memory_hotplug: introduce memhp_default_state= command line parameter
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55
56 /*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91 {
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119 }
120
121 /*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131 {
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163 unlock_ret:
164 spin_unlock(&spool->lock);
165 return ret;
166 }
167
168 /*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 long delta)
176 {
177 long ret = delta;
178
179 if (!spool)
180 return delta;
181
182 spin_lock(&spool->lock);
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
203 unlock_or_release_subpool(spool);
204
205 return ret;
206 }
207
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 return subpool_inode(file_inode(vma->vm_file));
216 }
217
218 /*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
221 *
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
236 */
237 struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241 };
242
243 /*
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
256 */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
261 long add = 0;
262
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
318
319 add += (nrg->from - f); /* Added to beginning of region */
320 nrg->from = f;
321 add += t - nrg->to; /* Added to end of region */
322 nrg->to = t;
323
324 out_locked:
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
327 VM_BUG_ON(add < 0);
328 return add;
329 }
330
331 /*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
352 */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
357 long chg = 0;
358
359 retry:
360 spin_lock(&resv->lock);
361 retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg) {
378 kfree(nrg);
379 return -ENOMEM;
380 }
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
397 if (!nrg) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
409
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
425 goto out;
426
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
436
437 out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442 out_nrg:
443 spin_unlock(&resv->lock);
444 return chg;
445 }
446
447 /*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464 }
465
466 /*
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
479 */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
485 long del = 0;
486
487 retry:
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 continue;
499
500 if (rg->from >= t)
501 break;
502
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
516
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
537 break;
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
554 }
555
556 spin_unlock(&resv->lock);
557 kfree(nrg);
558 return del;
559 }
560
561 /*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (restore_reserve && rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581 }
582
583 /*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
591 long chg = 0;
592
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
596 long seg_from;
597 long seg_to;
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
609 spin_unlock(&resv->lock);
610
611 return chg;
612 }
613
614 /*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
620 {
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
623 }
624
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627 {
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630
631 /*
632 * Return the size of the pages allocated when backing a VMA. In the majority
633 * cases this will be same size as used by the page table entries.
634 */
635 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
636 {
637 struct hstate *hstate;
638
639 if (!is_vm_hugetlb_page(vma))
640 return PAGE_SIZE;
641
642 hstate = hstate_vma(vma);
643
644 return 1UL << huge_page_shift(hstate);
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647
648 /*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific version of this
652 * function is required.
653 */
654 #ifndef vma_mmu_pagesize
655 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
656 {
657 return vma_kernel_pagesize(vma);
658 }
659 #endif
660
661 /*
662 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
663 * bits of the reservation map pointer, which are always clear due to
664 * alignment.
665 */
666 #define HPAGE_RESV_OWNER (1UL << 0)
667 #define HPAGE_RESV_UNMAPPED (1UL << 1)
668 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669
670 /*
671 * These helpers are used to track how many pages are reserved for
672 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
673 * is guaranteed to have their future faults succeed.
674 *
675 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
676 * the reserve counters are updated with the hugetlb_lock held. It is safe
677 * to reset the VMA at fork() time as it is not in use yet and there is no
678 * chance of the global counters getting corrupted as a result of the values.
679 *
680 * The private mapping reservation is represented in a subtly different
681 * manner to a shared mapping. A shared mapping has a region map associated
682 * with the underlying file, this region map represents the backing file
683 * pages which have ever had a reservation assigned which this persists even
684 * after the page is instantiated. A private mapping has a region map
685 * associated with the original mmap which is attached to all VMAs which
686 * reference it, this region map represents those offsets which have consumed
687 * reservation ie. where pages have been instantiated.
688 */
689 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
690 {
691 return (unsigned long)vma->vm_private_data;
692 }
693
694 static void set_vma_private_data(struct vm_area_struct *vma,
695 unsigned long value)
696 {
697 vma->vm_private_data = (void *)value;
698 }
699
700 struct resv_map *resv_map_alloc(void)
701 {
702 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
703 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
704
705 if (!resv_map || !rg) {
706 kfree(resv_map);
707 kfree(rg);
708 return NULL;
709 }
710
711 kref_init(&resv_map->refs);
712 spin_lock_init(&resv_map->lock);
713 INIT_LIST_HEAD(&resv_map->regions);
714
715 resv_map->adds_in_progress = 0;
716
717 INIT_LIST_HEAD(&resv_map->region_cache);
718 list_add(&rg->link, &resv_map->region_cache);
719 resv_map->region_cache_count = 1;
720
721 return resv_map;
722 }
723
724 void resv_map_release(struct kref *ref)
725 {
726 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
727 struct list_head *head = &resv_map->region_cache;
728 struct file_region *rg, *trg;
729
730 /* Clear out any active regions before we release the map. */
731 region_del(resv_map, 0, LONG_MAX);
732
733 /* ... and any entries left in the cache */
734 list_for_each_entry_safe(rg, trg, head, link) {
735 list_del(&rg->link);
736 kfree(rg);
737 }
738
739 VM_BUG_ON(resv_map->adds_in_progress);
740
741 kfree(resv_map);
742 }
743
744 static inline struct resv_map *inode_resv_map(struct inode *inode)
745 {
746 return inode->i_mapping->private_data;
747 }
748
749 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
750 {
751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752 if (vma->vm_flags & VM_MAYSHARE) {
753 struct address_space *mapping = vma->vm_file->f_mapping;
754 struct inode *inode = mapping->host;
755
756 return inode_resv_map(inode);
757
758 } else {
759 return (struct resv_map *)(get_vma_private_data(vma) &
760 ~HPAGE_RESV_MASK);
761 }
762 }
763
764 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
765 {
766 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
767 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
768
769 set_vma_private_data(vma, (get_vma_private_data(vma) &
770 HPAGE_RESV_MASK) | (unsigned long)map);
771 }
772
773 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
774 {
775 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
776 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
777
778 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
779 }
780
781 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
782 {
783 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
784
785 return (get_vma_private_data(vma) & flag) != 0;
786 }
787
788 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
789 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
790 {
791 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
792 if (!(vma->vm_flags & VM_MAYSHARE))
793 vma->vm_private_data = (void *)0;
794 }
795
796 /* Returns true if the VMA has associated reserve pages */
797 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
798 {
799 if (vma->vm_flags & VM_NORESERVE) {
800 /*
801 * This address is already reserved by other process(chg == 0),
802 * so, we should decrement reserved count. Without decrementing,
803 * reserve count remains after releasing inode, because this
804 * allocated page will go into page cache and is regarded as
805 * coming from reserved pool in releasing step. Currently, we
806 * don't have any other solution to deal with this situation
807 * properly, so add work-around here.
808 */
809 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
810 return true;
811 else
812 return false;
813 }
814
815 /* Shared mappings always use reserves */
816 if (vma->vm_flags & VM_MAYSHARE) {
817 /*
818 * We know VM_NORESERVE is not set. Therefore, there SHOULD
819 * be a region map for all pages. The only situation where
820 * there is no region map is if a hole was punched via
821 * fallocate. In this case, there really are no reverves to
822 * use. This situation is indicated if chg != 0.
823 */
824 if (chg)
825 return false;
826 else
827 return true;
828 }
829
830 /*
831 * Only the process that called mmap() has reserves for
832 * private mappings.
833 */
834 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
835 return true;
836
837 return false;
838 }
839
840 static void enqueue_huge_page(struct hstate *h, struct page *page)
841 {
842 int nid = page_to_nid(page);
843 list_move(&page->lru, &h->hugepage_freelists[nid]);
844 h->free_huge_pages++;
845 h->free_huge_pages_node[nid]++;
846 }
847
848 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
849 {
850 struct page *page;
851
852 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
853 if (!is_migrate_isolate_page(page))
854 break;
855 /*
856 * if 'non-isolated free hugepage' not found on the list,
857 * the allocation fails.
858 */
859 if (&h->hugepage_freelists[nid] == &page->lru)
860 return NULL;
861 list_move(&page->lru, &h->hugepage_activelist);
862 set_page_refcounted(page);
863 h->free_huge_pages--;
864 h->free_huge_pages_node[nid]--;
865 return page;
866 }
867
868 /* Movability of hugepages depends on migration support. */
869 static inline gfp_t htlb_alloc_mask(struct hstate *h)
870 {
871 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
872 return GFP_HIGHUSER_MOVABLE;
873 else
874 return GFP_HIGHUSER;
875 }
876
877 static struct page *dequeue_huge_page_vma(struct hstate *h,
878 struct vm_area_struct *vma,
879 unsigned long address, int avoid_reserve,
880 long chg)
881 {
882 struct page *page = NULL;
883 struct mempolicy *mpol;
884 nodemask_t *nodemask;
885 struct zonelist *zonelist;
886 struct zone *zone;
887 struct zoneref *z;
888 unsigned int cpuset_mems_cookie;
889
890 /*
891 * A child process with MAP_PRIVATE mappings created by their parent
892 * have no page reserves. This check ensures that reservations are
893 * not "stolen". The child may still get SIGKILLed
894 */
895 if (!vma_has_reserves(vma, chg) &&
896 h->free_huge_pages - h->resv_huge_pages == 0)
897 goto err;
898
899 /* If reserves cannot be used, ensure enough pages are in the pool */
900 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
901 goto err;
902
903 retry_cpuset:
904 cpuset_mems_cookie = read_mems_allowed_begin();
905 zonelist = huge_zonelist(vma, address,
906 htlb_alloc_mask(h), &mpol, &nodemask);
907
908 for_each_zone_zonelist_nodemask(zone, z, zonelist,
909 MAX_NR_ZONES - 1, nodemask) {
910 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
911 page = dequeue_huge_page_node(h, zone_to_nid(zone));
912 if (page) {
913 if (avoid_reserve)
914 break;
915 if (!vma_has_reserves(vma, chg))
916 break;
917
918 SetPagePrivate(page);
919 h->resv_huge_pages--;
920 break;
921 }
922 }
923 }
924
925 mpol_cond_put(mpol);
926 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
927 goto retry_cpuset;
928 return page;
929
930 err:
931 return NULL;
932 }
933
934 /*
935 * common helper functions for hstate_next_node_to_{alloc|free}.
936 * We may have allocated or freed a huge page based on a different
937 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
938 * be outside of *nodes_allowed. Ensure that we use an allowed
939 * node for alloc or free.
940 */
941 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
942 {
943 nid = next_node_in(nid, *nodes_allowed);
944 VM_BUG_ON(nid >= MAX_NUMNODES);
945
946 return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951 if (!node_isset(nid, *nodes_allowed))
952 nid = next_node_allowed(nid, nodes_allowed);
953 return nid;
954 }
955
956 /*
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
960 * mask.
