raid1: Replace raise_barrier/lower_barrier with freeze_array/unfreeze_array when...
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449 if (vma->vm_flags & VM_NORESERVE) {
450 /*
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
458 */
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
463 }
464
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
467 return 1;
468
469 /*
470 * Only the process that called mmap() has reserves for
471 * private mappings.
472 */
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
475
476 return 0;
477 }
478
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481 int i;
482 struct hstate *h = page_hstate(src);
483 struct page *dst_base = dst;
484 struct page *src_base = src;
485
486 for (i = 0; i < pages_per_huge_page(h); ) {
487 cond_resched();
488 copy_highpage(dst, src);
489
490 i++;
491 dst = mem_map_next(dst, dst_base, i);
492 src = mem_map_next(src, src_base, i);
493 }
494 }
495
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498 int i;
499 struct hstate *h = page_hstate(src);
500
501 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 copy_gigantic_page(dst, src);
503 return;
504 }
505
506 might_sleep();
507 for (i = 0; i < pages_per_huge_page(h); i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
510 }
511 }
512
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515 int nid = page_to_nid(page);
516 list_move(&page->lru, &h->hugepage_freelists[nid]);
517 h->free_huge_pages++;
518 h->free_huge_pages_node[nid]++;
519 }
520
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523 struct page *page;
524
525 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526 if (!is_migrate_isolate_page(page))
527 break;
528 /*
529 * if 'non-isolated free hugepage' not found on the list,
530 * the allocation fails.
531 */
532 if (&h->hugepage_freelists[nid] == &page->lru)
533 return NULL;
534 list_move(&page->lru, &h->hugepage_activelist);
535 set_page_refcounted(page);
536 h->free_huge_pages--;
537 h->free_huge_pages_node[nid]--;
538 return page;
539 }
540
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t htlb_alloc_mask(struct hstate *h)
543 {
544 if (hugepages_treat_as_movable || hugepage_migration_support(h))
545 return GFP_HIGHUSER_MOVABLE;
546 else
547 return GFP_HIGHUSER;
548 }
549
550 static struct page *dequeue_huge_page_vma(struct hstate *h,
551 struct vm_area_struct *vma,
552 unsigned long address, int avoid_reserve,
553 long chg)
554 {
555 struct page *page = NULL;
556 struct mempolicy *mpol;
557 nodemask_t *nodemask;
558 struct zonelist *zonelist;
559 struct zone *zone;
560 struct zoneref *z;
561 unsigned int cpuset_mems_cookie;
562
563 /*
564 * A child process with MAP_PRIVATE mappings created by their parent
565 * have no page reserves. This check ensures that reservations are
566 * not "stolen". The child may still get SIGKILLed
567 */
568 if (!vma_has_reserves(vma, chg) &&
569 h->free_huge_pages - h->resv_huge_pages == 0)
570 goto err;
571
572 /* If reserves cannot be used, ensure enough pages are in the pool */
573 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574 goto err;
575
576 retry_cpuset:
577 cpuset_mems_cookie = get_mems_allowed();
578 zonelist = huge_zonelist(vma, address,
579 htlb_alloc_mask(h), &mpol, &nodemask);
580
581 for_each_zone_zonelist_nodemask(zone, z, zonelist,
582 MAX_NR_ZONES - 1, nodemask) {
583 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 page = dequeue_huge_page_node(h, zone_to_nid(zone));
585 if (page) {
586 if (avoid_reserve)
587 break;
588 if (!vma_has_reserves(vma, chg))
589 break;
590
591 SetPagePrivate(page);
592 h->resv_huge_pages--;
593 break;
594 }
595 }
596 }
597
598 mpol_cond_put(mpol);
599 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
600 goto retry_cpuset;
601 return page;
602
603 err:
604 return NULL;
605 }
606
607 static void update_and_free_page(struct hstate *h, struct page *page)
608 {
609 int i;
610
611 VM_BUG_ON(h->order >= MAX_ORDER);
612
613 h->nr_huge_pages--;
614 h->nr_huge_pages_node[page_to_nid(page)]--;
615 for (i = 0; i < pages_per_huge_page(h); i++) {
616 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617 1 << PG_referenced | 1 << PG_dirty |
618 1 << PG_active | 1 << PG_reserved |
619 1 << PG_private | 1 << PG_writeback);
620 }
621 VM_BUG_ON(hugetlb_cgroup_from_page(page));
622 set_compound_page_dtor(page, NULL);
623 set_page_refcounted(page);
624 arch_release_hugepage(page);
625 __free_pages(page, huge_page_order(h));
626 }
627
628 struct hstate *size_to_hstate(unsigned long size)
629 {
630 struct hstate *h;
631
632 for_each_hstate(h) {
633 if (huge_page_size(h) == size)
634 return h;
635 }
636 return NULL;
637 }
638
639 static void free_huge_page(struct page *page)
640 {
641 /*
642 * Can't pass hstate in here because it is called from the
643 * compound page destructor.
644 */
645 struct hstate *h = page_hstate(page);
646 int nid = page_to_nid(page);
647 struct hugepage_subpool *spool =
648 (struct hugepage_subpool *)page_private(page);
649 bool restore_reserve;
650
651 set_page_private(page, 0);
652 page->mapping = NULL;
653 BUG_ON(page_count(page));
654 BUG_ON(page_mapcount(page));
655 restore_reserve = PagePrivate(page);
656 ClearPagePrivate(page);
657
658 spin_lock(&hugetlb_lock);
659 hugetlb_cgroup_uncharge_page(hstate_index(h),
660 pages_per_huge_page(h), page);
661 if (restore_reserve)
662 h->resv_huge_pages++;
663
664 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665 /* remove the page from active list */
666 list_del(&page->lru);
667 update_and_free_page(h, page);
668 h->surplus_huge_pages--;
669 h->surplus_huge_pages_node[nid]--;
670 } else {
671 arch_clear_hugepage_flags(page);
672 enqueue_huge_page(h, page);
673 }
674 spin_unlock(&hugetlb_lock);
675 hugepage_subpool_put_pages(spool, 1);
676 }
677
678 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
679 {
680 INIT_LIST_HEAD(&page->lru);
681 set_compound_page_dtor(page, free_huge_page);
682 spin_lock(&hugetlb_lock);
683 set_hugetlb_cgroup(page, NULL);
684 h->nr_huge_pages++;
685 h->nr_huge_pages_node[nid]++;
686 spin_unlock(&hugetlb_lock);
687 put_page(page); /* free it into the hugepage allocator */
688 }
689
690 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
691 {
692 int i;
693 int nr_pages = 1 << order;
694 struct page *p = page + 1;
695
696 /* we rely on prep_new_huge_page to set the destructor */
697 set_compound_order(page, order);
698 __SetPageHead(page);
699 __ClearPageReserved(page);
700 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
701 __SetPageTail(p);
702 /*
703 * For gigantic hugepages allocated through bootmem at
704 * boot, it's safer to be consistent with the not-gigantic
705 * hugepages and clear the PG_reserved bit from all tail pages
706 * too. Otherwse drivers using get_user_pages() to access tail
707 * pages may get the reference counting wrong if they see
708 * PG_reserved set on a tail page (despite the head page not
709 * having PG_reserved set). Enforcing this consistency between
710 * head and tail pages allows drivers to optimize away a check
711 * on the head page when they need know if put_page() is needed
712 * after get_user_pages().
713 */
714 __ClearPageReserved(p);
715 set_page_count(p, 0);
716 p->first_page = page;
717 }
718 }
719
720 /*
721 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
722 * transparent huge pages. See the PageTransHuge() documentation for more
723 * details.
724 */
725 int PageHuge(struct page *page)
726 {
727 compound_page_dtor *dtor;
728
729 if (!PageCompound(page))
730 return 0;
731
732 page = compound_head(page);
733 dtor = get_compound_page_dtor(page);
734
735 return dtor == free_huge_page;
736 }
737 EXPORT_SYMBOL_GPL(PageHuge);
738
739 pgoff_t __basepage_index(struct page *page)
740 {
741 struct page *page_head = compound_head(page);
742 pgoff_t index = page_index(page_head);
743 unsigned long compound_idx;
744
745 if (!PageHuge(page_head))
746 return page_index(page);
747
748 if (compound_order(page_head) >= MAX_ORDER)
749 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
750 else
751 compound_idx = page - page_head;
752
753 return (index << compound_order(page_head)) + compound_idx;
754 }
755
756 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
757 {
758 struct page *page;
759
760 if (h->order >= MAX_ORDER)
761 return NULL;
762
763 page = alloc_pages_exact_node(nid,
764 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
765 __GFP_REPEAT|__GFP_NOWARN,
766 huge_page_order(h));
767 if (page) {
768 if (arch_prepare_hugepage(page)) {
769 __free_pages(page, huge_page_order(h));
770 return NULL;
771 }
772 prep_new_huge_page(h, page, nid);
773 }
774
775 return page;
776 }
777
778 /*
779 * common helper functions for hstate_next_node_to_{alloc|free}.
780 * We may have allocated or freed a huge page based on a different
781 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
782 * be outside of *nodes_allowed. Ensure that we use an allowed
783 * node for alloc or free.
784 */
785 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
786 {
787 nid = next_node(nid, *nodes_allowed);
788 if (nid == MAX_NUMNODES)
789 nid = first_node(*nodes_allowed);
790 VM_BUG_ON(nid >= MAX_NUMNODES);
791
792 return nid;
793 }
794
795 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
796 {
797 if (!node_isset(nid, *nodes_allowed))
798 nid = next_node_allowed(nid, nodes_allowed);
799 return nid;
800 }
801
802 /*
803 * returns the previously saved node ["this node"] from which to
804 * allocate a persistent huge page for the pool and advance the
805 * next node from which to allocate, handling wrap at end of node
806 * mask.
807 */
808 static int hstate_next_node_to_alloc(struct hstate *h,
809 nodemask_t *nodes_allowed)
810 {
811 int nid;
812
813 VM_BUG_ON(!nodes_allowed);
814
815 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
816 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
817
818 return nid;
819 }
820
821 /*
822 * helper for free_pool_huge_page() - return the previously saved
823 * node ["this node"] from which to free a huge page. Advance the
824 * next node id whether or not we find a free huge page to free so
825 * that the next attempt to free addresses the next node.
826 */
827 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
828 {
829 int nid;
830
831 VM_BUG_ON(!nodes_allowed);
832
833 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
834 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
835
836 return nid;
837 }
838
839 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
840 for (nr_nodes = nodes_weight(*mask); \
841 nr_nodes > 0 && \
842 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
843 nr_nodes--)
844
845 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
846 for (nr_nodes = nodes_weight(*mask); \
847 nr_nodes > 0 && \
848 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
849 nr_nodes--)
850
851 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
852 {
853 struct page *page;
854 int nr_nodes, node;
855 int ret = 0;
856
857 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
858 page = alloc_fresh_huge_page_node(h, node);
859 if (page) {
860 ret = 1;
861 break;
862 }
863 }
864
865 if (ret)
866 count_vm_event(HTLB_BUDDY_PGALLOC);
867 else
868 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
869
870 return ret;
871 }
872
873 /*
874 * Free huge page from pool from next node to free.
875 * Attempt to keep persistent huge pages more or less
876 * balanced over allowed nodes.
877 * Called with hugetlb_lock locked.
878 */
879 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
880 bool acct_surplus)
881 {
882 int nr_nodes, node;
883 int ret = 0;
884
885 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
886 /*
887 * If we're returning unused surplus pages, only examine
888 * nodes with surplus pages.
