thp: allow mlocked THP again
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/migrate.h>
27 #include <linux/hashtable.h>
28 #include <linux/userfaultfd_k.h>
29 #include <linux/page_idle.h>
30
31 #include <asm/tlb.h>
32 #include <asm/pgalloc.h>
33 #include "internal.h"
34
35 enum scan_result {
36 SCAN_FAIL,
37 SCAN_SUCCEED,
38 SCAN_PMD_NULL,
39 SCAN_EXCEED_NONE_PTE,
40 SCAN_PTE_NON_PRESENT,
41 SCAN_PAGE_RO,
42 SCAN_NO_REFERENCED_PAGE,
43 SCAN_PAGE_NULL,
44 SCAN_SCAN_ABORT,
45 SCAN_PAGE_COUNT,
46 SCAN_PAGE_LRU,
47 SCAN_PAGE_LOCK,
48 SCAN_PAGE_ANON,
49 SCAN_PAGE_COMPOUND,
50 SCAN_ANY_PROCESS,
51 SCAN_VMA_NULL,
52 SCAN_VMA_CHECK,
53 SCAN_ADDRESS_RANGE,
54 SCAN_SWAP_CACHE_PAGE,
55 SCAN_DEL_PAGE_LRU,
56 SCAN_ALLOC_HUGE_PAGE_FAIL,
57 SCAN_CGROUP_CHARGE_FAIL
58 };
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62
63 /*
64 * By default transparent hugepage support is disabled in order that avoid
65 * to risk increase the memory footprint of applications without a guaranteed
66 * benefit. When transparent hugepage support is enabled, is for all mappings,
67 * and khugepaged scans all mappings.
68 * Defrag is invoked by khugepaged hugepage allocations and by page faults
69 * for all hugepage allocations.
70 */
71 unsigned long transparent_hugepage_flags __read_mostly =
72 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
73 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
74 #endif
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
76 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
77 #endif
78 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
80 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
81
82 /* default scan 8*512 pte (or vmas) every 30 second */
83 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
84 static unsigned int khugepaged_pages_collapsed;
85 static unsigned int khugepaged_full_scans;
86 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
87 /* during fragmentation poll the hugepage allocator once every minute */
88 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
89 static struct task_struct *khugepaged_thread __read_mostly;
90 static DEFINE_MUTEX(khugepaged_mutex);
91 static DEFINE_SPINLOCK(khugepaged_mm_lock);
92 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
93 /*
94 * default collapse hugepages if there is at least one pte mapped like
95 * it would have happened if the vma was large enough during page
96 * fault.
97 */
98 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
99
100 static int khugepaged(void *none);
101 static int khugepaged_slab_init(void);
102 static void khugepaged_slab_exit(void);
103
104 #define MM_SLOTS_HASH_BITS 10
105 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
106
107 static struct kmem_cache *mm_slot_cache __read_mostly;
108
109 /**
110 * struct mm_slot - hash lookup from mm to mm_slot
111 * @hash: hash collision list
112 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
113 * @mm: the mm that this information is valid for
114 */
115 struct mm_slot {
116 struct hlist_node hash;
117 struct list_head mm_node;
118 struct mm_struct *mm;
119 };
120
121 /**
122 * struct khugepaged_scan - cursor for scanning
123 * @mm_head: the head of the mm list to scan
124 * @mm_slot: the current mm_slot we are scanning
125 * @address: the next address inside that to be scanned
126 *
127 * There is only the one khugepaged_scan instance of this cursor structure.
128 */
129 struct khugepaged_scan {
130 struct list_head mm_head;
131 struct mm_slot *mm_slot;
132 unsigned long address;
133 };
134 static struct khugepaged_scan khugepaged_scan = {
135 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
136 };
137
138 static DEFINE_SPINLOCK(split_queue_lock);
139 static LIST_HEAD(split_queue);
140 static unsigned long split_queue_len;
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
148
149 for_each_populated_zone(zone)
150 nr_zones++;
151
152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
175 min_free_kbytes = recommended_min;
176 }
177 setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182 int err = 0;
183 if (khugepaged_enabled()) {
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
187 if (IS_ERR(khugepaged_thread)) {
188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
191 goto fail;
192 }
193
194 if (!list_empty(&khugepaged_scan.mm_head))
195 wake_up_interruptible(&khugepaged_wait);
196
197 set_recommended_min_free_kbytes();
198 } else if (khugepaged_thread) {
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
202 fail:
203 return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211 struct page *zero_page;
212 retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 return READ_ONCE(huge_zero_page);
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 HPAGE_PMD_ORDER);
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 return NULL;
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
223 preempt_disable();
224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 preempt_enable();
226 __free_pages(zero_page, compound_order(zero_page));
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
233 return READ_ONCE(huge_zero_page);
234 }
235
236 static void put_huge_zero_page(void)
237 {
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
247 {
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254 {
255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
258 __free_pages(zero_page, compound_order(zero_page));
259 return HPAGE_PMD_NR;
260 }
261
262 return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
268 .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t double_flag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf,
275 enum transparent_hugepage_flag enabled,
276 enum transparent_hugepage_flag req_madv)
277 {
278 if (test_bit(enabled, &transparent_hugepage_flags)) {
279 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 return sprintf(buf, "[always] madvise never\n");
281 } else if (test_bit(req_madv, &transparent_hugepage_flags))
282 return sprintf(buf, "always [madvise] never\n");
283 else
284 return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count,
289 enum transparent_hugepage_flag enabled,
290 enum transparent_hugepage_flag req_madv)
291 {
292 if (!memcmp("always", buf,
293 min(sizeof("always")-1, count))) {
294 set_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("madvise", buf,
297 min(sizeof("madvise")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return double_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_FLAG,
315 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320 {
321 ssize_t ret;
322
323 ret = double_flag_store(kobj, attr, buf, count,
324 TRANSPARENT_HUGEPAGE_FLAG,
325 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327 if (ret > 0) {
328 int err;
329
330 mutex_lock(&khugepaged_mutex);
331 err = start_stop_khugepaged();
332 mutex_unlock(&khugepaged_mutex);
333
334 if (err)
335 ret = err;
336 }
337
338 return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341 __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343 static ssize_t single_flag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf,
345 enum transparent_hugepage_flag flag)
346 {
347 return sprintf(buf, "%d\n",
348 !!test_bit(flag, &transparent_hugepage_flags));
349 }
350
351 static ssize_t single_flag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count,
354 enum transparent_hugepage_flag flag)
355 {
356 unsigned long value;
357 int ret;
358
359 ret = kstrtoul(buf, 10, &value);
360 if (ret < 0)
361 return ret;
362 if (value > 1)
363 return -EINVAL;
364
365 if (value)
366 set_bit(flag, &transparent_hugepage_flags);
367 else
368 clear_bit(flag, &transparent_hugepage_flags);
369
370 return count;
371 }
372
373 /*
374 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376 * memory just to allocate one more hugepage.
377 */
378 static ssize_t defrag_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380 {
381 return double_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 const char *buf, size_t count)
388 {
389 return double_flag_store(kobj, attr, buf, count,
390 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394 __ATTR(defrag, 0644, defrag_show, defrag_store);
395
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397 struct kobj_attribute *attr, char *buf)
398 {
399 return single_flag_show(kobj, attr, buf,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403 struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405 return single_flag_store(kobj, attr, buf, count,
406 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412 struct kobj_attribute *attr, char *buf)
413 {
414 return single_flag_show(kobj, attr, buf,
415 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418 struct kobj_attribute *attr,
419 const char *buf, size_t count)
420 {
421 return single_flag_store(kobj, attr, buf, count,
422 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427
428 static struct attribute *hugepage_attr[] = {
429 &enabled_attr.attr,
430 &defrag_attr.attr,
431 &use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433 &debug_cow_attr.attr,
434 #endif
435 NULL,
436 };
437
438 static struct attribute_group hugepage_attr_group = {
439 .attrs = hugepage_attr,
440 };
441
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 char *buf)
445 {
446 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 const char *buf, size_t count)
452 {
453 unsigned long msecs;
454 int err;
455
456 err = kstrtoul(buf, 10, &msecs);
457 if (err || msecs > UINT_MAX)
458 return -EINVAL;
459
460 khugepaged_scan_sleep_millisecs = msecs;
461 wake_up_interruptible(&khugepaged_wait);
462
463 return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 scan_sleep_millisecs_store);
468
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 char *buf)
472 {
473 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 struct kobj_attribute *attr,
478 const char *buf, size_t count)
479 {
480 unsigned long msecs;
481 int err;
482
483 err = kstrtoul(buf, 10, &msecs);
484 if (err || msecs > UINT_MAX)
485 return -EINVAL;
486
487 khugepaged_alloc_sleep_millisecs = msecs;
488 wake_up_interruptible(&khugepaged_wait);
489
490 return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 alloc_sleep_millisecs_store);
495
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
499 {
500 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 const char *buf, size_t count)
505 {
506 int err;
507 unsigned long pages;
508
509 err = kstrtoul(buf, 10, &pages);
510 if (err || !pages || pages > UINT_MAX)
511 return -EINVAL;
512
513 khugepaged_pages_to_scan = pages;
514
515 return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 pages_to_scan_store);
520
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 char *buf)
524 {
525 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528 __ATTR_RO(pages_collapsed);
529
530 static ssize_t full_scans_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533 {
534 return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537 __ATTR_RO(full_scans);
538
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 struct kobj_attribute *attr, char *buf)
541 {
542 return single_flag_show(kobj, attr, buf,
543 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 const char *buf, size_t count)
548 {
549 return single_flag_store(kobj, attr, buf, count,
550 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553 __ATTR(defrag, 0644, khugepaged_defrag_show,
554 khugepaged_defrag_store);
555
556 /*
557 * max_ptes_none controls if khugepaged should collapse hugepages over
558 * any unmapped ptes in turn potentially increasing the memory
559 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560 * reduce the available free memory in the system as it
561 * runs. Increasing max_ptes_none will instead potentially reduce the
562 * free memory in the system during the khugepaged scan.
563 */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 char *buf)
567 {
568 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 struct kobj_attribute *attr,
572 const char *buf, size_t count)
573 {
574 int err;
575 unsigned long max_ptes_none;
576
577 err = kstrtoul(buf, 10, &max_ptes_none);
578 if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 return -EINVAL;
580
581 khugepaged_max_ptes_none = max_ptes_none;
582
583 return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 khugepaged_max_ptes_none_store);
588
589 static struct attribute *khugepaged_attr[] = {
590 &khugepaged_defrag_attr.attr,
591 &khugepaged_max_ptes_none_attr.attr,
592 &pages_to_scan_attr.attr,
593 &pages_collapsed_attr.attr,
594 &full_scans_attr.attr,
595 &scan_sleep_millisecs_attr.attr,
596 &alloc_sleep_millisecs_attr.attr,
597 NULL,
598 };
599
600 static struct attribute_group khugepaged_attr_group = {
601 .attrs = khugepaged_attr,
602 .name = "khugepaged",
603 };
604
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607 int err;
608
609 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 if (unlikely(!*hugepage_kobj)) {
611 pr_err("failed to create transparent hugepage kobject\n");
612 return -ENOMEM;
613 }
614
615 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616 if (err) {
617 pr_err("failed to register transparent hugepage group\n");
618 goto delete_obj;
619 }
620
621 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622 if (err) {
623 pr_err("failed to register transparent hugepage group\n");
624 goto remove_hp_group;
625 }
626
627 return 0;
628
629 remove_hp_group:
630 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632 kobject_put(*hugepage_kobj);
633 return err;
634 }
635
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645 return 0;
646 }
647
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652
653 static int __init hugepage_init(void)
654 {
655 int err;
656 struct kobject *hugepage_kobj;
657
658 if (!has_transparent_hugepage()) {
659 transparent_hugepage_flags = 0;
660 return -EINVAL;
661 }
662
663 err = hugepage_init_sysfs(&hugepage_kobj);
664 if (err)
665 goto err_sysfs;
666
667 err = khugepaged_slab_init();
668 if (err)
669 goto err_slab;
670
671 err = register_shrinker(&huge_zero_page_shrinker);
672 if (err)
673 goto err_hzp_shrinker;
674 err = register_shrinker(&deferred_split_shrinker);
675 if (err)
676 goto err_split_shrinker;
677
678 /*
679 * By default disable transparent hugepages on smaller systems,
680 * where the extra memory used could hurt more than TLB overhead
681 * is likely to save. The admin can still enable it through /sys.
