08b7595fe3c1547e96977db3777b69c28052d999
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93 {
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112 {
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130 return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation_mutex:
141 *
142 * down_write(&mm->mmap_sem);
143 * or
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
146 */
147 struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
226 /* We overlap with this area, if it extends further than
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
275 long seg_from;
276 long seg_to;
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290 }
291
292 /*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
298 {
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305 {
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335 return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344 #define HPAGE_RESV_OWNER (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
366 */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369 return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374 {
375 vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 if (!(vma->vm_flags & VM_MAYSHARE))
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
410 return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434 return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
440 {
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
444 if (vma->vm_flags & VM_MAYSHARE) {
445 /* Shared mappings always use reserves */
446 h->resv_huge_pages--;
447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
452 h->resv_huge_pages--;
453 }
454 }
455
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
460 if (!(vma->vm_flags & VM_MAYSHARE))
461 vma->vm_private_data = (void *)0;
462 }
463
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467 if (vma->vm_flags & VM_MAYSHARE)
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
472 }
473
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489 }
490
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506 }
507
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510 int nid = page_to_nid(page);
511 list_move(&page->lru, &h->hugepage_freelists[nid]);
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
514 }
515
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523 list_move(&page->lru, &h->hugepage_activelist);
524 set_page_refcounted(page);
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528 }
529
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
532 unsigned long address, int avoid_reserve)
533 {
534 struct page *page = NULL;
535 struct mempolicy *mpol;
536 nodemask_t *nodemask;
537 struct zonelist *zonelist;
538 struct zone *zone;
539 struct zoneref *z;
540 unsigned int cpuset_mems_cookie;
541
542 /*
543 * A child process with MAP_PRIVATE mappings created by their parent
544 * have no page reserves. This check ensures that reservations are
545 * not "stolen". The child may still get SIGKILLed
546 */
547 if (!vma_has_reserves(vma) &&
548 h->free_huge_pages - h->resv_huge_pages == 0)
549 goto err;
550
551 /* If reserves cannot be used, ensure enough pages are in the pool */
552 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
553 goto err;
554
555 retry_cpuset:
556 cpuset_mems_cookie = get_mems_allowed();
557 zonelist = huge_zonelist(vma, address,
558 htlb_alloc_mask, &mpol, &nodemask);
559
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
569 }
570 }
571
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
576
577 err:
578 return NULL;
579 }
580
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583 int i;
584
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
594 }
595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
623
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628
629 spin_lock(&hugetlb_lock);
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 /* remove the page from active list */
634 list_del(&page->lru);
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
638 } else {
639 arch_clear_hugepage_flags(page);
640 enqueue_huge_page(h, page);
641 }
642 spin_unlock(&hugetlb_lock);
643 hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648 INIT_LIST_HEAD(&page->lru);
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
651 set_hugetlb_cgroup(page, NULL);
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
669 set_page_count(p, 0);
670 p->first_page = page;
671 }
672 }
673
674 /*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
678 */
679 int PageHuge(struct page *page)
680 {
681 compound_page_dtor *dtor;
682
683 if (!PageCompound(page))
684 return 0;
685
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
688
689 return dtor == free_huge_page;
690 }
691 EXPORT_SYMBOL_GPL(PageHuge);
692
693 pgoff_t __basepage_index(struct page *page)
694 {
695 struct page *page_head = compound_head(page);
696 pgoff_t index = page_index(page_head);
697 unsigned long compound_idx;
698
699 if (!PageHuge(page_head))
700 return page_index(page);
701
702 if (compound_order(page_head) >= MAX_ORDER)
703 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704 else
705 compound_idx = page - page_head;
706
707 return (index << compound_order(page_head)) + compound_idx;
708 }
709
710 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
711 {
712 struct page *page;
713
714 if (h->order >= MAX_ORDER)
715 return NULL;
716
717 page = alloc_pages_exact_node(nid,
718 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719 __GFP_REPEAT|__GFP_NOWARN,
720 huge_page_order(h));
721 if (page) {
722 if (arch_prepare_hugepage(page)) {
723 __free_pages(page, huge_page_order(h));
724 return NULL;
725 }
726 prep_new_huge_page(h, page, nid);
727 }
728
729 return page;
730 }
731
732 /*
733 * common helper functions for hstate_next_node_to_{alloc|free}.
734 * We may have allocated or freed a huge page based on a different
735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736 * be outside of *nodes_allowed. Ensure that we use an allowed
737 * node for alloc or free.
738 */
739 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740 {
741 nid = next_node(nid, *nodes_allowed);
742 if (nid == MAX_NUMNODES)
743 nid = first_node(*nodes_allowed);
744 VM_BUG_ON(nid >= MAX_NUMNODES);
745
746 return nid;
747 }
748
749 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750 {
751 if (!node_isset(nid, *nodes_allowed))
752 nid = next_node_allowed(nid, nodes_allowed);
753 return nid;
754 }
755
756 /*
757 * returns the previously saved node ["this node"] from which to
758 * allocate a persistent huge page for the pool and advance the
759 * next node from which to allocate, handling wrap at end of node
760 * mask.
761 */
762 static int hstate_next_node_to_alloc(struct hstate *h,
763 nodemask_t *nodes_allowed)
764 {
765 int nid;
766
767 VM_BUG_ON(!nodes_allowed);
768
769 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771
772 return nid;
773 }
774
775 /*
776 * helper for free_pool_huge_page() - return the previously saved
777 * node ["this node"] from which to free a huge page. Advance the
778 * next node id whether or not we find a free huge page to free so
779 * that the next attempt to free addresses the next node.
780 */
781 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
782 {
783 int nid;
784
785 VM_BUG_ON(!nodes_allowed);
786
787 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
788 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
789
790 return nid;
791 }
792
793 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
794 for (nr_nodes = nodes_weight(*mask); \
795 nr_nodes > 0 && \
796 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
797 nr_nodes--)
798
799 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
800 for (nr_nodes = nodes_weight(*mask); \
801 nr_nodes > 0 && \
802 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
803 nr_nodes--)
804
805 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
806 {
807 struct page *page;
808 int nr_nodes, node;
809 int ret = 0;
810
811 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
812 page = alloc_fresh_huge_page_node(h, node);
813 if (page) {
814 ret = 1;
815 break;
816 }
817 }
818
819 if (ret)
820 count_vm_event(HTLB_BUDDY_PGALLOC);
821 else
822 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
823
824 return ret;
825 }
826
827 /*
828 * Free huge page from pool from next node to free.
829 * Attempt to keep persistent huge pages more or less
830 * balanced over allowed nodes.
831 * Called with hugetlb_lock locked.
832 */
833 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
834 bool acct_surplus)
835 {
836 int nr_nodes, node;
837 int ret = 0;
838
839 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
840 /*
841 * If we're returning unused surplus pages, only examine
842 * nodes with surplus pages.
843 */
844 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
845 !list_empty(&h->hugepage_freelists[node])) {
846 struct page *page =
847 list_entry(h->hugepage_freelists[node].next,
848 struct page, lru);
849 list_del(&page->lru);
850 h->free_huge_pages--;
851 h->free_huge_pages_node[node]--;
852 if (acct_surplus) {
853 h->surplus_huge_pages--;
854 h->surplus_huge_pages_node[node]--;
855 }
856 update_and_free_page(h, page);
857 ret = 1;
858 break;
859 }
860 }
861
862 return ret;
863 }
864
865 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
866 {
867 struct page *page;
868 unsigned int r_nid;
869
870 if (h->order >= MAX_ORDER)
871 return NULL;
872
873 /*
874 * Assume we will successfully allocate the surplus page to
875 * prevent racing processes from causing the surplus to exceed
876 * overcommit
877 *
878 * This however introduces a different race, where a process B
879 * tries to grow the static hugepage pool while alloc_pages() is
880 * called by process A. B will only examine the per-node
881 * counters in determining if surplus huge pages can be
882 * converted to normal huge pages in adjust_pool_surplus(). A
883 * won't be able to increment the per-node counter, until the
884 * lock is dropped by B, but B doesn't drop hugetlb_lock until
885 * no more huge pages can be converted from surplus to normal
886 * state (and doesn't try to convert again). Thus, we have a
887 * case where a surplus huge page exists, the pool is grown, and
888 * the surplus huge page still exists after, even though it
889 * should just have been converted to a normal huge page. This
890 * does not leak memory, though, as the hugepage will be freed
891 * once it is out of use. It also does not allow the counters to
892 * go out of whack in adjust_pool_surplus() as we don't modify
893 * the node values until we've gotten the hugepage and only the
894 * per-node value is checked there.
895 */
896 spin_lock(&hugetlb_lock);
897 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
898 spin_unlock(&hugetlb_lock);
899 return NULL;
900 } else {
901 h->nr_huge_pages++;
902 h->surplus_huge_pages++;
903 }
904 spin_unlock(&hugetlb_lock);
905
906 if (nid == NUMA_NO_NODE)
907 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
908 __GFP_REPEAT|__GFP_NOWARN,
909 huge_page_order(h));
910 else
911 page = alloc_pages_exact_node(nid,
912 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
913 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
914
915 if (page && arch_prepare_hugepage(page)) {
916 __free_pages(page, huge_page_order(h));
917 page = NULL;
918 }
919
920 spin_lock(&hugetlb_lock);
921 if (page) {
922 INIT_LIST_HEAD(&page->lru);
923 r_nid = page_to_nid(page);
924 set_compound_page_dtor(page, free_huge_page);
925 set_hugetlb_cgroup(page, NULL);
926 /*
927 * We incremented the global counters already
928 */
929 h->nr_huge_pages_node[r_nid]++;
930 h->surplus_huge_pages_node[r_nid]++;
931 __count_vm_event(HTLB_BUDDY_PGALLOC);
932 } else {
933 h->nr_huge_pages--;
934 h->surplus_huge_pages--;
935 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
936 }
937 spin_unlock(&hugetlb_lock);
938
939 return page;
940 }
941
942 /*
943 * This allocation function is useful in the context where vma is irrelevant.
944 * E.g. soft-offlining uses this function because it only cares physical
945 * address of error page.
946 */
947 struct page *alloc_huge_page_node(struct hstate *h, int nid)
948 {
949 struct page *page;
950
951 spin_lock(&hugetlb_lock);
952 page = dequeue_huge_page_node(h, nid);
953 spin_unlock(&hugetlb_lock);
954
955 if (!page)
956 page = alloc_buddy_huge_page(h, nid);
957
958 return page;
959 }
960
961 /*
962 * Increase the hugetlb pool such that it can accommodate a reservation
963 * of size 'delta'.
