thp: copy_huge_pmd(): copy huge zero page
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <asm/tlb.h>
22 #include <asm/pgalloc.h>
23 #include "internal.h"
24
25 /*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
32 unsigned long transparent_hugepage_flags __read_mostly =
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
35 #endif
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38 #endif
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42 /* default scan 8*512 pte (or vmas) every 30 second */
43 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44 static unsigned int khugepaged_pages_collapsed;
45 static unsigned int khugepaged_full_scans;
46 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47 /* during fragmentation poll the hugepage allocator once every minute */
48 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49 static struct task_struct *khugepaged_thread __read_mostly;
50 static unsigned long huge_zero_pfn __read_mostly;
51 static DEFINE_MUTEX(khugepaged_mutex);
52 static DEFINE_SPINLOCK(khugepaged_mm_lock);
53 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54 /*
55 * default collapse hugepages if there is at least one pte mapped like
56 * it would have happened if the vma was large enough during page
57 * fault.
58 */
59 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61 static int khugepaged(void *none);
62 static int mm_slots_hash_init(void);
63 static int khugepaged_slab_init(void);
64 static void khugepaged_slab_free(void);
65
66 #define MM_SLOTS_HASH_HEADS 1024
67 static struct hlist_head *mm_slots_hash __read_mostly;
68 static struct kmem_cache *mm_slot_cache __read_mostly;
69
70 /**
71 * struct mm_slot - hash lookup from mm to mm_slot
72 * @hash: hash collision list
73 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74 * @mm: the mm that this information is valid for
75 */
76 struct mm_slot {
77 struct hlist_node hash;
78 struct list_head mm_node;
79 struct mm_struct *mm;
80 };
81
82 /**
83 * struct khugepaged_scan - cursor for scanning
84 * @mm_head: the head of the mm list to scan
85 * @mm_slot: the current mm_slot we are scanning
86 * @address: the next address inside that to be scanned
87 *
88 * There is only the one khugepaged_scan instance of this cursor structure.
89 */
90 struct khugepaged_scan {
91 struct list_head mm_head;
92 struct mm_slot *mm_slot;
93 unsigned long address;
94 };
95 static struct khugepaged_scan khugepaged_scan = {
96 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97 };
98
99
100 static int set_recommended_min_free_kbytes(void)
101 {
102 struct zone *zone;
103 int nr_zones = 0;
104 unsigned long recommended_min;
105 extern int min_free_kbytes;
106
107 if (!khugepaged_enabled())
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136
137 static int start_khugepaged(void)
138 {
139 int err = 0;
140 if (khugepaged_enabled()) {
141 if (!khugepaged_thread)
142 khugepaged_thread = kthread_run(khugepaged, NULL,
143 "khugepaged");
144 if (unlikely(IS_ERR(khugepaged_thread))) {
145 printk(KERN_ERR
146 "khugepaged: kthread_run(khugepaged) failed\n");
147 err = PTR_ERR(khugepaged_thread);
148 khugepaged_thread = NULL;
149 }
150
151 if (!list_empty(&khugepaged_scan.mm_head))
152 wake_up_interruptible(&khugepaged_wait);
153
154 set_recommended_min_free_kbytes();
155 } else if (khugepaged_thread) {
156 kthread_stop(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
159
160 return err;
161 }
162
163 static int __init init_huge_zero_page(void)
164 {
165 struct page *hpage;
166
167 hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
168 HPAGE_PMD_ORDER);
169 if (!hpage)
170 return -ENOMEM;
171
172 huge_zero_pfn = page_to_pfn(hpage);
173 return 0;
174 }
175
176 static inline bool is_huge_zero_pfn(unsigned long pfn)
177 {
178 return pfn == huge_zero_pfn;
179 }
180
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 {
183 return is_huge_zero_pfn(pmd_pfn(pmd));
184 }
185
186 #ifdef CONFIG_SYSFS
187
188 static ssize_t double_flag_show(struct kobject *kobj,
189 struct kobj_attribute *attr, char *buf,
190 enum transparent_hugepage_flag enabled,
191 enum transparent_hugepage_flag req_madv)
192 {
193 if (test_bit(enabled, &transparent_hugepage_flags)) {
194 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
195 return sprintf(buf, "[always] madvise never\n");
196 } else if (test_bit(req_madv, &transparent_hugepage_flags))
197 return sprintf(buf, "always [madvise] never\n");
198 else
199 return sprintf(buf, "always madvise [never]\n");
200 }
201 static ssize_t double_flag_store(struct kobject *kobj,
202 struct kobj_attribute *attr,
203 const char *buf, size_t count,
204 enum transparent_hugepage_flag enabled,
205 enum transparent_hugepage_flag req_madv)
206 {
207 if (!memcmp("always", buf,
208 min(sizeof("always")-1, count))) {
209 set_bit(enabled, &transparent_hugepage_flags);
210 clear_bit(req_madv, &transparent_hugepage_flags);
211 } else if (!memcmp("madvise", buf,
212 min(sizeof("madvise")-1, count))) {
213 clear_bit(enabled, &transparent_hugepage_flags);
214 set_bit(req_madv, &transparent_hugepage_flags);
215 } else if (!memcmp("never", buf,
216 min(sizeof("never")-1, count))) {
217 clear_bit(enabled, &transparent_hugepage_flags);
218 clear_bit(req_madv, &transparent_hugepage_flags);
219 } else
220 return -EINVAL;
221
222 return count;
223 }
224
225 static ssize_t enabled_show(struct kobject *kobj,
226 struct kobj_attribute *attr, char *buf)
227 {
228 return double_flag_show(kobj, attr, buf,
229 TRANSPARENT_HUGEPAGE_FLAG,
230 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
231 }
232 static ssize_t enabled_store(struct kobject *kobj,
233 struct kobj_attribute *attr,
234 const char *buf, size_t count)
235 {
236 ssize_t ret;
237
238 ret = double_flag_store(kobj, attr, buf, count,
239 TRANSPARENT_HUGEPAGE_FLAG,
240 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
241
242 if (ret > 0) {
243 int err;
244
245 mutex_lock(&khugepaged_mutex);
246 err = start_khugepaged();
247 mutex_unlock(&khugepaged_mutex);
248
249 if (err)
250 ret = err;
251 }
252
253 return ret;
254 }
255 static struct kobj_attribute enabled_attr =
256 __ATTR(enabled, 0644, enabled_show, enabled_store);
257
258 static ssize_t single_flag_show(struct kobject *kobj,
259 struct kobj_attribute *attr, char *buf,
260 enum transparent_hugepage_flag flag)
261 {
262 return sprintf(buf, "%d\n",
263 !!test_bit(flag, &transparent_hugepage_flags));
264 }
265
266 static ssize_t single_flag_store(struct kobject *kobj,
267 struct kobj_attribute *attr,
268 const char *buf, size_t count,
269 enum transparent_hugepage_flag flag)
270 {
271 unsigned long value;
272 int ret;
273
274 ret = kstrtoul(buf, 10, &value);
275 if (ret < 0)
276 return ret;
277 if (value > 1)
278 return -EINVAL;
279
280 if (value)
281 set_bit(flag, &transparent_hugepage_flags);
282 else
283 clear_bit(flag, &transparent_hugepage_flags);
284
285 return count;
286 }
287
288 /*
289 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
290 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
291 * memory just to allocate one more hugepage.