889 */
890 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
891 !list_empty(&h->hugepage_freelists[node])) {
892 struct page *page =
893 list_entry(h->hugepage_freelists[node].next,
894 struct page, lru);
895 list_del(&page->lru);
896 h->free_huge_pages--;
897 h->free_huge_pages_node[node]--;
898 if (acct_surplus) {
899 h->surplus_huge_pages--;
900 h->surplus_huge_pages_node[node]--;
901 }
902 update_and_free_page(h, page);
903 ret = 1;
904 break;
905 }
906 }
907
908 return ret;
909 }
910
911 /*
912 * Dissolve a given free hugepage into free buddy pages. This function does
913 * nothing for in-use (including surplus) hugepages.
914 */
915 static void dissolve_free_huge_page(struct page *page)
916 {
917 spin_lock(&hugetlb_lock);
918 if (PageHuge(page) && !page_count(page)) {
919 struct hstate *h = page_hstate(page);
920 int nid = page_to_nid(page);
921 list_del(&page->lru);
922 h->free_huge_pages--;
923 h->free_huge_pages_node[nid]--;
924 update_and_free_page(h, page);
925 }
926 spin_unlock(&hugetlb_lock);
927 }
928
929 /*
930 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
931 * make specified memory blocks removable from the system.
932 * Note that start_pfn should aligned with (minimum) hugepage size.
933 */
934 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
935 {
936 unsigned int order = 8 * sizeof(void *);
937 unsigned long pfn;
938 struct hstate *h;
939
940 /* Set scan step to minimum hugepage size */
941 for_each_hstate(h)
942 if (order > huge_page_order(h))
943 order = huge_page_order(h);
944 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
945 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
946 dissolve_free_huge_page(pfn_to_page(pfn));
947 }
948
949 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
950 {
951 struct page *page;
952 unsigned int r_nid;
953
954 if (h->order >= MAX_ORDER)
955 return NULL;
956
957 /*
958 * Assume we will successfully allocate the surplus page to
959 * prevent racing processes from causing the surplus to exceed
960 * overcommit
961 *
962 * This however introduces a different race, where a process B
963 * tries to grow the static hugepage pool while alloc_pages() is
964 * called by process A. B will only examine the per-node
965 * counters in determining if surplus huge pages can be
966 * converted to normal huge pages in adjust_pool_surplus(). A
967 * won't be able to increment the per-node counter, until the
968 * lock is dropped by B, but B doesn't drop hugetlb_lock until
969 * no more huge pages can be converted from surplus to normal
970 * state (and doesn't try to convert again). Thus, we have a
971 * case where a surplus huge page exists, the pool is grown, and
972 * the surplus huge page still exists after, even though it
973 * should just have been converted to a normal huge page. This
974 * does not leak memory, though, as the hugepage will be freed
975 * once it is out of use. It also does not allow the counters to
976 * go out of whack in adjust_pool_surplus() as we don't modify
977 * the node values until we've gotten the hugepage and only the
978 * per-node value is checked there.
979 */
980 spin_lock(&hugetlb_lock);
981 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
982 spin_unlock(&hugetlb_lock);
983 return NULL;
984 } else {
985 h->nr_huge_pages++;
986 h->surplus_huge_pages++;
987 }
988 spin_unlock(&hugetlb_lock);
989
990 if (nid == NUMA_NO_NODE)
991 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
992 __GFP_REPEAT|__GFP_NOWARN,
993 huge_page_order(h));
994 else
995 page = alloc_pages_exact_node(nid,
996 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
997 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
998
999 if (page && arch_prepare_hugepage(page)) {
1000 __free_pages(page, huge_page_order(h));
1001 page = NULL;
1002 }
1003
1004 spin_lock(&hugetlb_lock);
1005 if (page) {
1006 INIT_LIST_HEAD(&page->lru);
1007 r_nid = page_to_nid(page);
1008 set_compound_page_dtor(page, free_huge_page);
1009 set_hugetlb_cgroup(page, NULL);
1010 /*
1011 * We incremented the global counters already
1012 */
1013 h->nr_huge_pages_node[r_nid]++;
1014 h->surplus_huge_pages_node[r_nid]++;
1015 __count_vm_event(HTLB_BUDDY_PGALLOC);
1016 } else {
1017 h->nr_huge_pages--;
1018 h->surplus_huge_pages--;
1019 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020 }
1021 spin_unlock(&hugetlb_lock);
1022
1023 return page;
1024 }
1025
1026 /*
1027 * This allocation function is useful in the context where vma is irrelevant.
1028 * E.g. soft-offlining uses this function because it only cares physical
1029 * address of error page.
1030 */
1031 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1032 {
1033 struct page *page = NULL;
1034
1035 spin_lock(&hugetlb_lock);
1036 if (h->free_huge_pages - h->resv_huge_pages > 0)
1037 page = dequeue_huge_page_node(h, nid);
1038 spin_unlock(&hugetlb_lock);
1039
1040 if (!page)
1041 page = alloc_buddy_huge_page(h, nid);
1042
1043 return page;
1044 }
1045
1046 /*
1047 * Increase the hugetlb pool such that it can accommodate a reservation
1048 * of size 'delta'.
1049 */
1050 static int gather_surplus_pages(struct hstate *h, int delta)
1051 {
1052 struct list_head surplus_list;
1053 struct page *page, *tmp;
1054 int ret, i;
1055 int needed, allocated;
1056 bool alloc_ok = true;
1057
1058 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1059 if (needed <= 0) {
1060 h->resv_huge_pages += delta;
1061 return 0;
1062 }
1063
1064 allocated = 0;
1065 INIT_LIST_HEAD(&surplus_list);
1066
1067 ret = -ENOMEM;
1068 retry:
1069 spin_unlock(&hugetlb_lock);
1070 for (i = 0; i < needed; i++) {
1071 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1072 if (!page) {
1073 alloc_ok = false;
1074 break;
1075 }
1076 list_add(&page->lru, &surplus_list);
1077 }
1078 allocated += i;
1079
1080 /*
1081 * After retaking hugetlb_lock, we need to recalculate 'needed'
1082 * because either resv_huge_pages or free_huge_pages may have changed.
1083 */
1084 spin_lock(&hugetlb_lock);
1085 needed = (h->resv_huge_pages + delta) -
1086 (h->free_huge_pages + allocated);
1087 if (needed > 0) {
1088 if (alloc_ok)
1089 goto retry;
1090 /*
1091 * We were not able to allocate enough pages to
1092 * satisfy the entire reservation so we free what
1093 * we've allocated so far.
1094 */
1095 goto free;
1096 }
1097 /*
1098 * The surplus_list now contains _at_least_ the number of extra pages
1099 * needed to accommodate the reservation. Add the appropriate number
1100 * of pages to the hugetlb pool and free the extras back to the buddy
1101 * allocator. Commit the entire reservation here to prevent another
1102 * process from stealing the pages as they are added to the pool but
1103 * before they are reserved.
1104 */
1105 needed += allocated;
1106 h->resv_huge_pages += delta;
1107 ret = 0;
1108
1109 /* Free the needed pages to the hugetlb pool */
1110 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1111 if ((--needed) < 0)
1112 break;
1113 /*
1114 * This page is now managed by the hugetlb allocator and has
1115 * no users -- drop the buddy allocator's reference.
1116 */
1117 put_page_testzero(page);
1118 VM_BUG_ON(page_count(page));
1119 enqueue_huge_page(h, page);
1120 }
1121 free:
1122 spin_unlock(&hugetlb_lock);
1123
1124 /* Free unnecessary surplus pages to the buddy allocator */
1125 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1126 put_page(page);
1127 spin_lock(&hugetlb_lock);
1128
1129 return ret;
1130 }
1131
1132 /*
1133 * When releasing a hugetlb pool reservation, any surplus pages that were
1134 * allocated to satisfy the reservation must be explicitly freed if they were
1135 * never used.
1136 * Called with hugetlb_lock held.
1137 */
1138 static void return_unused_surplus_pages(struct hstate *h,
1139 unsigned long unused_resv_pages)
1140 {
1141 unsigned long nr_pages;
1142
1143 /* Uncommit the reservation */
1144 h->resv_huge_pages -= unused_resv_pages;
1145
1146 /* Cannot return gigantic pages currently */
1147 if (h->order >= MAX_ORDER)
1148 return;
1149
1150 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1151
1152 /*
1153 * We want to release as many surplus pages as possible, spread
1154 * evenly across all nodes with memory. Iterate across these nodes
1155 * until we can no longer free unreserved surplus pages. This occurs
1156 * when the nodes with surplus pages have no free pages.
1157 * free_pool_huge_page() will balance the the freed pages across the
1158 * on-line nodes with memory and will handle the hstate accounting.
1159 */
1160 while (nr_pages--) {
1161 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1162 break;
1163 }
1164 }
1165
1166 /*
1167 * Determine if the huge page at addr within the vma has an associated
1168 * reservation. Where it does not we will need to logically increase
1169 * reservation and actually increase subpool usage before an allocation
1170 * can occur. Where any new reservation would be required the
1171 * reservation change is prepared, but not committed. Once the page
1172 * has been allocated from the subpool and instantiated the change should
1173 * be committed via vma_commit_reservation. No action is required on
1174 * failure.
1175 */
1176 static long vma_needs_reservation(struct hstate *h,
1177 struct vm_area_struct *vma, unsigned long addr)
1178 {
1179 struct address_space *mapping = vma->vm_file->f_mapping;
1180 struct inode *inode = mapping->host;
1181
1182 if (vma->vm_flags & VM_MAYSHARE) {
1183 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184 return region_chg(&inode->i_mapping->private_list,
1185 idx, idx + 1);
1186
1187 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1188 return 1;
1189
1190 } else {
1191 long err;
1192 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1193 struct resv_map *resv = vma_resv_map(vma);
1194
1195 err = region_chg(&resv->regions, idx, idx + 1);
1196 if (err < 0)
1197 return err;
1198 return 0;
1199 }
1200 }
1201 static void vma_commit_reservation(struct hstate *h,
1202 struct vm_area_struct *vma, unsigned long addr)
1203 {
1204 struct address_space *mapping = vma->vm_file->f_mapping;
1205 struct inode *inode = mapping->host;
1206
1207 if (vma->vm_flags & VM_MAYSHARE) {
1208 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1209 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1210
1211 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1212 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1213 struct resv_map *resv = vma_resv_map(vma);
1214
1215 /* Mark this page used in the map. */
1216 region_add(&resv->regions, idx, idx + 1);
1217 }
1218 }
1219
1220 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221 unsigned long addr, int avoid_reserve)
1222 {
1223 struct hugepage_subpool *spool = subpool_vma(vma);
1224 struct hstate *h = hstate_vma(vma);
1225 struct page *page;
1226 long chg;
1227 int ret, idx;
1228 struct hugetlb_cgroup *h_cg;
1229
1230 idx = hstate_index(h);
1231 /*
1232 * Processes that did not create the mapping will have no
1233 * reserves and will not have accounted against subpool
1234 * limit. Check that the subpool limit can be made before
1235 * satisfying the allocation MAP_NORESERVE mappings may also
1236 * need pages and subpool limit allocated allocated if no reserve
1237 * mapping overlaps.
1238 */
1239 chg = vma_needs_reservation(h, vma, addr);
1240 if (chg < 0)
1241 return ERR_PTR(-ENOMEM);
1242 if (chg || avoid_reserve)
1243 if (hugepage_subpool_get_pages(spool, 1))
1244 return ERR_PTR(-ENOSPC);
1245
1246 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247 if (ret) {
1248 if (chg || avoid_reserve)
1249 hugepage_subpool_put_pages(spool, 1);
1250 return ERR_PTR(-ENOSPC);
1251 }
1252 spin_lock(&hugetlb_lock);
1253 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254 if (!page) {
1255 spin_unlock(&hugetlb_lock);
1256 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1257 if (!page) {
1258 hugetlb_cgroup_uncharge_cgroup(idx,
1259 pages_per_huge_page(h),
1260 h_cg);
1261 if (chg || avoid_reserve)
1262 hugepage_subpool_put_pages(spool, 1);
1263 return ERR_PTR(-ENOSPC);
1264 }
1265 spin_lock(&hugetlb_lock);
1266 list_move(&page->lru, &h->hugepage_activelist);
1267 /* Fall through */
1268 }
1269 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270 spin_unlock(&hugetlb_lock);
1271
1272 set_page_private(page, (unsigned long)spool);
1273
1274 vma_commit_reservation(h, vma, addr);
1275 return page;
1276 }
1277
1278 /*
1279 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281 * where no ERR_VALUE is expected to be returned.
