204550ae29c8d77b3518055f23bd78a79d0701df
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93 {
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112 {
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130 return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation_mutex:
141 *
142 * down_write(&mm->mmap_sem);
143 * or
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
146 */
147 struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
226 /* We overlap with this area, if it extends further than
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
275 long seg_from;
276 long seg_to;
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290 }
291
292 /*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
298 {
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305 {
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335 return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344 #define HPAGE_RESV_OWNER (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
366 */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369 return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374 {
375 vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 if (!(vma->vm_flags & VM_MAYSHARE))
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
410 return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434 return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440 VM_BUG_ON(!is_vm_hugetlb_page(vma));
441 if (!(vma->vm_flags & VM_MAYSHARE))
442 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448 if (vma->vm_flags & VM_NORESERVE) {
449 /*
450 * This address is already reserved by other process(chg == 0),
451 * so, we should decrement reserved count. Without decrementing,
452 * reserve count remains after releasing inode, because this
453 * allocated page will go into page cache and is regarded as
454 * coming from reserved pool in releasing step. Currently, we
455 * don't have any other solution to deal with this situation
456 * properly, so add work-around here.
457 */
458 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459 return 1;
460 else
461 return 0;
462 }
463
464 /* Shared mappings always use reserves */
465 if (vma->vm_flags & VM_MAYSHARE)
466 return 1;
467
468 /*
469 * Only the process that called mmap() has reserves for
470 * private mappings.
471 */
472 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473 return 1;
474
475 return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480 int i;
481 struct hstate *h = page_hstate(src);
482 struct page *dst_base = dst;
483 struct page *src_base = src;
484
485 for (i = 0; i < pages_per_huge_page(h); ) {
486 cond_resched();
487 copy_highpage(dst, src);
488
489 i++;
490 dst = mem_map_next(dst, dst_base, i);
491 src = mem_map_next(src, src_base, i);
492 }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497 int i;
498 struct hstate *h = page_hstate(src);
499
500 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501 copy_gigantic_page(dst, src);
502 return;
503 }
504
505 might_sleep();
506 for (i = 0; i < pages_per_huge_page(h); i++) {
507 cond_resched();
508 copy_highpage(dst + i, src + i);
509 }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514 int nid = page_to_nid(page);
515 list_move(&page->lru, &h->hugepage_freelists[nid]);
516 h->free_huge_pages++;
517 h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522 struct page *page;
523
524 if (list_empty(&h->hugepage_freelists[nid]))
525 return NULL;
526 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527 list_move(&page->lru, &h->hugepage_activelist);
528 set_page_refcounted(page);
529 h->free_huge_pages--;
530 h->free_huge_pages_node[nid]--;
531 return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535 struct vm_area_struct *vma,
536 unsigned long address, int avoid_reserve,
537 long chg)
538 {
539 struct page *page = NULL;
540 struct mempolicy *mpol;
541 nodemask_t *nodemask;
542 struct zonelist *zonelist;
543 struct zone *zone;
544 struct zoneref *z;
545 unsigned int cpuset_mems_cookie;
546
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
552 if (!vma_has_reserves(vma, chg) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
555
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
559
560 retry_cpuset:
561 cpuset_mems_cookie = get_mems_allowed();
562 zonelist = huge_zonelist(vma, address,
563 htlb_alloc_mask, &mpol, &nodemask);
564
565 for_each_zone_zonelist_nodemask(zone, z, zonelist,
566 MAX_NR_ZONES - 1, nodemask) {
567 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568 page = dequeue_huge_page_node(h, zone_to_nid(zone));
569 if (page) {
570 if (avoid_reserve)
571 break;
572 if (!vma_has_reserves(vma, chg))
573 break;
574
575 h->resv_huge_pages--;
576 break;
577 }
578 }
579 }
580
581 mpol_cond_put(mpol);
582 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
583 goto retry_cpuset;
584 return page;
585
586 err:
587 return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592 int i;
593
594 VM_BUG_ON(h->order >= MAX_ORDER);
595
596 h->nr_huge_pages--;
597 h->nr_huge_pages_node[page_to_nid(page)]--;
598 for (i = 0; i < pages_per_huge_page(h); i++) {
599 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600 1 << PG_referenced | 1 << PG_dirty |
601 1 << PG_active | 1 << PG_reserved |
602 1 << PG_private | 1 << PG_writeback);
603 }
604 VM_BUG_ON(hugetlb_cgroup_from_page(page));
605 set_compound_page_dtor(page, NULL);
606 set_page_refcounted(page);
607 arch_release_hugepage(page);
608 __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613 struct hstate *h;
614
615 for_each_hstate(h) {
616 if (huge_page_size(h) == size)
617 return h;
618 }
619 return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624 /*
625 * Can't pass hstate in here because it is called from the
626 * compound page destructor.
627 */
628 struct hstate *h = page_hstate(page);
629 int nid = page_to_nid(page);
630 struct hugepage_subpool *spool =
631 (struct hugepage_subpool *)page_private(page);
632
633 set_page_private(page, 0);
634 page->mapping = NULL;
635 BUG_ON(page_count(page));
636 BUG_ON(page_mapcount(page));
637
638 spin_lock(&hugetlb_lock);
639 hugetlb_cgroup_uncharge_page(hstate_index(h),
640 pages_per_huge_page(h), page);
641 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
642 /* remove the page from active list */
643 list_del(&page->lru);
644 update_and_free_page(h, page);
645 h->surplus_huge_pages--;
646 h->surplus_huge_pages_node[nid]--;
647 } else {
648 arch_clear_hugepage_flags(page);
649 enqueue_huge_page(h, page);
650 }
651 spin_unlock(&hugetlb_lock);
652 hugepage_subpool_put_pages(spool, 1);
653 }
654
655 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
656 {
657 INIT_LIST_HEAD(&page->lru);
658 set_compound_page_dtor(page, free_huge_page);
659 spin_lock(&hugetlb_lock);
660 set_hugetlb_cgroup(page, NULL);
661 h->nr_huge_pages++;
662 h->nr_huge_pages_node[nid]++;
663 spin_unlock(&hugetlb_lock);
664 put_page(page); /* free it into the hugepage allocator */
665 }
666
667 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668 {
669 int i;
670 int nr_pages = 1 << order;
671 struct page *p = page + 1;
672
673 /* we rely on prep_new_huge_page to set the destructor */
674 set_compound_order(page, order);
675 __SetPageHead(page);
676 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677 __SetPageTail(p);
678 set_page_count(p, 0);
679 p->first_page = page;
680 }
681 }
682
683 /*
684 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685 * transparent huge pages. See the PageTransHuge() documentation for more
686 * details.
687 */
688 int PageHuge(struct page *page)
689 {
690 compound_page_dtor *dtor;
691
692 if (!PageCompound(page))
693 return 0;
694
695 page = compound_head(page);
696 dtor = get_compound_page_dtor(page);
697
698 return dtor == free_huge_page;
699 }
700 EXPORT_SYMBOL_GPL(PageHuge);
701
702 pgoff_t __basepage_index(struct page *page)
703 {
704 struct page *page_head = compound_head(page);
705 pgoff_t index = page_index(page_head);
706 unsigned long compound_idx;
707
708 if (!PageHuge(page_head))
709 return page_index(page);
710
711 if (compound_order(page_head) >= MAX_ORDER)
712 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
713 else
714 compound_idx = page - page_head;
715
716 return (index << compound_order(page_head)) + compound_idx;
717 }
718
719 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
720 {
721 struct page *page;
722
723 if (h->order >= MAX_ORDER)
724 return NULL;
725
726 page = alloc_pages_exact_node(nid,
727 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
728 __GFP_REPEAT|__GFP_NOWARN,
729 huge_page_order(h));
730 if (page) {
731 if (arch_prepare_hugepage(page)) {
732 __free_pages(page, huge_page_order(h));
733 return NULL;
734 }
735 prep_new_huge_page(h, page, nid);
736 }
737
738 return page;
739 }
740
741 /*
742 * common helper functions for hstate_next_node_to_{alloc|free}.
743 * We may have allocated or freed a huge page based on a different
744 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
745 * be outside of *nodes_allowed. Ensure that we use an allowed
746 * node for alloc or free.
747 */
748 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
749 {
750 nid = next_node(nid, *nodes_allowed);
751 if (nid == MAX_NUMNODES)
752 nid = first_node(*nodes_allowed);
753 VM_BUG_ON(nid >= MAX_NUMNODES);
754
755 return nid;
756 }
757
758 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760 if (!node_isset(nid, *nodes_allowed))
761 nid = next_node_allowed(nid, nodes_allowed);
762 return nid;
763 }
764
765 /*
766 * returns the previously saved node ["this node"] from which to
767 * allocate a persistent huge page for the pool and advance the
768 * next node from which to allocate, handling wrap at end of node
769 * mask.
770 */
771 static int hstate_next_node_to_alloc(struct hstate *h,
772 nodemask_t *nodes_allowed)
773 {
774 int nid;
775
776 VM_BUG_ON(!nodes_allowed);
777
778 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
779 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
780
781 return nid;
782 }
783
784 /*
785 * helper for free_pool_huge_page() - return the previously saved
786 * node ["this node"] from which to free a huge page. Advance the
787 * next node id whether or not we find a free huge page to free so
788 * that the next attempt to free addresses the next node.
789 */
790 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
791 {
792 int nid;
793
794 VM_BUG_ON(!nodes_allowed);
795
796 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
797 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
798
799 return nid;
800 }
801
802 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
803 for (nr_nodes = nodes_weight(*mask); \
804 nr_nodes > 0 && \
805 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
806 nr_nodes--)
807
808 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
809 for (nr_nodes = nodes_weight(*mask); \
810 nr_nodes > 0 && \
811 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
812 nr_nodes--)
813
814 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816 struct page *page;
817 int nr_nodes, node;
818 int ret = 0;
819
820 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
821 page = alloc_fresh_huge_page_node(h, node);
822 if (page) {
823 ret = 1;
824 break;
825 }
826 }
827
828 if (ret)
829 count_vm_event(HTLB_BUDDY_PGALLOC);
830 else
831 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
833 return ret;
834 }
835
836 /*
837 * Free huge page from pool from next node to free.
838 * Attempt to keep persistent huge pages more or less
839 * balanced over allowed nodes.
840 * Called with hugetlb_lock locked.
841 */
842 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
843 bool acct_surplus)
844 {
845 int nr_nodes, node;
846 int ret = 0;
847
848 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
849 /*
850 * If we're returning unused surplus pages, only examine
851 * nodes with surplus pages.