292 */
293 static ssize_t defrag_show(struct kobject *kobj,
294 struct kobj_attribute *attr, char *buf)
295 {
296 return double_flag_show(kobj, attr, buf,
297 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
298 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
299 }
300 static ssize_t defrag_store(struct kobject *kobj,
301 struct kobj_attribute *attr,
302 const char *buf, size_t count)
303 {
304 return double_flag_store(kobj, attr, buf, count,
305 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
306 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
307 }
308 static struct kobj_attribute defrag_attr =
309 __ATTR(defrag, 0644, defrag_show, defrag_store);
310
311 #ifdef CONFIG_DEBUG_VM
312 static ssize_t debug_cow_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
314 {
315 return single_flag_show(kobj, attr, buf,
316 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
317 }
318 static ssize_t debug_cow_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count)
321 {
322 return single_flag_store(kobj, attr, buf, count,
323 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
324 }
325 static struct kobj_attribute debug_cow_attr =
326 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
327 #endif /* CONFIG_DEBUG_VM */
328
329 static struct attribute *hugepage_attr[] = {
330 &enabled_attr.attr,
331 &defrag_attr.attr,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334 #endif
335 NULL,
336 };
337
338 static struct attribute_group hugepage_attr_group = {
339 .attrs = hugepage_attr,
340 };
341
342 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
343 struct kobj_attribute *attr,
344 char *buf)
345 {
346 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
347 }
348
349 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352 {
353 unsigned long msecs;
354 int err;
355
356 err = strict_strtoul(buf, 10, &msecs);
357 if (err || msecs > UINT_MAX)
358 return -EINVAL;
359
360 khugepaged_scan_sleep_millisecs = msecs;
361 wake_up_interruptible(&khugepaged_wait);
362
363 return count;
364 }
365 static struct kobj_attribute scan_sleep_millisecs_attr =
366 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
367 scan_sleep_millisecs_store);
368
369 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
370 struct kobj_attribute *attr,
371 char *buf)
372 {
373 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
374 }
375
376 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
377 struct kobj_attribute *attr,
378 const char *buf, size_t count)
379 {
380 unsigned long msecs;
381 int err;
382
383 err = strict_strtoul(buf, 10, &msecs);
384 if (err || msecs > UINT_MAX)
385 return -EINVAL;
386
387 khugepaged_alloc_sleep_millisecs = msecs;
388 wake_up_interruptible(&khugepaged_wait);
389
390 return count;
391 }
392 static struct kobj_attribute alloc_sleep_millisecs_attr =
393 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
394 alloc_sleep_millisecs_store);
395
396 static ssize_t pages_to_scan_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399 {
400 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
401 }
402 static ssize_t pages_to_scan_store(struct kobject *kobj,
403 struct kobj_attribute *attr,
404 const char *buf, size_t count)
405 {
406 int err;
407 unsigned long pages;
408
409 err = strict_strtoul(buf, 10, &pages);
410 if (err || !pages || pages > UINT_MAX)
411 return -EINVAL;
412
413 khugepaged_pages_to_scan = pages;
414
415 return count;
416 }
417 static struct kobj_attribute pages_to_scan_attr =
418 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
419 pages_to_scan_store);
420
421 static ssize_t pages_collapsed_show(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 char *buf)
424 {
425 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
426 }
427 static struct kobj_attribute pages_collapsed_attr =
428 __ATTR_RO(pages_collapsed);
429
430 static ssize_t full_scans_show(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 char *buf)
433 {
434 return sprintf(buf, "%u\n", khugepaged_full_scans);
435 }
436 static struct kobj_attribute full_scans_attr =
437 __ATTR_RO(full_scans);
438
439 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
440 struct kobj_attribute *attr, char *buf)
441 {
442 return single_flag_show(kobj, attr, buf,
443 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
444 }
445 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448 {
449 return single_flag_store(kobj, attr, buf, count,
450 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
451 }
452 static struct kobj_attribute khugepaged_defrag_attr =
453 __ATTR(defrag, 0644, khugepaged_defrag_show,
454 khugepaged_defrag_store);
455
456 /*
457 * max_ptes_none controls if khugepaged should collapse hugepages over
458 * any unmapped ptes in turn potentially increasing the memory
459 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
460 * reduce the available free memory in the system as it
461 * runs. Increasing max_ptes_none will instead potentially reduce the
462 * free memory in the system during the khugepaged scan.
463 */
464 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467 {
468 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
469 }
470 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 const char *buf, size_t count)
473 {
474 int err;
475 unsigned long max_ptes_none;
476
477 err = strict_strtoul(buf, 10, &max_ptes_none);
478 if (err || max_ptes_none > HPAGE_PMD_NR-1)
479 return -EINVAL;
480
481 khugepaged_max_ptes_none = max_ptes_none;
482
483 return count;
484 }
485 static struct kobj_attribute khugepaged_max_ptes_none_attr =
486 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
487 khugepaged_max_ptes_none_store);
488
489 static struct attribute *khugepaged_attr[] = {
490 &khugepaged_defrag_attr.attr,
491 &khugepaged_max_ptes_none_attr.attr,
492 &pages_to_scan_attr.attr,
493 &pages_collapsed_attr.attr,
494 &full_scans_attr.attr,
495 &scan_sleep_millisecs_attr.attr,
496 &alloc_sleep_millisecs_attr.attr,
497 NULL,
498 };
499
500 static struct attribute_group khugepaged_attr_group = {
501 .attrs = khugepaged_attr,
502 .name = "khugepaged",
503 };
504
505 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
506 {
507 int err;
508
509 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
510 if (unlikely(!*hugepage_kobj)) {
511 printk(KERN_ERR "hugepage: failed kobject create\n");
512 return -ENOMEM;
513 }
514
515 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
516 if (err) {
517 printk(KERN_ERR "hugepage: failed register hugeage group\n");
518 goto delete_obj;
519 }
520
521 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
522 if (err) {
523 printk(KERN_ERR "hugepage: failed register hugeage group\n");
524 goto remove_hp_group;
525 }
526
527 return 0;
528
529 remove_hp_group:
530 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
531 delete_obj:
532 kobject_put(*hugepage_kobj);
533 return err;
534 }
535
536 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
537 {
538 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
539 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
540 kobject_put(hugepage_kobj);
541 }
542 #else
543 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
544 {
545 return 0;
546 }
547
548 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
549 {
550 }
551 #endif /* CONFIG_SYSFS */
552
553 static int __init hugepage_init(void)
554 {
555 int err;
556 struct kobject *hugepage_kobj;
557
558 if (!has_transparent_hugepage()) {
559 transparent_hugepage_flags = 0;
560 return -EINVAL;
561 }
562
563 err = hugepage_init_sysfs(&hugepage_kobj);
564 if (err)
565 return err;
566
567 err = init_huge_zero_page();
568 if (err)
569 goto out;
570
571 err = khugepaged_slab_init();
572 if (err)
573 goto out;
574
575 err = mm_slots_hash_init();
576 if (err) {
577 khugepaged_slab_free();
578 goto out;
579 }
580
581 /*
582 * By default disable transparent hugepages on smaller systems,
583 * where the extra memory used could hurt more than TLB overhead
584 * is likely to save. The admin can still enable it through /sys.
585 */
586 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
587 transparent_hugepage_flags = 0;
588
589 start_khugepaged();
590
591 return 0;
592 out:
593 if (huge_zero_pfn)
594 __free_page(pfn_to_page(huge_zero_pfn));
595 hugepage_exit_sysfs(hugepage_kobj);
596 return err;
597 }
598 module_init(hugepage_init)
599
600 static int __init setup_transparent_hugepage(char *str)
601 {
602 int ret = 0;
603 if (!str)
604 goto out;
605 if (!strcmp(str, "always")) {
606 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
607 &transparent_hugepage_flags);
608 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
609 &transparent_hugepage_flags);
610 ret = 1;
611 } else if (!strcmp(str, "madvise")) {
612 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
613 &transparent_hugepage_flags);
614 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
615 &transparent_hugepage_flags);
616 ret = 1;
617 } else if (!strcmp(str, "never")) {
618 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
619 &transparent_hugepage_flags);
620 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
621 &transparent_hugepage_flags);
622 ret = 1;
623 }
624 out:
625 if (!ret)
626 printk(KERN_WARNING
627 "transparent_hugepage= cannot parse, ignored\n");
628 return ret;
629 }
630 __setup("transparent_hugepage=", setup_transparent_hugepage);
631
632 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
633 {
634 if (likely(vma->vm_flags & VM_WRITE))
635 pmd = pmd_mkwrite(pmd);
636 return pmd;
637 }
638
639 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
640 {
641 pmd_t entry;
642 entry = mk_pmd(page, vma->vm_page_prot);
643 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644 entry = pmd_mkhuge(entry);
645 return entry;
646 }
647
648 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
649 struct vm_area_struct *vma,
650 unsigned long haddr, pmd_t *pmd,
651 struct page *page)
652 {
653 pgtable_t pgtable;
654
655 VM_BUG_ON(!PageCompound(page));
656 pgtable = pte_alloc_one(mm, haddr);
657 if (unlikely(!pgtable))
658 return VM_FAULT_OOM;
659
660 clear_huge_page(page, haddr, HPAGE_PMD_NR);
661 __SetPageUptodate(page);
662
663 spin_lock(&mm->page_table_lock);
664 if (unlikely(!pmd_none(*pmd))) {
665 spin_unlock(&mm->page_table_lock);
666 mem_cgroup_uncharge_page(page);
667 put_page(page);
668 pte_free(mm, pgtable);
669 } else {
670 pmd_t entry;
671 entry = mk_huge_pmd(page, vma);
672 /*
673 * The spinlocking to take the lru_lock inside
674 * page_add_new_anon_rmap() acts as a full memory
675 * barrier to be sure clear_huge_page writes become
676 * visible after the set_pmd_at() write.
677 */
678 page_add_new_anon_rmap(page, vma, haddr);
679 set_pmd_at(mm, haddr, pmd, entry);
680 pgtable_trans_huge_deposit(mm, pgtable);
681 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
682 mm->nr_ptes++;
683 spin_unlock(&mm->page_table_lock);
684 }
685
686 return 0;
687 }
688
689 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
690 {
691 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
692 }
693
694 static inline struct page *alloc_hugepage_vma(int defrag,
695 struct vm_area_struct *vma,
696 unsigned long haddr, int nd,
697 gfp_t extra_gfp)
698 {
699 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
700 HPAGE_PMD_ORDER, vma, haddr, nd);
701 }
702
703 #ifndef CONFIG_NUMA
704 static inline struct page *alloc_hugepage(int defrag)
705 {
706 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
707 HPAGE_PMD_ORDER);
708 }
709 #endif
710
711 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
712 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
713 {
714 pmd_t entry;
715 entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
716 entry = pmd_wrprotect(entry);
717 entry = pmd_mkhuge(entry);
718 set_pmd_at(mm, haddr, pmd, entry);
719 pgtable_trans_huge_deposit(mm, pgtable);
720 mm->nr_ptes++;
721 }
722
723 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
724 unsigned long address, pmd_t *pmd,
725 unsigned int flags)
726 {
727 struct page *page;
728 unsigned long haddr = address & HPAGE_PMD_MASK;
729 pte_t *pte;
730
731 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
732 if (unlikely(anon_vma_prepare(vma)))
733 return VM_FAULT_OOM;
734 if (unlikely(khugepaged_enter(vma)))
735 return VM_FAULT_OOM;
736 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
737 vma, haddr, numa_node_id(), 0);
738 if (unlikely(!page)) {
739 count_vm_event(THP_FAULT_FALLBACK);
740 goto out;
741 }
742 count_vm_event(THP_FAULT_ALLOC);
743 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
744 put_page(page);
745 goto out;
746 }
747 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
748 page))) {
749 mem_cgroup_uncharge_page(page);
750 put_page(page);
751 goto out;
752 }
753
754 return 0;
755 }
756 out:
757 /*
758 * Use __pte_alloc instead of pte_alloc_map, because we can't
759 * run pte_offset_map on the pmd, if an huge pmd could
760 * materialize from under us from a different thread.
