mm: introduce fault_env
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
62 };
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66
67 /*
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
74 */
75 unsigned long transparent_hugepage_flags __read_mostly =
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
78 #endif
79 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81 #endif
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
85
86 /* default scan 8*512 pte (or vmas) every 30 second */
87 static unsigned int khugepaged_pages_to_scan __read_mostly;
88 static unsigned int khugepaged_pages_collapsed;
89 static unsigned int khugepaged_full_scans;
90 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91 /* during fragmentation poll the hugepage allocator once every minute */
92 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
93 static unsigned long khugepaged_sleep_expire;
94 static struct task_struct *khugepaged_thread __read_mostly;
95 static DEFINE_MUTEX(khugepaged_mutex);
96 static DEFINE_SPINLOCK(khugepaged_mm_lock);
97 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98 /*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
103 static unsigned int khugepaged_max_ptes_none __read_mostly;
104 static unsigned int khugepaged_max_ptes_swap __read_mostly;
105
106 static int khugepaged(void *none);
107 static int khugepaged_slab_init(void);
108 static void khugepaged_slab_exit(void);
109
110 #define MM_SLOTS_HASH_BITS 10
111 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
113 static struct kmem_cache *mm_slot_cache __read_mostly;
114
115 /**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135 struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 };
140 static struct khugepaged_scan khugepaged_scan = {
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142 };
143
144 static struct shrinker deferred_split_shrinker;
145
146 static void set_recommended_min_free_kbytes(void)
147 {
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
151
152 for_each_populated_zone(zone)
153 nr_zones++;
154
155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
175 min_free_kbytes, recommended_min);
176
177 min_free_kbytes = recommended_min;
178 }
179 setup_per_zone_wmarks();
180 }
181
182 static int start_stop_khugepaged(void)
183 {
184 int err = 0;
185 if (khugepaged_enabled()) {
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
189 if (IS_ERR(khugepaged_thread)) {
190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
193 goto fail;
194 }
195
196 if (!list_empty(&khugepaged_scan.mm_head))
197 wake_up_interruptible(&khugepaged_wait);
198
199 set_recommended_min_free_kbytes();
200 } else if (khugepaged_thread) {
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
204 fail:
205 return err;
206 }
207
208 static atomic_t huge_zero_refcount;
209 struct page *huge_zero_page __read_mostly;
210
211 struct page *get_huge_zero_page(void)
212 {
213 struct page *zero_page;
214 retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return READ_ONCE(huge_zero_page);
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return NULL;
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
225 preempt_disable();
226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
227 preempt_enable();
228 __free_pages(zero_page, compound_order(zero_page));
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
235 return READ_ONCE(huge_zero_page);
236 }
237
238 void put_huge_zero_page(void)
239 {
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
245 }
246
247 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
249 {
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252 }
253
254 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256 {
257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
260 __free_pages(zero_page, compound_order(zero_page));
261 return HPAGE_PMD_NR;
262 }
263
264 return 0;
265 }
266
267 static struct shrinker huge_zero_page_shrinker = {
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
270 .seeks = DEFAULT_SEEKS,
271 };
272
273 #ifdef CONFIG_SYSFS
274
275 static ssize_t triple_flag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
279 enum transparent_hugepage_flag deferred,
280 enum transparent_hugepage_flag req_madv)
281 {
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
290 min(sizeof("always")-1, count))) {
291 clear_bit(deferred, &transparent_hugepage_flags);
292 clear_bit(req_madv, &transparent_hugepage_flags);
293 set_bit(enabled, &transparent_hugepage_flags);
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(deferred, &transparent_hugepage_flags);
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
303 clear_bit(deferred, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
319 }
320
321 static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324 {
325 ssize_t ret;
326
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
336 err = start_stop_khugepaged();
337 mutex_unlock(&khugepaged_mutex);
338
339 if (err)
340 ret = err;
341 }
342
343 return ret;
344 }
345 static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348 static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351 {
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
354 }
355
356 static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360 {
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
371 set_bit(flag, &transparent_hugepage_flags);
372 else
373 clear_bit(flag, &transparent_hugepage_flags);
374
375 return count;
376 }
377
378 /*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383 static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385 {
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
395 }
396 static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399 {
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404 }
405 static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
408 static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410 {
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413 }
414 static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416 {
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419 }
420 static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
422 #ifdef CONFIG_DEBUG_VM
423 static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425 {
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428 }
429 static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432 {
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435 }
436 static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438 #endif /* CONFIG_DEBUG_VM */
439
440 static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
443 &use_zero_page_attr.attr,
444 #ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446 #endif
447 NULL,
448 };
449
450 static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
452 };
453
454 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457 {
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459 }
460
461 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464 {
465 unsigned long msecs;
466 int err;
467
468 err = kstrtoul(buf, 10, &msecs);
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
473 khugepaged_sleep_expire = 0;
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477 }
478 static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485 {
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487 }
488
489 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492 {
493 unsigned long msecs;
494 int err;
495
496 err = kstrtoul(buf, 10, &msecs);
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
501 khugepaged_sleep_expire = 0;
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505 }
506 static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510 static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513 {
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515 }
516 static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519 {
520 int err;
521 unsigned long pages;
522
523 err = kstrtoul(buf, 10, &pages);
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530 }
531 static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535 static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538 {
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540 }
541 static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544 static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547 {
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549 }
550 static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555 {
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558 }
559 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562 {
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565 }
566 static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570 /*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581 {
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583 }
584 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587 {
588 int err;
589 unsigned long max_ptes_none;
590
591 err = kstrtoul(buf, 10, &max_ptes_none);
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598 }
599 static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
603 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606 {
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608 }
609
610 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613 {
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624 }
625
626 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
630 static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
638 &khugepaged_max_ptes_swap_attr.attr,
639 NULL,
640 };
641
642 static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
645 };
646
647 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
648 {
649 int err;
650
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
653 pr_err("failed to create transparent hugepage kobject\n");
654 return -ENOMEM;
655 }
656
657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
658 if (err) {
659 pr_err("failed to register transparent hugepage group\n");
660 goto delete_obj;
661 }
662
663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
664 if (err) {
665 pr_err("failed to register transparent hugepage group\n");
666 goto remove_hp_group;
667 }
668
669 return 0;
670
671 remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673 delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676 }
677
678 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679 {
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683 }
684 #else
685 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686 {
687 return 0;
688 }
689
690 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691 {
692 }
693 #endif /* CONFIG_SYSFS */
694
695 static int __init hugepage_init(void)
696 {
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
720 goto err_sysfs;
721
722 err = khugepaged_slab_init();
723 if (err)
724 goto err_slab;
725
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
732
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
739 transparent_hugepage_flags = 0;
740 return 0;
741 }
742
743 err = start_stop_khugepaged();
744 if (err)
745 goto err_khugepaged;
746
747 return 0;
748 err_khugepaged:
749 unregister_shrinker(&deferred_split_shrinker);
750 err_split_shrinker:
751 unregister_shrinker(&huge_zero_page_shrinker);
752 err_hzp_shrinker:
753 khugepaged_slab_exit();
754 err_slab:
755 hugepage_exit_sysfs(hugepage_kobj);
756 err_sysfs:
757 return err;
758 }
759 subsys_initcall(hugepage_init);
760
761 static int __init setup_transparent_hugepage(char *str)
762 {
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785 out:
786 if (!ret)
787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
788 return ret;
789 }
790 __setup("transparent_hugepage=", setup_transparent_hugepage);
791
792 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
793 {
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797 }
798
799 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
800 {
801 return pmd_mkhuge(mk_pmd(page, prot));
802 }
803
804 static inline struct list_head *page_deferred_list(struct page *page)
805 {
806 /*
807 * ->lru in the tail pages is occupied by compound_head.
808 * Let's use ->mapping + ->index in the second tail page as list_head.
809 */
810 return (struct list_head *)&page[2].mapping;
811 }
812
813 void prep_transhuge_page(struct page *page)
814 {
815 /*
816 * we use page->mapping and page->indexlru in second tail page
817 * as list_head: assuming THP order >= 2
818 */
819
820 INIT_LIST_HEAD(page_deferred_list(page));
821 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
822 }
823
824 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
825 gfp_t gfp)
826 {
827 struct vm_area_struct *vma = fe->vma;
828 struct mem_cgroup *memcg;
829 pgtable_t pgtable;
830 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
831
832 VM_BUG_ON_PAGE(!PageCompound(page), page);
833
834 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
835 put_page(page);
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
838 }
839
840 pgtable = pte_alloc_one(vma->vm_mm, haddr);
841 if (unlikely(!pgtable)) {
842 mem_cgroup_cancel_charge(page, memcg, true);
843 put_page(page);
844 return VM_FAULT_OOM;
845 }
846
847 clear_huge_page(page, haddr, HPAGE_PMD_NR);
848 /*
849 * The memory barrier inside __SetPageUptodate makes sure that
850 * clear_huge_page writes become visible before the set_pmd_at()
851 * write.
852 */
853 __SetPageUptodate(page);
854
855 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
856 if (unlikely(!pmd_none(*fe->pmd))) {
857 spin_unlock(fe->ptl);
858 mem_cgroup_cancel_charge(page, memcg, true);
859 put_page(page);
860 pte_free(vma->vm_mm, pgtable);
861 } else {
862 pmd_t entry;
863
864 /* Deliver the page fault to userland */
865 if (userfaultfd_missing(vma)) {
866 int ret;
867
868 spin_unlock(fe->ptl);
869 mem_cgroup_cancel_charge(page, memcg, true);
870 put_page(page);
871 pte_free(vma->vm_mm, pgtable);
872 ret = handle_userfault(fe, VM_UFFD_MISSING);
873 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
874 return ret;
875 }
876
877 entry = mk_huge_pmd(page, vma->vm_page_prot);
878 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
879 page_add_new_anon_rmap(page, vma, haddr, true);
880 mem_cgroup_commit_charge(page, memcg, false, true);
881 lru_cache_add_active_or_unevictable(page, vma);
882 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
883 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
884 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
885 atomic_long_inc(&vma->vm_mm->nr_ptes);
886 spin_unlock(fe->ptl);
887 count_vm_event(THP_FAULT_ALLOC);
888 }
889
890 return 0;
891 }
892
893 /*
894 * If THP is set to always then directly reclaim/compact as necessary
895 * If set to defer then do no reclaim and defer to khugepaged
896 * If set to madvise and the VMA is flagged then directly reclaim/compact
897 */
898 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
899 {
900 gfp_t reclaim_flags = 0;
901
902 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
903 (vma->vm_flags & VM_HUGEPAGE))
904 reclaim_flags = __GFP_DIRECT_RECLAIM;
905 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
906 reclaim_flags = __GFP_KSWAPD_RECLAIM;
907 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
908 reclaim_flags = __GFP_DIRECT_RECLAIM;
909
910 return GFP_TRANSHUGE | reclaim_flags;
911 }
912
913 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
914 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
915 {
916 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
917 }
918
919 /* Caller must hold page table lock. */
920 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
921 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
922 struct page *zero_page)
923 {
924 pmd_t entry;
925 if (!pmd_none(*pmd))
926 return false;
927 entry = mk_pmd(zero_page, vma->vm_page_prot);
928 entry = pmd_mkhuge(entry);
929 if (pgtable)
930 pgtable_trans_huge_deposit(mm, pmd, pgtable);
931 set_pmd_at(mm, haddr, pmd, entry);
932 atomic_long_inc(&mm->nr_ptes);
933 return true;
934 }
935
936 int do_huge_pmd_anonymous_page(struct fault_env *fe)
937 {
938 struct vm_area_struct *vma = fe->vma;
939 gfp_t gfp;
940 struct page *page;
941 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
942
943 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
944 return VM_FAULT_FALLBACK;
945 if (unlikely(anon_vma_prepare(vma)))
946 return VM_FAULT_OOM;
947 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
948 return VM_FAULT_OOM;
949 if (!(fe->flags & FAULT_FLAG_WRITE) &&
950 !mm_forbids_zeropage(vma->vm_mm) &&
951 transparent_hugepage_use_zero_page()) {
952 pgtable_t pgtable;
953 struct page *zero_page;
954 bool set;
955 int ret;
956 pgtable = pte_alloc_one(vma->vm_mm, haddr);
957 if (unlikely(!pgtable))
958 return VM_FAULT_OOM;
959 zero_page = get_huge_zero_page();
960 if (unlikely(!zero_page)) {
961 pte_free(vma->vm_mm, pgtable);
962 count_vm_event(THP_FAULT_FALLBACK);
963 return VM_FAULT_FALLBACK;
964 }
965 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
966 ret = 0;
967 set = false;
968 if (pmd_none(*fe->pmd)) {
969 if (userfaultfd_missing(vma)) {
970 spin_unlock(fe->ptl);
971 ret = handle_userfault(fe, VM_UFFD_MISSING);
972 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
973 } else {
974 set_huge_zero_page(pgtable, vma->vm_mm, vma,
975 haddr, fe->pmd, zero_page);
976 spin_unlock(fe->ptl);
977 set = true;
978 }
979 } else
980 spin_unlock(fe->ptl);
981 if (!set) {
982 pte_free(vma->vm_mm, pgtable);
983 put_huge_zero_page();
984 }
985 return ret;
986 }
987 gfp = alloc_hugepage_direct_gfpmask(vma);
988 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
989 if (unlikely(!page)) {
990 count_vm_event(THP_FAULT_FALLBACK);
991 return VM_FAULT_FALLBACK;
992 }
993 prep_transhuge_page(page);
994 return __do_huge_pmd_anonymous_page(fe, page, gfp);
995 }
996
997 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
998 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
999 {
1000 struct mm_struct *mm = vma->vm_mm;
1001 pmd_t entry;
1002 spinlock_t *ptl;
1003
1004 ptl = pmd_lock(mm, pmd);
1005 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1006 if (pfn_t_devmap(pfn))
1007 entry = pmd_mkdevmap(entry);
1008 if (write) {
1009 entry = pmd_mkyoung(pmd_mkdirty(entry));
1010 entry = maybe_pmd_mkwrite(entry, vma);
1011 }
1012 set_pmd_at(mm, addr, pmd, entry);
1013 update_mmu_cache_pmd(vma, addr, pmd);
1014 spin_unlock(ptl);
1015 }
1016
1017 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1018 pmd_t *pmd, pfn_t pfn, bool write)
1019 {
1020 pgprot_t pgprot = vma->vm_page_prot;
1021 /*
1022 * If we had pmd_special, we could avoid all these restrictions,
1023 * but we need to be consistent with PTEs and architectures that
1024 * can't support a 'special' bit.