964 */
965 static int gather_surplus_pages(struct hstate *h, int delta)
966 {
967 struct list_head surplus_list;
968 struct page *page, *tmp;
969 int ret, i;
970 int needed, allocated;
971 bool alloc_ok = true;
972
973 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
974 if (needed <= 0) {
975 h->resv_huge_pages += delta;
976 return 0;
977 }
978
979 allocated = 0;
980 INIT_LIST_HEAD(&surplus_list);
981
982 ret = -ENOMEM;
983 retry:
984 spin_unlock(&hugetlb_lock);
985 for (i = 0; i < needed; i++) {
986 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
987 if (!page) {
988 alloc_ok = false;
989 break;
990 }
991 list_add(&page->lru, &surplus_list);
992 }
993 allocated += i;
994
995 /*
996 * After retaking hugetlb_lock, we need to recalculate 'needed'
997 * because either resv_huge_pages or free_huge_pages may have changed.
998 */
999 spin_lock(&hugetlb_lock);
1000 needed = (h->resv_huge_pages + delta) -
1001 (h->free_huge_pages + allocated);
1002 if (needed > 0) {
1003 if (alloc_ok)
1004 goto retry;
1005 /*
1006 * We were not able to allocate enough pages to
1007 * satisfy the entire reservation so we free what
1008 * we've allocated so far.
1009 */
1010 goto free;
1011 }
1012 /*
1013 * The surplus_list now contains _at_least_ the number of extra pages
1014 * needed to accommodate the reservation. Add the appropriate number
1015 * of pages to the hugetlb pool and free the extras back to the buddy
1016 * allocator. Commit the entire reservation here to prevent another
1017 * process from stealing the pages as they are added to the pool but
1018 * before they are reserved.
1019 */
1020 needed += allocated;
1021 h->resv_huge_pages += delta;
1022 ret = 0;
1023
1024 /* Free the needed pages to the hugetlb pool */
1025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1026 if ((--needed) < 0)
1027 break;
1028 /*
1029 * This page is now managed by the hugetlb allocator and has
1030 * no users -- drop the buddy allocator's reference.
1031 */
1032 put_page_testzero(page);
1033 VM_BUG_ON(page_count(page));
1034 enqueue_huge_page(h, page);
1035 }
1036 free:
1037 spin_unlock(&hugetlb_lock);
1038
1039 /* Free unnecessary surplus pages to the buddy allocator */
1040 if (!list_empty(&surplus_list)) {
1041 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1042 put_page(page);
1043 }
1044 }
1045 spin_lock(&hugetlb_lock);
1046
1047 return ret;
1048 }
1049
1050 /*
1051 * When releasing a hugetlb pool reservation, any surplus pages that were
1052 * allocated to satisfy the reservation must be explicitly freed if they were
1053 * never used.
1054 * Called with hugetlb_lock held.
1055 */
1056 static void return_unused_surplus_pages(struct hstate *h,
1057 unsigned long unused_resv_pages)
1058 {
1059 unsigned long nr_pages;
1060
1061 /* Uncommit the reservation */
1062 h->resv_huge_pages -= unused_resv_pages;
1063
1064 /* Cannot return gigantic pages currently */
1065 if (h->order >= MAX_ORDER)
1066 return;
1067
1068 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1069
1070 /*
1071 * We want to release as many surplus pages as possible, spread
1072 * evenly across all nodes with memory. Iterate across these nodes
1073 * until we can no longer free unreserved surplus pages. This occurs
1074 * when the nodes with surplus pages have no free pages.
1075 * free_pool_huge_page() will balance the the freed pages across the
1076 * on-line nodes with memory and will handle the hstate accounting.
1077 */
1078 while (nr_pages--) {
1079 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1080 break;
1081 }
1082 }
1083
1084 /*
1085 * Determine if the huge page at addr within the vma has an associated
1086 * reservation. Where it does not we will need to logically increase
1087 * reservation and actually increase subpool usage before an allocation
1088 * can occur. Where any new reservation would be required the
1089 * reservation change is prepared, but not committed. Once the page
1090 * has been allocated from the subpool and instantiated the change should
1091 * be committed via vma_commit_reservation. No action is required on
1092 * failure.
1093 */
1094 static long vma_needs_reservation(struct hstate *h,
1095 struct vm_area_struct *vma, unsigned long addr)
1096 {
1097 struct address_space *mapping = vma->vm_file->f_mapping;
1098 struct inode *inode = mapping->host;
1099
1100 if (vma->vm_flags & VM_MAYSHARE) {
1101 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1102 return region_chg(&inode->i_mapping->private_list,
1103 idx, idx + 1);
1104
1105 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 return 1;
1107
1108 } else {
1109 long err;
1110 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1111 struct resv_map *reservations = vma_resv_map(vma);
1112
1113 err = region_chg(&reservations->regions, idx, idx + 1);
1114 if (err < 0)
1115 return err;
1116 return 0;
1117 }
1118 }
1119 static void vma_commit_reservation(struct hstate *h,
1120 struct vm_area_struct *vma, unsigned long addr)
1121 {
1122 struct address_space *mapping = vma->vm_file->f_mapping;
1123 struct inode *inode = mapping->host;
1124
1125 if (vma->vm_flags & VM_MAYSHARE) {
1126 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1127 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1128
1129 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1130 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1131 struct resv_map *reservations = vma_resv_map(vma);
1132
1133 /* Mark this page used in the map. */
1134 region_add(&reservations->regions, idx, idx + 1);
1135 }
1136 }
1137
1138 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1139 unsigned long addr, int avoid_reserve)
1140 {
1141 struct hugepage_subpool *spool = subpool_vma(vma);
1142 struct hstate *h = hstate_vma(vma);
1143 struct page *page;
1144 long chg;
1145 int ret, idx;
1146 struct hugetlb_cgroup *h_cg;
1147
1148 idx = hstate_index(h);
1149 /*
1150 * Processes that did not create the mapping will have no
1151 * reserves and will not have accounted against subpool
1152 * limit. Check that the subpool limit can be made before
1153 * satisfying the allocation MAP_NORESERVE mappings may also
1154 * need pages and subpool limit allocated allocated if no reserve
1155 * mapping overlaps.
1156 */
1157 chg = vma_needs_reservation(h, vma, addr);
1158 if (chg < 0)
1159 return ERR_PTR(-ENOMEM);
1160 if (chg)
1161 if (hugepage_subpool_get_pages(spool, chg))
1162 return ERR_PTR(-ENOSPC);
1163
1164 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1165 if (ret) {
1166 hugepage_subpool_put_pages(spool, chg);
1167 return ERR_PTR(-ENOSPC);
1168 }
1169 spin_lock(&hugetlb_lock);
1170 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1171 if (!page) {
1172 spin_unlock(&hugetlb_lock);
1173 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1174 if (!page) {
1175 hugetlb_cgroup_uncharge_cgroup(idx,
1176 pages_per_huge_page(h),
1177 h_cg);
1178 hugepage_subpool_put_pages(spool, chg);
1179 return ERR_PTR(-ENOSPC);
1180 }
1181 spin_lock(&hugetlb_lock);
1182 list_move(&page->lru, &h->hugepage_activelist);
1183 /* Fall through */
1184 }
1185 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1186 spin_unlock(&hugetlb_lock);
1187
1188 set_page_private(page, (unsigned long)spool);
1189
1190 vma_commit_reservation(h, vma, addr);
1191 return page;
1192 }
1193
1194 int __weak alloc_bootmem_huge_page(struct hstate *h)
1195 {
1196 struct huge_bootmem_page *m;
1197 int nr_nodes, node;
1198
1199 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1200 void *addr;
1201
1202 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1203 huge_page_size(h), huge_page_size(h), 0);
1204
1205 if (addr) {
1206 /*
1207 * Use the beginning of the huge page to store the
1208 * huge_bootmem_page struct (until gather_bootmem
1209 * puts them into the mem_map).
1210 */
1211 m = addr;
1212 goto found;
1213 }
1214 }
1215 return 0;
1216
1217 found:
1218 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1219 /* Put them into a private list first because mem_map is not up yet */
1220 list_add(&m->list, &huge_boot_pages);
1221 m->hstate = h;
1222 return 1;
1223 }
1224
1225 static void prep_compound_huge_page(struct page *page, int order)
1226 {
1227 if (unlikely(order > (MAX_ORDER - 1)))
1228 prep_compound_gigantic_page(page, order);
1229 else
1230 prep_compound_page(page, order);
1231 }
1232
1233 /* Put bootmem huge pages into the standard lists after mem_map is up */
1234 static void __init gather_bootmem_prealloc(void)
1235 {
1236 struct huge_bootmem_page *m;
1237
1238 list_for_each_entry(m, &huge_boot_pages, list) {
1239 struct hstate *h = m->hstate;
1240 struct page *page;
1241
1242 #ifdef CONFIG_HIGHMEM
1243 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1244 free_bootmem_late((unsigned long)m,
1245 sizeof(struct huge_bootmem_page));
1246 #else
1247 page = virt_to_page(m);
1248 #endif
1249 __ClearPageReserved(page);
1250 WARN_ON(page_count(page) != 1);
1251 prep_compound_huge_page(page, h->order);
1252 prep_new_huge_page(h, page, page_to_nid(page));
1253 /*
1254 * If we had gigantic hugepages allocated at boot time, we need
1255 * to restore the 'stolen' pages to totalram_pages in order to
1256 * fix confusing memory reports from free(1) and another
1257 * side-effects, like CommitLimit going negative.
1258 */
1259 if (h->order > (MAX_ORDER - 1))
1260 adjust_managed_page_count(page, 1 << h->order);
1261 }
1262 }
1263
1264 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1265 {
1266 unsigned long i;
1267
1268 for (i = 0; i < h->max_huge_pages; ++i) {
1269 if (h->order >= MAX_ORDER) {
1270 if (!alloc_bootmem_huge_page(h))
1271 break;
1272 } else if (!alloc_fresh_huge_page(h,
1273 &node_states[N_MEMORY]))
1274 break;
1275 }
1276 h->max_huge_pages = i;
1277 }
1278
1279 static void __init hugetlb_init_hstates(void)
1280 {
1281 struct hstate *h;
1282
1283 for_each_hstate(h) {
1284 /* oversize hugepages were init'ed in early boot */
1285 if (h->order < MAX_ORDER)
1286 hugetlb_hstate_alloc_pages(h);
1287 }
1288 }
1289
1290 static char * __init memfmt(char *buf, unsigned long n)
1291 {
1292 if (n >= (1UL << 30))
1293 sprintf(buf, "%lu GB", n >> 30);
1294 else if (n >= (1UL << 20))
1295 sprintf(buf, "%lu MB", n >> 20);
1296 else
1297 sprintf(buf, "%lu KB", n >> 10);
1298 return buf;
1299 }
1300
1301 static void __init report_hugepages(void)
1302 {
1303 struct hstate *h;
1304
1305 for_each_hstate(h) {
1306 char buf[32];
1307 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1308 memfmt(buf, huge_page_size(h)),
1309 h->free_huge_pages);
1310 }
1311 }
1312
1313 #ifdef CONFIG_HIGHMEM
1314 static void try_to_free_low(struct hstate *h, unsigned long count,
1315 nodemask_t *nodes_allowed)
1316 {
1317 int i;
1318
1319 if (h->order >= MAX_ORDER)
1320 return;
1321
1322 for_each_node_mask(i, *nodes_allowed) {
1323 struct page *page, *next;
1324 struct list_head *freel = &h->hugepage_freelists[i];
1325 list_for_each_entry_safe(page, next, freel, lru) {
1326 if (count >= h->nr_huge_pages)
1327 return;
1328 if (PageHighMem(page))
1329 continue;
1330 list_del(&page->lru);
1331 update_and_free_page(h, page);
1332 h->free_huge_pages--;
1333 h->free_huge_pages_node[page_to_nid(page)]--;
1334 }
1335 }
1336 }
1337 #else
1338 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1339 nodemask_t *nodes_allowed)
1340 {
1341 }
1342 #endif
1343
1344 /*
1345 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1346 * balanced by operating on them in a round-robin fashion.