852 */
853 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
854 !list_empty(&h->hugepage_freelists[node])) {
855 struct page *page =
856 list_entry(h->hugepage_freelists[node].next,
857 struct page, lru);
858 list_del(&page->lru);
859 h->free_huge_pages--;
860 h->free_huge_pages_node[node]--;
861 if (acct_surplus) {
862 h->surplus_huge_pages--;
863 h->surplus_huge_pages_node[node]--;
864 }
865 update_and_free_page(h, page);
866 ret = 1;
867 break;
868 }
869 }
870
871 return ret;
872 }
873
874 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
875 {
876 struct page *page;
877 unsigned int r_nid;
878
879 if (h->order >= MAX_ORDER)
880 return NULL;
881
882 /*
883 * Assume we will successfully allocate the surplus page to
884 * prevent racing processes from causing the surplus to exceed
885 * overcommit
886 *
887 * This however introduces a different race, where a process B
888 * tries to grow the static hugepage pool while alloc_pages() is
889 * called by process A. B will only examine the per-node
890 * counters in determining if surplus huge pages can be
891 * converted to normal huge pages in adjust_pool_surplus(). A
892 * won't be able to increment the per-node counter, until the
893 * lock is dropped by B, but B doesn't drop hugetlb_lock until
894 * no more huge pages can be converted from surplus to normal
895 * state (and doesn't try to convert again). Thus, we have a
896 * case where a surplus huge page exists, the pool is grown, and
897 * the surplus huge page still exists after, even though it
898 * should just have been converted to a normal huge page. This
899 * does not leak memory, though, as the hugepage will be freed
900 * once it is out of use. It also does not allow the counters to
901 * go out of whack in adjust_pool_surplus() as we don't modify
902 * the node values until we've gotten the hugepage and only the
903 * per-node value is checked there.
904 */
905 spin_lock(&hugetlb_lock);
906 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
907 spin_unlock(&hugetlb_lock);
908 return NULL;
909 } else {
910 h->nr_huge_pages++;
911 h->surplus_huge_pages++;
912 }
913 spin_unlock(&hugetlb_lock);
914
915 if (nid == NUMA_NO_NODE)
916 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
917 __GFP_REPEAT|__GFP_NOWARN,
918 huge_page_order(h));
919 else
920 page = alloc_pages_exact_node(nid,
921 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
922 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
923
924 if (page && arch_prepare_hugepage(page)) {
925 __free_pages(page, huge_page_order(h));
926 page = NULL;
927 }
928
929 spin_lock(&hugetlb_lock);
930 if (page) {
931 INIT_LIST_HEAD(&page->lru);
932 r_nid = page_to_nid(page);
933 set_compound_page_dtor(page, free_huge_page);
934 set_hugetlb_cgroup(page, NULL);
935 /*
936 * We incremented the global counters already
937 */
938 h->nr_huge_pages_node[r_nid]++;
939 h->surplus_huge_pages_node[r_nid]++;
940 __count_vm_event(HTLB_BUDDY_PGALLOC);
941 } else {
942 h->nr_huge_pages--;
943 h->surplus_huge_pages--;
944 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
945 }
946 spin_unlock(&hugetlb_lock);
947
948 return page;
949 }
950
951 /*
952 * This allocation function is useful in the context where vma is irrelevant.
953 * E.g. soft-offlining uses this function because it only cares physical
954 * address of error page.
955 */
956 struct page *alloc_huge_page_node(struct hstate *h, int nid)
957 {
958 struct page *page = NULL;
959
960 spin_lock(&hugetlb_lock);
961 if (h->free_huge_pages - h->resv_huge_pages > 0)
962 page = dequeue_huge_page_node(h, nid);
963 spin_unlock(&hugetlb_lock);
964
965 if (!page)
966 page = alloc_buddy_huge_page(h, nid);
967
968 return page;
969 }
970
971 /*
972 * Increase the hugetlb pool such that it can accommodate a reservation
973 * of size 'delta'.
974 */
975 static int gather_surplus_pages(struct hstate *h, int delta)
976 {
977 struct list_head surplus_list;
978 struct page *page, *tmp;
979 int ret, i;
980 int needed, allocated;
981 bool alloc_ok = true;
982
983 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
984 if (needed <= 0) {
985 h->resv_huge_pages += delta;
986 return 0;
987 }
988
989 allocated = 0;
990 INIT_LIST_HEAD(&surplus_list);
991
992 ret = -ENOMEM;
993 retry:
994 spin_unlock(&hugetlb_lock);
995 for (i = 0; i < needed; i++) {
996 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
997 if (!page) {
998 alloc_ok = false;
999 break;
1000 }
1001 list_add(&page->lru, &surplus_list);
1002 }
1003 allocated += i;
1004
1005 /*
1006 * After retaking hugetlb_lock, we need to recalculate 'needed'
1007 * because either resv_huge_pages or free_huge_pages may have changed.
1008 */
1009 spin_lock(&hugetlb_lock);
1010 needed = (h->resv_huge_pages + delta) -
1011 (h->free_huge_pages + allocated);
1012 if (needed > 0) {
1013 if (alloc_ok)
1014 goto retry;
1015 /*
1016 * We were not able to allocate enough pages to
1017 * satisfy the entire reservation so we free what
1018 * we've allocated so far.
1019 */
1020 goto free;
1021 }
1022 /*
1023 * The surplus_list now contains _at_least_ the number of extra pages
1024 * needed to accommodate the reservation. Add the appropriate number
1025 * of pages to the hugetlb pool and free the extras back to the buddy
1026 * allocator. Commit the entire reservation here to prevent another
1027 * process from stealing the pages as they are added to the pool but
1028 * before they are reserved.
1029 */
1030 needed += allocated;
1031 h->resv_huge_pages += delta;
1032 ret = 0;
1033
1034 /* Free the needed pages to the hugetlb pool */
1035 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1036 if ((--needed) < 0)
1037 break;
1038 /*
1039 * This page is now managed by the hugetlb allocator and has
1040 * no users -- drop the buddy allocator's reference.
1041 */
1042 put_page_testzero(page);
1043 VM_BUG_ON(page_count(page));
1044 enqueue_huge_page(h, page);
1045 }
1046 free:
1047 spin_unlock(&hugetlb_lock);
1048
1049 /* Free unnecessary surplus pages to the buddy allocator */
1050 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1051 put_page(page);
1052 spin_lock(&hugetlb_lock);
1053
1054 return ret;
1055 }
1056
1057 /*
1058 * When releasing a hugetlb pool reservation, any surplus pages that were
1059 * allocated to satisfy the reservation must be explicitly freed if they were
1060 * never used.
1061 * Called with hugetlb_lock held.
1062 */
1063 static void return_unused_surplus_pages(struct hstate *h,
1064 unsigned long unused_resv_pages)
1065 {
1066 unsigned long nr_pages;
1067
1068 /* Uncommit the reservation */
1069 h->resv_huge_pages -= unused_resv_pages;
1070
1071 /* Cannot return gigantic pages currently */
1072 if (h->order >= MAX_ORDER)
1073 return;
1074
1075 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1076
1077 /*
1078 * We want to release as many surplus pages as possible, spread
1079 * evenly across all nodes with memory. Iterate across these nodes
1080 * until we can no longer free unreserved surplus pages. This occurs
1081 * when the nodes with surplus pages have no free pages.
1082 * free_pool_huge_page() will balance the the freed pages across the
1083 * on-line nodes with memory and will handle the hstate accounting.
1084 */
1085 while (nr_pages--) {
1086 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1087 break;
1088 }
1089 }
1090
1091 /*
1092 * Determine if the huge page at addr within the vma has an associated
1093 * reservation. Where it does not we will need to logically increase
1094 * reservation and actually increase subpool usage before an allocation
1095 * can occur. Where any new reservation would be required the
1096 * reservation change is prepared, but not committed. Once the page
1097 * has been allocated from the subpool and instantiated the change should
1098 * be committed via vma_commit_reservation. No action is required on
1099 * failure.
1100 */
1101 static long vma_needs_reservation(struct hstate *h,
1102 struct vm_area_struct *vma, unsigned long addr)
1103 {
1104 struct address_space *mapping = vma->vm_file->f_mapping;
1105 struct inode *inode = mapping->host;
1106
1107 if (vma->vm_flags & VM_MAYSHARE) {
1108 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109 return region_chg(&inode->i_mapping->private_list,
1110 idx, idx + 1);
1111
1112 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1113 return 1;
1114
1115 } else {
1116 long err;
1117 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1118 struct resv_map *resv = vma_resv_map(vma);
1119
1120 err = region_chg(&resv->regions, idx, idx + 1);
1121 if (err < 0)
1122 return err;
1123 return 0;
1124 }
1125 }
1126 static void vma_commit_reservation(struct hstate *h,
1127 struct vm_area_struct *vma, unsigned long addr)
1128 {
1129 struct address_space *mapping = vma->vm_file->f_mapping;
1130 struct inode *inode = mapping->host;
1131
1132 if (vma->vm_flags & VM_MAYSHARE) {
1133 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1134 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1135
1136 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1137 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1138 struct resv_map *resv = vma_resv_map(vma);
1139
1140 /* Mark this page used in the map. */
1141 region_add(&resv->regions, idx, idx + 1);
1142 }
1143 }
1144
1145 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1146 unsigned long addr, int avoid_reserve)
1147 {
1148 struct hugepage_subpool *spool = subpool_vma(vma);
1149 struct hstate *h = hstate_vma(vma);
1150 struct page *page;
1151 long chg;
1152 int ret, idx;
1153 struct hugetlb_cgroup *h_cg;
1154
1155 idx = hstate_index(h);
1156 /*
1157 * Processes that did not create the mapping will have no
1158 * reserves and will not have accounted against subpool
1159 * limit. Check that the subpool limit can be made before
1160 * satisfying the allocation MAP_NORESERVE mappings may also
1161 * need pages and subpool limit allocated allocated if no reserve
1162 * mapping overlaps.
1163 */
1164 chg = vma_needs_reservation(h, vma, addr);
1165 if (chg < 0)
1166 return ERR_PTR(-ENOMEM);
1167 if (chg)
1168 if (hugepage_subpool_get_pages(spool, chg))
1169 return ERR_PTR(-ENOSPC);
1170
1171 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1172 if (ret) {
1173 hugepage_subpool_put_pages(spool, chg);
1174 return ERR_PTR(-ENOSPC);
1175 }
1176 spin_lock(&hugetlb_lock);
1177 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1178 if (!page) {
1179 spin_unlock(&hugetlb_lock);
1180 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1181 if (!page) {
1182 hugetlb_cgroup_uncharge_cgroup(idx,
1183 pages_per_huge_page(h),
1184 h_cg);
1185 hugepage_subpool_put_pages(spool, chg);
1186 return ERR_PTR(-ENOSPC);
1187 }
1188 spin_lock(&hugetlb_lock);
1189 list_move(&page->lru, &h->hugepage_activelist);
1190 /* Fall through */
1191 }
1192 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1193 spin_unlock(&hugetlb_lock);
1194
1195 set_page_private(page, (unsigned long)spool);
1196
1197 vma_commit_reservation(h, vma, addr);
1198 return page;
1199 }
1200
1201 int __weak alloc_bootmem_huge_page(struct hstate *h)
1202 {
1203 struct huge_bootmem_page *m;
1204 int nr_nodes, node;
1205
1206 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1207 void *addr;
1208
1209 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1210 huge_page_size(h), huge_page_size(h), 0);
1211
1212 if (addr) {
1213 /*
1214 * Use the beginning of the huge page to store the
1215 * huge_bootmem_page struct (until gather_bootmem
1216 * puts them into the mem_map).
