mm: drop tail page refcounting
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 enum scan_result {
35 SCAN_FAIL,
36 SCAN_SUCCEED,
37 SCAN_PMD_NULL,
38 SCAN_EXCEED_NONE_PTE,
39 SCAN_PTE_NON_PRESENT,
40 SCAN_PAGE_RO,
41 SCAN_NO_REFERENCED_PAGE,
42 SCAN_PAGE_NULL,
43 SCAN_SCAN_ABORT,
44 SCAN_PAGE_COUNT,
45 SCAN_PAGE_LRU,
46 SCAN_PAGE_LOCK,
47 SCAN_PAGE_ANON,
48 SCAN_PAGE_COMPOUND,
49 SCAN_ANY_PROCESS,
50 SCAN_VMA_NULL,
51 SCAN_VMA_CHECK,
52 SCAN_ADDRESS_RANGE,
53 SCAN_SWAP_CACHE_PAGE,
54 SCAN_DEL_PAGE_LRU,
55 SCAN_ALLOC_HUGE_PAGE_FAIL,
56 SCAN_CGROUP_CHARGE_FAIL
57 };
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/huge_memory.h>
61
62 /*
63 * By default transparent hugepage support is disabled in order that avoid
64 * to risk increase the memory footprint of applications without a guaranteed
65 * benefit. When transparent hugepage support is enabled, is for all mappings,
66 * and khugepaged scans all mappings.
67 * Defrag is invoked by khugepaged hugepage allocations and by page faults
68 * for all hugepage allocations.
69 */
70 unsigned long transparent_hugepage_flags __read_mostly =
71 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
72 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
73 #endif
74 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
75 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
76 #endif
77 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
79 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
80
81 /* default scan 8*512 pte (or vmas) every 30 second */
82 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
83 static unsigned int khugepaged_pages_collapsed;
84 static unsigned int khugepaged_full_scans;
85 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
86 /* during fragmentation poll the hugepage allocator once every minute */
87 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
88 static struct task_struct *khugepaged_thread __read_mostly;
89 static DEFINE_MUTEX(khugepaged_mutex);
90 static DEFINE_SPINLOCK(khugepaged_mm_lock);
91 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
92 /*
93 * default collapse hugepages if there is at least one pte mapped like
94 * it would have happened if the vma was large enough during page
95 * fault.
96 */
97 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
98
99 static int khugepaged(void *none);
100 static int khugepaged_slab_init(void);
101 static void khugepaged_slab_exit(void);
102
103 #define MM_SLOTS_HASH_BITS 10
104 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
105
106 static struct kmem_cache *mm_slot_cache __read_mostly;
107
108 /**
109 * struct mm_slot - hash lookup from mm to mm_slot
110 * @hash: hash collision list
111 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
112 * @mm: the mm that this information is valid for
113 */
114 struct mm_slot {
115 struct hlist_node hash;
116 struct list_head mm_node;
117 struct mm_struct *mm;
118 };
119
120 /**
121 * struct khugepaged_scan - cursor for scanning
122 * @mm_head: the head of the mm list to scan
123 * @mm_slot: the current mm_slot we are scanning
124 * @address: the next address inside that to be scanned
125 *
126 * There is only the one khugepaged_scan instance of this cursor structure.
127 */
128 struct khugepaged_scan {
129 struct list_head mm_head;
130 struct mm_slot *mm_slot;
131 unsigned long address;
132 };
133 static struct khugepaged_scan khugepaged_scan = {
134 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
135 };
136
137
138 static void set_recommended_min_free_kbytes(void)
139 {
140 struct zone *zone;
141 int nr_zones = 0;
142 unsigned long recommended_min;
143
144 for_each_populated_zone(zone)
145 nr_zones++;
146
147 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
148 recommended_min = pageblock_nr_pages * nr_zones * 2;
149
150 /*
151 * Make sure that on average at least two pageblocks are almost free
152 * of another type, one for a migratetype to fall back to and a
153 * second to avoid subsequent fallbacks of other types There are 3
154 * MIGRATE_TYPES we care about.
155 */
156 recommended_min += pageblock_nr_pages * nr_zones *
157 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
158
159 /* don't ever allow to reserve more than 5% of the lowmem */
160 recommended_min = min(recommended_min,
161 (unsigned long) nr_free_buffer_pages() / 20);
162 recommended_min <<= (PAGE_SHIFT-10);
163
164 if (recommended_min > min_free_kbytes) {
165 if (user_min_free_kbytes >= 0)
166 pr_info("raising min_free_kbytes from %d to %lu "
167 "to help transparent hugepage allocations\n",
168 min_free_kbytes, recommended_min);
169
170 min_free_kbytes = recommended_min;
171 }
172 setup_per_zone_wmarks();
173 }
174
175 static int start_stop_khugepaged(void)
176 {
177 int err = 0;
178 if (khugepaged_enabled()) {
179 if (!khugepaged_thread)
180 khugepaged_thread = kthread_run(khugepaged, NULL,
181 "khugepaged");
182 if (IS_ERR(khugepaged_thread)) {
183 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
184 err = PTR_ERR(khugepaged_thread);
185 khugepaged_thread = NULL;
186 goto fail;
187 }
188
189 if (!list_empty(&khugepaged_scan.mm_head))
190 wake_up_interruptible(&khugepaged_wait);
191
192 set_recommended_min_free_kbytes();
193 } else if (khugepaged_thread) {
194 kthread_stop(khugepaged_thread);
195 khugepaged_thread = NULL;
196 }
197 fail:
198 return err;
199 }
200
201 static atomic_t huge_zero_refcount;
202 struct page *huge_zero_page __read_mostly;
203
204 struct page *get_huge_zero_page(void)
205 {
206 struct page *zero_page;
207 retry:
208 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
209 return READ_ONCE(huge_zero_page);
210
211 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
212 HPAGE_PMD_ORDER);
213 if (!zero_page) {
214 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
215 return NULL;
216 }
217 count_vm_event(THP_ZERO_PAGE_ALLOC);
218 preempt_disable();
219 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
220 preempt_enable();
221 __free_pages(zero_page, compound_order(zero_page));
222 goto retry;
223 }
224
225 /* We take additional reference here. It will be put back by shrinker */
226 atomic_set(&huge_zero_refcount, 2);
227 preempt_enable();
228 return READ_ONCE(huge_zero_page);
229 }
230
231 static void put_huge_zero_page(void)
232 {
233 /*
234 * Counter should never go to zero here. Only shrinker can put
235 * last reference.
236 */
237 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
238 }
239
240 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
241 struct shrink_control *sc)
242 {
243 /* we can free zero page only if last reference remains */
244 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
245 }
246
247 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
248 struct shrink_control *sc)
249 {
250 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
251 struct page *zero_page = xchg(&huge_zero_page, NULL);
252 BUG_ON(zero_page == NULL);
253 __free_pages(zero_page, compound_order(zero_page));
254 return HPAGE_PMD_NR;
255 }
256
257 return 0;
258 }
259
260 static struct shrinker huge_zero_page_shrinker = {
261 .count_objects = shrink_huge_zero_page_count,
262 .scan_objects = shrink_huge_zero_page_scan,
263 .seeks = DEFAULT_SEEKS,
264 };
265
266 #ifdef CONFIG_SYSFS
267
268 static ssize_t double_flag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf,
270 enum transparent_hugepage_flag enabled,
271 enum transparent_hugepage_flag req_madv)
272 {
273 if (test_bit(enabled, &transparent_hugepage_flags)) {
274 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
275 return sprintf(buf, "[always] madvise never\n");
276 } else if (test_bit(req_madv, &transparent_hugepage_flags))
277 return sprintf(buf, "always [madvise] never\n");
278 else
279 return sprintf(buf, "always madvise [never]\n");
280 }
281 static ssize_t double_flag_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count,
284 enum transparent_hugepage_flag enabled,
285 enum transparent_hugepage_flag req_madv)
286 {
287 if (!memcmp("always", buf,
288 min(sizeof("always")-1, count))) {
289 set_bit(enabled, &transparent_hugepage_flags);
290 clear_bit(req_madv, &transparent_hugepage_flags);
291 } else if (!memcmp("madvise", buf,
292 min(sizeof("madvise")-1, count))) {
293 clear_bit(enabled, &transparent_hugepage_flags);
294 set_bit(req_madv, &transparent_hugepage_flags);
295 } else if (!memcmp("never", buf,
296 min(sizeof("never")-1, count))) {
297 clear_bit(enabled, &transparent_hugepage_flags);
298 clear_bit(req_madv, &transparent_hugepage_flags);
299 } else
300 return -EINVAL;
301
302 return count;
303 }
304
305 static ssize_t enabled_show(struct kobject *kobj,
306 struct kobj_attribute *attr, char *buf)
307 {
308 return double_flag_show(kobj, attr, buf,
309 TRANSPARENT_HUGEPAGE_FLAG,
310 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
311 }
312 static ssize_t enabled_store(struct kobject *kobj,
313 struct kobj_attribute *attr,
314 const char *buf, size_t count)
315 {
316 ssize_t ret;
317
318 ret = double_flag_store(kobj, attr, buf, count,
319 TRANSPARENT_HUGEPAGE_FLAG,
320 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
321
322 if (ret > 0) {
323 int err;
324
325 mutex_lock(&khugepaged_mutex);
326 err = start_stop_khugepaged();
327 mutex_unlock(&khugepaged_mutex);
328
329 if (err)
330 ret = err;
331 }
332
333 return ret;
334 }
335 static struct kobj_attribute enabled_attr =
336 __ATTR(enabled, 0644, enabled_show, enabled_store);
337
338 static ssize_t single_flag_show(struct kobject *kobj,
339 struct kobj_attribute *attr, char *buf,
340 enum transparent_hugepage_flag flag)
341 {
342 return sprintf(buf, "%d\n",
343 !!test_bit(flag, &transparent_hugepage_flags));
344 }
345
346 static ssize_t single_flag_store(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 const char *buf, size_t count,
349 enum transparent_hugepage_flag flag)
350 {
351 unsigned long value;
352 int ret;
353
354 ret = kstrtoul(buf, 10, &value);
355 if (ret < 0)
356 return ret;
357 if (value > 1)
358 return -EINVAL;
359
360 if (value)
361 set_bit(flag, &transparent_hugepage_flags);
362 else
363 clear_bit(flag, &transparent_hugepage_flags);
364
365 return count;
366 }
367
368 /*
369 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
370 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
371 * memory just to allocate one more hugepage.