1282 */
1283 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284 unsigned long addr, int avoid_reserve)
1285 {
1286 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287 if (IS_ERR(page))
1288 page = NULL;
1289 return page;
1290 }
1291
1292 int __weak alloc_bootmem_huge_page(struct hstate *h)
1293 {
1294 struct huge_bootmem_page *m;
1295 int nr_nodes, node;
1296
1297 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298 void *addr;
1299
1300 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1301 huge_page_size(h), huge_page_size(h), 0);
1302
1303 if (addr) {
1304 /*
1305 * Use the beginning of the huge page to store the
1306 * huge_bootmem_page struct (until gather_bootmem
1307 * puts them into the mem_map).
1308 */
1309 m = addr;
1310 goto found;
1311 }
1312 }
1313 return 0;
1314
1315 found:
1316 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317 /* Put them into a private list first because mem_map is not up yet */
1318 list_add(&m->list, &huge_boot_pages);
1319 m->hstate = h;
1320 return 1;
1321 }
1322
1323 static void prep_compound_huge_page(struct page *page, int order)
1324 {
1325 if (unlikely(order > (MAX_ORDER - 1)))
1326 prep_compound_gigantic_page(page, order);
1327 else
1328 prep_compound_page(page, order);
1329 }
1330
1331 /* Put bootmem huge pages into the standard lists after mem_map is up */
1332 static void __init gather_bootmem_prealloc(void)
1333 {
1334 struct huge_bootmem_page *m;
1335
1336 list_for_each_entry(m, &huge_boot_pages, list) {
1337 struct hstate *h = m->hstate;
1338 struct page *page;
1339
1340 #ifdef CONFIG_HIGHMEM
1341 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342 free_bootmem_late((unsigned long)m,
1343 sizeof(struct huge_bootmem_page));
1344 #else
1345 page = virt_to_page(m);
1346 #endif
1347 WARN_ON(page_count(page) != 1);
1348 prep_compound_huge_page(page, h->order);
1349 WARN_ON(PageReserved(page));
1350 prep_new_huge_page(h, page, page_to_nid(page));
1351 /*
1352 * If we had gigantic hugepages allocated at boot time, we need
1353 * to restore the 'stolen' pages to totalram_pages in order to
1354 * fix confusing memory reports from free(1) and another
1355 * side-effects, like CommitLimit going negative.
1356 */
1357 if (h->order > (MAX_ORDER - 1))
1358 adjust_managed_page_count(page, 1 << h->order);
1359 }
1360 }
1361
1362 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1363 {
1364 unsigned long i;
1365
1366 for (i = 0; i < h->max_huge_pages; ++i) {
1367 if (h->order >= MAX_ORDER) {
1368 if (!alloc_bootmem_huge_page(h))
1369 break;
1370 } else if (!alloc_fresh_huge_page(h,
1371 &node_states[N_MEMORY]))
1372 break;
1373 }
1374 h->max_huge_pages = i;
1375 }
1376
1377 static void __init hugetlb_init_hstates(void)
1378 {
1379 struct hstate *h;
1380
1381 for_each_hstate(h) {
1382 /* oversize hugepages were init'ed in early boot */
1383 if (h->order < MAX_ORDER)
1384 hugetlb_hstate_alloc_pages(h);
1385 }
1386 }
1387
1388 static char * __init memfmt(char *buf, unsigned long n)
1389 {
1390 if (n >= (1UL << 30))
1391 sprintf(buf, "%lu GB", n >> 30);
1392 else if (n >= (1UL << 20))
1393 sprintf(buf, "%lu MB", n >> 20);
1394 else
1395 sprintf(buf, "%lu KB", n >> 10);
1396 return buf;
1397 }
1398
1399 static void __init report_hugepages(void)
1400 {
1401 struct hstate *h;
1402
1403 for_each_hstate(h) {
1404 char buf[32];
1405 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406 memfmt(buf, huge_page_size(h)),
1407 h->free_huge_pages);
1408 }
1409 }
1410
1411 #ifdef CONFIG_HIGHMEM
1412 static void try_to_free_low(struct hstate *h, unsigned long count,
1413 nodemask_t *nodes_allowed)
1414 {
1415 int i;
1416
1417 if (h->order >= MAX_ORDER)
1418 return;
1419
1420 for_each_node_mask(i, *nodes_allowed) {
1421 struct page *page, *next;
1422 struct list_head *freel = &h->hugepage_freelists[i];
1423 list_for_each_entry_safe(page, next, freel, lru) {
1424 if (count >= h->nr_huge_pages)
1425 return;
1426 if (PageHighMem(page))
1427 continue;
1428 list_del(&page->lru);
1429 update_and_free_page(h, page);
1430 h->free_huge_pages--;
1431 h->free_huge_pages_node[page_to_nid(page)]--;
1432 }
1433 }
1434 }
1435 #else
1436 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437 nodemask_t *nodes_allowed)
1438 {
1439 }
1440 #endif
1441
1442 /*
1443 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1444 * balanced by operating on them in a round-robin fashion.
1445 * Returns 1 if an adjustment was made.
1446 */
1447 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448 int delta)
1449 {
1450 int nr_nodes, node;
1451
1452 VM_BUG_ON(delta != -1 && delta != 1);
1453
1454 if (delta < 0) {
1455 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456 if (h->surplus_huge_pages_node[node])
1457 goto found;
1458 }
1459 } else {
1460 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461 if (h->surplus_huge_pages_node[node] <
1462 h->nr_huge_pages_node[node])
1463 goto found;
1464 }
1465 }
1466 return 0;
1467
1468 found:
1469 h->surplus_huge_pages += delta;
1470 h->surplus_huge_pages_node[node] += delta;
1471 return 1;
1472 }
1473
1474 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476 nodemask_t *nodes_allowed)
1477 {
1478 unsigned long min_count, ret;
1479
1480 if (h->order >= MAX_ORDER)
1481 return h->max_huge_pages;
1482
1483 /*
1484 * Increase the pool size
1485 * First take pages out of surplus state. Then make up the
1486 * remaining difference by allocating fresh huge pages.
1487 *
1488 * We might race with alloc_buddy_huge_page() here and be unable
1489 * to convert a surplus huge page to a normal huge page. That is
1490 * not critical, though, it just means the overall size of the
1491 * pool might be one hugepage larger than it needs to be, but
1492 * within all the constraints specified by the sysctls.
1493 */
1494 spin_lock(&hugetlb_lock);
1495 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497 break;
1498 }
1499
1500 while (count > persistent_huge_pages(h)) {
1501 /*
1502 * If this allocation races such that we no longer need the
1503 * page, free_huge_page will handle it by freeing the page
1504 * and reducing the surplus.
1505 */
1506 spin_unlock(&hugetlb_lock);
1507 ret = alloc_fresh_huge_page(h, nodes_allowed);
1508 spin_lock(&hugetlb_lock);
1509 if (!ret)
1510 goto out;
1511
1512 /* Bail for signals. Probably ctrl-c from user */
1513 if (signal_pending(current))
1514 goto out;
1515 }
1516
1517 /*
1518 * Decrease the pool size
1519 * First return free pages to the buddy allocator (being careful
1520 * to keep enough around to satisfy reservations). Then place
1521 * pages into surplus state as needed so the pool will shrink
1522 * to the desired size as pages become free.
1523 *
1524 * By placing pages into the surplus state independent of the
1525 * overcommit value, we are allowing the surplus pool size to
1526 * exceed overcommit. There are few sane options here. Since
1527 * alloc_buddy_huge_page() is checking the global counter,
1528 * though, we'll note that we're not allowed to exceed surplus
1529 * and won't grow the pool anywhere else. Not until one of the
1530 * sysctls are changed, or the surplus pages go out of use.
1531 */
1532 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533 min_count = max(count, min_count);
1534 try_to_free_low(h, min_count, nodes_allowed);
1535 while (min_count < persistent_huge_pages(h)) {
1536 if (!free_pool_huge_page(h, nodes_allowed, 0))
1537 break;
1538 }
1539 while (count < persistent_huge_pages(h)) {
1540 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541 break;
1542 }
1543 out:
1544 ret = persistent_huge_pages(h);
1545 spin_unlock(&hugetlb_lock);
1546 return ret;
1547 }
1548
1549 #define HSTATE_ATTR_RO(_name) \
1550 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551
1552 #define HSTATE_ATTR(_name) \
1553 static struct kobj_attribute _name##_attr = \
1554 __ATTR(_name, 0644, _name##_show, _name##_store)
1555
1556 static struct kobject *hugepages_kobj;
1557 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558
1559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560
1561 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562 {
1563 int i;
1564
1565 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566 if (hstate_kobjs[i] == kobj) {
1567 if (nidp)
1568 *nidp = NUMA_NO_NODE;
1569 return &hstates[i];
1570 }
1571
1572 return kobj_to_node_hstate(kobj, nidp);
1573 }
1574
1575 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576 struct kobj_attribute *attr, char *buf)
1577 {
1578 struct hstate *h;
1579 unsigned long nr_huge_pages;
1580 int nid;
1581
1582 h = kobj_to_hstate(kobj, &nid);
1583 if (nid == NUMA_NO_NODE)
1584 nr_huge_pages = h->nr_huge_pages;
1585 else
1586 nr_huge_pages = h->nr_huge_pages_node[nid];
1587
1588 return sprintf(buf, "%lu\n", nr_huge_pages);
1589 }
1590
1591 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592 struct kobject *kobj, struct kobj_attribute *attr,
1593 const char *buf, size_t len)
1594 {
1595 int err;
1596 int nid;
1597 unsigned long count;
1598 struct hstate *h;
1599 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600
1601 err = kstrtoul(buf, 10, &count);
1602 if (err)
1603 goto out;
1604
1605 h = kobj_to_hstate(kobj, &nid);
1606 if (h->order >= MAX_ORDER) {
1607 err = -EINVAL;
1608 goto out;
1609 }
1610
1611 if (nid == NUMA_NO_NODE) {
1612 /*
1613 * global hstate attribute
1614 */
1615 if (!(obey_mempolicy &&
1616 init_nodemask_of_mempolicy(nodes_allowed))) {
1617 NODEMASK_FREE(nodes_allowed);
1618 nodes_allowed = &node_states[N_MEMORY];
1619 }
1620 } else if (nodes_allowed) {
1621 /*
1622 * per node hstate attribute: adjust count to global,
1623 * but restrict alloc/free to the specified node.
1624 */
1625 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626 init_nodemask_of_node(nodes_allowed, nid);
1627 } else
1628 nodes_allowed = &node_states[N_MEMORY];
1629
1630 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631
1632 if (nodes_allowed != &node_states[N_MEMORY])
1633 NODEMASK_FREE(nodes_allowed);
1634
1635 return len;
1636 out:
1637 NODEMASK_FREE(nodes_allowed);
1638 return err;
1639 }
1640
1641 static ssize_t nr_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1643 {
1644 return nr_hugepages_show_common(kobj, attr, buf);
1645 }
1646
1647 static ssize_t nr_hugepages_store(struct kobject *kobj,
1648 struct kobj_attribute *attr, const char *buf, size_t len)
1649 {
1650 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651 }
1652 HSTATE_ATTR(nr_hugepages);
1653
1654 #ifdef CONFIG_NUMA
1655
1656 /*
1657 * hstate attribute for optionally mempolicy-based constraint on persistent
1658 * huge page alloc/free.