1217 */
1218 m = addr;
1219 goto found;
1220 }
1221 }
1222 return 0;
1223
1224 found:
1225 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1226 /* Put them into a private list first because mem_map is not up yet */
1227 list_add(&m->list, &huge_boot_pages);
1228 m->hstate = h;
1229 return 1;
1230 }
1231
1232 static void prep_compound_huge_page(struct page *page, int order)
1233 {
1234 if (unlikely(order > (MAX_ORDER - 1)))
1235 prep_compound_gigantic_page(page, order);
1236 else
1237 prep_compound_page(page, order);
1238 }
1239
1240 /* Put bootmem huge pages into the standard lists after mem_map is up */
1241 static void __init gather_bootmem_prealloc(void)
1242 {
1243 struct huge_bootmem_page *m;
1244
1245 list_for_each_entry(m, &huge_boot_pages, list) {
1246 struct hstate *h = m->hstate;
1247 struct page *page;
1248
1249 #ifdef CONFIG_HIGHMEM
1250 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1251 free_bootmem_late((unsigned long)m,
1252 sizeof(struct huge_bootmem_page));
1253 #else
1254 page = virt_to_page(m);
1255 #endif
1256 __ClearPageReserved(page);
1257 WARN_ON(page_count(page) != 1);
1258 prep_compound_huge_page(page, h->order);
1259 prep_new_huge_page(h, page, page_to_nid(page));
1260 /*
1261 * If we had gigantic hugepages allocated at boot time, we need
1262 * to restore the 'stolen' pages to totalram_pages in order to
1263 * fix confusing memory reports from free(1) and another
1264 * side-effects, like CommitLimit going negative.
1265 */
1266 if (h->order > (MAX_ORDER - 1))
1267 adjust_managed_page_count(page, 1 << h->order);
1268 }
1269 }
1270
1271 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1272 {
1273 unsigned long i;
1274
1275 for (i = 0; i < h->max_huge_pages; ++i) {
1276 if (h->order >= MAX_ORDER) {
1277 if (!alloc_bootmem_huge_page(h))
1278 break;
1279 } else if (!alloc_fresh_huge_page(h,
1280 &node_states[N_MEMORY]))
1281 break;
1282 }
1283 h->max_huge_pages = i;
1284 }
1285
1286 static void __init hugetlb_init_hstates(void)
1287 {
1288 struct hstate *h;
1289
1290 for_each_hstate(h) {
1291 /* oversize hugepages were init'ed in early boot */
1292 if (h->order < MAX_ORDER)
1293 hugetlb_hstate_alloc_pages(h);
1294 }
1295 }
1296
1297 static char * __init memfmt(char *buf, unsigned long n)
1298 {
1299 if (n >= (1UL << 30))
1300 sprintf(buf, "%lu GB", n >> 30);
1301 else if (n >= (1UL << 20))
1302 sprintf(buf, "%lu MB", n >> 20);
1303 else
1304 sprintf(buf, "%lu KB", n >> 10);
1305 return buf;
1306 }
1307
1308 static void __init report_hugepages(void)
1309 {
1310 struct hstate *h;
1311
1312 for_each_hstate(h) {
1313 char buf[32];
1314 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1315 memfmt(buf, huge_page_size(h)),
1316 h->free_huge_pages);
1317 }
1318 }
1319
1320 #ifdef CONFIG_HIGHMEM
1321 static void try_to_free_low(struct hstate *h, unsigned long count,
1322 nodemask_t *nodes_allowed)
1323 {
1324 int i;
1325
1326 if (h->order >= MAX_ORDER)
1327 return;
1328
1329 for_each_node_mask(i, *nodes_allowed) {
1330 struct page *page, *next;
1331 struct list_head *freel = &h->hugepage_freelists[i];
1332 list_for_each_entry_safe(page, next, freel, lru) {
1333 if (count >= h->nr_huge_pages)
1334 return;
1335 if (PageHighMem(page))
1336 continue;
1337 list_del(&page->lru);
1338 update_and_free_page(h, page);
1339 h->free_huge_pages--;
1340 h->free_huge_pages_node[page_to_nid(page)]--;
1341 }
1342 }
1343 }
1344 #else
1345 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1346 nodemask_t *nodes_allowed)
1347 {
1348 }
1349 #endif
1350
1351 /*
1352 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1353 * balanced by operating on them in a round-robin fashion.
1354 * Returns 1 if an adjustment was made.
1355 */
1356 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1357 int delta)
1358 {
1359 int nr_nodes, node;
1360
1361 VM_BUG_ON(delta != -1 && delta != 1);
1362
1363 if (delta < 0) {
1364 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1365 if (h->surplus_huge_pages_node[node])
1366 goto found;
1367 }
1368 } else {
1369 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1370 if (h->surplus_huge_pages_node[node] <
1371 h->nr_huge_pages_node[node])
1372 goto found;
1373 }
1374 }
1375 return 0;
1376
1377 found:
1378 h->surplus_huge_pages += delta;
1379 h->surplus_huge_pages_node[node] += delta;
1380 return 1;
1381 }
1382
1383 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1384 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1385 nodemask_t *nodes_allowed)
1386 {
1387 unsigned long min_count, ret;
1388
1389 if (h->order >= MAX_ORDER)
1390 return h->max_huge_pages;
1391
1392 /*
1393 * Increase the pool size
1394 * First take pages out of surplus state. Then make up the
1395 * remaining difference by allocating fresh huge pages.
1396 *
1397 * We might race with alloc_buddy_huge_page() here and be unable
1398 * to convert a surplus huge page to a normal huge page. That is
1399 * not critical, though, it just means the overall size of the
1400 * pool might be one hugepage larger than it needs to be, but
1401 * within all the constraints specified by the sysctls.
1402 */
1403 spin_lock(&hugetlb_lock);
1404 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1405 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1406 break;
1407 }
1408
1409 while (count > persistent_huge_pages(h)) {
1410 /*
1411 * If this allocation races such that we no longer need the
1412 * page, free_huge_page will handle it by freeing the page
1413 * and reducing the surplus.
1414 */
1415 spin_unlock(&hugetlb_lock);
1416 ret = alloc_fresh_huge_page(h, nodes_allowed);
1417 spin_lock(&hugetlb_lock);
1418 if (!ret)
1419 goto out;
1420
1421 /* Bail for signals. Probably ctrl-c from user */
1422 if (signal_pending(current))
1423 goto out;
1424 }
1425
1426 /*
1427 * Decrease the pool size
1428 * First return free pages to the buddy allocator (being careful
1429 * to keep enough around to satisfy reservations). Then place
1430 * pages into surplus state as needed so the pool will shrink
1431 * to the desired size as pages become free.
1432 *
1433 * By placing pages into the surplus state independent of the
1434 * overcommit value, we are allowing the surplus pool size to
1435 * exceed overcommit. There are few sane options here. Since
1436 * alloc_buddy_huge_page() is checking the global counter,
1437 * though, we'll note that we're not allowed to exceed surplus
1438 * and won't grow the pool anywhere else. Not until one of the
1439 * sysctls are changed, or the surplus pages go out of use.
1440 */
1441 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1442 min_count = max(count, min_count);
1443 try_to_free_low(h, min_count, nodes_allowed);
1444 while (min_count < persistent_huge_pages(h)) {
1445 if (!free_pool_huge_page(h, nodes_allowed, 0))
1446 break;
1447 }
1448 while (count < persistent_huge_pages(h)) {
1449 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1450 break;
1451 }
1452 out:
1453 ret = persistent_huge_pages(h);
1454 spin_unlock(&hugetlb_lock);
1455 return ret;
1456 }
1457
1458 #define HSTATE_ATTR_RO(_name) \
1459 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1460
1461 #define HSTATE_ATTR(_name) \
1462 static struct kobj_attribute _name##_attr = \
1463 __ATTR(_name, 0644, _name##_show, _name##_store)
1464
1465 static struct kobject *hugepages_kobj;
1466 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1467
1468 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1469
1470 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1471 {
1472 int i;
1473
1474 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1475 if (hstate_kobjs[i] == kobj) {
1476 if (nidp)
1477 *nidp = NUMA_NO_NODE;
1478 return &hstates[i];
1479 }
1480
1481 return kobj_to_node_hstate(kobj, nidp);
1482 }
1483
1484 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1485 struct kobj_attribute *attr, char *buf)
1486 {
1487 struct hstate *h;
1488 unsigned long nr_huge_pages;
1489 int nid;
1490
1491 h = kobj_to_hstate(kobj, &nid);
1492 if (nid == NUMA_NO_NODE)
1493 nr_huge_pages = h->nr_huge_pages;
1494 else
1495 nr_huge_pages = h->nr_huge_pages_node[nid];
1496
1497 return sprintf(buf, "%lu\n", nr_huge_pages);
1498 }
1499
1500 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1501 struct kobject *kobj, struct kobj_attribute *attr,
1502 const char *buf, size_t len)
1503 {
1504 int err;
1505 int nid;
1506 unsigned long count;
1507 struct hstate *h;
1508 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1509
1510 err = kstrtoul(buf, 10, &count);
1511 if (err)
1512 goto out;
1513
1514 h = kobj_to_hstate(kobj, &nid);
1515 if (h->order >= MAX_ORDER) {
1516 err = -EINVAL;
1517 goto out;
1518 }
1519
1520 if (nid == NUMA_NO_NODE) {
1521 /*
1522 * global hstate attribute
1523 */
1524 if (!(obey_mempolicy &&
1525 init_nodemask_of_mempolicy(nodes_allowed))) {
1526 NODEMASK_FREE(nodes_allowed);
1527 nodes_allowed = &node_states[N_MEMORY];
1528 }
1529 } else if (nodes_allowed) {
1530 /*
1531 * per node hstate attribute: adjust count to global,
1532 * but restrict alloc/free to the specified node.
1533 */
1534 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1535 init_nodemask_of_node(nodes_allowed, nid);
1536 } else
1537 nodes_allowed = &node_states[N_MEMORY];
1538
1539 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1540
1541 if (nodes_allowed != &node_states[N_MEMORY])
1542 NODEMASK_FREE(nodes_allowed);
1543
1544 return len;
1545 out:
1546 NODEMASK_FREE(nodes_allowed);
1547 return err;
1548 }
1549
1550 static ssize_t nr_hugepages_show(struct kobject *kobj,
1551 struct kobj_attribute *attr, char *buf)
1552 {
1553 return nr_hugepages_show_common(kobj, attr, buf);
1554 }
1555
1556 static ssize_t nr_hugepages_store(struct kobject *kobj,
1557 struct kobj_attribute *attr, const char *buf, size_t len)
1558 {
1559 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1560 }
1561 HSTATE_ATTR(nr_hugepages);
1562
1563 #ifdef CONFIG_NUMA
1564
1565 /*
1566 * hstate attribute for optionally mempolicy-based constraint on persistent
1567 * huge page alloc/free.