1025 */
1026 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1027 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1028 (VM_PFNMAP|VM_MIXEDMAP));
1029 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1030 BUG_ON(!pfn_t_devmap(pfn));
1031
1032 if (addr < vma->vm_start || addr >= vma->vm_end)
1033 return VM_FAULT_SIGBUS;
1034 if (track_pfn_insert(vma, &pgprot, pfn))
1035 return VM_FAULT_SIGBUS;
1036 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1037 return VM_FAULT_NOPAGE;
1038 }
1039 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1040
1041 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1042 pmd_t *pmd)
1043 {
1044 pmd_t _pmd;
1045
1046 /*
1047 * We should set the dirty bit only for FOLL_WRITE but for now
1048 * the dirty bit in the pmd is meaningless. And if the dirty
1049 * bit will become meaningful and we'll only set it with
1050 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1051 * set the young bit, instead of the current set_pmd_at.
1052 */
1053 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1054 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1055 pmd, _pmd, 1))
1056 update_mmu_cache_pmd(vma, addr, pmd);
1057 }
1058
1059 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1060 pmd_t *pmd, int flags)
1061 {
1062 unsigned long pfn = pmd_pfn(*pmd);
1063 struct mm_struct *mm = vma->vm_mm;
1064 struct dev_pagemap *pgmap;
1065 struct page *page;
1066
1067 assert_spin_locked(pmd_lockptr(mm, pmd));
1068
1069 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1070 return NULL;
1071
1072 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1073 /* pass */;
1074 else
1075 return NULL;
1076
1077 if (flags & FOLL_TOUCH)
1078 touch_pmd(vma, addr, pmd);
1079
1080 /*
1081 * device mapped pages can only be returned if the
1082 * caller will manage the page reference count.
1083 */
1084 if (!(flags & FOLL_GET))
1085 return ERR_PTR(-EEXIST);
1086
1087 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1088 pgmap = get_dev_pagemap(pfn, NULL);
1089 if (!pgmap)
1090 return ERR_PTR(-EFAULT);
1091 page = pfn_to_page(pfn);
1092 get_page(page);
1093 put_dev_pagemap(pgmap);
1094
1095 return page;
1096 }
1097
1098 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1099 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1100 struct vm_area_struct *vma)
1101 {
1102 spinlock_t *dst_ptl, *src_ptl;
1103 struct page *src_page;
1104 pmd_t pmd;
1105 pgtable_t pgtable = NULL;
1106 int ret;
1107
1108 if (!vma_is_dax(vma)) {
1109 ret = -ENOMEM;
1110 pgtable = pte_alloc_one(dst_mm, addr);
1111 if (unlikely(!pgtable))
1112 goto out;
1113 }
1114
1115 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1116 src_ptl = pmd_lockptr(src_mm, src_pmd);
1117 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118
1119 ret = -EAGAIN;
1120 pmd = *src_pmd;
1121 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1122 pte_free(dst_mm, pgtable);
1123 goto out_unlock;
1124 }
1125 /*
1126 * When page table lock is held, the huge zero pmd should not be
1127 * under splitting since we don't split the page itself, only pmd to
1128 * a page table.
1129 */
1130 if (is_huge_zero_pmd(pmd)) {
1131 struct page *zero_page;
1132 /*
1133 * get_huge_zero_page() will never allocate a new page here,
1134 * since we already have a zero page to copy. It just takes a
1135 * reference.
1136 */
1137 zero_page = get_huge_zero_page();
1138 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1139 zero_page);
1140 ret = 0;
1141 goto out_unlock;
1142 }
1143
1144 if (!vma_is_dax(vma)) {
1145 /* thp accounting separate from pmd_devmap accounting */
1146 src_page = pmd_page(pmd);
1147 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1148 get_page(src_page);
1149 page_dup_rmap(src_page, true);
1150 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151 atomic_long_inc(&dst_mm->nr_ptes);
1152 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1153 }
1154
1155 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1156 pmd = pmd_mkold(pmd_wrprotect(pmd));
1157 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1158
1159 ret = 0;
1160 out_unlock:
1161 spin_unlock(src_ptl);
1162 spin_unlock(dst_ptl);
1163 out:
1164 return ret;
1165 }
1166
1167 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1168 {
1169 pmd_t entry;
1170 unsigned long haddr;
1171
1172 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1173 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1174 goto unlock;
1175
1176 entry = pmd_mkyoung(orig_pmd);
1177 haddr = fe->address & HPAGE_PMD_MASK;
1178 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1179 fe->flags & FAULT_FLAG_WRITE))
1180 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1181
1182 unlock:
1183 spin_unlock(fe->ptl);
1184 }
1185
1186 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1187 struct page *page)
1188 {
1189 struct vm_area_struct *vma = fe->vma;
1190 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1191 struct mem_cgroup *memcg;
1192 pgtable_t pgtable;
1193 pmd_t _pmd;
1194 int ret = 0, i;
1195 struct page **pages;
1196 unsigned long mmun_start; /* For mmu_notifiers */
1197 unsigned long mmun_end; /* For mmu_notifiers */
1198
1199 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1200 GFP_KERNEL);
1201 if (unlikely(!pages)) {
1202 ret |= VM_FAULT_OOM;
1203 goto out;
1204 }
1205
1206 for (i = 0; i < HPAGE_PMD_NR; i++) {
1207 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1208 __GFP_OTHER_NODE, vma,
1209 fe->address, page_to_nid(page));
1210 if (unlikely(!pages[i] ||
1211 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1212 GFP_KERNEL, &memcg, false))) {
1213 if (pages[i])
1214 put_page(pages[i]);
1215 while (--i >= 0) {
1216 memcg = (void *)page_private(pages[i]);
1217 set_page_private(pages[i], 0);
1218 mem_cgroup_cancel_charge(pages[i], memcg,
1219 false);
1220 put_page(pages[i]);
1221 }
1222 kfree(pages);
1223 ret |= VM_FAULT_OOM;
1224 goto out;
1225 }
1226 set_page_private(pages[i], (unsigned long)memcg);
1227 }
1228
1229 for (i = 0; i < HPAGE_PMD_NR; i++) {
1230 copy_user_highpage(pages[i], page + i,
1231 haddr + PAGE_SIZE * i, vma);
1232 __SetPageUptodate(pages[i]);
1233 cond_resched();
1234 }
1235
1236 mmun_start = haddr;
1237 mmun_end = haddr + HPAGE_PMD_SIZE;
1238 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1239
1240 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1241 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1242 goto out_free_pages;
1243 VM_BUG_ON_PAGE(!PageHead(page), page);
1244
1245 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1246 /* leave pmd empty until pte is filled */
1247
1248 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1249 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1250
1251 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1252 pte_t entry;
1253 entry = mk_pte(pages[i], vma->vm_page_prot);
1254 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1255 memcg = (void *)page_private(pages[i]);
1256 set_page_private(pages[i], 0);
1257 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1258 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1259 lru_cache_add_active_or_unevictable(pages[i], vma);
1260 fe->pte = pte_offset_map(&_pmd, haddr);
1261 VM_BUG_ON(!pte_none(*fe->pte));
1262 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1263 pte_unmap(fe->pte);
1264 }
1265 kfree(pages);
1266
1267 smp_wmb(); /* make pte visible before pmd */
1268 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1269 page_remove_rmap(page, true);
1270 spin_unlock(fe->ptl);
1271
1272 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1273
1274 ret |= VM_FAULT_WRITE;
1275 put_page(page);
1276
1277 out:
1278 return ret;
1279
1280 out_free_pages:
1281 spin_unlock(fe->ptl);
1282 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1283 for (i = 0; i < HPAGE_PMD_NR; i++) {
1284 memcg = (void *)page_private(pages[i]);
1285 set_page_private(pages[i], 0);
1286 mem_cgroup_cancel_charge(pages[i], memcg, false);
1287 put_page(pages[i]);
1288 }
1289 kfree(pages);
1290 goto out;
1291 }
1292
1293 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1294 {
1295 struct vm_area_struct *vma = fe->vma;
1296 struct page *page = NULL, *new_page;
1297 struct mem_cgroup *memcg;
1298 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1299 unsigned long mmun_start; /* For mmu_notifiers */
1300 unsigned long mmun_end; /* For mmu_notifiers */
1301 gfp_t huge_gfp; /* for allocation and charge */
1302 int ret = 0;
1303
1304 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1305 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1306 if (is_huge_zero_pmd(orig_pmd))
1307 goto alloc;
1308 spin_lock(fe->ptl);
1309 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1310 goto out_unlock;
1311
1312 page = pmd_page(orig_pmd);
1313 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1314 /*
1315 * We can only reuse the page if nobody else maps the huge page or it's
1316 * part.