961 */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963 nodemask_t *nodes_allowed)
964 {
965 int nid;
966
967 VM_BUG_ON(!nodes_allowed);
968
969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972 return nid;
973 }
974
975 /*
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
980 */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983 int nid;
984
985 VM_BUG_ON(!nodes_allowed);
986
987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990 return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
995 nr_nodes > 0 && \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
997 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1001 nr_nodes > 0 && \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1003 nr_nodes--)
1004
1005 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1006 static void destroy_compound_gigantic_page(struct page *page,
1007 unsigned int order)
1008 {
1009 int i;
1010 int nr_pages = 1 << order;
1011 struct page *p = page + 1;
1012
1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014 clear_compound_head(p);
1015 set_page_refcounted(p);
1016 }
1017
1018 set_compound_order(page, 0);
1019 __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024 free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028 unsigned long nr_pages)
1029 {
1030 unsigned long end_pfn = start_pfn + nr_pages;
1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(struct zone *z,
1035 unsigned long start_pfn, unsigned long nr_pages)
1036 {
1037 unsigned long i, end_pfn = start_pfn + nr_pages;
1038 struct page *page;
1039
1040 for (i = start_pfn; i < end_pfn; i++) {
1041 if (!pfn_valid(i))
1042 return false;
1043
1044 page = pfn_to_page(i);
1045
1046 if (page_zone(page) != z)
1047 return false;
1048
1049 if (PageReserved(page))
1050 return false;
1051
1052 if (page_count(page) > 0)
1053 return false;
1054
1055 if (PageHuge(page))
1056 return false;
1057 }
1058
1059 return true;
1060 }
1061
1062 static bool zone_spans_last_pfn(const struct zone *zone,
1063 unsigned long start_pfn, unsigned long nr_pages)
1064 {
1065 unsigned long last_pfn = start_pfn + nr_pages - 1;
1066 return zone_spans_pfn(zone, last_pfn);
1067 }
1068
1069 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1070 {
1071 unsigned long nr_pages = 1 << order;
1072 unsigned long ret, pfn, flags;
1073 struct zone *z;
1074
1075 z = NODE_DATA(nid)->node_zones;
1076 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1077 spin_lock_irqsave(&z->lock, flags);
1078
1079 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1080 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1081 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1082 /*
1083 * We release the zone lock here because
1084 * alloc_contig_range() will also lock the zone
1085 * at some point. If there's an allocation
1086 * spinning on this lock, it may win the race
1087 * and cause alloc_contig_range() to fail...
1088 */
1089 spin_unlock_irqrestore(&z->lock, flags);
1090 ret = __alloc_gigantic_page(pfn, nr_pages);
1091 if (!ret)
1092 return pfn_to_page(pfn);
1093 spin_lock_irqsave(&z->lock, flags);
1094 }
1095 pfn += nr_pages;
1096 }
1097
1098 spin_unlock_irqrestore(&z->lock, flags);
1099 }
1100
1101 return NULL;
1102 }
1103
1104 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1105 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1106
1107 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1108 {
1109 struct page *page;
1110
1111 page = alloc_gigantic_page(nid, huge_page_order(h));
1112 if (page) {
1113 prep_compound_gigantic_page(page, huge_page_order(h));
1114 prep_new_huge_page(h, page, nid);
1115 }
1116
1117 return page;
1118 }
1119
1120 static int alloc_fresh_gigantic_page(struct hstate *h,
1121 nodemask_t *nodes_allowed)
1122 {
1123 struct page *page = NULL;
1124 int nr_nodes, node;
1125
1126 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1127 page = alloc_fresh_gigantic_page_node(h, node);
1128 if (page)
1129 return 1;
1130 }
1131
1132 return 0;
1133 }
1134
1135 static inline bool gigantic_page_supported(void) { return true; }
1136 #else
1137 static inline bool gigantic_page_supported(void) { return false; }
1138 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1139 static inline void destroy_compound_gigantic_page(struct page *page,
1140 unsigned int order) { }
1141 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1142 nodemask_t *nodes_allowed) { return 0; }
1143 #endif
1144
1145 static void update_and_free_page(struct hstate *h, struct page *page)
1146 {
1147 int i;
1148
1149 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1150 return;
1151
1152 h->nr_huge_pages--;
1153 h->nr_huge_pages_node[page_to_nid(page)]--;
1154 for (i = 0; i < pages_per_huge_page(h); i++) {
1155 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1156 1 << PG_referenced | 1 << PG_dirty |
1157 1 << PG_active | 1 << PG_private |
1158 1 << PG_writeback);
1159 }
1160 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1161 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1162 set_page_refcounted(page);
1163 if (hstate_is_gigantic(h)) {
1164 destroy_compound_gigantic_page(page, huge_page_order(h));
1165 free_gigantic_page(page, huge_page_order(h));
1166 } else {
1167 __free_pages(page, huge_page_order(h));
1168 }
1169 }
1170
1171 struct hstate *size_to_hstate(unsigned long size)
1172 {
1173 struct hstate *h;
1174
1175 for_each_hstate(h) {
1176 if (huge_page_size(h) == size)
1177 return h;
1178 }
1179 return NULL;
1180 }
1181
1182 /*
1183 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1184 * to hstate->hugepage_activelist.)
1185 *
1186 * This function can be called for tail pages, but never returns true for them.
1187 */
1188 bool page_huge_active(struct page *page)
1189 {
1190 VM_BUG_ON_PAGE(!PageHuge(page), page);
1191 return PageHead(page) && PagePrivate(&page[1]);
1192 }
1193
1194 /* never called for tail page */
1195 static void set_page_huge_active(struct page *page)
1196 {
1197 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1198 SetPagePrivate(&page[1]);
1199 }
1200
1201 static void clear_page_huge_active(struct page *page)
1202 {
1203 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1204 ClearPagePrivate(&page[1]);
1205 }
1206
1207 void free_huge_page(struct page *page)
1208 {
1209 /*
1210 * Can't pass hstate in here because it is called from the
1211 * compound page destructor.
1212 */
1213 struct hstate *h = page_hstate(page);
1214 int nid = page_to_nid(page);
1215 struct hugepage_subpool *spool =
1216 (struct hugepage_subpool *)page_private(page);
1217 bool restore_reserve;
1218
1219 set_page_private(page, 0);
1220 page->mapping = NULL;
1221 VM_BUG_ON_PAGE(page_count(page), page);
1222 VM_BUG_ON_PAGE(page_mapcount(page), page);
1223 restore_reserve = PagePrivate(page);
1224 ClearPagePrivate(page);
1225
1226 /*
1227 * A return code of zero implies that the subpool will be under its
1228 * minimum size if the reservation is not restored after page is free.
1229 * Therefore, force restore_reserve operation.
1230 */
1231 if (hugepage_subpool_put_pages(spool, 1) == 0)
1232 restore_reserve = true;
1233
1234 spin_lock(&hugetlb_lock);
1235 clear_page_huge_active(page);
1236 hugetlb_cgroup_uncharge_page(hstate_index(h),
1237 pages_per_huge_page(h), page);
1238 if (restore_reserve)
1239 h->resv_huge_pages++;
1240
1241 if (h->surplus_huge_pages_node[nid]) {
1242 /* remove the page from active list */
1243 list_del(&page->lru);
1244 update_and_free_page(h, page);
1245 h->surplus_huge_pages--;
1246 h->surplus_huge_pages_node[nid]--;
1247 } else {
1248 arch_clear_hugepage_flags(page);
1249 enqueue_huge_page(h, page);
1250 }
1251 spin_unlock(&hugetlb_lock);
1252 }
1253
1254 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1255 {
1256 INIT_LIST_HEAD(&page->lru);
1257 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1258 spin_lock(&hugetlb_lock);
1259 set_hugetlb_cgroup(page, NULL);
1260 h->nr_huge_pages++;
1261 h->nr_huge_pages_node[nid]++;
1262 spin_unlock(&hugetlb_lock);
1263 put_page(page); /* free it into the hugepage allocator */
1264 }
1265
1266 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1267 {
1268 int i;
1269 int nr_pages = 1 << order;
1270 struct page *p = page + 1;
1271
1272 /* we rely on prep_new_huge_page to set the destructor */
1273 set_compound_order(page, order);
1274 __ClearPageReserved(page);
1275 __SetPageHead(page);
1276 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277 /*
1278 * For gigantic hugepages allocated through bootmem at
1279 * boot, it's safer to be consistent with the not-gigantic
1280 * hugepages and clear the PG_reserved bit from all tail pages
1281 * too. Otherwse drivers using get_user_pages() to access tail
1282 * pages may get the reference counting wrong if they see
1283 * PG_reserved set on a tail page (despite the head page not
1284 * having PG_reserved set). Enforcing this consistency between
1285 * head and tail pages allows drivers to optimize away a check
1286 * on the head page when they need know if put_page() is needed
1287 * after get_user_pages().
1288 */
1289 __ClearPageReserved(p);
1290 set_page_count(p, 0);
1291 set_compound_head(p, page);
1292 }
1293 atomic_set(compound_mapcount_ptr(page), -1);
1294 }
1295
1296 /*
1297 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1298 * transparent huge pages. See the PageTransHuge() documentation for more
1299 * details.
1300 */
1301 int PageHuge(struct page *page)
1302 {
1303 if (!PageCompound(page))
1304 return 0;
1305
1306 page = compound_head(page);
1307 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1308 }
1309 EXPORT_SYMBOL_GPL(PageHuge);
1310
1311 /*
1312 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1313 * normal or transparent huge pages.
1314 */
1315 int PageHeadHuge(struct page *page_head)
1316 {
1317 if (!PageHead(page_head))
1318 return 0;
1319
1320 return get_compound_page_dtor(page_head) == free_huge_page;
1321 }
1322
1323 pgoff_t __basepage_index(struct page *page)
1324 {
1325 struct page *page_head = compound_head(page);
1326 pgoff_t index = page_index(page_head);
1327 unsigned long compound_idx;
1328
1329 if (!PageHuge(page_head))
1330 return page_index(page);
1331
1332 if (compound_order(page_head) >= MAX_ORDER)
1333 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1334 else
1335 compound_idx = page - page_head;
1336
1337 return (index << compound_order(page_head)) + compound_idx;
1338 }
1339
1340 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1341 {
1342 struct page *page;
1343
1344 page = __alloc_pages_node(nid,
1345 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1346 __GFP_REPEAT|__GFP_NOWARN,
1347 huge_page_order(h));
1348 if (page) {
1349 prep_new_huge_page(h, page, nid);
1350 }
1351
1352 return page;
1353 }
1354
1355 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1356 {
1357 struct page *page;
1358 int nr_nodes, node;
1359 int ret = 0;
1360
1361 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1362 page = alloc_fresh_huge_page_node(h, node);
1363 if (page) {
1364 ret = 1;
1365 break;
1366 }
1367 }
1368
1369 if (ret)
1370 count_vm_event(HTLB_BUDDY_PGALLOC);
1371 else
1372 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1373
1374 return ret;
1375 }
1376
1377 /*
1378 * Free huge page from pool from next node to free.
1379 * Attempt to keep persistent huge pages more or less
1380 * balanced over allowed nodes.
1381 * Called with hugetlb_lock locked.
1382 */
1383 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1384 bool acct_surplus)
1385 {
1386 int nr_nodes, node;
1387 int ret = 0;
1388
1389 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1390 /*
1391 * If we're returning unused surplus pages, only examine
1392 * nodes with surplus pages.