1568 */
1569 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1570 struct kobj_attribute *attr, char *buf)
1571 {
1572 return nr_hugepages_show_common(kobj, attr, buf);
1573 }
1574
1575 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1576 struct kobj_attribute *attr, const char *buf, size_t len)
1577 {
1578 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1579 }
1580 HSTATE_ATTR(nr_hugepages_mempolicy);
1581 #endif
1582
1583
1584 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1585 struct kobj_attribute *attr, char *buf)
1586 {
1587 struct hstate *h = kobj_to_hstate(kobj, NULL);
1588 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1589 }
1590
1591 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1592 struct kobj_attribute *attr, const char *buf, size_t count)
1593 {
1594 int err;
1595 unsigned long input;
1596 struct hstate *h = kobj_to_hstate(kobj, NULL);
1597
1598 if (h->order >= MAX_ORDER)
1599 return -EINVAL;
1600
1601 err = kstrtoul(buf, 10, &input);
1602 if (err)
1603 return err;
1604
1605 spin_lock(&hugetlb_lock);
1606 h->nr_overcommit_huge_pages = input;
1607 spin_unlock(&hugetlb_lock);
1608
1609 return count;
1610 }
1611 HSTATE_ATTR(nr_overcommit_hugepages);
1612
1613 static ssize_t free_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615 {
1616 struct hstate *h;
1617 unsigned long free_huge_pages;
1618 int nid;
1619
1620 h = kobj_to_hstate(kobj, &nid);
1621 if (nid == NUMA_NO_NODE)
1622 free_huge_pages = h->free_huge_pages;
1623 else
1624 free_huge_pages = h->free_huge_pages_node[nid];
1625
1626 return sprintf(buf, "%lu\n", free_huge_pages);
1627 }
1628 HSTATE_ATTR_RO(free_hugepages);
1629
1630 static ssize_t resv_hugepages_show(struct kobject *kobj,
1631 struct kobj_attribute *attr, char *buf)
1632 {
1633 struct hstate *h = kobj_to_hstate(kobj, NULL);
1634 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1635 }
1636 HSTATE_ATTR_RO(resv_hugepages);
1637
1638 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1639 struct kobj_attribute *attr, char *buf)
1640 {
1641 struct hstate *h;
1642 unsigned long surplus_huge_pages;
1643 int nid;
1644
1645 h = kobj_to_hstate(kobj, &nid);
1646 if (nid == NUMA_NO_NODE)
1647 surplus_huge_pages = h->surplus_huge_pages;
1648 else
1649 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1650
1651 return sprintf(buf, "%lu\n", surplus_huge_pages);
1652 }
1653 HSTATE_ATTR_RO(surplus_hugepages);
1654
1655 static struct attribute *hstate_attrs[] = {
1656 &nr_hugepages_attr.attr,
1657 &nr_overcommit_hugepages_attr.attr,
1658 &free_hugepages_attr.attr,
1659 &resv_hugepages_attr.attr,
1660 &surplus_hugepages_attr.attr,
1661 #ifdef CONFIG_NUMA
1662 &nr_hugepages_mempolicy_attr.attr,
1663 #endif
1664 NULL,
1665 };
1666
1667 static struct attribute_group hstate_attr_group = {
1668 .attrs = hstate_attrs,
1669 };
1670
1671 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1672 struct kobject **hstate_kobjs,
1673 struct attribute_group *hstate_attr_group)
1674 {
1675 int retval;
1676 int hi = hstate_index(h);
1677
1678 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1679 if (!hstate_kobjs[hi])
1680 return -ENOMEM;
1681
1682 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1683 if (retval)
1684 kobject_put(hstate_kobjs[hi]);
1685
1686 return retval;
1687 }
1688
1689 static void __init hugetlb_sysfs_init(void)
1690 {
1691 struct hstate *h;
1692 int err;
1693
1694 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1695 if (!hugepages_kobj)
1696 return;
1697
1698 for_each_hstate(h) {
1699 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1700 hstate_kobjs, &hstate_attr_group);
1701 if (err)
1702 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1703 }
1704 }
1705
1706 #ifdef CONFIG_NUMA
1707
1708 /*
1709 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1710 * with node devices in node_devices[] using a parallel array. The array
1711 * index of a node device or _hstate == node id.
1712 * This is here to avoid any static dependency of the node device driver, in
1713 * the base kernel, on the hugetlb module.
1714 */
1715 struct node_hstate {
1716 struct kobject *hugepages_kobj;
1717 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1718 };
1719 struct node_hstate node_hstates[MAX_NUMNODES];
1720
1721 /*
1722 * A subset of global hstate attributes for node devices
1723 */
1724 static struct attribute *per_node_hstate_attrs[] = {
1725 &nr_hugepages_attr.attr,
1726 &free_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
1728 NULL,
1729 };
1730
1731 static struct attribute_group per_node_hstate_attr_group = {
1732 .attrs = per_node_hstate_attrs,
1733 };
1734
1735 /*
1736 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1737 * Returns node id via non-NULL nidp.
1738 */
1739 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740 {
1741 int nid;
1742
1743 for (nid = 0; nid < nr_node_ids; nid++) {
1744 struct node_hstate *nhs = &node_hstates[nid];
1745 int i;
1746 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1747 if (nhs->hstate_kobjs[i] == kobj) {
1748 if (nidp)
1749 *nidp = nid;
1750 return &hstates[i];
1751 }
1752 }
1753
1754 BUG();
1755 return NULL;
1756 }
1757
1758 /*
1759 * Unregister hstate attributes from a single node device.
1760 * No-op if no hstate attributes attached.
1761 */
1762 static void hugetlb_unregister_node(struct node *node)
1763 {
1764 struct hstate *h;
1765 struct node_hstate *nhs = &node_hstates[node->dev.id];
1766
1767 if (!nhs->hugepages_kobj)
1768 return; /* no hstate attributes */
1769
1770 for_each_hstate(h) {
1771 int idx = hstate_index(h);
1772 if (nhs->hstate_kobjs[idx]) {
1773 kobject_put(nhs->hstate_kobjs[idx]);
1774 nhs->hstate_kobjs[idx] = NULL;
1775 }
1776 }
1777
1778 kobject_put(nhs->hugepages_kobj);
1779 nhs->hugepages_kobj = NULL;
1780 }
1781
1782 /*
1783 * hugetlb module exit: unregister hstate attributes from node devices
1784 * that have them.
1785 */
1786 static void hugetlb_unregister_all_nodes(void)
1787 {
1788 int nid;
1789
1790 /*
1791 * disable node device registrations.
1792 */
1793 register_hugetlbfs_with_node(NULL, NULL);
1794
1795 /*
1796 * remove hstate attributes from any nodes that have them.
1797 */
1798 for (nid = 0; nid < nr_node_ids; nid++)
1799 hugetlb_unregister_node(node_devices[nid]);
1800 }
1801
1802 /*
1803 * Register hstate attributes for a single node device.
1804 * No-op if attributes already registered.
1805 */
1806 static void hugetlb_register_node(struct node *node)
1807 {
1808 struct hstate *h;
1809 struct node_hstate *nhs = &node_hstates[node->dev.id];
1810 int err;
1811
1812 if (nhs->hugepages_kobj)
1813 return; /* already allocated */
1814
1815 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1816 &node->dev.kobj);
1817 if (!nhs->hugepages_kobj)
1818 return;
1819
1820 for_each_hstate(h) {
1821 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1822 nhs->hstate_kobjs,
1823 &per_node_hstate_attr_group);
1824 if (err) {
1825 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1826 h->name, node->dev.id);
1827 hugetlb_unregister_node(node);
1828 break;
1829 }
1830 }
1831 }
1832
1833 /*
1834 * hugetlb init time: register hstate attributes for all registered node
1835 * devices of nodes that have memory. All on-line nodes should have
1836 * registered their associated device by this time.
1837 */
1838 static void hugetlb_register_all_nodes(void)
1839 {
1840 int nid;
1841
1842 for_each_node_state(nid, N_MEMORY) {
1843 struct node *node = node_devices[nid];
1844 if (node->dev.id == nid)
1845 hugetlb_register_node(node);
1846 }
1847
1848 /*
1849 * Let the node device driver know we're here so it can
1850 * [un]register hstate attributes on node hotplug.
1851 */
1852 register_hugetlbfs_with_node(hugetlb_register_node,
1853 hugetlb_unregister_node);
1854 }
1855 #else /* !CONFIG_NUMA */
1856
1857 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858 {
1859 BUG();
1860 if (nidp)
1861 *nidp = -1;
1862 return NULL;
1863 }
1864
1865 static void hugetlb_unregister_all_nodes(void) { }
1866
1867 static void hugetlb_register_all_nodes(void) { }
1868
1869 #endif
1870
1871 static void __exit hugetlb_exit(void)
1872 {
1873 struct hstate *h;
1874
1875 hugetlb_unregister_all_nodes();
1876
1877 for_each_hstate(h) {
1878 kobject_put(hstate_kobjs[hstate_index(h)]);
1879 }
1880
1881 kobject_put(hugepages_kobj);
1882 }
1883 module_exit(hugetlb_exit);
1884
1885 static int __init hugetlb_init(void)
1886 {
1887 /* Some platform decide whether they support huge pages at boot
1888 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889 * there is no such support
1890 */
1891 if (HPAGE_SHIFT == 0)
1892 return 0;
1893
1894 if (!size_to_hstate(default_hstate_size)) {
1895 default_hstate_size = HPAGE_SIZE;
1896 if (!size_to_hstate(default_hstate_size))
1897 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1898 }
1899 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1900 if (default_hstate_max_huge_pages)
1901 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1902
1903 hugetlb_init_hstates();
1904 gather_bootmem_prealloc();
1905 report_hugepages();
1906
1907 hugetlb_sysfs_init();
1908 hugetlb_register_all_nodes();
1909 hugetlb_cgroup_file_init();
1910
1911 return 0;
1912 }
1913 module_init(hugetlb_init);
1914
1915 /* Should be called on processing a hugepagesz=... option */
1916 void __init hugetlb_add_hstate(unsigned order)
1917 {
1918 struct hstate *h;
1919 unsigned long i;
1920
1921 if (size_to_hstate(PAGE_SIZE << order)) {
1922 pr_warning("hugepagesz= specified twice, ignoring\n");
1923 return;
1924 }
1925 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1926 BUG_ON(order == 0);
1927 h = &hstates[hugetlb_max_hstate++];
1928 h->order = order;
1929 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1930 h->nr_huge_pages = 0;
1931 h->free_huge_pages = 0;
1932 for (i = 0; i < MAX_NUMNODES; ++i)
1933 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1934 INIT_LIST_HEAD(&h->hugepage_activelist);
1935 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1936 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1937 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1938 huge_page_size(h)/1024);
1939
1940 parsed_hstate = h;
1941 }
1942
1943 static int __init hugetlb_nrpages_setup(char *s)
1944 {
1945 unsigned long *mhp;
1946 static unsigned long *last_mhp;
1947
1948 /*
1949 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1950 * so this hugepages= parameter goes to the "default hstate".
1951 */
1952 if (!hugetlb_max_hstate)
1953 mhp = &default_hstate_max_huge_pages;
1954 else
1955 mhp = &parsed_hstate->max_huge_pages;
1956
1957 if (mhp == last_mhp) {
1958 pr_warning("hugepages= specified twice without "
1959 "interleaving hugepagesz=, ignoring\n");
1960 return 1;
1961 }
1962
1963 if (sscanf(s, "%lu", mhp) <= 0)
1964 *mhp = 0;
1965
1966 /*
1967 * Global state is always initialized later in hugetlb_init.
1968 * But we need to allocate >= MAX_ORDER hstates here early to still
1969 * use the bootmem allocator.