372 */
373 static ssize_t defrag_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375 {
376 return double_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
378 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
379 }
380 static ssize_t defrag_store(struct kobject *kobj,
381 struct kobj_attribute *attr,
382 const char *buf, size_t count)
383 {
384 return double_flag_store(kobj, attr, buf, count,
385 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
386 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
387 }
388 static struct kobj_attribute defrag_attr =
389 __ATTR(defrag, 0644, defrag_show, defrag_store);
390
391 static ssize_t use_zero_page_show(struct kobject *kobj,
392 struct kobj_attribute *attr, char *buf)
393 {
394 return single_flag_show(kobj, attr, buf,
395 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
396 }
397 static ssize_t use_zero_page_store(struct kobject *kobj,
398 struct kobj_attribute *attr, const char *buf, size_t count)
399 {
400 return single_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
402 }
403 static struct kobj_attribute use_zero_page_attr =
404 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
405 #ifdef CONFIG_DEBUG_VM
406 static ssize_t debug_cow_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408 {
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
411 }
412 static ssize_t debug_cow_store(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 const char *buf, size_t count)
415 {
416 return single_flag_store(kobj, attr, buf, count,
417 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
418 }
419 static struct kobj_attribute debug_cow_attr =
420 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
421 #endif /* CONFIG_DEBUG_VM */
422
423 static struct attribute *hugepage_attr[] = {
424 &enabled_attr.attr,
425 &defrag_attr.attr,
426 &use_zero_page_attr.attr,
427 #ifdef CONFIG_DEBUG_VM
428 &debug_cow_attr.attr,
429 #endif
430 NULL,
431 };
432
433 static struct attribute_group hugepage_attr_group = {
434 .attrs = hugepage_attr,
435 };
436
437 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
438 struct kobj_attribute *attr,
439 char *buf)
440 {
441 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
442 }
443
444 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 const char *buf, size_t count)
447 {
448 unsigned long msecs;
449 int err;
450
451 err = kstrtoul(buf, 10, &msecs);
452 if (err || msecs > UINT_MAX)
453 return -EINVAL;
454
455 khugepaged_scan_sleep_millisecs = msecs;
456 wake_up_interruptible(&khugepaged_wait);
457
458 return count;
459 }
460 static struct kobj_attribute scan_sleep_millisecs_attr =
461 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
462 scan_sleep_millisecs_store);
463
464 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467 {
468 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
469 }
470
471 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474 {
475 unsigned long msecs;
476 int err;
477
478 err = kstrtoul(buf, 10, &msecs);
479 if (err || msecs > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_alloc_sleep_millisecs = msecs;
483 wake_up_interruptible(&khugepaged_wait);
484
485 return count;
486 }
487 static struct kobj_attribute alloc_sleep_millisecs_attr =
488 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
489 alloc_sleep_millisecs_store);
490
491 static ssize_t pages_to_scan_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494 {
495 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
496 }
497 static ssize_t pages_to_scan_store(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 const char *buf, size_t count)
500 {
501 int err;
502 unsigned long pages;
503
504 err = kstrtoul(buf, 10, &pages);
505 if (err || !pages || pages > UINT_MAX)
506 return -EINVAL;
507
508 khugepaged_pages_to_scan = pages;
509
510 return count;
511 }
512 static struct kobj_attribute pages_to_scan_attr =
513 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
514 pages_to_scan_store);
515
516 static ssize_t pages_collapsed_show(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 char *buf)
519 {
520 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
521 }
522 static struct kobj_attribute pages_collapsed_attr =
523 __ATTR_RO(pages_collapsed);
524
525 static ssize_t full_scans_show(struct kobject *kobj,
526 struct kobj_attribute *attr,
527 char *buf)
528 {
529 return sprintf(buf, "%u\n", khugepaged_full_scans);
530 }
531 static struct kobj_attribute full_scans_attr =
532 __ATTR_RO(full_scans);
533
534 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
535 struct kobj_attribute *attr, char *buf)
536 {
537 return single_flag_show(kobj, attr, buf,
538 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
539 }
540 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543 {
544 return single_flag_store(kobj, attr, buf, count,
545 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
546 }
547 static struct kobj_attribute khugepaged_defrag_attr =
548 __ATTR(defrag, 0644, khugepaged_defrag_show,
549 khugepaged_defrag_store);
550
551 /*
552 * max_ptes_none controls if khugepaged should collapse hugepages over
553 * any unmapped ptes in turn potentially increasing the memory
554 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
555 * reduce the available free memory in the system as it
556 * runs. Increasing max_ptes_none will instead potentially reduce the
557 * free memory in the system during the khugepaged scan.
558 */
559 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 char *buf)
562 {
563 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
564 }
565 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
566 struct kobj_attribute *attr,
567 const char *buf, size_t count)
568 {
569 int err;
570 unsigned long max_ptes_none;
571
572 err = kstrtoul(buf, 10, &max_ptes_none);
573 if (err || max_ptes_none > HPAGE_PMD_NR-1)
574 return -EINVAL;
575
576 khugepaged_max_ptes_none = max_ptes_none;
577
578 return count;
579 }
580 static struct kobj_attribute khugepaged_max_ptes_none_attr =
581 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
582 khugepaged_max_ptes_none_store);
583
584 static struct attribute *khugepaged_attr[] = {
585 &khugepaged_defrag_attr.attr,
586 &khugepaged_max_ptes_none_attr.attr,
587 &pages_to_scan_attr.attr,
588 &pages_collapsed_attr.attr,
589 &full_scans_attr.attr,
590 &scan_sleep_millisecs_attr.attr,
591 &alloc_sleep_millisecs_attr.attr,
592 NULL,
593 };
594
595 static struct attribute_group khugepaged_attr_group = {
596 .attrs = khugepaged_attr,
597 .name = "khugepaged",
598 };
599
600 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
601 {
602 int err;
603
604 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
605 if (unlikely(!*hugepage_kobj)) {
606 pr_err("failed to create transparent hugepage kobject\n");
607 return -ENOMEM;
608 }
609
610 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
611 if (err) {
612 pr_err("failed to register transparent hugepage group\n");
613 goto delete_obj;
614 }
615
616 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
617 if (err) {
618 pr_err("failed to register transparent hugepage group\n");
619 goto remove_hp_group;
620 }
621
622 return 0;
623
624 remove_hp_group:
625 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
626 delete_obj:
627 kobject_put(*hugepage_kobj);
628 return err;
629 }
630
631 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
632 {
633 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
634 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
635 kobject_put(hugepage_kobj);
636 }
637 #else
638 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
639 {
640 return 0;
641 }
642
643 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
644 {
645 }
646 #endif /* CONFIG_SYSFS */
647
648 static int __init hugepage_init(void)
649 {
650 int err;
651 struct kobject *hugepage_kobj;
652
653 if (!has_transparent_hugepage()) {
654 transparent_hugepage_flags = 0;
655 return -EINVAL;
656 }
657
658 err = hugepage_init_sysfs(&hugepage_kobj);
659 if (err)
660 goto err_sysfs;
661
662 err = khugepaged_slab_init();
663 if (err)
664 goto err_slab;
665
666 err = register_shrinker(&huge_zero_page_shrinker);
667 if (err)
668 goto err_hzp_shrinker;
669
670 /*
671 * By default disable transparent hugepages on smaller systems,
672 * where the extra memory used could hurt more than TLB overhead
673 * is likely to save. The admin can still enable it through /sys.
674 */
675 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
676 transparent_hugepage_flags = 0;
677 return 0;
678 }
679
680 err = start_stop_khugepaged();
681 if (err)
682 goto err_khugepaged;
683
684 return 0;
685 err_khugepaged:
686 unregister_shrinker(&huge_zero_page_shrinker);
687 err_hzp_shrinker:
688 khugepaged_slab_exit();
689 err_slab:
690 hugepage_exit_sysfs(hugepage_kobj);
691 err_sysfs:
692 return err;
693 }
694 subsys_initcall(hugepage_init);
695
696 static int __init setup_transparent_hugepage(char *str)
697 {
698 int ret = 0;
699 if (!str)
700 goto out;
701 if (!strcmp(str, "always")) {
702 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
703 &transparent_hugepage_flags);
704 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
705 &transparent_hugepage_flags);
706 ret = 1;
707 } else if (!strcmp(str, "madvise")) {
708 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
709 &transparent_hugepage_flags);
710 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
711 &transparent_hugepage_flags);
712 ret = 1;
713 } else if (!strcmp(str, "never")) {
714 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
715 &transparent_hugepage_flags);
716 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
717 &transparent_hugepage_flags);
718 ret = 1;
719 }
720 out:
721 if (!ret)
722 pr_warn("transparent_hugepage= cannot parse, ignored\n");
723 return ret;
724 }
725 __setup("transparent_hugepage=", setup_transparent_hugepage);
726
727 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
728 {
729 if (likely(vma->vm_flags & VM_WRITE))
730 pmd = pmd_mkwrite(pmd);
731 return pmd;
732 }
733
734 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
735 {
736 pmd_t entry;
737 entry = mk_pmd(page, prot);
738 entry = pmd_mkhuge(entry);
739 return entry;
740 }
741
742 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
743 struct vm_area_struct *vma,
744 unsigned long address, pmd_t *pmd,
745 struct page *page, gfp_t gfp,
746 unsigned int flags)
747 {
748 struct mem_cgroup *memcg;
749 pgtable_t pgtable;
750 spinlock_t *ptl;
751 unsigned long haddr = address & HPAGE_PMD_MASK;
752
753 VM_BUG_ON_PAGE(!PageCompound(page), page);
754
755 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
756 put_page(page);
757 count_vm_event(THP_FAULT_FALLBACK);
758 return VM_FAULT_FALLBACK;
759 }
760
761 pgtable = pte_alloc_one(mm, haddr);
762 if (unlikely(!pgtable)) {
763 mem_cgroup_cancel_charge(page, memcg, true);
764 put_page(page);
765 return VM_FAULT_OOM;
766 }
767
768 clear_huge_page(page, haddr, HPAGE_PMD_NR);
769 /*
770 * The memory barrier inside __SetPageUptodate makes sure that
771 * clear_huge_page writes become visible before the set_pmd_at()
772 * write.