1659 */
1660 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661 struct kobj_attribute *attr, char *buf)
1662 {
1663 return nr_hugepages_show_common(kobj, attr, buf);
1664 }
1665
1666 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667 struct kobj_attribute *attr, const char *buf, size_t len)
1668 {
1669 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670 }
1671 HSTATE_ATTR(nr_hugepages_mempolicy);
1672 #endif
1673
1674
1675 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676 struct kobj_attribute *attr, char *buf)
1677 {
1678 struct hstate *h = kobj_to_hstate(kobj, NULL);
1679 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680 }
1681
1682 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683 struct kobj_attribute *attr, const char *buf, size_t count)
1684 {
1685 int err;
1686 unsigned long input;
1687 struct hstate *h = kobj_to_hstate(kobj, NULL);
1688
1689 if (h->order >= MAX_ORDER)
1690 return -EINVAL;
1691
1692 err = kstrtoul(buf, 10, &input);
1693 if (err)
1694 return err;
1695
1696 spin_lock(&hugetlb_lock);
1697 h->nr_overcommit_huge_pages = input;
1698 spin_unlock(&hugetlb_lock);
1699
1700 return count;
1701 }
1702 HSTATE_ATTR(nr_overcommit_hugepages);
1703
1704 static ssize_t free_hugepages_show(struct kobject *kobj,
1705 struct kobj_attribute *attr, char *buf)
1706 {
1707 struct hstate *h;
1708 unsigned long free_huge_pages;
1709 int nid;
1710
1711 h = kobj_to_hstate(kobj, &nid);
1712 if (nid == NUMA_NO_NODE)
1713 free_huge_pages = h->free_huge_pages;
1714 else
1715 free_huge_pages = h->free_huge_pages_node[nid];
1716
1717 return sprintf(buf, "%lu\n", free_huge_pages);
1718 }
1719 HSTATE_ATTR_RO(free_hugepages);
1720
1721 static ssize_t resv_hugepages_show(struct kobject *kobj,
1722 struct kobj_attribute *attr, char *buf)
1723 {
1724 struct hstate *h = kobj_to_hstate(kobj, NULL);
1725 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726 }
1727 HSTATE_ATTR_RO(resv_hugepages);
1728
1729 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730 struct kobj_attribute *attr, char *buf)
1731 {
1732 struct hstate *h;
1733 unsigned long surplus_huge_pages;
1734 int nid;
1735
1736 h = kobj_to_hstate(kobj, &nid);
1737 if (nid == NUMA_NO_NODE)
1738 surplus_huge_pages = h->surplus_huge_pages;
1739 else
1740 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741
1742 return sprintf(buf, "%lu\n", surplus_huge_pages);
1743 }
1744 HSTATE_ATTR_RO(surplus_hugepages);
1745
1746 static struct attribute *hstate_attrs[] = {
1747 &nr_hugepages_attr.attr,
1748 &nr_overcommit_hugepages_attr.attr,
1749 &free_hugepages_attr.attr,
1750 &resv_hugepages_attr.attr,
1751 &surplus_hugepages_attr.attr,
1752 #ifdef CONFIG_NUMA
1753 &nr_hugepages_mempolicy_attr.attr,
1754 #endif
1755 NULL,
1756 };
1757
1758 static struct attribute_group hstate_attr_group = {
1759 .attrs = hstate_attrs,
1760 };
1761
1762 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763 struct kobject **hstate_kobjs,
1764 struct attribute_group *hstate_attr_group)
1765 {
1766 int retval;
1767 int hi = hstate_index(h);
1768
1769 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770 if (!hstate_kobjs[hi])
1771 return -ENOMEM;
1772
1773 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774 if (retval)
1775 kobject_put(hstate_kobjs[hi]);
1776
1777 return retval;
1778 }
1779
1780 static void __init hugetlb_sysfs_init(void)
1781 {
1782 struct hstate *h;
1783 int err;
1784
1785 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786 if (!hugepages_kobj)
1787 return;
1788
1789 for_each_hstate(h) {
1790 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791 hstate_kobjs, &hstate_attr_group);
1792 if (err)
1793 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794 }
1795 }
1796
1797 #ifdef CONFIG_NUMA
1798
1799 /*
1800 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 * with node devices in node_devices[] using a parallel array. The array
1802 * index of a node device or _hstate == node id.
1803 * This is here to avoid any static dependency of the node device driver, in
1804 * the base kernel, on the hugetlb module.
1805 */
1806 struct node_hstate {
1807 struct kobject *hugepages_kobj;
1808 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1809 };
1810 struct node_hstate node_hstates[MAX_NUMNODES];
1811
1812 /*
1813 * A subset of global hstate attributes for node devices
1814 */
1815 static struct attribute *per_node_hstate_attrs[] = {
1816 &nr_hugepages_attr.attr,
1817 &free_hugepages_attr.attr,
1818 &surplus_hugepages_attr.attr,
1819 NULL,
1820 };
1821
1822 static struct attribute_group per_node_hstate_attr_group = {
1823 .attrs = per_node_hstate_attrs,
1824 };
1825
1826 /*
1827 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 * Returns node id via non-NULL nidp.
1829 */
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831 {
1832 int nid;
1833
1834 for (nid = 0; nid < nr_node_ids; nid++) {
1835 struct node_hstate *nhs = &node_hstates[nid];
1836 int i;
1837 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838 if (nhs->hstate_kobjs[i] == kobj) {
1839 if (nidp)
1840 *nidp = nid;
1841 return &hstates[i];
1842 }
1843 }
1844
1845 BUG();
1846 return NULL;
1847 }
1848
1849 /*
1850 * Unregister hstate attributes from a single node device.
1851 * No-op if no hstate attributes attached.
1852 */
1853 static void hugetlb_unregister_node(struct node *node)
1854 {
1855 struct hstate *h;
1856 struct node_hstate *nhs = &node_hstates[node->dev.id];
1857
1858 if (!nhs->hugepages_kobj)
1859 return; /* no hstate attributes */
1860
1861 for_each_hstate(h) {
1862 int idx = hstate_index(h);
1863 if (nhs->hstate_kobjs[idx]) {
1864 kobject_put(nhs->hstate_kobjs[idx]);
1865 nhs->hstate_kobjs[idx] = NULL;
1866 }
1867 }
1868
1869 kobject_put(nhs->hugepages_kobj);
1870 nhs->hugepages_kobj = NULL;
1871 }
1872
1873 /*
1874 * hugetlb module exit: unregister hstate attributes from node devices
1875 * that have them.
1876 */
1877 static void hugetlb_unregister_all_nodes(void)
1878 {
1879 int nid;
1880
1881 /*
1882 * disable node device registrations.
1883 */
1884 register_hugetlbfs_with_node(NULL, NULL);
1885
1886 /*
1887 * remove hstate attributes from any nodes that have them.
1888 */
1889 for (nid = 0; nid < nr_node_ids; nid++)
1890 hugetlb_unregister_node(node_devices[nid]);
1891 }
1892
1893 /*
1894 * Register hstate attributes for a single node device.
1895 * No-op if attributes already registered.
1896 */
1897 static void hugetlb_register_node(struct node *node)
1898 {
1899 struct hstate *h;
1900 struct node_hstate *nhs = &node_hstates[node->dev.id];
1901 int err;
1902
1903 if (nhs->hugepages_kobj)
1904 return; /* already allocated */
1905
1906 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907 &node->dev.kobj);
1908 if (!nhs->hugepages_kobj)
1909 return;
1910
1911 for_each_hstate(h) {
1912 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913 nhs->hstate_kobjs,
1914 &per_node_hstate_attr_group);
1915 if (err) {
1916 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917 h->name, node->dev.id);
1918 hugetlb_unregister_node(node);
1919 break;
1920 }
1921 }
1922 }
1923
1924 /*
1925 * hugetlb init time: register hstate attributes for all registered node
1926 * devices of nodes that have memory. All on-line nodes should have
1927 * registered their associated device by this time.
1928 */
1929 static void hugetlb_register_all_nodes(void)
1930 {
1931 int nid;
1932
1933 for_each_node_state(nid, N_MEMORY) {
1934 struct node *node = node_devices[nid];
1935 if (node->dev.id == nid)
1936 hugetlb_register_node(node);
1937 }
1938
1939 /*
1940 * Let the node device driver know we're here so it can
1941 * [un]register hstate attributes on node hotplug.
1942 */
1943 register_hugetlbfs_with_node(hugetlb_register_node,
1944 hugetlb_unregister_node);
1945 }
1946 #else /* !CONFIG_NUMA */
1947
1948 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949 {
1950 BUG();
1951 if (nidp)
1952 *nidp = -1;
1953 return NULL;
1954 }
1955
1956 static void hugetlb_unregister_all_nodes(void) { }
1957
1958 static void hugetlb_register_all_nodes(void) { }
1959
1960 #endif
1961
1962 static void __exit hugetlb_exit(void)
1963 {
1964 struct hstate *h;
1965
1966 hugetlb_unregister_all_nodes();
1967
1968 for_each_hstate(h) {
1969 kobject_put(hstate_kobjs[hstate_index(h)]);
1970 }
1971
1972 kobject_put(hugepages_kobj);
1973 }
1974 module_exit(hugetlb_exit);
1975
1976 static int __init hugetlb_init(void)
1977 {
1978 /* Some platform decide whether they support huge pages at boot
1979 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1980 * there is no such support
1981 */
1982 if (HPAGE_SHIFT == 0)
1983 return 0;
1984
1985 if (!size_to_hstate(default_hstate_size)) {
1986 default_hstate_size = HPAGE_SIZE;
1987 if (!size_to_hstate(default_hstate_size))
1988 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1989 }
1990 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1991 if (default_hstate_max_huge_pages)
1992 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1993
1994 hugetlb_init_hstates();
1995 gather_bootmem_prealloc();
1996 report_hugepages();
1997
1998 hugetlb_sysfs_init();
1999 hugetlb_register_all_nodes();
2000 hugetlb_cgroup_file_init();
2001
2002 return 0;
2003 }
2004 module_init(hugetlb_init);
2005
2006 /* Should be called on processing a hugepagesz=... option */
2007 void __init hugetlb_add_hstate(unsigned order)
2008 {
2009 struct hstate *h;
2010 unsigned long i;
2011
2012 if (size_to_hstate(PAGE_SIZE << order)) {
2013 pr_warning("hugepagesz= specified twice, ignoring\n");
2014 return;
2015 }
2016 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2017 BUG_ON(order == 0);
2018 h = &hstates[hugetlb_max_hstate++];
2019 h->order = order;
2020 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2021 h->nr_huge_pages = 0;
2022 h->free_huge_pages = 0;
2023 for (i = 0; i < MAX_NUMNODES; ++i)
2024 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2025 INIT_LIST_HEAD(&h->hugepage_activelist);
2026 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2027 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2028 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2029 huge_page_size(h)/1024);
2030
2031 parsed_hstate = h;
2032 }
2033
2034 static int __init hugetlb_nrpages_setup(char *s)
2035 {
2036 unsigned long *mhp;
2037 static unsigned long *last_mhp;
2038
2039 /*
2040 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2041 * so this hugepages= parameter goes to the "default hstate".