682 */
683 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
684 transparent_hugepage_flags = 0;
685 return 0;
686 }
687
688 err = start_stop_khugepaged();
689 if (err)
690 goto err_khugepaged;
691
692 return 0;
693 err_khugepaged:
694 unregister_shrinker(&deferred_split_shrinker);
695 err_split_shrinker:
696 unregister_shrinker(&huge_zero_page_shrinker);
697 err_hzp_shrinker:
698 khugepaged_slab_exit();
699 err_slab:
700 hugepage_exit_sysfs(hugepage_kobj);
701 err_sysfs:
702 return err;
703 }
704 subsys_initcall(hugepage_init);
705
706 static int __init setup_transparent_hugepage(char *str)
707 {
708 int ret = 0;
709 if (!str)
710 goto out;
711 if (!strcmp(str, "always")) {
712 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713 &transparent_hugepage_flags);
714 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715 &transparent_hugepage_flags);
716 ret = 1;
717 } else if (!strcmp(str, "madvise")) {
718 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719 &transparent_hugepage_flags);
720 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721 &transparent_hugepage_flags);
722 ret = 1;
723 } else if (!strcmp(str, "never")) {
724 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 &transparent_hugepage_flags);
726 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 &transparent_hugepage_flags);
728 ret = 1;
729 }
730 out:
731 if (!ret)
732 pr_warn("transparent_hugepage= cannot parse, ignored\n");
733 return ret;
734 }
735 __setup("transparent_hugepage=", setup_transparent_hugepage);
736
737 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
738 {
739 if (likely(vma->vm_flags & VM_WRITE))
740 pmd = pmd_mkwrite(pmd);
741 return pmd;
742 }
743
744 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
745 {
746 pmd_t entry;
747 entry = mk_pmd(page, prot);
748 entry = pmd_mkhuge(entry);
749 return entry;
750 }
751
752 static inline struct list_head *page_deferred_list(struct page *page)
753 {
754 /*
755 * ->lru in the tail pages is occupied by compound_head.
756 * Let's use ->mapping + ->index in the second tail page as list_head.
757 */
758 return (struct list_head *)&page[2].mapping;
759 }
760
761 void prep_transhuge_page(struct page *page)
762 {
763 /*
764 * we use page->mapping and page->indexlru in second tail page
765 * as list_head: assuming THP order >= 2
766 */
767 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768
769 INIT_LIST_HEAD(page_deferred_list(page));
770 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771 }
772
773 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774 struct vm_area_struct *vma,
775 unsigned long address, pmd_t *pmd,
776 struct page *page, gfp_t gfp,
777 unsigned int flags)
778 {
779 struct mem_cgroup *memcg;
780 pgtable_t pgtable;
781 spinlock_t *ptl;
782 unsigned long haddr = address & HPAGE_PMD_MASK;
783
784 VM_BUG_ON_PAGE(!PageCompound(page), page);
785
786 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
787 put_page(page);
788 count_vm_event(THP_FAULT_FALLBACK);
789 return VM_FAULT_FALLBACK;
790 }
791
792 pgtable = pte_alloc_one(mm, haddr);
793 if (unlikely(!pgtable)) {
794 mem_cgroup_cancel_charge(page, memcg, true);
795 put_page(page);
796 return VM_FAULT_OOM;
797 }
798
799 clear_huge_page(page, haddr, HPAGE_PMD_NR);
800 /*
801 * The memory barrier inside __SetPageUptodate makes sure that
802 * clear_huge_page writes become visible before the set_pmd_at()
803 * write.
804 */
805 __SetPageUptodate(page);
806
807 ptl = pmd_lock(mm, pmd);
808 if (unlikely(!pmd_none(*pmd))) {
809 spin_unlock(ptl);
810 mem_cgroup_cancel_charge(page, memcg, true);
811 put_page(page);
812 pte_free(mm, pgtable);
813 } else {
814 pmd_t entry;
815
816 /* Deliver the page fault to userland */
817 if (userfaultfd_missing(vma)) {
818 int ret;
819
820 spin_unlock(ptl);
821 mem_cgroup_cancel_charge(page, memcg, true);
822 put_page(page);
823 pte_free(mm, pgtable);
824 ret = handle_userfault(vma, address, flags,
825 VM_UFFD_MISSING);
826 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827 return ret;
828 }
829
830 entry = mk_huge_pmd(page, vma->vm_page_prot);
831 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
832 page_add_new_anon_rmap(page, vma, haddr, true);
833 mem_cgroup_commit_charge(page, memcg, false, true);
834 lru_cache_add_active_or_unevictable(page, vma);
835 pgtable_trans_huge_deposit(mm, pmd, pgtable);
836 set_pmd_at(mm, haddr, pmd, entry);
837 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
838 atomic_long_inc(&mm->nr_ptes);
839 spin_unlock(ptl);
840 count_vm_event(THP_FAULT_ALLOC);
841 }
842
843 return 0;
844 }
845
846 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
847 {
848 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
849 }
850
851 /* Caller must hold page table lock. */
852 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
853 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
854 struct page *zero_page)
855 {
856 pmd_t entry;
857 if (!pmd_none(*pmd))
858 return false;
859 entry = mk_pmd(zero_page, vma->vm_page_prot);
860 entry = pmd_mkhuge(entry);
861 pgtable_trans_huge_deposit(mm, pmd, pgtable);
862 set_pmd_at(mm, haddr, pmd, entry);
863 atomic_long_inc(&mm->nr_ptes);
864 return true;
865 }
866
867 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
868 unsigned long address, pmd_t *pmd,
869 unsigned int flags)
870 {
871 gfp_t gfp;
872 struct page *page;
873 unsigned long haddr = address & HPAGE_PMD_MASK;
874
875 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
876 return VM_FAULT_FALLBACK;
877 if (unlikely(anon_vma_prepare(vma)))
878 return VM_FAULT_OOM;
879 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
880 return VM_FAULT_OOM;
881 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
882 transparent_hugepage_use_zero_page()) {
883 spinlock_t *ptl;
884 pgtable_t pgtable;
885 struct page *zero_page;
886 bool set;
887 int ret;
888 pgtable = pte_alloc_one(mm, haddr);
889 if (unlikely(!pgtable))
890 return VM_FAULT_OOM;
891 zero_page = get_huge_zero_page();
892 if (unlikely(!zero_page)) {
893 pte_free(mm, pgtable);
894 count_vm_event(THP_FAULT_FALLBACK);
895 return VM_FAULT_FALLBACK;
896 }
897 ptl = pmd_lock(mm, pmd);
898 ret = 0;
899 set = false;
900 if (pmd_none(*pmd)) {
901 if (userfaultfd_missing(vma)) {
902 spin_unlock(ptl);
903 ret = handle_userfault(vma, address, flags,
904 VM_UFFD_MISSING);
905 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
906 } else {
907 set_huge_zero_page(pgtable, mm, vma,
908 haddr, pmd,
909 zero_page);
910 spin_unlock(ptl);
911 set = true;
912 }
913 } else
914 spin_unlock(ptl);
915 if (!set) {
916 pte_free(mm, pgtable);
917 put_huge_zero_page();
918 }
919 return ret;
920 }
921 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
922 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
923 if (unlikely(!page)) {
924 count_vm_event(THP_FAULT_FALLBACK);
925 return VM_FAULT_FALLBACK;
926 }
927 prep_transhuge_page(page);
928 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
929 flags);
930 }
931
932 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
933 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
934 {
935 struct mm_struct *mm = vma->vm_mm;
936 pmd_t entry;
937 spinlock_t *ptl;
938
939 ptl = pmd_lock(mm, pmd);
940 if (pmd_none(*pmd)) {
941 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
942 if (write) {
943 entry = pmd_mkyoung(pmd_mkdirty(entry));
944 entry = maybe_pmd_mkwrite(entry, vma);
945 }
946 set_pmd_at(mm, addr, pmd, entry);
947 update_mmu_cache_pmd(vma, addr, pmd);
948 }
949 spin_unlock(ptl);
950 }
951
952 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
953 pmd_t *pmd, unsigned long pfn, bool write)
954 {
955 pgprot_t pgprot = vma->vm_page_prot;
956 /*
957 * If we had pmd_special, we could avoid all these restrictions,
958 * but we need to be consistent with PTEs and architectures that
959 * can't support a 'special' bit.
960 */
961 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
962 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
963 (VM_PFNMAP|VM_MIXEDMAP));
964 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
965 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
966
967 if (addr < vma->vm_start || addr >= vma->vm_end)
968 return VM_FAULT_SIGBUS;
969 if (track_pfn_insert(vma, &pgprot, pfn))
970 return VM_FAULT_SIGBUS;
971 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
972 return VM_FAULT_NOPAGE;
973 }
974
975 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
977 struct vm_area_struct *vma)
978 {
979 spinlock_t *dst_ptl, *src_ptl;
980 struct page *src_page;
981 pmd_t pmd;
982 pgtable_t pgtable;
983 int ret;
984
985 ret = -ENOMEM;
986 pgtable = pte_alloc_one(dst_mm, addr);
987 if (unlikely(!pgtable))
988 goto out;
989
990 dst_ptl = pmd_lock(dst_mm, dst_pmd);
991 src_ptl = pmd_lockptr(src_mm, src_pmd);
992 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
993
994 ret = -EAGAIN;
995 pmd = *src_pmd;
996 if (unlikely(!pmd_trans_huge(pmd))) {
997 pte_free(dst_mm, pgtable);
998 goto out_unlock;
999 }
1000 /*
1001 * When page table lock is held, the huge zero pmd should not be
1002 * under splitting since we don't split the page itself, only pmd to
1003 * a page table.
1004 */
1005 if (is_huge_zero_pmd(pmd)) {
1006 struct page *zero_page;
1007 /*
1008 * get_huge_zero_page() will never allocate a new page here,
1009 * since we already have a zero page to copy. It just takes a
1010 * reference.