761 */
762 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
763 return VM_FAULT_OOM;
764 /* if an huge pmd materialized from under us just retry later */
765 if (unlikely(pmd_trans_huge(*pmd)))
766 return 0;
767 /*
768 * A regular pmd is established and it can't morph into a huge pmd
769 * from under us anymore at this point because we hold the mmap_sem
770 * read mode and khugepaged takes it in write mode. So now it's
771 * safe to run pte_offset_map().
772 */
773 pte = pte_offset_map(pmd, address);
774 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
775 }
776
777 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
779 struct vm_area_struct *vma)
780 {
781 struct page *src_page;
782 pmd_t pmd;
783 pgtable_t pgtable;
784 int ret;
785
786 ret = -ENOMEM;
787 pgtable = pte_alloc_one(dst_mm, addr);
788 if (unlikely(!pgtable))
789 goto out;
790
791 spin_lock(&dst_mm->page_table_lock);
792 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
793
794 ret = -EAGAIN;
795 pmd = *src_pmd;
796 if (unlikely(!pmd_trans_huge(pmd))) {
797 pte_free(dst_mm, pgtable);
798 goto out_unlock;
799 }
800 /*
801 * mm->page_table_lock is enough to be sure that huge zero pmd is not
802 * under splitting since we don't split the page itself, only pmd to
803 * a page table.
804 */
805 if (is_huge_zero_pmd(pmd)) {
806 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
807 ret = 0;
808 goto out_unlock;
809 }
810 if (unlikely(pmd_trans_splitting(pmd))) {
811 /* split huge page running from under us */
812 spin_unlock(&src_mm->page_table_lock);
813 spin_unlock(&dst_mm->page_table_lock);
814 pte_free(dst_mm, pgtable);
815
816 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
817 goto out;
818 }
819 src_page = pmd_page(pmd);
820 VM_BUG_ON(!PageHead(src_page));
821 get_page(src_page);
822 page_dup_rmap(src_page);
823 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
824
825 pmdp_set_wrprotect(src_mm, addr, src_pmd);
826 pmd = pmd_mkold(pmd_wrprotect(pmd));
827 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
828 pgtable_trans_huge_deposit(dst_mm, pgtable);
829 dst_mm->nr_ptes++;
830
831 ret = 0;
832 out_unlock:
833 spin_unlock(&src_mm->page_table_lock);
834 spin_unlock(&dst_mm->page_table_lock);
835 out:
836 return ret;
837 }
838
839 void huge_pmd_set_accessed(struct mm_struct *mm,
840 struct vm_area_struct *vma,
841 unsigned long address,
842 pmd_t *pmd, pmd_t orig_pmd,
843 int dirty)
844 {
845 pmd_t entry;
846 unsigned long haddr;
847
848 spin_lock(&mm->page_table_lock);
849 if (unlikely(!pmd_same(*pmd, orig_pmd)))
850 goto unlock;
851
852 entry = pmd_mkyoung(orig_pmd);
853 haddr = address & HPAGE_PMD_MASK;
854 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
855 update_mmu_cache_pmd(vma, address, pmd);
856
857 unlock:
858 spin_unlock(&mm->page_table_lock);
859 }
860
861 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
862 struct vm_area_struct *vma,
863 unsigned long address,
864 pmd_t *pmd, pmd_t orig_pmd,
865 struct page *page,
866 unsigned long haddr)
867 {
868 pgtable_t pgtable;
869 pmd_t _pmd;
870 int ret = 0, i;
871 struct page **pages;
872 unsigned long mmun_start; /* For mmu_notifiers */
873 unsigned long mmun_end; /* For mmu_notifiers */
874
875 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
876 GFP_KERNEL);
877 if (unlikely(!pages)) {
878 ret |= VM_FAULT_OOM;
879 goto out;
880 }
881
882 for (i = 0; i < HPAGE_PMD_NR; i++) {
883 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
884 __GFP_OTHER_NODE,
885 vma, address, page_to_nid(page));
886 if (unlikely(!pages[i] ||
887 mem_cgroup_newpage_charge(pages[i], mm,
888 GFP_KERNEL))) {
889 if (pages[i])
890 put_page(pages[i]);
891 mem_cgroup_uncharge_start();
892 while (--i >= 0) {
893 mem_cgroup_uncharge_page(pages[i]);
894 put_page(pages[i]);
895 }
896 mem_cgroup_uncharge_end();
897 kfree(pages);
898 ret |= VM_FAULT_OOM;
899 goto out;
900 }
901 }
902
903 for (i = 0; i < HPAGE_PMD_NR; i++) {
904 copy_user_highpage(pages[i], page + i,
905 haddr + PAGE_SIZE * i, vma);
906 __SetPageUptodate(pages[i]);
907 cond_resched();
908 }
909
910 mmun_start = haddr;
911 mmun_end = haddr + HPAGE_PMD_SIZE;
912 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
913
914 spin_lock(&mm->page_table_lock);
915 if (unlikely(!pmd_same(*pmd, orig_pmd)))
916 goto out_free_pages;
917 VM_BUG_ON(!PageHead(page));
918
919 pmdp_clear_flush(vma, haddr, pmd);
920 /* leave pmd empty until pte is filled */
921
922 pgtable = pgtable_trans_huge_withdraw(mm);
923 pmd_populate(mm, &_pmd, pgtable);
924
925 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
926 pte_t *pte, entry;
927 entry = mk_pte(pages[i], vma->vm_page_prot);
928 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
929 page_add_new_anon_rmap(pages[i], vma, haddr);
930 pte = pte_offset_map(&_pmd, haddr);
931 VM_BUG_ON(!pte_none(*pte));
932 set_pte_at(mm, haddr, pte, entry);
933 pte_unmap(pte);
934 }
935 kfree(pages);
936
937 smp_wmb(); /* make pte visible before pmd */
938 pmd_populate(mm, pmd, pgtable);
939 page_remove_rmap(page);
940 spin_unlock(&mm->page_table_lock);
941
942 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
943
944 ret |= VM_FAULT_WRITE;
945 put_page(page);
946
947 out:
948 return ret;
949
950 out_free_pages:
951 spin_unlock(&mm->page_table_lock);
952 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
953 mem_cgroup_uncharge_start();
954 for (i = 0; i < HPAGE_PMD_NR; i++) {
955 mem_cgroup_uncharge_page(pages[i]);
956 put_page(pages[i]);
957 }
958 mem_cgroup_uncharge_end();
959 kfree(pages);
960 goto out;
961 }
962
963 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
964 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
965 {
966 int ret = 0;
967 struct page *page, *new_page;
968 unsigned long haddr;
969 unsigned long mmun_start; /* For mmu_notifiers */
970 unsigned long mmun_end; /* For mmu_notifiers */
971
972 VM_BUG_ON(!vma->anon_vma);
973 spin_lock(&mm->page_table_lock);
974 if (unlikely(!pmd_same(*pmd, orig_pmd)))
975 goto out_unlock;
976
977 page = pmd_page(orig_pmd);
978 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
979 haddr = address & HPAGE_PMD_MASK;
980 if (page_mapcount(page) == 1) {
981 pmd_t entry;
982 entry = pmd_mkyoung(orig_pmd);
983 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
984 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
985 update_mmu_cache_pmd(vma, address, pmd);
986 ret |= VM_FAULT_WRITE;
987 goto out_unlock;
988 }
989 get_page(page);
990 spin_unlock(&mm->page_table_lock);
991
992 if (transparent_hugepage_enabled(vma) &&
993 !transparent_hugepage_debug_cow())
994 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
995 vma, haddr, numa_node_id(), 0);
996 else
997 new_page = NULL;
998
999 if (unlikely(!new_page)) {
1000 count_vm_event(THP_FAULT_FALLBACK);
1001 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1002 pmd, orig_pmd, page, haddr);
1003 if (ret & VM_FAULT_OOM)
1004 split_huge_page(page);
1005 put_page(page);
1006 goto out;
1007 }
1008 count_vm_event(THP_FAULT_ALLOC);
1009
1010 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1011 put_page(new_page);
1012 split_huge_page(page);
1013 put_page(page);
1014 ret |= VM_FAULT_OOM;
1015 goto out;
1016 }
1017
1018 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1019 __SetPageUptodate(new_page);
1020
1021 mmun_start = haddr;
1022 mmun_end = haddr + HPAGE_PMD_SIZE;
1023 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1024
1025 spin_lock(&mm->page_table_lock);
1026 put_page(page);
1027 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1028 spin_unlock(&mm->page_table_lock);
1029 mem_cgroup_uncharge_page(new_page);
1030 put_page(new_page);
1031 goto out_mn;
1032 } else {
1033 pmd_t entry;
1034 VM_BUG_ON(!PageHead(page));
1035 entry = mk_huge_pmd(new_page, vma);
1036 pmdp_clear_flush(vma, haddr, pmd);
1037 page_add_new_anon_rmap(new_page, vma, haddr);
1038 set_pmd_at(mm, haddr, pmd, entry);
1039 update_mmu_cache_pmd(vma, address, pmd);
1040 page_remove_rmap(page);
1041 put_page(page);
1042 ret |= VM_FAULT_WRITE;
1043 }
1044 spin_unlock(&mm->page_table_lock);
1045 out_mn:
1046 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1047 out:
1048 return ret;
1049 out_unlock:
1050 spin_unlock(&mm->page_table_lock);
1051 return ret;
1052 }
1053
1054 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1055 unsigned long addr,
1056 pmd_t *pmd,
1057 unsigned int flags)
1058 {
1059 struct mm_struct *mm = vma->vm_mm;
1060 struct page *page = NULL;
1061
1062 assert_spin_locked(&mm->page_table_lock);
1063
1064 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1065 goto out;
1066
1067 page = pmd_page(*pmd);
1068 VM_BUG_ON(!PageHead(page));
1069 if (flags & FOLL_TOUCH) {
1070 pmd_t _pmd;
1071 /*
1072 * We should set the dirty bit only for FOLL_WRITE but
1073 * for now the dirty bit in the pmd is meaningless.