1970 */
1971 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1972 hugetlb_hstate_alloc_pages(parsed_hstate);
1973
1974 last_mhp = mhp;
1975
1976 return 1;
1977 }
1978 __setup("hugepages=", hugetlb_nrpages_setup);
1979
1980 static int __init hugetlb_default_setup(char *s)
1981 {
1982 default_hstate_size = memparse(s, &s);
1983 return 1;
1984 }
1985 __setup("default_hugepagesz=", hugetlb_default_setup);
1986
1987 static unsigned int cpuset_mems_nr(unsigned int *array)
1988 {
1989 int node;
1990 unsigned int nr = 0;
1991
1992 for_each_node_mask(node, cpuset_current_mems_allowed)
1993 nr += array[node];
1994
1995 return nr;
1996 }
1997
1998 #ifdef CONFIG_SYSCTL
1999 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2000 struct ctl_table *table, int write,
2001 void __user *buffer, size_t *length, loff_t *ppos)
2002 {
2003 struct hstate *h = &default_hstate;
2004 unsigned long tmp;
2005 int ret;
2006
2007 tmp = h->max_huge_pages;
2008
2009 if (write && h->order >= MAX_ORDER)
2010 return -EINVAL;
2011
2012 table->data = &tmp;
2013 table->maxlen = sizeof(unsigned long);
2014 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2015 if (ret)
2016 goto out;
2017
2018 if (write) {
2019 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2020 GFP_KERNEL | __GFP_NORETRY);
2021 if (!(obey_mempolicy &&
2022 init_nodemask_of_mempolicy(nodes_allowed))) {
2023 NODEMASK_FREE(nodes_allowed);
2024 nodes_allowed = &node_states[N_MEMORY];
2025 }
2026 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2027
2028 if (nodes_allowed != &node_states[N_MEMORY])
2029 NODEMASK_FREE(nodes_allowed);
2030 }
2031 out:
2032 return ret;
2033 }
2034
2035 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2036 void __user *buffer, size_t *length, loff_t *ppos)
2037 {
2038
2039 return hugetlb_sysctl_handler_common(false, table, write,
2040 buffer, length, ppos);
2041 }
2042
2043 #ifdef CONFIG_NUMA
2044 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2045 void __user *buffer, size_t *length, loff_t *ppos)
2046 {
2047 return hugetlb_sysctl_handler_common(true, table, write,
2048 buffer, length, ppos);
2049 }
2050 #endif /* CONFIG_NUMA */
2051
2052 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2053 void __user *buffer,
2054 size_t *length, loff_t *ppos)
2055 {
2056 proc_dointvec(table, write, buffer, length, ppos);
2057 if (hugepages_treat_as_movable)
2058 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2059 else
2060 htlb_alloc_mask = GFP_HIGHUSER;
2061 return 0;
2062 }
2063
2064 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2065 void __user *buffer,
2066 size_t *length, loff_t *ppos)
2067 {
2068 struct hstate *h = &default_hstate;
2069 unsigned long tmp;
2070 int ret;
2071
2072 tmp = h->nr_overcommit_huge_pages;
2073
2074 if (write && h->order >= MAX_ORDER)
2075 return -EINVAL;
2076
2077 table->data = &tmp;
2078 table->maxlen = sizeof(unsigned long);
2079 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2080 if (ret)
2081 goto out;
2082
2083 if (write) {
2084 spin_lock(&hugetlb_lock);
2085 h->nr_overcommit_huge_pages = tmp;
2086 spin_unlock(&hugetlb_lock);
2087 }
2088 out:
2089 return ret;
2090 }
2091
2092 #endif /* CONFIG_SYSCTL */
2093
2094 void hugetlb_report_meminfo(struct seq_file *m)
2095 {
2096 struct hstate *h = &default_hstate;
2097 seq_printf(m,
2098 "HugePages_Total: %5lu\n"
2099 "HugePages_Free: %5lu\n"
2100 "HugePages_Rsvd: %5lu\n"
2101 "HugePages_Surp: %5lu\n"
2102 "Hugepagesize: %8lu kB\n",
2103 h->nr_huge_pages,
2104 h->free_huge_pages,
2105 h->resv_huge_pages,
2106 h->surplus_huge_pages,
2107 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2108 }
2109
2110 int hugetlb_report_node_meminfo(int nid, char *buf)
2111 {
2112 struct hstate *h = &default_hstate;
2113 return sprintf(buf,
2114 "Node %d HugePages_Total: %5u\n"
2115 "Node %d HugePages_Free: %5u\n"
2116 "Node %d HugePages_Surp: %5u\n",
2117 nid, h->nr_huge_pages_node[nid],
2118 nid, h->free_huge_pages_node[nid],
2119 nid, h->surplus_huge_pages_node[nid]);
2120 }
2121
2122 void hugetlb_show_meminfo(void)
2123 {
2124 struct hstate *h;
2125 int nid;
2126
2127 for_each_node_state(nid, N_MEMORY)
2128 for_each_hstate(h)
2129 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2130 nid,
2131 h->nr_huge_pages_node[nid],
2132 h->free_huge_pages_node[nid],
2133 h->surplus_huge_pages_node[nid],
2134 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2135 }
2136
2137 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2138 unsigned long hugetlb_total_pages(void)
2139 {
2140 struct hstate *h;
2141 unsigned long nr_total_pages = 0;
2142
2143 for_each_hstate(h)
2144 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2145 return nr_total_pages;
2146 }
2147
2148 static int hugetlb_acct_memory(struct hstate *h, long delta)
2149 {
2150 int ret = -ENOMEM;
2151
2152 spin_lock(&hugetlb_lock);
2153 /*
2154 * When cpuset is configured, it breaks the strict hugetlb page
2155 * reservation as the accounting is done on a global variable. Such
2156 * reservation is completely rubbish in the presence of cpuset because
2157 * the reservation is not checked against page availability for the
2158 * current cpuset. Application can still potentially OOM'ed by kernel
2159 * with lack of free htlb page in cpuset that the task is in.
2160 * Attempt to enforce strict accounting with cpuset is almost
2161 * impossible (or too ugly) because cpuset is too fluid that
2162 * task or memory node can be dynamically moved between cpusets.
2163 *
2164 * The change of semantics for shared hugetlb mapping with cpuset is
2165 * undesirable. However, in order to preserve some of the semantics,
2166 * we fall back to check against current free page availability as
2167 * a best attempt and hopefully to minimize the impact of changing
2168 * semantics that cpuset has.
2169 */
2170 if (delta > 0) {
2171 if (gather_surplus_pages(h, delta) < 0)
2172 goto out;
2173
2174 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2175 return_unused_surplus_pages(h, delta);
2176 goto out;
2177 }
2178 }
2179
2180 ret = 0;
2181 if (delta < 0)
2182 return_unused_surplus_pages(h, (unsigned long) -delta);
2183
2184 out:
2185 spin_unlock(&hugetlb_lock);
2186 return ret;
2187 }
2188
2189 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2190 {
2191 struct resv_map *resv = vma_resv_map(vma);
2192
2193 /*
2194 * This new VMA should share its siblings reservation map if present.
2195 * The VMA will only ever have a valid reservation map pointer where
2196 * it is being copied for another still existing VMA. As that VMA
2197 * has a reference to the reservation map it cannot disappear until
2198 * after this open call completes. It is therefore safe to take a
2199 * new reference here without additional locking.
2200 */
2201 if (resv)
2202 kref_get(&resv->refs);
2203 }
2204
2205 static void resv_map_put(struct vm_area_struct *vma)
2206 {
2207 struct resv_map *resv = vma_resv_map(vma);
2208
2209 if (!resv)
2210 return;
2211 kref_put(&resv->refs, resv_map_release);
2212 }
2213
2214 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2215 {
2216 struct hstate *h = hstate_vma(vma);
2217 struct resv_map *resv = vma_resv_map(vma);
2218 struct hugepage_subpool *spool = subpool_vma(vma);
2219 unsigned long reserve;
2220 unsigned long start;
2221 unsigned long end;
2222
2223 if (resv) {
2224 start = vma_hugecache_offset(h, vma, vma->vm_start);
2225 end = vma_hugecache_offset(h, vma, vma->vm_end);
2226
2227 reserve = (end - start) -
2228 region_count(&resv->regions, start, end);
2229
2230 resv_map_put(vma);
2231
2232 if (reserve) {
2233 hugetlb_acct_memory(h, -reserve);
2234 hugepage_subpool_put_pages(spool, reserve);
2235 }
2236 }
2237 }
2238
2239 /*
2240 * We cannot handle pagefaults against hugetlb pages at all. They cause
2241 * handle_mm_fault() to try to instantiate regular-sized pages in the
2242 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2243 * this far.
2244 */
2245 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2246 {
2247 BUG();
2248 return 0;
2249 }
2250
2251 const struct vm_operations_struct hugetlb_vm_ops = {
2252 .fault = hugetlb_vm_op_fault,
2253 .open = hugetlb_vm_op_open,
2254 .close = hugetlb_vm_op_close,
2255 };
2256
2257 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2258 int writable)
2259 {
2260 pte_t entry;
2261
2262 if (writable) {
2263 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2264 vma->vm_page_prot)));
2265 } else {
2266 entry = huge_pte_wrprotect(mk_huge_pte(page,
2267 vma->vm_page_prot));
2268 }
2269 entry = pte_mkyoung(entry);
2270 entry = pte_mkhuge(entry);
2271 entry = arch_make_huge_pte(entry, vma, page, writable);
2272
2273 return entry;
2274 }
2275
2276 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2277 unsigned long address, pte_t *ptep)
2278 {
2279 pte_t entry;
2280
2281 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2282 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2283 update_mmu_cache(vma, address, ptep);
2284 }
2285
2286
2287 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2288 struct vm_area_struct *vma)
2289 {
2290 pte_t *src_pte, *dst_pte, entry;
2291 struct page *ptepage;
2292 unsigned long addr;
2293 int cow;
2294 struct hstate *h = hstate_vma(vma);
2295 unsigned long sz = huge_page_size(h);
2296
2297 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2298
2299 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2300 src_pte = huge_pte_offset(src, addr);
2301 if (!src_pte)
2302 continue;
2303 dst_pte = huge_pte_alloc(dst, addr, sz);
2304 if (!dst_pte)
2305 goto nomem;
2306
2307 /* If the pagetables are shared don't copy or take references */
2308 if (dst_pte == src_pte)
2309 continue;
2310
2311 spin_lock(&dst->page_table_lock);
2312 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2313 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2314 if (cow)
2315 huge_ptep_set_wrprotect(src, addr, src_pte);
2316 entry = huge_ptep_get(src_pte);
2317 ptepage = pte_page(entry);
2318 get_page(ptepage);
2319 page_dup_rmap(ptepage);
2320 set_huge_pte_at(dst, addr, dst_pte, entry);
2321 }
2322 spin_unlock(&src->page_table_lock);
2323 spin_unlock(&dst->page_table_lock);
2324 }
2325 return 0;
2326
2327 nomem:
2328 return -ENOMEM;
2329 }
2330
2331 static int is_hugetlb_entry_migration(pte_t pte)
2332 {
2333 swp_entry_t swp;
2334
2335 if (huge_pte_none(pte) || pte_present(pte))
2336 return 0;
2337 swp = pte_to_swp_entry(pte);
2338 if (non_swap_entry(swp) && is_migration_entry(swp))
2339 return 1;
2340 else
2341 return 0;
2342 }
2343
2344 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2345 {
2346 swp_entry_t swp;
2347
2348 if (huge_pte_none(pte) || pte_present(pte))
2349 return 0;
2350 swp = pte_to_swp_entry(pte);
2351 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2352 return 1;
2353 else
2354 return 0;
2355 }
2356
2357 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2358 unsigned long start, unsigned long end,
2359 struct page *ref_page)
2360 {
2361 int force_flush = 0;
2362 struct mm_struct *mm = vma->vm_mm;
2363 unsigned long address;
2364 pte_t *ptep;
2365 pte_t pte;
2366 struct page *page;
2367 struct hstate *h = hstate_vma(vma);
2368 unsigned long sz = huge_page_size(h);
2369 const unsigned long mmun_start = start; /* For mmu_notifiers */
2370 const unsigned long mmun_end = end; /* For mmu_notifiers */
2371
2372 WARN_ON(!is_vm_hugetlb_page(vma));
2373 BUG_ON(start & ~huge_page_mask(h));
2374 BUG_ON(end & ~huge_page_mask(h));
2375
2376 tlb_start_vma(tlb, vma);
2377 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2378 again:
2379 spin_lock(&mm->page_table_lock);
2380 for (address = start; address < end; address += sz) {
2381 ptep = huge_pte_offset(mm, address);
2382 if (!ptep)
2383 continue;
2384
2385 if (huge_pmd_unshare(mm, &address, ptep))
2386 continue;
2387
2388 pte = huge_ptep_get(ptep);
2389 if (huge_pte_none(pte))
2390 continue;
2391
2392 /*
2393 * HWPoisoned hugepage is already unmapped and dropped reference
2394 */
2395 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2396 huge_pte_clear(mm, address, ptep);
2397 continue;
2398 }
2399
2400 page = pte_page(pte);
2401 /*
2402 * If a reference page is supplied, it is because a specific
2403 * page is being unmapped, not a range. Ensure the page we
2404 * are about to unmap is the actual page of interest.