1393 */
1394 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1395 !list_empty(&h->hugepage_freelists[node])) {
1396 struct page *page =
1397 list_entry(h->hugepage_freelists[node].next,
1398 struct page, lru);
1399 list_del(&page->lru);
1400 h->free_huge_pages--;
1401 h->free_huge_pages_node[node]--;
1402 if (acct_surplus) {
1403 h->surplus_huge_pages--;
1404 h->surplus_huge_pages_node[node]--;
1405 }
1406 update_and_free_page(h, page);
1407 ret = 1;
1408 break;
1409 }
1410 }
1411
1412 return ret;
1413 }
1414
1415 /*
1416 * Dissolve a given free hugepage into free buddy pages. This function does
1417 * nothing for in-use (including surplus) hugepages.
1418 */
1419 static void dissolve_free_huge_page(struct page *page)
1420 {
1421 spin_lock(&hugetlb_lock);
1422 if (PageHuge(page) && !page_count(page)) {
1423 struct hstate *h = page_hstate(page);
1424 int nid = page_to_nid(page);
1425 list_del(&page->lru);
1426 h->free_huge_pages--;
1427 h->free_huge_pages_node[nid]--;
1428 update_and_free_page(h, page);
1429 }
1430 spin_unlock(&hugetlb_lock);
1431 }
1432
1433 /*
1434 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1435 * make specified memory blocks removable from the system.
1436 * Note that start_pfn should aligned with (minimum) hugepage size.
1437 */
1438 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1439 {
1440 unsigned long pfn;
1441
1442 if (!hugepages_supported())
1443 return;
1444
1445 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1446 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1447 dissolve_free_huge_page(pfn_to_page(pfn));
1448 }
1449
1450 /*
1451 * There are 3 ways this can get called:
1452 * 1. With vma+addr: we use the VMA's memory policy
1453 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1454 * page from any node, and let the buddy allocator itself figure
1455 * it out.
1456 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1457 * strictly from 'nid'
1458 */
1459 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1460 struct vm_area_struct *vma, unsigned long addr, int nid)
1461 {
1462 int order = huge_page_order(h);
1463 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1464 unsigned int cpuset_mems_cookie;
1465
1466 /*
1467 * We need a VMA to get a memory policy. If we do not
1468 * have one, we use the 'nid' argument.
1469 *
1470 * The mempolicy stuff below has some non-inlined bits
1471 * and calls ->vm_ops. That makes it hard to optimize at
1472 * compile-time, even when NUMA is off and it does
1473 * nothing. This helps the compiler optimize it out.
1474 */
1475 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1476 /*
1477 * If a specific node is requested, make sure to
1478 * get memory from there, but only when a node
1479 * is explicitly specified.
1480 */
1481 if (nid != NUMA_NO_NODE)
1482 gfp |= __GFP_THISNODE;
1483 /*
1484 * Make sure to call something that can handle
1485 * nid=NUMA_NO_NODE
1486 */
1487 return alloc_pages_node(nid, gfp, order);
1488 }
1489
1490 /*
1491 * OK, so we have a VMA. Fetch the mempolicy and try to
1492 * allocate a huge page with it. We will only reach this
1493 * when CONFIG_NUMA=y.
1494 */
1495 do {
1496 struct page *page;
1497 struct mempolicy *mpol;
1498 struct zonelist *zl;
1499 nodemask_t *nodemask;
1500
1501 cpuset_mems_cookie = read_mems_allowed_begin();
1502 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1503 mpol_cond_put(mpol);
1504 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1505 if (page)
1506 return page;
1507 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1508
1509 return NULL;
1510 }
1511
1512 /*
1513 * There are two ways to allocate a huge page:
1514 * 1. When you have a VMA and an address (like a fault)
1515 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1516 *
1517 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1518 * this case which signifies that the allocation should be done with
1519 * respect for the VMA's memory policy.
1520 *
1521 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1522 * implies that memory policies will not be taken in to account.
1523 */
1524 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1525 struct vm_area_struct *vma, unsigned long addr, int nid)
1526 {
1527 struct page *page;
1528 unsigned int r_nid;
1529
1530 if (hstate_is_gigantic(h))
1531 return NULL;
1532
1533 /*
1534 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1535 * This makes sure the caller is picking _one_ of the modes with which
1536 * we can call this function, not both.
1537 */
1538 if (vma || (addr != -1)) {
1539 VM_WARN_ON_ONCE(addr == -1);
1540 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1541 }
1542 /*
1543 * Assume we will successfully allocate the surplus page to
1544 * prevent racing processes from causing the surplus to exceed
1545 * overcommit
1546 *
1547 * This however introduces a different race, where a process B
1548 * tries to grow the static hugepage pool while alloc_pages() is
1549 * called by process A. B will only examine the per-node
1550 * counters in determining if surplus huge pages can be
1551 * converted to normal huge pages in adjust_pool_surplus(). A
1552 * won't be able to increment the per-node counter, until the
1553 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1554 * no more huge pages can be converted from surplus to normal
1555 * state (and doesn't try to convert again). Thus, we have a
1556 * case where a surplus huge page exists, the pool is grown, and
1557 * the surplus huge page still exists after, even though it
1558 * should just have been converted to a normal huge page. This
1559 * does not leak memory, though, as the hugepage will be freed
1560 * once it is out of use. It also does not allow the counters to
1561 * go out of whack in adjust_pool_surplus() as we don't modify
1562 * the node values until we've gotten the hugepage and only the
1563 * per-node value is checked there.
1564 */
1565 spin_lock(&hugetlb_lock);
1566 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1567 spin_unlock(&hugetlb_lock);
1568 return NULL;
1569 } else {
1570 h->nr_huge_pages++;
1571 h->surplus_huge_pages++;
1572 }
1573 spin_unlock(&hugetlb_lock);
1574
1575 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1576
1577 spin_lock(&hugetlb_lock);
1578 if (page) {
1579 INIT_LIST_HEAD(&page->lru);
1580 r_nid = page_to_nid(page);
1581 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1582 set_hugetlb_cgroup(page, NULL);
1583 /*
1584 * We incremented the global counters already
1585 */
1586 h->nr_huge_pages_node[r_nid]++;
1587 h->surplus_huge_pages_node[r_nid]++;
1588 __count_vm_event(HTLB_BUDDY_PGALLOC);
1589 } else {
1590 h->nr_huge_pages--;
1591 h->surplus_huge_pages--;
1592 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1593 }
1594 spin_unlock(&hugetlb_lock);
1595
1596 return page;
1597 }
1598
1599 /*
1600 * Allocate a huge page from 'nid'. Note, 'nid' may be
1601 * NUMA_NO_NODE, which means that it may be allocated
1602 * anywhere.
1603 */
1604 static
1605 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1606 {
1607 unsigned long addr = -1;
1608
1609 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1610 }
1611
1612 /*
1613 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1614 */
1615 static
1616 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1617 struct vm_area_struct *vma, unsigned long addr)
1618 {
1619 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1620 }
1621
1622 /*
1623 * This allocation function is useful in the context where vma is irrelevant.
1624 * E.g. soft-offlining uses this function because it only cares physical
1625 * address of error page.
1626 */
1627 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1628 {
1629 struct page *page = NULL;
1630
1631 spin_lock(&hugetlb_lock);
1632 if (h->free_huge_pages - h->resv_huge_pages > 0)
1633 page = dequeue_huge_page_node(h, nid);
1634 spin_unlock(&hugetlb_lock);
1635
1636 if (!page)
1637 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1638
1639 return page;
1640 }
1641
1642 /*
1643 * Increase the hugetlb pool such that it can accommodate a reservation
1644 * of size 'delta'.
1645 */
1646 static int gather_surplus_pages(struct hstate *h, int delta)
1647 {
1648 struct list_head surplus_list;
1649 struct page *page, *tmp;
1650 int ret, i;
1651 int needed, allocated;
1652 bool alloc_ok = true;
1653
1654 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1655 if (needed <= 0) {
1656 h->resv_huge_pages += delta;
1657 return 0;
1658 }
1659
1660 allocated = 0;
1661 INIT_LIST_HEAD(&surplus_list);
1662
1663 ret = -ENOMEM;
1664 retry:
1665 spin_unlock(&hugetlb_lock);
1666 for (i = 0; i < needed; i++) {
1667 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1668 if (!page) {
1669 alloc_ok = false;
1670 break;
1671 }
1672 list_add(&page->lru, &surplus_list);
1673 }
1674 allocated += i;
1675
1676 /*
1677 * After retaking hugetlb_lock, we need to recalculate 'needed'
1678 * because either resv_huge_pages or free_huge_pages may have changed.
1679 */
1680 spin_lock(&hugetlb_lock);
1681 needed = (h->resv_huge_pages + delta) -
1682 (h->free_huge_pages + allocated);
1683 if (needed > 0) {
1684 if (alloc_ok)
1685 goto retry;
1686 /*
1687 * We were not able to allocate enough pages to
1688 * satisfy the entire reservation so we free what
1689 * we've allocated so far.
1690 */
1691 goto free;
1692 }
1693 /*
1694 * The surplus_list now contains _at_least_ the number of extra pages
1695 * needed to accommodate the reservation. Add the appropriate number
1696 * of pages to the hugetlb pool and free the extras back to the buddy
1697 * allocator. Commit the entire reservation here to prevent another
1698 * process from stealing the pages as they are added to the pool but
1699 * before they are reserved.
1700 */
1701 needed += allocated;
1702 h->resv_huge_pages += delta;
1703 ret = 0;
1704
1705 /* Free the needed pages to the hugetlb pool */
1706 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1707 if ((--needed) < 0)
1708 break;
1709 /*
1710 * This page is now managed by the hugetlb allocator and has
1711 * no users -- drop the buddy allocator's reference.
1712 */
1713 put_page_testzero(page);
1714 VM_BUG_ON_PAGE(page_count(page), page);
1715 enqueue_huge_page(h, page);
1716 }
1717 free:
1718 spin_unlock(&hugetlb_lock);
1719
1720 /* Free unnecessary surplus pages to the buddy allocator */
1721 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1722 put_page(page);
1723 spin_lock(&hugetlb_lock);
1724
1725 return ret;
1726 }
1727
1728 /*
1729 * When releasing a hugetlb pool reservation, any surplus pages that were
1730 * allocated to satisfy the reservation must be explicitly freed if they were
1731 * never used.
1732 * Called with hugetlb_lock held.
1733 */
1734 static void return_unused_surplus_pages(struct hstate *h,
1735 unsigned long unused_resv_pages)
1736 {
1737 unsigned long nr_pages;
1738
1739 /* Uncommit the reservation */
1740 h->resv_huge_pages -= unused_resv_pages;
1741
1742 /* Cannot return gigantic pages currently */
1743 if (hstate_is_gigantic(h))
1744 return;
1745
1746 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1747
1748 /*
1749 * We want to release as many surplus pages as possible, spread
1750 * evenly across all nodes with memory. Iterate across these nodes
1751 * until we can no longer free unreserved surplus pages. This occurs
1752 * when the nodes with surplus pages have no free pages.
1753 * free_pool_huge_page() will balance the the freed pages across the
1754 * on-line nodes with memory and will handle the hstate accounting.
1755 */
1756 while (nr_pages--) {
1757 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1758 break;
1759 cond_resched_lock(&hugetlb_lock);
1760 }
1761 }
1762
1763
1764 /*
1765 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1766 * are used by the huge page allocation routines to manage reservations.