1074 * And if the dirty bit will become meaningful and
1075 * we'll only set it with FOLL_WRITE, an atomic
1076 * set_bit will be required on the pmd to set the
1077 * young bit, instead of the current set_pmd_at.
1078 */
1079 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1080 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1081 }
1082 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1083 if (page->mapping && trylock_page(page)) {
1084 lru_add_drain();
1085 if (page->mapping)
1086 mlock_vma_page(page);
1087 unlock_page(page);
1088 }
1089 }
1090 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1091 VM_BUG_ON(!PageCompound(page));
1092 if (flags & FOLL_GET)
1093 get_page_foll(page);
1094
1095 out:
1096 return page;
1097 }
1098
1099 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1100 pmd_t *pmd, unsigned long addr)
1101 {
1102 int ret = 0;
1103
1104 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1105 struct page *page;
1106 pgtable_t pgtable;
1107 pmd_t orig_pmd;
1108 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1109 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1110 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1111 if (is_huge_zero_pmd(orig_pmd)) {
1112 tlb->mm->nr_ptes--;
1113 spin_unlock(&tlb->mm->page_table_lock);
1114 } else {
1115 page = pmd_page(orig_pmd);
1116 page_remove_rmap(page);
1117 VM_BUG_ON(page_mapcount(page) < 0);
1118 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1119 VM_BUG_ON(!PageHead(page));
1120 tlb->mm->nr_ptes--;
1121 spin_unlock(&tlb->mm->page_table_lock);
1122 tlb_remove_page(tlb, page);
1123 }
1124 pte_free(tlb->mm, pgtable);
1125 ret = 1;
1126 }
1127 return ret;
1128 }
1129
1130 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1131 unsigned long addr, unsigned long end,
1132 unsigned char *vec)
1133 {
1134 int ret = 0;
1135
1136 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1137 /*
1138 * All logical pages in the range are present
1139 * if backed by a huge page.
1140 */
1141 spin_unlock(&vma->vm_mm->page_table_lock);
1142 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1143 ret = 1;
1144 }
1145
1146 return ret;
1147 }
1148
1149 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1150 unsigned long old_addr,
1151 unsigned long new_addr, unsigned long old_end,
1152 pmd_t *old_pmd, pmd_t *new_pmd)
1153 {
1154 int ret = 0;
1155 pmd_t pmd;
1156
1157 struct mm_struct *mm = vma->vm_mm;
1158
1159 if ((old_addr & ~HPAGE_PMD_MASK) ||
1160 (new_addr & ~HPAGE_PMD_MASK) ||
1161 old_end - old_addr < HPAGE_PMD_SIZE ||
1162 (new_vma->vm_flags & VM_NOHUGEPAGE))
1163 goto out;
1164
1165 /*
1166 * The destination pmd shouldn't be established, free_pgtables()
1167 * should have release it.
1168 */
1169 if (WARN_ON(!pmd_none(*new_pmd))) {
1170 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1171 goto out;
1172 }
1173
1174 ret = __pmd_trans_huge_lock(old_pmd, vma);
1175 if (ret == 1) {
1176 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1177 VM_BUG_ON(!pmd_none(*new_pmd));
1178 set_pmd_at(mm, new_addr, new_pmd, pmd);
1179 spin_unlock(&mm->page_table_lock);
1180 }
1181 out:
1182 return ret;
1183 }
1184
1185 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1186 unsigned long addr, pgprot_t newprot)
1187 {
1188 struct mm_struct *mm = vma->vm_mm;
1189 int ret = 0;
1190
1191 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1192 pmd_t entry;
1193 entry = pmdp_get_and_clear(mm, addr, pmd);
1194 entry = pmd_modify(entry, newprot);
1195 set_pmd_at(mm, addr, pmd, entry);
1196 spin_unlock(&vma->vm_mm->page_table_lock);
1197 ret = 1;
1198 }
1199
1200 return ret;
1201 }
1202
1203 /*
1204 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1205 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1206 *
1207 * Note that if it returns 1, this routine returns without unlocking page
1208 * table locks. So callers must unlock them.
1209 */
1210 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1211 {
1212 spin_lock(&vma->vm_mm->page_table_lock);
1213 if (likely(pmd_trans_huge(*pmd))) {
1214 if (unlikely(pmd_trans_splitting(*pmd))) {
1215 spin_unlock(&vma->vm_mm->page_table_lock);
1216 wait_split_huge_page(vma->anon_vma, pmd);
1217 return -1;
1218 } else {
1219 /* Thp mapped by 'pmd' is stable, so we can
1220 * handle it as it is. */
1221 return 1;
1222 }
1223 }
1224 spin_unlock(&vma->vm_mm->page_table_lock);
1225 return 0;
1226 }
1227
1228 pmd_t *page_check_address_pmd(struct page *page,
1229 struct mm_struct *mm,
1230 unsigned long address,
1231 enum page_check_address_pmd_flag flag)
1232 {
1233 pmd_t *pmd, *ret = NULL;
1234
1235 if (address & ~HPAGE_PMD_MASK)
1236 goto out;
1237
1238 pmd = mm_find_pmd(mm, address);
1239 if (!pmd)
1240 goto out;
1241 if (pmd_none(*pmd))
1242 goto out;
1243 if (pmd_page(*pmd) != page)
1244 goto out;
1245 /*
1246 * split_vma() may create temporary aliased mappings. There is
1247 * no risk as long as all huge pmd are found and have their
1248 * splitting bit set before __split_huge_page_refcount
1249 * runs. Finding the same huge pmd more than once during the
1250 * same rmap walk is not a problem.
1251 */
1252 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1253 pmd_trans_splitting(*pmd))
1254 goto out;
1255 if (pmd_trans_huge(*pmd)) {
1256 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1257 !pmd_trans_splitting(*pmd));
1258 ret = pmd;
1259 }
1260 out:
1261 return ret;
1262 }
1263
1264 static int __split_huge_page_splitting(struct page *page,
1265 struct vm_area_struct *vma,
1266 unsigned long address)
1267 {
1268 struct mm_struct *mm = vma->vm_mm;
1269 pmd_t *pmd;
1270 int ret = 0;
1271 /* For mmu_notifiers */
1272 const unsigned long mmun_start = address;
1273 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1274
1275 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1276 spin_lock(&mm->page_table_lock);
1277 pmd = page_check_address_pmd(page, mm, address,
1278 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1279 if (pmd) {
1280 /*
1281 * We can't temporarily set the pmd to null in order
1282 * to split it, the pmd must remain marked huge at all
1283 * times or the VM won't take the pmd_trans_huge paths
1284 * and it won't wait on the anon_vma->root->mutex to
1285 * serialize against split_huge_page*.
1286 */
1287 pmdp_splitting_flush(vma, address, pmd);
1288 ret = 1;
1289 }
1290 spin_unlock(&mm->page_table_lock);
1291 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1292
1293 return ret;
1294 }
1295
1296 static void __split_huge_page_refcount(struct page *page)
1297 {
1298 int i;
1299 struct zone *zone = page_zone(page);
1300 struct lruvec *lruvec;
1301 int tail_count = 0;
1302
1303 /* prevent PageLRU to go away from under us, and freeze lru stats */
1304 spin_lock_irq(&zone->lru_lock);
1305 lruvec = mem_cgroup_page_lruvec(page, zone);
1306
1307 compound_lock(page);
1308 /* complete memcg works before add pages to LRU */
1309 mem_cgroup_split_huge_fixup(page);
1310
1311 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1312 struct page *page_tail = page + i;
1313
1314 /* tail_page->_mapcount cannot change */
1315 BUG_ON(page_mapcount(page_tail) < 0);
1316 tail_count += page_mapcount(page_tail);
1317 /* check for overflow */
1318 BUG_ON(tail_count < 0);
1319 BUG_ON(atomic_read(&page_tail->_count) != 0);
1320 /*
1321 * tail_page->_count is zero and not changing from
1322 * under us. But get_page_unless_zero() may be running
1323 * from under us on the tail_page. If we used
1324 * atomic_set() below instead of atomic_add(), we
1325 * would then run atomic_set() concurrently with
1326 * get_page_unless_zero(), and atomic_set() is
1327 * implemented in C not using locked ops. spin_unlock
1328 * on x86 sometime uses locked ops because of PPro
1329 * errata 66, 92, so unless somebody can guarantee
1330 * atomic_set() here would be safe on all archs (and
1331 * not only on x86), it's safer to use atomic_add().