1317 */
1318 if (page_trans_huge_mapcount(page, NULL) == 1) {
1319 pmd_t entry;
1320 entry = pmd_mkyoung(orig_pmd);
1321 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1322 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1323 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1324 ret |= VM_FAULT_WRITE;
1325 goto out_unlock;
1326 }
1327 get_page(page);
1328 spin_unlock(fe->ptl);
1329 alloc:
1330 if (transparent_hugepage_enabled(vma) &&
1331 !transparent_hugepage_debug_cow()) {
1332 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1333 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1334 } else
1335 new_page = NULL;
1336
1337 if (likely(new_page)) {
1338 prep_transhuge_page(new_page);
1339 } else {
1340 if (!page) {
1341 split_huge_pmd(vma, fe->pmd, fe->address);
1342 ret |= VM_FAULT_FALLBACK;
1343 } else {
1344 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1345 if (ret & VM_FAULT_OOM) {
1346 split_huge_pmd(vma, fe->pmd, fe->address);
1347 ret |= VM_FAULT_FALLBACK;
1348 }
1349 put_page(page);
1350 }
1351 count_vm_event(THP_FAULT_FALLBACK);
1352 goto out;
1353 }
1354
1355 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1356 huge_gfp, &memcg, true))) {
1357 put_page(new_page);
1358 split_huge_pmd(vma, fe->pmd, fe->address);
1359 if (page)
1360 put_page(page);
1361 ret |= VM_FAULT_FALLBACK;
1362 count_vm_event(THP_FAULT_FALLBACK);
1363 goto out;
1364 }
1365
1366 count_vm_event(THP_FAULT_ALLOC);
1367
1368 if (!page)
1369 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1370 else
1371 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1372 __SetPageUptodate(new_page);
1373
1374 mmun_start = haddr;
1375 mmun_end = haddr + HPAGE_PMD_SIZE;
1376 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1377
1378 spin_lock(fe->ptl);
1379 if (page)
1380 put_page(page);
1381 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1382 spin_unlock(fe->ptl);
1383 mem_cgroup_cancel_charge(new_page, memcg, true);
1384 put_page(new_page);
1385 goto out_mn;
1386 } else {
1387 pmd_t entry;
1388 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1389 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1390 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1391 page_add_new_anon_rmap(new_page, vma, haddr, true);
1392 mem_cgroup_commit_charge(new_page, memcg, false, true);
1393 lru_cache_add_active_or_unevictable(new_page, vma);
1394 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1395 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1396 if (!page) {
1397 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1398 put_huge_zero_page();
1399 } else {
1400 VM_BUG_ON_PAGE(!PageHead(page), page);
1401 page_remove_rmap(page, true);
1402 put_page(page);
1403 }
1404 ret |= VM_FAULT_WRITE;
1405 }
1406 spin_unlock(fe->ptl);
1407 out_mn:
1408 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1409 out:
1410 return ret;
1411 out_unlock:
1412 spin_unlock(fe->ptl);
1413 return ret;
1414 }
1415
1416 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1417 unsigned long addr,
1418 pmd_t *pmd,
1419 unsigned int flags)
1420 {
1421 struct mm_struct *mm = vma->vm_mm;
1422 struct page *page = NULL;
1423
1424 assert_spin_locked(pmd_lockptr(mm, pmd));
1425
1426 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1427 goto out;
1428
1429 /* Avoid dumping huge zero page */
1430 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1431 return ERR_PTR(-EFAULT);
1432
1433 /* Full NUMA hinting faults to serialise migration in fault paths */
1434 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1435 goto out;
1436
1437 page = pmd_page(*pmd);
1438 VM_BUG_ON_PAGE(!PageHead(page), page);
1439 if (flags & FOLL_TOUCH)
1440 touch_pmd(vma, addr, pmd);
1441 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1442 /*
1443 * We don't mlock() pte-mapped THPs. This way we can avoid
1444 * leaking mlocked pages into non-VM_LOCKED VMAs.
1445 *
1446 * In most cases the pmd is the only mapping of the page as we
1447 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1448 * writable private mappings in populate_vma_page_range().
1449 *
1450 * The only scenario when we have the page shared here is if we
1451 * mlocking read-only mapping shared over fork(). We skip
1452 * mlocking such pages.
1453 */
1454 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1455 page->mapping && trylock_page(page)) {
1456 lru_add_drain();
1457 if (page->mapping)
1458 mlock_vma_page(page);
1459 unlock_page(page);
1460 }
1461 }
1462 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1463 VM_BUG_ON_PAGE(!PageCompound(page), page);
1464 if (flags & FOLL_GET)
1465 get_page(page);
1466
1467 out:
1468 return page;
1469 }
1470
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1473 {
1474 struct vm_area_struct *vma = fe->vma;
1475 struct anon_vma *anon_vma = NULL;
1476 struct page *page;
1477 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1478 int page_nid = -1, this_nid = numa_node_id();
1479 int target_nid, last_cpupid = -1;
1480 bool page_locked;
1481 bool migrated = false;
1482 bool was_writable;
1483 int flags = 0;
1484
1485 /* A PROT_NONE fault should not end up here */
1486 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1487
1488 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1489 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1490 goto out_unlock;
1491
1492 /*
1493 * If there are potential migrations, wait for completion and retry
1494 * without disrupting NUMA hinting information. Do not relock and
1495 * check_same as the page may no longer be mapped.
1496 */
1497 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1498 page = pmd_page(*fe->pmd);
1499 spin_unlock(fe->ptl);
1500 wait_on_page_locked(page);
1501 goto out;
1502 }
1503
1504 page = pmd_page(pmd);
1505 BUG_ON(is_huge_zero_page(page));
1506 page_nid = page_to_nid(page);
1507 last_cpupid = page_cpupid_last(page);
1508 count_vm_numa_event(NUMA_HINT_FAULTS);
1509 if (page_nid == this_nid) {
1510 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1511 flags |= TNF_FAULT_LOCAL;
1512 }
1513
1514 /* See similar comment in do_numa_page for explanation */
1515 if (!(vma->vm_flags & VM_WRITE))
1516 flags |= TNF_NO_GROUP;
1517
1518 /*
1519 * Acquire the page lock to serialise THP migrations but avoid dropping
1520 * page_table_lock if at all possible
1521 */
1522 page_locked = trylock_page(page);
1523 target_nid = mpol_misplaced(page, vma, haddr);
1524 if (target_nid == -1) {
1525 /* If the page was locked, there are no parallel migrations */
1526 if (page_locked)
1527 goto clear_pmdnuma;
1528 }
1529
1530 /* Migration could have started since the pmd_trans_migrating check */
1531 if (!page_locked) {
1532 spin_unlock(fe->ptl);
1533 wait_on_page_locked(page);
1534 page_nid = -1;
1535 goto out;
1536 }
1537
1538 /*
1539 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1540 * to serialises splits
1541 */
1542 get_page(page);
1543 spin_unlock(fe->ptl);
1544 anon_vma = page_lock_anon_vma_read(page);
1545
1546 /* Confirm the PMD did not change while page_table_lock was released */
1547 spin_lock(fe->ptl);
1548 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1549 unlock_page(page);
1550 put_page(page);
1551 page_nid = -1;
1552 goto out_unlock;
1553 }
1554
1555 /* Bail if we fail to protect against THP splits for any reason */
1556 if (unlikely(!anon_vma)) {
1557 put_page(page);
1558 page_nid = -1;
1559 goto clear_pmdnuma;
1560 }
1561
1562 /*
1563 * Migrate the THP to the requested node, returns with page unlocked
1564 * and access rights restored.
1565 */
1566 spin_unlock(fe->ptl);
1567 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1568 fe->pmd, pmd, fe->address, page, target_nid);
1569 if (migrated) {
1570 flags |= TNF_MIGRATED;
1571 page_nid = target_nid;
1572 } else
1573 flags |= TNF_MIGRATE_FAIL;
1574
1575 goto out;
1576 clear_pmdnuma:
1577 BUG_ON(!PageLocked(page));
1578 was_writable = pmd_write(pmd);
1579 pmd = pmd_modify(pmd, vma->vm_page_prot);
1580 pmd = pmd_mkyoung(pmd);
1581 if (was_writable)
1582 pmd = pmd_mkwrite(pmd);
1583 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1584 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1585 unlock_page(page);
1586 out_unlock:
1587 spin_unlock(fe->ptl);
1588
1589 out:
1590 if (anon_vma)
1591 page_unlock_anon_vma_read(anon_vma);
1592
1593 if (page_nid != -1)
1594 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1595
1596 return 0;
1597 }
1598
1599 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1600 pmd_t *pmd, unsigned long addr, unsigned long next)
1601
1602 {
1603 spinlock_t *ptl;
1604 pmd_t orig_pmd;
1605 struct page *page;
1606 struct mm_struct *mm = tlb->mm;
1607 int ret = 0;
1608
1609 ptl = pmd_trans_huge_lock(pmd, vma);
1610 if (!ptl)
1611 goto out_unlocked;
1612
1613 orig_pmd = *pmd;
1614 if (is_huge_zero_pmd(orig_pmd)) {
1615 ret = 1;
1616 goto out;
1617 }
1618
1619 page = pmd_page(orig_pmd);
1620 /*
1621 * If other processes are mapping this page, we couldn't discard
1622 * the page unless they all do MADV_FREE so let's skip the page.
1623 */
1624 if (page_mapcount(page) != 1)
1625 goto out;
1626
1627 if (!trylock_page(page))
1628 goto out;
1629
1630 /*
1631 * If user want to discard part-pages of THP, split it so MADV_FREE
1632 * will deactivate only them.
1633 */
1634 if (next - addr != HPAGE_PMD_SIZE) {
1635 get_page(page);
1636 spin_unlock(ptl);
1637 split_huge_page(page);
1638 put_page(page);
1639 unlock_page(page);
1640 goto out_unlocked;
1641 }
1642
1643 if (PageDirty(page))
1644 ClearPageDirty(page);
1645 unlock_page(page);
1646
1647 if (PageActive(page))
1648 deactivate_page(page);
1649
1650 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1651 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652 tlb->fullmm);
1653 orig_pmd = pmd_mkold(orig_pmd);
1654 orig_pmd = pmd_mkclean(orig_pmd);
1655
1656 set_pmd_at(mm, addr, pmd, orig_pmd);
1657 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1658 }
1659 ret = 1;
1660 out:
1661 spin_unlock(ptl);
1662 out_unlocked:
1663 return ret;
1664 }
1665
1666 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1667 pmd_t *pmd, unsigned long addr)
1668 {
1669 pmd_t orig_pmd;
1670 spinlock_t *ptl;
1671
1672 ptl = __pmd_trans_huge_lock(pmd, vma);
1673 if (!ptl)
1674 return 0;
1675 /*
1676 * For architectures like ppc64 we look at deposited pgtable
1677 * when calling pmdp_huge_get_and_clear. So do the
1678 * pgtable_trans_huge_withdraw after finishing pmdp related
1679 * operations.
1680 */
1681 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1682 tlb->fullmm);
1683 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1684 if (vma_is_dax(vma)) {
1685 spin_unlock(ptl);
1686 if (is_huge_zero_pmd(orig_pmd))
1687 tlb_remove_page(tlb, pmd_page(orig_pmd));
1688 } else if (is_huge_zero_pmd(orig_pmd)) {
1689 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 atomic_long_dec(&tlb->mm->nr_ptes);
1691 spin_unlock(ptl);
1692 tlb_remove_page(tlb, pmd_page(orig_pmd));
1693 } else {
1694 struct page *page = pmd_page(orig_pmd);
1695 page_remove_rmap(page, true);
1696 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1698 VM_BUG_ON_PAGE(!PageHead(page), page);
1699 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1700 atomic_long_dec(&tlb->mm->nr_ptes);
1701 spin_unlock(ptl);
1702 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1703 }
1704 return 1;
1705 }
1706
1707 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1708 unsigned long new_addr, unsigned long old_end,
1709 pmd_t *old_pmd, pmd_t *new_pmd)
1710 {
1711 spinlock_t *old_ptl, *new_ptl;
1712 pmd_t pmd;
1713 struct mm_struct *mm = vma->vm_mm;
1714
1715 if ((old_addr & ~HPAGE_PMD_MASK) ||
1716 (new_addr & ~HPAGE_PMD_MASK) ||
1717 old_end - old_addr < HPAGE_PMD_SIZE)
1718 return false;
1719
1720 /*
1721 * The destination pmd shouldn't be established, free_pgtables()
1722 * should have release it.