2405 */
2406 if (ref_page) {
2407 if (page != ref_page)
2408 continue;
2409
2410 /*
2411 * Mark the VMA as having unmapped its page so that
2412 * future faults in this VMA will fail rather than
2413 * looking like data was lost
2414 */
2415 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2416 }
2417
2418 pte = huge_ptep_get_and_clear(mm, address, ptep);
2419 tlb_remove_tlb_entry(tlb, ptep, address);
2420 if (huge_pte_dirty(pte))
2421 set_page_dirty(page);
2422
2423 page_remove_rmap(page);
2424 force_flush = !__tlb_remove_page(tlb, page);
2425 if (force_flush)
2426 break;
2427 /* Bail out after unmapping reference page if supplied */
2428 if (ref_page)
2429 break;
2430 }
2431 spin_unlock(&mm->page_table_lock);
2432 /*
2433 * mmu_gather ran out of room to batch pages, we break out of
2434 * the PTE lock to avoid doing the potential expensive TLB invalidate
2435 * and page-free while holding it.
2436 */
2437 if (force_flush) {
2438 force_flush = 0;
2439 tlb_flush_mmu(tlb);
2440 if (address < end && !ref_page)
2441 goto again;
2442 }
2443 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2444 tlb_end_vma(tlb, vma);
2445 }
2446
2447 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2448 struct vm_area_struct *vma, unsigned long start,
2449 unsigned long end, struct page *ref_page)
2450 {
2451 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2452
2453 /*
2454 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2455 * test will fail on a vma being torn down, and not grab a page table
2456 * on its way out. We're lucky that the flag has such an appropriate
2457 * name, and can in fact be safely cleared here. We could clear it
2458 * before the __unmap_hugepage_range above, but all that's necessary
2459 * is to clear it before releasing the i_mmap_mutex. This works
2460 * because in the context this is called, the VMA is about to be
2461 * destroyed and the i_mmap_mutex is held.
2462 */
2463 vma->vm_flags &= ~VM_MAYSHARE;
2464 }
2465
2466 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2467 unsigned long end, struct page *ref_page)
2468 {
2469 struct mm_struct *mm;
2470 struct mmu_gather tlb;
2471
2472 mm = vma->vm_mm;
2473
2474 tlb_gather_mmu(&tlb, mm, start, end);
2475 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2476 tlb_finish_mmu(&tlb, start, end);
2477 }
2478
2479 /*
2480 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2481 * mappping it owns the reserve page for. The intention is to unmap the page
2482 * from other VMAs and let the children be SIGKILLed if they are faulting the
2483 * same region.
2484 */
2485 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2486 struct page *page, unsigned long address)
2487 {
2488 struct hstate *h = hstate_vma(vma);
2489 struct vm_area_struct *iter_vma;
2490 struct address_space *mapping;
2491 pgoff_t pgoff;
2492
2493 /*
2494 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2495 * from page cache lookup which is in HPAGE_SIZE units.
2496 */
2497 address = address & huge_page_mask(h);
2498 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2499 vma->vm_pgoff;
2500 mapping = file_inode(vma->vm_file)->i_mapping;
2501
2502 /*
2503 * Take the mapping lock for the duration of the table walk. As
2504 * this mapping should be shared between all the VMAs,
2505 * __unmap_hugepage_range() is called as the lock is already held
2506 */
2507 mutex_lock(&mapping->i_mmap_mutex);
2508 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2509 /* Do not unmap the current VMA */
2510 if (iter_vma == vma)
2511 continue;
2512
2513 /*
2514 * Unmap the page from other VMAs without their own reserves.
2515 * They get marked to be SIGKILLed if they fault in these
2516 * areas. This is because a future no-page fault on this VMA
2517 * could insert a zeroed page instead of the data existing
2518 * from the time of fork. This would look like data corruption
2519 */
2520 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2521 unmap_hugepage_range(iter_vma, address,
2522 address + huge_page_size(h), page);
2523 }
2524 mutex_unlock(&mapping->i_mmap_mutex);
2525
2526 return 1;
2527 }
2528
2529 /*
2530 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2531 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2532 * cannot race with other handlers or page migration.
2533 * Keep the pte_same checks anyway to make transition from the mutex easier.
2534 */
2535 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2536 unsigned long address, pte_t *ptep, pte_t pte,
2537 struct page *pagecache_page)
2538 {
2539 struct hstate *h = hstate_vma(vma);
2540 struct page *old_page, *new_page;
2541 int outside_reserve = 0;
2542 unsigned long mmun_start; /* For mmu_notifiers */
2543 unsigned long mmun_end; /* For mmu_notifiers */
2544
2545 old_page = pte_page(pte);
2546
2547 retry_avoidcopy:
2548 /* If no-one else is actually using this page, avoid the copy
2549 * and just make the page writable */
2550 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2551 page_move_anon_rmap(old_page, vma, address);
2552 set_huge_ptep_writable(vma, address, ptep);
2553 return 0;
2554 }
2555
2556 /*
2557 * If the process that created a MAP_PRIVATE mapping is about to
2558 * perform a COW due to a shared page count, attempt to satisfy
2559 * the allocation without using the existing reserves. The pagecache
2560 * page is used to determine if the reserve at this address was
2561 * consumed or not. If reserves were used, a partial faulted mapping
2562 * at the time of fork() could consume its reserves on COW instead
2563 * of the full address range.
2564 */
2565 if (!(vma->vm_flags & VM_MAYSHARE) &&
2566 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2567 old_page != pagecache_page)
2568 outside_reserve = 1;
2569
2570 page_cache_get(old_page);
2571
2572 /* Drop page_table_lock as buddy allocator may be called */
2573 spin_unlock(&mm->page_table_lock);
2574 new_page = alloc_huge_page(vma, address, outside_reserve);
2575
2576 if (IS_ERR(new_page)) {
2577 long err = PTR_ERR(new_page);
2578 page_cache_release(old_page);
2579
2580 /*
2581 * If a process owning a MAP_PRIVATE mapping fails to COW,
2582 * it is due to references held by a child and an insufficient
2583 * huge page pool. To guarantee the original mappers
2584 * reliability, unmap the page from child processes. The child
2585 * may get SIGKILLed if it later faults.
2586 */
2587 if (outside_reserve) {
2588 BUG_ON(huge_pte_none(pte));
2589 if (unmap_ref_private(mm, vma, old_page, address)) {
2590 BUG_ON(huge_pte_none(pte));
2591 spin_lock(&mm->page_table_lock);
2592 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2593 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2594 goto retry_avoidcopy;
2595 /*
2596 * race occurs while re-acquiring page_table_lock, and
2597 * our job is done.
2598 */
2599 return 0;
2600 }
2601 WARN_ON_ONCE(1);
2602 }
2603
2604 /* Caller expects lock to be held */
2605 spin_lock(&mm->page_table_lock);
2606 if (err == -ENOMEM)
2607 return VM_FAULT_OOM;
2608 else
2609 return VM_FAULT_SIGBUS;
2610 }
2611
2612 /*
2613 * When the original hugepage is shared one, it does not have
2614 * anon_vma prepared.
2615 */
2616 if (unlikely(anon_vma_prepare(vma))) {
2617 page_cache_release(new_page);
2618 page_cache_release(old_page);
2619 /* Caller expects lock to be held */
2620 spin_lock(&mm->page_table_lock);
2621 return VM_FAULT_OOM;
2622 }
2623
2624 copy_user_huge_page(new_page, old_page, address, vma,
2625 pages_per_huge_page(h));
2626 __SetPageUptodate(new_page);
2627
2628 mmun_start = address & huge_page_mask(h);
2629 mmun_end = mmun_start + huge_page_size(h);
2630 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2631 /*
2632 * Retake the page_table_lock to check for racing updates
2633 * before the page tables are altered
2634 */
2635 spin_lock(&mm->page_table_lock);
2636 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2637 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2638 /* Break COW */
2639 huge_ptep_clear_flush(vma, address, ptep);
2640 set_huge_pte_at(mm, address, ptep,
2641 make_huge_pte(vma, new_page, 1));
2642 page_remove_rmap(old_page);
2643 hugepage_add_new_anon_rmap(new_page, vma, address);
2644 /* Make the old page be freed below */
2645 new_page = old_page;
2646 }
2647 spin_unlock(&mm->page_table_lock);
2648 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2649 /* Caller expects lock to be held */
2650 spin_lock(&mm->page_table_lock);
2651 page_cache_release(new_page);
2652 page_cache_release(old_page);
2653 return 0;
2654 }
2655
2656 /* Return the pagecache page at a given address within a VMA */
2657 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2658 struct vm_area_struct *vma, unsigned long address)
2659 {
2660 struct address_space *mapping;
2661 pgoff_t idx;
2662
2663 mapping = vma->vm_file->f_mapping;
2664 idx = vma_hugecache_offset(h, vma, address);
2665
2666 return find_lock_page(mapping, idx);
2667 }
2668
2669 /*
2670 * Return whether there is a pagecache page to back given address within VMA.