1767 *
1768 * vma_needs_reservation is called to determine if the huge page at addr
1769 * within the vma has an associated reservation. If a reservation is
1770 * needed, the value 1 is returned. The caller is then responsible for
1771 * managing the global reservation and subpool usage counts. After
1772 * the huge page has been allocated, vma_commit_reservation is called
1773 * to add the page to the reservation map. If the page allocation fails,
1774 * the reservation must be ended instead of committed. vma_end_reservation
1775 * is called in such cases.
1776 *
1777 * In the normal case, vma_commit_reservation returns the same value
1778 * as the preceding vma_needs_reservation call. The only time this
1779 * is not the case is if a reserve map was changed between calls. It
1780 * is the responsibility of the caller to notice the difference and
1781 * take appropriate action.
1782 */
1783 enum vma_resv_mode {
1784 VMA_NEEDS_RESV,
1785 VMA_COMMIT_RESV,
1786 VMA_END_RESV,
1787 };
1788 static long __vma_reservation_common(struct hstate *h,
1789 struct vm_area_struct *vma, unsigned long addr,
1790 enum vma_resv_mode mode)
1791 {
1792 struct resv_map *resv;
1793 pgoff_t idx;
1794 long ret;
1795
1796 resv = vma_resv_map(vma);
1797 if (!resv)
1798 return 1;
1799
1800 idx = vma_hugecache_offset(h, vma, addr);
1801 switch (mode) {
1802 case VMA_NEEDS_RESV:
1803 ret = region_chg(resv, idx, idx + 1);
1804 break;
1805 case VMA_COMMIT_RESV:
1806 ret = region_add(resv, idx, idx + 1);
1807 break;
1808 case VMA_END_RESV:
1809 region_abort(resv, idx, idx + 1);
1810 ret = 0;
1811 break;
1812 default:
1813 BUG();
1814 }
1815
1816 if (vma->vm_flags & VM_MAYSHARE)
1817 return ret;
1818 else
1819 return ret < 0 ? ret : 0;
1820 }
1821
1822 static long vma_needs_reservation(struct hstate *h,
1823 struct vm_area_struct *vma, unsigned long addr)
1824 {
1825 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1826 }
1827
1828 static long vma_commit_reservation(struct hstate *h,
1829 struct vm_area_struct *vma, unsigned long addr)
1830 {
1831 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1832 }
1833
1834 static void vma_end_reservation(struct hstate *h,
1835 struct vm_area_struct *vma, unsigned long addr)
1836 {
1837 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1838 }
1839
1840 struct page *alloc_huge_page(struct vm_area_struct *vma,
1841 unsigned long addr, int avoid_reserve)
1842 {
1843 struct hugepage_subpool *spool = subpool_vma(vma);
1844 struct hstate *h = hstate_vma(vma);
1845 struct page *page;
1846 long map_chg, map_commit;
1847 long gbl_chg;
1848 int ret, idx;
1849 struct hugetlb_cgroup *h_cg;
1850
1851 idx = hstate_index(h);
1852 /*
1853 * Examine the region/reserve map to determine if the process
1854 * has a reservation for the page to be allocated. A return
1855 * code of zero indicates a reservation exists (no change).
1856 */
1857 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1858 if (map_chg < 0)
1859 return ERR_PTR(-ENOMEM);
1860
1861 /*
1862 * Processes that did not create the mapping will have no
1863 * reserves as indicated by the region/reserve map. Check
1864 * that the allocation will not exceed the subpool limit.
1865 * Allocations for MAP_NORESERVE mappings also need to be
1866 * checked against any subpool limit.
1867 */
1868 if (map_chg || avoid_reserve) {
1869 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1870 if (gbl_chg < 0) {
1871 vma_end_reservation(h, vma, addr);
1872 return ERR_PTR(-ENOSPC);
1873 }
1874
1875 /*
1876 * Even though there was no reservation in the region/reserve
1877 * map, there could be reservations associated with the
1878 * subpool that can be used. This would be indicated if the
1879 * return value of hugepage_subpool_get_pages() is zero.
1880 * However, if avoid_reserve is specified we still avoid even
1881 * the subpool reservations.
1882 */
1883 if (avoid_reserve)
1884 gbl_chg = 1;
1885 }
1886
1887 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1888 if (ret)
1889 goto out_subpool_put;
1890
1891 spin_lock(&hugetlb_lock);
1892 /*
1893 * glb_chg is passed to indicate whether or not a page must be taken
1894 * from the global free pool (global change). gbl_chg == 0 indicates
1895 * a reservation exists for the allocation.
1896 */
1897 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1898 if (!page) {
1899 spin_unlock(&hugetlb_lock);
1900 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1901 if (!page)
1902 goto out_uncharge_cgroup;
1903 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1904 SetPagePrivate(page);
1905 h->resv_huge_pages--;
1906 }
1907 spin_lock(&hugetlb_lock);
1908 list_move(&page->lru, &h->hugepage_activelist);
1909 /* Fall through */
1910 }
1911 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1912 spin_unlock(&hugetlb_lock);
1913
1914 set_page_private(page, (unsigned long)spool);
1915
1916 map_commit = vma_commit_reservation(h, vma, addr);
1917 if (unlikely(map_chg > map_commit)) {
1918 /*
1919 * The page was added to the reservation map between
1920 * vma_needs_reservation and vma_commit_reservation.
1921 * This indicates a race with hugetlb_reserve_pages.
1922 * Adjust for the subpool count incremented above AND
1923 * in hugetlb_reserve_pages for the same page. Also,
1924 * the reservation count added in hugetlb_reserve_pages
1925 * no longer applies.
1926 */
1927 long rsv_adjust;
1928
1929 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1930 hugetlb_acct_memory(h, -rsv_adjust);
1931 }
1932 return page;
1933
1934 out_uncharge_cgroup:
1935 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1936 out_subpool_put:
1937 if (map_chg || avoid_reserve)
1938 hugepage_subpool_put_pages(spool, 1);
1939 vma_end_reservation(h, vma, addr);
1940 return ERR_PTR(-ENOSPC);
1941 }
1942
1943 /*
1944 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1945 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1946 * where no ERR_VALUE is expected to be returned.
1947 */
1948 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1949 unsigned long addr, int avoid_reserve)
1950 {
1951 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1952 if (IS_ERR(page))
1953 page = NULL;
1954 return page;
1955 }
1956
1957 int __weak alloc_bootmem_huge_page(struct hstate *h)
1958 {
1959 struct huge_bootmem_page *m;
1960 int nr_nodes, node;
1961
1962 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1963 void *addr;
1964
1965 addr = memblock_virt_alloc_try_nid_nopanic(
1966 huge_page_size(h), huge_page_size(h),
1967 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1968 if (addr) {
1969 /*
1970 * Use the beginning of the huge page to store the
1971 * huge_bootmem_page struct (until gather_bootmem
1972 * puts them into the mem_map).
1973 */
1974 m = addr;
1975 goto found;
1976 }
1977 }
1978 return 0;
1979
1980 found:
1981 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1982 /* Put them into a private list first because mem_map is not up yet */
1983 list_add(&m->list, &huge_boot_pages);
1984 m->hstate = h;
1985 return 1;
1986 }
1987
1988 static void __init prep_compound_huge_page(struct page *page,
1989 unsigned int order)
1990 {
1991 if (unlikely(order > (MAX_ORDER - 1)))
1992 prep_compound_gigantic_page(page, order);
1993 else
1994 prep_compound_page(page, order);
1995 }
1996
1997 /* Put bootmem huge pages into the standard lists after mem_map is up */
1998 static void __init gather_bootmem_prealloc(void)
1999 {
2000 struct huge_bootmem_page *m;
2001
2002 list_for_each_entry(m, &huge_boot_pages, list) {
2003 struct hstate *h = m->hstate;
2004 struct page *page;
2005
2006 #ifdef CONFIG_HIGHMEM
2007 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2008 memblock_free_late(__pa(m),
2009 sizeof(struct huge_bootmem_page));
2010 #else
2011 page = virt_to_page(m);
2012 #endif
2013 WARN_ON(page_count(page) != 1);
2014 prep_compound_huge_page(page, h->order);
2015 WARN_ON(PageReserved(page));
2016 prep_new_huge_page(h, page, page_to_nid(page));
2017 /*
2018 * If we had gigantic hugepages allocated at boot time, we need
2019 * to restore the 'stolen' pages to totalram_pages in order to
2020 * fix confusing memory reports from free(1) and another
2021 * side-effects, like CommitLimit going negative.
2022 */
2023 if (hstate_is_gigantic(h))
2024 adjust_managed_page_count(page, 1 << h->order);
2025 }
2026 }
2027
2028 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2029 {
2030 unsigned long i;
2031
2032 for (i = 0; i < h->max_huge_pages; ++i) {
2033 if (hstate_is_gigantic(h)) {
2034 if (!alloc_bootmem_huge_page(h))
2035 break;
2036 } else if (!alloc_fresh_huge_page(h,
2037 &node_states[N_MEMORY]))
2038 break;
2039 }
2040 h->max_huge_pages = i;
2041 }
2042
2043 static void __init hugetlb_init_hstates(void)
2044 {
2045 struct hstate *h;
2046
2047 for_each_hstate(h) {
2048 if (minimum_order > huge_page_order(h))
2049 minimum_order = huge_page_order(h);
2050
2051 /* oversize hugepages were init'ed in early boot */
2052 if (!hstate_is_gigantic(h))
2053 hugetlb_hstate_alloc_pages(h);
2054 }
2055 VM_BUG_ON(minimum_order == UINT_MAX);
2056 }
2057
2058 static char * __init memfmt(char *buf, unsigned long n)
2059 {
2060 if (n >= (1UL << 30))
2061 sprintf(buf, "%lu GB", n >> 30);
2062 else if (n >= (1UL << 20))
2063 sprintf(buf, "%lu MB", n >> 20);
2064 else
2065 sprintf(buf, "%lu KB", n >> 10);
2066 return buf;
2067 }
2068
2069 static void __init report_hugepages(void)
2070 {
2071 struct hstate *h;
2072
2073 for_each_hstate(h) {
2074 char buf[32];
2075 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2076 memfmt(buf, huge_page_size(h)),
2077 h->free_huge_pages);
2078 }
2079 }
2080
2081 #ifdef CONFIG_HIGHMEM
2082 static void try_to_free_low(struct hstate *h, unsigned long count,
2083 nodemask_t *nodes_allowed)
2084 {
2085 int i;
2086
2087 if (hstate_is_gigantic(h))
2088 return;
2089
2090 for_each_node_mask(i, *nodes_allowed) {
2091 struct page *page, *next;
2092 struct list_head *freel = &h->hugepage_freelists[i];
2093 list_for_each_entry_safe(page, next, freel, lru) {
2094 if (count >= h->nr_huge_pages)
2095 return;
2096 if (PageHighMem(page))
2097 continue;
2098 list_del(&page->lru);
2099 update_and_free_page(h, page);
2100 h->free_huge_pages--;
2101 h->free_huge_pages_node[page_to_nid(page)]--;
2102 }
2103 }
2104 }
2105 #else
2106 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2107 nodemask_t *nodes_allowed)
2108 {
2109 }
2110 #endif
2111
2112 /*
2113 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2114 * balanced by operating on them in a round-robin fashion.
