepaged_wait_event(void)
2858 {
2859 return !list_empty(&khugepaged_scan.mm_head) ||
2860 kthread_should_stop();
2861 }
2862
2863 static void khugepaged_do_scan(void)
2864 {
2865 struct page *hpage = NULL;
2866 unsigned int progress = 0, pass_through_head = 0;
2867 unsigned int pages = khugepaged_pages_to_scan;
2868 bool wait = true;
2869
2870 barrier(); /* write khugepaged_pages_to_scan to local stack */
2871
2872 while (progress < pages) {
2873 if (!khugepaged_prealloc_page(&hpage, &wait))
2874 break;
2875
2876 cond_resched();
2877
2878 if (unlikely(kthread_should_stop() || try_to_freeze()))
2879 break;
2880
2881 spin_lock(&khugepaged_mm_lock);
2882 if (!khugepaged_scan.mm_slot)
2883 pass_through_head++;
2884 if (khugepaged_has_work() &&
2885 pass_through_head < 2)
2886 progress += khugepaged_scan_mm_slot(pages - progress,
2887 &hpage);
2888 else
2889 progress = pages;
2890 spin_unlock(&khugepaged_mm_lock);
2891 }
2892
2893 if (!IS_ERR_OR_NULL(hpage))
2894 put_page(hpage);
2895 }
2896
2897 static bool khugepaged_should_wakeup(void)
2898 {
2899 return kthread_should_stop() ||
2900 time_after_eq(jiffies, khugepaged_sleep_expire);
2901 }
2902
2903 static void khugepaged_wait_work(void)
2904 {
2905 if (khugepaged_has_work()) {
2906 const unsigned long scan_sleep_jiffies =
2907 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2908
2909 if (!scan_sleep_jiffies)
2910 return;
2911
2912 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2913 wait_event_freezable_timeout(khugepaged_wait,
2914 khugepaged_should_wakeup(),
2915 scan_sleep_jiffies);
2916 return;
2917 }
2918
2919 if (khugepaged_enabled())
2920 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2921 }
2922
2923 static int khugepaged(void *none)
2924 {
2925 struct mm_slot *mm_slot;
2926
2927 set_freezable();
2928 set_user_nice(current, MAX_NICE);
2929
2930 while (!kthread_should_stop()) {
2931 khugepaged_do_scan();
2932 khugepaged_wait_work();
2933 }
2934
2935 spin_lock(&khugepaged_mm_lock);
2936 mm_slot = khugepaged_scan.mm_slot;
2937 khugepaged_scan.mm_slot = NULL;
2938 if (mm_slot)
2939 collect_mm_slot(mm_slot);
2940 spin_unlock(&khugepaged_mm_lock);
2941 return 0;
2942 }
2943
2944 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2945 unsigned long haddr, pmd_t *pmd)
2946 {
2947 struct mm_struct *mm = vma->vm_mm;
2948 pgtable_t pgtable;
2949 pmd_t _pmd;
2950 int i;
2951
2952 /* leave pmd empty until pte is filled */
2953 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2954
2955 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2956 pmd_populate(mm, &_pmd, pgtable);
2957
2958 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2959 pte_t *pte, entry;
2960 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2961 entry = pte_mkspecial(entry);
2962 pte = pte_offset_map(&_pmd, haddr);
2963 VM_BUG_ON(!pte_none(*pte));
2964 set_pte_at(mm, haddr, pte, entry);
2965 pte_unmap(pte);
2966 }
2967 smp_wmb(); /* make pte visible before pmd */
2968 pmd_populate(mm, pmd, pgtable);
2969 put_huge_zero_page();
2970 }
2971
2972 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2973 unsigned long haddr, bool freeze)
2974 {
2975 struct mm_struct *mm = vma->vm_mm;
2976 struct page *page;
2977 pgtable_t pgtable;
2978 pmd_t _pmd;
2979 bool young, write, dirty;
2980 unsigned long addr;
2981 int i;
2982
2983 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2984 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2985 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2986 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2987
2988 count_vm_event(THP_SPLIT_PMD);
2989
2990 if (!vma_is_anonymous(vma)) {