2671 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2672 */
2673 static bool hugetlbfs_pagecache_present(struct hstate *h,
2674 struct vm_area_struct *vma, unsigned long address)
2675 {
2676 struct address_space *mapping;
2677 pgoff_t idx;
2678 struct page *page;
2679
2680 mapping = vma->vm_file->f_mapping;
2681 idx = vma_hugecache_offset(h, vma, address);
2682
2683 page = find_get_page(mapping, idx);
2684 if (page)
2685 put_page(page);
2686 return page != NULL;
2687 }
2688
2689 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2690 unsigned long address, pte_t *ptep, unsigned int flags)
2691 {
2692 struct hstate *h = hstate_vma(vma);
2693 int ret = VM_FAULT_SIGBUS;
2694 int anon_rmap = 0;
2695 pgoff_t idx;
2696 unsigned long size;
2697 struct page *page;
2698 struct address_space *mapping;
2699 pte_t new_pte;
2700
2701 /*
2702 * Currently, we are forced to kill the process in the event the
2703 * original mapper has unmapped pages from the child due to a failed
2704 * COW. Warn that such a situation has occurred as it may not be obvious
2705 */
2706 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2707 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2708 current->pid);
2709 return ret;
2710 }
2711
2712 mapping = vma->vm_file->f_mapping;
2713 idx = vma_hugecache_offset(h, vma, address);
2714
2715 /*
2716 * Use page lock to guard against racing truncation
2717 * before we get page_table_lock.
2718 */
2719 retry:
2720 page = find_lock_page(mapping, idx);
2721 if (!page) {
2722 size = i_size_read(mapping->host) >> huge_page_shift(h);
2723 if (idx >= size)
2724 goto out;
2725 page = alloc_huge_page(vma, address, 0);
2726 if (IS_ERR(page)) {
2727 ret = PTR_ERR(page);
2728 if (ret == -ENOMEM)
2729 ret = VM_FAULT_OOM;
2730 else
2731 ret = VM_FAULT_SIGBUS;
2732 goto out;
2733 }
2734 clear_huge_page(page, address, pages_per_huge_page(h));
2735 __SetPageUptodate(page);
2736
2737 if (vma->vm_flags & VM_MAYSHARE) {
2738 int err;
2739 struct inode *inode = mapping->host;
2740
2741 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2742 if (err) {
2743 put_page(page);
2744 if (err == -EEXIST)
2745 goto retry;
2746 goto out;
2747 }
2748
2749 spin_lock(&inode->i_lock);
2750 inode->i_blocks += blocks_per_huge_page(h);
2751 spin_unlock(&inode->i_lock);
2752 } else {
2753 lock_page(page);
2754 if (unlikely(anon_vma_prepare(vma))) {
2755 ret = VM_FAULT_OOM;
2756 goto backout_unlocked;
2757 }
2758 anon_rmap = 1;
2759 }
2760 } else {
2761 /*
2762 * If memory error occurs between mmap() and fault, some process
2763 * don't have hwpoisoned swap entry for errored virtual address.
2764 * So we need to block hugepage fault by PG_hwpoison bit check.
2765 */
2766 if (unlikely(PageHWPoison(page))) {
2767 ret = VM_FAULT_HWPOISON |
2768 VM_FAULT_SET_HINDEX(hstate_index(h));
2769 goto backout_unlocked;
2770 }
2771 }
2772
2773 /*
2774 * If we are going to COW a private mapping later, we examine the
2775 * pending reservations for this page now. This will ensure that
2776 * any allocations necessary to record that reservation occur outside
2777 * the spinlock.
2778 */
2779 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2780 if (vma_needs_reservation(h, vma, address) < 0) {
2781 ret = VM_FAULT_OOM;
2782 goto backout_unlocked;
2783 }
2784
2785 spin_lock(&mm->page_table_lock);
2786 size = i_size_read(mapping->host) >> huge_page_shift(h);
2787 if (idx >= size)
2788 goto backout;
2789
2790 ret = 0;
2791 if (!huge_pte_none(huge_ptep_get(ptep)))
2792 goto backout;
2793
2794 if (anon_rmap)
2795 hugepage_add_new_anon_rmap(page, vma, address);
2796 else
2797 page_dup_rmap(page);
2798 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2799 && (vma->vm_flags & VM_SHARED)));
2800 set_huge_pte_at(mm, address, ptep, new_pte);
2801
2802 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2803 /* Optimization, do the COW without a second fault */
2804 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2805 }
2806
2807 spin_unlock(&mm->page_table_lock);
2808 unlock_page(page);
2809 out:
2810 return ret;
2811
2812 backout:
2813 spin_unlock(&mm->page_table_lock);
2814 backout_unlocked:
2815 unlock_page(page);
2816 put_page(page);
2817 goto out;
2818 }
2819
2820 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2821 unsigned long address, unsigned int flags)
2822 {
2823 pte_t *ptep;
2824 pte_t entry;
2825 int ret;
2826 struct page *page = NULL;
2827 struct page *pagecache_page = NULL;
2828 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2829 struct hstate *h = hstate_vma(vma);
2830
2831 address &= huge_page_mask(h);
2832
2833 ptep = huge_pte_offset(mm, address);
2834 if (ptep) {
2835 entry = huge_ptep_get(ptep);
2836 if (unlikely(is_hugetlb_entry_migration(entry))) {
2837 migration_entry_wait_huge(mm, ptep);
2838 return 0;
2839 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2840 return VM_FAULT_HWPOISON_LARGE |
2841 VM_FAULT_SET_HINDEX(hstate_index(h));
2842 }
2843
2844 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2845 if (!ptep)
2846 return VM_FAULT_OOM;
2847
2848 /*
2849 * Serialize hugepage allocation and instantiation, so that we don't
2850 * get spurious allocation failures if two CPUs race to instantiate
2851 * the same page in the page cache.
2852 */
2853 mutex_lock(&hugetlb_instantiation_mutex);
2854 entry = huge_ptep_get(ptep);
2855 if (huge_pte_none(entry)) {
2856 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2857 goto out_mutex;
2858 }
2859
2860 ret = 0;
2861
2862 /*
2863 * If we are going to COW the mapping later, we examine the pending
2864 * reservations for this page now. This will ensure that any
2865 * allocations necessary to record that reservation occur outside the
2866 * spinlock. For private mappings, we also lookup the pagecache
2867 * page now as it is used to determine if a reservation has been
2868 * consumed.
2869 */
2870 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2871 if (vma_needs_reservation(h, vma, address) < 0) {
2872 ret = VM_FAULT_OOM;
2873 goto out_mutex;
2874 }
2875
2876 if (!(vma->vm_flags & VM_MAYSHARE))
2877 pagecache_page = hugetlbfs_pagecache_page(h,
2878 vma, address);
2879 }
2880
2881 /*
2882 * hugetlb_cow() requires page locks of pte_page(entry) and
2883 * pagecache_page, so here we need take the former one
2884 * when page != pagecache_page or !pagecache_page.
2885 * Note that locking order is always pagecache_page -> page,
2886 * so no worry about deadlock.
2887 */
2888 page = pte_page(entry);
2889 get_page(page);
2890 if (page != pagecache_page)
2891 lock_page(page);
2892
2893 spin_lock(&mm->page_table_lock);
2894 /* Check for a racing update before calling hugetlb_cow */
2895 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2896 goto out_page_table_lock;
2897
2898
2899 if (flags & FAULT_FLAG_WRITE) {
2900 if (!huge_pte_write(entry)) {
2901 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2902 pagecache_page);
2903 goto out_page_table_lock;
2904 }
2905 entry = huge_pte_mkdirty(entry);
2906 }
2907 entry = pte_mkyoung(entry);
2908 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2909 flags & FAULT_FLAG_WRITE))
2910 update_mmu_cache(vma, address, ptep);
2911
2912 out_page_table_lock:
2913 spin_unlock(&mm->page_table_lock);
2914
2915 if (pagecache_page) {
2916 unlock_page(pagecache_page);
2917 put_page(pagecache_page);
2918 }
2919 if (page != pagecache_page)
2920 unlock_page(page);
2921 put_page(page);
2922
2923 out_mutex:
2924 mutex_unlock(&hugetlb_instantiation_mutex);
2925
2926 return ret;
2927 }
2928
2929 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930 struct page **pages, struct vm_area_struct **vmas,
2931 unsigned long *position, unsigned long *nr_pages,
2932 long i, unsigned int flags)
2933 {
2934 unsigned long pfn_offset;
2935 unsigned long vaddr = *position;
2936 unsigned long remainder = *nr_pages;
2937 struct hstate *h = hstate_vma(vma);
2938
2939 spin_lock(&mm->page_table_lock);
2940 while (vaddr < vma->vm_end && remainder) {
2941 pte_t *pte;
2942 int absent;
2943 struct page *page;
2944
2945 /*
2946 * Some archs (sparc64, sh*) have multiple pte_ts to
2947 * each hugepage. We have to make sure we get the
2948 * first, for the page indexing below to work.
2949 */
2950 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2951 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2952
2953 /*
2954 * When coredumping, it suits get_dump_page if we just return
2955 * an error where there's an empty slot with no huge pagecache
2956 * to back it. This way, we avoid allocating a hugepage, and
2957 * the sparse dumpfile avoids allocating disk blocks, but its
2958 * huge holes still show up with zeroes where they need to be.
2959 */
2960 if (absent && (flags & FOLL_DUMP) &&
2961 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2962 remainder = 0;
2963 break;
2964 }
2965
2966 /*
2967 * We need call hugetlb_fault for both hugepages under migration
2968 * (in which case hugetlb_fault waits for the migration,) and
2969 * hwpoisoned hugepages (in which case we need to prevent the
2970 * caller from accessing to them.) In order to do this, we use
2971 * here is_swap_pte instead of is_hugetlb_entry_migration and
2972 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2973 * both cases, and because we can't follow correct pages
2974 * directly from any kind of swap entries.
2975 */
2976 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2977 ((flags & FOLL_WRITE) &&
2978 !huge_pte_write(huge_ptep_get(pte)))) {
2979 int ret;
2980
2981 spin_unlock(&mm->page_table_lock);
2982 ret = hugetlb_fault(mm, vma, vaddr,
2983 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2984 spin_lock(&mm->page_table_lock);
2985 if (!(ret & VM_FAULT_ERROR))
2986 continue;
2987
2988 remainder = 0;
2989 break;
2990 }
2991
2992 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2993 page = pte_page(huge_ptep_get(pte));
2994 same_page:
2995 if (pages) {
2996 pages[i] = mem_map_offset(page, pfn_offset);
2997 get_page(pages[i]);
2998 }
2999
3000 if (vmas)
3001 vmas[i] = vma;
3002
3003 vaddr += PAGE_SIZE;
3004 ++pfn_offset;
3005 --remainder;
3006 ++i;
3007 if (vaddr < vma->vm_end && remainder &&
3008 pfn_offset < pages_per_huge_page(h)) {
3009 /*
3010 * We use pfn_offset to avoid touching the pageframes
3011 * of this compound page.
3012 */
3013 goto same_page;
3014 }
3015 }
3016 spin_unlock(&mm->page_table_lock);
3017 *nr_pages = remainder;
3018 *position = vaddr;
3019
3020 return i ? i : -EFAULT;
3021 }
3022
3023 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3024 unsigned long address, unsigned long end, pgprot_t newprot)
3025 {
3026 struct mm_struct *mm = vma->vm_mm;
3027 unsigned long start = address;
3028 pte_t *ptep;
3029 pte_t pte;
3030 struct hstate *h = hstate_vma(vma);
3031 unsigned long pages = 0;
3032
3033 BUG_ON(address >= end);
3034 flush_cache_range(vma, address, end);
3035
3036 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3037 spin_lock(&mm->page_table_lock);
3038 for (; address < end; address += huge_page_size(h)) {
3039 ptep = huge_pte_offset(mm, address);
3040 if (!ptep)
3041 continue;
3042 if (huge_pmd_unshare(mm, &address, ptep)) {
3043 pages++;
3044 continue;
3045 }
3046 if (!huge_pte_none(huge_ptep_get(ptep))) {
3047 pte = huge_ptep_get_and_clear(mm, address, ptep);
3048 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3049 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3050 set_huge_pte_at(mm, address, ptep, pte);
3051 pages++;
3052 }
3053 }
3054 spin_unlock(&mm->page_table_lock);
3055 /*
3056 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3057 * may have cleared our pud entry and done put_page on the page table:
3058 * once we release i_mmap_mutex, another task can do the final put_page
3059 * and that page table be reused and filled with junk.