2042 */
2043 if (!hugetlb_max_hstate)
2044 mhp = &default_hstate_max_huge_pages;
2045 else
2046 mhp = &parsed_hstate->max_huge_pages;
2047
2048 if (mhp == last_mhp) {
2049 pr_warning("hugepages= specified twice without "
2050 "interleaving hugepagesz=, ignoring\n");
2051 return 1;
2052 }
2053
2054 if (sscanf(s, "%lu", mhp) <= 0)
2055 *mhp = 0;
2056
2057 /*
2058 * Global state is always initialized later in hugetlb_init.
2059 * But we need to allocate >= MAX_ORDER hstates here early to still
2060 * use the bootmem allocator.
2061 */
2062 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2063 hugetlb_hstate_alloc_pages(parsed_hstate);
2064
2065 last_mhp = mhp;
2066
2067 return 1;
2068 }
2069 __setup("hugepages=", hugetlb_nrpages_setup);
2070
2071 static int __init hugetlb_default_setup(char *s)
2072 {
2073 default_hstate_size = memparse(s, &s);
2074 return 1;
2075 }
2076 __setup("default_hugepagesz=", hugetlb_default_setup);
2077
2078 static unsigned int cpuset_mems_nr(unsigned int *array)
2079 {
2080 int node;
2081 unsigned int nr = 0;
2082
2083 for_each_node_mask(node, cpuset_current_mems_allowed)
2084 nr += array[node];
2085
2086 return nr;
2087 }
2088
2089 #ifdef CONFIG_SYSCTL
2090 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2091 struct ctl_table *table, int write,
2092 void __user *buffer, size_t *length, loff_t *ppos)
2093 {
2094 struct hstate *h = &default_hstate;
2095 unsigned long tmp;
2096 int ret;
2097
2098 tmp = h->max_huge_pages;
2099
2100 if (write && h->order >= MAX_ORDER)
2101 return -EINVAL;
2102
2103 table->data = &tmp;
2104 table->maxlen = sizeof(unsigned long);
2105 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2106 if (ret)
2107 goto out;
2108
2109 if (write) {
2110 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2111 GFP_KERNEL | __GFP_NORETRY);
2112 if (!(obey_mempolicy &&
2113 init_nodemask_of_mempolicy(nodes_allowed))) {
2114 NODEMASK_FREE(nodes_allowed);
2115 nodes_allowed = &node_states[N_MEMORY];
2116 }
2117 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2118
2119 if (nodes_allowed != &node_states[N_MEMORY])
2120 NODEMASK_FREE(nodes_allowed);
2121 }
2122 out:
2123 return ret;
2124 }
2125
2126 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2127 void __user *buffer, size_t *length, loff_t *ppos)
2128 {
2129
2130 return hugetlb_sysctl_handler_common(false, table, write,
2131 buffer, length, ppos);
2132 }
2133
2134 #ifdef CONFIG_NUMA
2135 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2136 void __user *buffer, size_t *length, loff_t *ppos)
2137 {
2138 return hugetlb_sysctl_handler_common(true, table, write,
2139 buffer, length, ppos);
2140 }
2141 #endif /* CONFIG_NUMA */
2142
2143 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2144 void __user *buffer,
2145 size_t *length, loff_t *ppos)
2146 {
2147 struct hstate *h = &default_hstate;
2148 unsigned long tmp;
2149 int ret;
2150
2151 tmp = h->nr_overcommit_huge_pages;
2152
2153 if (write && h->order >= MAX_ORDER)
2154 return -EINVAL;
2155
2156 table->data = &tmp;
2157 table->maxlen = sizeof(unsigned long);
2158 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2159 if (ret)
2160 goto out;
2161
2162 if (write) {
2163 spin_lock(&hugetlb_lock);
2164 h->nr_overcommit_huge_pages = tmp;
2165 spin_unlock(&hugetlb_lock);
2166 }
2167 out:
2168 return ret;
2169 }
2170
2171 #endif /* CONFIG_SYSCTL */
2172
2173 void hugetlb_report_meminfo(struct seq_file *m)
2174 {
2175 struct hstate *h = &default_hstate;
2176 seq_printf(m,
2177 "HugePages_Total: %5lu\n"
2178 "HugePages_Free: %5lu\n"
2179 "HugePages_Rsvd: %5lu\n"
2180 "HugePages_Surp: %5lu\n"
2181 "Hugepagesize: %8lu kB\n",
2182 h->nr_huge_pages,
2183 h->free_huge_pages,
2184 h->resv_huge_pages,
2185 h->surplus_huge_pages,
2186 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2187 }
2188
2189 int hugetlb_report_node_meminfo(int nid, char *buf)
2190 {
2191 struct hstate *h = &default_hstate;
2192 return sprintf(buf,
2193 "Node %d HugePages_Total: %5u\n"
2194 "Node %d HugePages_Free: %5u\n"
2195 "Node %d HugePages_Surp: %5u\n",
2196 nid, h->nr_huge_pages_node[nid],
2197 nid, h->free_huge_pages_node[nid],
2198 nid, h->surplus_huge_pages_node[nid]);
2199 }
2200
2201 void hugetlb_show_meminfo(void)
2202 {
2203 struct hstate *h;
2204 int nid;
2205
2206 for_each_node_state(nid, N_MEMORY)
2207 for_each_hstate(h)
2208 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2209 nid,
2210 h->nr_huge_pages_node[nid],
2211 h->free_huge_pages_node[nid],
2212 h->surplus_huge_pages_node[nid],
2213 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2214 }
2215
2216 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2217 unsigned long hugetlb_total_pages(void)
2218 {
2219 struct hstate *h;
2220 unsigned long nr_total_pages = 0;
2221
2222 for_each_hstate(h)
2223 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2224 return nr_total_pages;
2225 }
2226
2227 static int hugetlb_acct_memory(struct hstate *h, long delta)
2228 {
2229 int ret = -ENOMEM;
2230
2231 spin_lock(&hugetlb_lock);
2232 /*
2233 * When cpuset is configured, it breaks the strict hugetlb page
2234 * reservation as the accounting is done on a global variable. Such
2235 * reservation is completely rubbish in the presence of cpuset because
2236 * the reservation is not checked against page availability for the
2237 * current cpuset. Application can still potentially OOM'ed by kernel
2238 * with lack of free htlb page in cpuset that the task is in.
2239 * Attempt to enforce strict accounting with cpuset is almost
2240 * impossible (or too ugly) because cpuset is too fluid that
2241 * task or memory node can be dynamically moved between cpusets.
2242 *
2243 * The change of semantics for shared hugetlb mapping with cpuset is
2244 * undesirable. However, in order to preserve some of the semantics,
2245 * we fall back to check against current free page availability as
2246 * a best attempt and hopefully to minimize the impact of changing
2247 * semantics that cpuset has.
2248 */
2249 if (delta > 0) {
2250 if (gather_surplus_pages(h, delta) < 0)
2251 goto out;
2252
2253 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2254 return_unused_surplus_pages(h, delta);
2255 goto out;
2256 }
2257 }
2258
2259 ret = 0;
2260 if (delta < 0)
2261 return_unused_surplus_pages(h, (unsigned long) -delta);
2262
2263 out:
2264 spin_unlock(&hugetlb_lock);
2265 return ret;
2266 }
2267
2268 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2269 {
2270 struct resv_map *resv = vma_resv_map(vma);
2271
2272 /*
2273 * This new VMA should share its siblings reservation map if present.
2274 * The VMA will only ever have a valid reservation map pointer where
2275 * it is being copied for another still existing VMA. As that VMA
2276 * has a reference to the reservation map it cannot disappear until
2277 * after this open call completes. It is therefore safe to take a
2278 * new reference here without additional locking.
2279 */
2280 if (resv)
2281 kref_get(&resv->refs);
2282 }
2283
2284 static void resv_map_put(struct vm_area_struct *vma)
2285 {
2286 struct resv_map *resv = vma_resv_map(vma);
2287
2288 if (!resv)
2289 return;
2290 kref_put(&resv->refs, resv_map_release);
2291 }
2292
2293 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2294 {
2295 struct hstate *h = hstate_vma(vma);
2296 struct resv_map *resv = vma_resv_map(vma);
2297 struct hugepage_subpool *spool = subpool_vma(vma);
2298 unsigned long reserve;
2299 unsigned long start;
2300 unsigned long end;
2301
2302 if (resv) {
2303 start = vma_hugecache_offset(h, vma, vma->vm_start);
2304 end = vma_hugecache_offset(h, vma, vma->vm_end);
2305
2306 reserve = (end - start) -
2307 region_count(&resv->regions, start, end);
2308
2309 resv_map_put(vma);
2310
2311 if (reserve) {
2312 hugetlb_acct_memory(h, -reserve);
2313 hugepage_subpool_put_pages(spool, reserve);
2314 }
2315 }
2316 }
2317
2318 /*
2319 * We cannot handle pagefaults against hugetlb pages at all. They cause
2320 * handle_mm_fault() to try to instantiate regular-sized pages in the
2321 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2322 * this far.
2323 */
2324 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2325 {
2326 BUG();
2327 return 0;
2328 }
2329
2330 const struct vm_operations_struct hugetlb_vm_ops = {
2331 .fault = hugetlb_vm_op_fault,
2332 .open = hugetlb_vm_op_open,
2333 .close = hugetlb_vm_op_close,
2334 };
2335
2336 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2337 int writable)
2338 {
2339 pte_t entry;
2340
2341 if (writable) {
2342 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2343 vma->vm_page_prot)));
2344 } else {
2345 entry = huge_pte_wrprotect(mk_huge_pte(page,
2346 vma->vm_page_prot));
2347 }
2348 entry = pte_mkyoung(entry);
2349 entry = pte_mkhuge(entry);
2350 entry = arch_make_huge_pte(entry, vma, page, writable);
2351
2352 return entry;
2353 }
2354
2355 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2356 unsigned long address, pte_t *ptep)
2357 {
2358 pte_t entry;
2359
2360 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2361 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2362 update_mmu_cache(vma, address, ptep);
2363 }
2364
2365
2366 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2367 struct vm_area_struct *vma)
2368 {
2369 pte_t *src_pte, *dst_pte, entry;
2370 struct page *ptepage;
2371 unsigned long addr;
2372 int cow;
2373 struct hstate *h = hstate_vma(vma);
2374 unsigned long sz = huge_page_size(h);
2375
2376 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2377
2378 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2379 src_pte = huge_pte_offset(src, addr);
2380 if (!src_pte)
2381 continue;
2382 dst_pte = huge_pte_alloc(dst, addr, sz);
2383 if (!dst_pte)
2384 goto nomem;
2385
2386 /* If the pagetables are shared don't copy or take references */
2387 if (dst_pte == src_pte)
2388 continue;
2389
2390 spin_lock(&dst->page_table_lock);
2391 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2392 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2393 if (cow)
2394 huge_ptep_set_wrprotect(src, addr, src_pte);
2395 entry = huge_ptep_get(src_pte);
2396 ptepage = pte_page(entry);
2397 get_page(ptepage);
2398 page_dup_rmap(ptepage);
2399 set_huge_pte_at(dst, addr, dst_pte, entry);
2400 }
2401 spin_unlock(&src->page_table_lock);
2402 spin_unlock(&dst->page_table_lock);
2403 }
2404 return 0;
2405
2406 nomem:
2407 return -ENOMEM;
2408 }
2409
2410 static int is_hugetlb_entry_migration(pte_t pte)
2411 {
2412 swp_entry_t swp;
2413
2414 if (huge_pte_none(pte) || pte_present(pte))
2415 return 0;
2416 swp = pte_to_swp_entry(pte);
2417 if (non_swap_entry(swp) && is_migration_entry(swp))
2418 return 1;
2419 else
2420 return 0;
2421 }
2422
2423 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2424 {
2425 swp_entry_t swp;
2426
2427 if (huge_pte_none(pte) || pte_present(pte))
2428 return 0;
2429 swp = pte_to_swp_entry(pte);
2430 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2431 return 1;
2432 else
2433 return 0;
2434 }
2435
2436 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2437 unsigned long start, unsigned long end,
2438 struct page *ref_page)
2439 {
2440 int force_flush = 0;
2441 struct mm_struct *mm = vma->vm_mm;
2442 unsigned long address;
2443 pte_t *ptep;
2444 pte_t pte;
2445 struct page *page;
2446 struct hstate *h = hstate_vma(vma);
2447 unsigned long sz = huge_page_size(h);
2448 const unsigned long mmun_start = start; /* For mmu_notifiers */
2449 const unsigned long mmun_end = end; /* For mmu_notifiers */
2450
2451 WARN_ON(!is_vm_hugetlb_page(vma));
2452 BUG_ON(start & ~huge_page_mask(h));
2453 BUG_ON(end & ~huge_page_mask(h));
2454
2455 tlb_start_vma(tlb, vma);
2456 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2457 again:
2458 spin_lock(&mm->page_table_lock);
2459 for (address = start; address < end; address += sz) {
2460 ptep = huge_pte_offset(mm, address);
2461 if (!ptep)
2462 continue;
2463
2464 if (huge_pmd_unshare(mm, &address, ptep))
2465 continue;
2466
2467 pte = huge_ptep_get(ptep);
2468 if (huge_pte_none(pte))
2469 continue;
2470
2471 /*
2472 * HWPoisoned hugepage is already unmapped and dropped reference
2473 */
2474 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2475 huge_pte_clear(mm, address, ptep);
2476 continue;
2477 }
2478
2479 page = pte_page(pte);
2480 /*
2481 * If a reference page is supplied, it is because a specific
2482 * page is being unmapped, not a range. Ensure the page we
2483 * are about to unmap is the actual page of interest.