2991 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2992 if (is_huge_zero_pmd(_pmd))
2993 put_huge_zero_page();
2994 if (vma_is_dax(vma))
2995 return;
2996 page = pmd_page(_pmd);
2997 if (!PageReferenced(page) && pmd_young(_pmd))
2998 SetPageReferenced(page);
2999 page_remove_rmap(page, true);
3000 put_page(page);
3001 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
3002 return;
3003 } else if (is_huge_zero_pmd(*pmd)) {
3004 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3005 }
3006
3007 page = pmd_page(*pmd);
3008 VM_BUG_ON_PAGE(!page_count(page), page);
3009 page_ref_add(page, HPAGE_PMD_NR - 1);
3010 write = pmd_write(*pmd);
3011 young = pmd_young(*pmd);
3012 dirty = pmd_dirty(*pmd);
3013
3014 pmdp_huge_split_prepare(vma, haddr, pmd);
3015 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3016 pmd_populate(mm, &_pmd, pgtable);
3017
3018 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3019 pte_t entry, *pte;
3020 /*
3021 * Note that NUMA hinting access restrictions are not
3022 * transferred to avoid any possibility of altering
3023 * permissions across VMAs.
3024 */
3025 if (freeze) {
3026 swp_entry_t swp_entry;
3027 swp_entry = make_migration_entry(page + i, write);
3028 entry = swp_entry_to_pte(swp_entry);
3029 } else {
3030 entry = mk_pte(page + i, vma->vm_page_prot);
3031 entry = maybe_mkwrite(entry, vma);
3032 if (!write)
3033 entry = pte_wrprotect(entry);
3034 if (!young)
3035 entry = pte_mkold(entry);
3036 }
3037 if (dirty)
3038 SetPageDirty(page + i);
3039 pte = pte_offset_map(&_pmd, addr);
3040 BUG_ON(!pte_none(*pte));
3041 set_pte_at(mm, addr, pte, entry);
3042 atomic_inc(&page[i]._mapcount);
3043 pte_unmap(pte);
3044 }
3045
3046 /*
3047 * Set PG_double_map before dropping compound_mapcount to avoid
3048 * false-negative page_mapped().
3049 */
3050 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3051 for (i = 0; i < HPAGE_PMD_NR; i++)
3052 atomic_inc(&page[i]._mapcount);
3053 }
3054
3055 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3056 /* Last compound_mapcount is gone. */
3057 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3058 if (TestClearPageDoubleMap(page)) {
3059 /* No need in mapcount reference anymore */
3060 for (i = 0; i < HPAGE_PMD_NR; i++)
3061 atomic_dec(&page[i]._mapcount);
3062 }
3063 }
3064
3065 smp_wmb(); /* make pte visible before pmd */
3066 /*
3067 * Up to this point the pmd is present and huge and userland has the
3068 * whole access to the hugepage during the split (which happens in
3069 * place). If we overwrite the pmd with the not-huge version pointing
3070 * to the pte here (which of course we could if all CPUs were bug
3071 * free), userland could trigger a small page size TLB miss on the
3072 * small sized TLB while the hugepage TLB entry is still established in
3073 * the huge TLB. Some CPU doesn't like that.
3074 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3075 * 383 on page 93. Intel should be safe but is also warns that it's
3076 * only safe if the permission and cache attributes of the two entries
3077 * loaded in the two TLB is identical (which should be the case here).
3078 * But it is generally safer to never allow small and huge TLB entries
3079 * for the same virtual address to be loaded simultaneously. So instead
3080 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3081 * current pmd notpresent (atomically because here the pmd_trans_huge
3082 * and pmd_trans_splitting must remain set at all times on the pmd
3083 * until the split is complete for this pmd), then we flush the SMP TLB
3084 * and finally we write the non-huge version of the pmd entry with
3085 * pmd_populate.