773 */
774 __SetPageUptodate(page);
775
776 ptl = pmd_lock(mm, pmd);
777 if (unlikely(!pmd_none(*pmd))) {
778 spin_unlock(ptl);
779 mem_cgroup_cancel_charge(page, memcg, true);
780 put_page(page);
781 pte_free(mm, pgtable);
782 } else {
783 pmd_t entry;
784
785 /* Deliver the page fault to userland */
786 if (userfaultfd_missing(vma)) {
787 int ret;
788
789 spin_unlock(ptl);
790 mem_cgroup_cancel_charge(page, memcg, true);
791 put_page(page);
792 pte_free(mm, pgtable);
793 ret = handle_userfault(vma, address, flags,
794 VM_UFFD_MISSING);
795 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
796 return ret;
797 }
798
799 entry = mk_huge_pmd(page, vma->vm_page_prot);
800 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
801 page_add_new_anon_rmap(page, vma, haddr, true);
802 mem_cgroup_commit_charge(page, memcg, false, true);
803 lru_cache_add_active_or_unevictable(page, vma);
804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
805 set_pmd_at(mm, haddr, pmd, entry);
806 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
807 atomic_long_inc(&mm->nr_ptes);
808 spin_unlock(ptl);
809 count_vm_event(THP_FAULT_ALLOC);
810 }
811
812 return 0;
813 }
814
815 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
816 {
817 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
818 }
819
820 /* Caller must hold page table lock. */
821 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
822 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
823 struct page *zero_page)
824 {
825 pmd_t entry;
826 if (!pmd_none(*pmd))
827 return false;
828 entry = mk_pmd(zero_page, vma->vm_page_prot);
829 entry = pmd_mkhuge(entry);
830 pgtable_trans_huge_deposit(mm, pmd, pgtable);
831 set_pmd_at(mm, haddr, pmd, entry);
832 atomic_long_inc(&mm->nr_ptes);
833 return true;
834 }
835
836 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
837 unsigned long address, pmd_t *pmd,
838 unsigned int flags)
839 {
840 gfp_t gfp;
841 struct page *page;
842 unsigned long haddr = address & HPAGE_PMD_MASK;
843
844 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
845 return VM_FAULT_FALLBACK;
846 if (vma->vm_flags & VM_LOCKED)
847 return VM_FAULT_FALLBACK;
848 if (unlikely(anon_vma_prepare(vma)))
849 return VM_FAULT_OOM;
850 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
851 return VM_FAULT_OOM;
852 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
853 transparent_hugepage_use_zero_page()) {
854 spinlock_t *ptl;
855 pgtable_t pgtable;
856 struct page *zero_page;
857 bool set;
858 int ret;
859 pgtable = pte_alloc_one(mm, haddr);
860 if (unlikely(!pgtable))
861 return VM_FAULT_OOM;
862 zero_page = get_huge_zero_page();
863 if (unlikely(!zero_page)) {
864 pte_free(mm, pgtable);
865 count_vm_event(THP_FAULT_FALLBACK);
866 return VM_FAULT_FALLBACK;
867 }
868 ptl = pmd_lock(mm, pmd);
869 ret = 0;
870 set = false;
871 if (pmd_none(*pmd)) {
872 if (userfaultfd_missing(vma)) {
873 spin_unlock(ptl);
874 ret = handle_userfault(vma, address, flags,
875 VM_UFFD_MISSING);
876 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
877 } else {
878 set_huge_zero_page(pgtable, mm, vma,
879 haddr, pmd,
880 zero_page);
881 spin_unlock(ptl);
882 set = true;
883 }
884 } else
885 spin_unlock(ptl);
886 if (!set) {
887 pte_free(mm, pgtable);
888 put_huge_zero_page();
889 }
890 return ret;
891 }
892 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
893 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
894 if (unlikely(!page)) {
895 count_vm_event(THP_FAULT_FALLBACK);
896 return VM_FAULT_FALLBACK;
897 }
898 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
899 flags);
900 }
901
902 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
903 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
904 {
905 struct mm_struct *mm = vma->vm_mm;
906 pmd_t entry;
907 spinlock_t *ptl;
908
909 ptl = pmd_lock(mm, pmd);
910 if (pmd_none(*pmd)) {
911 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
912 if (write) {
913 entry = pmd_mkyoung(pmd_mkdirty(entry));
914 entry = maybe_pmd_mkwrite(entry, vma);
915 }
916 set_pmd_at(mm, addr, pmd, entry);
917 update_mmu_cache_pmd(vma, addr, pmd);
918 }
919 spin_unlock(ptl);
920 }
921
922 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
923 pmd_t *pmd, unsigned long pfn, bool write)
924 {
925 pgprot_t pgprot = vma->vm_page_prot;
926 /*
927 * If we had pmd_special, we could avoid all these restrictions,
928 * but we need to be consistent with PTEs and architectures that
929 * can't support a 'special' bit.
930 */
931 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
932 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
933 (VM_PFNMAP|VM_MIXEDMAP));
934 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
935 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
936
937 if (addr < vma->vm_start || addr >= vma->vm_end)
938 return VM_FAULT_SIGBUS;
939 if (track_pfn_insert(vma, &pgprot, pfn))
940 return VM_FAULT_SIGBUS;
941 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
942 return VM_FAULT_NOPAGE;
943 }
944
945 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
947 struct vm_area_struct *vma)
948 {
949 spinlock_t *dst_ptl, *src_ptl;
950 struct page *src_page;
951 pmd_t pmd;
952 pgtable_t pgtable;
953 int ret;
954
955 ret = -ENOMEM;
956 pgtable = pte_alloc_one(dst_mm, addr);
957 if (unlikely(!pgtable))
958 goto out;
959
960 dst_ptl = pmd_lock(dst_mm, dst_pmd);
961 src_ptl = pmd_lockptr(src_mm, src_pmd);
962 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
963
964 ret = -EAGAIN;
965 pmd = *src_pmd;
966 if (unlikely(!pmd_trans_huge(pmd))) {
967 pte_free(dst_mm, pgtable);
968 goto out_unlock;
969 }
970 /*
971 * When page table lock is held, the huge zero pmd should not be
972 * under splitting since we don't split the page itself, only pmd to
973 * a page table.
974 */
975 if (is_huge_zero_pmd(pmd)) {
976 struct page *zero_page;
977 /*
978 * get_huge_zero_page() will never allocate a new page here,
979 * since we already have a zero page to copy. It just takes a
980 * reference.
981 */
982 zero_page = get_huge_zero_page();
983 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
984 zero_page);
985 ret = 0;
986 goto out_unlock;
987 }
988
989 if (unlikely(pmd_trans_splitting(pmd))) {
990 /* split huge page running from under us */
991 spin_unlock(src_ptl);
992 spin_unlock(dst_ptl);
993 pte_free(dst_mm, pgtable);
994
995 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
996 goto out;
997 }
998 src_page = pmd_page(pmd);
999 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1000 get_page(src_page);
1001 page_dup_rmap(src_page);
1002 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1003
1004 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1005 pmd = pmd_mkold(pmd_wrprotect(pmd));
1006 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1007 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1008 atomic_long_inc(&dst_mm->nr_ptes);
1009
1010 ret = 0;
1011 out_unlock:
1012 spin_unlock(src_ptl);
1013 spin_unlock(dst_ptl);
1014 out:
1015 return ret;
1016 }
1017
1018 void huge_pmd_set_accessed(struct mm_struct *mm,
1019 struct vm_area_struct *vma,
1020 unsigned long address,
1021 pmd_t *pmd, pmd_t orig_pmd,
1022 int dirty)
1023 {
1024 spinlock_t *ptl;
1025 pmd_t entry;
1026 unsigned long haddr;
1027
1028 ptl = pmd_lock(mm, pmd);
1029 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1030 goto unlock;
1031
1032 entry = pmd_mkyoung(orig_pmd);
1033 haddr = address & HPAGE_PMD_MASK;
1034 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1035 update_mmu_cache_pmd(vma, address, pmd);
1036
1037 unlock:
1038 spin_unlock(ptl);
1039 }
1040
1041 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1042 struct vm_area_struct *vma,
1043 unsigned long address,
1044 pmd_t *pmd, pmd_t orig_pmd,
1045 struct page *page,
1046 unsigned long haddr)
1047 {
1048 struct mem_cgroup *memcg;
1049 spinlock_t *ptl;
1050 pgtable_t pgtable;
1051 pmd_t _pmd;
1052 int ret = 0, i;
1053 struct page **pages;
1054 unsigned long mmun_start; /* For mmu_notifiers */
1055 unsigned long mmun_end; /* For mmu_notifiers */
1056
1057 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1058 GFP_KERNEL);
1059 if (unlikely(!pages)) {
1060 ret |= VM_FAULT_OOM;
1061 goto out;
1062 }
1063
1064 for (i = 0; i < HPAGE_PMD_NR; i++) {
1065 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1066 __GFP_OTHER_NODE,
1067 vma, address, page_to_nid(page));
1068 if (unlikely(!pages[i] ||
1069 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1070 &memcg, false))) {
1071 if (pages[i])
1072 put_page(pages[i]);
1073 while (--i >= 0) {
1074 memcg = (void *)page_private(pages[i]);
1075 set_page_private(pages[i], 0);
1076 mem_cgroup_cancel_charge(pages[i], memcg,
1077 false);
1078 put_page(pages[i]);
1079 }
1080 kfree(pages);
1081 ret |= VM_FAULT_OOM;
1082 goto out;
1083 }
1084 set_page_private(pages[i], (unsigned long)memcg);
1085 }
1086
1087 for (i = 0; i < HPAGE_PMD_NR; i++) {
1088 copy_user_highpage(pages[i], page + i,
1089 haddr + PAGE_SIZE * i, vma);
1090 __SetPageUptodate(pages[i]);
1091 cond_resched();
1092 }
1093
1094 mmun_start = haddr;
1095 mmun_end = haddr + HPAGE_PMD_SIZE;
1096 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1097
1098 ptl = pmd_lock(mm, pmd);
1099 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1100 goto out_free_pages;
1101 VM_BUG_ON_PAGE(!PageHead(page), page);
1102
1103 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1104 /* leave pmd empty until pte is filled */
1105
1106 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1107 pmd_populate(mm, &_pmd, pgtable);
1108
1109 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1110 pte_t *pte, entry;
1111 entry = mk_pte(pages[i], vma->vm_page_prot);
1112 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1113 memcg = (void *)page_private(pages[i]);
1114 set_page_private(pages[i], 0);
1115 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1116 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1117 lru_cache_add_active_or_unevictable(pages[i], vma);
1118 pte = pte_offset_map(&_pmd, haddr);
1119 VM_BUG_ON(!pte_none(*pte));
1120 set_pte_at(mm, haddr, pte, entry);
1121 pte_unmap(pte);
1122 }
1123 kfree(pages);
1124
1125 smp_wmb(); /* make pte visible before pmd */
1126 pmd_populate(mm, pmd, pgtable);
1127 page_remove_rmap(page, true);
1128 spin_unlock(ptl);
1129
1130 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1131
1132 ret |= VM_FAULT_WRITE;
1133 put_page(page);
1134
1135 out:
1136 return ret;
1137
1138 out_free_pages:
1139 spin_unlock(ptl);
1140 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1141 for (i = 0; i < HPAGE_PMD_NR; i++) {
1142 memcg = (void *)page_private(pages[i]);
1143 set_page_private(pages[i], 0);
1144 mem_cgroup_cancel_charge(pages[i], memcg, false);
1145 put_page(pages[i]);
1146 }
1147 kfree(pages);
1148 goto out;
1149 }
1150
1151 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1152 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1153 {
1154 spinlock_t *ptl;
1155 int ret = 0;
1156 struct page *page = NULL, *new_page;
1157 struct mem_cgroup *memcg;
1158 unsigned long haddr;
1159 unsigned long mmun_start; /* For mmu_notifiers */
1160 unsigned long mmun_end; /* For mmu_notifiers */
1161 gfp_t huge_gfp; /* for allocation and charge */
1162
1163 ptl = pmd_lockptr(mm, pmd);
1164 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1165 haddr = address & HPAGE_PMD_MASK;
1166 if (is_huge_zero_pmd(orig_pmd))
1167 goto alloc;
1168 spin_lock(ptl);
1169 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1170 goto out_unlock;
1171
1172 page = pmd_page(orig_pmd);
1173 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1174 /*
1175 * We can only reuse the page if nobody else maps the huge page or it's
1176 * part. We can do it by checking page_mapcount() on each sub-page, but
1177 * it's expensive.