1723 */
1724 if (WARN_ON(!pmd_none(*new_pmd))) {
1725 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1726 return false;
1727 }
1728
1729 /*
1730 * We don't have to worry about the ordering of src and dst
1731 * ptlocks because exclusive mmap_sem prevents deadlock.
1732 */
1733 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1734 if (old_ptl) {
1735 new_ptl = pmd_lockptr(mm, new_pmd);
1736 if (new_ptl != old_ptl)
1737 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1738 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1739 VM_BUG_ON(!pmd_none(*new_pmd));
1740
1741 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1742 vma_is_anonymous(vma)) {
1743 pgtable_t pgtable;
1744 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1745 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1746 }
1747 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1748 if (new_ptl != old_ptl)
1749 spin_unlock(new_ptl);
1750 spin_unlock(old_ptl);
1751 return true;
1752 }
1753 return false;
1754 }
1755
1756 /*
1757 * Returns
1758 * - 0 if PMD could not be locked
1759 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1760 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1761 */
1762 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1763 unsigned long addr, pgprot_t newprot, int prot_numa)
1764 {
1765 struct mm_struct *mm = vma->vm_mm;
1766 spinlock_t *ptl;
1767 int ret = 0;
1768
1769 ptl = __pmd_trans_huge_lock(pmd, vma);
1770 if (ptl) {
1771 pmd_t entry;
1772 bool preserve_write = prot_numa && pmd_write(*pmd);
1773 ret = 1;
1774
1775 /*
1776 * Avoid trapping faults against the zero page. The read-only
1777 * data is likely to be read-cached on the local CPU and
1778 * local/remote hits to the zero page are not interesting.
1779 */
1780 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1781 spin_unlock(ptl);
1782 return ret;
1783 }
1784
1785 if (!prot_numa || !pmd_protnone(*pmd)) {
1786 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1787 entry = pmd_modify(entry, newprot);
1788 if (preserve_write)
1789 entry = pmd_mkwrite(entry);
1790 ret = HPAGE_PMD_NR;
1791 set_pmd_at(mm, addr, pmd, entry);
1792 BUG_ON(!preserve_write && pmd_write(entry));
1793 }
1794 spin_unlock(ptl);
1795 }
1796
1797 return ret;
1798 }
1799
1800 /*
1801 * Returns true if a given pmd maps a thp, false otherwise.
1802 *
1803 * Note that if it returns true, this routine returns without unlocking page
1804 * table lock. So callers must unlock it.
1805 */
1806 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1807 {
1808 spinlock_t *ptl;
1809 ptl = pmd_lock(vma->vm_mm, pmd);
1810 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1811 return ptl;
1812 spin_unlock(ptl);
1813 return NULL;
1814 }
1815
1816 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1817
1818 int hugepage_madvise(struct vm_area_struct *vma,
1819 unsigned long *vm_flags, int advice)
1820 {
1821 switch (advice) {
1822 case MADV_HUGEPAGE:
1823 #ifdef CONFIG_S390
1824 /*
1825 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1826 * can't handle this properly after s390_enable_sie, so we simply
1827 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1828 */
1829 if (mm_has_pgste(vma->vm_mm))
1830 return 0;
1831 #endif
1832 /*
1833 * Be somewhat over-protective like KSM for now!
1834 */
1835 if (*vm_flags & VM_NO_THP)
1836 return -EINVAL;
1837 *vm_flags &= ~VM_NOHUGEPAGE;
1838 *vm_flags |= VM_HUGEPAGE;
1839 /*
1840 * If the vma become good for khugepaged to scan,
1841 * register it here without waiting a page fault that
1842 * may not happen any time soon.
1843 */
1844 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1845 return -ENOMEM;
1846 break;
1847 case MADV_NOHUGEPAGE:
1848 /*
1849 * Be somewhat over-protective like KSM for now!
1850 */
1851 if (*vm_flags & VM_NO_THP)
1852 return -EINVAL;
1853 *vm_flags &= ~VM_HUGEPAGE;
1854 *vm_flags |= VM_NOHUGEPAGE;
1855 /*
1856 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1857 * this vma even if we leave the mm registered in khugepaged if
1858 * it got registered before VM_NOHUGEPAGE was set.
1859 */
1860 break;
1861 }
1862
1863 return 0;
1864 }
1865
1866 static int __init khugepaged_slab_init(void)
1867 {
1868 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1869 sizeof(struct mm_slot),
1870 __alignof__(struct mm_slot), 0, NULL);
1871 if (!mm_slot_cache)
1872 return -ENOMEM;
1873
1874 return 0;
1875 }
1876
1877 static void __init khugepaged_slab_exit(void)
1878 {
1879 kmem_cache_destroy(mm_slot_cache);
1880 }
1881
1882 static inline struct mm_slot *alloc_mm_slot(void)
1883 {
1884 if (!mm_slot_cache) /* initialization failed */
1885 return NULL;
1886 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1887 }
1888
1889 static inline void free_mm_slot(struct mm_slot *mm_slot)
1890 {
1891 kmem_cache_free(mm_slot_cache, mm_slot);
1892 }
1893
1894 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1895 {
1896 struct mm_slot *mm_slot;
1897
1898 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1899 if (mm == mm_slot->mm)
1900 return mm_slot;
1901
1902 return NULL;
1903 }
1904
1905 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1906 struct mm_slot *mm_slot)
1907 {
1908 mm_slot->mm = mm;
1909 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1910 }
1911
1912 static inline int khugepaged_test_exit(struct mm_struct *mm)
1913 {
1914 return atomic_read(&mm->mm_users) == 0;
1915 }
1916
1917 int __khugepaged_enter(struct mm_struct *mm)
1918 {
1919 struct mm_slot *mm_slot;
1920 int wakeup;
1921
1922 mm_slot = alloc_mm_slot();
1923 if (!mm_slot)
1924 return -ENOMEM;
1925
1926 /* __khugepaged_exit() must not run from under us */
1927 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1928 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1929 free_mm_slot(mm_slot);
1930 return 0;
1931 }
1932
1933 spin_lock(&khugepaged_mm_lock);
1934 insert_to_mm_slots_hash(mm, mm_slot);
1935 /*
1936 * Insert just behind the scanning cursor, to let the area settle
1937 * down a little.
1938 */
1939 wakeup = list_empty(&khugepaged_scan.mm_head);
1940 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1941 spin_unlock(&khugepaged_mm_lock);
1942
1943 atomic_inc(&mm->mm_count);
1944 if (wakeup)
1945 wake_up_interruptible(&khugepaged_wait);
1946
1947 return 0;
1948 }
1949
1950 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1951 unsigned long vm_flags)
1952 {
1953 unsigned long hstart, hend;
1954 if (!vma->anon_vma)
1955 /*
1956 * Not yet faulted in so we will register later in the
1957 * page fault if needed.
1958 */
1959 return 0;
1960 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1961 /* khugepaged not yet working on file or special mappings */
1962 return 0;
1963 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1964 hend = vma->vm_end & HPAGE_PMD_MASK;
1965 if (hstart < hend)
1966 return khugepaged_enter(vma, vm_flags);
1967 return 0;
1968 }
1969
1970 void __khugepaged_exit(struct mm_struct *mm)
1971 {
1972 struct mm_slot *mm_slot;
1973 int free = 0;
1974
1975 spin_lock(&khugepaged_mm_lock);
1976 mm_slot = get_mm_slot(mm);
1977 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1978 hash_del(&mm_slot->hash);
1979 list_del(&mm_slot->mm_node);
1980 free = 1;
1981 }
1982 spin_unlock(&khugepaged_mm_lock);
1983
1984 if (free) {
1985 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1986 free_mm_slot(mm_slot);
1987 mmdrop(mm);
1988 } else if (mm_slot) {
1989 /*
1990 * This is required to serialize against
1991 * khugepaged_test_exit() (which is guaranteed to run
1992 * under mmap sem read mode). Stop here (after we
1993 * return all pagetables will be destroyed) until
1994 * khugepaged has finished working on the pagetables
1995 * under the mmap_sem.
1996 */
1997 down_write(&mm->mmap_sem);
1998 up_write(&mm->mmap_sem);
1999 }
2000 }
2001
2002 static void release_pte_page(struct page *page)
2003 {
2004 /* 0 stands for page_is_file_cache(page) == false */
2005 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2006 unlock_page(page);
2007 putback_lru_page(page);
2008 }
2009
2010 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2011 {
2012 while (--_pte >= pte) {
2013 pte_t pteval = *_pte;
2014 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2015 release_pte_page(pte_page(pteval));
2016 }
2017 }
2018
2019 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2020 unsigned long address,
2021 pte_t *pte)
2022 {
2023 struct page *page = NULL;
2024 pte_t *_pte;
2025 int none_or_zero = 0, result = 0;
2026 bool referenced = false, writable = false;
2027
2028 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2029 _pte++, address += PAGE_SIZE) {
2030 pte_t pteval = *_pte;
2031 if (pte_none(pteval) || (pte_present(pteval) &&
2032 is_zero_pfn(pte_pfn(pteval)))) {
2033 if (!userfaultfd_armed(vma) &&
2034 ++none_or_zero <= khugepaged_max_ptes_none) {
2035 continue;
2036 } else {
2037 result = SCAN_EXCEED_NONE_PTE;
2038 goto out;
2039 }
2040 }
2041 if (!pte_present(pteval)) {
2042 result = SCAN_PTE_NON_PRESENT;
2043 goto out;
2044 }
2045 page = vm_normal_page(vma, address, pteval);
2046 if (unlikely(!page)) {
2047 result = SCAN_PAGE_NULL;
2048 goto out;
2049 }
2050
2051 VM_BUG_ON_PAGE(PageCompound(page), page);
2052 VM_BUG_ON_PAGE(!PageAnon(page), page);
2053 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2054
2055 /*
2056 * We can do it before isolate_lru_page because the
2057 * page can't be freed from under us. NOTE: PG_lock
2058 * is needed to serialize against split_huge_page
2059 * when invoked from the VM.
2060 */
2061 if (!trylock_page(page)) {
2062 result = SCAN_PAGE_LOCK;
2063 goto out;
2064 }
2065
2066 /*
2067 * cannot use mapcount: can't collapse if there's a gup pin.
2068 * The page must only be referenced by the scanned process
2069 * and page swap cache.
2070 */
2071 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2072 unlock_page(page);
2073 result = SCAN_PAGE_COUNT;
2074 goto out;
2075 }
2076 if (pte_write(pteval)) {
2077 writable = true;
2078 } else {
2079 if (PageSwapCache(page) &&
2080 !reuse_swap_page(page, NULL)) {
2081 unlock_page(page);
2082 result = SCAN_SWAP_CACHE_PAGE;
2083 goto out;
2084 }
2085 /*
2086 * Page is not in the swap cache. It can be collapsed
2087 * into a THP.
2088 */
2089 }
2090
2091 /*
2092 * Isolate the page to avoid collapsing an hugepage
2093 * currently in use by the VM.
2094 */
2095 if (isolate_lru_page(page)) {
2096 unlock_page(page);
2097 result = SCAN_DEL_PAGE_LRU;
2098 goto out;
2099 }
2100 /* 0 stands for page_is_file_cache(page) == false */
2101 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2102 VM_BUG_ON_PAGE(!PageLocked(page), page);
2103 VM_BUG_ON_PAGE(PageLRU(page), page);
2104
2105 /* If there is no mapped pte young don't collapse the page */
2106 if (pte_young(pteval) ||
2107 page_is_young(page) || PageReferenced(page) ||
2108 mmu_notifier_test_young(vma->vm_mm, address))
2109 referenced = true;
2110 }
2111 if (likely(writable)) {
2112 if (likely(referenced)) {
2113 result = SCAN_SUCCEED;
2114 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2115 referenced, writable, result);
2116 return 1;
2117 }
2118 } else {
2119 result = SCAN_PAGE_RO;
2120 }
2121
2122 out:
2123 release_pte_pages(pte, _pte);
2124 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2125 referenced, writable, result);
2126 return 0;
2127 }
2128
2129 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2130 struct vm_area_struct *vma,
2131 unsigned long address,
2132 spinlock_t *ptl)
2133 {
2134 pte_t *_pte;
2135 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2136 pte_t pteval = *_pte;
2137 struct page *src_page;
2138
2139 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2140 clear_user_highpage(page, address);
2141 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2142 if (is_zero_pfn(pte_pfn(pteval))) {
2143 /*
2144 * ptl mostly unnecessary.