1347 * Returns 1 if an adjustment was made.
1348 */
1349 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1350 int delta)
1351 {
1352 int nr_nodes, node;
1353
1354 VM_BUG_ON(delta != -1 && delta != 1);
1355
1356 if (delta < 0) {
1357 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 if (h->surplus_huge_pages_node[node])
1359 goto found;
1360 }
1361 } else {
1362 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1363 if (h->surplus_huge_pages_node[node] <
1364 h->nr_huge_pages_node[node])
1365 goto found;
1366 }
1367 }
1368 return 0;
1369
1370 found:
1371 h->surplus_huge_pages += delta;
1372 h->surplus_huge_pages_node[node] += delta;
1373 return 1;
1374 }
1375
1376 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1377 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1378 nodemask_t *nodes_allowed)
1379 {
1380 unsigned long min_count, ret;
1381
1382 if (h->order >= MAX_ORDER)
1383 return h->max_huge_pages;
1384
1385 /*
1386 * Increase the pool size
1387 * First take pages out of surplus state. Then make up the
1388 * remaining difference by allocating fresh huge pages.
1389 *
1390 * We might race with alloc_buddy_huge_page() here and be unable
1391 * to convert a surplus huge page to a normal huge page. That is
1392 * not critical, though, it just means the overall size of the
1393 * pool might be one hugepage larger than it needs to be, but
1394 * within all the constraints specified by the sysctls.
1395 */
1396 spin_lock(&hugetlb_lock);
1397 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1398 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1399 break;
1400 }
1401
1402 while (count > persistent_huge_pages(h)) {
1403 /*
1404 * If this allocation races such that we no longer need the
1405 * page, free_huge_page will handle it by freeing the page
1406 * and reducing the surplus.
1407 */
1408 spin_unlock(&hugetlb_lock);
1409 ret = alloc_fresh_huge_page(h, nodes_allowed);
1410 spin_lock(&hugetlb_lock);
1411 if (!ret)
1412 goto out;
1413
1414 /* Bail for signals. Probably ctrl-c from user */
1415 if (signal_pending(current))
1416 goto out;
1417 }
1418
1419 /*
1420 * Decrease the pool size
1421 * First return free pages to the buddy allocator (being careful
1422 * to keep enough around to satisfy reservations). Then place
1423 * pages into surplus state as needed so the pool will shrink
1424 * to the desired size as pages become free.
1425 *
1426 * By placing pages into the surplus state independent of the
1427 * overcommit value, we are allowing the surplus pool size to
1428 * exceed overcommit. There are few sane options here. Since
1429 * alloc_buddy_huge_page() is checking the global counter,
1430 * though, we'll note that we're not allowed to exceed surplus
1431 * and won't grow the pool anywhere else. Not until one of the
1432 * sysctls are changed, or the surplus pages go out of use.
1433 */
1434 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1435 min_count = max(count, min_count);
1436 try_to_free_low(h, min_count, nodes_allowed);
1437 while (min_count < persistent_huge_pages(h)) {
1438 if (!free_pool_huge_page(h, nodes_allowed, 0))
1439 break;
1440 }
1441 while (count < persistent_huge_pages(h)) {
1442 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1443 break;
1444 }
1445 out:
1446 ret = persistent_huge_pages(h);
1447 spin_unlock(&hugetlb_lock);
1448 return ret;
1449 }
1450
1451 #define HSTATE_ATTR_RO(_name) \
1452 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1453
1454 #define HSTATE_ATTR(_name) \
1455 static struct kobj_attribute _name##_attr = \
1456 __ATTR(_name, 0644, _name##_show, _name##_store)
1457
1458 static struct kobject *hugepages_kobj;
1459 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1460
1461 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1462
1463 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1464 {
1465 int i;
1466
1467 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1468 if (hstate_kobjs[i] == kobj) {
1469 if (nidp)
1470 *nidp = NUMA_NO_NODE;
1471 return &hstates[i];
1472 }
1473
1474 return kobj_to_node_hstate(kobj, nidp);
1475 }
1476
1477 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1478 struct kobj_attribute *attr, char *buf)
1479 {
1480 struct hstate *h;
1481 unsigned long nr_huge_pages;
1482 int nid;
1483
1484 h = kobj_to_hstate(kobj, &nid);
1485 if (nid == NUMA_NO_NODE)
1486 nr_huge_pages = h->nr_huge_pages;
1487 else
1488 nr_huge_pages = h->nr_huge_pages_node[nid];
1489
1490 return sprintf(buf, "%lu\n", nr_huge_pages);
1491 }
1492
1493 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1494 struct kobject *kobj, struct kobj_attribute *attr,
1495 const char *buf, size_t len)
1496 {
1497 int err;
1498 int nid;
1499 unsigned long count;
1500 struct hstate *h;
1501 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1502
1503 err = kstrtoul(buf, 10, &count);
1504 if (err)
1505 goto out;
1506
1507 h = kobj_to_hstate(kobj, &nid);
1508 if (h->order >= MAX_ORDER) {
1509 err = -EINVAL;
1510 goto out;
1511 }
1512
1513 if (nid == NUMA_NO_NODE) {
1514 /*
1515 * global hstate attribute
1516 */
1517 if (!(obey_mempolicy &&
1518 init_nodemask_of_mempolicy(nodes_allowed))) {
1519 NODEMASK_FREE(nodes_allowed);
1520 nodes_allowed = &node_states[N_MEMORY];
1521 }
1522 } else if (nodes_allowed) {
1523 /*
1524 * per node hstate attribute: adjust count to global,
1525 * but restrict alloc/free to the specified node.
1526 */
1527 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1528 init_nodemask_of_node(nodes_allowed, nid);
1529 } else
1530 nodes_allowed = &node_states[N_MEMORY];
1531
1532 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1533
1534 if (nodes_allowed != &node_states[N_MEMORY])
1535 NODEMASK_FREE(nodes_allowed);
1536
1537 return len;
1538 out:
1539 NODEMASK_FREE(nodes_allowed);
1540 return err;
1541 }
1542
1543 static ssize_t nr_hugepages_show(struct kobject *kobj,
1544 struct kobj_attribute *attr, char *buf)
1545 {
1546 return nr_hugepages_show_common(kobj, attr, buf);
1547 }
1548
1549 static ssize_t nr_hugepages_store(struct kobject *kobj,
1550 struct kobj_attribute *attr, const char *buf, size_t len)
1551 {
1552 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1553 }
1554 HSTATE_ATTR(nr_hugepages);
1555
1556 #ifdef CONFIG_NUMA
1557
1558 /*
1559 * hstate attribute for optionally mempolicy-based constraint on persistent
1560 * huge page alloc/free.
1561 */
1562 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1563 struct kobj_attribute *attr, char *buf)
1564 {
1565 return nr_hugepages_show_common(kobj, attr, buf);
1566 }
1567
1568 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1569 struct kobj_attribute *attr, const char *buf, size_t len)
1570 {
1571 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1572 }
1573 HSTATE_ATTR(nr_hugepages_mempolicy);
1574 #endif
1575
1576
1577 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1578 struct kobj_attribute *attr, char *buf)
1579 {
1580 struct hstate *h = kobj_to_hstate(kobj, NULL);
1581 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1582 }
1583
1584 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1585 struct kobj_attribute *attr, const char *buf, size_t count)
1586 {
1587 int err;
1588 unsigned long input;
1589 struct hstate *h = kobj_to_hstate(kobj, NULL);
1590
1591 if (h->order >= MAX_ORDER)
1592 return -EINVAL;
1593
1594 err = kstrtoul(buf, 10, &input);
1595 if (err)
1596 return err;
1597
1598 spin_lock(&hugetlb_lock);
1599 h->nr_overcommit_huge_pages = input;
1600 spin_unlock(&hugetlb_lock);
1601
1602 return count;
1603 }
1604 HSTATE_ATTR(nr_overcommit_hugepages);
1605
1606 static ssize_t free_hugepages_show(struct kobject *kobj,
1607 struct kobj_attribute *attr, char *buf)
1608 {
1609 struct hstate *h;
1610 unsigned long free_huge_pages;
1611 int nid;
1612
1613 h = kobj_to_hstate(kobj, &nid);
1614 if (nid == NUMA_NO_NODE)
1615 free_huge_pages = h->free_huge_pages;
1616 else
1617 free_huge_pages = h->free_huge_pages_node[nid];
1618
1619 return sprintf(buf, "%lu\n", free_huge_pages);
1620 }
1621 HSTATE_ATTR_RO(free_hugepages);
1622
1623 static ssize_t resv_hugepages_show(struct kobject *kobj,
1624 struct kobj_attribute *attr, char *buf)
1625 {
1626 struct hstate *h = kobj_to_hstate(kobj, NULL);
1627 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1628 }
1629 HSTATE_ATTR_RO(resv_hugepages);
1630
1631 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1632 struct kobj_attribute *attr, char *buf)
1633 {
1634 struct hstate *h;
1635 unsigned long surplus_huge_pages;
1636 int nid;
1637
1638 h = kobj_to_hstate(kobj, &nid);
1639 if (nid == NUMA_NO_NODE)
1640 surplus_huge_pages = h->surplus_huge_pages;
1641 else
1642 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1643
1644 return sprintf(buf, "%lu\n", surplus_huge_pages);
1645 }
1646 HSTATE_ATTR_RO(surplus_hugepages);
1647
1648 static struct attribute *hstate_attrs[] = {
1649 &nr_hugepages_attr.attr,
1650 &nr_overcommit_hugepages_attr.attr,
1651 &free_hugepages_attr.attr,
1652 &resv_hugepages_attr.attr,
1653 &surplus_hugepages_attr.attr,
1654 #ifdef CONFIG_NUMA
1655 &nr_hugepages_mempolicy_attr.attr,
1656 #endif
1657 NULL,
1658 };
1659
1660 static struct attribute_group hstate_attr_group = {
1661 .attrs = hstate_attrs,
1662 };
1663
1664 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1665 struct kobject **hstate_kobjs,
1666 struct attribute_group *hstate_attr_group)
1667 {
1668 int retval;
1669 int hi = hstate_index(h);
1670
1671 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1672 if (!hstate_kobjs[hi])
1673 return -ENOMEM;
1674
1675 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1676 if (retval)
1677 kobject_put(hstate_kobjs[hi]);
1678
1679 return retval;
1680 }
1681
1682 static void __init hugetlb_sysfs_init(void)
1683 {
1684 struct hstate *h;
1685 int err;
1686
1687 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1688 if (!hugepages_kobj)
1689 return;
1690
1691 for_each_hstate(h) {
1692 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1693 hstate_kobjs, &hstate_attr_group);
1694 if (err)
1695 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1696 }
1697 }
1698
1699 #ifdef CONFIG_NUMA
1700
1701 /*
1702 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1703 * with node devices in node_devices[] using a parallel array. The array
1704 * index of a node device or _hstate == node id.