1178 * The cheaper way is to check page_count() to be equal 1: every
1179 * mapcount takes page reference reference, so this way we can
1180 * guarantee, that the PMD is the only mapping.
1181 * This can give false negative if somebody pinned the page, but that's
1182 * fine.
1183 */
1184 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1185 pmd_t entry;
1186 entry = pmd_mkyoung(orig_pmd);
1187 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1188 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1189 update_mmu_cache_pmd(vma, address, pmd);
1190 ret |= VM_FAULT_WRITE;
1191 goto out_unlock;
1192 }
1193 get_page(page);
1194 spin_unlock(ptl);
1195 alloc:
1196 if (transparent_hugepage_enabled(vma) &&
1197 !transparent_hugepage_debug_cow()) {
1198 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1199 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1200 } else
1201 new_page = NULL;
1202
1203 if (unlikely(!new_page)) {
1204 if (!page) {
1205 split_huge_pmd(vma, pmd, address);
1206 ret |= VM_FAULT_FALLBACK;
1207 } else {
1208 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1209 pmd, orig_pmd, page, haddr);
1210 if (ret & VM_FAULT_OOM) {
1211 split_huge_pmd(vma, pmd, address);
1212 ret |= VM_FAULT_FALLBACK;
1213 }
1214 put_page(page);
1215 }
1216 count_vm_event(THP_FAULT_FALLBACK);
1217 goto out;
1218 }
1219
1220 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1221 true))) {
1222 put_page(new_page);
1223 if (page) {
1224 split_huge_pmd(vma, pmd, address);
1225 put_page(page);
1226 } else
1227 split_huge_pmd(vma, pmd, address);
1228 ret |= VM_FAULT_FALLBACK;
1229 count_vm_event(THP_FAULT_FALLBACK);
1230 goto out;
1231 }
1232
1233 count_vm_event(THP_FAULT_ALLOC);
1234
1235 if (!page)
1236 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1237 else
1238 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1239 __SetPageUptodate(new_page);
1240
1241 mmun_start = haddr;
1242 mmun_end = haddr + HPAGE_PMD_SIZE;
1243 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1244
1245 spin_lock(ptl);
1246 if (page)
1247 put_page(page);
1248 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1249 spin_unlock(ptl);
1250 mem_cgroup_cancel_charge(new_page, memcg, true);
1251 put_page(new_page);
1252 goto out_mn;
1253 } else {
1254 pmd_t entry;
1255 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1256 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1257 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1258 page_add_new_anon_rmap(new_page, vma, haddr, true);
1259 mem_cgroup_commit_charge(new_page, memcg, false, true);
1260 lru_cache_add_active_or_unevictable(new_page, vma);
1261 set_pmd_at(mm, haddr, pmd, entry);
1262 update_mmu_cache_pmd(vma, address, pmd);
1263 if (!page) {
1264 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1265 put_huge_zero_page();
1266 } else {
1267 VM_BUG_ON_PAGE(!PageHead(page), page);
1268 page_remove_rmap(page, true);
1269 put_page(page);
1270 }
1271 ret |= VM_FAULT_WRITE;
1272 }
1273 spin_unlock(ptl);
1274 out_mn:
1275 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1276 out:
1277 return ret;
1278 out_unlock:
1279 spin_unlock(ptl);
1280 return ret;
1281 }
1282
1283 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1284 unsigned long addr,
1285 pmd_t *pmd,
1286 unsigned int flags)
1287 {
1288 struct mm_struct *mm = vma->vm_mm;
1289 struct page *page = NULL;
1290
1291 assert_spin_locked(pmd_lockptr(mm, pmd));
1292
1293 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1294 goto out;
1295
1296 /* Avoid dumping huge zero page */
1297 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1298 return ERR_PTR(-EFAULT);
1299
1300 /* Full NUMA hinting faults to serialise migration in fault paths */
1301 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1302 goto out;
1303
1304 page = pmd_page(*pmd);
1305 VM_BUG_ON_PAGE(!PageHead(page), page);
1306 if (flags & FOLL_TOUCH) {
1307 pmd_t _pmd;
1308 /*
1309 * We should set the dirty bit only for FOLL_WRITE but
1310 * for now the dirty bit in the pmd is meaningless.
1311 * And if the dirty bit will become meaningful and
1312 * we'll only set it with FOLL_WRITE, an atomic
1313 * set_bit will be required on the pmd to set the
1314 * young bit, instead of the current set_pmd_at.
1315 */
1316 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1317 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1318 pmd, _pmd, 1))
1319 update_mmu_cache_pmd(vma, addr, pmd);
1320 }
1321 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1322 if (page->mapping && trylock_page(page)) {
1323 lru_add_drain();
1324 if (page->mapping)
1325 mlock_vma_page(page);
1326 unlock_page(page);
1327 }
1328 }
1329 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1330 VM_BUG_ON_PAGE(!PageCompound(page), page);
1331 if (flags & FOLL_GET)
1332 get_page(page);
1333
1334 out:
1335 return page;
1336 }
1337
1338 /* NUMA hinting page fault entry point for trans huge pmds */
1339 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1340 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1341 {
1342 spinlock_t *ptl;
1343 struct anon_vma *anon_vma = NULL;
1344 struct page *page;
1345 unsigned long haddr = addr & HPAGE_PMD_MASK;
1346 int page_nid = -1, this_nid = numa_node_id();
1347 int target_nid, last_cpupid = -1;
1348 bool page_locked;
1349 bool migrated = false;
1350 bool was_writable;
1351 int flags = 0;
1352
1353 /* A PROT_NONE fault should not end up here */
1354 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1355
1356 ptl = pmd_lock(mm, pmdp);
1357 if (unlikely(!pmd_same(pmd, *pmdp)))
1358 goto out_unlock;
1359
1360 /*
1361 * If there are potential migrations, wait for completion and retry
1362 * without disrupting NUMA hinting information. Do not relock and
1363 * check_same as the page may no longer be mapped.
1364 */
1365 if (unlikely(pmd_trans_migrating(*pmdp))) {
1366 page = pmd_page(*pmdp);
1367 spin_unlock(ptl);
1368 wait_on_page_locked(page);
1369 goto out;
1370 }
1371
1372 page = pmd_page(pmd);
1373 BUG_ON(is_huge_zero_page(page));
1374 page_nid = page_to_nid(page);
1375 last_cpupid = page_cpupid_last(page);
1376 count_vm_numa_event(NUMA_HINT_FAULTS);
1377 if (page_nid == this_nid) {
1378 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1379 flags |= TNF_FAULT_LOCAL;
1380 }
1381
1382 /* See similar comment in do_numa_page for explanation */
1383 if (!(vma->vm_flags & VM_WRITE))
1384 flags |= TNF_NO_GROUP;
1385
1386 /*
1387 * Acquire the page lock to serialise THP migrations but avoid dropping
1388 * page_table_lock if at all possible
1389 */
1390 page_locked = trylock_page(page);
1391 target_nid = mpol_misplaced(page, vma, haddr);
1392 if (target_nid == -1) {
1393 /* If the page was locked, there are no parallel migrations */
1394 if (page_locked)
1395 goto clear_pmdnuma;
1396 }
1397
1398 /* Migration could have started since the pmd_trans_migrating check */
1399 if (!page_locked) {
1400 spin_unlock(ptl);
1401 wait_on_page_locked(page);
1402 page_nid = -1;
1403 goto out;
1404 }
1405
1406 /*
1407 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1408 * to serialises splits
1409 */
1410 get_page(page);
1411 spin_unlock(ptl);
1412 anon_vma = page_lock_anon_vma_read(page);
1413
1414 /* Confirm the PMD did not change while page_table_lock was released */
1415 spin_lock(ptl);
1416 if (unlikely(!pmd_same(pmd, *pmdp))) {
1417 unlock_page(page);
1418 put_page(page);
1419 page_nid = -1;
1420 goto out_unlock;
1421 }
1422
1423 /* Bail if we fail to protect against THP splits for any reason */
1424 if (unlikely(!anon_vma)) {
1425 put_page(page);
1426 page_nid = -1;
1427 goto clear_pmdnuma;
1428 }
1429
1430 /*
1431 * Migrate the THP to the requested node, returns with page unlocked
1432 * and access rights restored.