2145 */
2146 spin_lock(ptl);
2147 /*
2148 * paravirt calls inside pte_clear here are
2149 * superfluous.
2150 */
2151 pte_clear(vma->vm_mm, address, _pte);
2152 spin_unlock(ptl);
2153 }
2154 } else {
2155 src_page = pte_page(pteval);
2156 copy_user_highpage(page, src_page, address, vma);
2157 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2158 release_pte_page(src_page);
2159 /*
2160 * ptl mostly unnecessary, but preempt has to
2161 * be disabled to update the per-cpu stats
2162 * inside page_remove_rmap().
2163 */
2164 spin_lock(ptl);
2165 /*
2166 * paravirt calls inside pte_clear here are
2167 * superfluous.
2168 */
2169 pte_clear(vma->vm_mm, address, _pte);
2170 page_remove_rmap(src_page, false);
2171 spin_unlock(ptl);
2172 free_page_and_swap_cache(src_page);
2173 }
2174
2175 address += PAGE_SIZE;
2176 page++;
2177 }
2178 }
2179
2180 static void khugepaged_alloc_sleep(void)
2181 {
2182 DEFINE_WAIT(wait);
2183
2184 add_wait_queue(&khugepaged_wait, &wait);
2185 freezable_schedule_timeout_interruptible(
2186 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187 remove_wait_queue(&khugepaged_wait, &wait);
2188 }
2189
2190 static int khugepaged_node_load[MAX_NUMNODES];
2191
2192 static bool khugepaged_scan_abort(int nid)
2193 {
2194 int i;
2195
2196 /*
2197 * If zone_reclaim_mode is disabled, then no extra effort is made to
2198 * allocate memory locally.
2199 */
2200 if (!zone_reclaim_mode)
2201 return false;
2202
2203 /* If there is a count for this node already, it must be acceptable */
2204 if (khugepaged_node_load[nid])
2205 return false;
2206
2207 for (i = 0; i < MAX_NUMNODES; i++) {
2208 if (!khugepaged_node_load[i])
2209 continue;
2210 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2211 return true;
2212 }
2213 return false;
2214 }
2215
2216 #ifdef CONFIG_NUMA
2217 static int khugepaged_find_target_node(void)
2218 {
2219 static int last_khugepaged_target_node = NUMA_NO_NODE;
2220 int nid, target_node = 0, max_value = 0;
2221
2222 /* find first node with max normal pages hit */
2223 for (nid = 0; nid < MAX_NUMNODES; nid++)
2224 if (khugepaged_node_load[nid] > max_value) {
2225 max_value = khugepaged_node_load[nid];
2226 target_node = nid;
2227 }
2228
2229 /* do some balance if several nodes have the same hit record */
2230 if (target_node <= last_khugepaged_target_node)
2231 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2232 nid++)
2233 if (max_value == khugepaged_node_load[nid]) {
2234 target_node = nid;
2235 break;
2236 }
2237
2238 last_khugepaged_target_node = target_node;
2239 return target_node;
2240 }
2241
2242 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2243 {
2244 if (IS_ERR(*hpage)) {
2245 if (!*wait)
2246 return false;
2247
2248 *wait = false;
2249 *hpage = NULL;
2250 khugepaged_alloc_sleep();
2251 } else if (*hpage) {
2252 put_page(*hpage);
2253 *hpage = NULL;
2254 }
2255
2256 return true;
2257 }
2258
2259 static struct page *
2260 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2261 unsigned long address, int node)
2262 {
2263 VM_BUG_ON_PAGE(*hpage, *hpage);
2264
2265 /*
2266 * Before allocating the hugepage, release the mmap_sem read lock.
2267 * The allocation can take potentially a long time if it involves
2268 * sync compaction, and we do not need to hold the mmap_sem during
2269 * that. We will recheck the vma after taking it again in write mode.
2270 */
2271 up_read(&mm->mmap_sem);
2272
2273 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2274 if (unlikely(!*hpage)) {
2275 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2276 *hpage = ERR_PTR(-ENOMEM);
2277 return NULL;
2278 }
2279
2280 prep_transhuge_page(*hpage);
2281 count_vm_event(THP_COLLAPSE_ALLOC);
2282 return *hpage;
2283 }
2284 #else
2285 static int khugepaged_find_target_node(void)
2286 {
2287 return 0;
2288 }
2289
2290 static inline struct page *alloc_khugepaged_hugepage(void)
2291 {
2292 struct page *page;
2293
2294 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2295 HPAGE_PMD_ORDER);
2296 if (page)
2297 prep_transhuge_page(page);
2298 return page;
2299 }
2300
2301 static struct page *khugepaged_alloc_hugepage(bool *wait)
2302 {
2303 struct page *hpage;
2304
2305 do {
2306 hpage = alloc_khugepaged_hugepage();
2307 if (!hpage) {
2308 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2309 if (!*wait)
2310 return NULL;
2311
2312 *wait = false;
2313 khugepaged_alloc_sleep();
2314 } else
2315 count_vm_event(THP_COLLAPSE_ALLOC);
2316 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2317
2318 return hpage;
2319 }
2320
2321 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2322 {
2323 if (!*hpage)
2324 *hpage = khugepaged_alloc_hugepage(wait);
2325
2326 if (unlikely(!*hpage))
2327 return false;
2328
2329 return true;
2330 }
2331
2332 static struct page *
2333 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2334 unsigned long address, int node)
2335 {
2336 up_read(&mm->mmap_sem);
2337 VM_BUG_ON(!*hpage);
2338
2339 return *hpage;
2340 }
2341 #endif
2342
2343 static bool hugepage_vma_check(struct vm_area_struct *vma)
2344 {
2345 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2346 (vma->vm_flags & VM_NOHUGEPAGE))
2347 return false;
2348 if (!vma->anon_vma || vma->vm_ops)
2349 return false;
2350 if (is_vma_temporary_stack(vma))
2351 return false;
2352 return !(vma->vm_flags & VM_NO_THP);
2353 }
2354
2355 /*
2356 * If mmap_sem temporarily dropped, revalidate vma
2357 * before taking mmap_sem.
2358 * Return 0 if succeeds, otherwise return none-zero
2359 * value (scan code).
2360 */
2361
2362 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2363 {
2364 struct vm_area_struct *vma;
2365 unsigned long hstart, hend;
2366
2367 if (unlikely(khugepaged_test_exit(mm)))
2368 return SCAN_ANY_PROCESS;
2369
2370 vma = find_vma(mm, address);
2371 if (!vma)
2372 return SCAN_VMA_NULL;
2373
2374 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2375 hend = vma->vm_end & HPAGE_PMD_MASK;
2376 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2377 return SCAN_ADDRESS_RANGE;
2378 if (!hugepage_vma_check(vma))
2379 return SCAN_VMA_CHECK;
2380 return 0;
2381 }
2382
2383 /*
2384 * Bring missing pages in from swap, to complete THP collapse.
2385 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2386 *
2387 * Called and returns without pte mapped or spinlocks held,
2388 * but with mmap_sem held to protect against vma changes.
2389 */
2390
2391 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2392 struct vm_area_struct *vma,
2393 unsigned long address, pmd_t *pmd)
2394 {
2395 pte_t pteval;
2396 int swapped_in = 0, ret = 0;
2397 struct fault_env fe = {
2398 .vma = vma,
2399 .address = address,
2400 .flags = FAULT_FLAG_ALLOW_RETRY,
2401 .pmd = pmd,
2402 };
2403
2404 fe.pte = pte_offset_map(pmd, address);
2405 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2406 fe.pte++, fe.address += PAGE_SIZE) {
2407 pteval = *fe.pte;
2408 if (!is_swap_pte(pteval))
2409 continue;
2410 swapped_in++;
2411 ret = do_swap_page(&fe, pteval);
2412 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2413 if (ret & VM_FAULT_RETRY) {
2414 down_read(&mm->mmap_sem);
2415 /* vma is no longer available, don't continue to swapin */
2416 if (hugepage_vma_revalidate(mm, address))
2417 return false;
2418 /* check if the pmd is still valid */
2419 if (mm_find_pmd(mm, address) != pmd)
2420 return false;
2421 }
2422 if (ret & VM_FAULT_ERROR) {
2423 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2424 return false;
2425 }
2426 /* pte is unmapped now, we need to map it */
2427 fe.pte = pte_offset_map(pmd, fe.address);
2428 }
2429 fe.pte--;
2430 pte_unmap(fe.pte);
2431 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2432 return true;
2433 }
2434
2435 static void collapse_huge_page(struct mm_struct *mm,
2436 unsigned long address,
2437 struct page **hpage,
2438 struct vm_area_struct *vma,
2439 int node)
2440 {
2441 pmd_t *pmd, _pmd;
2442 pte_t *pte;
2443 pgtable_t pgtable;
2444 struct page *new_page;
2445 spinlock_t *pmd_ptl, *pte_ptl;
2446 int isolated = 0, result = 0;
2447 struct mem_cgroup *memcg;
2448 unsigned long mmun_start; /* For mmu_notifiers */
2449 unsigned long mmun_end; /* For mmu_notifiers */
2450 gfp_t gfp;
2451
2452 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2453
2454 /* Only allocate from the target node */
2455 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2456
2457 /* release the mmap_sem read lock. */
2458 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2459 if (!new_page) {
2460 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2461 goto out_nolock;
2462 }
2463
2464 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2465 result = SCAN_CGROUP_CHARGE_FAIL;
2466 goto out_nolock;
2467 }
2468
2469 down_read(&mm->mmap_sem);
2470 result = hugepage_vma_revalidate(mm, address);
2471 if (result) {
2472 mem_cgroup_cancel_charge(new_page, memcg, true);
2473 up_read(&mm->mmap_sem);
2474 goto out_nolock;
2475 }
2476
2477 pmd = mm_find_pmd(mm, address);
2478 if (!pmd) {
2479 result = SCAN_PMD_NULL;
2480 mem_cgroup_cancel_charge(new_page, memcg, true);
2481 up_read(&mm->mmap_sem);
2482 goto out_nolock;
2483 }
2484
2485 /*
2486 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2487 * If it fails, release mmap_sem and jump directly out.
2488 * Continuing to collapse causes inconsistency.
2489 */
2490 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2491 mem_cgroup_cancel_charge(new_page, memcg, true);
2492 up_read(&mm->mmap_sem);
2493 goto out_nolock;
2494 }
2495
2496 up_read(&mm->mmap_sem);
2497 /*
2498 * Prevent all access to pagetables with the exception of
2499 * gup_fast later handled by the ptep_clear_flush and the VM
2500 * handled by the anon_vma lock + PG_lock.
2501 */
2502 down_write(&mm->mmap_sem);
2503 result = hugepage_vma_revalidate(mm, address);
2504 if (result)
2505 goto out;
2506 /* check if the pmd is still valid */
2507 if (mm_find_pmd(mm, address) != pmd)
2508 goto out;
2509
2510 anon_vma_lock_write(vma->anon_vma);
2511
2512 pte = pte_offset_map(pmd, address);
2513 pte_ptl = pte_lockptr(mm, pmd);
2514
2515 mmun_start = address;
2516 mmun_end = address + HPAGE_PMD_SIZE;
2517 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2518 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2519 /*
2520 * After this gup_fast can't run anymore. This also removes
2521 * any huge TLB entry from the CPU so we won't allow
2522 * huge and small TLB entries for the same virtual address
2523 * to avoid the risk of CPU bugs in that area.