3060 */
3061 flush_tlb_range(vma, start, end);
3062 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3063
3064 return pages << h->order;
3065 }
3066
3067 int hugetlb_reserve_pages(struct inode *inode,
3068 long from, long to,
3069 struct vm_area_struct *vma,
3070 vm_flags_t vm_flags)
3071 {
3072 long ret, chg;
3073 struct hstate *h = hstate_inode(inode);
3074 struct hugepage_subpool *spool = subpool_inode(inode);
3075
3076 /*
3077 * Only apply hugepage reservation if asked. At fault time, an
3078 * attempt will be made for VM_NORESERVE to allocate a page
3079 * without using reserves
3080 */
3081 if (vm_flags & VM_NORESERVE)
3082 return 0;
3083
3084 /*
3085 * Shared mappings base their reservation on the number of pages that
3086 * are already allocated on behalf of the file. Private mappings need
3087 * to reserve the full area even if read-only as mprotect() may be
3088 * called to make the mapping read-write. Assume !vma is a shm mapping
3089 */
3090 if (!vma || vma->vm_flags & VM_MAYSHARE)
3091 chg = region_chg(&inode->i_mapping->private_list, from, to);
3092 else {
3093 struct resv_map *resv_map = resv_map_alloc();
3094 if (!resv_map)
3095 return -ENOMEM;
3096
3097 chg = to - from;
3098
3099 set_vma_resv_map(vma, resv_map);
3100 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3101 }
3102
3103 if (chg < 0) {
3104 ret = chg;
3105 goto out_err;
3106 }
3107
3108 /* There must be enough pages in the subpool for the mapping */
3109 if (hugepage_subpool_get_pages(spool, chg)) {
3110 ret = -ENOSPC;
3111 goto out_err;
3112 }
3113
3114 /*
3115 * Check enough hugepages are available for the reservation.
3116 * Hand the pages back to the subpool if there are not
3117 */
3118 ret = hugetlb_acct_memory(h, chg);
3119 if (ret < 0) {
3120 hugepage_subpool_put_pages(spool, chg);
3121 goto out_err;
3122 }
3123
3124 /*
3125 * Account for the reservations made. Shared mappings record regions
3126 * that have reservations as they are shared by multiple VMAs.
3127 * When the last VMA disappears, the region map says how much
3128 * the reservation was and the page cache tells how much of
3129 * the reservation was consumed. Private mappings are per-VMA and
3130 * only the consumed reservations are tracked. When the VMA
3131 * disappears, the original reservation is the VMA size and the
3132 * consumed reservations are stored in the map. Hence, nothing
3133 * else has to be done for private mappings here
3134 */
3135 if (!vma || vma->vm_flags & VM_MAYSHARE)
3136 region_add(&inode->i_mapping->private_list, from, to);
3137 return 0;
3138 out_err:
3139 if (vma)
3140 resv_map_put(vma);
3141 return ret;
3142 }
3143
3144 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3145 {
3146 struct hstate *h = hstate_inode(inode);
3147 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3148 struct hugepage_subpool *spool = subpool_inode(inode);
3149
3150 spin_lock(&inode->i_lock);
3151 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3152 spin_unlock(&inode->i_lock);
3153
3154 hugepage_subpool_put_pages(spool, (chg - freed));
3155 hugetlb_acct_memory(h, -(chg - freed));
3156 }
3157
3158 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3159 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3160 struct vm_area_struct *vma,
3161 unsigned long addr, pgoff_t idx)
3162 {
3163 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3164 svma->vm_start;
3165 unsigned long sbase = saddr & PUD_MASK;
3166 unsigned long s_end = sbase + PUD_SIZE;
3167
3168 /* Allow segments to share if only one is marked locked */
3169 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3170 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3171
3172 /*
3173 * match the virtual addresses, permission and the alignment of the
3174 * page table page.
3175 */
3176 if (pmd_index(addr) != pmd_index(saddr) ||
3177 vm_flags != svm_flags ||
3178 sbase < svma->vm_start || svma->vm_end < s_end)
3179 return 0;
3180
3181 return saddr;
3182 }
3183
3184 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3185 {
3186 unsigned long base = addr & PUD_MASK;
3187 unsigned long end = base + PUD_SIZE;
3188
3189 /*
3190 * check on proper vm_flags and page table alignment
3191 */
3192 if (vma->vm_flags & VM_MAYSHARE &&
3193 vma->vm_start <= base && end <= vma->vm_end)
3194 return 1;
3195 return 0;
3196 }
3197
3198 /*
3199 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3200 * and returns the corresponding pte. While this is not necessary for the
3201 * !shared pmd case because we can allocate the pmd later as well, it makes the
3202 * code much cleaner. pmd allocation is essential for the shared case because
3203 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3204 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3205 * bad pmd for sharing.
3206 */
3207 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3208 {
3209 struct vm_area_struct *vma = find_vma(mm, addr);
3210 struct address_space *mapping = vma->vm_file->f_mapping;
3211 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3212 vma->vm_pgoff;
3213 struct vm_area_struct *svma;
3214 unsigned long saddr;
3215 pte_t *spte = NULL;
3216 pte_t *pte;
3217
3218 if (!vma_shareable(vma, addr))
3219 return (pte_t *)pmd_alloc(mm, pud, addr);
3220
3221 mutex_lock(&mapping->i_mmap_mutex);
3222 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3223 if (svma == vma)
3224 continue;
3225
3226 saddr = page_table_shareable(svma, vma, addr, idx);
3227 if (saddr) {
3228 spte = huge_pte_offset(svma->vm_mm, saddr);
3229 if (spte) {
3230 get_page(virt_to_page(spte));
3231 break;
3232 }
3233 }
3234 }
3235
3236 if (!spte)
3237 goto out;
3238
3239 spin_lock(&mm->page_table_lock);
3240 if (pud_none(*pud))
3241 pud_populate(mm, pud,
3242 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3243 else
3244 put_page(virt_to_page(spte));
3245 spin_unlock(&mm->page_table_lock);
3246 out:
3247 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3248 mutex_unlock(&mapping->i_mmap_mutex);
3249 return pte;
3250 }
3251
3252 /*
3253 * unmap huge page backed by shared pte.
3254 *
3255 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3256 * indicated by page_count > 1, unmap is achieved by clearing pud and
3257 * decrementing the ref count. If count == 1, the pte page is not shared.
3258 *
3259 * called with vma->vm_mm->page_table_lock held.
3260 *
3261 * returns: 1 successfully unmapped a shared pte page
3262 * 0 the underlying pte page is not shared, or it is the last user
3263 */
3264 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3265 {
3266 pgd_t *pgd = pgd_offset(mm, *addr);
3267 pud_t *pud = pud_offset(pgd, *addr);
3268
3269 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3270 if (page_count(virt_to_page(ptep)) == 1)
3271 return 0;
3272
3273 pud_clear(pud);
3274 put_page(virt_to_page(ptep));
3275 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3276 return 1;
3277 }
3278 #define want_pmd_share() (1)
3279 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3280 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3281 {
3282 return NULL;
3283 }
3284 #define want_pmd_share() (0)
3285 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3286
3287 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3288 pte_t *huge_pte_alloc(struct mm_struct *mm,
3289 unsigned long addr, unsigned long sz)
3290 {
3291 pgd_t *pgd;
3292 pud_t *pud;
3293 pte_t *pte = NULL;
3294
3295 pgd = pgd_offset(mm, addr);
3296 pud = pud_alloc(mm, pgd, addr);
3297 if (pud) {
3298 if (sz == PUD_SIZE) {
3299 pte = (pte_t *)pud;
3300 } else {
3301 BUG_ON(sz != PMD_SIZE);
3302 if (want_pmd_share() && pud_none(*pud))
3303 pte = huge_pmd_share(mm, addr, pud);
3304 else
3305 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3306 }
3307 }
3308 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3309
3310 return pte;
3311 }
3312
3313 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3314 {
3315 pgd_t *pgd;
3316 pud_t *pud;
3317 pmd_t *pmd = NULL;
3318
3319 pgd = pgd_offset(mm, addr);
3320 if (pgd_present(*pgd)) {
3321 pud = pud_offset(pgd, addr);
3322 if (pud_present(*pud)) {
3323 if (pud_huge(*pud))
3324 return (pte_t *)pud;
3325 pmd = pmd_offset(pud, addr);
3326 }
3327 }
3328 return (pte_t *) pmd;
3329 }
3330
3331 struct page *
3332 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3333 pmd_t *pmd, int write)
3334 {
3335 struct page *page;
3336
3337 page = pte_page(*(pte_t *)pmd);
3338 if (page)
3339 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3340 return page;
3341 }
3342
3343 struct page *
3344 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3345 pud_t *pud, int write)
3346 {
3347 struct page *page;
3348
3349 page = pte_page(*(pte_t *)pud);
3350 if (page)
3351 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3352 return page;
3353 }
3354
3355 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3356
3357 /* Can be overriden by architectures */
3358 __attribute__((weak)) struct page *
3359 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3360 pud_t *pud, int write)
3361 {
3362 BUG();
3363 return NULL;
3364 }
3365
3366 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3367
3368 #ifdef CONFIG_MEMORY_FAILURE
3369
3370 /* Should be called in hugetlb_lock */
3371 static int is_hugepage_on_freelist(struct page *hpage)
3372 {
3373 struct page *page;
3374 struct page *tmp;
3375 struct hstate *h = page_hstate(hpage);
3376 int nid = page_to_nid(hpage);
3377
3378 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3379 if (page == hpage)
3380 return 1;
3381 return 0;
3382 }
3383
3384 /*
3385 * This function is called from memory failure code.
3386 * Assume the caller holds page lock of the head page.
3387 */
3388 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3389 {
3390 struct hstate *h = page_hstate(hpage);
3391 int nid = page_to_nid(hpage);
3392 int ret = -EBUSY;
3393
3394 spin_lock(&hugetlb_lock);
3395 if (is_hugepage_on_freelist(hpage)) {
3396 /*
3397 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3398 * but dangling hpage->lru can trigger list-debug warnings
3399 * (this happens when we call unpoison_memory() on it),
3400 * so let it point to itself with list_del_init().
3401 */
3402 list_del_init(&hpage->lru);
3403 set_page_refcounted(hpage);
3404 h->free_huge_pages--;
3405 h->free_huge_pages_node[nid]--;
3406 ret = 0;
3407 }
3408 spin_unlock(&hugetlb_lock);
3409 return ret;
3410 }
3411 #endif
This page took 0.121221 seconds and 4 git commands to generate.