1705 * This is here to avoid any static dependency of the node device driver, in
1706 * the base kernel, on the hugetlb module.
1707 */
1708 struct node_hstate {
1709 struct kobject *hugepages_kobj;
1710 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1711 };
1712 struct node_hstate node_hstates[MAX_NUMNODES];
1713
1714 /*
1715 * A subset of global hstate attributes for node devices
1716 */
1717 static struct attribute *per_node_hstate_attrs[] = {
1718 &nr_hugepages_attr.attr,
1719 &free_hugepages_attr.attr,
1720 &surplus_hugepages_attr.attr,
1721 NULL,
1722 };
1723
1724 static struct attribute_group per_node_hstate_attr_group = {
1725 .attrs = per_node_hstate_attrs,
1726 };
1727
1728 /*
1729 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1730 * Returns node id via non-NULL nidp.
1731 */
1732 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1733 {
1734 int nid;
1735
1736 for (nid = 0; nid < nr_node_ids; nid++) {
1737 struct node_hstate *nhs = &node_hstates[nid];
1738 int i;
1739 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1740 if (nhs->hstate_kobjs[i] == kobj) {
1741 if (nidp)
1742 *nidp = nid;
1743 return &hstates[i];
1744 }
1745 }
1746
1747 BUG();
1748 return NULL;
1749 }
1750
1751 /*
1752 * Unregister hstate attributes from a single node device.
1753 * No-op if no hstate attributes attached.
1754 */
1755 static void hugetlb_unregister_node(struct node *node)
1756 {
1757 struct hstate *h;
1758 struct node_hstate *nhs = &node_hstates[node->dev.id];
1759
1760 if (!nhs->hugepages_kobj)
1761 return; /* no hstate attributes */
1762
1763 for_each_hstate(h) {
1764 int idx = hstate_index(h);
1765 if (nhs->hstate_kobjs[idx]) {
1766 kobject_put(nhs->hstate_kobjs[idx]);
1767 nhs->hstate_kobjs[idx] = NULL;
1768 }
1769 }
1770
1771 kobject_put(nhs->hugepages_kobj);
1772 nhs->hugepages_kobj = NULL;
1773 }
1774
1775 /*
1776 * hugetlb module exit: unregister hstate attributes from node devices
1777 * that have them.
1778 */
1779 static void hugetlb_unregister_all_nodes(void)
1780 {
1781 int nid;
1782
1783 /*
1784 * disable node device registrations.
1785 */
1786 register_hugetlbfs_with_node(NULL, NULL);
1787
1788 /*
1789 * remove hstate attributes from any nodes that have them.
1790 */
1791 for (nid = 0; nid < nr_node_ids; nid++)
1792 hugetlb_unregister_node(node_devices[nid]);
1793 }
1794
1795 /*
1796 * Register hstate attributes for a single node device.
1797 * No-op if attributes already registered.
1798 */
1799 static void hugetlb_register_node(struct node *node)
1800 {
1801 struct hstate *h;
1802 struct node_hstate *nhs = &node_hstates[node->dev.id];
1803 int err;
1804
1805 if (nhs->hugepages_kobj)
1806 return; /* already allocated */
1807
1808 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1809 &node->dev.kobj);
1810 if (!nhs->hugepages_kobj)
1811 return;
1812
1813 for_each_hstate(h) {
1814 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1815 nhs->hstate_kobjs,
1816 &per_node_hstate_attr_group);
1817 if (err) {
1818 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1819 h->name, node->dev.id);
1820 hugetlb_unregister_node(node);
1821 break;
1822 }
1823 }
1824 }
1825
1826 /*
1827 * hugetlb init time: register hstate attributes for all registered node
1828 * devices of nodes that have memory. All on-line nodes should have
1829 * registered their associated device by this time.
1830 */
1831 static void hugetlb_register_all_nodes(void)
1832 {
1833 int nid;
1834
1835 for_each_node_state(nid, N_MEMORY) {
1836 struct node *node = node_devices[nid];
1837 if (node->dev.id == nid)
1838 hugetlb_register_node(node);
1839 }
1840
1841 /*
1842 * Let the node device driver know we're here so it can
1843 * [un]register hstate attributes on node hotplug.
1844 */
1845 register_hugetlbfs_with_node(hugetlb_register_node,
1846 hugetlb_unregister_node);
1847 }
1848 #else /* !CONFIG_NUMA */
1849
1850 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1851 {
1852 BUG();
1853 if (nidp)
1854 *nidp = -1;
1855 return NULL;
1856 }
1857
1858 static void hugetlb_unregister_all_nodes(void) { }
1859
1860 static void hugetlb_register_all_nodes(void) { }
1861
1862 #endif
1863
1864 static void __exit hugetlb_exit(void)
1865 {
1866 struct hstate *h;
1867
1868 hugetlb_unregister_all_nodes();
1869
1870 for_each_hstate(h) {
1871 kobject_put(hstate_kobjs[hstate_index(h)]);
1872 }
1873
1874 kobject_put(hugepages_kobj);
1875 }
1876 module_exit(hugetlb_exit);
1877
1878 static int __init hugetlb_init(void)
1879 {
1880 /* Some platform decide whether they support huge pages at boot
1881 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1882 * there is no such support
1883 */
1884 if (HPAGE_SHIFT == 0)
1885 return 0;
1886
1887 if (!size_to_hstate(default_hstate_size)) {
1888 default_hstate_size = HPAGE_SIZE;
1889 if (!size_to_hstate(default_hstate_size))
1890 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1891 }
1892 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1893 if (default_hstate_max_huge_pages)
1894 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1895
1896 hugetlb_init_hstates();
1897 gather_bootmem_prealloc();
1898 report_hugepages();
1899
1900 hugetlb_sysfs_init();
1901 hugetlb_register_all_nodes();
1902 hugetlb_cgroup_file_init();
1903
1904 return 0;
1905 }
1906 module_init(hugetlb_init);
1907
1908 /* Should be called on processing a hugepagesz=... option */
1909 void __init hugetlb_add_hstate(unsigned order)
1910 {
1911 struct hstate *h;
1912 unsigned long i;
1913
1914 if (size_to_hstate(PAGE_SIZE << order)) {
1915 pr_warning("hugepagesz= specified twice, ignoring\n");
1916 return;
1917 }
1918 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1919 BUG_ON(order == 0);
1920 h = &hstates[hugetlb_max_hstate++];
1921 h->order = order;
1922 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1923 h->nr_huge_pages = 0;
1924 h->free_huge_pages = 0;
1925 for (i = 0; i < MAX_NUMNODES; ++i)
1926 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1927 INIT_LIST_HEAD(&h->hugepage_activelist);
1928 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1929 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1930 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1931 huge_page_size(h)/1024);
1932
1933 parsed_hstate = h;
1934 }
1935
1936 static int __init hugetlb_nrpages_setup(char *s)
1937 {
1938 unsigned long *mhp;
1939 static unsigned long *last_mhp;
1940
1941 /*
1942 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1943 * so this hugepages= parameter goes to the "default hstate".
1944 */
1945 if (!hugetlb_max_hstate)
1946 mhp = &default_hstate_max_huge_pages;
1947 else
1948 mhp = &parsed_hstate->max_huge_pages;
1949
1950 if (mhp == last_mhp) {
1951 pr_warning("hugepages= specified twice without "
1952 "interleaving hugepagesz=, ignoring\n");
1953 return 1;
1954 }
1955
1956 if (sscanf(s, "%lu", mhp) <= 0)
1957 *mhp = 0;
1958
1959 /*
1960 * Global state is always initialized later in hugetlb_init.
1961 * But we need to allocate >= MAX_ORDER hstates here early to still
1962 * use the bootmem allocator.