2524 */
2525 _pmd = pmdp_collapse_flush(vma, address, pmd);
2526 spin_unlock(pmd_ptl);
2527 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2528
2529 spin_lock(pte_ptl);
2530 isolated = __collapse_huge_page_isolate(vma, address, pte);
2531 spin_unlock(pte_ptl);
2532
2533 if (unlikely(!isolated)) {
2534 pte_unmap(pte);
2535 spin_lock(pmd_ptl);
2536 BUG_ON(!pmd_none(*pmd));
2537 /*
2538 * We can only use set_pmd_at when establishing
2539 * hugepmds and never for establishing regular pmds that
2540 * points to regular pagetables. Use pmd_populate for that
2541 */
2542 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2543 spin_unlock(pmd_ptl);
2544 anon_vma_unlock_write(vma->anon_vma);
2545 result = SCAN_FAIL;
2546 goto out;
2547 }
2548
2549 /*
2550 * All pages are isolated and locked so anon_vma rmap
2551 * can't run anymore.
2552 */
2553 anon_vma_unlock_write(vma->anon_vma);
2554
2555 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2556 pte_unmap(pte);
2557 __SetPageUptodate(new_page);
2558 pgtable = pmd_pgtable(_pmd);
2559
2560 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2561 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2562
2563 /*
2564 * spin_lock() below is not the equivalent of smp_wmb(), so
2565 * this is needed to avoid the copy_huge_page writes to become
2566 * visible after the set_pmd_at() write.
2567 */
2568 smp_wmb();
2569
2570 spin_lock(pmd_ptl);
2571 BUG_ON(!pmd_none(*pmd));
2572 page_add_new_anon_rmap(new_page, vma, address, true);
2573 mem_cgroup_commit_charge(new_page, memcg, false, true);
2574 lru_cache_add_active_or_unevictable(new_page, vma);
2575 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2576 set_pmd_at(mm, address, pmd, _pmd);
2577 update_mmu_cache_pmd(vma, address, pmd);
2578 spin_unlock(pmd_ptl);
2579
2580 *hpage = NULL;
2581
2582 khugepaged_pages_collapsed++;
2583 result = SCAN_SUCCEED;
2584 out_up_write:
2585 up_write(&mm->mmap_sem);
2586 out_nolock:
2587 trace_mm_collapse_huge_page(mm, isolated, result);
2588 return;
2589 out:
2590 mem_cgroup_cancel_charge(new_page, memcg, true);
2591 goto out_up_write;
2592 }
2593
2594 static int khugepaged_scan_pmd(struct mm_struct *mm,
2595 struct vm_area_struct *vma,
2596 unsigned long address,
2597 struct page **hpage)
2598 {
2599 pmd_t *pmd;
2600 pte_t *pte, *_pte;
2601 int ret = 0, none_or_zero = 0, result = 0;
2602 struct page *page = NULL;
2603 unsigned long _address;
2604 spinlock_t *ptl;
2605 int node = NUMA_NO_NODE, unmapped = 0;
2606 bool writable = false, referenced = false;
2607
2608 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2609
2610 pmd = mm_find_pmd(mm, address);
2611 if (!pmd) {
2612 result = SCAN_PMD_NULL;
2613 goto out;
2614 }
2615
2616 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2617 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2618 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2619 _pte++, _address += PAGE_SIZE) {
2620 pte_t pteval = *_pte;
2621 if (is_swap_pte(pteval)) {
2622 if (++unmapped <= khugepaged_max_ptes_swap) {
2623 continue;
2624 } else {
2625 result = SCAN_EXCEED_SWAP_PTE;
2626 goto out_unmap;
2627 }
2628 }
2629 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2630 if (!userfaultfd_armed(vma) &&
2631 ++none_or_zero <= khugepaged_max_ptes_none) {
2632 continue;
2633 } else {
2634 result = SCAN_EXCEED_NONE_PTE;
2635 goto out_unmap;
2636 }
2637 }
2638 if (!pte_present(pteval)) {
2639 result = SCAN_PTE_NON_PRESENT;
2640 goto out_unmap;
2641 }
2642 if (pte_write(pteval))
2643 writable = true;
2644
2645 page = vm_normal_page(vma, _address, pteval);
2646 if (unlikely(!page)) {
2647 result = SCAN_PAGE_NULL;
2648 goto out_unmap;
2649 }
2650
2651 /* TODO: teach khugepaged to collapse THP mapped with pte */
2652 if (PageCompound(page)) {
2653 result = SCAN_PAGE_COMPOUND;
2654 goto out_unmap;
2655 }
2656
2657 /*
2658 * Record which node the original page is from and save this
2659 * information to khugepaged_node_load[].
2660 * Khupaged will allocate hugepage from the node has the max
2661 * hit record.
2662 */
2663 node = page_to_nid(page);
2664 if (khugepaged_scan_abort(node)) {
2665 result = SCAN_SCAN_ABORT;
2666 goto out_unmap;
2667 }
2668 khugepaged_node_load[node]++;
2669 if (!PageLRU(page)) {
2670 result = SCAN_PAGE_LRU;
2671 goto out_unmap;
2672 }
2673 if (PageLocked(page)) {
2674 result = SCAN_PAGE_LOCK;
2675 goto out_unmap;
2676 }
2677 if (!PageAnon(page)) {
2678 result = SCAN_PAGE_ANON;
2679 goto out_unmap;
2680 }
2681
2682 /*
2683 * cannot use mapcount: can't collapse if there's a gup pin.
2684 * The page must only be referenced by the scanned process
2685 * and page swap cache.
2686 */
2687 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2688 result = SCAN_PAGE_COUNT;
2689 goto out_unmap;
2690 }
2691 if (pte_young(pteval) ||
2692 page_is_young(page) || PageReferenced(page) ||
2693 mmu_notifier_test_young(vma->vm_mm, address))
2694 referenced = true;
2695 }
2696 if (writable) {
2697 if (referenced) {
2698 result = SCAN_SUCCEED;
2699 ret = 1;
2700 } else {
2701 result = SCAN_NO_REFERENCED_PAGE;
2702 }
2703 } else {
2704 result = SCAN_PAGE_RO;
2705 }
2706 out_unmap:
2707 pte_unmap_unlock(pte, ptl);
2708 if (ret) {
2709 node = khugepaged_find_target_node();
2710 /* collapse_huge_page will return with the mmap_sem released */
2711 collapse_huge_page(mm, address, hpage, vma, node);
2712 }
2713 out:
2714 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2715 none_or_zero, result, unmapped);
2716 return ret;
2717 }
2718
2719 static void collect_mm_slot(struct mm_slot *mm_slot)
2720 {
2721 struct mm_struct *mm = mm_slot->mm;
2722
2723 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2724
2725 if (khugepaged_test_exit(mm)) {
2726 /* free mm_slot */
2727 hash_del(&mm_slot->hash);
2728 list_del(&mm_slot->mm_node);
2729
2730 /*
2731 * Not strictly needed because the mm exited already.
2732 *
2733 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2734 */
2735
2736 /* khugepaged_mm_lock actually not necessary for the below */
2737 free_mm_slot(mm_slot);
2738 mmdrop(mm);
2739 }
2740 }
2741
2742 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2743 struct page **hpage)
2744 __releases(&khugepaged_mm_lock)
2745 __acquires(&khugepaged_mm_lock)
2746 {
2747 struct mm_slot *mm_slot;
2748 struct mm_struct *mm;
2749 struct vm_area_struct *vma;
2750 int progress = 0;
2751
2752 VM_BUG_ON(!pages);
2753 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2754
2755 if (khugepaged_scan.mm_slot)
2756 mm_slot = khugepaged_scan.mm_slot;
2757 else {
2758 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2759 struct mm_slot, mm_node);
2760 khugepaged_scan.address = 0;
2761 khugepaged_scan.mm_slot = mm_slot;
2762 }
2763 spin_unlock(&khugepaged_mm_lock);
2764
2765 mm = mm_slot->mm;
2766 down_read(&mm->mmap_sem);
2767 if (unlikely(khugepaged_test_exit(mm)))
2768 vma = NULL;
2769 else
2770 vma = find_vma(mm, khugepaged_scan.address);
2771
2772 progress++;
2773 for (; vma; vma = vma->vm_next) {
2774 unsigned long hstart, hend;
2775
2776 cond_resched();
2777 if (unlikely(khugepaged_test_exit(mm))) {
2778 progress++;
2779 break;
2780 }
2781 if (!hugepage_vma_check(vma)) {
2782 skip:
2783 progress++;
2784 continue;
2785 }
2786 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2787 hend = vma->vm_end & HPAGE_PMD_MASK;
2788 if (hstart >= hend)
2789 goto skip;
2790 if (khugepaged_scan.address > hend)
2791 goto skip;
2792 if (khugepaged_scan.address < hstart)
2793 khugepaged_scan.address = hstart;
2794 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2795
2796 while (khugepaged_scan.address < hend) {
2797 int ret;
2798 cond_resched();
2799 if (unlikely(khugepaged_test_exit(mm)))
2800 goto breakouterloop;
2801
2802 VM_BUG_ON(khugepaged_scan.address < hstart ||
2803 khugepaged_scan.address + HPAGE_PMD_SIZE >
2804 hend);
2805 ret = khugepaged_scan_pmd(mm, vma,
2806 khugepaged_scan.address,
2807 hpage);
2808 /* move to next address */
2809 khugepaged_scan.address += HPAGE_PMD_SIZE;
2810 progress += HPAGE_PMD_NR;
2811 if (ret)
2812 /* we released mmap_sem so break loop */
2813 goto breakouterloop_mmap_sem;
2814 if (progress >= pages)
2815 goto breakouterloop;
2816 }
2817 }
2818 breakouterloop:
2819 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2820 breakouterloop_mmap_sem:
2821
2822 spin_lock(&khugepaged_mm_lock);
2823 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2824 /*
2825 * Release the current mm_slot if this mm is about to die, or
2826 * if we scanned all vmas of this mm.
2827 */
2828 if (khugepaged_test_exit(mm) || !vma) {
2829 /*
2830 * Make sure that if mm_users is reaching zero while
2831 * khugepaged runs here, khugepaged_exit will find
2832 * mm_slot not pointing to the exiting mm.