1433 */
1434 spin_unlock(ptl);
1435 migrated = migrate_misplaced_transhuge_page(mm, vma,
1436 pmdp, pmd, addr, page, target_nid);
1437 if (migrated) {
1438 flags |= TNF_MIGRATED;
1439 page_nid = target_nid;
1440 } else
1441 flags |= TNF_MIGRATE_FAIL;
1442
1443 goto out;
1444 clear_pmdnuma:
1445 BUG_ON(!PageLocked(page));
1446 was_writable = pmd_write(pmd);
1447 pmd = pmd_modify(pmd, vma->vm_page_prot);
1448 pmd = pmd_mkyoung(pmd);
1449 if (was_writable)
1450 pmd = pmd_mkwrite(pmd);
1451 set_pmd_at(mm, haddr, pmdp, pmd);
1452 update_mmu_cache_pmd(vma, addr, pmdp);
1453 unlock_page(page);
1454 out_unlock:
1455 spin_unlock(ptl);
1456
1457 out:
1458 if (anon_vma)
1459 page_unlock_anon_vma_read(anon_vma);
1460
1461 if (page_nid != -1)
1462 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1463
1464 return 0;
1465 }
1466
1467 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1468 pmd_t *pmd, unsigned long addr)
1469 {
1470 pmd_t orig_pmd;
1471 spinlock_t *ptl;
1472
1473 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1474 return 0;
1475 /*
1476 * For architectures like ppc64 we look at deposited pgtable
1477 * when calling pmdp_huge_get_and_clear. So do the
1478 * pgtable_trans_huge_withdraw after finishing pmdp related
1479 * operations.
1480 */
1481 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1482 tlb->fullmm);
1483 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1484 if (vma_is_dax(vma)) {
1485 spin_unlock(ptl);
1486 if (is_huge_zero_pmd(orig_pmd))
1487 put_huge_zero_page();
1488 } else if (is_huge_zero_pmd(orig_pmd)) {
1489 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1490 atomic_long_dec(&tlb->mm->nr_ptes);
1491 spin_unlock(ptl);
1492 put_huge_zero_page();
1493 } else {
1494 struct page *page = pmd_page(orig_pmd);
1495 page_remove_rmap(page, true);
1496 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1497 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1498 VM_BUG_ON_PAGE(!PageHead(page), page);
1499 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1500 atomic_long_dec(&tlb->mm->nr_ptes);
1501 spin_unlock(ptl);
1502 tlb_remove_page(tlb, page);
1503 }
1504 return 1;
1505 }
1506
1507 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1508 unsigned long old_addr,
1509 unsigned long new_addr, unsigned long old_end,
1510 pmd_t *old_pmd, pmd_t *new_pmd)
1511 {
1512 spinlock_t *old_ptl, *new_ptl;
1513 int ret = 0;
1514 pmd_t pmd;
1515
1516 struct mm_struct *mm = vma->vm_mm;
1517
1518 if ((old_addr & ~HPAGE_PMD_MASK) ||
1519 (new_addr & ~HPAGE_PMD_MASK) ||
1520 old_end - old_addr < HPAGE_PMD_SIZE ||
1521 (new_vma->vm_flags & VM_NOHUGEPAGE))
1522 goto out;
1523
1524 /*
1525 * The destination pmd shouldn't be established, free_pgtables()
1526 * should have release it.
1527 */
1528 if (WARN_ON(!pmd_none(*new_pmd))) {
1529 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1530 goto out;
1531 }
1532
1533 /*
1534 * We don't have to worry about the ordering of src and dst
1535 * ptlocks because exclusive mmap_sem prevents deadlock.
1536 */
1537 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1538 if (ret == 1) {
1539 new_ptl = pmd_lockptr(mm, new_pmd);
1540 if (new_ptl != old_ptl)
1541 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1542 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1543 VM_BUG_ON(!pmd_none(*new_pmd));
1544
1545 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1546 pgtable_t pgtable;
1547 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1548 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1549 }
1550 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1551 if (new_ptl != old_ptl)
1552 spin_unlock(new_ptl);
1553 spin_unlock(old_ptl);
1554 }
1555 out:
1556 return ret;
1557 }
1558
1559 /*
1560 * Returns
1561 * - 0 if PMD could not be locked
1562 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1563 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1564 */
1565 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1566 unsigned long addr, pgprot_t newprot, int prot_numa)
1567 {
1568 struct mm_struct *mm = vma->vm_mm;
1569 spinlock_t *ptl;
1570 int ret = 0;
1571
1572 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1573 pmd_t entry;
1574 bool preserve_write = prot_numa && pmd_write(*pmd);
1575 ret = 1;
1576
1577 /*
1578 * Avoid trapping faults against the zero page. The read-only
1579 * data is likely to be read-cached on the local CPU and
1580 * local/remote hits to the zero page are not interesting.
1581 */
1582 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1583 spin_unlock(ptl);
1584 return ret;
1585 }
1586
1587 if (!prot_numa || !pmd_protnone(*pmd)) {
1588 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1589 entry = pmd_modify(entry, newprot);
1590 if (preserve_write)
1591 entry = pmd_mkwrite(entry);
1592 ret = HPAGE_PMD_NR;
1593 set_pmd_at(mm, addr, pmd, entry);
1594 BUG_ON(!preserve_write && pmd_write(entry));
1595 }
1596 spin_unlock(ptl);
1597 }
1598
1599 return ret;
1600 }
1601
1602 /*
1603 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1604 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1605 *
1606 * Note that if it returns 1, this routine returns without unlocking page
1607 * table locks. So callers must unlock them.
1608 */
1609 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1610 spinlock_t **ptl)
1611 {
1612 *ptl = pmd_lock(vma->vm_mm, pmd);
1613 if (likely(pmd_trans_huge(*pmd))) {
1614 if (unlikely(pmd_trans_splitting(*pmd))) {
1615 spin_unlock(*ptl);
1616 wait_split_huge_page(vma->anon_vma, pmd);
1617 return -1;
1618 } else {
1619 /* Thp mapped by 'pmd' is stable, so we can
1620 * handle it as it is. */
1621 return 1;
1622 }
1623 }
1624 spin_unlock(*ptl);
1625 return 0;
1626 }
1627
1628 /*
1629 * This function returns whether a given @page is mapped onto the @address
1630 * in the virtual space of @mm.
1631 *
1632 * When it's true, this function returns *pmd with holding the page table lock
1633 * and passing it back to the caller via @ptl.
1634 * If it's false, returns NULL without holding the page table lock.
1635 */
1636 pmd_t *page_check_address_pmd(struct page *page,
1637 struct mm_struct *mm,
1638 unsigned long address,
1639 enum page_check_address_pmd_flag flag,
1640 spinlock_t **ptl)
1641 {
1642 pgd_t *pgd;
1643 pud_t *pud;
1644 pmd_t *pmd;
1645
1646 if (address & ~HPAGE_PMD_MASK)
1647 return NULL;
1648
1649 pgd = pgd_offset(mm, address);
1650 if (!pgd_present(*pgd))
1651 return NULL;
1652 pud = pud_offset(pgd, address);
1653 if (!pud_present(*pud))
1654 return NULL;
1655 pmd = pmd_offset(pud, address);
1656
1657 *ptl = pmd_lock(mm, pmd);
1658 if (!pmd_present(*pmd))
1659 goto unlock;
1660 if (pmd_page(*pmd) != page)
1661 goto unlock;
1662 /*
1663 * split_vma() may create temporary aliased mappings. There is
1664 * no risk as long as all huge pmd are found and have their
1665 * splitting bit set before __split_huge_page_refcount
1666 * runs. Finding the same huge pmd more than once during the
1667 * same rmap walk is not a problem.
1668 */
1669 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1670 pmd_trans_splitting(*pmd))
1671 goto unlock;
1672 if (pmd_trans_huge(*pmd)) {
1673 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1674 !pmd_trans_splitting(*pmd));
1675 return pmd;
1676 }
1677 unlock:
1678 spin_unlock(*ptl);
1679 return NULL;
1680 }
1681
1682 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1683
1684 int hugepage_madvise(struct vm_area_struct *vma,
1685 unsigned long *vm_flags, int advice)
1686 {
1687 switch (advice) {
1688 case MADV_HUGEPAGE:
1689 #ifdef CONFIG_S390
1690 /*
1691 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1692 * can't handle this properly after s390_enable_sie, so we simply
1693 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1694 */
1695 if (mm_has_pgste(vma->vm_mm))
1696 return 0;
1697 #endif
1698 /*
1699 * Be somewhat over-protective like KSM for now!
1700 */
1701 if (*vm_flags & VM_NO_THP)
1702 return -EINVAL;
1703 *vm_flags &= ~VM_NOHUGEPAGE;
1704 *vm_flags |= VM_HUGEPAGE;
1705 /*
1706 * If the vma become good for khugepaged to scan,
1707 * register it here without waiting a page fault that
1708 * may not happen any time soon.
1709 */
1710 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1711 return -ENOMEM;
1712 break;
1713 case MADV_NOHUGEPAGE:
1714 /*
1715 * Be somewhat over-protective like KSM for now!
1716 */
1717 if (*vm_flags & VM_NO_THP)
1718 return -EINVAL;
1719 *vm_flags &= ~VM_HUGEPAGE;
1720 *vm_flags |= VM_NOHUGEPAGE;
1721 /*
1722 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1723 * this vma even if we leave the mm registered in khugepaged if
1724 * it got registered before VM_NOHUGEPAGE was set.