1011 */
1012 zero_page = get_huge_zero_page();
1013 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1014 zero_page);
1015 ret = 0;
1016 goto out_unlock;
1017 }
1018
1019 src_page = pmd_page(pmd);
1020 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1021 get_page(src_page);
1022 page_dup_rmap(src_page, true);
1023 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1024
1025 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1026 pmd = pmd_mkold(pmd_wrprotect(pmd));
1027 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1028 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1029 atomic_long_inc(&dst_mm->nr_ptes);
1030
1031 ret = 0;
1032 out_unlock:
1033 spin_unlock(src_ptl);
1034 spin_unlock(dst_ptl);
1035 out:
1036 return ret;
1037 }
1038
1039 void huge_pmd_set_accessed(struct mm_struct *mm,
1040 struct vm_area_struct *vma,
1041 unsigned long address,
1042 pmd_t *pmd, pmd_t orig_pmd,
1043 int dirty)
1044 {
1045 spinlock_t *ptl;
1046 pmd_t entry;
1047 unsigned long haddr;
1048
1049 ptl = pmd_lock(mm, pmd);
1050 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1051 goto unlock;
1052
1053 entry = pmd_mkyoung(orig_pmd);
1054 haddr = address & HPAGE_PMD_MASK;
1055 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1056 update_mmu_cache_pmd(vma, address, pmd);
1057
1058 unlock:
1059 spin_unlock(ptl);
1060 }
1061
1062 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1063 struct vm_area_struct *vma,
1064 unsigned long address,
1065 pmd_t *pmd, pmd_t orig_pmd,
1066 struct page *page,
1067 unsigned long haddr)
1068 {
1069 struct mem_cgroup *memcg;
1070 spinlock_t *ptl;
1071 pgtable_t pgtable;
1072 pmd_t _pmd;
1073 int ret = 0, i;
1074 struct page **pages;
1075 unsigned long mmun_start; /* For mmu_notifiers */
1076 unsigned long mmun_end; /* For mmu_notifiers */
1077
1078 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1079 GFP_KERNEL);
1080 if (unlikely(!pages)) {
1081 ret |= VM_FAULT_OOM;
1082 goto out;
1083 }
1084
1085 for (i = 0; i < HPAGE_PMD_NR; i++) {
1086 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1087 __GFP_OTHER_NODE,
1088 vma, address, page_to_nid(page));
1089 if (unlikely(!pages[i] ||
1090 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1091 &memcg, false))) {
1092 if (pages[i])
1093 put_page(pages[i]);
1094 while (--i >= 0) {
1095 memcg = (void *)page_private(pages[i]);
1096 set_page_private(pages[i], 0);
1097 mem_cgroup_cancel_charge(pages[i], memcg,
1098 false);
1099 put_page(pages[i]);
1100 }
1101 kfree(pages);
1102 ret |= VM_FAULT_OOM;
1103 goto out;
1104 }
1105 set_page_private(pages[i], (unsigned long)memcg);
1106 }
1107
1108 for (i = 0; i < HPAGE_PMD_NR; i++) {
1109 copy_user_highpage(pages[i], page + i,
1110 haddr + PAGE_SIZE * i, vma);
1111 __SetPageUptodate(pages[i]);
1112 cond_resched();
1113 }
1114
1115 mmun_start = haddr;
1116 mmun_end = haddr + HPAGE_PMD_SIZE;
1117 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1118
1119 ptl = pmd_lock(mm, pmd);
1120 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1121 goto out_free_pages;
1122 VM_BUG_ON_PAGE(!PageHead(page), page);
1123
1124 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1125 /* leave pmd empty until pte is filled */
1126
1127 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1128 pmd_populate(mm, &_pmd, pgtable);
1129
1130 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1131 pte_t *pte, entry;
1132 entry = mk_pte(pages[i], vma->vm_page_prot);
1133 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1134 memcg = (void *)page_private(pages[i]);
1135 set_page_private(pages[i], 0);
1136 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1137 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1138 lru_cache_add_active_or_unevictable(pages[i], vma);
1139 pte = pte_offset_map(&_pmd, haddr);
1140 VM_BUG_ON(!pte_none(*pte));
1141 set_pte_at(mm, haddr, pte, entry);
1142 pte_unmap(pte);
1143 }
1144 kfree(pages);
1145
1146 smp_wmb(); /* make pte visible before pmd */
1147 pmd_populate(mm, pmd, pgtable);
1148 page_remove_rmap(page, true);
1149 spin_unlock(ptl);
1150
1151 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1152
1153 ret |= VM_FAULT_WRITE;
1154 put_page(page);
1155
1156 out:
1157 return ret;
1158
1159 out_free_pages:
1160 spin_unlock(ptl);
1161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162 for (i = 0; i < HPAGE_PMD_NR; i++) {
1163 memcg = (void *)page_private(pages[i]);
1164 set_page_private(pages[i], 0);
1165 mem_cgroup_cancel_charge(pages[i], memcg, false);
1166 put_page(pages[i]);
1167 }
1168 kfree(pages);
1169 goto out;
1170 }
1171
1172 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1173 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1174 {
1175 spinlock_t *ptl;
1176 int ret = 0;
1177 struct page *page = NULL, *new_page;
1178 struct mem_cgroup *memcg;
1179 unsigned long haddr;
1180 unsigned long mmun_start; /* For mmu_notifiers */
1181 unsigned long mmun_end; /* For mmu_notifiers */
1182 gfp_t huge_gfp; /* for allocation and charge */
1183
1184 ptl = pmd_lockptr(mm, pmd);
1185 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1186 haddr = address & HPAGE_PMD_MASK;
1187 if (is_huge_zero_pmd(orig_pmd))
1188 goto alloc;
1189 spin_lock(ptl);
1190 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1191 goto out_unlock;
1192
1193 page = pmd_page(orig_pmd);
1194 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1195 /*
1196 * We can only reuse the page if nobody else maps the huge page or it's
1197 * part. We can do it by checking page_mapcount() on each sub-page, but
1198 * it's expensive.
1199 * The cheaper way is to check page_count() to be equal 1: every
1200 * mapcount takes page reference reference, so this way we can
1201 * guarantee, that the PMD is the only mapping.
1202 * This can give false negative if somebody pinned the page, but that's
1203 * fine.
1204 */
1205 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1206 pmd_t entry;
1207 entry = pmd_mkyoung(orig_pmd);
1208 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1209 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1210 update_mmu_cache_pmd(vma, address, pmd);
1211 ret |= VM_FAULT_WRITE;
1212 goto out_unlock;
1213 }
1214 get_page(page);
1215 spin_unlock(ptl);
1216 alloc:
1217 if (transparent_hugepage_enabled(vma) &&
1218 !transparent_hugepage_debug_cow()) {
1219 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1220 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1221 } else
1222 new_page = NULL;
1223
1224 if (likely(new_page)) {
1225 prep_transhuge_page(new_page);
1226 } else {
1227 if (!page) {
1228 split_huge_pmd(vma, pmd, address);
1229 ret |= VM_FAULT_FALLBACK;
1230 } else {
1231 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1232 pmd, orig_pmd, page, haddr);
1233 if (ret & VM_FAULT_OOM) {
1234 split_huge_pmd(vma, pmd, address);
1235 ret |= VM_FAULT_FALLBACK;
1236 }
1237 put_page(page);
1238 }
1239 count_vm_event(THP_FAULT_FALLBACK);
1240 goto out;
1241 }
1242
1243 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1244 true))) {
1245 put_page(new_page);
1246 if (page) {
1247 split_huge_pmd(vma, pmd, address);
1248 put_page(page);
1249 } else
1250 split_huge_pmd(vma, pmd, address);
1251 ret |= VM_FAULT_FALLBACK;
1252 count_vm_event(THP_FAULT_FALLBACK);
1253 goto out;
1254 }
1255
1256 count_vm_event(THP_FAULT_ALLOC);
1257
1258 if (!page)
1259 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1260 else
1261 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1262 __SetPageUptodate(new_page);
1263
1264 mmun_start = haddr;
1265 mmun_end = haddr + HPAGE_PMD_SIZE;
1266 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1267
1268 spin_lock(ptl);
1269 if (page)
1270 put_page(page);
1271 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1272 spin_unlock(ptl);
1273 mem_cgroup_cancel_charge(new_page, memcg, true);
1274 put_page(new_page);
1275 goto out_mn;
1276 } else {
1277 pmd_t entry;
1278 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1279 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1280 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1281 page_add_new_anon_rmap(new_page, vma, haddr, true);
1282 mem_cgroup_commit_charge(new_page, memcg, false, true);
1283 lru_cache_add_active_or_unevictable(new_page, vma);
1284 set_pmd_at(mm, haddr, pmd, entry);
1285 update_mmu_cache_pmd(vma, address, pmd);
1286 if (!page) {
1287 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1288 put_huge_zero_page();
1289 } else {
1290 VM_BUG_ON_PAGE(!PageHead(page), page);
1291 page_remove_rmap(page, true);
1292 put_page(page);
1293 }
1294 ret |= VM_FAULT_WRITE;
1295 }
1296 spin_unlock(ptl);
1297 out_mn:
1298 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1299 out:
1300 return ret;
1301 out_unlock:
1302 spin_unlock(ptl);
1303 return ret;
1304 }
1305
1306 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1307 unsigned long addr,
1308 pmd_t *pmd,
1309 unsigned int flags)
1310 {
1311 struct mm_struct *mm = vma->vm_mm;
1312 struct page *page = NULL;
1313
1314 assert_spin_locked(pmd_lockptr(mm, pmd));
1315
1316 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1317 goto out;
1318
1319 /* Avoid dumping huge zero page */
1320 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1321 return ERR_PTR(-EFAULT);
1322
1323 /* Full NUMA hinting faults to serialise migration in fault paths */
1324 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1325 goto out;
1326
1327 page = pmd_page(*pmd);
1328 VM_BUG_ON_PAGE(!PageHead(page), page);
1329 if (flags & FOLL_TOUCH) {
1330 pmd_t _pmd;
1331 /*
1332 * We should set the dirty bit only for FOLL_WRITE but
1333 * for now the dirty bit in the pmd is meaningless.
1334 * And if the dirty bit will become meaningful and
1335 * we'll only set it with FOLL_WRITE, an atomic
1336 * set_bit will be required on the pmd to set the
1337 * young bit, instead of the current set_pmd_at.
1338 */
1339 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1340 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1341 pmd, _pmd, 1))
1342 update_mmu_cache_pmd(vma, addr, pmd);
1343 }
1344 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1345 /*
1346 * We don't mlock() pte-mapped THPs. This way we can avoid
1347 * leaking mlocked pages into non-VM_LOCKED VMAs.
1348 *
1349 * In most cases the pmd is the only mapping of the page as we
1350 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1351 * writable private mappings in populate_vma_page_range().
1352 *
1353 * The only scenario when we have the page shared here is if we
1354 * mlocking read-only mapping shared over fork(). We skip
1355 * mlocking such pages.
1356 */
1357 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1358 page->mapping && trylock_page(page)) {
1359 lru_add_drain();
1360 if (page->mapping)
1361 mlock_vma_page(page);
1362 unlock_page(page);
1363 }
1364 }
1365 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1366 VM_BUG_ON_PAGE(!PageCompound(page), page);
1367 if (flags & FOLL_GET)
1368 get_page(page);
1369
1370 out:
1371 return page;
1372 }
1373
1374 /* NUMA hinting page fault entry point for trans huge pmds */
1375 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1376 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1377 {
1378 spinlock_t *ptl;
1379 struct anon_vma *anon_vma = NULL;
1380 struct page *page;
1381 unsigned long haddr = addr & HPAGE_PMD_MASK;
1382 int page_nid = -1, this_nid = numa_node_id();
1383 int target_nid, last_cpupid = -1;
1384 bool page_locked;
1385 bool migrated = false;
1386 bool was_writable;
1387 int flags = 0;
1388
1389 /* A PROT_NONE fault should not end up here */
1390 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1391
1392 ptl = pmd_lock(mm, pmdp);
1393 if (unlikely(!pmd_same(pmd, *pmdp)))
1394 goto out_unlock;
1395
1396 /*
1397 * If there are potential migrations, wait for completion and retry
1398 * without disrupting NUMA hinting information. Do not relock and
1399 * check_same as the page may no longer be mapped.
1400 */
1401 if (unlikely(pmd_trans_migrating(*pmdp))) {
1402 page = pmd_page(*pmdp);
1403 spin_unlock(ptl);
1404 wait_on_page_locked(page);
1405 goto out;
1406 }
1407
1408 page = pmd_page(pmd);
1409 BUG_ON(is_huge_zero_page(page));
1410 page_nid = page_to_nid(page);
1411 last_cpupid = page_cpupid_last(page);
1412 count_vm_numa_event(NUMA_HINT_FAULTS);
1413 if (page_nid == this_nid) {
1414 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1415 flags |= TNF_FAULT_LOCAL;
1416 }
1417
1418 /* See similar comment in do_numa_page for explanation */
1419 if (!(vma->vm_flags & VM_WRITE))
1420 flags |= TNF_NO_GROUP;
1421
1422 /*
1423 * Acquire the page lock to serialise THP migrations but avoid dropping
1424 * page_table_lock if at all possible
1425 */
1426 page_locked = trylock_page(page);
1427 target_nid = mpol_misplaced(page, vma, haddr);
1428 if (target_nid == -1) {
1429 /* If the page was locked, there are no parallel migrations */
1430 if (page_locked)
1431 goto clear_pmdnuma;
1432 }
1433
1434 /* Migration could have started since the pmd_trans_migrating check */
1435 if (!page_locked) {
1436 spin_unlock(ptl);
1437 wait_on_page_locked(page);
1438 page_nid = -1;
1439 goto out;
1440 }
1441
1442 /*
1443 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1444 * to serialises splits
1445 */
1446 get_page(page);
1447 spin_unlock(ptl);
1448 anon_vma = page_lock_anon_vma_read(page);
1449
1450 /* Confirm the PMD did not change while page_table_lock was released */
1451 spin_lock(ptl);
1452 if (unlikely(!pmd_same(pmd, *pmdp))) {
1453 unlock_page(page);
1454 put_page(page);
1455 page_nid = -1;
1456 goto out_unlock;
1457 }
1458
1459 /* Bail if we fail to protect against THP splits for any reason */
1460 if (unlikely(!anon_vma)) {
1461 put_page(page);
1462 page_nid = -1;
1463 goto clear_pmdnuma;
1464 }
1465
1466 /*
1467 * Migrate the THP to the requested node, returns with page unlocked
1468 * and access rights restored.