2833 */
2834 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2835 khugepaged_scan.mm_slot = list_entry(
2836 mm_slot->mm_node.next,
2837 struct mm_slot, mm_node);
2838 khugepaged_scan.address = 0;
2839 } else {
2840 khugepaged_scan.mm_slot = NULL;
2841 khugepaged_full_scans++;
2842 }
2843
2844 collect_mm_slot(mm_slot);
2845 }
2846
2847 return progress;
2848 }
2849
2850 static int khugepaged_has_work(void)
2851 {
2852 return !list_empty(&khugepaged_scan.mm_head) &&
2853 khugepaged_enabled();
2854 }
2855
2856 static int khugepaged_wait_event(void)
2857 {
2858 return !list_empty(&khugepaged_scan.mm_head) ||
2859 kthread_should_stop();
2860 }
2861
2862 static void khugepaged_do_scan(void)
2863 {
2864 struct page *hpage = NULL;
2865 unsigned int progress = 0, pass_through_head = 0;
2866 unsigned int pages = khugepaged_pages_to_scan;
2867 bool wait = true;
2868
2869 barrier(); /* write khugepaged_pages_to_scan to local stack */
2870
2871 while (progress < pages) {
2872 if (!khugepaged_prealloc_page(&hpage, &wait))
2873 break;
2874
2875 cond_resched();
2876
2877 if (unlikely(kthread_should_stop() || try_to_freeze()))
2878 break;
2879
2880 spin_lock(&khugepaged_mm_lock);
2881 if (!khugepaged_scan.mm_slot)
2882 pass_through_head++;
2883 if (khugepaged_has_work() &&
2884 pass_through_head < 2)
2885 progress += khugepaged_scan_mm_slot(pages - progress,
2886 &hpage);
2887 else
2888 progress = pages;
2889 spin_unlock(&khugepaged_mm_lock);
2890 }
2891
2892 if (!IS_ERR_OR_NULL(hpage))
2893 put_page(hpage);
2894 }
2895
2896 static bool khugepaged_should_wakeup(void)
2897 {
2898 return kthread_should_stop() ||
2899 time_after_eq(jiffies, khugepaged_sleep_expire);
2900 }
2901
2902 static void khugepaged_wait_work(void)
2903 {
2904 if (khugepaged_has_work()) {
2905 const unsigned long scan_sleep_jiffies =
2906 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2907
2908 if (!scan_sleep_jiffies)
2909 return;
2910
2911 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2912 wait_event_freezable_timeout(khugepaged_wait,
2913 khugepaged_should_wakeup(),
2914 scan_sleep_jiffies);
2915 return;
2916 }
2917
2918 if (khugepaged_enabled())
2919 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2920 }
2921
2922 static int khugepaged(void *none)
2923 {
2924 struct mm_slot *mm_slot;
2925
2926 set_freezable();
2927 set_user_nice(current, MAX_NICE);
2928
2929 while (!kthread_should_stop()) {
2930 khugepaged_do_scan();
2931 khugepaged_wait_work();
2932 }
2933
2934 spin_lock(&khugepaged_mm_lock);
2935 mm_slot = khugepaged_scan.mm_slot;
2936 khugepaged_scan.mm_slot = NULL;
2937 if (mm_slot)
2938 collect_mm_slot(mm_slot);
2939 spin_unlock(&khugepaged_mm_lock);
2940 return 0;
2941 }
2942
2943 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2944 unsigned long haddr, pmd_t *pmd)
2945 {
2946 struct mm_struct *mm = vma->vm_mm;
2947 pgtable_t pgtable;
2948 pmd_t _pmd;
2949 int i;
2950
2951 /* leave pmd empty until pte is filled */
2952 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2953
2954 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2955 pmd_populate(mm, &_pmd, pgtable);
2956
2957 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2958 pte_t *pte, entry;
2959 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2960 entry = pte_mkspecial(entry);
2961 pte = pte_offset_map(&_pmd, haddr);
2962 VM_BUG_ON(!pte_none(*pte));
2963 set_pte_at(mm, haddr, pte, entry);
2964 pte_unmap(pte);
2965 }
2966 smp_wmb(); /* make pte visible before pmd */
2967 pmd_populate(mm, pmd, pgtable);
2968 put_huge_zero_page();
2969 }
2970
2971 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2972 unsigned long haddr, bool freeze)
2973 {
2974 struct mm_struct *mm = vma->vm_mm;
2975 struct page *page;
2976 pgtable_t pgtable;
2977 pmd_t _pmd;
2978 bool young, write, dirty;
2979 unsigned long addr;
2980 int i;
2981
2982 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2983 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2984 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2985 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2986
2987 count_vm_event(THP_SPLIT_PMD);
2988
2989 if (vma_is_dax(vma)) {
2990 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2991 if (is_huge_zero_pmd(_pmd))
2992 put_huge_zero_page();
2993 return;
2994 } else if (is_huge_zero_pmd(*pmd)) {
2995 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2996 }
2997
2998 page = pmd_page(*pmd);
2999 VM_BUG_ON_PAGE(!page_count(page), page);
3000 page_ref_add(page, HPAGE_PMD_NR - 1);
3001 write = pmd_write(*pmd);
3002 young = pmd_young(*pmd);
3003 dirty = pmd_dirty(*pmd);
3004
3005 pmdp_huge_split_prepare(vma, haddr, pmd);
3006 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3007 pmd_populate(mm, &_pmd, pgtable);
3008
3009 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3010 pte_t entry, *pte;
3011 /*
3012 * Note that NUMA hinting access restrictions are not
3013 * transferred to avoid any possibility of altering
3014 * permissions across VMAs.
3015 */
3016 if (freeze) {
3017 swp_entry_t swp_entry;
3018 swp_entry = make_migration_entry(page + i, write);
3019 entry = swp_entry_to_pte(swp_entry);
3020 } else {
3021 entry = mk_pte(page + i, vma->vm_page_prot);
3022 entry = maybe_mkwrite(entry, vma);
3023 if (!write)
3024 entry = pte_wrprotect(entry);
3025 if (!young)
3026 entry = pte_mkold(entry);
3027 }
3028 if (dirty)
3029 SetPageDirty(page + i);
3030 pte = pte_offset_map(&_pmd, addr);
3031 BUG_ON(!pte_none(*pte));
3032 set_pte_at(mm, addr, pte, entry);
3033 atomic_inc(&page[i]._mapcount);
3034 pte_unmap(pte);
3035 }
3036
3037 /*
3038 * Set PG_double_map before dropping compound_mapcount to avoid
3039 * false-negative page_mapped().
3040 */
3041 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3042 for (i = 0; i < HPAGE_PMD_NR; i++)
3043 atomic_inc(&page[i]._mapcount);
3044 }
3045
3046 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3047 /* Last compound_mapcount is gone. */
3048 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3049 if (TestClearPageDoubleMap(page)) {
3050 /* No need in mapcount reference anymore */
3051 for (i = 0; i < HPAGE_PMD_NR; i++)
3052 atomic_dec(&page[i]._mapcount);
3053 }
3054 }
3055
3056 smp_wmb(); /* make pte visible before pmd */
3057 /*
3058 * Up to this point the pmd is present and huge and userland has the
3059 * whole access to the hugepage during the split (which happens in
3060 * place). If we overwrite the pmd with the not-huge version pointing
3061 * to the pte here (which of course we could if all CPUs were bug
3062 * free), userland could trigger a small page size TLB miss on the
3063 * small sized TLB while the hugepage TLB entry is still established in
3064 * the huge TLB. Some CPU doesn't like that.
3065 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3066 * 383 on page 93. Intel should be safe but is also warns that it's
3067 * only safe if the permission and cache attributes of the two entries
3068 * loaded in the two TLB is identical (which should be the case here).
3069 * But it is generally safer to never allow small and huge TLB entries
3070 * for the same virtual address to be loaded simultaneously. So instead
3071 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3072 * current pmd notpresent (atomically because here the pmd_trans_huge
3073 * and pmd_trans_splitting must remain set at all times on the pmd
3074 * until the split is complete for this pmd), then we flush the SMP TLB
3075 * and finally we write the non-huge version of the pmd entry with
3076 * pmd_populate.
3077 */
3078 pmdp_invalidate(vma, haddr, pmd);
3079 pmd_populate(mm, pmd, pgtable);
3080
3081 if (freeze) {
3082 for (i = 0; i < HPAGE_PMD_NR; i++) {
3083 page_remove_rmap(page + i, false);
3084 put_page(page + i);
3085 }
3086 }
3087 }
3088
3089 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3090 unsigned long address, bool freeze, struct page *page)
3091 {
3092 spinlock_t *ptl;
3093 struct mm_struct *mm = vma->vm_mm;
3094 unsigned long haddr = address & HPAGE_PMD_MASK;
3095
3096 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3097 ptl = pmd_lock(mm, pmd);
3098
3099 /*
3100 * If caller asks to setup a migration entries, we need a page to check
3101 * pmd against. Otherwise we can end up replacing wrong page.
3102 */
3103 VM_BUG_ON(freeze && !page);
3104 if (page && page != pmd_page(*pmd))
3105 goto out;
3106
3107 if (pmd_trans_huge(*pmd)) {
3108 page = pmd_page(*pmd);
3109 if (PageMlocked(page))
3110 clear_page_mlock(page);
3111 } else if (!pmd_devmap(*pmd))
3112 goto out;
3113 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3114 out:
3115 spin_unlock(ptl);
3116 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3117 }
3118
3119 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3120 bool freeze, struct page *page)
3121 {
3122 pgd_t *pgd;
3123 pud_t *pud;
3124 pmd_t *pmd;
3125
3126 pgd = pgd_offset(vma->vm_mm, address);
3127 if (!pgd_present(*pgd))
3128 return;
3129
3130 pud = pud_offset(pgd, address);
3131 if (!pud_present(*pud))
3132 return;
3133
3134 pmd = pmd_offset(pud, address);
3135
3136 __split_huge_pmd(vma, pmd, address, freeze, page);
3137 }
3138
3139 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3140 unsigned long start,
3141 unsigned long end,
3142 long adjust_next)
3143 {
3144 /*
3145 * If the new start address isn't hpage aligned and it could
3146 * previously contain an hugepage: check if we need to split
3147 * an huge pmd.
3148 */
3149 if (start & ~HPAGE_PMD_MASK &&
3150 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3151 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3152 split_huge_pmd_address(vma, start, false, NULL);
3153
3154 /*
3155 * If the new end address isn't hpage aligned and it could
3156 * previously contain an hugepage: check if we need to split
3157 * an huge pmd.
3158 */
3159 if (end & ~HPAGE_PMD_MASK &&
3160 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3161 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3162 split_huge_pmd_address(vma, end, false, NULL);
3163
3164 /*
3165 * If we're also updating the vma->vm_next->vm_start, if the new
3166 * vm_next->vm_start isn't page aligned and it could previously
3167 * contain an hugepage: check if we need to split an huge pmd.
3168 */
3169 if (adjust_next > 0) {
3170 struct vm_area_struct *next = vma->vm_next;
3171 unsigned long nstart = next->vm_start;
3172 nstart += adjust_next << PAGE_SHIFT;
3173 if (nstart & ~HPAGE_PMD_MASK &&
3174 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3175 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3176 split_huge_pmd_address(next, nstart, false, NULL);
3177 }
3178 }
3179
3180 static void freeze_page(struct page *page)
3181 {
3182 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3183 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3184 int i, ret;
3185
3186 VM_BUG_ON_PAGE(!PageHead(page), page);
3187
3188 /* We only need TTU_SPLIT_HUGE_PMD once */
3189 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3190 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3191 /* Cut short if the page is unmapped */
3192 if (page_count(page) == 1)
3193 return;
3194
3195 ret = try_to_unmap(page + i, ttu_flags);
3196 }
3197 VM_BUG_ON(ret);
3198 }
3199
3200 static void unfreeze_page(struct page *page)
3201 {
3202 int i;
3203
3204 for (i = 0; i < HPAGE_PMD_NR; i++)
3205 remove_migration_ptes(page + i, page + i, true);
3206 }
3207
3208 static void __split_huge_page_tail(struct page *head, int tail,
3209 struct lruvec *lruvec, struct list_head *list)
3210 {
3211 struct page *page_tail = head + tail;
3212
3213 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3214 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3215
3216 /*
3217 * tail_page->_refcount is zero and not changing from under us. But
3218 * get_page_unless_zero() may be running from under us on the
3219 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3220 * would then run atomic_set() concurrently with
3221 * get_page_unless_zero(), and atomic_set() is implemented in C not
3222 * using locked ops. spin_unlock on x86 sometime uses locked ops
3223 * because of PPro errata 66, 92, so unless somebody can guarantee
3224 * atomic_set() here would be safe on all archs (and not only on x86),
3225 * it's safer to use atomic_inc().
3226 */
3227 page_ref_inc(page_tail);
3228
3229 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3230 page_tail->flags |= (head->flags &
3231 ((1L << PG_referenced) |
3232 (1L << PG_swapbacked) |
3233 (1L << PG_mlocked) |
3234 (1L << PG_uptodate) |
3235 (1L << PG_active) |
3236 (1L << PG_locked) |
3237 (1L << PG_unevictable) |
3238 (1L << PG_dirty)));
3239
3240 /*
3241 * After clearing PageTail the gup refcount can be released.
3242 * Page flags also must be visible before we make the page non-compound.