3086 */
3087 pmdp_invalidate(vma, haddr, pmd);
3088 pmd_populate(mm, pmd, pgtable);
3089
3090 if (freeze) {
3091 for (i = 0; i < HPAGE_PMD_NR; i++) {
3092 page_remove_rmap(page + i, false);
3093 put_page(page + i);
3094 }
3095 }
3096 }
3097
3098 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3099 unsigned long address, bool freeze, struct page *page)
3100 {
3101 spinlock_t *ptl;
3102 struct mm_struct *mm = vma->vm_mm;
3103 unsigned long haddr = address & HPAGE_PMD_MASK;
3104
3105 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3106 ptl = pmd_lock(mm, pmd);
3107
3108 /*
3109 * If caller asks to setup a migration entries, we need a page to check
3110 * pmd against. Otherwise we can end up replacing wrong page.
3111 */
3112 VM_BUG_ON(freeze && !page);
3113 if (page && page != pmd_page(*pmd))
3114 goto out;
3115
3116 if (pmd_trans_huge(*pmd)) {
3117 page = pmd_page(*pmd);
3118 if (PageMlocked(page))
3119 clear_page_mlock(page);
3120 } else if (!pmd_devmap(*pmd))
3121 goto out;
3122 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3123 out:
3124 spin_unlock(ptl);
3125 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3126 }
3127
3128 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3129 bool freeze, struct page *page)
3130 {
3131 pgd_t *pgd;
3132 pud_t *pud;
3133 pmd_t *pmd;
3134
3135 pgd = pgd_offset(vma->vm_mm, address);
3136 if (!pgd_present(*pgd))
3137 return;
3138
3139 pud = pud_offset(pgd, address);
3140 if (!pud_present(*pud))
3141 return;
3142
3143 pmd = pmd_offset(pud, address);
3144
3145 __split_huge_pmd(vma, pmd, address, freeze, page);
3146 }
3147
3148 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3149 unsigned long start,
3150 unsigned long end,
3151 long adjust_next)
3152 {
3153 /*
3154 * If the new start address isn't hpage aligned and it could
3155 * previously contain an hugepage: check if we need to split
3156 * an huge pmd.
3157 */
3158 if (start & ~HPAGE_PMD_MASK &&
3159 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3160 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3161 split_huge_pmd_address(vma, start, false, NULL);
3162
3163 /*
3164 * If the new end address isn't hpage aligned and it could
3165 * previously contain an hugepage: check if we need to split
3166 * an huge pmd.
3167 */
3168 if (end & ~HPAGE_PMD_MASK &&
3169 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3170 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3171 split_huge_pmd_address(vma, end, false, NULL);
3172
3173 /*
3174 * If we're also updating the vma->vm_next->vm_start, if the new
3175 * vm_next->vm_start isn't page aligned and it could previously
3176 * contain an hugepage: check if we need to split an huge pmd.
3177 */
3178 if (adjust_next > 0) {
3179 struct vm_area_struct *next = vma->vm_next;
3180 unsigned long nstart = next->vm_start;
3181 nstart += adjust_next << PAGE_SHIFT;
3182 if (nstart & ~HPAGE_PMD_MASK &&
3183 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3184 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3185 split_huge_pmd_address(next, nstart, false, NULL);
3186 }
3187 }
3188
3189 static void freeze_page(struct page *page)
3190 {
3191 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
3192 TTU_RMAP_LOCKED;
3193 int i, ret;
3194
3195 VM_BUG_ON_PAGE(!PageHead(page), page);
3196
3197 if (PageAnon(page))
3198 ttu_flags |= TTU_MIGRATION;
3199
3200 /* We only need TTU_SPLIT_HUGE_PMD once */
3201 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3202 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3203 /* Cut short if the page is unmapped */
3204 if (page_count(page) == 1)
3205 return;
3206
3207 ret = try_to_unmap(page + i, ttu_flags);
3208 }
3209 VM_BUG_ON_PAGE(ret, page + i - 1);
3210 }
3211
3212 static void unfreeze_page(struct page *page)
3213 {
3214 int i;
3215
3216 for (i = 0; i < HPAGE_PMD_NR; i++)
3217 remove_migration_ptes(page + i, page + i, true);
3218 }
3219
3220 static void __split_huge_page_tail(struct page *head, int tail,
3221 struct lruvec *lruvec, struct list_head *list)
3222 {
3223 struct page *page_tail = head + tail;
3224
3225 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3226 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3227
3228 /*
3229 * tail_page->_refcount is zero and not changing from under us. But
3230 * get_page_unless_zero() may be running from under us on the
3231 * tail_page. If we used atomic_set() below instead of atomic_inc() or
3232 * atomic_add(), we would then run atomic_set() concurrently with
3233 * get_page_unless_zero(), and atomic_set() is implemented in C not
3234 * using locked ops. spin_unlock on x86 sometime uses locked ops
3235 * because of PPro errata 66, 92, so unless somebody can guarantee
3236 * atomic_set() here would be safe on all archs (and not only on x86),
3237 * it's safer to use atomic_inc()/atomic_add().