2115 * Returns 1 if an adjustment was made.
2116 */
2117 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2118 int delta)
2119 {
2120 int nr_nodes, node;
2121
2122 VM_BUG_ON(delta != -1 && delta != 1);
2123
2124 if (delta < 0) {
2125 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2126 if (h->surplus_huge_pages_node[node])
2127 goto found;
2128 }
2129 } else {
2130 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2131 if (h->surplus_huge_pages_node[node] <
2132 h->nr_huge_pages_node[node])
2133 goto found;
2134 }
2135 }
2136 return 0;
2137
2138 found:
2139 h->surplus_huge_pages += delta;
2140 h->surplus_huge_pages_node[node] += delta;
2141 return 1;
2142 }
2143
2144 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2145 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2146 nodemask_t *nodes_allowed)
2147 {
2148 unsigned long min_count, ret;
2149
2150 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2151 return h->max_huge_pages;
2152
2153 /*
2154 * Increase the pool size
2155 * First take pages out of surplus state. Then make up the
2156 * remaining difference by allocating fresh huge pages.
2157 *
2158 * We might race with __alloc_buddy_huge_page() here and be unable
2159 * to convert a surplus huge page to a normal huge page. That is
2160 * not critical, though, it just means the overall size of the
2161 * pool might be one hugepage larger than it needs to be, but
2162 * within all the constraints specified by the sysctls.
2163 */
2164 spin_lock(&hugetlb_lock);
2165 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2166 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2167 break;
2168 }
2169
2170 while (count > persistent_huge_pages(h)) {
2171 /*
2172 * If this allocation races such that we no longer need the
2173 * page, free_huge_page will handle it by freeing the page
2174 * and reducing the surplus.
2175 */
2176 spin_unlock(&hugetlb_lock);
2177 if (hstate_is_gigantic(h))
2178 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2179 else
2180 ret = alloc_fresh_huge_page(h, nodes_allowed);
2181 spin_lock(&hugetlb_lock);
2182 if (!ret)
2183 goto out;
2184
2185 /* Bail for signals. Probably ctrl-c from user */
2186 if (signal_pending(current))
2187 goto out;
2188 }
2189
2190 /*
2191 * Decrease the pool size
2192 * First return free pages to the buddy allocator (being careful
2193 * to keep enough around to satisfy reservations). Then place
2194 * pages into surplus state as needed so the pool will shrink
2195 * to the desired size as pages become free.
2196 *
2197 * By placing pages into the surplus state independent of the
2198 * overcommit value, we are allowing the surplus pool size to
2199 * exceed overcommit. There are few sane options here. Since
2200 * __alloc_buddy_huge_page() is checking the global counter,
2201 * though, we'll note that we're not allowed to exceed surplus
2202 * and won't grow the pool anywhere else. Not until one of the
2203 * sysctls are changed, or the surplus pages go out of use.
2204 */
2205 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2206 min_count = max(count, min_count);
2207 try_to_free_low(h, min_count, nodes_allowed);
2208 while (min_count < persistent_huge_pages(h)) {
2209 if (!free_pool_huge_page(h, nodes_allowed, 0))
2210 break;
2211 cond_resched_lock(&hugetlb_lock);
2212 }
2213 while (count < persistent_huge_pages(h)) {
2214 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2215 break;
2216 }
2217 out:
2218 ret = persistent_huge_pages(h);
2219 spin_unlock(&hugetlb_lock);
2220 return ret;
2221 }
2222
2223 #define HSTATE_ATTR_RO(_name) \
2224 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2225
2226 #define HSTATE_ATTR(_name) \
2227 static struct kobj_attribute _name##_attr = \
2228 __ATTR(_name, 0644, _name##_show, _name##_store)
2229
2230 static struct kobject *hugepages_kobj;
2231 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2232
2233 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2234
2235 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2236 {
2237 int i;
2238
2239 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2240 if (hstate_kobjs[i] == kobj) {
2241 if (nidp)
2242 *nidp = NUMA_NO_NODE;
2243 return &hstates[i];
2244 }
2245
2246 return kobj_to_node_hstate(kobj, nidp);
2247 }
2248
2249 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2250 struct kobj_attribute *attr, char *buf)
2251 {
2252 struct hstate *h;
2253 unsigned long nr_huge_pages;
2254 int nid;
2255
2256 h = kobj_to_hstate(kobj, &nid);
2257 if (nid == NUMA_NO_NODE)
2258 nr_huge_pages = h->nr_huge_pages;
2259 else
2260 nr_huge_pages = h->nr_huge_pages_node[nid];
2261
2262 return sprintf(buf, "%lu\n", nr_huge_pages);
2263 }
2264
2265 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2266 struct hstate *h, int nid,
2267 unsigned long count, size_t len)
2268 {
2269 int err;
2270 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2271
2272 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2273 err = -EINVAL;
2274 goto out;
2275 }
2276
2277 if (nid == NUMA_NO_NODE) {
2278 /*
2279 * global hstate attribute
2280 */
2281 if (!(obey_mempolicy &&
2282 init_nodemask_of_mempolicy(nodes_allowed))) {
2283 NODEMASK_FREE(nodes_allowed);
2284 nodes_allowed = &node_states[N_MEMORY];
2285 }
2286 } else if (nodes_allowed) {
2287 /*
2288 * per node hstate attribute: adjust count to global,
2289 * but restrict alloc/free to the specified node.
2290 */
2291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2292 init_nodemask_of_node(nodes_allowed, nid);
2293 } else
2294 nodes_allowed = &node_states[N_MEMORY];
2295
2296 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2297
2298 if (nodes_allowed != &node_states[N_MEMORY])
2299 NODEMASK_FREE(nodes_allowed);
2300
2301 return len;
2302 out:
2303 NODEMASK_FREE(nodes_allowed);
2304 return err;
2305 }
2306
2307 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2308 struct kobject *kobj, const char *buf,
2309 size_t len)
2310 {
2311 struct hstate *h;
2312 unsigned long count;
2313 int nid;
2314 int err;
2315
2316 err = kstrtoul(buf, 10, &count);
2317 if (err)
2318 return err;
2319
2320 h = kobj_to_hstate(kobj, &nid);
2321 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2322 }
2323
2324 static ssize_t nr_hugepages_show(struct kobject *kobj,
2325 struct kobj_attribute *attr, char *buf)
2326 {
2327 return nr_hugepages_show_common(kobj, attr, buf);
2328 }
2329
2330 static ssize_t nr_hugepages_store(struct kobject *kobj,
2331 struct kobj_attribute *attr, const char *buf, size_t len)
2332 {
2333 return nr_hugepages_store_common(false, kobj, buf, len);
2334 }
2335 HSTATE_ATTR(nr_hugepages);
2336
2337 #ifdef CONFIG_NUMA
2338
2339 /*
2340 * hstate attribute for optionally mempolicy-based constraint on persistent
2341 * huge page alloc/free.
2342 */
2343 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2344 struct kobj_attribute *attr, char *buf)
2345 {
2346 return nr_hugepages_show_common(kobj, attr, buf);
2347 }
2348
2349 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2350 struct kobj_attribute *attr, const char *buf, size_t len)
2351 {
2352 return nr_hugepages_store_common(true, kobj, buf, len);
2353 }
2354 HSTATE_ATTR(nr_hugepages_mempolicy);
2355 #endif
2356
2357
2358 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2359 struct kobj_attribute *attr, char *buf)
2360 {
2361 struct hstate *h = kobj_to_hstate(kobj, NULL);
2362 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2363 }
2364
2365 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2366 struct kobj_attribute *attr, const char *buf, size_t count)
2367 {
2368 int err;
2369 unsigned long input;
2370 struct hstate *h = kobj_to_hstate(kobj, NULL);
2371
2372 if (hstate_is_gigantic(h))
2373 return -EINVAL;
2374
2375 err = kstrtoul(buf, 10, &input);
2376 if (err)
2377 return err;
2378
2379 spin_lock(&hugetlb_lock);
2380 h->nr_overcommit_huge_pages = input;
2381 spin_unlock(&hugetlb_lock);
2382
2383 return count;
2384 }
2385 HSTATE_ATTR(nr_overcommit_hugepages);
2386
2387 static ssize_t free_hugepages_show(struct kobject *kobj,
2388 struct kobj_attribute *attr, char *buf)
2389 {
2390 struct hstate *h;
2391 unsigned long free_huge_pages;
2392 int nid;
2393
2394 h = kobj_to_hstate(kobj, &nid);
2395 if (nid == NUMA_NO_NODE)
2396 free_huge_pages = h->free_huge_pages;
2397 else
2398 free_huge_pages = h->free_huge_pages_node[nid];
2399
2400 return sprintf(buf, "%lu\n", free_huge_pages);
2401 }
2402 HSTATE_ATTR_RO(free_hugepages);
2403
2404 static ssize_t resv_hugepages_show(struct kobject *kobj,
2405 struct kobj_attribute *attr, char *buf)
2406 {
2407 struct hstate *h = kobj_to_hstate(kobj, NULL);
2408 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2409 }
2410 HSTATE_ATTR_RO(resv_hugepages);
2411
2412 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2413 struct kobj_attribute *attr, char *buf)
2414 {
2415 struct hstate *h;
2416 unsigned long surplus_huge_pages;
2417 int nid;
2418
2419 h = kobj_to_hstate(kobj, &nid);
2420 if (nid == NUMA_NO_NODE)
2421 surplus_huge_pages = h->surplus_huge_pages;
2422 else
2423 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2424
2425 return sprintf(buf, "%lu\n", surplus_huge_pages);
2426 }
2427 HSTATE_ATTR_RO(surplus_hugepages);
2428
2429 static struct attribute *hstate_attrs[] = {
2430 &nr_hugepages_attr.attr,
2431 &nr_overcommit_hugepages_attr.attr,
2432 &free_hugepages_attr.attr,
2433 &resv_hugepages_attr.attr,
2434 &surplus_hugepages_attr.attr,
2435 #ifdef CONFIG_NUMA
2436 &nr_hugepages_mempolicy_attr.attr,
2437 #endif
2438 NULL,
2439 };
2440
2441 static struct attribute_group hstate_attr_group = {
2442 .attrs = hstate_attrs,
2443 };
2444
2445 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2446 struct kobject **hstate_kobjs,
2447 struct attribute_group *hstate_attr_group)
2448 {
2449 int retval;
2450 int hi = hstate_index(h);
2451
2452 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2453 if (!hstate_kobjs[hi])
2454 return -ENOMEM;
2455
2456 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2457 if (retval)
2458 kobject_put(hstate_kobjs[hi]);
2459
2460 return retval;
2461 }
2462
2463 static void __init hugetlb_sysfs_init(void)
2464 {
2465 struct hstate *h;
2466 int err;
2467
2468 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2469 if (!hugepages_kobj)
2470 return;
2471
2472 for_each_hstate(h) {
2473 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2474 hstate_kobjs, &hstate_attr_group);
2475 if (err)
2476 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2477 }
2478 }
2479
2480 #ifdef CONFIG_NUMA
2481
2482 /*
2483 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2484 * with node devices in node_devices[] using a parallel array. The array
2485 * index of a node device or _hstate == node id.