1469 */
1470 spin_unlock(ptl);
1471 migrated = migrate_misplaced_transhuge_page(mm, vma,
1472 pmdp, pmd, addr, page, target_nid);
1473 if (migrated) {
1474 flags |= TNF_MIGRATED;
1475 page_nid = target_nid;
1476 } else
1477 flags |= TNF_MIGRATE_FAIL;
1478
1479 goto out;
1480 clear_pmdnuma:
1481 BUG_ON(!PageLocked(page));
1482 was_writable = pmd_write(pmd);
1483 pmd = pmd_modify(pmd, vma->vm_page_prot);
1484 pmd = pmd_mkyoung(pmd);
1485 if (was_writable)
1486 pmd = pmd_mkwrite(pmd);
1487 set_pmd_at(mm, haddr, pmdp, pmd);
1488 update_mmu_cache_pmd(vma, addr, pmdp);
1489 unlock_page(page);
1490 out_unlock:
1491 spin_unlock(ptl);
1492
1493 out:
1494 if (anon_vma)
1495 page_unlock_anon_vma_read(anon_vma);
1496
1497 if (page_nid != -1)
1498 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1499
1500 return 0;
1501 }
1502
1503 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1504 pmd_t *pmd, unsigned long addr)
1505 {
1506 pmd_t orig_pmd;
1507 spinlock_t *ptl;
1508
1509 if (!__pmd_trans_huge_lock(pmd, vma, &ptl))
1510 return 0;
1511 /*
1512 * For architectures like ppc64 we look at deposited pgtable
1513 * when calling pmdp_huge_get_and_clear. So do the
1514 * pgtable_trans_huge_withdraw after finishing pmdp related
1515 * operations.
1516 */
1517 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1518 tlb->fullmm);
1519 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1520 if (vma_is_dax(vma)) {
1521 spin_unlock(ptl);
1522 if (is_huge_zero_pmd(orig_pmd))
1523 put_huge_zero_page();
1524 } else if (is_huge_zero_pmd(orig_pmd)) {
1525 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1526 atomic_long_dec(&tlb->mm->nr_ptes);
1527 spin_unlock(ptl);
1528 put_huge_zero_page();
1529 } else {
1530 struct page *page = pmd_page(orig_pmd);
1531 page_remove_rmap(page, true);
1532 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1533 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1534 VM_BUG_ON_PAGE(!PageHead(page), page);
1535 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1536 atomic_long_dec(&tlb->mm->nr_ptes);
1537 spin_unlock(ptl);
1538 tlb_remove_page(tlb, page);
1539 }
1540 return 1;
1541 }
1542
1543 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1544 unsigned long old_addr,
1545 unsigned long new_addr, unsigned long old_end,
1546 pmd_t *old_pmd, pmd_t *new_pmd)
1547 {
1548 spinlock_t *old_ptl, *new_ptl;
1549 pmd_t pmd;
1550
1551 struct mm_struct *mm = vma->vm_mm;
1552
1553 if ((old_addr & ~HPAGE_PMD_MASK) ||
1554 (new_addr & ~HPAGE_PMD_MASK) ||
1555 old_end - old_addr < HPAGE_PMD_SIZE ||
1556 (new_vma->vm_flags & VM_NOHUGEPAGE))
1557 return false;
1558
1559 /*
1560 * The destination pmd shouldn't be established, free_pgtables()
1561 * should have release it.
1562 */
1563 if (WARN_ON(!pmd_none(*new_pmd))) {
1564 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1565 return false;
1566 }
1567
1568 /*
1569 * We don't have to worry about the ordering of src and dst
1570 * ptlocks because exclusive mmap_sem prevents deadlock.
1571 */
1572 if (__pmd_trans_huge_lock(old_pmd, vma, &old_ptl)) {
1573 new_ptl = pmd_lockptr(mm, new_pmd);
1574 if (new_ptl != old_ptl)
1575 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1576 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1577 VM_BUG_ON(!pmd_none(*new_pmd));
1578
1579 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1580 pgtable_t pgtable;
1581 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1582 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1583 }
1584 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1585 if (new_ptl != old_ptl)
1586 spin_unlock(new_ptl);
1587 spin_unlock(old_ptl);
1588 return true;
1589 }
1590 return false;
1591 }
1592
1593 /*
1594 * Returns
1595 * - 0 if PMD could not be locked
1596 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1597 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1598 */
1599 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1600 unsigned long addr, pgprot_t newprot, int prot_numa)
1601 {
1602 struct mm_struct *mm = vma->vm_mm;
1603 spinlock_t *ptl;
1604 int ret = 0;
1605
1606 if (__pmd_trans_huge_lock(pmd, vma, &ptl)) {
1607 pmd_t entry;
1608 bool preserve_write = prot_numa && pmd_write(*pmd);
1609 ret = 1;
1610
1611 /*
1612 * Avoid trapping faults against the zero page. The read-only
1613 * data is likely to be read-cached on the local CPU and
1614 * local/remote hits to the zero page are not interesting.
1615 */
1616 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1617 spin_unlock(ptl);
1618 return ret;
1619 }
1620
1621 if (!prot_numa || !pmd_protnone(*pmd)) {
1622 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1623 entry = pmd_modify(entry, newprot);
1624 if (preserve_write)
1625 entry = pmd_mkwrite(entry);
1626 ret = HPAGE_PMD_NR;
1627 set_pmd_at(mm, addr, pmd, entry);
1628 BUG_ON(!preserve_write && pmd_write(entry));
1629 }
1630 spin_unlock(ptl);
1631 }
1632
1633 return ret;
1634 }
1635
1636 /*
1637 * Returns true if a given pmd maps a thp, false otherwise.
1638 *
1639 * Note that if it returns true, this routine returns without unlocking page
1640 * table lock. So callers must unlock it.
1641 */
1642 bool __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1643 spinlock_t **ptl)
1644 {
1645 *ptl = pmd_lock(vma->vm_mm, pmd);
1646 if (likely(pmd_trans_huge(*pmd)))
1647 return true;
1648 spin_unlock(*ptl);
1649 return false;
1650 }
1651
1652 /*
1653 * This function returns whether a given @page is mapped onto the @address
1654 * in the virtual space of @mm.
1655 *
1656 * When it's true, this function returns *pmd with holding the page table lock
1657 * and passing it back to the caller via @ptl.
1658 * If it's false, returns NULL without holding the page table lock.
1659 */
1660 pmd_t *page_check_address_pmd(struct page *page,
1661 struct mm_struct *mm,
1662 unsigned long address,
1663 spinlock_t **ptl)
1664 {
1665 pgd_t *pgd;
1666 pud_t *pud;
1667 pmd_t *pmd;
1668
1669 if (address & ~HPAGE_PMD_MASK)
1670 return NULL;
1671
1672 pgd = pgd_offset(mm, address);
1673 if (!pgd_present(*pgd))
1674 return NULL;
1675 pud = pud_offset(pgd, address);
1676 if (!pud_present(*pud))
1677 return NULL;
1678 pmd = pmd_offset(pud, address);
1679
1680 *ptl = pmd_lock(mm, pmd);
1681 if (!pmd_present(*pmd))
1682 goto unlock;
1683 if (pmd_page(*pmd) != page)
1684 goto unlock;
1685 if (pmd_trans_huge(*pmd))
1686 return pmd;
1687 unlock:
1688 spin_unlock(*ptl);
1689 return NULL;
1690 }
1691
1692 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1693
1694 int hugepage_madvise(struct vm_area_struct *vma,
1695 unsigned long *vm_flags, int advice)
1696 {
1697 switch (advice) {
1698 case MADV_HUGEPAGE:
1699 #ifdef CONFIG_S390
1700 /*
1701 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1702 * can't handle this properly after s390_enable_sie, so we simply
1703 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1704 */
1705 if (mm_has_pgste(vma->vm_mm))
1706 return 0;
1707 #endif
1708 /*
1709 * Be somewhat over-protective like KSM for now!
1710 */
1711 if (*vm_flags & VM_NO_THP)
1712 return -EINVAL;
1713 *vm_flags &= ~VM_NOHUGEPAGE;
1714 *vm_flags |= VM_HUGEPAGE;
1715 /*
1716 * If the vma become good for khugepaged to scan,
1717 * register it here without waiting a page fault that
1718 * may not happen any time soon.
1719 */
1720 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1721 return -ENOMEM;
1722 break;
1723 case MADV_NOHUGEPAGE:
1724 /*
1725 * Be somewhat over-protective like KSM for now!
1726 */
1727 if (*vm_flags & VM_NO_THP)
1728 return -EINVAL;
1729 *vm_flags &= ~VM_HUGEPAGE;
1730 *vm_flags |= VM_NOHUGEPAGE;
1731 /*
1732 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1733 * this vma even if we leave the mm registered in khugepaged if
1734 * it got registered before VM_NOHUGEPAGE was set.
1735 */
1736 break;
1737 }
1738
1739 return 0;
1740 }
1741
1742 static int __init khugepaged_slab_init(void)
1743 {
1744 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1745 sizeof(struct mm_slot),
1746 __alignof__(struct mm_slot), 0, NULL);
1747 if (!mm_slot_cache)
1748 return -ENOMEM;
1749
1750 return 0;
1751 }
1752
1753 static void __init khugepaged_slab_exit(void)
1754 {
1755 kmem_cache_destroy(mm_slot_cache);
1756 }
1757
1758 static inline struct mm_slot *alloc_mm_slot(void)
1759 {
1760 if (!mm_slot_cache) /* initialization failed */
1761 return NULL;
1762 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1763 }
1764
1765 static inline void free_mm_slot(struct mm_slot *mm_slot)
1766 {
1767 kmem_cache_free(mm_slot_cache, mm_slot);
1768 }
1769
1770 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1771 {
1772 struct mm_slot *mm_slot;
1773
1774 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1775 if (mm == mm_slot->mm)
1776 return mm_slot;
1777
1778 return NULL;
1779 }
1780
1781 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1782 struct mm_slot *mm_slot)
1783 {
1784 mm_slot->mm = mm;
1785 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1786 }
1787
1788 static inline int khugepaged_test_exit(struct mm_struct *mm)
1789 {
1790 return atomic_read(&mm->mm_users) == 0;
1791 }
1792
1793 int __khugepaged_enter(struct mm_struct *mm)
1794 {
1795 struct mm_slot *mm_slot;
1796 int wakeup;
1797
1798 mm_slot = alloc_mm_slot();
1799 if (!mm_slot)
1800 return -ENOMEM;
1801
1802 /* __khugepaged_exit() must not run from under us */
1803 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1804 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1805 free_mm_slot(mm_slot);
1806 return 0;
1807 }
1808
1809 spin_lock(&khugepaged_mm_lock);
1810 insert_to_mm_slots_hash(mm, mm_slot);
1811 /*
1812 * Insert just behind the scanning cursor, to let the area settle
1813 * down a little.
1814 */
1815 wakeup = list_empty(&khugepaged_scan.mm_head);
1816 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1817 spin_unlock(&khugepaged_mm_lock);
1818
1819 atomic_inc(&mm->mm_count);
1820 if (wakeup)
1821 wake_up_interruptible(&khugepaged_wait);
1822
1823 return 0;
1824 }
1825
1826 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1827 unsigned long vm_flags)
1828 {
1829 unsigned long hstart, hend;
1830 if (!vma->anon_vma)
1831 /*
1832 * Not yet faulted in so we will register later in the
1833 * page fault if needed.