2484 */
2485 if (ref_page) {
2486 if (page != ref_page)
2487 continue;
2488
2489 /*
2490 * Mark the VMA as having unmapped its page so that
2491 * future faults in this VMA will fail rather than
2492 * looking like data was lost
2493 */
2494 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2495 }
2496
2497 pte = huge_ptep_get_and_clear(mm, address, ptep);
2498 tlb_remove_tlb_entry(tlb, ptep, address);
2499 if (huge_pte_dirty(pte))
2500 set_page_dirty(page);
2501
2502 page_remove_rmap(page);
2503 force_flush = !__tlb_remove_page(tlb, page);
2504 if (force_flush)
2505 break;
2506 /* Bail out after unmapping reference page if supplied */
2507 if (ref_page)
2508 break;
2509 }
2510 spin_unlock(&mm->page_table_lock);
2511 /*
2512 * mmu_gather ran out of room to batch pages, we break out of
2513 * the PTE lock to avoid doing the potential expensive TLB invalidate
2514 * and page-free while holding it.
2515 */
2516 if (force_flush) {
2517 force_flush = 0;
2518 tlb_flush_mmu(tlb);
2519 if (address < end && !ref_page)
2520 goto again;
2521 }
2522 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2523 tlb_end_vma(tlb, vma);
2524 }
2525
2526 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2527 struct vm_area_struct *vma, unsigned long start,
2528 unsigned long end, struct page *ref_page)
2529 {
2530 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2531
2532 /*
2533 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2534 * test will fail on a vma being torn down, and not grab a page table
2535 * on its way out. We're lucky that the flag has such an appropriate
2536 * name, and can in fact be safely cleared here. We could clear it
2537 * before the __unmap_hugepage_range above, but all that's necessary
2538 * is to clear it before releasing the i_mmap_mutex. This works
2539 * because in the context this is called, the VMA is about to be
2540 * destroyed and the i_mmap_mutex is held.
2541 */
2542 vma->vm_flags &= ~VM_MAYSHARE;
2543 }
2544
2545 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2546 unsigned long end, struct page *ref_page)
2547 {
2548 struct mm_struct *mm;
2549 struct mmu_gather tlb;
2550
2551 mm = vma->vm_mm;
2552
2553 tlb_gather_mmu(&tlb, mm, start, end);
2554 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2555 tlb_finish_mmu(&tlb, start, end);
2556 }
2557
2558 /*
2559 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2560 * mappping it owns the reserve page for. The intention is to unmap the page
2561 * from other VMAs and let the children be SIGKILLed if they are faulting the
2562 * same region.
2563 */
2564 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2565 struct page *page, unsigned long address)
2566 {
2567 struct hstate *h = hstate_vma(vma);
2568 struct vm_area_struct *iter_vma;
2569 struct address_space *mapping;
2570 pgoff_t pgoff;
2571
2572 /*
2573 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2574 * from page cache lookup which is in HPAGE_SIZE units.
2575 */
2576 address = address & huge_page_mask(h);
2577 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2578 vma->vm_pgoff;
2579 mapping = file_inode(vma->vm_file)->i_mapping;
2580
2581 /*
2582 * Take the mapping lock for the duration of the table walk. As
2583 * this mapping should be shared between all the VMAs,
2584 * __unmap_hugepage_range() is called as the lock is already held
2585 */
2586 mutex_lock(&mapping->i_mmap_mutex);
2587 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2588 /* Do not unmap the current VMA */
2589 if (iter_vma == vma)
2590 continue;
2591
2592 /*
2593 * Unmap the page from other VMAs without their own reserves.
2594 * They get marked to be SIGKILLed if they fault in these
2595 * areas. This is because a future no-page fault on this VMA
2596 * could insert a zeroed page instead of the data existing
2597 * from the time of fork. This would look like data corruption
2598 */
2599 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2600 unmap_hugepage_range(iter_vma, address,
2601 address + huge_page_size(h), page);
2602 }
2603 mutex_unlock(&mapping->i_mmap_mutex);
2604
2605 return 1;
2606 }
2607
2608 /*
2609 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2610 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2611 * cannot race with other handlers or page migration.
2612 * Keep the pte_same checks anyway to make transition from the mutex easier.
2613 */
2614 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2615 unsigned long address, pte_t *ptep, pte_t pte,
2616 struct page *pagecache_page)
2617 {
2618 struct hstate *h = hstate_vma(vma);
2619 struct page *old_page, *new_page;
2620 int outside_reserve = 0;
2621 unsigned long mmun_start; /* For mmu_notifiers */
2622 unsigned long mmun_end; /* For mmu_notifiers */
2623
2624 old_page = pte_page(pte);
2625
2626 retry_avoidcopy:
2627 /* If no-one else is actually using this page, avoid the copy
2628 * and just make the page writable */
2629 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2630 page_move_anon_rmap(old_page, vma, address);
2631 set_huge_ptep_writable(vma, address, ptep);
2632 return 0;
2633 }
2634
2635 /*
2636 * If the process that created a MAP_PRIVATE mapping is about to
2637 * perform a COW due to a shared page count, attempt to satisfy
2638 * the allocation without using the existing reserves. The pagecache
2639 * page is used to determine if the reserve at this address was
2640 * consumed or not. If reserves were used, a partial faulted mapping
2641 * at the time of fork() could consume its reserves on COW instead
2642 * of the full address range.
2643 */
2644 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2645 old_page != pagecache_page)
2646 outside_reserve = 1;
2647
2648 page_cache_get(old_page);
2649
2650 /* Drop page_table_lock as buddy allocator may be called */
2651 spin_unlock(&mm->page_table_lock);
2652 new_page = alloc_huge_page(vma, address, outside_reserve);
2653
2654 if (IS_ERR(new_page)) {
2655 long err = PTR_ERR(new_page);
2656 page_cache_release(old_page);
2657
2658 /*
2659 * If a process owning a MAP_PRIVATE mapping fails to COW,
2660 * it is due to references held by a child and an insufficient
2661 * huge page pool. To guarantee the original mappers
2662 * reliability, unmap the page from child processes. The child
2663 * may get SIGKILLed if it later faults.
2664 */
2665 if (outside_reserve) {
2666 BUG_ON(huge_pte_none(pte));
2667 if (unmap_ref_private(mm, vma, old_page, address)) {
2668 BUG_ON(huge_pte_none(pte));
2669 spin_lock(&mm->page_table_lock);
2670 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2671 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2672 goto retry_avoidcopy;
2673 /*
2674 * race occurs while re-acquiring page_table_lock, and
2675 * our job is done.
2676 */
2677 return 0;
2678 }
2679 WARN_ON_ONCE(1);
2680 }
2681
2682 /* Caller expects lock to be held */
2683 spin_lock(&mm->page_table_lock);
2684 if (err == -ENOMEM)
2685 return VM_FAULT_OOM;
2686 else
2687 return VM_FAULT_SIGBUS;
2688 }
2689
2690 /*
2691 * When the original hugepage is shared one, it does not have
2692 * anon_vma prepared.
2693 */
2694 if (unlikely(anon_vma_prepare(vma))) {
2695 page_cache_release(new_page);
2696 page_cache_release(old_page);
2697 /* Caller expects lock to be held */
2698 spin_lock(&mm->page_table_lock);
2699 return VM_FAULT_OOM;
2700 }
2701
2702 copy_user_huge_page(new_page, old_page, address, vma,
2703 pages_per_huge_page(h));
2704 __SetPageUptodate(new_page);
2705
2706 mmun_start = address & huge_page_mask(h);
2707 mmun_end = mmun_start + huge_page_size(h);
2708 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2709 /*
2710 * Retake the page_table_lock to check for racing updates
2711 * before the page tables are altered
2712 */
2713 spin_lock(&mm->page_table_lock);
2714 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2715 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2716 ClearPagePrivate(new_page);
2717
2718 /* Break COW */
2719 huge_ptep_clear_flush(vma, address, ptep);
2720 set_huge_pte_at(mm, address, ptep,
2721 make_huge_pte(vma, new_page, 1));
2722 page_remove_rmap(old_page);
2723 hugepage_add_new_anon_rmap(new_page, vma, address);
2724 /* Make the old page be freed below */
2725 new_page = old_page;
2726 }
2727 spin_unlock(&mm->page_table_lock);
2728 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2729 page_cache_release(new_page);
2730 page_cache_release(old_page);
2731
2732 /* Caller expects lock to be held */
2733 spin_lock(&mm->page_table_lock);
2734 return 0;
2735 }
2736
2737 /* Return the pagecache page at a given address within a VMA */
2738 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2739 struct vm_area_struct *vma, unsigned long address)
2740 {
2741 struct address_space *mapping;
2742 pgoff_t idx;
2743
2744 mapping = vma->vm_file->f_mapping;
2745 idx = vma_hugecache_offset(h, vma, address);
2746
2747 return find_lock_page(mapping, idx);
2748 }
2749
2750 /*
2751 * Return whether there is a pagecache page to back given address within VMA.
2752 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2753 */
2754 static bool hugetlbfs_pagecache_present(struct hstate *h,
2755 struct vm_area_struct *vma, unsigned long address)
2756 {
2757 struct address_space *mapping;
2758 pgoff_t idx;
2759 struct page *page;
2760
2761 mapping = vma->vm_file->f_mapping;
2762 idx = vma_hugecache_offset(h, vma, address);
2763
2764 page = find_get_page(mapping, idx);
2765 if (page)
2766 put_page(page);
2767 return page != NULL;
2768 }
2769
2770 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2771 unsigned long address, pte_t *ptep, unsigned int flags)
2772 {
2773 struct hstate *h = hstate_vma(vma);
2774 int ret = VM_FAULT_SIGBUS;
2775 int anon_rmap = 0;
2776 pgoff_t idx;
2777 unsigned long size;
2778 struct page *page;
2779 struct address_space *mapping;
2780 pte_t new_pte;
2781
2782 /*
2783 * Currently, we are forced to kill the process in the event the
2784 * original mapper has unmapped pages from the child due to a failed
2785 * COW. Warn that such a situation has occurred as it may not be obvious
2786 */
2787 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2788 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2789 current->pid);
2790 return ret;
2791 }
2792
2793 mapping = vma->vm_file->f_mapping;
2794 idx = vma_hugecache_offset(h, vma, address);
2795
2796 /*
2797 * Use page lock to guard against racing truncation
2798 * before we get page_table_lock.