3238 */
3239 if (PageAnon(head)) {
3240 page_ref_inc(page_tail);
3241 } else {
3242 /* Additional pin to radix tree */
3243 page_ref_add(page_tail, 2);
3244 }
3245
3246 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3247 page_tail->flags |= (head->flags &
3248 ((1L << PG_referenced) |
3249 (1L << PG_swapbacked) |
3250 (1L << PG_mlocked) |
3251 (1L << PG_uptodate) |
3252 (1L << PG_active) |
3253 (1L << PG_locked) |
3254 (1L << PG_unevictable) |
3255 (1L << PG_dirty)));
3256
3257 /*
3258 * After clearing PageTail the gup refcount can be released.
3259 * Page flags also must be visible before we make the page non-compound.
3260 */
3261 smp_wmb();
3262
3263 clear_compound_head(page_tail);
3264
3265 if (page_is_young(head))
3266 set_page_young(page_tail);
3267 if (page_is_idle(head))
3268 set_page_idle(page_tail);
3269
3270 /* ->mapping in first tail page is compound_mapcount */
3271 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3272 page_tail);
3273 page_tail->mapping = head->mapping;
3274
3275 page_tail->index = head->index + tail;
3276 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3277 lru_add_page_tail(head, page_tail, lruvec, list);
3278 }
3279
3280 static void __split_huge_page(struct page *page, struct list_head *list,
3281 unsigned long flags)
3282 {
3283 struct page *head = compound_head(page);
3284 struct zone *zone = page_zone(head);
3285 struct lruvec *lruvec;
3286 pgoff_t end = -1;
3287 int i;
3288
3289 lruvec = mem_cgroup_page_lruvec(head, zone);
3290
3291 /* complete memcg works before add pages to LRU */
3292 mem_cgroup_split_huge_fixup(head);
3293
3294 if (!PageAnon(page))
3295 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
3296
3297 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
3298 __split_huge_page_tail(head, i, lruvec, list);
3299 /* Some pages can be beyond i_size: drop them from page cache */
3300 if (head[i].index >= end) {
3301 __ClearPageDirty(head + i);
3302 __delete_from_page_cache(head + i, NULL);
3303 put_page(head + i);
3304 }
3305 }
3306
3307 ClearPageCompound(head);
3308 /* See comment in __split_huge_page_tail() */
3309 if (PageAnon(head)) {
3310 page_ref_inc(head);
3311 } else {
3312 /* Additional pin to radix tree */
3313 page_ref_add(head, 2);
3314 spin_unlock(&head->mapping->tree_lock);
3315 }
3316
3317 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3318
3319 unfreeze_page(head);
3320
3321 for (i = 0; i < HPAGE_PMD_NR; i++) {
3322 struct page *subpage = head + i;
3323 if (subpage == page)
3324 continue;
3325 unlock_page(subpage);
3326
3327 /*
3328 * Subpages may be freed if there wasn't any mapping
3329 * like if add_to_swap() is running on a lru page that
3330 * had its mapping zapped. And freeing these pages
3331 * requires taking the lru_lock so we do the put_page
3332 * of the tail pages after the split is complete.