1963 */
1964 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1965 hugetlb_hstate_alloc_pages(parsed_hstate);
1966
1967 last_mhp = mhp;
1968
1969 return 1;
1970 }
1971 __setup("hugepages=", hugetlb_nrpages_setup);
1972
1973 static int __init hugetlb_default_setup(char *s)
1974 {
1975 default_hstate_size = memparse(s, &s);
1976 return 1;
1977 }
1978 __setup("default_hugepagesz=", hugetlb_default_setup);
1979
1980 static unsigned int cpuset_mems_nr(unsigned int *array)
1981 {
1982 int node;
1983 unsigned int nr = 0;
1984
1985 for_each_node_mask(node, cpuset_current_mems_allowed)
1986 nr += array[node];
1987
1988 return nr;
1989 }
1990
1991 #ifdef CONFIG_SYSCTL
1992 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1993 struct ctl_table *table, int write,
1994 void __user *buffer, size_t *length, loff_t *ppos)
1995 {
1996 struct hstate *h = &default_hstate;
1997 unsigned long tmp;
1998 int ret;
1999
2000 tmp = h->max_huge_pages;
2001
2002 if (write && h->order >= MAX_ORDER)
2003 return -EINVAL;
2004
2005 table->data = &tmp;
2006 table->maxlen = sizeof(unsigned long);
2007 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2008 if (ret)
2009 goto out;
2010
2011 if (write) {
2012 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2013 GFP_KERNEL | __GFP_NORETRY);
2014 if (!(obey_mempolicy &&
2015 init_nodemask_of_mempolicy(nodes_allowed))) {
2016 NODEMASK_FREE(nodes_allowed);
2017 nodes_allowed = &node_states[N_MEMORY];
2018 }
2019 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2020
2021 if (nodes_allowed != &node_states[N_MEMORY])
2022 NODEMASK_FREE(nodes_allowed);
2023 }
2024 out:
2025 return ret;
2026 }
2027
2028 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2029 void __user *buffer, size_t *length, loff_t *ppos)
2030 {
2031
2032 return hugetlb_sysctl_handler_common(false, table, write,
2033 buffer, length, ppos);
2034 }
2035
2036 #ifdef CONFIG_NUMA
2037 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2038 void __user *buffer, size_t *length, loff_t *ppos)
2039 {
2040 return hugetlb_sysctl_handler_common(true, table, write,
2041 buffer, length, ppos);
2042 }
2043 #endif /* CONFIG_NUMA */
2044
2045 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2046 void __user *buffer,
2047 size_t *length, loff_t *ppos)
2048 {
2049 proc_dointvec(table, write, buffer, length, ppos);
2050 if (hugepages_treat_as_movable)
2051 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2052 else
2053 htlb_alloc_mask = GFP_HIGHUSER;
2054 return 0;
2055 }
2056
2057 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2058 void __user *buffer,
2059 size_t *length, loff_t *ppos)
2060 {
2061 struct hstate *h = &default_hstate;
2062 unsigned long tmp;
2063 int ret;
2064
2065 tmp = h->nr_overcommit_huge_pages;
2066
2067 if (write && h->order >= MAX_ORDER)
2068 return -EINVAL;
2069
2070 table->data = &tmp;
2071 table->maxlen = sizeof(unsigned long);
2072 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2073 if (ret)
2074 goto out;
2075
2076 if (write) {
2077 spin_lock(&hugetlb_lock);
2078 h->nr_overcommit_huge_pages = tmp;
2079 spin_unlock(&hugetlb_lock);
2080 }
2081 out:
2082 return ret;
2083 }
2084
2085 #endif /* CONFIG_SYSCTL */
2086
2087 void hugetlb_report_meminfo(struct seq_file *m)
2088 {
2089 struct hstate *h = &default_hstate;
2090 seq_printf(m,
2091 "HugePages_Total: %5lu\n"
2092 "HugePages_Free: %5lu\n"
2093 "HugePages_Rsvd: %5lu\n"
2094 "HugePages_Surp: %5lu\n"
2095 "Hugepagesize: %8lu kB\n",
2096 h->nr_huge_pages,
2097 h->free_huge_pages,
2098 h->resv_huge_pages,
2099 h->surplus_huge_pages,
2100 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2101 }
2102
2103 int hugetlb_report_node_meminfo(int nid, char *buf)
2104 {
2105 struct hstate *h = &default_hstate;
2106 return sprintf(buf,
2107 "Node %d HugePages_Total: %5u\n"
2108 "Node %d HugePages_Free: %5u\n"
2109 "Node %d HugePages_Surp: %5u\n",
2110 nid, h->nr_huge_pages_node[nid],
2111 nid, h->free_huge_pages_node[nid],
2112 nid, h->surplus_huge_pages_node[nid]);
2113 }
2114
2115 void hugetlb_show_meminfo(void)
2116 {
2117 struct hstate *h;
2118 int nid;
2119
2120 for_each_node_state(nid, N_MEMORY)
2121 for_each_hstate(h)
2122 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2123 nid,
2124 h->nr_huge_pages_node[nid],
2125 h->free_huge_pages_node[nid],
2126 h->surplus_huge_pages_node[nid],
2127 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2128 }
2129
2130 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2131 unsigned long hugetlb_total_pages(void)
2132 {
2133 struct hstate *h;
2134 unsigned long nr_total_pages = 0;
2135
2136 for_each_hstate(h)
2137 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2138 return nr_total_pages;
2139 }
2140
2141 static int hugetlb_acct_memory(struct hstate *h, long delta)
2142 {
2143 int ret = -ENOMEM;
2144
2145 spin_lock(&hugetlb_lock);
2146 /*
2147 * When cpuset is configured, it breaks the strict hugetlb page
2148 * reservation as the accounting is done on a global variable. Such
2149 * reservation is completely rubbish in the presence of cpuset because
2150 * the reservation is not checked against page availability for the
2151 * current cpuset. Application can still potentially OOM'ed by kernel
2152 * with lack of free htlb page in cpuset that the task is in.
2153 * Attempt to enforce strict accounting with cpuset is almost
2154 * impossible (or too ugly) because cpuset is too fluid that
2155 * task or memory node can be dynamically moved between cpusets.
2156 *
2157 * The change of semantics for shared hugetlb mapping with cpuset is
2158 * undesirable. However, in order to preserve some of the semantics,
2159 * we fall back to check against current free page availability as
2160 * a best attempt and hopefully to minimize the impact of changing
2161 * semantics that cpuset has.
2162 */
2163 if (delta > 0) {
2164 if (gather_surplus_pages(h, delta) < 0)
2165 goto out;
2166
2167 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2168 return_unused_surplus_pages(h, delta);
2169 goto out;
2170 }
2171 }
2172
2173 ret = 0;
2174 if (delta < 0)
2175 return_unused_surplus_pages(h, (unsigned long) -delta);
2176
2177 out:
2178 spin_unlock(&hugetlb_lock);
2179 return ret;
2180 }
2181
2182 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2183 {
2184 struct resv_map *reservations = vma_resv_map(vma);
2185
2186 /*
2187 * This new VMA should share its siblings reservation map if present.
2188 * The VMA will only ever have a valid reservation map pointer where
2189 * it is being copied for another still existing VMA. As that VMA
2190 * has a reference to the reservation map it cannot disappear until
2191 * after this open call completes. It is therefore safe to take a
2192 * new reference here without additional locking.
2193 */
2194 if (reservations)
2195 kref_get(&reservations->refs);
2196 }
2197
2198 static void resv_map_put(struct vm_area_struct *vma)
2199 {
2200 struct resv_map *reservations = vma_resv_map(vma);
2201
2202 if (!reservations)
2203 return;
2204 kref_put(&reservations->refs, resv_map_release);
2205 }
2206
2207 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2208 {
2209 struct hstate *h = hstate_vma(vma);
2210 struct resv_map *reservations = vma_resv_map(vma);
2211 struct hugepage_subpool *spool = subpool_vma(vma);
2212 unsigned long reserve;
2213 unsigned long start;
2214 unsigned long end;
2215
2216 if (reservations) {
2217 start = vma_hugecache_offset(h, vma, vma->vm_start);
2218 end = vma_hugecache_offset(h, vma, vma->vm_end);
2219
2220 reserve = (end - start) -
2221 region_count(&reservations->regions, start, end);
2222
2223 resv_map_put(vma);
2224
2225 if (reserve) {
2226 hugetlb_acct_memory(h, -reserve);
2227 hugepage_subpool_put_pages(spool, reserve);
2228 }
2229 }
2230 }
2231
2232 /*
2233 * We cannot handle pagefaults against hugetlb pages at all. They cause
2234 * handle_mm_fault() to try to instantiate regular-sized pages in the
2235 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2236 * this far.
2237 */
2238 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2239 {
2240 BUG();
2241 return 0;
2242 }
2243
2244 const struct vm_operations_struct hugetlb_vm_ops = {
2245 .fault = hugetlb_vm_op_fault,
2246 .open = hugetlb_vm_op_open,
2247 .close = hugetlb_vm_op_close,
2248 };
2249
2250 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2251 int writable)
2252 {
2253 pte_t entry;
2254
2255 if (writable) {
2256 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2257 vma->vm_page_prot)));
2258 } else {
2259 entry = huge_pte_wrprotect(mk_huge_pte(page,
2260 vma->vm_page_prot));
2261 }
2262 entry = pte_mkyoung(entry);
2263 entry = pte_mkhuge(entry);
2264 entry = arch_make_huge_pte(entry, vma, page, writable);
2265
2266 return entry;
2267 }
2268
2269 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2270 unsigned long address, pte_t *ptep)
2271 {
2272 pte_t entry;
2273
2274 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2275 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2276 update_mmu_cache(vma, address, ptep);
2277 }
2278
2279
2280 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2281 struct vm_area_struct *vma)
2282 {
2283 pte_t *src_pte, *dst_pte, entry;
2284 struct page *ptepage;
2285 unsigned long addr;
2286 int cow;
2287 struct hstate *h = hstate_vma(vma);
2288 unsigned long sz = huge_page_size(h);
2289
2290 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2291
2292 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2293 src_pte = huge_pte_offset(src, addr);
2294 if (!src_pte)
2295 continue;
2296 dst_pte = huge_pte_alloc(dst, addr, sz);
2297 if (!dst_pte)
2298 goto nomem;
2299
2300 /* If the pagetables are shared don't copy or take references */
2301 if (dst_pte == src_pte)
2302 continue;
2303
2304 spin_lock(&dst->page_table_lock);
2305 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2306 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2307 if (cow)
2308 huge_ptep_set_wrprotect(src, addr, src_pte);
2309 entry = huge_ptep_get(src_pte);
2310 ptepage = pte_page(entry);
2311 get_page(ptepage);
2312 page_dup_rmap(ptepage);
2313 set_huge_pte_at(dst, addr, dst_pte, entry);
2314 }
2315 spin_unlock(&src->page_table_lock);
2316 spin_unlock(&dst->page_table_lock);
2317 }
2318 return 0;
2319
2320 nomem:
2321 return -ENOMEM;
2322 }
2323
2324 static int is_hugetlb_entry_migration(pte_t pte)
2325 {
2326 swp_entry_t swp;
2327
2328 if (huge_pte_none(pte) || pte_present(pte))
2329 return 0;
2330 swp = pte_to_swp_entry(pte);
2331 if (non_swap_entry(swp) && is_migration_entry(swp))
2332 return 1;
2333 else
2334 return 0;
2335 }
2336
2337 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2338 {
2339 swp_entry_t swp;
2340
2341 if (huge_pte_none(pte) || pte_present(pte))
2342 return 0;
2343 swp = pte_to_swp_entry(pte);
2344 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2345 return 1;
2346 else
2347 return 0;
2348 }
2349
2350 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2351 unsigned long start, unsigned long end,
2352 struct page *ref_page)
2353 {
2354 int force_flush = 0;
2355 struct mm_struct *mm = vma->vm_mm;
2356 unsigned long address;
2357 pte_t *ptep;
2358 pte_t pte;
2359 struct page *page;
2360 struct hstate *h = hstate_vma(vma);
2361 unsigned long sz = huge_page_size(h);
2362 const unsigned long mmun_start = start; /* For mmu_notifiers */
2363 const unsigned long mmun_end = end; /* For mmu_notifiers */
2364
2365 WARN_ON(!is_vm_hugetlb_page(vma));
2366 BUG_ON(start & ~huge_page_mask(h));
2367 BUG_ON(end & ~huge_page_mask(h));
2368
2369 tlb_start_vma(tlb, vma);
2370 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2371 again:
2372 spin_lock(&mm->page_table_lock);
2373 for (address = start; address < end; address += sz) {
2374 ptep = huge_pte_offset(mm, address);
2375 if (!ptep)
2376 continue;
2377
2378 if (huge_pmd_unshare(mm, &address, ptep))
2379 continue;
2380
2381 pte = huge_ptep_get(ptep);
2382 if (huge_pte_none(pte))
2383 continue;
2384
2385 /*
2386 * HWPoisoned hugepage is already unmapped and dropped reference
2387 */
2388 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2389 huge_pte_clear(mm, address, ptep);
2390 continue;
2391 }
2392
2393 page = pte_page(pte);
2394 /*
2395 * If a reference page is supplied, it is because a specific
2396 * page is being unmapped, not a range. Ensure the page we
2397 * are about to unmap is the actual page of interest.