2799 */
2800 retry:
2801 page = find_lock_page(mapping, idx);
2802 if (!page) {
2803 size = i_size_read(mapping->host) >> huge_page_shift(h);
2804 if (idx >= size)
2805 goto out;
2806 page = alloc_huge_page(vma, address, 0);
2807 if (IS_ERR(page)) {
2808 ret = PTR_ERR(page);
2809 if (ret == -ENOMEM)
2810 ret = VM_FAULT_OOM;
2811 else
2812 ret = VM_FAULT_SIGBUS;
2813 goto out;
2814 }
2815 clear_huge_page(page, address, pages_per_huge_page(h));
2816 __SetPageUptodate(page);
2817
2818 if (vma->vm_flags & VM_MAYSHARE) {
2819 int err;
2820 struct inode *inode = mapping->host;
2821
2822 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2823 if (err) {
2824 put_page(page);
2825 if (err == -EEXIST)
2826 goto retry;
2827 goto out;
2828 }
2829 ClearPagePrivate(page);
2830
2831 spin_lock(&inode->i_lock);
2832 inode->i_blocks += blocks_per_huge_page(h);
2833 spin_unlock(&inode->i_lock);
2834 } else {
2835 lock_page(page);
2836 if (unlikely(anon_vma_prepare(vma))) {
2837 ret = VM_FAULT_OOM;
2838 goto backout_unlocked;
2839 }
2840 anon_rmap = 1;
2841 }
2842 } else {
2843 /*
2844 * If memory error occurs between mmap() and fault, some process
2845 * don't have hwpoisoned swap entry for errored virtual address.
2846 * So we need to block hugepage fault by PG_hwpoison bit check.
2847 */
2848 if (unlikely(PageHWPoison(page))) {
2849 ret = VM_FAULT_HWPOISON |
2850 VM_FAULT_SET_HINDEX(hstate_index(h));
2851 goto backout_unlocked;
2852 }
2853 }
2854
2855 /*
2856 * If we are going to COW a private mapping later, we examine the
2857 * pending reservations for this page now. This will ensure that
2858 * any allocations necessary to record that reservation occur outside
2859 * the spinlock.
2860 */
2861 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2862 if (vma_needs_reservation(h, vma, address) < 0) {
2863 ret = VM_FAULT_OOM;
2864 goto backout_unlocked;
2865 }
2866
2867 spin_lock(&mm->page_table_lock);
2868 size = i_size_read(mapping->host) >> huge_page_shift(h);
2869 if (idx >= size)
2870 goto backout;
2871
2872 ret = 0;
2873 if (!huge_pte_none(huge_ptep_get(ptep)))
2874 goto backout;
2875
2876 if (anon_rmap) {
2877 ClearPagePrivate(page);
2878 hugepage_add_new_anon_rmap(page, vma, address);
2879 }
2880 else
2881 page_dup_rmap(page);
2882 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2883 && (vma->vm_flags & VM_SHARED)));
2884 set_huge_pte_at(mm, address, ptep, new_pte);
2885
2886 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2887 /* Optimization, do the COW without a second fault */
2888 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2889 }
2890
2891 spin_unlock(&mm->page_table_lock);
2892 unlock_page(page);
2893 out:
2894 return ret;
2895
2896 backout:
2897 spin_unlock(&mm->page_table_lock);
2898 backout_unlocked:
2899 unlock_page(page);
2900 put_page(page);
2901 goto out;
2902 }
2903
2904 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2905 unsigned long address, unsigned int flags)
2906 {
2907 pte_t *ptep;
2908 pte_t entry;
2909 int ret;
2910 struct page *page = NULL;
2911 struct page *pagecache_page = NULL;
2912 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2913 struct hstate *h = hstate_vma(vma);
2914
2915 address &= huge_page_mask(h);
2916
2917 ptep = huge_pte_offset(mm, address);
2918 if (ptep) {
2919 entry = huge_ptep_get(ptep);
2920 if (unlikely(is_hugetlb_entry_migration(entry))) {
2921 migration_entry_wait_huge(mm, ptep);
2922 return 0;
2923 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2924 return VM_FAULT_HWPOISON_LARGE |
2925 VM_FAULT_SET_HINDEX(hstate_index(h));
2926 }
2927
2928 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2929 if (!ptep)
2930 return VM_FAULT_OOM;
2931
2932 /*
2933 * Serialize hugepage allocation and instantiation, so that we don't
2934 * get spurious allocation failures if two CPUs race to instantiate
2935 * the same page in the page cache.
2936 */
2937 mutex_lock(&hugetlb_instantiation_mutex);
2938 entry = huge_ptep_get(ptep);
2939 if (huge_pte_none(entry)) {
2940 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2941 goto out_mutex;
2942 }
2943
2944 ret = 0;
2945
2946 /*
2947 * If we are going to COW the mapping later, we examine the pending
2948 * reservations for this page now. This will ensure that any
2949 * allocations necessary to record that reservation occur outside the
2950 * spinlock. For private mappings, we also lookup the pagecache
2951 * page now as it is used to determine if a reservation has been
2952 * consumed.
2953 */
2954 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2955 if (vma_needs_reservation(h, vma, address) < 0) {
2956 ret = VM_FAULT_OOM;
2957 goto out_mutex;
2958 }
2959
2960 if (!(vma->vm_flags & VM_MAYSHARE))
2961 pagecache_page = hugetlbfs_pagecache_page(h,
2962 vma, address);
2963 }
2964
2965 /*
2966 * hugetlb_cow() requires page locks of pte_page(entry) and
2967 * pagecache_page, so here we need take the former one
2968 * when page != pagecache_page or !pagecache_page.
2969 * Note that locking order is always pagecache_page -> page,
2970 * so no worry about deadlock.
2971 */
2972 page = pte_page(entry);
2973 get_page(page);
2974 if (page != pagecache_page)
2975 lock_page(page);
2976
2977 spin_lock(&mm->page_table_lock);
2978 /* Check for a racing update before calling hugetlb_cow */
2979 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2980 goto out_page_table_lock;
2981
2982
2983 if (flags & FAULT_FLAG_WRITE) {
2984 if (!huge_pte_write(entry)) {
2985 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2986 pagecache_page);
2987 goto out_page_table_lock;
2988 }
2989 entry = huge_pte_mkdirty(entry);
2990 }
2991 entry = pte_mkyoung(entry);
2992 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2993 flags & FAULT_FLAG_WRITE))
2994 update_mmu_cache(vma, address, ptep);
2995
2996 out_page_table_lock:
2997 spin_unlock(&mm->page_table_lock);
2998
2999 if (pagecache_page) {
3000 unlock_page(pagecache_page);
3001 put_page(pagecache_page);
3002 }
3003 if (page != pagecache_page)
3004 unlock_page(page);
3005 put_page(page);
3006
3007 out_mutex:
3008 mutex_unlock(&hugetlb_instantiation_mutex);
3009
3010 return ret;
3011 }
3012
3013 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3014 struct page **pages, struct vm_area_struct **vmas,
3015 unsigned long *position, unsigned long *nr_pages,
3016 long i, unsigned int flags)
3017 {
3018 unsigned long pfn_offset;
3019 unsigned long vaddr = *position;
3020 unsigned long remainder = *nr_pages;
3021 struct hstate *h = hstate_vma(vma);
3022
3023 spin_lock(&mm->page_table_lock);
3024 while (vaddr < vma->vm_end && remainder) {
3025 pte_t *pte;
3026 int absent;
3027 struct page *page;
3028
3029 /*
3030 * Some archs (sparc64, sh*) have multiple pte_ts to
3031 * each hugepage. We have to make sure we get the
3032 * first, for the page indexing below to work.
3033 */
3034 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3035 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3036
3037 /*
3038 * When coredumping, it suits get_dump_page if we just return
3039 * an error where there's an empty slot with no huge pagecache
3040 * to back it. This way, we avoid allocating a hugepage, and
3041 * the sparse dumpfile avoids allocating disk blocks, but its
3042 * huge holes still show up with zeroes where they need to be.
3043 */
3044 if (absent && (flags & FOLL_DUMP) &&
3045 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3046 remainder = 0;
3047 break;
3048 }
3049
3050 /*
3051 * We need call hugetlb_fault for both hugepages under migration
3052 * (in which case hugetlb_fault waits for the migration,) and
3053 * hwpoisoned hugepages (in which case we need to prevent the
3054 * caller from accessing to them.) In order to do this, we use
3055 * here is_swap_pte instead of is_hugetlb_entry_migration and
3056 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3057 * both cases, and because we can't follow correct pages
3058 * directly from any kind of swap entries.
3059 */
3060 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3061 ((flags & FOLL_WRITE) &&
3062 !huge_pte_write(huge_ptep_get(pte)))) {
3063 int ret;
3064
3065 spin_unlock(&mm->page_table_lock);
3066 ret = hugetlb_fault(mm, vma, vaddr,
3067 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3068 spin_lock(&mm->page_table_lock);
3069 if (!(ret & VM_FAULT_ERROR))
3070 continue;
3071
3072 remainder = 0;
3073 break;
3074 }
3075
3076 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3077 page = pte_page(huge_ptep_get(pte));
3078 same_page:
3079 if (pages) {
3080 pages[i] = mem_map_offset(page, pfn_offset);
3081 get_page(pages[i]);
3082 }
3083
3084 if (vmas)
3085 vmas[i] = vma;
3086
3087 vaddr += PAGE_SIZE;
3088 ++pfn_offset;
3089 --remainder;
3090 ++i;
3091 if (vaddr < vma->vm_end && remainder &&
3092 pfn_offset < pages_per_huge_page(h)) {
3093 /*
3094 * We use pfn_offset to avoid touching the pageframes
3095 * of this compound page.
3096 */
3097 goto same_page;
3098 }
3099 }
3100 spin_unlock(&mm->page_table_lock);
3101 *nr_pages = remainder;
3102 *position = vaddr;
3103
3104 return i ? i : -EFAULT;
3105 }
3106
3107 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3108 unsigned long address, unsigned long end, pgprot_t newprot)
3109 {
3110 struct mm_struct *mm = vma->vm_mm;
3111 unsigned long start = address;
3112 pte_t *ptep;
3113 pte_t pte;
3114 struct hstate *h = hstate_vma(vma);
3115 unsigned long pages = 0;
3116
3117 BUG_ON(address >= end);
3118 flush_cache_range(vma, address, end);
3119
3120 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3121 spin_lock(&mm->page_table_lock);
3122 for (; address < end; address += huge_page_size(h)) {
3123 ptep = huge_pte_offset(mm, address);
3124 if (!ptep)
3125 continue;
3126 if (huge_pmd_unshare(mm, &address, ptep)) {
3127 pages++;
3128 continue;
3129 }
3130 if (!huge_pte_none(huge_ptep_get(ptep))) {
3131 pte = huge_ptep_get_and_clear(mm, address, ptep);
3132 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3133 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3134 set_huge_pte_at(mm, address, ptep, pte);
3135 pages++;
3136 }
3137 }
3138 spin_unlock(&mm->page_table_lock);
3139 /*
3140 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3141 * may have cleared our pud entry and done put_page on the page table:
3142 * once we release i_mmap_mutex, another task can do the final put_page
3143 * and that page table be reused and filled with junk.