1332 */
1333 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1334 &page_tail->_count);
1335
1336 /* after clearing PageTail the gup refcount can be released */
1337 smp_mb();
1338
1339 /*
1340 * retain hwpoison flag of the poisoned tail page:
1341 * fix for the unsuitable process killed on Guest Machine(KVM)
1342 * by the memory-failure.
1343 */
1344 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1345 page_tail->flags |= (page->flags &
1346 ((1L << PG_referenced) |
1347 (1L << PG_swapbacked) |
1348 (1L << PG_mlocked) |
1349 (1L << PG_uptodate)));
1350 page_tail->flags |= (1L << PG_dirty);
1351
1352 /* clear PageTail before overwriting first_page */
1353 smp_wmb();
1354
1355 /*
1356 * __split_huge_page_splitting() already set the
1357 * splitting bit in all pmd that could map this
1358 * hugepage, that will ensure no CPU can alter the
1359 * mapcount on the head page. The mapcount is only
1360 * accounted in the head page and it has to be
1361 * transferred to all tail pages in the below code. So
1362 * for this code to be safe, the split the mapcount
1363 * can't change. But that doesn't mean userland can't
1364 * keep changing and reading the page contents while
1365 * we transfer the mapcount, so the pmd splitting
1366 * status is achieved setting a reserved bit in the
1367 * pmd, not by clearing the present bit.
1368 */
1369 page_tail->_mapcount = page->_mapcount;
1370
1371 BUG_ON(page_tail->mapping);
1372 page_tail->mapping = page->mapping;
1373
1374 page_tail->index = page->index + i;
1375
1376 BUG_ON(!PageAnon(page_tail));
1377 BUG_ON(!PageUptodate(page_tail));
1378 BUG_ON(!PageDirty(page_tail));
1379 BUG_ON(!PageSwapBacked(page_tail));
1380
1381 lru_add_page_tail(page, page_tail, lruvec);
1382 }
1383 atomic_sub(tail_count, &page->_count);
1384 BUG_ON(atomic_read(&page->_count) <= 0);
1385
1386 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1387 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1388
1389 ClearPageCompound(page);
1390 compound_unlock(page);
1391 spin_unlock_irq(&zone->lru_lock);
1392
1393 for (i = 1; i < HPAGE_PMD_NR; i++) {
1394 struct page *page_tail = page + i;
1395 BUG_ON(page_count(page_tail) <= 0);
1396 /*
1397 * Tail pages may be freed if there wasn't any mapping
1398 * like if add_to_swap() is running on a lru page that
1399 * had its mapping zapped. And freeing these pages
1400 * requires taking the lru_lock so we do the put_page
1401 * of the tail pages after the split is complete.
1402 */
1403 put_page(page_tail);
1404 }
1405
1406 /*
1407 * Only the head page (now become a regular page) is required
1408 * to be pinned by the caller.
1409 */
1410 BUG_ON(page_count(page) <= 0);
1411 }
1412
1413 static int __split_huge_page_map(struct page *page,
1414 struct vm_area_struct *vma,
1415 unsigned long address)
1416 {
1417 struct mm_struct *mm = vma->vm_mm;
1418 pmd_t *pmd, _pmd;
1419 int ret = 0, i;
1420 pgtable_t pgtable;
1421 unsigned long haddr;
1422
1423 spin_lock(&mm->page_table_lock);
1424 pmd = page_check_address_pmd(page, mm, address,
1425 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1426 if (pmd) {
1427 pgtable = pgtable_trans_huge_withdraw(mm);
1428 pmd_populate(mm, &_pmd, pgtable);
1429
1430 haddr = address;
1431 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1432 pte_t *pte, entry;
1433 BUG_ON(PageCompound(page+i));
1434 entry = mk_pte(page + i, vma->vm_page_prot);
1435 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1436 if (!pmd_write(*pmd))
1437 entry = pte_wrprotect(entry);
1438 else
1439 BUG_ON(page_mapcount(page) != 1);
1440 if (!pmd_young(*pmd))
1441 entry = pte_mkold(entry);
1442 pte = pte_offset_map(&_pmd, haddr);
1443 BUG_ON(!pte_none(*pte));
1444 set_pte_at(mm, haddr, pte, entry);
1445 pte_unmap(pte);
1446 }
1447
1448 smp_wmb(); /* make pte visible before pmd */
1449 /*
1450 * Up to this point the pmd is present and huge and
1451 * userland has the whole access to the hugepage
1452 * during the split (which happens in place). If we
1453 * overwrite the pmd with the not-huge version
1454 * pointing to the pte here (which of course we could
1455 * if all CPUs were bug free), userland could trigger
1456 * a small page size TLB miss on the small sized TLB
1457 * while the hugepage TLB entry is still established
1458 * in the huge TLB. Some CPU doesn't like that. See
1459 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1460 * Erratum 383 on page 93. Intel should be safe but is
1461 * also warns that it's only safe if the permission
1462 * and cache attributes of the two entries loaded in
1463 * the two TLB is identical (which should be the case
1464 * here). But it is generally safer to never allow
1465 * small and huge TLB entries for the same virtual
1466 * address to be loaded simultaneously. So instead of
1467 * doing "pmd_populate(); flush_tlb_range();" we first
1468 * mark the current pmd notpresent (atomically because
1469 * here the pmd_trans_huge and pmd_trans_splitting
1470 * must remain set at all times on the pmd until the
1471 * split is complete for this pmd), then we flush the
1472 * SMP TLB and finally we write the non-huge version
1473 * of the pmd entry with pmd_populate.
1474 */
1475 pmdp_invalidate(vma, address, pmd);
1476 pmd_populate(mm, pmd, pgtable);
1477 ret = 1;
1478 }
1479 spin_unlock(&mm->page_table_lock);
1480
1481 return ret;
1482 }
1483
1484 /* must be called with anon_vma->root->mutex hold */
1485 static void __split_huge_page(struct page *page,
1486 struct anon_vma *anon_vma)
1487 {
1488 int mapcount, mapcount2;
1489 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1490 struct anon_vma_chain *avc;
1491
1492 BUG_ON(!PageHead(page));
1493 BUG_ON(PageTail(page));
1494
1495 mapcount = 0;
1496 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1497 struct vm_area_struct *vma = avc->vma;
1498 unsigned long addr = vma_address(page, vma);
1499 BUG_ON(is_vma_temporary_stack(vma));
1500 mapcount += __split_huge_page_splitting(page, vma, addr);
1501 }
1502 /*
1503 * It is critical that new vmas are added to the tail of the
1504 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1505 * and establishes a child pmd before
1506 * __split_huge_page_splitting() freezes the parent pmd (so if
1507 * we fail to prevent copy_huge_pmd() from running until the
1508 * whole __split_huge_page() is complete), we will still see
1509 * the newly established pmd of the child later during the
1510 * walk, to be able to set it as pmd_trans_splitting too.
1511 */
1512 if (mapcount != page_mapcount(page))
1513 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1514 mapcount, page_mapcount(page));
1515 BUG_ON(mapcount != page_mapcount(page));
1516
1517 __split_huge_page_refcount(page);
1518
1519 mapcount2 = 0;
1520 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1521 struct vm_area_struct *vma = avc->vma;
1522 unsigned long addr = vma_address(page, vma);
1523 BUG_ON(is_vma_temporary_stack(vma));
1524 mapcount2 += __split_huge_page_map(page, vma, addr);
1525 }
1526 if (mapcount != mapcount2)
1527 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1528 mapcount, mapcount2, page_mapcount(page));
1529 BUG_ON(mapcount != mapcount2);
1530 }
1531
1532 int split_huge_page(struct page *page)
1533 {
1534 struct anon_vma *anon_vma;
1535 int ret = 1;
1536
1537 BUG_ON(!PageAnon(page));
1538 anon_vma = page_lock_anon_vma(page);
1539 if (!anon_vma)
1540 goto out;
1541 ret = 0;
1542 if (!PageCompound(page))
1543 goto out_unlock;
1544
1545 BUG_ON(!PageSwapBacked(page));
1546 __split_huge_page(page, anon_vma);
1547 count_vm_event(THP_SPLIT);
1548
1549 BUG_ON(PageCompound(page));
1550 out_unlock:
1551 page_unlock_anon_vma(anon_vma);
1552 out:
1553 return ret;
1554 }
1555
1556 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1557
1558 int hugepage_madvise(struct vm_area_struct *vma,
1559 unsigned long *vm_flags, int advice)
1560 {
1561 struct mm_struct *mm = vma->vm_mm;
1562
1563 switch (advice) {
1564 case MADV_HUGEPAGE:
1565 /*
1566 * Be somewhat over-protective like KSM for now!