2398 */
2399 if (ref_page) {
2400 if (page != ref_page)
2401 continue;
2402
2403 /*
2404 * Mark the VMA as having unmapped its page so that
2405 * future faults in this VMA will fail rather than
2406 * looking like data was lost
2407 */
2408 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2409 }
2410
2411 pte = huge_ptep_get_and_clear(mm, address, ptep);
2412 tlb_remove_tlb_entry(tlb, ptep, address);
2413 if (huge_pte_dirty(pte))
2414 set_page_dirty(page);
2415
2416 page_remove_rmap(page);
2417 force_flush = !__tlb_remove_page(tlb, page);
2418 if (force_flush)
2419 break;
2420 /* Bail out after unmapping reference page if supplied */
2421 if (ref_page)
2422 break;
2423 }
2424 spin_unlock(&mm->page_table_lock);
2425 /*
2426 * mmu_gather ran out of room to batch pages, we break out of
2427 * the PTE lock to avoid doing the potential expensive TLB invalidate
2428 * and page-free while holding it.
2429 */
2430 if (force_flush) {
2431 force_flush = 0;
2432 tlb_flush_mmu(tlb);
2433 if (address < end && !ref_page)
2434 goto again;
2435 }
2436 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437 tlb_end_vma(tlb, vma);
2438 }
2439
2440 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2441 struct vm_area_struct *vma, unsigned long start,
2442 unsigned long end, struct page *ref_page)
2443 {
2444 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2445
2446 /*
2447 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2448 * test will fail on a vma being torn down, and not grab a page table
2449 * on its way out. We're lucky that the flag has such an appropriate
2450 * name, and can in fact be safely cleared here. We could clear it
2451 * before the __unmap_hugepage_range above, but all that's necessary
2452 * is to clear it before releasing the i_mmap_mutex. This works
2453 * because in the context this is called, the VMA is about to be
2454 * destroyed and the i_mmap_mutex is held.
2455 */
2456 vma->vm_flags &= ~VM_MAYSHARE;
2457 }
2458
2459 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2460 unsigned long end, struct page *ref_page)
2461 {
2462 struct mm_struct *mm;
2463 struct mmu_gather tlb;
2464
2465 mm = vma->vm_mm;
2466
2467 tlb_gather_mmu(&tlb, mm, start, end);
2468 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2469 tlb_finish_mmu(&tlb, start, end);
2470 }
2471
2472 /*
2473 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2474 * mappping it owns the reserve page for. The intention is to unmap the page
2475 * from other VMAs and let the children be SIGKILLed if they are faulting the
2476 * same region.
2477 */
2478 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2479 struct page *page, unsigned long address)
2480 {
2481 struct hstate *h = hstate_vma(vma);
2482 struct vm_area_struct *iter_vma;
2483 struct address_space *mapping;
2484 pgoff_t pgoff;
2485
2486 /*
2487 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2488 * from page cache lookup which is in HPAGE_SIZE units.
2489 */
2490 address = address & huge_page_mask(h);
2491 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2492 vma->vm_pgoff;
2493 mapping = file_inode(vma->vm_file)->i_mapping;
2494
2495 /*
2496 * Take the mapping lock for the duration of the table walk. As
2497 * this mapping should be shared between all the VMAs,
2498 * __unmap_hugepage_range() is called as the lock is already held
2499 */
2500 mutex_lock(&mapping->i_mmap_mutex);
2501 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2502 /* Do not unmap the current VMA */
2503 if (iter_vma == vma)
2504 continue;
2505
2506 /*
2507 * Unmap the page from other VMAs without their own reserves.
2508 * They get marked to be SIGKILLed if they fault in these
2509 * areas. This is because a future no-page fault on this VMA
2510 * could insert a zeroed page instead of the data existing
2511 * from the time of fork. This would look like data corruption
2512 */
2513 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2514 unmap_hugepage_range(iter_vma, address,
2515 address + huge_page_size(h), page);
2516 }
2517 mutex_unlock(&mapping->i_mmap_mutex);
2518
2519 return 1;
2520 }
2521
2522 /*
2523 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2524 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2525 * cannot race with other handlers or page migration.
2526 * Keep the pte_same checks anyway to make transition from the mutex easier.
2527 */
2528 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2529 unsigned long address, pte_t *ptep, pte_t pte,
2530 struct page *pagecache_page)
2531 {
2532 struct hstate *h = hstate_vma(vma);
2533 struct page *old_page, *new_page;
2534 int avoidcopy;
2535 int outside_reserve = 0;
2536 unsigned long mmun_start; /* For mmu_notifiers */
2537 unsigned long mmun_end; /* For mmu_notifiers */
2538
2539 old_page = pte_page(pte);
2540
2541 retry_avoidcopy:
2542 /* If no-one else is actually using this page, avoid the copy
2543 * and just make the page writable */
2544 avoidcopy = (page_mapcount(old_page) == 1);
2545 if (avoidcopy) {
2546 if (PageAnon(old_page))
2547 page_move_anon_rmap(old_page, vma, address);
2548 set_huge_ptep_writable(vma, address, ptep);
2549 return 0;
2550 }
2551
2552 /*
2553 * If the process that created a MAP_PRIVATE mapping is about to
2554 * perform a COW due to a shared page count, attempt to satisfy
2555 * the allocation without using the existing reserves. The pagecache
2556 * page is used to determine if the reserve at this address was
2557 * consumed or not. If reserves were used, a partial faulted mapping
2558 * at the time of fork() could consume its reserves on COW instead
2559 * of the full address range.
2560 */
2561 if (!(vma->vm_flags & VM_MAYSHARE) &&
2562 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2563 old_page != pagecache_page)
2564 outside_reserve = 1;
2565
2566 page_cache_get(old_page);
2567
2568 /* Drop page_table_lock as buddy allocator may be called */
2569 spin_unlock(&mm->page_table_lock);
2570 new_page = alloc_huge_page(vma, address, outside_reserve);
2571
2572 if (IS_ERR(new_page)) {
2573 long err = PTR_ERR(new_page);
2574 page_cache_release(old_page);
2575
2576 /*
2577 * If a process owning a MAP_PRIVATE mapping fails to COW,
2578 * it is due to references held by a child and an insufficient
2579 * huge page pool. To guarantee the original mappers
2580 * reliability, unmap the page from child processes. The child
2581 * may get SIGKILLed if it later faults.
2582 */
2583 if (outside_reserve) {
2584 BUG_ON(huge_pte_none(pte));
2585 if (unmap_ref_private(mm, vma, old_page, address)) {
2586 BUG_ON(huge_pte_none(pte));
2587 spin_lock(&mm->page_table_lock);
2588 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2589 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2590 goto retry_avoidcopy;
2591 /*
2592 * race occurs while re-acquiring page_table_lock, and
2593 * our job is done.
2594 */
2595 return 0;
2596 }
2597 WARN_ON_ONCE(1);
2598 }
2599
2600 /* Caller expects lock to be held */
2601 spin_lock(&mm->page_table_lock);
2602 if (err == -ENOMEM)
2603 return VM_FAULT_OOM;
2604 else
2605 return VM_FAULT_SIGBUS;
2606 }
2607
2608 /*
2609 * When the original hugepage is shared one, it does not have
2610 * anon_vma prepared.
2611 */
2612 if (unlikely(anon_vma_prepare(vma))) {
2613 page_cache_release(new_page);
2614 page_cache_release(old_page);
2615 /* Caller expects lock to be held */
2616 spin_lock(&mm->page_table_lock);
2617 return VM_FAULT_OOM;
2618 }
2619
2620 copy_user_huge_page(new_page, old_page, address, vma,
2621 pages_per_huge_page(h));
2622 __SetPageUptodate(new_page);
2623
2624 mmun_start = address & huge_page_mask(h);
2625 mmun_end = mmun_start + huge_page_size(h);
2626 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2627 /*
2628 * Retake the page_table_lock to check for racing updates
2629 * before the page tables are altered
2630 */
2631 spin_lock(&mm->page_table_lock);
2632 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2633 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2634 /* Break COW */
2635 huge_ptep_clear_flush(vma, address, ptep);
2636 set_huge_pte_at(mm, address, ptep,
2637 make_huge_pte(vma, new_page, 1));
2638 page_remove_rmap(old_page);
2639 hugepage_add_new_anon_rmap(new_page, vma, address);
2640 /* Make the old page be freed below */
2641 new_page = old_page;
2642 }
2643 spin_unlock(&mm->page_table_lock);
2644 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2645 /* Caller expects lock to be held */
2646 spin_lock(&mm->page_table_lock);
2647 page_cache_release(new_page);
2648 page_cache_release(old_page);
2649 return 0;
2650 }
2651
2652 /* Return the pagecache page at a given address within a VMA */
2653 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2654 struct vm_area_struct *vma, unsigned long address)
2655 {
2656 struct address_space *mapping;
2657 pgoff_t idx;
2658
2659 mapping = vma->vm_file->f_mapping;
2660 idx = vma_hugecache_offset(h, vma, address);
2661
2662 return find_lock_page(mapping, idx);
2663 }
2664
2665 /*
2666 * Return whether there is a pagecache page to back given address within VMA.
2667 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2668 */
2669 static bool hugetlbfs_pagecache_present(struct hstate *h,
2670 struct vm_area_struct *vma, unsigned long address)
2671 {
2672 struct address_space *mapping;
2673 pgoff_t idx;
2674 struct page *page;
2675
2676 mapping = vma->vm_file->f_mapping;
2677 idx = vma_hugecache_offset(h, vma, address);
2678
2679 page = find_get_page(mapping, idx);
2680 if (page)
2681 put_page(page);
2682 return page != NULL;
2683 }
2684
2685 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2686 unsigned long address, pte_t *ptep, unsigned int flags)
2687 {
2688 struct hstate *h = hstate_vma(vma);
2689 int ret = VM_FAULT_SIGBUS;
2690 int anon_rmap = 0;
2691 pgoff_t idx;
2692 unsigned long size;
2693 struct page *page;
2694 struct address_space *mapping;
2695 pte_t new_pte;
2696
2697 /*
2698 * Currently, we are forced to kill the process in the event the
2699 * original mapper has unmapped pages from the child due to a failed
2700 * COW. Warn that such a situation has occurred as it may not be obvious
2701 */
2702 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2703 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2704 current->pid);
2705 return ret;
2706 }
2707
2708 mapping = vma->vm_file->f_mapping;
2709 idx = vma_hugecache_offset(h, vma, address);
2710
2711 /*
2712 * Use page lock to guard against racing truncation
2713 * before we get page_table_lock.