1834 */
1835 return 0;
1836 if (vma->vm_ops)
1837 /* khugepaged not yet working on file or special mappings */
1838 return 0;
1839 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1840 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1841 hend = vma->vm_end & HPAGE_PMD_MASK;
1842 if (hstart < hend)
1843 return khugepaged_enter(vma, vm_flags);
1844 return 0;
1845 }
1846
1847 void __khugepaged_exit(struct mm_struct *mm)
1848 {
1849 struct mm_slot *mm_slot;
1850 int free = 0;
1851
1852 spin_lock(&khugepaged_mm_lock);
1853 mm_slot = get_mm_slot(mm);
1854 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1855 hash_del(&mm_slot->hash);
1856 list_del(&mm_slot->mm_node);
1857 free = 1;
1858 }
1859 spin_unlock(&khugepaged_mm_lock);
1860
1861 if (free) {
1862 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1863 free_mm_slot(mm_slot);
1864 mmdrop(mm);
1865 } else if (mm_slot) {
1866 /*
1867 * This is required to serialize against
1868 * khugepaged_test_exit() (which is guaranteed to run
1869 * under mmap sem read mode). Stop here (after we
1870 * return all pagetables will be destroyed) until
1871 * khugepaged has finished working on the pagetables
1872 * under the mmap_sem.
1873 */
1874 down_write(&mm->mmap_sem);
1875 up_write(&mm->mmap_sem);
1876 }
1877 }
1878
1879 static void release_pte_page(struct page *page)
1880 {
1881 /* 0 stands for page_is_file_cache(page) == false */
1882 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1883 unlock_page(page);
1884 putback_lru_page(page);
1885 }
1886
1887 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1888 {
1889 while (--_pte >= pte) {
1890 pte_t pteval = *_pte;
1891 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1892 release_pte_page(pte_page(pteval));
1893 }
1894 }
1895
1896 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1897 unsigned long address,
1898 pte_t *pte)
1899 {
1900 struct page *page = NULL;
1901 pte_t *_pte;
1902 int none_or_zero = 0, result = 0;
1903 bool referenced = false, writable = false;
1904
1905 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1906 _pte++, address += PAGE_SIZE) {
1907 pte_t pteval = *_pte;
1908 if (pte_none(pteval) || (pte_present(pteval) &&
1909 is_zero_pfn(pte_pfn(pteval)))) {
1910 if (!userfaultfd_armed(vma) &&
1911 ++none_or_zero <= khugepaged_max_ptes_none) {
1912 continue;
1913 } else {
1914 result = SCAN_EXCEED_NONE_PTE;
1915 goto out;
1916 }
1917 }
1918 if (!pte_present(pteval)) {
1919 result = SCAN_PTE_NON_PRESENT;
1920 goto out;
1921 }
1922 page = vm_normal_page(vma, address, pteval);
1923 if (unlikely(!page)) {
1924 result = SCAN_PAGE_NULL;
1925 goto out;
1926 }
1927
1928 VM_BUG_ON_PAGE(PageCompound(page), page);
1929 VM_BUG_ON_PAGE(!PageAnon(page), page);
1930 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1931
1932 /*
1933 * We can do it before isolate_lru_page because the
1934 * page can't be freed from under us. NOTE: PG_lock
1935 * is needed to serialize against split_huge_page
1936 * when invoked from the VM.
1937 */
1938 if (!trylock_page(page)) {
1939 result = SCAN_PAGE_LOCK;
1940 goto out;
1941 }
1942
1943 /*
1944 * cannot use mapcount: can't collapse if there's a gup pin.
1945 * The page must only be referenced by the scanned process
1946 * and page swap cache.
1947 */
1948 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1949 unlock_page(page);
1950 result = SCAN_PAGE_COUNT;
1951 goto out;
1952 }
1953 if (pte_write(pteval)) {
1954 writable = true;
1955 } else {
1956 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1957 unlock_page(page);
1958 result = SCAN_SWAP_CACHE_PAGE;
1959 goto out;
1960 }
1961 /*
1962 * Page is not in the swap cache. It can be collapsed
1963 * into a THP.
1964 */
1965 }
1966
1967 /*
1968 * Isolate the page to avoid collapsing an hugepage
1969 * currently in use by the VM.
1970 */
1971 if (isolate_lru_page(page)) {
1972 unlock_page(page);
1973 result = SCAN_DEL_PAGE_LRU;
1974 goto out;
1975 }
1976 /* 0 stands for page_is_file_cache(page) == false */
1977 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1978 VM_BUG_ON_PAGE(!PageLocked(page), page);
1979 VM_BUG_ON_PAGE(PageLRU(page), page);
1980
1981 /* If there is no mapped pte young don't collapse the page */
1982 if (pte_young(pteval) ||
1983 page_is_young(page) || PageReferenced(page) ||
1984 mmu_notifier_test_young(vma->vm_mm, address))
1985 referenced = true;
1986 }
1987 if (likely(writable)) {
1988 if (likely(referenced)) {
1989 result = SCAN_SUCCEED;
1990 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
1991 referenced, writable, result);
1992 return 1;
1993 }
1994 } else {
1995 result = SCAN_PAGE_RO;
1996 }
1997
1998 out:
1999 release_pte_pages(pte, _pte);
2000 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2001 referenced, writable, result);
2002 return 0;
2003 }
2004
2005 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2006 struct vm_area_struct *vma,
2007 unsigned long address,
2008 spinlock_t *ptl)
2009 {
2010 pte_t *_pte;
2011 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2012 pte_t pteval = *_pte;
2013 struct page *src_page;
2014
2015 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2016 clear_user_highpage(page, address);
2017 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2018 if (is_zero_pfn(pte_pfn(pteval))) {
2019 /*
2020 * ptl mostly unnecessary.
2021 */
2022 spin_lock(ptl);
2023 /*
2024 * paravirt calls inside pte_clear here are
2025 * superfluous.
2026 */
2027 pte_clear(vma->vm_mm, address, _pte);
2028 spin_unlock(ptl);
2029 }
2030 } else {
2031 src_page = pte_page(pteval);
2032 copy_user_highpage(page, src_page, address, vma);
2033 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2034 release_pte_page(src_page);
2035 /*
2036 * ptl mostly unnecessary, but preempt has to
2037 * be disabled to update the per-cpu stats
2038 * inside page_remove_rmap().
2039 */
2040 spin_lock(ptl);
2041 /*
2042 * paravirt calls inside pte_clear here are
2043 * superfluous.
2044 */
2045 pte_clear(vma->vm_mm, address, _pte);
2046 page_remove_rmap(src_page, false);
2047 spin_unlock(ptl);
2048 free_page_and_swap_cache(src_page);
2049 }
2050
2051 address += PAGE_SIZE;
2052 page++;
2053 }
2054 }
2055
2056 static void khugepaged_alloc_sleep(void)
2057 {
2058 DEFINE_WAIT(wait);
2059
2060 add_wait_queue(&khugepaged_wait, &wait);
2061 freezable_schedule_timeout_interruptible(
2062 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2063 remove_wait_queue(&khugepaged_wait, &wait);
2064 }
2065
2066 static int khugepaged_node_load[MAX_NUMNODES];
2067
2068 static bool khugepaged_scan_abort(int nid)
2069 {
2070 int i;
2071
2072 /*
2073 * If zone_reclaim_mode is disabled, then no extra effort is made to
2074 * allocate memory locally.
2075 */
2076 if (!zone_reclaim_mode)
2077 return false;
2078
2079 /* If there is a count for this node already, it must be acceptable */
2080 if (khugepaged_node_load[nid])
2081 return false;
2082
2083 for (i = 0; i < MAX_NUMNODES; i++) {
2084 if (!khugepaged_node_load[i])
2085 continue;
2086 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2087 return true;
2088 }
2089 return false;
2090 }
2091
2092 #ifdef CONFIG_NUMA
2093 static int khugepaged_find_target_node(void)
2094 {
2095 static int last_khugepaged_target_node = NUMA_NO_NODE;
2096 int nid, target_node = 0, max_value = 0;
2097
2098 /* find first node with max normal pages hit */
2099 for (nid = 0; nid < MAX_NUMNODES; nid++)
2100 if (khugepaged_node_load[nid] > max_value) {
2101 max_value = khugepaged_node_load[nid];
2102 target_node = nid;
2103 }
2104
2105 /* do some balance if several nodes have the same hit record */
2106 if (target_node <= last_khugepaged_target_node)
2107 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2108 nid++)
2109 if (max_value == khugepaged_node_load[nid]) {
2110 target_node = nid;
2111 break;
2112 }
2113
2114 last_khugepaged_target_node = target_node;
2115 return target_node;
2116 }
2117
2118 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2119 {
2120 if (IS_ERR(*hpage)) {
2121 if (!*wait)
2122 return false;
2123
2124 *wait = false;
2125 *hpage = NULL;
2126 khugepaged_alloc_sleep();
2127 } else if (*hpage) {
2128 put_page(*hpage);
2129 *hpage = NULL;
2130 }
2131
2132 return true;
2133 }
2134
2135 static struct page *
2136 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2137 unsigned long address, int node)
2138 {
2139 VM_BUG_ON_PAGE(*hpage, *hpage);
2140
2141 /*
2142 * Before allocating the hugepage, release the mmap_sem read lock.
2143 * The allocation can take potentially a long time if it involves
2144 * sync compaction, and we do not need to hold the mmap_sem during
2145 * that. We will recheck the vma after taking it again in write mode.
2146 */
2147 up_read(&mm->mmap_sem);
2148
2149 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2150 if (unlikely(!*hpage)) {
2151 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2152 *hpage = ERR_PTR(-ENOMEM);
2153 return NULL;
2154 }
2155
2156 prep_transhuge_page(*hpage);
2157 count_vm_event(THP_COLLAPSE_ALLOC);
2158 return *hpage;
2159 }
2160 #else
2161 static int khugepaged_find_target_node(void)
2162 {
2163 return 0;
2164 }
2165
2166 static inline struct page *alloc_hugepage(int defrag)
2167 {
2168 struct page *page;
2169
2170 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2171 if (page)
2172 prep_transhuge_page(page);
2173 return page;
2174 }
2175
2176 static struct page *khugepaged_alloc_hugepage(bool *wait)
2177 {
2178 struct page *hpage;
2179
2180 do {
2181 hpage = alloc_hugepage(khugepaged_defrag());
2182 if (!hpage) {
2183 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2184 if (!*wait)
2185 return NULL;
2186
2187 *wait = false;
2188 khugepaged_alloc_sleep();
2189 } else
2190 count_vm_event(THP_COLLAPSE_ALLOC);
2191 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2192
2193 return hpage;
2194 }
2195
2196 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2197 {
2198 if (!*hpage)
2199 *hpage = khugepaged_alloc_hugepage(wait);
2200
2201 if (unlikely(!*hpage))
2202 return false;
2203
2204 return true;
2205 }
2206
2207 static struct page *
2208 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2209 unsigned long address, int node)
2210 {
2211 up_read(&mm->mmap_sem);
2212 VM_BUG_ON(!*hpage);
2213
2214 return *hpage;
2215 }
2216 #endif
2217
2218 static bool hugepage_vma_check(struct vm_area_struct *vma)
2219 {
2220 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2221 (vma->vm_flags & VM_NOHUGEPAGE))
2222 return false;
2223 if (!vma->anon_vma || vma->vm_ops)
2224 return false;
2225 if (is_vma_temporary_stack(vma))
2226 return false;
2227 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2228 return true;
2229 }
2230
2231 static void collapse_huge_page(struct mm_struct *mm,
2232 unsigned long address,
2233 struct page **hpage,
2234 struct vm_area_struct *vma,
2235 int node)
2236 {
2237 pmd_t *pmd, _pmd;
2238 pte_t *pte;
2239 pgtable_t pgtable;
2240 struct page *new_page;
2241 spinlock_t *pmd_ptl, *pte_ptl;
2242 int isolated, result = 0;
2243 unsigned long hstart, hend;
2244 struct mem_cgroup *memcg;
2245 unsigned long mmun_start; /* For mmu_notifiers */
2246 unsigned long mmun_end; /* For mmu_notifiers */
2247 gfp_t gfp;
2248
2249 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2250
2251 /* Only allocate from the target node */
2252 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2253 __GFP_THISNODE;
2254
2255 /* release the mmap_sem read lock. */
2256 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2257 if (!new_page) {
2258 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2259 goto out_nolock;
2260 }
2261
2262 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2263 result = SCAN_CGROUP_CHARGE_FAIL;
2264 goto out_nolock;
2265 }
2266
2267 /*
2268 * Prevent all access to pagetables with the exception of
2269 * gup_fast later hanlded by the ptep_clear_flush and the VM
2270 * handled by the anon_vma lock + PG_lock.