1567 */
1568 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1569 return -EINVAL;
1570 if (mm->def_flags & VM_NOHUGEPAGE)
1571 return -EINVAL;
1572 *vm_flags &= ~VM_NOHUGEPAGE;
1573 *vm_flags |= VM_HUGEPAGE;
1574 /*
1575 * If the vma become good for khugepaged to scan,
1576 * register it here without waiting a page fault that
1577 * may not happen any time soon.
1578 */
1579 if (unlikely(khugepaged_enter_vma_merge(vma)))
1580 return -ENOMEM;
1581 break;
1582 case MADV_NOHUGEPAGE:
1583 /*
1584 * Be somewhat over-protective like KSM for now!
1585 */
1586 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1587 return -EINVAL;
1588 *vm_flags &= ~VM_HUGEPAGE;
1589 *vm_flags |= VM_NOHUGEPAGE;
1590 /*
1591 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1592 * this vma even if we leave the mm registered in khugepaged if
1593 * it got registered before VM_NOHUGEPAGE was set.
1594 */
1595 break;
1596 }
1597
1598 return 0;
1599 }
1600
1601 static int __init khugepaged_slab_init(void)
1602 {
1603 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1604 sizeof(struct mm_slot),
1605 __alignof__(struct mm_slot), 0, NULL);
1606 if (!mm_slot_cache)
1607 return -ENOMEM;
1608
1609 return 0;
1610 }
1611
1612 static void __init khugepaged_slab_free(void)
1613 {
1614 kmem_cache_destroy(mm_slot_cache);
1615 mm_slot_cache = NULL;
1616 }
1617
1618 static inline struct mm_slot *alloc_mm_slot(void)
1619 {
1620 if (!mm_slot_cache) /* initialization failed */
1621 return NULL;
1622 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1623 }
1624
1625 static inline void free_mm_slot(struct mm_slot *mm_slot)
1626 {
1627 kmem_cache_free(mm_slot_cache, mm_slot);
1628 }
1629
1630 static int __init mm_slots_hash_init(void)
1631 {
1632 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1633 GFP_KERNEL);
1634 if (!mm_slots_hash)
1635 return -ENOMEM;
1636 return 0;
1637 }
1638
1639 #if 0
1640 static void __init mm_slots_hash_free(void)
1641 {
1642 kfree(mm_slots_hash);
1643 mm_slots_hash = NULL;
1644 }
1645 #endif
1646
1647 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1648 {
1649 struct mm_slot *mm_slot;
1650 struct hlist_head *bucket;
1651 struct hlist_node *node;
1652
1653 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1654 % MM_SLOTS_HASH_HEADS];
1655 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1656 if (mm == mm_slot->mm)
1657 return mm_slot;
1658 }
1659 return NULL;
1660 }
1661
1662 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1663 struct mm_slot *mm_slot)
1664 {
1665 struct hlist_head *bucket;
1666
1667 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1668 % MM_SLOTS_HASH_HEADS];
1669 mm_slot->mm = mm;
1670 hlist_add_head(&mm_slot->hash, bucket);
1671 }
1672
1673 static inline int khugepaged_test_exit(struct mm_struct *mm)
1674 {
1675 return atomic_read(&mm->mm_users) == 0;
1676 }
1677
1678 int __khugepaged_enter(struct mm_struct *mm)
1679 {
1680 struct mm_slot *mm_slot;
1681 int wakeup;
1682
1683 mm_slot = alloc_mm_slot();
1684 if (!mm_slot)
1685 return -ENOMEM;
1686
1687 /* __khugepaged_exit() must not run from under us */
1688 VM_BUG_ON(khugepaged_test_exit(mm));
1689 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1690 free_mm_slot(mm_slot);
1691 return 0;
1692 }
1693
1694 spin_lock(&khugepaged_mm_lock);
1695 insert_to_mm_slots_hash(mm, mm_slot);
1696 /*
1697 * Insert just behind the scanning cursor, to let the area settle
1698 * down a little.
1699 */
1700 wakeup = list_empty(&khugepaged_scan.mm_head);
1701 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1702 spin_unlock(&khugepaged_mm_lock);
1703
1704 atomic_inc(&mm->mm_count);
1705 if (wakeup)
1706 wake_up_interruptible(&khugepaged_wait);
1707
1708 return 0;
1709 }
1710
1711 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1712 {
1713 unsigned long hstart, hend;
1714 if (!vma->anon_vma)
1715 /*
1716 * Not yet faulted in so we will register later in the
1717 * page fault if needed.
1718 */
1719 return 0;
1720 if (vma->vm_ops)
1721 /* khugepaged not yet working on file or special mappings */
1722 return 0;
1723 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1724 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1725 hend = vma->vm_end & HPAGE_PMD_MASK;
1726 if (hstart < hend)
1727 return khugepaged_enter(vma);
1728 return 0;
1729 }
1730
1731 void __khugepaged_exit(struct mm_struct *mm)
1732 {
1733 struct mm_slot *mm_slot;
1734 int free = 0;
1735
1736 spin_lock(&khugepaged_mm_lock);
1737 mm_slot = get_mm_slot(mm);
1738 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1739 hlist_del(&mm_slot->hash);
1740 list_del(&mm_slot->mm_node);
1741 free = 1;
1742 }
1743 spin_unlock(&khugepaged_mm_lock);
1744
1745 if (free) {
1746 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1747 free_mm_slot(mm_slot);
1748 mmdrop(mm);
1749 } else if (mm_slot) {
1750 /*
1751 * This is required to serialize against
1752 * khugepaged_test_exit() (which is guaranteed to run
1753 * under mmap sem read mode). Stop here (after we
1754 * return all pagetables will be destroyed) until
1755 * khugepaged has finished working on the pagetables
1756 * under the mmap_sem.
1757 */
1758 down_write(&mm->mmap_sem);
1759 up_write(&mm->mmap_sem);
1760 }
1761 }
1762
1763 static void release_pte_page(struct page *page)
1764 {
1765 /* 0 stands for page_is_file_cache(page) == false */
1766 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1767 unlock_page(page);
1768 putback_lru_page(page);
1769 }
1770
1771 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1772 {
1773 while (--_pte >= pte) {
1774 pte_t pteval = *_pte;
1775 if (!pte_none(pteval))
1776 release_pte_page(pte_page(pteval));
1777 }
1778 }
1779
1780 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1781 unsigned long address,
1782 pte_t *pte)
1783 {
1784 struct page *page;
1785 pte_t *_pte;
1786 int referenced = 0, none = 0;
1787 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1788 _pte++, address += PAGE_SIZE) {
1789 pte_t pteval = *_pte;
1790 if (pte_none(pteval)) {
1791 if (++none <= khugepaged_max_ptes_none)
1792 continue;
1793 else
1794 goto out;
1795 }
1796 if (!pte_present(pteval) || !pte_write(pteval))
1797 goto out;
1798 page = vm_normal_page(vma, address, pteval);
1799 if (unlikely(!page))
1800 goto out;
1801
1802 VM_BUG_ON(PageCompound(page));
1803 BUG_ON(!PageAnon(page));
1804 VM_BUG_ON(!PageSwapBacked(page));
1805
1806 /* cannot use mapcount: can't collapse if there's a gup pin */
1807 if (page_count(page) != 1)
1808 goto out;
1809 /*
1810 * We can do it before isolate_lru_page because the
1811 * page can't be freed from under us. NOTE: PG_lock
1812 * is needed to serialize against split_huge_page
1813 * when invoked from the VM.
1814 */
1815 if (!trylock_page(page))
1816 goto out;
1817 /*
1818 * Isolate the page to avoid collapsing an hugepage
1819 * currently in use by the VM.
1820 */
1821 if (isolate_lru_page(page)) {
1822 unlock_page(page);
1823 goto out;
1824 }
1825 /* 0 stands for page_is_file_cache(page) == false */
1826 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1827 VM_BUG_ON(!PageLocked(page));
1828 VM_BUG_ON(PageLRU(page));
1829
1830 /* If there is no mapped pte young don't collapse the page */
1831 if (pte_young(pteval) || PageReferenced(page) ||
1832 mmu_notifier_test_young(vma->vm_mm, address))
1833 referenced = 1;
1834 }
1835 if (likely(referenced))
1836 return 1;
1837 out:
1838 release_pte_pages(pte, _pte);
1839 return 0;
1840 }
1841
1842 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1843 struct vm_area_struct *vma,
1844 unsigned long address,
1845 spinlock_t *ptl)
1846 {
1847 pte_t *_pte;
1848 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1849 pte_t pteval = *_pte;
1850 struct page *src_page;
1851
1852 if (pte_none(pteval)) {
1853 clear_user_highpage(page, address);
1854 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1855 } else {
1856 src_page = pte_page(pteval);
1857 copy_user_highpage(page, src_page, address, vma);
1858 VM_BUG_ON(page_mapcount(src_page) != 1);
1859 release_pte_page(src_page);
1860 /*
1861 * ptl mostly unnecessary, but preempt has to
1862 * be disabled to update the per-cpu stats
1863 * inside page_remove_rmap().
1864 */
1865 spin_lock(ptl);
1866 /*
1867 * paravirt calls inside pte_clear here are
1868 * superfluous.