2486 * This is here to avoid any static dependency of the node device driver, in
2487 * the base kernel, on the hugetlb module.
2488 */
2489 struct node_hstate {
2490 struct kobject *hugepages_kobj;
2491 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2492 };
2493 static struct node_hstate node_hstates[MAX_NUMNODES];
2494
2495 /*
2496 * A subset of global hstate attributes for node devices
2497 */
2498 static struct attribute *per_node_hstate_attrs[] = {
2499 &nr_hugepages_attr.attr,
2500 &free_hugepages_attr.attr,
2501 &surplus_hugepages_attr.attr,
2502 NULL,
2503 };
2504
2505 static struct attribute_group per_node_hstate_attr_group = {
2506 .attrs = per_node_hstate_attrs,
2507 };
2508
2509 /*
2510 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2511 * Returns node id via non-NULL nidp.
2512 */
2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2514 {
2515 int nid;
2516
2517 for (nid = 0; nid < nr_node_ids; nid++) {
2518 struct node_hstate *nhs = &node_hstates[nid];
2519 int i;
2520 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2521 if (nhs->hstate_kobjs[i] == kobj) {
2522 if (nidp)
2523 *nidp = nid;
2524 return &hstates[i];
2525 }
2526 }
2527
2528 BUG();
2529 return NULL;
2530 }
2531
2532 /*
2533 * Unregister hstate attributes from a single node device.
2534 * No-op if no hstate attributes attached.
2535 */
2536 static void hugetlb_unregister_node(struct node *node)
2537 {
2538 struct hstate *h;
2539 struct node_hstate *nhs = &node_hstates[node->dev.id];
2540
2541 if (!nhs->hugepages_kobj)
2542 return; /* no hstate attributes */
2543
2544 for_each_hstate(h) {
2545 int idx = hstate_index(h);
2546 if (nhs->hstate_kobjs[idx]) {
2547 kobject_put(nhs->hstate_kobjs[idx]);
2548 nhs->hstate_kobjs[idx] = NULL;
2549 }
2550 }
2551
2552 kobject_put(nhs->hugepages_kobj);
2553 nhs->hugepages_kobj = NULL;
2554 }
2555
2556
2557 /*
2558 * Register hstate attributes for a single node device.
2559 * No-op if attributes already registered.
2560 */
2561 static void hugetlb_register_node(struct node *node)
2562 {
2563 struct hstate *h;
2564 struct node_hstate *nhs = &node_hstates[node->dev.id];
2565 int err;
2566
2567 if (nhs->hugepages_kobj)
2568 return; /* already allocated */
2569
2570 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2571 &node->dev.kobj);
2572 if (!nhs->hugepages_kobj)
2573 return;
2574
2575 for_each_hstate(h) {
2576 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2577 nhs->hstate_kobjs,
2578 &per_node_hstate_attr_group);
2579 if (err) {
2580 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2581 h->name, node->dev.id);
2582 hugetlb_unregister_node(node);
2583 break;
2584 }
2585 }
2586 }
2587
2588 /*
2589 * hugetlb init time: register hstate attributes for all registered node
2590 * devices of nodes that have memory. All on-line nodes should have
2591 * registered their associated device by this time.
2592 */
2593 static void __init hugetlb_register_all_nodes(void)
2594 {
2595 int nid;
2596
2597 for_each_node_state(nid, N_MEMORY) {
2598 struct node *node = node_devices[nid];
2599 if (node->dev.id == nid)
2600 hugetlb_register_node(node);
2601 }
2602
2603 /*
2604 * Let the node device driver know we're here so it can
2605 * [un]register hstate attributes on node hotplug.
2606 */
2607 register_hugetlbfs_with_node(hugetlb_register_node,
2608 hugetlb_unregister_node);
2609 }
2610 #else /* !CONFIG_NUMA */
2611
2612 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2613 {
2614 BUG();
2615 if (nidp)
2616 *nidp = -1;
2617 return NULL;
2618 }
2619
2620 static void hugetlb_register_all_nodes(void) { }
2621
2622 #endif
2623
2624 static int __init hugetlb_init(void)
2625 {
2626 int i;
2627
2628 if (!hugepages_supported())
2629 return 0;
2630
2631 if (!size_to_hstate(default_hstate_size)) {
2632 default_hstate_size = HPAGE_SIZE;
2633 if (!size_to_hstate(default_hstate_size))
2634 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2635 }
2636 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2637 if (default_hstate_max_huge_pages) {
2638 if (!default_hstate.max_huge_pages)
2639 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2640 }
2641
2642 hugetlb_init_hstates();
2643 gather_bootmem_prealloc();
2644 report_hugepages();
2645
2646 hugetlb_sysfs_init();
2647 hugetlb_register_all_nodes();
2648 hugetlb_cgroup_file_init();
2649
2650 #ifdef CONFIG_SMP
2651 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2652 #else
2653 num_fault_mutexes = 1;
2654 #endif
2655 hugetlb_fault_mutex_table =
2656 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2657 BUG_ON(!hugetlb_fault_mutex_table);
2658
2659 for (i = 0; i < num_fault_mutexes; i++)
2660 mutex_init(&hugetlb_fault_mutex_table[i]);
2661 return 0;
2662 }
2663 subsys_initcall(hugetlb_init);
2664
2665 /* Should be called on processing a hugepagesz=... option */
2666 void __init hugetlb_bad_size(void)
2667 {
2668 parsed_valid_hugepagesz = false;
2669 }
2670
2671 void __init hugetlb_add_hstate(unsigned int order)
2672 {
2673 struct hstate *h;
2674 unsigned long i;
2675
2676 if (size_to_hstate(PAGE_SIZE << order)) {
2677 pr_warn("hugepagesz= specified twice, ignoring\n");
2678 return;
2679 }
2680 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2681 BUG_ON(order == 0);
2682 h = &hstates[hugetlb_max_hstate++];
2683 h->order = order;
2684 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2685 h->nr_huge_pages = 0;
2686 h->free_huge_pages = 0;
2687 for (i = 0; i < MAX_NUMNODES; ++i)
2688 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2689 INIT_LIST_HEAD(&h->hugepage_activelist);
2690 h->next_nid_to_alloc = first_memory_node;
2691 h->next_nid_to_free = first_memory_node;
2692 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2693 huge_page_size(h)/1024);
2694
2695 parsed_hstate = h;
2696 }
2697
2698 static int __init hugetlb_nrpages_setup(char *s)
2699 {
2700 unsigned long *mhp;
2701 static unsigned long *last_mhp;
2702
2703 if (!parsed_valid_hugepagesz) {
2704 pr_warn("hugepages = %s preceded by "
2705 "an unsupported hugepagesz, ignoring\n", s);
2706 parsed_valid_hugepagesz = true;
2707 return 1;
2708 }
2709 /*
2710 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2711 * so this hugepages= parameter goes to the "default hstate".
2712 */
2713 else if (!hugetlb_max_hstate)
2714 mhp = &default_hstate_max_huge_pages;
2715 else
2716 mhp = &parsed_hstate->max_huge_pages;
2717
2718 if (mhp == last_mhp) {
2719 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2720 return 1;
2721 }
2722
2723 if (sscanf(s, "%lu", mhp) <= 0)
2724 *mhp = 0;
2725
2726 /*
2727 * Global state is always initialized later in hugetlb_init.
2728 * But we need to allocate >= MAX_ORDER hstates here early to still
2729 * use the bootmem allocator.
2730 */
2731 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2732 hugetlb_hstate_alloc_pages(parsed_hstate);
2733
2734 last_mhp = mhp;
2735
2736 return 1;
2737 }
2738 __setup("hugepages=", hugetlb_nrpages_setup);
2739
2740 static int __init hugetlb_default_setup(char *s)
2741 {
2742 default_hstate_size = memparse(s, &s);
2743 return 1;
2744 }
2745 __setup("default_hugepagesz=", hugetlb_default_setup);
2746
2747 static unsigned int cpuset_mems_nr(unsigned int *array)
2748 {
2749 int node;
2750 unsigned int nr = 0;
2751
2752 for_each_node_mask(node, cpuset_current_mems_allowed)
2753 nr += array[node];
2754
2755 return nr;
2756 }
2757
2758 #ifdef CONFIG_SYSCTL
2759 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2760 struct ctl_table *table, int write,
2761 void __user *buffer, size_t *length, loff_t *ppos)
2762 {
2763 struct hstate *h = &default_hstate;
2764 unsigned long tmp = h->max_huge_pages;
2765 int ret;
2766
2767 if (!hugepages_supported())
2768 return -EOPNOTSUPP;
2769
2770 table->data = &tmp;
2771 table->maxlen = sizeof(unsigned long);
2772 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2773 if (ret)
2774 goto out;
2775
2776 if (write)
2777 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2778 NUMA_NO_NODE, tmp, *length);
2779 out:
2780 return ret;
2781 }
2782
2783 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2784 void __user *buffer, size_t *length, loff_t *ppos)
2785 {
2786
2787 return hugetlb_sysctl_handler_common(false, table, write,
2788 buffer, length, ppos);
2789 }
2790
2791 #ifdef CONFIG_NUMA
2792 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2793 void __user *buffer, size_t *length, loff_t *ppos)
2794 {
2795 return hugetlb_sysctl_handler_common(true, table, write,
2796 buffer, length, ppos);
2797 }
2798 #endif /* CONFIG_NUMA */
2799
2800 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2801 void __user *buffer,
2802 size_t *length, loff_t *ppos)
2803 {
2804 struct hstate *h = &default_hstate;
2805 unsigned long tmp;
2806 int ret;
2807
2808 if (!hugepages_supported())
2809 return -EOPNOTSUPP;
2810
2811 tmp = h->nr_overcommit_huge_pages;
2812
2813 if (write && hstate_is_gigantic(h))
2814 return -EINVAL;
2815
2816 table->data = &tmp;
2817 table->maxlen = sizeof(unsigned long);
2818 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2819 if (ret)
2820 goto out;
2821
2822 if (write) {
2823 spin_lock(&hugetlb_lock);
2824 h->nr_overcommit_huge_pages = tmp;
2825 spin_unlock(&hugetlb_lock);
2826 }
2827 out:
2828 return ret;
2829 }
2830
2831 #endif /* CONFIG_SYSCTL */
2832
2833 void hugetlb_report_meminfo(struct seq_file *m)
2834 {
2835 struct hstate *h = &default_hstate;
2836 if (!hugepages_supported())
2837 return;
2838 seq_printf(m,
2839 "HugePages_Total: %5lu\n"
2840 "HugePages_Free: %5lu\n"
2841 "HugePages_Rsvd: %5lu\n"
2842 "HugePages_Surp: %5lu\n"
2843 "Hugepagesize: %8lu kB\n",
2844 h->nr_huge_pages,
2845 h->free_huge_pages,
2846 h->resv_huge_pages,
2847 h->surplus_huge_pages,
2848 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2849 }
2850
2851 int hugetlb_report_node_meminfo(int nid, char *buf)
2852 {
2853 struct hstate *h = &default_hstate;
2854 if (!hugepages_supported())
2855 return 0;
2856 return sprintf(buf,
2857 "Node %d HugePages_Total: %5u\n"
2858 "Node %d HugePages_Free: %5u\n"
2859 "Node %d HugePages_Surp: %5u\n",
2860 nid, h->nr_huge_pages_node[nid],
2861 nid, h->free_huge_pages_node[nid],
2862 nid, h->surplus_huge_pages_node[nid]);
2863 }
2864
2865 void hugetlb_show_meminfo(void)
2866 {
2867 struct hstate *h;
2868 int nid;
2869
2870 if (!hugepages_supported())
2871 return;
2872
2873 for_each_node_state(nid, N_MEMORY)
2874 for_each_hstate(h)
2875 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2876 nid,
2877 h->nr_huge_pages_node[nid],
2878 h->free_huge_pages_node[nid],
2879 h->surplus_huge_pages_node[nid],
2880 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2881 }
2882
2883 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2884 {
2885 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2886 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2887 }
2888
2889 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2890 unsigned long hugetlb_total_pages(void)
2891 {
2892 struct hstate *h;
2893 unsigned long nr_total_pages = 0;
2894
2895 for_each_hstate(h)
2896 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2897 return nr_total_pages;
2898 }
2899
2900 static int hugetlb_acct_memory(struct hstate *h, long delta)
2901 {
2902 int ret = -ENOMEM;
2903
2904 spin_lock(&hugetlb_lock);
2905 /*
2906 * When cpuset is configured, it breaks the strict hugetlb page
2907 * reservation as the accounting is done on a global variable. Such
2908 * reservation is completely rubbish in the presence of cpuset because
2909 * the reservation is not checked against page availability for the
2910 * current cpuset. Application can still potentially OOM'ed by kernel
2911 * with lack of free htlb page in cpuset that the task is in.