1725 */
1726 break;
1727 }
1728
1729 return 0;
1730 }
1731
1732 static int __init khugepaged_slab_init(void)
1733 {
1734 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1735 sizeof(struct mm_slot),
1736 __alignof__(struct mm_slot), 0, NULL);
1737 if (!mm_slot_cache)
1738 return -ENOMEM;
1739
1740 return 0;
1741 }
1742
1743 static void __init khugepaged_slab_exit(void)
1744 {
1745 kmem_cache_destroy(mm_slot_cache);
1746 }
1747
1748 static inline struct mm_slot *alloc_mm_slot(void)
1749 {
1750 if (!mm_slot_cache) /* initialization failed */
1751 return NULL;
1752 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1753 }
1754
1755 static inline void free_mm_slot(struct mm_slot *mm_slot)
1756 {
1757 kmem_cache_free(mm_slot_cache, mm_slot);
1758 }
1759
1760 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1761 {
1762 struct mm_slot *mm_slot;
1763
1764 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1765 if (mm == mm_slot->mm)
1766 return mm_slot;
1767
1768 return NULL;
1769 }
1770
1771 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1772 struct mm_slot *mm_slot)
1773 {
1774 mm_slot->mm = mm;
1775 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1776 }
1777
1778 static inline int khugepaged_test_exit(struct mm_struct *mm)
1779 {
1780 return atomic_read(&mm->mm_users) == 0;
1781 }
1782
1783 int __khugepaged_enter(struct mm_struct *mm)
1784 {
1785 struct mm_slot *mm_slot;
1786 int wakeup;
1787
1788 mm_slot = alloc_mm_slot();
1789 if (!mm_slot)
1790 return -ENOMEM;
1791
1792 /* __khugepaged_exit() must not run from under us */
1793 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1794 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1795 free_mm_slot(mm_slot);
1796 return 0;
1797 }
1798
1799 spin_lock(&khugepaged_mm_lock);
1800 insert_to_mm_slots_hash(mm, mm_slot);
1801 /*
1802 * Insert just behind the scanning cursor, to let the area settle
1803 * down a little.
1804 */
1805 wakeup = list_empty(&khugepaged_scan.mm_head);
1806 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1807 spin_unlock(&khugepaged_mm_lock);
1808
1809 atomic_inc(&mm->mm_count);
1810 if (wakeup)
1811 wake_up_interruptible(&khugepaged_wait);
1812
1813 return 0;
1814 }
1815
1816 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1817 unsigned long vm_flags)
1818 {
1819 unsigned long hstart, hend;
1820 if (!vma->anon_vma)
1821 /*
1822 * Not yet faulted in so we will register later in the
1823 * page fault if needed.
1824 */
1825 return 0;
1826 if (vma->vm_ops)
1827 /* khugepaged not yet working on file or special mappings */
1828 return 0;
1829 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1830 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1831 hend = vma->vm_end & HPAGE_PMD_MASK;
1832 if (hstart < hend)
1833 return khugepaged_enter(vma, vm_flags);
1834 return 0;
1835 }
1836
1837 void __khugepaged_exit(struct mm_struct *mm)
1838 {
1839 struct mm_slot *mm_slot;
1840 int free = 0;
1841
1842 spin_lock(&khugepaged_mm_lock);
1843 mm_slot = get_mm_slot(mm);
1844 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1845 hash_del(&mm_slot->hash);
1846 list_del(&mm_slot->mm_node);
1847 free = 1;
1848 }
1849 spin_unlock(&khugepaged_mm_lock);
1850
1851 if (free) {
1852 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1853 free_mm_slot(mm_slot);
1854 mmdrop(mm);
1855 } else if (mm_slot) {
1856 /*
1857 * This is required to serialize against
1858 * khugepaged_test_exit() (which is guaranteed to run
1859 * under mmap sem read mode). Stop here (after we
1860 * return all pagetables will be destroyed) until
1861 * khugepaged has finished working on the pagetables
1862 * under the mmap_sem.
1863 */
1864 down_write(&mm->mmap_sem);
1865 up_write(&mm->mmap_sem);
1866 }
1867 }
1868
1869 static void release_pte_page(struct page *page)
1870 {
1871 /* 0 stands for page_is_file_cache(page) == false */
1872 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1873 unlock_page(page);
1874 putback_lru_page(page);
1875 }
1876
1877 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1878 {
1879 while (--_pte >= pte) {
1880 pte_t pteval = *_pte;
1881 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1882 release_pte_page(pte_page(pteval));
1883 }
1884 }
1885
1886 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1887 unsigned long address,
1888 pte_t *pte)
1889 {
1890 struct page *page = NULL;
1891 pte_t *_pte;
1892 int none_or_zero = 0, result = 0;
1893 bool referenced = false, writable = false;
1894
1895 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1896 _pte++, address += PAGE_SIZE) {
1897 pte_t pteval = *_pte;
1898 if (pte_none(pteval) || (pte_present(pteval) &&
1899 is_zero_pfn(pte_pfn(pteval)))) {
1900 if (!userfaultfd_armed(vma) &&
1901 ++none_or_zero <= khugepaged_max_ptes_none) {
1902 continue;
1903 } else {
1904 result = SCAN_EXCEED_NONE_PTE;
1905 goto out;
1906 }
1907 }
1908 if (!pte_present(pteval)) {
1909 result = SCAN_PTE_NON_PRESENT;
1910 goto out;
1911 }
1912 page = vm_normal_page(vma, address, pteval);
1913 if (unlikely(!page)) {
1914 result = SCAN_PAGE_NULL;
1915 goto out;
1916 }
1917
1918 VM_BUG_ON_PAGE(PageCompound(page), page);
1919 VM_BUG_ON_PAGE(!PageAnon(page), page);
1920 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1921
1922 /*
1923 * We can do it before isolate_lru_page because the
1924 * page can't be freed from under us. NOTE: PG_lock
1925 * is needed to serialize against split_huge_page
1926 * when invoked from the VM.
1927 */
1928 if (!trylock_page(page)) {
1929 result = SCAN_PAGE_LOCK;
1930 goto out;
1931 }
1932
1933 /*
1934 * cannot use mapcount: can't collapse if there's a gup pin.
1935 * The page must only be referenced by the scanned process
1936 * and page swap cache.
1937 */
1938 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1939 unlock_page(page);
1940 result = SCAN_PAGE_COUNT;
1941 goto out;
1942 }
1943 if (pte_write(pteval)) {
1944 writable = true;
1945 } else {
1946 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1947 unlock_page(page);
1948 result = SCAN_SWAP_CACHE_PAGE;
1949 goto out;
1950 }
1951 /*
1952 * Page is not in the swap cache. It can be collapsed
1953 * into a THP.
1954 */
1955 }
1956
1957 /*
1958 * Isolate the page to avoid collapsing an hugepage
1959 * currently in use by the VM.
1960 */
1961 if (isolate_lru_page(page)) {
1962 unlock_page(page);
1963 result = SCAN_DEL_PAGE_LRU;
1964 goto out;
1965 }
1966 /* 0 stands for page_is_file_cache(page) == false */
1967 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1968 VM_BUG_ON_PAGE(!PageLocked(page), page);
1969 VM_BUG_ON_PAGE(PageLRU(page), page);
1970
1971 /* If there is no mapped pte young don't collapse the page */
1972 if (pte_young(pteval) ||
1973 page_is_young(page) || PageReferenced(page) ||
1974 mmu_notifier_test_young(vma->vm_mm, address))
1975 referenced = true;
1976 }
1977 if (likely(writable)) {
1978 if (likely(referenced)) {
1979 result = SCAN_SUCCEED;
1980 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1981 referenced, writable, result);
1982 return 1;
1983 }
1984 } else {
1985 result = SCAN_PAGE_RO;
1986 }
1987
1988 out:
1989 release_pte_pages(pte, _pte);
1990 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1991 referenced, writable, result);
1992 return 0;
1993 }
1994
1995 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1996 struct vm_area_struct *vma,
1997 unsigned long address,
1998 spinlock_t *ptl)
1999 {
2000 pte_t *_pte;
2001 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2002 pte_t pteval = *_pte;
2003 struct page *src_page;
2004
2005 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2006 clear_user_highpage(page, address);
2007 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2008 if (is_zero_pfn(pte_pfn(pteval))) {
2009 /*
2010 * ptl mostly unnecessary.
2011 */
2012 spin_lock(ptl);
2013 /*
2014 * paravirt calls inside pte_clear here are
2015 * superfluous.
2016 */
2017 pte_clear(vma->vm_mm, address, _pte);
2018 spin_unlock(ptl);
2019 }
2020 } else {
2021 src_page = pte_page(pteval);
2022 copy_user_highpage(page, src_page, address, vma);
2023 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2024 release_pte_page(src_page);
2025 /*
2026 * ptl mostly unnecessary, but preempt has to
2027 * be disabled to update the per-cpu stats
2028 * inside page_remove_rmap().
2029 */
2030 spin_lock(ptl);
2031 /*
2032 * paravirt calls inside pte_clear here are
2033 * superfluous.
2034 */
2035 pte_clear(vma->vm_mm, address, _pte);
2036 page_remove_rmap(src_page, false);
2037 spin_unlock(ptl);
2038 free_page_and_swap_cache(src_page);
2039 }
2040
2041 address += PAGE_SIZE;
2042 page++;
2043 }
2044 }
2045
2046 static void khugepaged_alloc_sleep(void)
2047 {
2048 DEFINE_WAIT(wait);
2049
2050 add_wait_queue(&khugepaged_wait, &wait);
2051 freezable_schedule_timeout_interruptible(
2052 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2053 remove_wait_queue(&khugepaged_wait, &wait);
2054 }
2055
2056 static int khugepaged_node_load[MAX_NUMNODES];
2057
2058 static bool khugepaged_scan_abort(int nid)
2059 {
2060 int i;
2061
2062 /*
2063 * If zone_reclaim_mode is disabled, then no extra effort is made to
2064 * allocate memory locally.
2065 */
2066 if (!zone_reclaim_mode)
2067 return false;
2068
2069 /* If there is a count for this node already, it must be acceptable */
2070 if (khugepaged_node_load[nid])
2071 return false;
2072
2073 for (i = 0; i < MAX_NUMNODES; i++) {
2074 if (!khugepaged_node_load[i])
2075 continue;
2076 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2077 return true;
2078 }
2079 return false;
2080 }
2081
2082 #ifdef CONFIG_NUMA
2083 static int khugepaged_find_target_node(void)
2084 {
2085 static int last_khugepaged_target_node = NUMA_NO_NODE;
2086 int nid, target_node = 0, max_value = 0;
2087
2088 /* find first node with max normal pages hit */
2089 for (nid = 0; nid < MAX_NUMNODES; nid++)
2090 if (khugepaged_node_load[nid] > max_value) {
2091 max_value = khugepaged_node_load[nid];
2092 target_node = nid;
2093 }
2094
2095 /* do some balance if several nodes have the same hit record */
2096 if (target_node <= last_khugepaged_target_node)
2097 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2098 nid++)
2099 if (max_value == khugepaged_node_load[nid]) {
2100 target_node = nid;
2101 break;
2102 }
2103
2104 last_khugepaged_target_node = target_node;
2105 return target_node;
2106 }
2107
2108 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2109 {
2110 if (IS_ERR(*hpage)) {
2111 if (!*wait)
2112 return false;
2113
2114 *wait = false;
2115 *hpage = NULL;
2116 khugepaged_alloc_sleep();
2117 } else if (*hpage) {
2118 put_page(*hpage);
2119 *hpage = NULL;
2120 }
2121
2122 return true;
2123 }
2124
2125 static struct page *
2126 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2127 unsigned long address, int node)
2128 {
2129 VM_BUG_ON_PAGE(*hpage, *hpage);
2130
2131 /*
2132 * Before allocating the hugepage, release the mmap_sem read lock.