2271 */
2272 down_write(&mm->mmap_sem);
2273 if (unlikely(khugepaged_test_exit(mm))) {
2274 result = SCAN_ANY_PROCESS;
2275 goto out;
2276 }
2277
2278 vma = find_vma(mm, address);
2279 if (!vma) {
2280 result = SCAN_VMA_NULL;
2281 goto out;
2282 }
2283 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2284 hend = vma->vm_end & HPAGE_PMD_MASK;
2285 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2286 result = SCAN_ADDRESS_RANGE;
2287 goto out;
2288 }
2289 if (!hugepage_vma_check(vma)) {
2290 result = SCAN_VMA_CHECK;
2291 goto out;
2292 }
2293 pmd = mm_find_pmd(mm, address);
2294 if (!pmd) {
2295 result = SCAN_PMD_NULL;
2296 goto out;
2297 }
2298
2299 anon_vma_lock_write(vma->anon_vma);
2300
2301 pte = pte_offset_map(pmd, address);
2302 pte_ptl = pte_lockptr(mm, pmd);
2303
2304 mmun_start = address;
2305 mmun_end = address + HPAGE_PMD_SIZE;
2306 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2307 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2308 /*
2309 * After this gup_fast can't run anymore. This also removes
2310 * any huge TLB entry from the CPU so we won't allow
2311 * huge and small TLB entries for the same virtual address
2312 * to avoid the risk of CPU bugs in that area.
2313 */
2314 _pmd = pmdp_collapse_flush(vma, address, pmd);
2315 spin_unlock(pmd_ptl);
2316 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2317
2318 spin_lock(pte_ptl);
2319 isolated = __collapse_huge_page_isolate(vma, address, pte);
2320 spin_unlock(pte_ptl);
2321
2322 if (unlikely(!isolated)) {
2323 pte_unmap(pte);
2324 spin_lock(pmd_ptl);
2325 BUG_ON(!pmd_none(*pmd));
2326 /*
2327 * We can only use set_pmd_at when establishing
2328 * hugepmds and never for establishing regular pmds that
2329 * points to regular pagetables. Use pmd_populate for that
2330 */
2331 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2332 spin_unlock(pmd_ptl);
2333 anon_vma_unlock_write(vma->anon_vma);
2334 result = SCAN_FAIL;
2335 goto out;
2336 }
2337
2338 /*
2339 * All pages are isolated and locked so anon_vma rmap
2340 * can't run anymore.
2341 */
2342 anon_vma_unlock_write(vma->anon_vma);
2343
2344 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2345 pte_unmap(pte);
2346 __SetPageUptodate(new_page);
2347 pgtable = pmd_pgtable(_pmd);
2348
2349 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2350 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2351
2352 /*
2353 * spin_lock() below is not the equivalent of smp_wmb(), so
2354 * this is needed to avoid the copy_huge_page writes to become
2355 * visible after the set_pmd_at() write.
2356 */
2357 smp_wmb();
2358
2359 spin_lock(pmd_ptl);
2360 BUG_ON(!pmd_none(*pmd));
2361 page_add_new_anon_rmap(new_page, vma, address, true);
2362 mem_cgroup_commit_charge(new_page, memcg, false, true);
2363 lru_cache_add_active_or_unevictable(new_page, vma);
2364 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2365 set_pmd_at(mm, address, pmd, _pmd);
2366 update_mmu_cache_pmd(vma, address, pmd);
2367 spin_unlock(pmd_ptl);
2368
2369 *hpage = NULL;
2370
2371 khugepaged_pages_collapsed++;
2372 result = SCAN_SUCCEED;
2373 out_up_write:
2374 up_write(&mm->mmap_sem);
2375 trace_mm_collapse_huge_page(mm, isolated, result);
2376 return;
2377
2378 out_nolock:
2379 trace_mm_collapse_huge_page(mm, isolated, result);
2380 return;
2381 out:
2382 mem_cgroup_cancel_charge(new_page, memcg, true);
2383 goto out_up_write;
2384 }
2385
2386 static int khugepaged_scan_pmd(struct mm_struct *mm,
2387 struct vm_area_struct *vma,
2388 unsigned long address,
2389 struct page **hpage)
2390 {
2391 pmd_t *pmd;
2392 pte_t *pte, *_pte;
2393 int ret = 0, none_or_zero = 0, result = 0;
2394 struct page *page = NULL;
2395 unsigned long _address;
2396 spinlock_t *ptl;
2397 int node = NUMA_NO_NODE;
2398 bool writable = false, referenced = false;
2399
2400 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2401
2402 pmd = mm_find_pmd(mm, address);
2403 if (!pmd) {
2404 result = SCAN_PMD_NULL;
2405 goto out;
2406 }
2407
2408 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2409 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2410 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2411 _pte++, _address += PAGE_SIZE) {
2412 pte_t pteval = *_pte;
2413 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2414 if (!userfaultfd_armed(vma) &&
2415 ++none_or_zero <= khugepaged_max_ptes_none) {
2416 continue;
2417 } else {
2418 result = SCAN_EXCEED_NONE_PTE;
2419 goto out_unmap;
2420 }
2421 }
2422 if (!pte_present(pteval)) {
2423 result = SCAN_PTE_NON_PRESENT;
2424 goto out_unmap;
2425 }
2426 if (pte_write(pteval))
2427 writable = true;
2428
2429 page = vm_normal_page(vma, _address, pteval);
2430 if (unlikely(!page)) {
2431 result = SCAN_PAGE_NULL;
2432 goto out_unmap;
2433 }
2434
2435 /* TODO: teach khugepaged to collapse THP mapped with pte */
2436 if (PageCompound(page)) {
2437 result = SCAN_PAGE_COMPOUND;
2438 goto out_unmap;
2439 }
2440
2441 /*
2442 * Record which node the original page is from and save this
2443 * information to khugepaged_node_load[].
2444 * Khupaged will allocate hugepage from the node has the max
2445 * hit record.
2446 */
2447 node = page_to_nid(page);
2448 if (khugepaged_scan_abort(node)) {
2449 result = SCAN_SCAN_ABORT;
2450 goto out_unmap;
2451 }
2452 khugepaged_node_load[node]++;
2453 if (!PageLRU(page)) {
2454 result = SCAN_SCAN_ABORT;
2455 goto out_unmap;
2456 }
2457 if (PageLocked(page)) {
2458 result = SCAN_PAGE_LOCK;
2459 goto out_unmap;
2460 }
2461 if (!PageAnon(page)) {
2462 result = SCAN_PAGE_ANON;
2463 goto out_unmap;
2464 }
2465
2466 /*
2467 * cannot use mapcount: can't collapse if there's a gup pin.
2468 * The page must only be referenced by the scanned process
2469 * and page swap cache.
2470 */
2471 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2472 result = SCAN_PAGE_COUNT;
2473 goto out_unmap;
2474 }
2475 if (pte_young(pteval) ||
2476 page_is_young(page) || PageReferenced(page) ||
2477 mmu_notifier_test_young(vma->vm_mm, address))
2478 referenced = true;
2479 }
2480 if (writable) {
2481 if (referenced) {
2482 result = SCAN_SUCCEED;
2483 ret = 1;
2484 } else {
2485 result = SCAN_NO_REFERENCED_PAGE;
2486 }
2487 } else {
2488 result = SCAN_PAGE_RO;
2489 }
2490 out_unmap:
2491 pte_unmap_unlock(pte, ptl);
2492 if (ret) {
2493 node = khugepaged_find_target_node();
2494 /* collapse_huge_page will return with the mmap_sem released */
2495 collapse_huge_page(mm, address, hpage, vma, node);
2496 }
2497 out:
2498 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2499 none_or_zero, result);
2500 return ret;
2501 }
2502
2503 static void collect_mm_slot(struct mm_slot *mm_slot)
2504 {
2505 struct mm_struct *mm = mm_slot->mm;
2506
2507 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2508
2509 if (khugepaged_test_exit(mm)) {
2510 /* free mm_slot */
2511 hash_del(&mm_slot->hash);
2512 list_del(&mm_slot->mm_node);
2513
2514 /*
2515 * Not strictly needed because the mm exited already.
2516 *
2517 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2518 */
2519
2520 /* khugepaged_mm_lock actually not necessary for the below */
2521 free_mm_slot(mm_slot);
2522 mmdrop(mm);
2523 }
2524 }
2525
2526 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2527 struct page **hpage)
2528 __releases(&khugepaged_mm_lock)
2529 __acquires(&khugepaged_mm_lock)
2530 {
2531 struct mm_slot *mm_slot;
2532 struct mm_struct *mm;
2533 struct vm_area_struct *vma;
2534 int progress = 0;
2535
2536 VM_BUG_ON(!pages);
2537 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2538
2539 if (khugepaged_scan.mm_slot)
2540 mm_slot = khugepaged_scan.mm_slot;
2541 else {
2542 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2543 struct mm_slot, mm_node);
2544 khugepaged_scan.address = 0;
2545 khugepaged_scan.mm_slot = mm_slot;
2546 }
2547 spin_unlock(&khugepaged_mm_lock);
2548
2549 mm = mm_slot->mm;
2550 down_read(&mm->mmap_sem);
2551 if (unlikely(khugepaged_test_exit(mm)))
2552 vma = NULL;
2553 else
2554 vma = find_vma(mm, khugepaged_scan.address);
2555
2556 progress++;
2557 for (; vma; vma = vma->vm_next) {
2558 unsigned long hstart, hend;
2559
2560 cond_resched();
2561 if (unlikely(khugepaged_test_exit(mm))) {
2562 progress++;
2563 break;
2564 }
2565 if (!hugepage_vma_check(vma)) {
2566 skip:
2567 progress++;
2568 continue;
2569 }
2570 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2571 hend = vma->vm_end & HPAGE_PMD_MASK;
2572 if (hstart >= hend)
2573 goto skip;
2574 if (khugepaged_scan.address > hend)
2575 goto skip;
2576 if (khugepaged_scan.address < hstart)
2577 khugepaged_scan.address = hstart;
2578 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2579
2580 while (khugepaged_scan.address < hend) {
2581 int ret;
2582 cond_resched();
2583 if (unlikely(khugepaged_test_exit(mm)))
2584 goto breakouterloop;
2585
2586 VM_BUG_ON(khugepaged_scan.address < hstart ||
2587 khugepaged_scan.address + HPAGE_PMD_SIZE >
2588 hend);
2589 ret = khugepaged_scan_pmd(mm, vma,
2590 khugepaged_scan.address,
2591 hpage);
2592 /* move to next address */
2593 khugepaged_scan.address += HPAGE_PMD_SIZE;
2594 progress += HPAGE_PMD_NR;
2595 if (ret)
2596 /* we released mmap_sem so break loop */
2597 goto breakouterloop_mmap_sem;
2598 if (progress >= pages)
2599 goto breakouterloop;
2600 }
2601 }
2602 breakouterloop:
2603 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2604 breakouterloop_mmap_sem:
2605
2606 spin_lock(&khugepaged_mm_lock);
2607 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2608 /*
2609 * Release the current mm_slot if this mm is about to die, or
2610 * if we scanned all vmas of this mm.
2611 */
2612 if (khugepaged_test_exit(mm) || !vma) {
2613 /*
2614 * Make sure that if mm_users is reaching zero while
2615 * khugepaged runs here, khugepaged_exit will find
2616 * mm_slot not pointing to the exiting mm.