3333 */
3334 put_page(subpage);
3335 }
3336 }
3337
3338 int total_mapcount(struct page *page)
3339 {
3340 int i, compound, ret;
3341
3342 VM_BUG_ON_PAGE(PageTail(page), page);
3343
3344 if (likely(!PageCompound(page)))
3345 return atomic_read(&page->_mapcount) + 1;
3346
3347 compound = compound_mapcount(page);
3348 if (PageHuge(page))
3349 return compound;
3350 ret = compound;
3351 for (i = 0; i < HPAGE_PMD_NR; i++)
3352 ret += atomic_read(&page[i]._mapcount) + 1;
3353 /* File pages has compound_mapcount included in _mapcount */
3354 if (!PageAnon(page))
3355 return ret - compound * HPAGE_PMD_NR;
3356 if (PageDoubleMap(page))
3357 ret -= HPAGE_PMD_NR;
3358 return ret;
3359 }
3360
3361 /*
3362 * This calculates accurately how many mappings a transparent hugepage
3363 * has (unlike page_mapcount() which isn't fully accurate). This full
3364 * accuracy is primarily needed to know if copy-on-write faults can
3365 * reuse the page and change the mapping to read-write instead of
3366 * copying them. At the same time this returns the total_mapcount too.
3367 *
3368 * The function returns the highest mapcount any one of the subpages
3369 * has. If the return value is one, even if different processes are
3370 * mapping different subpages of the transparent hugepage, they can
3371 * all reuse it, because each process is reusing a different subpage.
3372 *
3373 * The total_mapcount is instead counting all virtual mappings of the
3374 * subpages. If the total_mapcount is equal to "one", it tells the
3375 * caller all mappings belong to the same "mm" and in turn the
3376 * anon_vma of the transparent hugepage can become the vma->anon_vma
3377 * local one as no other process may be mapping any of the subpages.
3378 *
3379 * It would be more accurate to replace page_mapcount() with
3380 * page_trans_huge_mapcount(), however we only use
3381 * page_trans_huge_mapcount() in the copy-on-write faults where we
3382 * need full accuracy to avoid breaking page pinning, because
3383 * page_trans_huge_mapcount() is slower than page_mapcount().
3384 */
3385 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3386 {
3387 int i, ret, _total_mapcount, mapcount;
3388
3389 /* hugetlbfs shouldn't call it */
3390 VM_BUG_ON_PAGE(PageHuge(page), page);
3391
3392 if (likely(!PageTransCompound(page))) {
3393 mapcount = atomic_read(&page->_mapcount) + 1;
3394 if (total_mapcount)
3395 *total_mapcount = mapcount;
3396 return mapcount;
3397 }
3398
3399 page = compound_head(page);
3400
3401 _total_mapcount = ret = 0;
3402 for (i = 0; i < HPAGE_PMD_NR; i++) {
3403 mapcount = atomic_read(&page[i]._mapcount) + 1;
3404 ret = max(ret, mapcount);
3405 _total_mapcount += mapcount;
3406 }
3407 if (PageDoubleMap(page)) {
3408 ret -= 1;
3409 _total_mapcount -= HPAGE_PMD_NR;
3410 }
3411 mapcount = compound_mapcount(page);
3412 ret += mapcount;
3413 _total_mapcount += mapcount;
3414 if (total_mapcount)
3415 *total_mapcount = _total_mapcount;
3416 return ret;
3417 }
3418
3419 /*
3420 * This function splits huge page into normal pages. @page can point to any
3421 * subpage of huge page to split. Split doesn't change the position of @page.
3422 *
3423 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3424 * The huge page must be locked.
3425 *
3426 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3427 *
3428 * Both head page and tail pages will inherit mapping, flags, and so on from
3429 * the hugepage.
3430 *
3431 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3432 * they are not mapped.
3433 *
3434 * Returns 0 if the hugepage is split successfully.
3435 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3436 * us.