2133 * The allocation can take potentially a long time if it involves
2134 * sync compaction, and we do not need to hold the mmap_sem during
2135 * that. We will recheck the vma after taking it again in write mode.
2136 */
2137 up_read(&mm->mmap_sem);
2138
2139 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2140 if (unlikely(!*hpage)) {
2141 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2142 *hpage = ERR_PTR(-ENOMEM);
2143 return NULL;
2144 }
2145
2146 count_vm_event(THP_COLLAPSE_ALLOC);
2147 return *hpage;
2148 }
2149 #else
2150 static int khugepaged_find_target_node(void)
2151 {
2152 return 0;
2153 }
2154
2155 static inline struct page *alloc_hugepage(int defrag)
2156 {
2157 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2158 HPAGE_PMD_ORDER);
2159 }
2160
2161 static struct page *khugepaged_alloc_hugepage(bool *wait)
2162 {
2163 struct page *hpage;
2164
2165 do {
2166 hpage = alloc_hugepage(khugepaged_defrag());
2167 if (!hpage) {
2168 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2169 if (!*wait)
2170 return NULL;
2171
2172 *wait = false;
2173 khugepaged_alloc_sleep();
2174 } else
2175 count_vm_event(THP_COLLAPSE_ALLOC);
2176 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2177
2178 return hpage;
2179 }
2180
2181 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2182 {
2183 if (!*hpage)
2184 *hpage = khugepaged_alloc_hugepage(wait);
2185
2186 if (unlikely(!*hpage))
2187 return false;
2188
2189 return true;
2190 }
2191
2192 static struct page *
2193 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2194 unsigned long address, int node)
2195 {
2196 up_read(&mm->mmap_sem);
2197 VM_BUG_ON(!*hpage);
2198
2199 return *hpage;
2200 }
2201 #endif
2202
2203 static bool hugepage_vma_check(struct vm_area_struct *vma)
2204 {
2205 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2206 (vma->vm_flags & VM_NOHUGEPAGE))
2207 return false;
2208 if (vma->vm_flags & VM_LOCKED)
2209 return false;
2210 if (!vma->anon_vma || vma->vm_ops)
2211 return false;
2212 if (is_vma_temporary_stack(vma))
2213 return false;
2214 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2215 return true;
2216 }
2217
2218 static void collapse_huge_page(struct mm_struct *mm,
2219 unsigned long address,
2220 struct page **hpage,
2221 struct vm_area_struct *vma,
2222 int node)
2223 {
2224 pmd_t *pmd, _pmd;
2225 pte_t *pte;
2226 pgtable_t pgtable;
2227 struct page *new_page;
2228 spinlock_t *pmd_ptl, *pte_ptl;
2229 int isolated, result = 0;
2230 unsigned long hstart, hend;
2231 struct mem_cgroup *memcg;
2232 unsigned long mmun_start; /* For mmu_notifiers */
2233 unsigned long mmun_end; /* For mmu_notifiers */
2234 gfp_t gfp;
2235
2236 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2237
2238 /* Only allocate from the target node */
2239 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2240 __GFP_THISNODE;
2241
2242 /* release the mmap_sem read lock. */
2243 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2244 if (!new_page) {
2245 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2246 goto out_nolock;
2247 }
2248
2249 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2250 result = SCAN_CGROUP_CHARGE_FAIL;
2251 goto out_nolock;
2252 }
2253
2254 /*
2255 * Prevent all access to pagetables with the exception of
2256 * gup_fast later hanlded by the ptep_clear_flush and the VM
2257 * handled by the anon_vma lock + PG_lock.
2258 */
2259 down_write(&mm->mmap_sem);
2260 if (unlikely(khugepaged_test_exit(mm))) {
2261 result = SCAN_ANY_PROCESS;
2262 goto out;
2263 }
2264
2265 vma = find_vma(mm, address);
2266 if (!vma) {
2267 result = SCAN_VMA_NULL;
2268 goto out;
2269 }
2270 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2271 hend = vma->vm_end & HPAGE_PMD_MASK;
2272 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2273 result = SCAN_ADDRESS_RANGE;
2274 goto out;
2275 }
2276 if (!hugepage_vma_check(vma)) {
2277 result = SCAN_VMA_CHECK;
2278 goto out;
2279 }
2280 pmd = mm_find_pmd(mm, address);
2281 if (!pmd) {
2282 result = SCAN_PMD_NULL;
2283 goto out;
2284 }
2285
2286 anon_vma_lock_write(vma->anon_vma);
2287
2288 pte = pte_offset_map(pmd, address);
2289 pte_ptl = pte_lockptr(mm, pmd);
2290
2291 mmun_start = address;
2292 mmun_end = address + HPAGE_PMD_SIZE;
2293 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2294 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2295 /*
2296 * After this gup_fast can't run anymore. This also removes
2297 * any huge TLB entry from the CPU so we won't allow
2298 * huge and small TLB entries for the same virtual address
2299 * to avoid the risk of CPU bugs in that area.
2300 */
2301 _pmd = pmdp_collapse_flush(vma, address, pmd);
2302 spin_unlock(pmd_ptl);
2303 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2304
2305 spin_lock(pte_ptl);
2306 isolated = __collapse_huge_page_isolate(vma, address, pte);
2307 spin_unlock(pte_ptl);
2308
2309 if (unlikely(!isolated)) {
2310 pte_unmap(pte);
2311 spin_lock(pmd_ptl);
2312 BUG_ON(!pmd_none(*pmd));
2313 /*
2314 * We can only use set_pmd_at when establishing
2315 * hugepmds and never for establishing regular pmds that
2316 * points to regular pagetables. Use pmd_populate for that
2317 */
2318 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2319 spin_unlock(pmd_ptl);
2320 anon_vma_unlock_write(vma->anon_vma);
2321 result = SCAN_FAIL;
2322 goto out;
2323 }
2324
2325 /*
2326 * All pages are isolated and locked so anon_vma rmap
2327 * can't run anymore.
2328 */
2329 anon_vma_unlock_write(vma->anon_vma);
2330
2331 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2332 pte_unmap(pte);
2333 __SetPageUptodate(new_page);
2334 pgtable = pmd_pgtable(_pmd);
2335
2336 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2337 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2338
2339 /*
2340 * spin_lock() below is not the equivalent of smp_wmb(), so
2341 * this is needed to avoid the copy_huge_page writes to become
2342 * visible after the set_pmd_at() write.
2343 */
2344 smp_wmb();
2345
2346 spin_lock(pmd_ptl);
2347 BUG_ON(!pmd_none(*pmd));
2348 page_add_new_anon_rmap(new_page, vma, address, true);
2349 mem_cgroup_commit_charge(new_page, memcg, false, true);
2350 lru_cache_add_active_or_unevictable(new_page, vma);
2351 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2352 set_pmd_at(mm, address, pmd, _pmd);
2353 update_mmu_cache_pmd(vma, address, pmd);
2354 spin_unlock(pmd_ptl);
2355
2356 *hpage = NULL;
2357
2358 khugepaged_pages_collapsed++;
2359 result = SCAN_SUCCEED;
2360 out_up_write:
2361 up_write(&mm->mmap_sem);
2362 trace_mm_collapse_huge_page(mm, isolated, result);
2363 return;
2364
2365 out_nolock:
2366 trace_mm_collapse_huge_page(mm, isolated, result);
2367 return;
2368 out:
2369 mem_cgroup_cancel_charge(new_page, memcg, true);
2370 goto out_up_write;
2371 }
2372
2373 static int khugepaged_scan_pmd(struct mm_struct *mm,
2374 struct vm_area_struct *vma,
2375 unsigned long address,
2376 struct page **hpage)
2377 {
2378 pmd_t *pmd;
2379 pte_t *pte, *_pte;
2380 int ret = 0, none_or_zero = 0, result = 0;
2381 struct page *page = NULL;
2382 unsigned long _address;
2383 spinlock_t *ptl;
2384 int node = NUMA_NO_NODE;
2385 bool writable = false, referenced = false;
2386
2387 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2388
2389 pmd = mm_find_pmd(mm, address);
2390 if (!pmd) {
2391 result = SCAN_PMD_NULL;
2392 goto out;
2393 }
2394
2395 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2396 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2397 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2398 _pte++, _address += PAGE_SIZE) {
2399 pte_t pteval = *_pte;
2400 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2401 if (!userfaultfd_armed(vma) &&
2402 ++none_or_zero <= khugepaged_max_ptes_none) {
2403 continue;
2404 } else {
2405 result = SCAN_EXCEED_NONE_PTE;
2406 goto out_unmap;
2407 }
2408 }
2409 if (!pte_present(pteval)) {
2410 result = SCAN_PTE_NON_PRESENT;
2411 goto out_unmap;
2412 }
2413 if (pte_write(pteval))
2414 writable = true;
2415
2416 page = vm_normal_page(vma, _address, pteval);
2417 if (unlikely(!page)) {
2418 result = SCAN_PAGE_NULL;
2419 goto out_unmap;
2420 }
2421
2422 /* TODO: teach khugepaged to collapse THP mapped with pte */
2423 if (PageCompound(page)) {
2424 result = SCAN_PAGE_COMPOUND;
2425 goto out_unmap;
2426 }
2427
2428 /*
2429 * Record which node the original page is from and save this
2430 * information to khugepaged_node_load[].
2431 * Khupaged will allocate hugepage from the node has the max
2432 * hit record.