2617 */
2618 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2619 khugepaged_scan.mm_slot = list_entry(
2620 mm_slot->mm_node.next,
2621 struct mm_slot, mm_node);
2622 khugepaged_scan.address = 0;
2623 } else {
2624 khugepaged_scan.mm_slot = NULL;
2625 khugepaged_full_scans++;
2626 }
2627
2628 collect_mm_slot(mm_slot);
2629 }
2630
2631 return progress;
2632 }
2633
2634 static int khugepaged_has_work(void)
2635 {
2636 return !list_empty(&khugepaged_scan.mm_head) &&
2637 khugepaged_enabled();
2638 }
2639
2640 static int khugepaged_wait_event(void)
2641 {
2642 return !list_empty(&khugepaged_scan.mm_head) ||
2643 kthread_should_stop();
2644 }
2645
2646 static void khugepaged_do_scan(void)
2647 {
2648 struct page *hpage = NULL;
2649 unsigned int progress = 0, pass_through_head = 0;
2650 unsigned int pages = khugepaged_pages_to_scan;
2651 bool wait = true;
2652
2653 barrier(); /* write khugepaged_pages_to_scan to local stack */
2654
2655 while (progress < pages) {
2656 if (!khugepaged_prealloc_page(&hpage, &wait))
2657 break;
2658
2659 cond_resched();
2660
2661 if (unlikely(kthread_should_stop() || try_to_freeze()))
2662 break;
2663
2664 spin_lock(&khugepaged_mm_lock);
2665 if (!khugepaged_scan.mm_slot)
2666 pass_through_head++;
2667 if (khugepaged_has_work() &&
2668 pass_through_head < 2)
2669 progress += khugepaged_scan_mm_slot(pages - progress,
2670 &hpage);
2671 else
2672 progress = pages;
2673 spin_unlock(&khugepaged_mm_lock);
2674 }
2675
2676 if (!IS_ERR_OR_NULL(hpage))
2677 put_page(hpage);
2678 }
2679
2680 static void khugepaged_wait_work(void)
2681 {
2682 if (khugepaged_has_work()) {
2683 if (!khugepaged_scan_sleep_millisecs)
2684 return;
2685
2686 wait_event_freezable_timeout(khugepaged_wait,
2687 kthread_should_stop(),
2688 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2689 return;
2690 }
2691
2692 if (khugepaged_enabled())
2693 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2694 }
2695
2696 static int khugepaged(void *none)
2697 {
2698 struct mm_slot *mm_slot;
2699
2700 set_freezable();
2701 set_user_nice(current, MAX_NICE);
2702
2703 while (!kthread_should_stop()) {
2704 khugepaged_do_scan();
2705 khugepaged_wait_work();
2706 }
2707
2708 spin_lock(&khugepaged_mm_lock);
2709 mm_slot = khugepaged_scan.mm_slot;
2710 khugepaged_scan.mm_slot = NULL;
2711 if (mm_slot)
2712 collect_mm_slot(mm_slot);
2713 spin_unlock(&khugepaged_mm_lock);
2714 return 0;
2715 }
2716
2717 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2718 unsigned long haddr, pmd_t *pmd)
2719 {
2720 struct mm_struct *mm = vma->vm_mm;
2721 pgtable_t pgtable;
2722 pmd_t _pmd;
2723 int i;
2724
2725 /* leave pmd empty until pte is filled */
2726 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2727
2728 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2729 pmd_populate(mm, &_pmd, pgtable);
2730
2731 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2732 pte_t *pte, entry;
2733 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2734 entry = pte_mkspecial(entry);
2735 pte = pte_offset_map(&_pmd, haddr);
2736 VM_BUG_ON(!pte_none(*pte));
2737 set_pte_at(mm, haddr, pte, entry);
2738 pte_unmap(pte);
2739 }
2740 smp_wmb(); /* make pte visible before pmd */
2741 pmd_populate(mm, pmd, pgtable);
2742 put_huge_zero_page();
2743 }
2744
2745 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2746 unsigned long haddr, bool freeze)
2747 {
2748 struct mm_struct *mm = vma->vm_mm;
2749 struct page *page;
2750 pgtable_t pgtable;
2751 pmd_t _pmd;
2752 bool young, write;
2753 int i;
2754
2755 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2756 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2757 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2758 VM_BUG_ON(!pmd_trans_huge(*pmd));
2759
2760 count_vm_event(THP_SPLIT_PMD);
2761
2762 if (vma_is_dax(vma)) {
2763 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2764 if (is_huge_zero_pmd(_pmd))
2765 put_huge_zero_page();
2766 return;
2767 } else if (is_huge_zero_pmd(*pmd)) {
2768 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2769 }
2770
2771 page = pmd_page(*pmd);
2772 VM_BUG_ON_PAGE(!page_count(page), page);
2773 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2774 write = pmd_write(*pmd);
2775 young = pmd_young(*pmd);
2776
2777 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2778 pmd_populate(mm, &_pmd, pgtable);
2779
2780 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2781 pte_t entry, *pte;
2782 /*
2783 * Note that NUMA hinting access restrictions are not
2784 * transferred to avoid any possibility of altering
2785 * permissions across VMAs.
2786 */
2787 if (freeze) {
2788 swp_entry_t swp_entry;
2789 swp_entry = make_migration_entry(page + i, write);
2790 entry = swp_entry_to_pte(swp_entry);
2791 } else {
2792 entry = mk_pte(page + i, vma->vm_page_prot);
2793 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2794 if (!write)
2795 entry = pte_wrprotect(entry);
2796 if (!young)
2797 entry = pte_mkold(entry);
2798 }
2799 pte = pte_offset_map(&_pmd, haddr);
2800 BUG_ON(!pte_none(*pte));
2801 set_pte_at(mm, haddr, pte, entry);
2802 atomic_inc(&page[i]._mapcount);
2803 pte_unmap(pte);
2804 }
2805
2806 /*
2807 * Set PG_double_map before dropping compound_mapcount to avoid
2808 * false-negative page_mapped().
2809 */
2810 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2811 for (i = 0; i < HPAGE_PMD_NR; i++)
2812 atomic_inc(&page[i]._mapcount);
2813 }
2814
2815 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2816 /* Last compound_mapcount is gone. */
2817 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2818 if (TestClearPageDoubleMap(page)) {
2819 /* No need in mapcount reference anymore */
2820 for (i = 0; i < HPAGE_PMD_NR; i++)
2821 atomic_dec(&page[i]._mapcount);
2822 }
2823 }
2824
2825 smp_wmb(); /* make pte visible before pmd */
2826 /*
2827 * Up to this point the pmd is present and huge and userland has the
2828 * whole access to the hugepage during the split (which happens in
2829 * place). If we overwrite the pmd with the not-huge version pointing
2830 * to the pte here (which of course we could if all CPUs were bug
2831 * free), userland could trigger a small page size TLB miss on the
2832 * small sized TLB while the hugepage TLB entry is still established in
2833 * the huge TLB. Some CPU doesn't like that.
2834 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2835 * 383 on page 93. Intel should be safe but is also warns that it's
2836 * only safe if the permission and cache attributes of the two entries
2837 * loaded in the two TLB is identical (which should be the case here).
2838 * But it is generally safer to never allow small and huge TLB entries
2839 * for the same virtual address to be loaded simultaneously. So instead
2840 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2841 * current pmd notpresent (atomically because here the pmd_trans_huge
2842 * and pmd_trans_splitting must remain set at all times on the pmd
2843 * until the split is complete for this pmd), then we flush the SMP TLB
2844 * and finally we write the non-huge version of the pmd entry with
2845 * pmd_populate.
2846 */
2847 pmdp_invalidate(vma, haddr, pmd);
2848 pmd_populate(mm, pmd, pgtable);
2849
2850 if (freeze) {
2851 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852 page_remove_rmap(page + i, false);
2853 put_page(page + i);
2854 }
2855 }
2856 }
2857
2858 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2859 unsigned long address)
2860 {
2861 spinlock_t *ptl;
2862 struct mm_struct *mm = vma->vm_mm;
2863 struct page *page = NULL;
2864 unsigned long haddr = address & HPAGE_PMD_MASK;
2865
2866 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2867 ptl = pmd_lock(mm, pmd);
2868 if (unlikely(!pmd_trans_huge(*pmd)))
2869 goto out;
2870 page = pmd_page(*pmd);
2871 __split_huge_pmd_locked(vma, pmd, haddr, false);
2872 if (PageMlocked(page))
2873 get_page(page);
2874 else
2875 page = NULL;
2876 out:
2877 spin_unlock(ptl);
2878 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2879 if (page) {
2880 lock_page(page);
2881 munlock_vma_page(page);
2882 unlock_page(page);
2883 put_page(page);
2884 }
2885 }
2886
2887 static void split_huge_pmd_address(struct vm_area_struct *vma,
2888 unsigned long address)
2889 {
2890 pgd_t *pgd;
2891 pud_t *pud;
2892 pmd_t *pmd;
2893
2894 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2895
2896 pgd = pgd_offset(vma->vm_mm, address);
2897 if (!pgd_present(*pgd))
2898 return;
2899
2900 pud = pud_offset(pgd, address);
2901 if (!pud_present(*pud))
2902 return;
2903
2904 pmd = pmd_offset(pud, address);
2905 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
2906 return;
2907 /*
2908 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2909 * materialize from under us.
2910 */
2911 split_huge_pmd(vma, pmd, address);
2912 }
2913
2914 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2915 unsigned long start,
2916 unsigned long end,
2917 long adjust_next)
2918 {
2919 /*
2920 * If the new start address isn't hpage aligned and it could
2921 * previously contain an hugepage: check if we need to split
2922 * an huge pmd.
2923 */
2924 if (start & ~HPAGE_PMD_MASK &&
2925 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2926 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2927 split_huge_pmd_address(vma, start);
2928
2929 /*
2930 * If the new end address isn't hpage aligned and it could
2931 * previously contain an hugepage: check if we need to split
2932 * an huge pmd.
2933 */
2934 if (end & ~HPAGE_PMD_MASK &&
2935 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2936 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2937 split_huge_pmd_address(vma, end);
2938
2939 /*
2940 * If we're also updating the vma->vm_next->vm_start, if the new
2941 * vm_next->vm_start isn't page aligned and it could previously
2942 * contain an hugepage: check if we need to split an huge pmd.