3437 */
3438 int split_huge_page_to_list(struct page *page, struct list_head *list)
3439 {
3440 struct page *head = compound_head(page);
3441 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3442 struct anon_vma *anon_vma = NULL;
3443 struct address_space *mapping = NULL;
3444 int count, mapcount, extra_pins, ret;
3445 bool mlocked;
3446 unsigned long flags;
3447
3448 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3449 VM_BUG_ON_PAGE(!PageLocked(page), page);
3450 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3451 VM_BUG_ON_PAGE(!PageCompound(page), page);
3452
3453 if (PageAnon(head)) {
3454 /*
3455 * The caller does not necessarily hold an mmap_sem that would
3456 * prevent the anon_vma disappearing so we first we take a
3457 * reference to it and then lock the anon_vma for write. This
3458 * is similar to page_lock_anon_vma_read except the write lock
3459 * is taken to serialise against parallel split or collapse
3460 * operations.
3461 */
3462 anon_vma = page_get_anon_vma(head);
3463 if (!anon_vma) {
3464 ret = -EBUSY;
3465 goto out;
3466 }
3467 extra_pins = 0;
3468 mapping = NULL;
3469 anon_vma_lock_write(anon_vma);
3470 } else {
3471 mapping = head->mapping;
3472
3473 /* Truncated ? */
3474 if (!mapping) {
3475 ret = -EBUSY;
3476 goto out;
3477 }
3478
3479 /* Addidional pins from radix tree */
3480 extra_pins = HPAGE_PMD_NR;
3481 anon_vma = NULL;
3482 i_mmap_lock_read(mapping);
3483 }
3484
3485 /*
3486 * Racy check if we can split the page, before freeze_page() will
3487 * split PMDs
3488 */
3489 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
3490 ret = -EBUSY;
3491 goto out_unlock;
3492 }
3493
3494 mlocked = PageMlocked(page);
3495 freeze_page(head);
3496 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3497
3498 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3499 if (mlocked)
3500 lru_add_drain();
3501
3502 /* prevent PageLRU to go away from under us, and freeze lru stats */
3503 spin_lock_irqsave(&page_zone(head)->lru_lock, flags);
3504
3505 if (mapping) {
3506 void **pslot;
3507
3508 spin_lock(&mapping->tree_lock);
3509 pslot = radix_tree_lookup_slot(&mapping->page_tree,
3510 page_index(head));
3511 /*
3512 * Check if the head page is present in radix tree.
3513 * We assume all tail are present too, if head is there.
3514 */
3515 if (radix_tree_deref_slot_protected(pslot,
3516 &mapping->tree_lock) != head)
3517 goto fail;
3518 }
3519
3520 /* Prevent deferred_split_scan() touching ->_refcount */
3521 spin_lock(&pgdata->split_queue_lock);
3522 count = page_count(head);
3523 mapcount = total_mapcount(head);
3524 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
3525 if (!list_empty(page_deferred_list(head))) {
3526 pgdata->split_queue_len--;
3527 list_del(page_deferred_list(head));
3528 }
3529 spin_unlock(&pgdata->split_queue_lock);
3530 __split_huge_page(page, list, flags);
3531 ret = 0;
3532 } else {
3533 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3534 pr_alert("total_mapcount: %u, page_count(): %u\n",
3535 mapcount, count);
3536 if (PageTail(page))
3537 dump_page(head, NULL);
3538 dump_page(page, "total_mapcount(head) > 0");
3539 BUG();
3540 }
3541 spin_unlock(&pgdata->split_queue_lock);
3542 fail: if (mapping)
3543 spin_unlock(&mapping->tree_lock);
3544 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3545 unfreeze_page(head);
3546 ret = -EBUSY;
3547 }
3548
3549 out_unlock:
3550 if (anon_vma) {
3551 anon_vma_unlock_write(anon_vma);
3552 put_anon_vma(anon_vma);
3553 }
3554 if (mapping)
3555 i_mmap_unlock_read(mapping);
3556 out:
3557 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3558 return ret;
3559 }
3560
3561 void free_transhuge_page(struct page *page)
3562 {
3563 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3564 unsigned long flags;
3565
3566 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3567 if (!list_empty(page_deferred_list(page))) {
3568 pgdata->split_queue_len--;
3569 list_del(page_deferred_list(page));
3570 }
3571 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3572 free_compound_page(page);