2912 * Attempt to enforce strict accounting with cpuset is almost
2913 * impossible (or too ugly) because cpuset is too fluid that
2914 * task or memory node can be dynamically moved between cpusets.
2915 *
2916 * The change of semantics for shared hugetlb mapping with cpuset is
2917 * undesirable. However, in order to preserve some of the semantics,
2918 * we fall back to check against current free page availability as
2919 * a best attempt and hopefully to minimize the impact of changing
2920 * semantics that cpuset has.
2921 */
2922 if (delta > 0) {
2923 if (gather_surplus_pages(h, delta) < 0)
2924 goto out;
2925
2926 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2927 return_unused_surplus_pages(h, delta);
2928 goto out;
2929 }
2930 }
2931
2932 ret = 0;
2933 if (delta < 0)
2934 return_unused_surplus_pages(h, (unsigned long) -delta);
2935
2936 out:
2937 spin_unlock(&hugetlb_lock);
2938 return ret;
2939 }
2940
2941 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2942 {
2943 struct resv_map *resv = vma_resv_map(vma);
2944
2945 /*
2946 * This new VMA should share its siblings reservation map if present.
2947 * The VMA will only ever have a valid reservation map pointer where
2948 * it is being copied for another still existing VMA. As that VMA
2949 * has a reference to the reservation map it cannot disappear until
2950 * after this open call completes. It is therefore safe to take a
2951 * new reference here without additional locking.
2952 */
2953 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2954 kref_get(&resv->refs);
2955 }
2956
2957 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2958 {
2959 struct hstate *h = hstate_vma(vma);
2960 struct resv_map *resv = vma_resv_map(vma);
2961 struct hugepage_subpool *spool = subpool_vma(vma);
2962 unsigned long reserve, start, end;
2963 long gbl_reserve;
2964
2965 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2966 return;
2967
2968 start = vma_hugecache_offset(h, vma, vma->vm_start);
2969 end = vma_hugecache_offset(h, vma, vma->vm_end);
2970
2971 reserve = (end - start) - region_count(resv, start, end);
2972
2973 kref_put(&resv->refs, resv_map_release);
2974
2975 if (reserve) {
2976 /*
2977 * Decrement reserve counts. The global reserve count may be
2978 * adjusted if the subpool has a minimum size.
2979 */
2980 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2981 hugetlb_acct_memory(h, -gbl_reserve);
2982 }
2983 }
2984
2985 /*
2986 * We cannot handle pagefaults against hugetlb pages at all. They cause
2987 * handle_mm_fault() to try to instantiate regular-sized pages in the
2988 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2989 * this far.
2990 */
2991 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2992 {
2993 BUG();
2994 return 0;
2995 }
2996
2997 const struct vm_operations_struct hugetlb_vm_ops = {
2998 .fault = hugetlb_vm_op_fault,
2999 .open = hugetlb_vm_op_open,
3000 .close = hugetlb_vm_op_close,
3001 };
3002
3003 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3004 int writable)
3005 {
3006 pte_t entry;
3007
3008 if (writable) {
3009 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3010 vma->vm_page_prot)));
3011 } else {
3012 entry = huge_pte_wrprotect(mk_huge_pte(page,
3013 vma->vm_page_prot));
3014 }
3015 entry = pte_mkyoung(entry);
3016 entry = pte_mkhuge(entry);
3017 entry = arch_make_huge_pte(entry, vma, page, writable);
3018
3019 return entry;
3020 }
3021
3022 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3023 unsigned long address, pte_t *ptep)
3024 {
3025 pte_t entry;
3026
3027 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3028 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3029 update_mmu_cache(vma, address, ptep);
3030 }
3031
3032 static int is_hugetlb_entry_migration(pte_t pte)
3033 {
3034 swp_entry_t swp;
3035
3036 if (huge_pte_none(pte) || pte_present(pte))
3037 return 0;
3038 swp = pte_to_swp_entry(pte);
3039 if (non_swap_entry(swp) && is_migration_entry(swp))
3040 return 1;
3041 else
3042 return 0;
3043 }
3044
3045 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3046 {
3047 swp_entry_t swp;
3048
3049 if (huge_pte_none(pte) || pte_present(pte))
3050 return 0;
3051 swp = pte_to_swp_entry(pte);
3052 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3053 return 1;
3054 else
3055 return 0;
3056 }
3057
3058 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3059 struct vm_area_struct *vma)
3060 {
3061 pte_t *src_pte, *dst_pte, entry;
3062 struct page *ptepage;
3063 unsigned long addr;
3064 int cow;
3065 struct hstate *h = hstate_vma(vma);
3066 unsigned long sz = huge_page_size(h);
3067 unsigned long mmun_start; /* For mmu_notifiers */
3068 unsigned long mmun_end; /* For mmu_notifiers */
3069 int ret = 0;
3070
3071 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3072
3073 mmun_start = vma->vm_start;
3074 mmun_end = vma->vm_end;
3075 if (cow)
3076 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3077
3078 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3079 spinlock_t *src_ptl, *dst_ptl;
3080 src_pte = huge_pte_offset(src, addr);
3081 if (!src_pte)
3082 continue;
3083 dst_pte = huge_pte_alloc(dst, addr, sz);
3084 if (!dst_pte) {
3085 ret = -ENOMEM;
3086 break;
3087 }
3088
3089 /* If the pagetables are shared don't copy or take references */
3090 if (dst_pte == src_pte)
3091 continue;
3092
3093 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3094 src_ptl = huge_pte_lockptr(h, src, src_pte);
3095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3096 entry = huge_ptep_get(src_pte);
3097 if (huge_pte_none(entry)) { /* skip none entry */
3098 ;
3099 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3100 is_hugetlb_entry_hwpoisoned(entry))) {
3101 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3102
3103 if (is_write_migration_entry(swp_entry) && cow) {
3104 /*
3105 * COW mappings require pages in both
3106 * parent and child to be set to read.
3107 */
3108 make_migration_entry_read(&swp_entry);
3109 entry = swp_entry_to_pte(swp_entry);
3110 set_huge_pte_at(src, addr, src_pte, entry);
3111 }
3112 set_huge_pte_at(dst, addr, dst_pte, entry);
3113 } else {
3114 if (cow) {
3115 huge_ptep_set_wrprotect(src, addr, src_pte);
3116 mmu_notifier_invalidate_range(src, mmun_start,
3117 mmun_end);
3118 }
3119 entry = huge_ptep_get(src_pte);
3120 ptepage = pte_page(entry);
3121 get_page(ptepage);
3122 page_dup_rmap(ptepage, true);
3123 set_huge_pte_at(dst, addr, dst_pte, entry);
3124 hugetlb_count_add(pages_per_huge_page(h), dst);
3125 }
3126 spin_unlock(src_ptl);
3127 spin_unlock(dst_ptl);
3128 }
3129
3130 if (cow)
3131 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3132
3133 return ret;
3134 }
3135
3136 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3137 unsigned long start, unsigned long end,
3138 struct page *ref_page)
3139 {
3140 int force_flush = 0;
3141 struct mm_struct *mm = vma->vm_mm;
3142 unsigned long address;
3143 pte_t *ptep;
3144 pte_t pte;
3145 spinlock_t *ptl;
3146 struct page *page;
3147 struct hstate *h = hstate_vma(vma);
3148 unsigned long sz = huge_page_size(h);
3149 const unsigned long mmun_start = start; /* For mmu_notifiers */
3150 const unsigned long mmun_end = end; /* For mmu_notifiers */
3151
3152 WARN_ON(!is_vm_hugetlb_page(vma));
3153 BUG_ON(start & ~huge_page_mask(h));
3154 BUG_ON(end & ~huge_page_mask(h));
3155
3156 tlb_start_vma(tlb, vma);
3157 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3158 address = start;
3159 again:
3160 for (; address < end; address += sz) {
3161 ptep = huge_pte_offset(mm, address);
3162 if (!ptep)
3163 continue;
3164
3165 ptl = huge_pte_lock(h, mm, ptep);
3166 if (huge_pmd_unshare(mm, &address, ptep))
3167 goto unlock;
3168
3169 pte = huge_ptep_get(ptep);
3170 if (huge_pte_none(pte))
3171 goto unlock;
3172
3173 /*
3174 * Migrating hugepage or HWPoisoned hugepage is already
3175 * unmapped and its refcount is dropped, so just clear pte here.
3176 */
3177 if (unlikely(!pte_present(pte))) {
3178 huge_pte_clear(mm, address, ptep);
3179 goto unlock;
3180 }
3181
3182 page = pte_page(pte);
3183 /*
3184 * If a reference page is supplied, it is because a specific
3185 * page is being unmapped, not a range. Ensure the page we
3186 * are about to unmap is the actual page of interest.
3187 */
3188 if (ref_page) {
3189 if (page != ref_page)
3190 goto unlock;
3191
3192 /*
3193 * Mark the VMA as having unmapped its page so that
3194 * future faults in this VMA will fail rather than
3195 * looking like data was lost
3196 */
3197 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3198 }
3199
3200 pte = huge_ptep_get_and_clear(mm, address, ptep);
3201 tlb_remove_tlb_entry(tlb, ptep, address);
3202 if (huge_pte_dirty(pte))
3203 set_page_dirty(page);
3204
3205 hugetlb_count_sub(pages_per_huge_page(h), mm);
3206 page_remove_rmap(page, true);
3207 force_flush = !__tlb_remove_page(tlb, page);
3208 if (force_flush) {
3209 address += sz;
3210 spin_unlock(ptl);
3211 break;
3212 }
3213 /* Bail out after unmapping reference page if supplied */
3214 if (ref_page) {
3215 spin_unlock(ptl);
3216 break;
3217 }
3218 unlock:
3219 spin_unlock(ptl);
3220 }
3221 /*
3222 * mmu_gather ran out of room to batch pages, we break out of
3223 * the PTE lock to avoid doing the potential expensive TLB invalidate
3224 * and page-free while holding it.