2714 */
2715 retry:
2716 page = find_lock_page(mapping, idx);
2717 if (!page) {
2718 size = i_size_read(mapping->host) >> huge_page_shift(h);
2719 if (idx >= size)
2720 goto out;
2721 page = alloc_huge_page(vma, address, 0);
2722 if (IS_ERR(page)) {
2723 ret = PTR_ERR(page);
2724 if (ret == -ENOMEM)
2725 ret = VM_FAULT_OOM;
2726 else
2727 ret = VM_FAULT_SIGBUS;
2728 goto out;
2729 }
2730 clear_huge_page(page, address, pages_per_huge_page(h));
2731 __SetPageUptodate(page);
2732
2733 if (vma->vm_flags & VM_MAYSHARE) {
2734 int err;
2735 struct inode *inode = mapping->host;
2736
2737 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2738 if (err) {
2739 put_page(page);
2740 if (err == -EEXIST)
2741 goto retry;
2742 goto out;
2743 }
2744
2745 spin_lock(&inode->i_lock);
2746 inode->i_blocks += blocks_per_huge_page(h);
2747 spin_unlock(&inode->i_lock);
2748 } else {
2749 lock_page(page);
2750 if (unlikely(anon_vma_prepare(vma))) {
2751 ret = VM_FAULT_OOM;
2752 goto backout_unlocked;
2753 }
2754 anon_rmap = 1;
2755 }
2756 } else {
2757 /*
2758 * If memory error occurs between mmap() and fault, some process
2759 * don't have hwpoisoned swap entry for errored virtual address.
2760 * So we need to block hugepage fault by PG_hwpoison bit check.
2761 */
2762 if (unlikely(PageHWPoison(page))) {
2763 ret = VM_FAULT_HWPOISON |
2764 VM_FAULT_SET_HINDEX(hstate_index(h));
2765 goto backout_unlocked;
2766 }
2767 }
2768
2769 /*
2770 * If we are going to COW a private mapping later, we examine the
2771 * pending reservations for this page now. This will ensure that
2772 * any allocations necessary to record that reservation occur outside
2773 * the spinlock.
2774 */
2775 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2776 if (vma_needs_reservation(h, vma, address) < 0) {
2777 ret = VM_FAULT_OOM;
2778 goto backout_unlocked;
2779 }
2780
2781 spin_lock(&mm->page_table_lock);
2782 size = i_size_read(mapping->host) >> huge_page_shift(h);
2783 if (idx >= size)
2784 goto backout;
2785
2786 ret = 0;
2787 if (!huge_pte_none(huge_ptep_get(ptep)))
2788 goto backout;
2789
2790 if (anon_rmap)
2791 hugepage_add_new_anon_rmap(page, vma, address);
2792 else
2793 page_dup_rmap(page);
2794 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2795 && (vma->vm_flags & VM_SHARED)));
2796 set_huge_pte_at(mm, address, ptep, new_pte);
2797
2798 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2799 /* Optimization, do the COW without a second fault */
2800 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2801 }
2802
2803 spin_unlock(&mm->page_table_lock);
2804 unlock_page(page);
2805 out:
2806 return ret;
2807
2808 backout:
2809 spin_unlock(&mm->page_table_lock);
2810 backout_unlocked:
2811 unlock_page(page);
2812 put_page(page);
2813 goto out;
2814 }
2815
2816 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2817 unsigned long address, unsigned int flags)
2818 {
2819 pte_t *ptep;
2820 pte_t entry;
2821 int ret;
2822 struct page *page = NULL;
2823 struct page *pagecache_page = NULL;
2824 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2825 struct hstate *h = hstate_vma(vma);
2826
2827 address &= huge_page_mask(h);
2828
2829 ptep = huge_pte_offset(mm, address);
2830 if (ptep) {
2831 entry = huge_ptep_get(ptep);
2832 if (unlikely(is_hugetlb_entry_migration(entry))) {
2833 migration_entry_wait_huge(mm, ptep);
2834 return 0;
2835 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2836 return VM_FAULT_HWPOISON_LARGE |
2837 VM_FAULT_SET_HINDEX(hstate_index(h));
2838 }
2839
2840 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2841 if (!ptep)
2842 return VM_FAULT_OOM;
2843
2844 /*
2845 * Serialize hugepage allocation and instantiation, so that we don't
2846 * get spurious allocation failures if two CPUs race to instantiate
2847 * the same page in the page cache.
2848 */
2849 mutex_lock(&hugetlb_instantiation_mutex);
2850 entry = huge_ptep_get(ptep);
2851 if (huge_pte_none(entry)) {
2852 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2853 goto out_mutex;
2854 }
2855
2856 ret = 0;
2857
2858 /*
2859 * If we are going to COW the mapping later, we examine the pending
2860 * reservations for this page now. This will ensure that any
2861 * allocations necessary to record that reservation occur outside the
2862 * spinlock. For private mappings, we also lookup the pagecache
2863 * page now as it is used to determine if a reservation has been
2864 * consumed.
2865 */
2866 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2867 if (vma_needs_reservation(h, vma, address) < 0) {
2868 ret = VM_FAULT_OOM;
2869 goto out_mutex;
2870 }
2871
2872 if (!(vma->vm_flags & VM_MAYSHARE))
2873 pagecache_page = hugetlbfs_pagecache_page(h,
2874 vma, address);
2875 }
2876
2877 /*
2878 * hugetlb_cow() requires page locks of pte_page(entry) and
2879 * pagecache_page, so here we need take the former one
2880 * when page != pagecache_page or !pagecache_page.
2881 * Note that locking order is always pagecache_page -> page,
2882 * so no worry about deadlock.
2883 */
2884 page = pte_page(entry);
2885 get_page(page);
2886 if (page != pagecache_page)
2887 lock_page(page);
2888
2889 spin_lock(&mm->page_table_lock);
2890 /* Check for a racing update before calling hugetlb_cow */
2891 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2892 goto out_page_table_lock;
2893
2894
2895 if (flags & FAULT_FLAG_WRITE) {
2896 if (!huge_pte_write(entry)) {
2897 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2898 pagecache_page);
2899 goto out_page_table_lock;
2900 }
2901 entry = huge_pte_mkdirty(entry);
2902 }
2903 entry = pte_mkyoung(entry);
2904 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2905 flags & FAULT_FLAG_WRITE))
2906 update_mmu_cache(vma, address, ptep);
2907
2908 out_page_table_lock:
2909 spin_unlock(&mm->page_table_lock);
2910
2911 if (pagecache_page) {
2912 unlock_page(pagecache_page);
2913 put_page(pagecache_page);
2914 }
2915 if (page != pagecache_page)
2916 unlock_page(page);
2917 put_page(page);
2918
2919 out_mutex:
2920 mutex_unlock(&hugetlb_instantiation_mutex);
2921
2922 return ret;
2923 }
2924
2925 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2926 struct page **pages, struct vm_area_struct **vmas,
2927 unsigned long *position, unsigned long *nr_pages,
2928 long i, unsigned int flags)
2929 {
2930 unsigned long pfn_offset;
2931 unsigned long vaddr = *position;
2932 unsigned long remainder = *nr_pages;
2933 struct hstate *h = hstate_vma(vma);
2934
2935 spin_lock(&mm->page_table_lock);
2936 while (vaddr < vma->vm_end && remainder) {
2937 pte_t *pte;
2938 int absent;
2939 struct page *page;
2940
2941 /*
2942 * Some archs (sparc64, sh*) have multiple pte_ts to
2943 * each hugepage. We have to make sure we get the
2944 * first, for the page indexing below to work.
2945 */
2946 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2947 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2948
2949 /*
2950 * When coredumping, it suits get_dump_page if we just return
2951 * an error where there's an empty slot with no huge pagecache
2952 * to back it. This way, we avoid allocating a hugepage, and
2953 * the sparse dumpfile avoids allocating disk blocks, but its
2954 * huge holes still show up with zeroes where they need to be.
2955 */
2956 if (absent && (flags & FOLL_DUMP) &&
2957 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2958 remainder = 0;
2959 break;
2960 }
2961
2962 /*
2963 * We need call hugetlb_fault for both hugepages under migration
2964 * (in which case hugetlb_fault waits for the migration,) and
2965 * hwpoisoned hugepages (in which case we need to prevent the
2966 * caller from accessing to them.) In order to do this, we use
2967 * here is_swap_pte instead of is_hugetlb_entry_migration and
2968 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2969 * both cases, and because we can't follow correct pages
2970 * directly from any kind of swap entries.
2971 */
2972 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2973 ((flags & FOLL_WRITE) &&
2974 !huge_pte_write(huge_ptep_get(pte)))) {
2975 int ret;
2976
2977 spin_unlock(&mm->page_table_lock);
2978 ret = hugetlb_fault(mm, vma, vaddr,
2979 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2980 spin_lock(&mm->page_table_lock);
2981 if (!(ret & VM_FAULT_ERROR))
2982 continue;
2983
2984 remainder = 0;
2985 break;
2986 }
2987
2988 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2989 page = pte_page(huge_ptep_get(pte));
2990 same_page:
2991 if (pages) {
2992 pages[i] = mem_map_offset(page, pfn_offset);
2993 get_page(pages[i]);
2994 }
2995
2996 if (vmas)
2997 vmas[i] = vma;
2998
2999 vaddr += PAGE_SIZE;
3000 ++pfn_offset;
3001 --remainder;
3002 ++i;
3003 if (vaddr < vma->vm_end && remainder &&
3004 pfn_offset < pages_per_huge_page(h)) {
3005 /*
3006 * We use pfn_offset to avoid touching the pageframes
3007 * of this compound page.
3008 */
3009 goto same_page;
3010 }
3011 }
3012 spin_unlock(&mm->page_table_lock);
3013 *nr_pages = remainder;
3014 *position = vaddr;
3015
3016 return i ? i : -EFAULT;
3017 }
3018
3019 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3020 unsigned long address, unsigned long end, pgprot_t newprot)
3021 {
3022 struct mm_struct *mm = vma->vm_mm;
3023 unsigned long start = address;
3024 pte_t *ptep;
3025 pte_t pte;
3026 struct hstate *h = hstate_vma(vma);
3027 unsigned long pages = 0;
3028
3029 BUG_ON(address >= end);
3030 flush_cache_range(vma, address, end);
3031
3032 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3033 spin_lock(&mm->page_table_lock);
3034 for (; address < end; address += huge_page_size(h)) {
3035 ptep = huge_pte_offset(mm, address);
3036 if (!ptep)
3037 continue;
3038 if (huge_pmd_unshare(mm, &address, ptep)) {
3039 pages++;
3040 continue;
3041 }
3042 if (!huge_pte_none(huge_ptep_get(ptep))) {
3043 pte = huge_ptep_get_and_clear(mm, address, ptep);
3044 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3045 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3046 set_huge_pte_at(mm, address, ptep, pte);
3047 pages++;
3048 }
3049 }
3050 spin_unlock(&mm->page_table_lock);
3051 /*
3052 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3053 * may have cleared our pud entry and done put_page on the page table:
3054 * once we release i_mmap_mutex, another task can do the final put_page
3055 * and that page table be reused and filled with junk.