2943 */
2944 if (adjust_next > 0) {
2945 struct vm_area_struct *next = vma->vm_next;
2946 unsigned long nstart = next->vm_start;
2947 nstart += adjust_next << PAGE_SHIFT;
2948 if (nstart & ~HPAGE_PMD_MASK &&
2949 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2950 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2951 split_huge_pmd_address(next, nstart);
2952 }
2953 }
2954
2955 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
2956 unsigned long address)
2957 {
2958 spinlock_t *ptl;
2959 pgd_t *pgd;
2960 pud_t *pud;
2961 pmd_t *pmd;
2962 pte_t *pte;
2963 int i, nr = HPAGE_PMD_NR;
2964
2965 /* Skip pages which doesn't belong to the VMA */
2966 if (address < vma->vm_start) {
2967 int off = (vma->vm_start - address) >> PAGE_SHIFT;
2968 page += off;
2969 nr -= off;
2970 address = vma->vm_start;
2971 }
2972
2973 pgd = pgd_offset(vma->vm_mm, address);
2974 if (!pgd_present(*pgd))
2975 return;
2976 pud = pud_offset(pgd, address);
2977 if (!pud_present(*pud))
2978 return;
2979 pmd = pmd_offset(pud, address);
2980 ptl = pmd_lock(vma->vm_mm, pmd);
2981 if (!pmd_present(*pmd)) {
2982 spin_unlock(ptl);
2983 return;
2984 }
2985 if (pmd_trans_huge(*pmd)) {
2986 if (page == pmd_page(*pmd))
2987 __split_huge_pmd_locked(vma, pmd, address, true);
2988 spin_unlock(ptl);
2989 return;
2990 }
2991 spin_unlock(ptl);
2992
2993 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
2994 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++) {
2995 pte_t entry, swp_pte;
2996 swp_entry_t swp_entry;
2997
2998 if (!pte_present(pte[i]))
2999 continue;
3000 if (page_to_pfn(page) != pte_pfn(pte[i]))
3001 continue;
3002 flush_cache_page(vma, address, page_to_pfn(page));
3003 entry = ptep_clear_flush(vma, address, pte + i);
3004 swp_entry = make_migration_entry(page, pte_write(entry));
3005 swp_pte = swp_entry_to_pte(swp_entry);
3006 if (pte_soft_dirty(entry))
3007 swp_pte = pte_swp_mksoft_dirty(swp_pte);
3008 set_pte_at(vma->vm_mm, address, pte + i, swp_pte);
3009 page_remove_rmap(page, false);
3010 put_page(page);
3011 }
3012 pte_unmap_unlock(pte, ptl);
3013 }
3014
3015 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3016 {
3017 struct anon_vma_chain *avc;
3018 pgoff_t pgoff = page_to_pgoff(page);
3019
3020 VM_BUG_ON_PAGE(!PageHead(page), page);
3021
3022 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3023 pgoff + HPAGE_PMD_NR - 1) {
3024 unsigned long haddr;
3025
3026 haddr = __vma_address(page, avc->vma) & HPAGE_PMD_MASK;
3027 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3028 haddr, haddr + HPAGE_PMD_SIZE);
3029 freeze_page_vma(avc->vma, page, haddr);
3030 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3031 haddr, haddr + HPAGE_PMD_SIZE);
3032 }
3033 }
3034
3035 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3036 unsigned long address)
3037 {
3038 spinlock_t *ptl;
3039 pmd_t *pmd;
3040 pte_t *pte, entry;
3041 swp_entry_t swp_entry;
3042 int i, nr = HPAGE_PMD_NR;
3043
3044 /* Skip pages which doesn't belong to the VMA */
3045 if (address < vma->vm_start) {
3046 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3047 page += off;
3048 nr -= off;
3049 address = vma->vm_start;
3050 }
3051
3052 pmd = mm_find_pmd(vma->vm_mm, address);
3053 if (!pmd)
3054 return;
3055 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3056 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++) {
3057 if (!is_swap_pte(pte[i]))
3058 continue;
3059
3060 swp_entry = pte_to_swp_entry(pte[i]);
3061 if (!is_migration_entry(swp_entry))
3062 continue;
3063 if (migration_entry_to_page(swp_entry) != page)
3064 continue;
3065
3066 get_page(page);
3067 page_add_anon_rmap(page, vma, address, false);
3068
3069 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3070 entry = pte_mkdirty(entry);
3071 if (is_write_migration_entry(swp_entry))
3072 entry = maybe_mkwrite(entry, vma);
3073
3074 flush_dcache_page(page);
3075 set_pte_at(vma->vm_mm, address, pte + i, entry);
3076
3077 /* No need to invalidate - it was non-present before */
3078 update_mmu_cache(vma, address, pte + i);
3079 }
3080 pte_unmap_unlock(pte, ptl);
3081 }
3082
3083 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3084 {
3085 struct anon_vma_chain *avc;
3086 pgoff_t pgoff = page_to_pgoff(page);
3087
3088 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3089 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3090 unsigned long address = __vma_address(page, avc->vma);
3091
3092 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3093 address, address + HPAGE_PMD_SIZE);
3094 unfreeze_page_vma(avc->vma, page, address);
3095 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3096 address, address + HPAGE_PMD_SIZE);
3097 }
3098 }
3099
3100 static int total_mapcount(struct page *page)
3101 {
3102 int i, ret;
3103
3104 ret = compound_mapcount(page);
3105 for (i = 0; i < HPAGE_PMD_NR; i++)
3106 ret += atomic_read(&page[i]._mapcount) + 1;
3107
3108 if (PageDoubleMap(page))
3109 ret -= HPAGE_PMD_NR;
3110
3111 return ret;
3112 }
3113
3114 static int __split_huge_page_tail(struct page *head, int tail,
3115 struct lruvec *lruvec, struct list_head *list)
3116 {
3117 int mapcount;
3118 struct page *page_tail = head + tail;
3119
3120 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3121 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3122
3123 /*
3124 * tail_page->_count is zero and not changing from under us. But
3125 * get_page_unless_zero() may be running from under us on the
3126 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3127 * would then run atomic_set() concurrently with
3128 * get_page_unless_zero(), and atomic_set() is implemented in C not
3129 * using locked ops. spin_unlock on x86 sometime uses locked ops
3130 * because of PPro errata 66, 92, so unless somebody can guarantee
3131 * atomic_set() here would be safe on all archs (and not only on x86),
3132 * it's safer to use atomic_add().
3133 */
3134 atomic_add(mapcount + 1, &page_tail->_count);
3135
3136
3137 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3138 page_tail->flags |= (head->flags &
3139 ((1L << PG_referenced) |
3140 (1L << PG_swapbacked) |
3141 (1L << PG_mlocked) |
3142 (1L << PG_uptodate) |
3143 (1L << PG_active) |
3144 (1L << PG_locked) |
3145 (1L << PG_unevictable)));
3146 page_tail->flags |= (1L << PG_dirty);
3147
3148 /*
3149 * After clearing PageTail the gup refcount can be released.
3150 * Page flags also must be visible before we make the page non-compound.
3151 */
3152 smp_wmb();
3153
3154 clear_compound_head(page_tail);
3155
3156 if (page_is_young(head))
3157 set_page_young(page_tail);
3158 if (page_is_idle(head))
3159 set_page_idle(page_tail);
3160
3161 /* ->mapping in first tail page is compound_mapcount */
3162 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3163 page_tail);
3164 page_tail->mapping = head->mapping;
3165
3166 page_tail->index = head->index + tail;
3167 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3168 lru_add_page_tail(head, page_tail, lruvec, list);
3169
3170 return mapcount;
3171 }
3172
3173 static void __split_huge_page(struct page *page, struct list_head *list)
3174 {
3175 struct page *head = compound_head(page);
3176 struct zone *zone = page_zone(head);
3177 struct lruvec *lruvec;
3178 int i, tail_mapcount;
3179
3180 /* prevent PageLRU to go away from under us, and freeze lru stats */
3181 spin_lock_irq(&zone->lru_lock);
3182 lruvec = mem_cgroup_page_lruvec(head, zone);
3183
3184 /* complete memcg works before add pages to LRU */
3185 mem_cgroup_split_huge_fixup(head);
3186
3187 tail_mapcount = 0;
3188 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3189 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3190 atomic_sub(tail_mapcount, &head->_count);
3191
3192 ClearPageCompound(head);
3193 spin_unlock_irq(&zone->lru_lock);
3194
3195 unfreeze_page(page_anon_vma(head), head);
3196
3197 for (i = 0; i < HPAGE_PMD_NR; i++) {
3198 struct page *subpage = head + i;
3199 if (subpage == page)
3200 continue;
3201 unlock_page(subpage);
3202
3203 /*
3204 * Subpages may be freed if there wasn't any mapping
3205 * like if add_to_swap() is running on a lru page that
3206 * had its mapping zapped. And freeing these pages
3207 * requires taking the lru_lock so we do the put_page
3208 * of the tail pages after the split is complete.
3209 */
3210 put_page(subpage);
3211 }
3212 }
3213
3214 /*
3215 * This function splits huge page into normal pages. @page can point to any
3216 * subpage of huge page to split. Split doesn't change the position of @page.
3217 *
3218 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3219 * The huge page must be locked.
3220 *
3221 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3222 *
3223 * Both head page and tail pages will inherit mapping, flags, and so on from
3224 * the hugepage.
3225 *
3226 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3227 * they are not mapped.
3228 *
3229 * Returns 0 if the hugepage is split successfully.
3230 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3231 * us.
3232 */
3233 int split_huge_page_to_list(struct page *page, struct list_head *list)
3234 {
3235 struct page *head = compound_head(page);
3236 struct anon_vma *anon_vma;
3237 int count, mapcount, ret;
3238
3239 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3240 VM_BUG_ON_PAGE(!PageAnon(page), page);
3241 VM_BUG_ON_PAGE(!PageLocked(page), page);
3242 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3243 VM_BUG_ON_PAGE(!PageCompound(page), page);
3244
3245 /*
3246 * The caller does not necessarily hold an mmap_sem that would prevent
3247 * the anon_vma disappearing so we first we take a reference to it
3248 * and then lock the anon_vma for write. This is similar to
3249 * page_lock_anon_vma_read except the write lock is taken to serialise
3250 * against parallel split or collapse operations.
3251 */
3252 anon_vma = page_get_anon_vma(head);
3253 if (!anon_vma) {
3254 ret = -EBUSY;
3255 goto out;
3256 }
3257 anon_vma_lock_write(anon_vma);
3258
3259 /*
3260 * Racy check if we can split the page, before freeze_page() will
3261 * split PMDs
3262 */
3263 if (total_mapcount(head) != page_count(head) - 1) {
3264 ret = -EBUSY;
3265 goto out_unlock;
3266 }
3267
3268 freeze_page(anon_vma, head);
3269 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3270
3271 /* Prevent deferred_split_scan() touching ->_count */
3272 spin_lock(&split_queue_lock);
3273 count = page_count(head);
3274 mapcount = total_mapcount(head);
3275 if (mapcount == count - 1) {
3276 if (!list_empty(page_deferred_list(head))) {
3277 split_queue_len--;
3278 list_del(page_deferred_list(head));
3279 }
3280 spin_unlock(&split_queue_lock);
3281 __split_huge_page(page, list);
3282 ret = 0;
3283 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount > count - 1) {
3284 spin_unlock(&split_queue_lock);
3285 pr_alert("total_mapcount: %u, page_count(): %u\n",
3286 mapcount, count);
3287 if (PageTail(page))
3288 dump_page(head, NULL);
3289 dump_page(page, "total_mapcount(head) > page_count(head) - 1");
3290 BUG();
3291 } else {
3292 spin_unlock(&split_queue_lock);
3293 unfreeze_page(anon_vma, head);
3294 ret = -EBUSY;
3295 }
3296
3297 out_unlock:
3298 anon_vma_unlock_write(anon_vma);
3299 put_anon_vma(anon_vma);
3300 out:
3301 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3302 return ret;
3303 }
3304
3305 void free_transhuge_page(struct page *page)
3306 {
3307 unsigned long flags;
3308
3309 spin_lock_irqsave(&split_queue_lock, flags);
3310 if (!list_empty(page_deferred_list(page))) {
3311 split_queue_len--;
3312 list_del(page_deferred_list(page));
3313 }
3314 spin_unlock_irqrestore(&split_queue_lock, flags);
3315 free_compound_page(page);
3316 }
3317
3318 void deferred_split_huge_page(struct page *page)
3319 {
3320 unsigned long flags;
3321
3322 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3323
3324 spin_lock_irqsave(&split_queue_lock, flags);
3325 if (list_empty(page_deferred_list(page))) {
3326 list_add_tail(page_deferred_list(page), &split_queue);
3327 split_queue_len++;
3328 }
3329 spin_unlock_irqrestore(&split_queue_lock, flags);
3330 }
3331
3332 static unsigned long deferred_split_count(struct shrinker *shrink,
3333 struct shrink_control *sc)
3334 {
3335 /*
3336 * Split a page from split_queue will free up at least one page,
3337 * at most HPAGE_PMD_NR - 1. We don't track exact number.
3338 * Let's use HPAGE_PMD_NR / 2 as ballpark.
3339 */
3340 return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
3341 }
3342
3343 static unsigned long deferred_split_scan(struct shrinker *shrink,
3344 struct shrink_control *sc)
3345 {
3346 unsigned long flags;
3347 LIST_HEAD(list), *pos, *next;
3348 struct page *page;
3349 int split = 0;
3350
3351 spin_lock_irqsave(&split_queue_lock, flags);
3352 list_splice_init(&split_queue, &list);
3353
3354 /* Take pin on all head pages to avoid freeing them under us */
3355 list_for_each_safe(pos, next, &list) {
3356 page = list_entry((void *)pos, struct page, mapping);
3357 page = compound_head(page);
3358 /* race with put_compound_page() */
3359 if (!get_page_unless_zero(page)) {
3360 list_del_init(page_deferred_list(page));
3361 split_queue_len--;
3362 }
3363 }
3364 spin_unlock_irqrestore(&split_queue_lock, flags);
3365
3366 list_for_each_safe(pos, next, &list) {
3367 page = list_entry((void *)pos, struct page, mapping);
3368 lock_page(page);
3369 /* split_huge_page() removes page from list on success */
3370 if (!split_huge_page(page))
3371 split++;
3372 unlock_page(page);
3373 put_page(page);
3374 }
3375
3376 spin_lock_irqsave(&split_queue_lock, flags);
3377 list_splice_tail(&list, &split_queue);
3378 spin_unlock_irqrestore(&split_queue_lock, flags);
3379
3380 return split * HPAGE_PMD_NR / 2;
3381 }
3382
3383 static struct shrinker deferred_split_shrinker = {
3384 .count_objects = deferred_split_count,
3385 .scan_objects = deferred_split_scan,
3386 .seeks = DEFAULT_SEEKS,
3387 };
This page took 0.095792 seconds and 6 git commands to generate.