1869 */
1870 pte_clear(vma->vm_mm, address, _pte);
1871 page_remove_rmap(src_page);
1872 spin_unlock(ptl);
1873 free_page_and_swap_cache(src_page);
1874 }
1875
1876 address += PAGE_SIZE;
1877 page++;
1878 }
1879 }
1880
1881 static void khugepaged_alloc_sleep(void)
1882 {
1883 wait_event_freezable_timeout(khugepaged_wait, false,
1884 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1885 }
1886
1887 #ifdef CONFIG_NUMA
1888 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1889 {
1890 if (IS_ERR(*hpage)) {
1891 if (!*wait)
1892 return false;
1893
1894 *wait = false;
1895 *hpage = NULL;
1896 khugepaged_alloc_sleep();
1897 } else if (*hpage) {
1898 put_page(*hpage);
1899 *hpage = NULL;
1900 }
1901
1902 return true;
1903 }
1904
1905 static struct page
1906 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1907 struct vm_area_struct *vma, unsigned long address,
1908 int node)
1909 {
1910 VM_BUG_ON(*hpage);
1911 /*
1912 * Allocate the page while the vma is still valid and under
1913 * the mmap_sem read mode so there is no memory allocation
1914 * later when we take the mmap_sem in write mode. This is more
1915 * friendly behavior (OTOH it may actually hide bugs) to
1916 * filesystems in userland with daemons allocating memory in
1917 * the userland I/O paths. Allocating memory with the
1918 * mmap_sem in read mode is good idea also to allow greater
1919 * scalability.
1920 */
1921 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1922 node, __GFP_OTHER_NODE);
1923
1924 /*
1925 * After allocating the hugepage, release the mmap_sem read lock in
1926 * preparation for taking it in write mode.
1927 */
1928 up_read(&mm->mmap_sem);
1929 if (unlikely(!*hpage)) {
1930 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1931 *hpage = ERR_PTR(-ENOMEM);
1932 return NULL;
1933 }
1934
1935 count_vm_event(THP_COLLAPSE_ALLOC);
1936 return *hpage;
1937 }
1938 #else
1939 static struct page *khugepaged_alloc_hugepage(bool *wait)
1940 {
1941 struct page *hpage;
1942
1943 do {
1944 hpage = alloc_hugepage(khugepaged_defrag());
1945 if (!hpage) {
1946 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1947 if (!*wait)
1948 return NULL;
1949
1950 *wait = false;
1951 khugepaged_alloc_sleep();
1952 } else
1953 count_vm_event(THP_COLLAPSE_ALLOC);
1954 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1955
1956 return hpage;
1957 }
1958
1959 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1960 {
1961 if (!*hpage)
1962 *hpage = khugepaged_alloc_hugepage(wait);
1963
1964 if (unlikely(!*hpage))
1965 return false;
1966
1967 return true;
1968 }
1969
1970 static struct page
1971 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1972 struct vm_area_struct *vma, unsigned long address,
1973 int node)
1974 {
1975 up_read(&mm->mmap_sem);
1976 VM_BUG_ON(!*hpage);
1977 return *hpage;
1978 }
1979 #endif
1980
1981 static bool hugepage_vma_check(struct vm_area_struct *vma)
1982 {
1983 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1984 (vma->vm_flags & VM_NOHUGEPAGE))
1985 return false;
1986
1987 if (!vma->anon_vma || vma->vm_ops)
1988 return false;
1989 if (is_vma_temporary_stack(vma))
1990 return false;
1991 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1992 return true;
1993 }
1994
1995 static void collapse_huge_page(struct mm_struct *mm,
1996 unsigned long address,
1997 struct page **hpage,
1998 struct vm_area_struct *vma,
1999 int node)
2000 {
2001 pmd_t *pmd, _pmd;
2002 pte_t *pte;
2003 pgtable_t pgtable;
2004 struct page *new_page;
2005 spinlock_t *ptl;
2006 int isolated;
2007 unsigned long hstart, hend;
2008 unsigned long mmun_start; /* For mmu_notifiers */
2009 unsigned long mmun_end; /* For mmu_notifiers */
2010
2011 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2012
2013 /* release the mmap_sem read lock. */
2014 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2015 if (!new_page)
2016 return;
2017
2018 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2019 return;
2020
2021 /*
2022 * Prevent all access to pagetables with the exception of
2023 * gup_fast later hanlded by the ptep_clear_flush and the VM
2024 * handled by the anon_vma lock + PG_lock.
2025 */
2026 down_write(&mm->mmap_sem);
2027 if (unlikely(khugepaged_test_exit(mm)))
2028 goto out;
2029
2030 vma = find_vma(mm, address);
2031 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2032 hend = vma->vm_end & HPAGE_PMD_MASK;
2033 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2034 goto out;
2035 if (!hugepage_vma_check(vma))
2036 goto out;
2037 pmd = mm_find_pmd(mm, address);
2038 if (!pmd)
2039 goto out;
2040 if (pmd_trans_huge(*pmd))
2041 goto out;
2042
2043 anon_vma_lock(vma->anon_vma);
2044
2045 pte = pte_offset_map(pmd, address);
2046 ptl = pte_lockptr(mm, pmd);
2047
2048 mmun_start = address;
2049 mmun_end = address + HPAGE_PMD_SIZE;
2050 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2051 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2052 /*
2053 * After this gup_fast can't run anymore. This also removes
2054 * any huge TLB entry from the CPU so we won't allow
2055 * huge and small TLB entries for the same virtual address
2056 * to avoid the risk of CPU bugs in that area.
2057 */
2058 _pmd = pmdp_clear_flush(vma, address, pmd);
2059 spin_unlock(&mm->page_table_lock);
2060 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2061
2062 spin_lock(ptl);
2063 isolated = __collapse_huge_page_isolate(vma, address, pte);
2064 spin_unlock(ptl);
2065
2066 if (unlikely(!isolated)) {
2067 pte_unmap(pte);
2068 spin_lock(&mm->page_table_lock);
2069 BUG_ON(!pmd_none(*pmd));
2070 set_pmd_at(mm, address, pmd, _pmd);
2071 spin_unlock(&mm->page_table_lock);
2072 anon_vma_unlock(vma->anon_vma);
2073 goto out;
2074 }
2075
2076 /*
2077 * All pages are isolated and locked so anon_vma rmap
2078 * can't run anymore.
2079 */
2080 anon_vma_unlock(vma->anon_vma);
2081
2082 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2083 pte_unmap(pte);
2084 __SetPageUptodate(new_page);
2085 pgtable = pmd_pgtable(_pmd);
2086
2087 _pmd = mk_huge_pmd(new_page, vma);
2088
2089 /*
2090 * spin_lock() below is not the equivalent of smp_wmb(), so
2091 * this is needed to avoid the copy_huge_page writes to become
2092 * visible after the set_pmd_at() write.
2093 */
2094 smp_wmb();
2095
2096 spin_lock(&mm->page_table_lock);
2097 BUG_ON(!pmd_none(*pmd));
2098 page_add_new_anon_rmap(new_page, vma, address);
2099 set_pmd_at(mm, address, pmd, _pmd);
2100 update_mmu_cache_pmd(vma, address, pmd);
2101 pgtable_trans_huge_deposit(mm, pgtable);
2102 spin_unlock(&mm->page_table_lock);
2103
2104 *hpage = NULL;
2105
2106 khugepaged_pages_collapsed++;
2107 out_up_write:
2108 up_write(&mm->mmap_sem);
2109 return;
2110
2111 out:
2112 mem_cgroup_uncharge_page(new_page);
2113 goto out_up_write;
2114 }
2115
2116 static int khugepaged_scan_pmd(struct mm_struct *mm,
2117 struct vm_area_struct *vma,
2118 unsigned long address,
2119 struct page **hpage)
2120 {
2121 pmd_t *pmd;
2122 pte_t *pte, *_pte;
2123 int ret = 0, referenced = 0, none = 0;
2124 struct page *page;
2125 unsigned long _address;
2126 spinlock_t *ptl;
2127 int node = -1;
2128
2129 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2130
2131 pmd = mm_find_pmd(mm, address);
2132 if (!pmd)
2133 goto out;
2134 if (pmd_trans_huge(*pmd))
2135 goto out;
2136
2137 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2138 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2139 _pte++, _address += PAGE_SIZE) {
2140 pte_t pteval = *_pte;
2141 if (pte_none(pteval)) {
2142 if (++none <= khugepaged_max_ptes_none)
2143 continue;
2144 else
2145 goto out_unmap;
2146 }
2147 if (!pte_present(pteval) || !pte_write(pteval))
2148 goto out_unmap;
2149 page = vm_normal_page(vma, _address, pteval);
2150 if (unlikely(!page))
2151 goto out_unmap;
2152 /*
2153 * Chose the node of the first page. This could
2154 * be more sophisticated and look at more pages,
2155 * but isn't for now.
2156 */
2157 if (node == -1)
2158 node = page_to_nid(page);
2159 VM_BUG_ON(PageCompound(page));
2160 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2161 goto out_unmap;
2162 /* cannot use mapcount: can't collapse if there's a gup pin */
2163 if (page_count(page) != 1)
2164 goto out_unmap;
2165 if (pte_young(pteval) || PageReferenced(page) ||
2166 mmu_notifier_test_young(vma->vm_mm, address))
2167 referenced = 1;
2168 }
2169 if (referenced)
2170 ret = 1;
2171 out_unmap:
2172 pte_unmap_unlock(pte, ptl);
2173 if (ret)
2174 /* collapse_huge_page will return with the mmap_sem released */
2175 collapse_huge_page(mm, address, hpage, vma, node);
2176 out:
2177 return ret;
2178 }
2179
2180 static void collect_mm_slot(struct mm_slot *mm_slot)
2181 {
2182 struct mm_struct *mm = mm_slot->mm;
2183
2184 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2185
2186 if (khugepaged_test_exit(mm)) {
2187 /* free mm_slot */
2188 hlist_del(&mm_slot->hash);
2189 list_del(&mm_slot->mm_node);
2190
2191 /*
2192 * Not strictly needed because the mm exited already.