3056 */
3057 flush_tlb_range(vma, start, end);
3058 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3059
3060 return pages << h->order;
3061 }
3062
3063 int hugetlb_reserve_pages(struct inode *inode,
3064 long from, long to,
3065 struct vm_area_struct *vma,
3066 vm_flags_t vm_flags)
3067 {
3068 long ret, chg;
3069 struct hstate *h = hstate_inode(inode);
3070 struct hugepage_subpool *spool = subpool_inode(inode);
3071
3072 /*
3073 * Only apply hugepage reservation if asked. At fault time, an
3074 * attempt will be made for VM_NORESERVE to allocate a page
3075 * without using reserves
3076 */
3077 if (vm_flags & VM_NORESERVE)
3078 return 0;
3079
3080 /*
3081 * Shared mappings base their reservation on the number of pages that
3082 * are already allocated on behalf of the file. Private mappings need
3083 * to reserve the full area even if read-only as mprotect() may be
3084 * called to make the mapping read-write. Assume !vma is a shm mapping
3085 */
3086 if (!vma || vma->vm_flags & VM_MAYSHARE)
3087 chg = region_chg(&inode->i_mapping->private_list, from, to);
3088 else {
3089 struct resv_map *resv_map = resv_map_alloc();
3090 if (!resv_map)
3091 return -ENOMEM;
3092
3093 chg = to - from;
3094
3095 set_vma_resv_map(vma, resv_map);
3096 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3097 }
3098
3099 if (chg < 0) {
3100 ret = chg;
3101 goto out_err;
3102 }
3103
3104 /* There must be enough pages in the subpool for the mapping */
3105 if (hugepage_subpool_get_pages(spool, chg)) {
3106 ret = -ENOSPC;
3107 goto out_err;
3108 }
3109
3110 /*
3111 * Check enough hugepages are available for the reservation.
3112 * Hand the pages back to the subpool if there are not
3113 */
3114 ret = hugetlb_acct_memory(h, chg);
3115 if (ret < 0) {
3116 hugepage_subpool_put_pages(spool, chg);
3117 goto out_err;
3118 }
3119
3120 /*
3121 * Account for the reservations made. Shared mappings record regions
3122 * that have reservations as they are shared by multiple VMAs.
3123 * When the last VMA disappears, the region map says how much
3124 * the reservation was and the page cache tells how much of
3125 * the reservation was consumed. Private mappings are per-VMA and
3126 * only the consumed reservations are tracked. When the VMA
3127 * disappears, the original reservation is the VMA size and the
3128 * consumed reservations are stored in the map. Hence, nothing
3129 * else has to be done for private mappings here
3130 */
3131 if (!vma || vma->vm_flags & VM_MAYSHARE)
3132 region_add(&inode->i_mapping->private_list, from, to);
3133 return 0;
3134 out_err:
3135 if (vma)
3136 resv_map_put(vma);
3137 return ret;
3138 }
3139
3140 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3141 {
3142 struct hstate *h = hstate_inode(inode);
3143 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3144 struct hugepage_subpool *spool = subpool_inode(inode);
3145
3146 spin_lock(&inode->i_lock);
3147 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3148 spin_unlock(&inode->i_lock);
3149
3150 hugepage_subpool_put_pages(spool, (chg - freed));
3151 hugetlb_acct_memory(h, -(chg - freed));
3152 }
3153
3154 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3155 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3156 struct vm_area_struct *vma,
3157 unsigned long addr, pgoff_t idx)
3158 {
3159 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3160 svma->vm_start;
3161 unsigned long sbase = saddr & PUD_MASK;
3162 unsigned long s_end = sbase + PUD_SIZE;
3163
3164 /* Allow segments to share if only one is marked locked */
3165 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3166 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3167
3168 /*
3169 * match the virtual addresses, permission and the alignment of the
3170 * page table page.
3171 */
3172 if (pmd_index(addr) != pmd_index(saddr) ||
3173 vm_flags != svm_flags ||
3174 sbase < svma->vm_start || svma->vm_end < s_end)
3175 return 0;
3176
3177 return saddr;
3178 }
3179
3180 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3181 {
3182 unsigned long base = addr & PUD_MASK;
3183 unsigned long end = base + PUD_SIZE;
3184
3185 /*
3186 * check on proper vm_flags and page table alignment
3187 */
3188 if (vma->vm_flags & VM_MAYSHARE &&
3189 vma->vm_start <= base && end <= vma->vm_end)
3190 return 1;
3191 return 0;
3192 }
3193
3194 /*
3195 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3196 * and returns the corresponding pte. While this is not necessary for the
3197 * !shared pmd case because we can allocate the pmd later as well, it makes the
3198 * code much cleaner. pmd allocation is essential for the shared case because
3199 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3200 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3201 * bad pmd for sharing.
3202 */
3203 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3204 {
3205 struct vm_area_struct *vma = find_vma(mm, addr);
3206 struct address_space *mapping = vma->vm_file->f_mapping;
3207 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3208 vma->vm_pgoff;
3209 struct vm_area_struct *svma;
3210 unsigned long saddr;
3211 pte_t *spte = NULL;
3212 pte_t *pte;
3213
3214 if (!vma_shareable(vma, addr))
3215 return (pte_t *)pmd_alloc(mm, pud, addr);
3216
3217 mutex_lock(&mapping->i_mmap_mutex);
3218 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3219 if (svma == vma)
3220 continue;
3221
3222 saddr = page_table_shareable(svma, vma, addr, idx);
3223 if (saddr) {
3224 spte = huge_pte_offset(svma->vm_mm, saddr);
3225 if (spte) {
3226 get_page(virt_to_page(spte));
3227 break;
3228 }
3229 }
3230 }
3231
3232 if (!spte)
3233 goto out;
3234
3235 spin_lock(&mm->page_table_lock);
3236 if (pud_none(*pud))
3237 pud_populate(mm, pud,
3238 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3239 else
3240 put_page(virt_to_page(spte));
3241 spin_unlock(&mm->page_table_lock);
3242 out:
3243 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3244 mutex_unlock(&mapping->i_mmap_mutex);
3245 return pte;
3246 }
3247
3248 /*
3249 * unmap huge page backed by shared pte.
3250 *
3251 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3252 * indicated by page_count > 1, unmap is achieved by clearing pud and
3253 * decrementing the ref count. If count == 1, the pte page is not shared.
3254 *
3255 * called with vma->vm_mm->page_table_lock held.
3256 *
3257 * returns: 1 successfully unmapped a shared pte page
3258 * 0 the underlying pte page is not shared, or it is the last user
3259 */
3260 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3261 {
3262 pgd_t *pgd = pgd_offset(mm, *addr);
3263 pud_t *pud = pud_offset(pgd, *addr);
3264
3265 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3266 if (page_count(virt_to_page(ptep)) == 1)
3267 return 0;
3268
3269 pud_clear(pud);
3270 put_page(virt_to_page(ptep));
3271 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3272 return 1;
3273 }
3274 #define want_pmd_share() (1)
3275 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3276 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3277 {
3278 return NULL;
3279 }
3280 #define want_pmd_share() (0)
3281 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3282
3283 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3284 pte_t *huge_pte_alloc(struct mm_struct *mm,
3285 unsigned long addr, unsigned long sz)
3286 {
3287 pgd_t *pgd;
3288 pud_t *pud;
3289 pte_t *pte = NULL;
3290
3291 pgd = pgd_offset(mm, addr);
3292 pud = pud_alloc(mm, pgd, addr);
3293 if (pud) {
3294 if (sz == PUD_SIZE) {
3295 pte = (pte_t *)pud;
3296 } else {
3297 BUG_ON(sz != PMD_SIZE);
3298 if (want_pmd_share() && pud_none(*pud))
3299 pte = huge_pmd_share(mm, addr, pud);
3300 else
3301 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3302 }
3303 }
3304 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3305
3306 return pte;
3307 }
3308
3309 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3310 {
3311 pgd_t *pgd;
3312 pud_t *pud;
3313 pmd_t *pmd = NULL;
3314
3315 pgd = pgd_offset(mm, addr);
3316 if (pgd_present(*pgd)) {
3317 pud = pud_offset(pgd, addr);
3318 if (pud_present(*pud)) {
3319 if (pud_huge(*pud))
3320 return (pte_t *)pud;
3321 pmd = pmd_offset(pud, addr);
3322 }
3323 }
3324 return (pte_t *) pmd;
3325 }
3326
3327 struct page *
3328 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3329 pmd_t *pmd, int write)
3330 {
3331 struct page *page;
3332
3333 page = pte_page(*(pte_t *)pmd);
3334 if (page)
3335 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3336 return page;
3337 }
3338
3339 struct page *
3340 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3341 pud_t *pud, int write)
3342 {
3343 struct page *page;
3344
3345 page = pte_page(*(pte_t *)pud);
3346 if (page)
3347 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3348 return page;
3349 }
3350
3351 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3352
3353 /* Can be overriden by architectures */
3354 __attribute__((weak)) struct page *
3355 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3356 pud_t *pud, int write)
3357 {
3358 BUG();
3359 return NULL;
3360 }
3361
3362 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3363
3364 #ifdef CONFIG_MEMORY_FAILURE
3365
3366 /* Should be called in hugetlb_lock */
3367 static int is_hugepage_on_freelist(struct page *hpage)
3368 {
3369 struct page *page;
3370 struct page *tmp;
3371 struct hstate *h = page_hstate(hpage);
3372 int nid = page_to_nid(hpage);
3373
3374 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3375 if (page == hpage)
3376 return 1;
3377 return 0;
3378 }
3379
3380 /*
3381 * This function is called from memory failure code.
3382 * Assume the caller holds page lock of the head page.
3383 */
3384 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3385 {
3386 struct hstate *h = page_hstate(hpage);
3387 int nid = page_to_nid(hpage);
3388 int ret = -EBUSY;
3389
3390 spin_lock(&hugetlb_lock);
3391 if (is_hugepage_on_freelist(hpage)) {
3392 /*
3393 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3394 * but dangling hpage->lru can trigger list-debug warnings
3395 * (this happens when we call unpoison_memory() on it),
3396 * so let it point to itself with list_del_init().
3397 */
3398 list_del_init(&hpage->lru);
3399 set_page_refcounted(hpage);
3400 h->free_huge_pages--;
3401 h->free_huge_pages_node[nid]--;
3402 ret = 0;
3403 }
3404 spin_unlock(&hugetlb_lock);
3405 return ret;
3406 }
3407 #endif
This page took 0.105683 seconds and 5 git commands to generate.