3573 }
3574
3575 void deferred_split_huge_page(struct page *page)
3576 {
3577 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3578 unsigned long flags;
3579
3580 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3581
3582 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3583 if (list_empty(page_deferred_list(page))) {
3584 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3585 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3586 pgdata->split_queue_len++;
3587 }
3588 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3589 }
3590
3591 static unsigned long deferred_split_count(struct shrinker *shrink,
3592 struct shrink_control *sc)
3593 {
3594 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3595 return ACCESS_ONCE(pgdata->split_queue_len);
3596 }
3597
3598 static unsigned long deferred_split_scan(struct shrinker *shrink,
3599 struct shrink_control *sc)
3600 {
3601 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3602 unsigned long flags;
3603 LIST_HEAD(list), *pos, *next;
3604 struct page *page;
3605 int split = 0;
3606
3607 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3608 /* Take pin on all head pages to avoid freeing them under us */
3609 list_for_each_safe(pos, next, &pgdata->split_queue) {
3610 page = list_entry((void *)pos, struct page, mapping);
3611 page = compound_head(page);
3612 if (get_page_unless_zero(page)) {
3613 list_move(page_deferred_list(page), &list);
3614 } else {
3615 /* We lost race with put_compound_page() */
3616 list_del_init(page_deferred_list(page));
3617 pgdata->split_queue_len--;
3618 }
3619 if (!--sc->nr_to_scan)
3620 break;
3621 }
3622 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3623
3624 list_for_each_safe(pos, next, &list) {
3625 page = list_entry((void *)pos, struct page, mapping);
3626 lock_page(page);
3627 /* split_huge_page() removes page from list on success */
3628 if (!split_huge_page(page))
3629 split++;
3630 unlock_page(page);
3631 put_page(page);
3632 }
3633
3634 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3635 list_splice_tail(&list, &pgdata->split_queue);
3636 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3637
3638 /*
3639 * Stop shrinker if we didn't split any page, but the queue is empty.
3640 * This can happen if pages were freed under us.
3641 */
3642 if (!split && list_empty(&pgdata->split_queue))
3643 return SHRINK_STOP;
3644 return split;
3645 }
3646
3647 static struct shrinker deferred_split_shrinker = {
3648 .count_objects = deferred_split_count,
3649 .scan_objects = deferred_split_scan,
3650 .seeks = DEFAULT_SEEKS,
3651 .flags = SHRINKER_NUMA_AWARE,
3652 };
3653
3654 #ifdef CONFIG_DEBUG_FS
3655 static int split_huge_pages_set(void *data, u64 val)
3656 {
3657 struct zone *zone;
3658 struct page *page;
3659 unsigned long pfn, max_zone_pfn;
3660 unsigned long total = 0, split = 0;
3661
3662 if (val != 1)
3663 return -EINVAL;
3664
3665 for_each_populated_zone(zone) {
3666 max_zone_pfn = zone_end_pfn(zone);
3667 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3668 if (!pfn_valid(pfn))
3669 continue;
3670
3671 page = pfn_to_page(pfn);
3672 if (!get_page_unless_zero(page))
3673 continue;
3674
3675 if (zone != page_zone(page))
3676 goto next;
3677
3678 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3679 goto next;
3680
3681 total++;
3682 lock_page(page);
3683 if (!split_huge_page(page))
3684 split++;
3685 unlock_page(page);
3686 next:
3687 put_page(page);
3688 }
3689 }
3690
3691 pr_info("%lu of %lu THP split\n", split, total);
3692
3693 return 0;
3694 }
3695 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3696 "%llu\n");
3697
3698 static int __init split_huge_pages_debugfs(void)
3699 {
3700 void *ret;
3701
3702 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3703 &split_huge_pages_fops);
3704 if (!ret)
3705 pr_warn("Failed to create split_huge_pages in debugfs");
3706 return 0;
3707 }
3708 late_initcall(split_huge_pages_debugfs);
3709 #endif
This page took 0.102556 seconds and 6 git commands to generate.