2193 *
2194 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2195 */
2196
2197 /* khugepaged_mm_lock actually not necessary for the below */
2198 free_mm_slot(mm_slot);
2199 mmdrop(mm);
2200 }
2201 }
2202
2203 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2204 struct page **hpage)
2205 __releases(&khugepaged_mm_lock)
2206 __acquires(&khugepaged_mm_lock)
2207 {
2208 struct mm_slot *mm_slot;
2209 struct mm_struct *mm;
2210 struct vm_area_struct *vma;
2211 int progress = 0;
2212
2213 VM_BUG_ON(!pages);
2214 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2215
2216 if (khugepaged_scan.mm_slot)
2217 mm_slot = khugepaged_scan.mm_slot;
2218 else {
2219 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2220 struct mm_slot, mm_node);
2221 khugepaged_scan.address = 0;
2222 khugepaged_scan.mm_slot = mm_slot;
2223 }
2224 spin_unlock(&khugepaged_mm_lock);
2225
2226 mm = mm_slot->mm;
2227 down_read(&mm->mmap_sem);
2228 if (unlikely(khugepaged_test_exit(mm)))
2229 vma = NULL;
2230 else
2231 vma = find_vma(mm, khugepaged_scan.address);
2232
2233 progress++;
2234 for (; vma; vma = vma->vm_next) {
2235 unsigned long hstart, hend;
2236
2237 cond_resched();
2238 if (unlikely(khugepaged_test_exit(mm))) {
2239 progress++;
2240 break;
2241 }
2242 if (!hugepage_vma_check(vma)) {
2243 skip:
2244 progress++;
2245 continue;
2246 }
2247 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2248 hend = vma->vm_end & HPAGE_PMD_MASK;
2249 if (hstart >= hend)
2250 goto skip;
2251 if (khugepaged_scan.address > hend)
2252 goto skip;
2253 if (khugepaged_scan.address < hstart)
2254 khugepaged_scan.address = hstart;
2255 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2256
2257 while (khugepaged_scan.address < hend) {
2258 int ret;
2259 cond_resched();
2260 if (unlikely(khugepaged_test_exit(mm)))
2261 goto breakouterloop;
2262
2263 VM_BUG_ON(khugepaged_scan.address < hstart ||
2264 khugepaged_scan.address + HPAGE_PMD_SIZE >
2265 hend);
2266 ret = khugepaged_scan_pmd(mm, vma,
2267 khugepaged_scan.address,
2268 hpage);
2269 /* move to next address */
2270 khugepaged_scan.address += HPAGE_PMD_SIZE;
2271 progress += HPAGE_PMD_NR;
2272 if (ret)
2273 /* we released mmap_sem so break loop */
2274 goto breakouterloop_mmap_sem;
2275 if (progress >= pages)
2276 goto breakouterloop;
2277 }
2278 }
2279 breakouterloop:
2280 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2281 breakouterloop_mmap_sem:
2282
2283 spin_lock(&khugepaged_mm_lock);
2284 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2285 /*
2286 * Release the current mm_slot if this mm is about to die, or
2287 * if we scanned all vmas of this mm.
2288 */
2289 if (khugepaged_test_exit(mm) || !vma) {
2290 /*
2291 * Make sure that if mm_users is reaching zero while
2292 * khugepaged runs here, khugepaged_exit will find
2293 * mm_slot not pointing to the exiting mm.
2294 */
2295 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2296 khugepaged_scan.mm_slot = list_entry(
2297 mm_slot->mm_node.next,
2298 struct mm_slot, mm_node);
2299 khugepaged_scan.address = 0;
2300 } else {
2301 khugepaged_scan.mm_slot = NULL;
2302 khugepaged_full_scans++;
2303 }
2304
2305 collect_mm_slot(mm_slot);
2306 }
2307
2308 return progress;
2309 }
2310
2311 static int khugepaged_has_work(void)
2312 {
2313 return !list_empty(&khugepaged_scan.mm_head) &&
2314 khugepaged_enabled();
2315 }
2316
2317 static int khugepaged_wait_event(void)
2318 {
2319 return !list_empty(&khugepaged_scan.mm_head) ||
2320 kthread_should_stop();
2321 }
2322
2323 static void khugepaged_do_scan(void)
2324 {
2325 struct page *hpage = NULL;
2326 unsigned int progress = 0, pass_through_head = 0;
2327 unsigned int pages = khugepaged_pages_to_scan;
2328 bool wait = true;
2329
2330 barrier(); /* write khugepaged_pages_to_scan to local stack */
2331
2332 while (progress < pages) {
2333 if (!khugepaged_prealloc_page(&hpage, &wait))
2334 break;
2335
2336 cond_resched();
2337
2338 if (unlikely(kthread_should_stop() || freezing(current)))
2339 break;
2340
2341 spin_lock(&khugepaged_mm_lock);
2342 if (!khugepaged_scan.mm_slot)
2343 pass_through_head++;
2344 if (khugepaged_has_work() &&
2345 pass_through_head < 2)
2346 progress += khugepaged_scan_mm_slot(pages - progress,
2347 &hpage);
2348 else
2349 progress = pages;
2350 spin_unlock(&khugepaged_mm_lock);
2351 }
2352
2353 if (!IS_ERR_OR_NULL(hpage))
2354 put_page(hpage);
2355 }
2356
2357 static void khugepaged_wait_work(void)
2358 {
2359 try_to_freeze();
2360
2361 if (khugepaged_has_work()) {
2362 if (!khugepaged_scan_sleep_millisecs)
2363 return;
2364
2365 wait_event_freezable_timeout(khugepaged_wait,
2366 kthread_should_stop(),
2367 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2368 return;
2369 }
2370
2371 if (khugepaged_enabled())
2372 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2373 }
2374
2375 static int khugepaged(void *none)
2376 {
2377 struct mm_slot *mm_slot;
2378
2379 set_freezable();
2380 set_user_nice(current, 19);
2381
2382 while (!kthread_should_stop()) {
2383 khugepaged_do_scan();
2384 khugepaged_wait_work();
2385 }
2386
2387 spin_lock(&khugepaged_mm_lock);
2388 mm_slot = khugepaged_scan.mm_slot;
2389 khugepaged_scan.mm_slot = NULL;
2390 if (mm_slot)
2391 collect_mm_slot(mm_slot);
2392 spin_unlock(&khugepaged_mm_lock);
2393 return 0;
2394 }
2395
2396 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2397 {
2398 struct page *page;
2399
2400 spin_lock(&mm->page_table_lock);
2401 if (unlikely(!pmd_trans_huge(*pmd))) {
2402 spin_unlock(&mm->page_table_lock);
2403 return;
2404 }
2405 page = pmd_page(*pmd);
2406 VM_BUG_ON(!page_count(page));
2407 get_page(page);
2408 spin_unlock(&mm->page_table_lock);
2409
2410 split_huge_page(page);
2411
2412 put_page(page);
2413 BUG_ON(pmd_trans_huge(*pmd));
2414 }
2415
2416 static void split_huge_page_address(struct mm_struct *mm,
2417 unsigned long address)
2418 {
2419 pmd_t *pmd;
2420
2421 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2422
2423 pmd = mm_find_pmd(mm, address);
2424 if (!pmd)
2425 return;
2426 /*
2427 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2428 * materialize from under us.
2429 */
2430 split_huge_page_pmd(mm, pmd);
2431 }
2432
2433 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2434 unsigned long start,
2435 unsigned long end,
2436 long adjust_next)
2437 {
2438 /*
2439 * If the new start address isn't hpage aligned and it could
2440 * previously contain an hugepage: check if we need to split
2441 * an huge pmd.
2442 */
2443 if (start & ~HPAGE_PMD_MASK &&
2444 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2445 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2446 split_huge_page_address(vma->vm_mm, start);
2447
2448 /*
2449 * If the new end address isn't hpage aligned and it could
2450 * previously contain an hugepage: check if we need to split
2451 * an huge pmd.
2452 */
2453 if (end & ~HPAGE_PMD_MASK &&
2454 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2455 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2456 split_huge_page_address(vma->vm_mm, end);
2457
2458 /*
2459 * If we're also updating the vma->vm_next->vm_start, if the new
2460 * vm_next->vm_start isn't page aligned and it could previously
2461 * contain an hugepage: check if we need to split an huge pmd.
2462 */
2463 if (adjust_next > 0) {
2464 struct vm_area_struct *next = vma->vm_next;
2465 unsigned long nstart = next->vm_start;
2466 nstart += adjust_next << PAGE_SHIFT;
2467 if (nstart & ~HPAGE_PMD_MASK &&
2468 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2469 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2470 split_huge_page_address(next->vm_mm, nstart);
2471 }
2472 }
This page took 0.118105 seconds and 6 git commands to generate.