3243 */
3244 smp_wmb();
3245
3246 clear_compound_head(page_tail);
3247
3248 if (page_is_young(head))
3249 set_page_young(page_tail);
3250 if (page_is_idle(head))
3251 set_page_idle(page_tail);
3252
3253 /* ->mapping in first tail page is compound_mapcount */
3254 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3255 page_tail);
3256 page_tail->mapping = head->mapping;
3257
3258 page_tail->index = head->index + tail;
3259 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3260 lru_add_page_tail(head, page_tail, lruvec, list);
3261 }
3262
3263 static void __split_huge_page(struct page *page, struct list_head *list)
3264 {
3265 struct page *head = compound_head(page);
3266 struct zone *zone = page_zone(head);
3267 struct lruvec *lruvec;
3268 int i;
3269
3270 /* prevent PageLRU to go away from under us, and freeze lru stats */
3271 spin_lock_irq(&zone->lru_lock);
3272 lruvec = mem_cgroup_page_lruvec(head, zone);
3273
3274 /* complete memcg works before add pages to LRU */
3275 mem_cgroup_split_huge_fixup(head);
3276
3277 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3278 __split_huge_page_tail(head, i, lruvec, list);
3279
3280 ClearPageCompound(head);
3281 spin_unlock_irq(&zone->lru_lock);
3282
3283 unfreeze_page(head);
3284
3285 for (i = 0; i < HPAGE_PMD_NR; i++) {
3286 struct page *subpage = head + i;
3287 if (subpage == page)
3288 continue;
3289 unlock_page(subpage);
3290
3291 /*
3292 * Subpages may be freed if there wasn't any mapping
3293 * like if add_to_swap() is running on a lru page that
3294 * had its mapping zapped. And freeing these pages
3295 * requires taking the lru_lock so we do the put_page
3296 * of the tail pages after the split is complete.
3297 */
3298 put_page(subpage);
3299 }
3300 }
3301
3302 int total_mapcount(struct page *page)
3303 {
3304 int i, ret;
3305
3306 VM_BUG_ON_PAGE(PageTail(page), page);
3307
3308 if (likely(!PageCompound(page)))
3309 return atomic_read(&page->_mapcount) + 1;
3310
3311 ret = compound_mapcount(page);
3312 if (PageHuge(page))
3313 return ret;
3314 for (i = 0; i < HPAGE_PMD_NR; i++)
3315 ret += atomic_read(&page[i]._mapcount) + 1;
3316 if (PageDoubleMap(page))
3317 ret -= HPAGE_PMD_NR;
3318 return ret;
3319 }
3320
3321 /*
3322 * This calculates accurately how many mappings a transparent hugepage
3323 * has (unlike page_mapcount() which isn't fully accurate). This full
3324 * accuracy is primarily needed to know if copy-on-write faults can
3325 * reuse the page and change the mapping to read-write instead of
3326 * copying them. At the same time this returns the total_mapcount too.
3327 *
3328 * The function returns the highest mapcount any one of the subpages
3329 * has. If the return value is one, even if different processes are
3330 * mapping different subpages of the transparent hugepage, they can
3331 * all reuse it, because each process is reusing a different subpage.
3332 *
3333 * The total_mapcount is instead counting all virtual mappings of the
3334 * subpages. If the total_mapcount is equal to "one", it tells the
3335 * caller all mappings belong to the same "mm" and in turn the
3336 * anon_vma of the transparent hugepage can become the vma->anon_vma
3337 * local one as no other process may be mapping any of the subpages.
3338 *
3339 * It would be more accurate to replace page_mapcount() with
3340 * page_trans_huge_mapcount(), however we only use
3341 * page_trans_huge_mapcount() in the copy-on-write faults where we
3342 * need full accuracy to avoid breaking page pinning, because
3343 * page_trans_huge_mapcount() is slower than page_mapcount().
3344 */
3345 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3346 {
3347 int i, ret, _total_mapcount, mapcount;
3348
3349 /* hugetlbfs shouldn't call it */
3350 VM_BUG_ON_PAGE(PageHuge(page), page);
3351
3352 if (likely(!PageTransCompound(page))) {
3353 mapcount = atomic_read(&page->_mapcount) + 1;
3354 if (total_mapcount)
3355 *total_mapcount = mapcount;
3356 return mapcount;
3357 }
3358
3359 page = compound_head(page);
3360
3361 _total_mapcount = ret = 0;
3362 for (i = 0; i < HPAGE_PMD_NR; i++) {
3363 mapcount = atomic_read(&page[i]._mapcount) + 1;
3364 ret = max(ret, mapcount);
3365 _total_mapcount += mapcount;
3366 }
3367 if (PageDoubleMap(page)) {
3368 ret -= 1;
3369 _total_mapcount -= HPAGE_PMD_NR;
3370 }
3371 mapcount = compound_mapcount(page);
3372 ret += mapcount;
3373 _total_mapcount += mapcount;
3374 if (total_mapcount)
3375 *total_mapcount = _total_mapcount;
3376 return ret;
3377 }
3378
3379 /*
3380 * This function splits huge page into normal pages. @page can point to any
3381 * subpage of huge page to split. Split doesn't change the position of @page.
3382 *
3383 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3384 * The huge page must be locked.
3385 *
3386 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3387 *
3388 * Both head page and tail pages will inherit mapping, flags, and so on from
3389 * the hugepage.
3390 *
3391 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3392 * they are not mapped.
3393 *
3394 * Returns 0 if the hugepage is split successfully.
3395 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3396 * us.
3397 */
3398 int split_huge_page_to_list(struct page *page, struct list_head *list)
3399 {
3400 struct page *head = compound_head(page);
3401 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3402 struct anon_vma *anon_vma;
3403 int count, mapcount, ret;
3404 bool mlocked;
3405 unsigned long flags;
3406
3407 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3408 VM_BUG_ON_PAGE(!PageAnon(page), page);
3409 VM_BUG_ON_PAGE(!PageLocked(page), page);
3410 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3411 VM_BUG_ON_PAGE(!PageCompound(page), page);
3412
3413 /*
3414 * The caller does not necessarily hold an mmap_sem that would prevent
3415 * the anon_vma disappearing so we first we take a reference to it
3416 * and then lock the anon_vma for write. This is similar to
3417 * page_lock_anon_vma_read except the write lock is taken to serialise
3418 * against parallel split or collapse operations.
3419 */
3420 anon_vma = page_get_anon_vma(head);
3421 if (!anon_vma) {
3422 ret = -EBUSY;
3423 goto out;
3424 }
3425 anon_vma_lock_write(anon_vma);
3426
3427 /*
3428 * Racy check if we can split the page, before freeze_page() will
3429 * split PMDs
3430 */
3431 if (total_mapcount(head) != page_count(head) - 1) {
3432 ret = -EBUSY;
3433 goto out_unlock;
3434 }
3435
3436 mlocked = PageMlocked(page);
3437 freeze_page(head);
3438 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3439
3440 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3441 if (mlocked)
3442 lru_add_drain();
3443
3444 /* Prevent deferred_split_scan() touching ->_refcount */
3445 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3446 count = page_count(head);
3447 mapcount = total_mapcount(head);
3448 if (!mapcount && count == 1) {
3449 if (!list_empty(page_deferred_list(head))) {
3450 pgdata->split_queue_len--;
3451 list_del(page_deferred_list(head));
3452 }
3453 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3454 __split_huge_page(page, list);
3455 ret = 0;
3456 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3457 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3458 pr_alert("total_mapcount: %u, page_count(): %u\n",
3459 mapcount, count);
3460 if (PageTail(page))
3461 dump_page(head, NULL);
3462 dump_page(page, "total_mapcount(head) > 0");
3463 BUG();
3464 } else {
3465 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3466 unfreeze_page(head);
3467 ret = -EBUSY;
3468 }
3469
3470 out_unlock:
3471 anon_vma_unlock_write(anon_vma);
3472 put_anon_vma(anon_vma);
3473 out:
3474 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3475 return ret;
3476 }
3477
3478 void free_transhuge_page(struct page *page)
3479 {
3480 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3481 unsigned long flags;
3482
3483 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3484 if (!list_empty(page_deferred_list(page))) {
3485 pgdata->split_queue_len--;
3486 list_del(page_deferred_list(page));
3487 }
3488 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3489 free_compound_page(page);
3490 }
3491
3492 void deferred_split_huge_page(struct page *page)
3493 {
3494 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3495 unsigned long flags;
3496
3497 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3498
3499 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3500 if (list_empty(page_deferred_list(page))) {
3501 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3502 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3503 pgdata->split_queue_len++;
3504 }
3505 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3506 }
3507
3508 static unsigned long deferred_split_count(struct shrinker *shrink,
3509 struct shrink_control *sc)
3510 {
3511 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3512 return ACCESS_ONCE(pgdata->split_queue_len);
3513 }
3514
3515 static unsigned long deferred_split_scan(struct shrinker *shrink,
3516 struct shrink_control *sc)
3517 {
3518 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3519 unsigned long flags;
3520 LIST_HEAD(list), *pos, *next;
3521 struct page *page;
3522 int split = 0;
3523
3524 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3525 /* Take pin on all head pages to avoid freeing them under us */
3526 list_for_each_safe(pos, next, &pgdata->split_queue) {
3527 page = list_entry((void *)pos, struct page, mapping);
3528 page = compound_head(page);
3529 if (get_page_unless_zero(page)) {
3530 list_move(page_deferred_list(page), &list);
3531 } else {
3532 /* We lost race with put_compound_page() */
3533 list_del_init(page_deferred_list(page));
3534 pgdata->split_queue_len--;
3535 }
3536 if (!--sc->nr_to_scan)
3537 break;
3538 }
3539 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3540
3541 list_for_each_safe(pos, next, &list) {
3542 page = list_entry((void *)pos, struct page, mapping);
3543 lock_page(page);
3544 /* split_huge_page() removes page from list on success */
3545 if (!split_huge_page(page))
3546 split++;
3547 unlock_page(page);
3548 put_page(page);
3549 }
3550
3551 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3552 list_splice_tail(&list, &pgdata->split_queue);
3553 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3554
3555 /*
3556 * Stop shrinker if we didn't split any page, but the queue is empty.
3557 * This can happen if pages were freed under us.
3558 */
3559 if (!split && list_empty(&pgdata->split_queue))
3560 return SHRINK_STOP;
3561 return split;
3562 }
3563
3564 static struct shrinker deferred_split_shrinker = {
3565 .count_objects = deferred_split_count,
3566 .scan_objects = deferred_split_scan,
3567 .seeks = DEFAULT_SEEKS,
3568 .flags = SHRINKER_NUMA_AWARE,
3569 };
3570
3571 #ifdef CONFIG_DEBUG_FS
3572 static int split_huge_pages_set(void *data, u64 val)
3573 {
3574 struct zone *zone;
3575 struct page *page;
3576 unsigned long pfn, max_zone_pfn;
3577 unsigned long total = 0, split = 0;
3578
3579 if (val != 1)
3580 return -EINVAL;
3581
3582 for_each_populated_zone(zone) {
3583 max_zone_pfn = zone_end_pfn(zone);
3584 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3585 if (!pfn_valid(pfn))
3586 continue;
3587
3588 page = pfn_to_page(pfn);
3589 if (!get_page_unless_zero(page))
3590 continue;
3591
3592 if (zone != page_zone(page))
3593 goto next;
3594
3595 if (!PageHead(page) || !PageAnon(page) ||
3596 PageHuge(page))
3597 goto next;
3598
3599 total++;
3600 lock_page(page);
3601 if (!split_huge_page(page))
3602 split++;
3603 unlock_page(page);
3604 next:
3605 put_page(page);
3606 }
3607 }
3608
3609 pr_info("%lu of %lu THP split\n", split, total);
3610
3611 return 0;
3612 }
3613 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3614 "%llu\n");
3615
3616 static int __init split_huge_pages_debugfs(void)
3617 {
3618 void *ret;
3619
3620 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3621 &split_huge_pages_fops);
3622 if (!ret)
3623 pr_warn("Failed to create split_huge_pages in debugfs");
3624 return 0;
3625 }
3626 late_initcall(split_huge_pages_debugfs);
3627 #endif
This page took 0.10156 seconds and 6 git commands to generate.