3144 */
3145 flush_tlb_range(vma, start, end);
3146 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3147
3148 return pages << h->order;
3149 }
3150
3151 int hugetlb_reserve_pages(struct inode *inode,
3152 long from, long to,
3153 struct vm_area_struct *vma,
3154 vm_flags_t vm_flags)
3155 {
3156 long ret, chg;
3157 struct hstate *h = hstate_inode(inode);
3158 struct hugepage_subpool *spool = subpool_inode(inode);
3159
3160 /*
3161 * Only apply hugepage reservation if asked. At fault time, an
3162 * attempt will be made for VM_NORESERVE to allocate a page
3163 * without using reserves
3164 */
3165 if (vm_flags & VM_NORESERVE)
3166 return 0;
3167
3168 /*
3169 * Shared mappings base their reservation on the number of pages that
3170 * are already allocated on behalf of the file. Private mappings need
3171 * to reserve the full area even if read-only as mprotect() may be
3172 * called to make the mapping read-write. Assume !vma is a shm mapping
3173 */
3174 if (!vma || vma->vm_flags & VM_MAYSHARE)
3175 chg = region_chg(&inode->i_mapping->private_list, from, to);
3176 else {
3177 struct resv_map *resv_map = resv_map_alloc();
3178 if (!resv_map)
3179 return -ENOMEM;
3180
3181 chg = to - from;
3182
3183 set_vma_resv_map(vma, resv_map);
3184 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3185 }
3186
3187 if (chg < 0) {
3188 ret = chg;
3189 goto out_err;
3190 }
3191
3192 /* There must be enough pages in the subpool for the mapping */
3193 if (hugepage_subpool_get_pages(spool, chg)) {
3194 ret = -ENOSPC;
3195 goto out_err;
3196 }
3197
3198 /*
3199 * Check enough hugepages are available for the reservation.
3200 * Hand the pages back to the subpool if there are not
3201 */
3202 ret = hugetlb_acct_memory(h, chg);
3203 if (ret < 0) {
3204 hugepage_subpool_put_pages(spool, chg);
3205 goto out_err;
3206 }
3207
3208 /*
3209 * Account for the reservations made. Shared mappings record regions
3210 * that have reservations as they are shared by multiple VMAs.
3211 * When the last VMA disappears, the region map says how much
3212 * the reservation was and the page cache tells how much of
3213 * the reservation was consumed. Private mappings are per-VMA and
3214 * only the consumed reservations are tracked. When the VMA
3215 * disappears, the original reservation is the VMA size and the
3216 * consumed reservations are stored in the map. Hence, nothing
3217 * else has to be done for private mappings here
3218 */
3219 if (!vma || vma->vm_flags & VM_MAYSHARE)
3220 region_add(&inode->i_mapping->private_list, from, to);
3221 return 0;
3222 out_err:
3223 if (vma)
3224 resv_map_put(vma);
3225 return ret;
3226 }
3227
3228 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3229 {
3230 struct hstate *h = hstate_inode(inode);
3231 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3232 struct hugepage_subpool *spool = subpool_inode(inode);
3233
3234 spin_lock(&inode->i_lock);
3235 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3236 spin_unlock(&inode->i_lock);
3237
3238 hugepage_subpool_put_pages(spool, (chg - freed));
3239 hugetlb_acct_memory(h, -(chg - freed));
3240 }
3241
3242 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3243 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3244 struct vm_area_struct *vma,
3245 unsigned long addr, pgoff_t idx)
3246 {
3247 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3248 svma->vm_start;
3249 unsigned long sbase = saddr & PUD_MASK;
3250 unsigned long s_end = sbase + PUD_SIZE;
3251
3252 /* Allow segments to share if only one is marked locked */
3253 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3254 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3255
3256 /*
3257 * match the virtual addresses, permission and the alignment of the
3258 * page table page.
3259 */
3260 if (pmd_index(addr) != pmd_index(saddr) ||
3261 vm_flags != svm_flags ||
3262 sbase < svma->vm_start || svma->vm_end < s_end)
3263 return 0;
3264
3265 return saddr;
3266 }
3267
3268 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3269 {
3270 unsigned long base = addr & PUD_MASK;
3271 unsigned long end = base + PUD_SIZE;
3272
3273 /*
3274 * check on proper vm_flags and page table alignment
3275 */
3276 if (vma->vm_flags & VM_MAYSHARE &&
3277 vma->vm_start <= base && end <= vma->vm_end)
3278 return 1;
3279 return 0;
3280 }
3281
3282 /*
3283 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3284 * and returns the corresponding pte. While this is not necessary for the
3285 * !shared pmd case because we can allocate the pmd later as well, it makes the
3286 * code much cleaner. pmd allocation is essential for the shared case because
3287 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3288 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3289 * bad pmd for sharing.
3290 */
3291 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3292 {
3293 struct vm_area_struct *vma = find_vma(mm, addr);
3294 struct address_space *mapping = vma->vm_file->f_mapping;
3295 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3296 vma->vm_pgoff;
3297 struct vm_area_struct *svma;
3298 unsigned long saddr;
3299 pte_t *spte = NULL;
3300 pte_t *pte;
3301
3302 if (!vma_shareable(vma, addr))
3303 return (pte_t *)pmd_alloc(mm, pud, addr);
3304
3305 mutex_lock(&mapping->i_mmap_mutex);
3306 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3307 if (svma == vma)
3308 continue;
3309
3310 saddr = page_table_shareable(svma, vma, addr, idx);
3311 if (saddr) {
3312 spte = huge_pte_offset(svma->vm_mm, saddr);
3313 if (spte) {
3314 get_page(virt_to_page(spte));
3315 break;
3316 }
3317 }
3318 }
3319
3320 if (!spte)
3321 goto out;
3322
3323 spin_lock(&mm->page_table_lock);
3324 if (pud_none(*pud))
3325 pud_populate(mm, pud,
3326 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3327 else
3328 put_page(virt_to_page(spte));
3329 spin_unlock(&mm->page_table_lock);
3330 out:
3331 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3332 mutex_unlock(&mapping->i_mmap_mutex);
3333 return pte;
3334 }
3335
3336 /*
3337 * unmap huge page backed by shared pte.
3338 *
3339 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3340 * indicated by page_count > 1, unmap is achieved by clearing pud and
3341 * decrementing the ref count. If count == 1, the pte page is not shared.
3342 *
3343 * called with vma->vm_mm->page_table_lock held.
3344 *
3345 * returns: 1 successfully unmapped a shared pte page
3346 * 0 the underlying pte page is not shared, or it is the last user
3347 */
3348 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3349 {
3350 pgd_t *pgd = pgd_offset(mm, *addr);
3351 pud_t *pud = pud_offset(pgd, *addr);
3352
3353 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3354 if (page_count(virt_to_page(ptep)) == 1)
3355 return 0;
3356
3357 pud_clear(pud);
3358 put_page(virt_to_page(ptep));
3359 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3360 return 1;
3361 }
3362 #define want_pmd_share() (1)
3363 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3364 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3365 {
3366 return NULL;
3367 }
3368 #define want_pmd_share() (0)
3369 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3370
3371 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3372 pte_t *huge_pte_alloc(struct mm_struct *mm,
3373 unsigned long addr, unsigned long sz)
3374 {
3375 pgd_t *pgd;
3376 pud_t *pud;
3377 pte_t *pte = NULL;
3378
3379 pgd = pgd_offset(mm, addr);
3380 pud = pud_alloc(mm, pgd, addr);
3381 if (pud) {
3382 if (sz == PUD_SIZE) {
3383 pte = (pte_t *)pud;
3384 } else {
3385 BUG_ON(sz != PMD_SIZE);
3386 if (want_pmd_share() && pud_none(*pud))
3387 pte = huge_pmd_share(mm, addr, pud);
3388 else
3389 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3390 }
3391 }
3392 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3393
3394 return pte;
3395 }
3396
3397 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3398 {
3399 pgd_t *pgd;
3400 pud_t *pud;
3401 pmd_t *pmd = NULL;
3402
3403 pgd = pgd_offset(mm, addr);
3404 if (pgd_present(*pgd)) {
3405 pud = pud_offset(pgd, addr);
3406 if (pud_present(*pud)) {
3407 if (pud_huge(*pud))
3408 return (pte_t *)pud;
3409 pmd = pmd_offset(pud, addr);
3410 }
3411 }
3412 return (pte_t *) pmd;
3413 }
3414
3415 struct page *
3416 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3417 pmd_t *pmd, int write)
3418 {
3419 struct page *page;
3420
3421 page = pte_page(*(pte_t *)pmd);
3422 if (page)
3423 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3424 return page;
3425 }
3426
3427 struct page *
3428 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3429 pud_t *pud, int write)
3430 {
3431 struct page *page;
3432
3433 page = pte_page(*(pte_t *)pud);
3434 if (page)
3435 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3436 return page;
3437 }
3438
3439 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3440
3441 /* Can be overriden by architectures */
3442 __attribute__((weak)) struct page *
3443 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3444 pud_t *pud, int write)
3445 {
3446 BUG();
3447 return NULL;
3448 }
3449
3450 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3451
3452 #ifdef CONFIG_MEMORY_FAILURE
3453
3454 /* Should be called in hugetlb_lock */
3455 static int is_hugepage_on_freelist(struct page *hpage)
3456 {
3457 struct page *page;
3458 struct page *tmp;
3459 struct hstate *h = page_hstate(hpage);
3460 int nid = page_to_nid(hpage);
3461
3462 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3463 if (page == hpage)
3464 return 1;
3465 return 0;
3466 }
3467
3468 /*
3469 * This function is called from memory failure code.
3470 * Assume the caller holds page lock of the head page.
3471 */
3472 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3473 {
3474 struct hstate *h = page_hstate(hpage);
3475 int nid = page_to_nid(hpage);
3476 int ret = -EBUSY;
3477
3478 spin_lock(&hugetlb_lock);
3479 if (is_hugepage_on_freelist(hpage)) {
3480 /*
3481 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3482 * but dangling hpage->lru can trigger list-debug warnings
3483 * (this happens when we call unpoison_memory() on it),
3484 * so let it point to itself with list_del_init().
3485 */
3486 list_del_init(&hpage->lru);
3487 set_page_refcounted(hpage);
3488 h->free_huge_pages--;
3489 h->free_huge_pages_node[nid]--;
3490 ret = 0;
3491 }
3492 spin_unlock(&hugetlb_lock);
3493 return ret;
3494 }
3495 #endif
3496
3497 bool isolate_huge_page(struct page *page, struct list_head *list)
3498 {
3499 VM_BUG_ON(!PageHead(page));
3500 if (!get_page_unless_zero(page))
3501 return false;
3502 spin_lock(&hugetlb_lock);
3503 list_move_tail(&page->lru, list);
3504 spin_unlock(&hugetlb_lock);
3505 return true;
3506 }
3507
3508 void putback_active_hugepage(struct page *page)
3509 {
3510 VM_BUG_ON(!PageHead(page));
3511 spin_lock(&hugetlb_lock);
3512 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3513 spin_unlock(&hugetlb_lock);
3514 put_page(page);
3515 }
3516
3517 bool is_hugepage_active(struct page *page)
3518 {
3519 VM_BUG_ON(!PageHuge(page));
3520 /*
3521 * This function can be called for a tail page because the caller,
3522 * scan_movable_pages, scans through a given pfn-range which typically
3523 * covers one memory block. In systems using gigantic hugepage (1GB
3524 * for x86_64,) a hugepage is larger than a memory block, and we don't
3525 * support migrating such large hugepages for now, so return false
3526 * when called for tail pages.
3527 */
3528 if (PageTail(page))
3529 return false;
3530 /*
3531 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3532 * so we should return false for them.
3533 */
3534 if (unlikely(PageHWPoison(page)))
3535 return false;
3536 return page_count(page) > 0;
3537 }
This page took 0.114936 seconds and 5 git commands to generate.