2433 */
2434 node = page_to_nid(page);
2435 if (khugepaged_scan_abort(node)) {
2436 result = SCAN_SCAN_ABORT;
2437 goto out_unmap;
2438 }
2439 khugepaged_node_load[node]++;
2440 if (!PageLRU(page)) {
2441 result = SCAN_SCAN_ABORT;
2442 goto out_unmap;
2443 }
2444 if (PageLocked(page)) {
2445 result = SCAN_PAGE_LOCK;
2446 goto out_unmap;
2447 }
2448 if (!PageAnon(page)) {
2449 result = SCAN_PAGE_ANON;
2450 goto out_unmap;
2451 }
2452
2453 /*
2454 * cannot use mapcount: can't collapse if there's a gup pin.
2455 * The page must only be referenced by the scanned process
2456 * and page swap cache.
2457 */
2458 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2459 result = SCAN_PAGE_COUNT;
2460 goto out_unmap;
2461 }
2462 if (pte_young(pteval) ||
2463 page_is_young(page) || PageReferenced(page) ||
2464 mmu_notifier_test_young(vma->vm_mm, address))
2465 referenced = true;
2466 }
2467 if (writable) {
2468 if (referenced) {
2469 result = SCAN_SUCCEED;
2470 ret = 1;
2471 } else {
2472 result = SCAN_NO_REFERENCED_PAGE;
2473 }
2474 } else {
2475 result = SCAN_PAGE_RO;
2476 }
2477 out_unmap:
2478 pte_unmap_unlock(pte, ptl);
2479 if (ret) {
2480 node = khugepaged_find_target_node();
2481 /* collapse_huge_page will return with the mmap_sem released */
2482 collapse_huge_page(mm, address, hpage, vma, node);
2483 }
2484 out:
2485 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2486 none_or_zero, result);
2487 return ret;
2488 }
2489
2490 static void collect_mm_slot(struct mm_slot *mm_slot)
2491 {
2492 struct mm_struct *mm = mm_slot->mm;
2493
2494 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2495
2496 if (khugepaged_test_exit(mm)) {
2497 /* free mm_slot */
2498 hash_del(&mm_slot->hash);
2499 list_del(&mm_slot->mm_node);
2500
2501 /*
2502 * Not strictly needed because the mm exited already.
2503 *
2504 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2505 */
2506
2507 /* khugepaged_mm_lock actually not necessary for the below */
2508 free_mm_slot(mm_slot);
2509 mmdrop(mm);
2510 }
2511 }
2512
2513 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2514 struct page **hpage)
2515 __releases(&khugepaged_mm_lock)
2516 __acquires(&khugepaged_mm_lock)
2517 {
2518 struct mm_slot *mm_slot;
2519 struct mm_struct *mm;
2520 struct vm_area_struct *vma;
2521 int progress = 0;
2522
2523 VM_BUG_ON(!pages);
2524 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2525
2526 if (khugepaged_scan.mm_slot)
2527 mm_slot = khugepaged_scan.mm_slot;
2528 else {
2529 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2530 struct mm_slot, mm_node);
2531 khugepaged_scan.address = 0;
2532 khugepaged_scan.mm_slot = mm_slot;
2533 }
2534 spin_unlock(&khugepaged_mm_lock);
2535
2536 mm = mm_slot->mm;
2537 down_read(&mm->mmap_sem);
2538 if (unlikely(khugepaged_test_exit(mm)))
2539 vma = NULL;
2540 else
2541 vma = find_vma(mm, khugepaged_scan.address);
2542
2543 progress++;
2544 for (; vma; vma = vma->vm_next) {
2545 unsigned long hstart, hend;
2546
2547 cond_resched();
2548 if (unlikely(khugepaged_test_exit(mm))) {
2549 progress++;
2550 break;
2551 }
2552 if (!hugepage_vma_check(vma)) {
2553 skip:
2554 progress++;
2555 continue;
2556 }
2557 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2558 hend = vma->vm_end & HPAGE_PMD_MASK;
2559 if (hstart >= hend)
2560 goto skip;
2561 if (khugepaged_scan.address > hend)
2562 goto skip;
2563 if (khugepaged_scan.address < hstart)
2564 khugepaged_scan.address = hstart;
2565 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2566
2567 while (khugepaged_scan.address < hend) {
2568 int ret;
2569 cond_resched();
2570 if (unlikely(khugepaged_test_exit(mm)))
2571 goto breakouterloop;
2572
2573 VM_BUG_ON(khugepaged_scan.address < hstart ||
2574 khugepaged_scan.address + HPAGE_PMD_SIZE >
2575 hend);
2576 ret = khugepaged_scan_pmd(mm, vma,
2577 khugepaged_scan.address,
2578 hpage);
2579 /* move to next address */
2580 khugepaged_scan.address += HPAGE_PMD_SIZE;
2581 progress += HPAGE_PMD_NR;
2582 if (ret)
2583 /* we released mmap_sem so break loop */
2584 goto breakouterloop_mmap_sem;
2585 if (progress >= pages)
2586 goto breakouterloop;
2587 }
2588 }
2589 breakouterloop:
2590 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2591 breakouterloop_mmap_sem:
2592
2593 spin_lock(&khugepaged_mm_lock);
2594 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2595 /*
2596 * Release the current mm_slot if this mm is about to die, or
2597 * if we scanned all vmas of this mm.
2598 */
2599 if (khugepaged_test_exit(mm) || !vma) {
2600 /*
2601 * Make sure that if mm_users is reaching zero while
2602 * khugepaged runs here, khugepaged_exit will find
2603 * mm_slot not pointing to the exiting mm.
2604 */
2605 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2606 khugepaged_scan.mm_slot = list_entry(
2607 mm_slot->mm_node.next,
2608 struct mm_slot, mm_node);
2609 khugepaged_scan.address = 0;
2610 } else {
2611 khugepaged_scan.mm_slot = NULL;
2612 khugepaged_full_scans++;
2613 }
2614
2615 collect_mm_slot(mm_slot);
2616 }
2617
2618 return progress;
2619 }
2620
2621 static int khugepaged_has_work(void)
2622 {
2623 return !list_empty(&khugepaged_scan.mm_head) &&
2624 khugepaged_enabled();
2625 }
2626
2627 static int khugepaged_wait_event(void)
2628 {
2629 return !list_empty(&khugepaged_scan.mm_head) ||
2630 kthread_should_stop();
2631 }
2632
2633 static void khugepaged_do_scan(void)
2634 {
2635 struct page *hpage = NULL;
2636 unsigned int progress = 0, pass_through_head = 0;
2637 unsigned int pages = khugepaged_pages_to_scan;
2638 bool wait = true;
2639
2640 barrier(); /* write khugepaged_pages_to_scan to local stack */
2641
2642 while (progress < pages) {
2643 if (!khugepaged_prealloc_page(&hpage, &wait))
2644 break;
2645
2646 cond_resched();
2647
2648 if (unlikely(kthread_should_stop() || try_to_freeze()))
2649 break;
2650
2651 spin_lock(&khugepaged_mm_lock);
2652 if (!khugepaged_scan.mm_slot)
2653 pass_through_head++;
2654 if (khugepaged_has_work() &&
2655 pass_through_head < 2)
2656 progress += khugepaged_scan_mm_slot(pages - progress,
2657 &hpage);
2658 else
2659 progress = pages;
2660 spin_unlock(&khugepaged_mm_lock);
2661 }
2662
2663 if (!IS_ERR_OR_NULL(hpage))
2664 put_page(hpage);
2665 }
2666
2667 static void khugepaged_wait_work(void)
2668 {
2669 if (khugepaged_has_work()) {
2670 if (!khugepaged_scan_sleep_millisecs)
2671 return;
2672
2673 wait_event_freezable_timeout(khugepaged_wait,
2674 kthread_should_stop(),
2675 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2676 return;
2677 }
2678
2679 if (khugepaged_enabled())
2680 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2681 }
2682
2683 static int khugepaged(void *none)
2684 {
2685 struct mm_slot *mm_slot;
2686
2687 set_freezable();
2688 set_user_nice(current, MAX_NICE);
2689
2690 while (!kthread_should_stop()) {
2691 khugepaged_do_scan();
2692 khugepaged_wait_work();
2693 }
2694
2695 spin_lock(&khugepaged_mm_lock);
2696 mm_slot = khugepaged_scan.mm_slot;
2697 khugepaged_scan.mm_slot = NULL;
2698 if (mm_slot)
2699 collect_mm_slot(mm_slot);
2700 spin_unlock(&khugepaged_mm_lock);
2701 return 0;
2702 }
2703
2704 static void split_huge_pmd_address(struct vm_area_struct *vma,
2705 unsigned long address)
2706 {
2707 pgd_t *pgd;
2708 pud_t *pud;
2709 pmd_t *pmd;
2710
2711 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2712
2713 pgd = pgd_offset(vma->vm_mm, address);
2714 if (!pgd_present(*pgd))
2715 return;
2716
2717 pud = pud_offset(pgd, address);
2718 if (!pud_present(*pud))
2719 return;
2720
2721 pmd = pmd_offset(pud, address);
2722 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
2723 return;
2724 /*
2725 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2726 * materialize from under us.
2727 */
2728 split_huge_pmd(vma, pmd, address);
2729 }
2730
2731 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2732 unsigned long start,
2733 unsigned long end,
2734 long adjust_next)
2735 {
2736 /*
2737 * If the new start address isn't hpage aligned and it could
2738 * previously contain an hugepage: check if we need to split
2739 * an huge pmd.
2740 */
2741 if (start & ~HPAGE_PMD_MASK &&
2742 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2743 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2744 split_huge_pmd_address(vma, start);
2745
2746 /*
2747 * If the new end address isn't hpage aligned and it could
2748 * previously contain an hugepage: check if we need to split
2749 * an huge pmd.
2750 */
2751 if (end & ~HPAGE_PMD_MASK &&
2752 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2753 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2754 split_huge_pmd_address(vma, end);
2755
2756 /*
2757 * If we're also updating the vma->vm_next->vm_start, if the new
2758 * vm_next->vm_start isn't page aligned and it could previously
2759 * contain an hugepage: check if we need to split an huge pmd.
2760 */
2761 if (adjust_next > 0) {
2762 struct vm_area_struct *next = vma->vm_next;
2763 unsigned long nstart = next->vm_start;
2764 nstart += adjust_next << PAGE_SHIFT;
2765 if (nstart & ~HPAGE_PMD_MASK &&
2766 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2767 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2768 split_huge_pmd_address(next, nstart);
2769 }
2770 }
This page took 0.15711 seconds and 6 git commands to generate.