3225 */
3226 if (force_flush) {
3227 force_flush = 0;
3228 tlb_flush_mmu(tlb);
3229 if (address < end && !ref_page)
3230 goto again;
3231 }
3232 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3233 tlb_end_vma(tlb, vma);
3234 }
3235
3236 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3237 struct vm_area_struct *vma, unsigned long start,
3238 unsigned long end, struct page *ref_page)
3239 {
3240 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3241
3242 /*
3243 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3244 * test will fail on a vma being torn down, and not grab a page table
3245 * on its way out. We're lucky that the flag has such an appropriate
3246 * name, and can in fact be safely cleared here. We could clear it
3247 * before the __unmap_hugepage_range above, but all that's necessary
3248 * is to clear it before releasing the i_mmap_rwsem. This works
3249 * because in the context this is called, the VMA is about to be
3250 * destroyed and the i_mmap_rwsem is held.
3251 */
3252 vma->vm_flags &= ~VM_MAYSHARE;
3253 }
3254
3255 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3256 unsigned long end, struct page *ref_page)
3257 {
3258 struct mm_struct *mm;
3259 struct mmu_gather tlb;
3260
3261 mm = vma->vm_mm;
3262
3263 tlb_gather_mmu(&tlb, mm, start, end);
3264 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3265 tlb_finish_mmu(&tlb, start, end);
3266 }
3267
3268 /*
3269 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3270 * mappping it owns the reserve page for. The intention is to unmap the page
3271 * from other VMAs and let the children be SIGKILLed if they are faulting the
3272 * same region.
3273 */
3274 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3275 struct page *page, unsigned long address)
3276 {
3277 struct hstate *h = hstate_vma(vma);
3278 struct vm_area_struct *iter_vma;
3279 struct address_space *mapping;
3280 pgoff_t pgoff;
3281
3282 /*
3283 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3284 * from page cache lookup which is in HPAGE_SIZE units.
3285 */
3286 address = address & huge_page_mask(h);
3287 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3288 vma->vm_pgoff;
3289 mapping = file_inode(vma->vm_file)->i_mapping;
3290
3291 /*
3292 * Take the mapping lock for the duration of the table walk. As
3293 * this mapping should be shared between all the VMAs,
3294 * __unmap_hugepage_range() is called as the lock is already held
3295 */
3296 i_mmap_lock_write(mapping);
3297 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3298 /* Do not unmap the current VMA */
3299 if (iter_vma == vma)
3300 continue;
3301
3302 /*
3303 * Shared VMAs have their own reserves and do not affect
3304 * MAP_PRIVATE accounting but it is possible that a shared
3305 * VMA is using the same page so check and skip such VMAs.
3306 */
3307 if (iter_vma->vm_flags & VM_MAYSHARE)
3308 continue;
3309
3310 /*
3311 * Unmap the page from other VMAs without their own reserves.
3312 * They get marked to be SIGKILLed if they fault in these
3313 * areas. This is because a future no-page fault on this VMA
3314 * could insert a zeroed page instead of the data existing
3315 * from the time of fork. This would look like data corruption
3316 */
3317 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3318 unmap_hugepage_range(iter_vma, address,
3319 address + huge_page_size(h), page);
3320 }
3321 i_mmap_unlock_write(mapping);
3322 }
3323
3324 /*
3325 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3326 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3327 * cannot race with other handlers or page migration.
3328 * Keep the pte_same checks anyway to make transition from the mutex easier.
3329 */
3330 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3331 unsigned long address, pte_t *ptep, pte_t pte,
3332 struct page *pagecache_page, spinlock_t *ptl)
3333 {
3334 struct hstate *h = hstate_vma(vma);
3335 struct page *old_page, *new_page;
3336 int ret = 0, outside_reserve = 0;
3337 unsigned long mmun_start; /* For mmu_notifiers */
3338 unsigned long mmun_end; /* For mmu_notifiers */
3339
3340 old_page = pte_page(pte);
3341
3342 retry_avoidcopy:
3343 /* If no-one else is actually using this page, avoid the copy
3344 * and just make the page writable */
3345 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3346 page_move_anon_rmap(old_page, vma, address);
3347 set_huge_ptep_writable(vma, address, ptep);
3348 return 0;
3349 }
3350
3351 /*
3352 * If the process that created a MAP_PRIVATE mapping is about to
3353 * perform a COW due to a shared page count, attempt to satisfy
3354 * the allocation without using the existing reserves. The pagecache
3355 * page is used to determine if the reserve at this address was
3356 * consumed or not. If reserves were used, a partial faulted mapping
3357 * at the time of fork() could consume its reserves on COW instead
3358 * of the full address range.
3359 */
3360 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3361 old_page != pagecache_page)
3362 outside_reserve = 1;
3363
3364 get_page(old_page);
3365
3366 /*
3367 * Drop page table lock as buddy allocator may be called. It will
3368 * be acquired again before returning to the caller, as expected.
3369 */
3370 spin_unlock(ptl);
3371 new_page = alloc_huge_page(vma, address, outside_reserve);
3372
3373 if (IS_ERR(new_page)) {
3374 /*
3375 * If a process owning a MAP_PRIVATE mapping fails to COW,
3376 * it is due to references held by a child and an insufficient
3377 * huge page pool. To guarantee the original mappers
3378 * reliability, unmap the page from child processes. The child
3379 * may get SIGKILLed if it later faults.
3380 */
3381 if (outside_reserve) {
3382 put_page(old_page);
3383 BUG_ON(huge_pte_none(pte));
3384 unmap_ref_private(mm, vma, old_page, address);
3385 BUG_ON(huge_pte_none(pte));
3386 spin_lock(ptl);
3387 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3388 if (likely(ptep &&
3389 pte_same(huge_ptep_get(ptep), pte)))
3390 goto retry_avoidcopy;
3391 /*
3392 * race occurs while re-acquiring page table
3393 * lock, and our job is done.
3394 */
3395 return 0;
3396 }
3397
3398 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3399 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3400 goto out_release_old;
3401 }
3402
3403 /*
3404 * When the original hugepage is shared one, it does not have
3405 * anon_vma prepared.
3406 */
3407 if (unlikely(anon_vma_prepare(vma))) {
3408 ret = VM_FAULT_OOM;
3409 goto out_release_all;
3410 }
3411
3412 copy_user_huge_page(new_page, old_page, address, vma,
3413 pages_per_huge_page(h));
3414 __SetPageUptodate(new_page);
3415 set_page_huge_active(new_page);
3416
3417 mmun_start = address & huge_page_mask(h);
3418 mmun_end = mmun_start + huge_page_size(h);
3419 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3420
3421 /*
3422 * Retake the page table lock to check for racing updates
3423 * before the page tables are altered
3424 */
3425 spin_lock(ptl);
3426 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3427 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3428 ClearPagePrivate(new_page);
3429
3430 /* Break COW */
3431 huge_ptep_clear_flush(vma, address, ptep);
3432 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3433 set_huge_pte_at(mm, address, ptep,
3434 make_huge_pte(vma, new_page, 1));
3435 page_remove_rmap(old_page, true);
3436 hugepage_add_new_anon_rmap(new_page, vma, address);
3437 /* Make the old page be freed below */
3438 new_page = old_page;
3439 }
3440 spin_unlock(ptl);
3441 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3442 out_release_all:
3443 put_page(new_page);
3444 out_release_old:
3445 put_page(old_page);
3446
3447 spin_lock(ptl); /* Caller expects lock to be held */
3448 return ret;
3449 }
3450
3451 /* Return the pagecache page at a given address within a VMA */
3452 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3453 struct vm_area_struct *vma, unsigned long address)
3454 {
3455 struct address_space *mapping;
3456 pgoff_t idx;
3457
3458 mapping = vma->vm_file->f_mapping;
3459 idx = vma_hugecache_offset(h, vma, address);
3460
3461 return find_lock_page(mapping, idx);
3462 }
3463
3464 /*
3465 * Return whether there is a pagecache page to back given address within VMA.
3466 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3467 */
3468 static bool hugetlbfs_pagecache_present(struct hstate *h,
3469 struct vm_area_struct *vma, unsigned long address)
3470 {
3471 struct address_space *mapping;
3472 pgoff_t idx;
3473 struct page *page;
3474
3475 mapping = vma->vm_file->f_mapping;
3476 idx = vma_hugecache_offset(h, vma, address);
3477
3478 page = find_get_page(mapping, idx);
3479 if (page)
3480 put_page(page);
3481 return page != NULL;
3482 }
3483
3484 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3485 pgoff_t idx)
3486 {
3487 struct inode *inode = mapping->host;
3488 struct hstate *h = hstate_inode(inode);
3489 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3490
3491 if (err)
3492 return err;
3493 ClearPagePrivate(page);
3494
3495 spin_lock(&inode->i_lock);
3496 inode->i_blocks += blocks_per_huge_page(h);
3497 spin_unlock(&inode->i_lock);
3498 return 0;
3499 }
3500
3501 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3502 struct address_space *mapping, pgoff_t idx,
3503 unsigned long address, pte_t *ptep, unsigned int flags)
3504 {
3505 struct hstate *h = hstate_vma(vma);
3506 int ret = VM_FAULT_SIGBUS;
3507 int anon_rmap = 0;
3508 unsigned long size;
3509 struct page *page;
3510 pte_t new_pte;
3511 spinlock_t *ptl;
3512
3513 /*
3514 * Currently, we are forced to kill the process in the event the
3515 * original mapper has unmapped pages from the child due to a failed
3516 * COW. Warn that such a situation has occurred as it may not be obvious
3517 */
3518 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3519 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3520 current->pid);
3521 return ret;
3522 }
3523
3524 /*
3525 * Use page lock to guard against racing truncation
3526 * before we get page_table_lock.
3527 */
3528 retry:
3529 page = find_lock_page(mapping, idx);
3530 if (!page) {
3531 size = i_size_read(mapping->host) >> huge_page_shift(h);
3532 if (idx >= size)
3533 goto out;
3534 page = alloc_huge_page(vma, address, 0);
3535 if (IS_ERR(page)) {
3536 ret = PTR_ERR(page);
3537 if (ret == -ENOMEM)
3538 ret = VM_FAULT_OOM;
3539 else
3540 ret = VM_FAULT_SIGBUS;
3541 goto out;
3542 }
3543 clear_huge_page(page, address, pages_per_huge_page(h));
3544 __SetPageUptodate(page);
3545 set_page_huge_active(page);
3546
3547 if (vma->vm_flags & VM_MAYSHARE) {
3548 int err = huge_add_to_page_cache(page, mapping, idx);
3549 if (err) {
3550 put_page(page);
3551 if (err == -EEXIST)
3552 goto retry;
3553 goto out;
3554 }
3555 } else {
3556 lock_page(page);
3557 if (unlikely(anon_vma_prepare(vma))) {
3558 ret = VM_FAULT_OOM;
3559 goto backout_unlocked;
3560 }
3561 anon_rmap = 1;
3562 }
3563 } else {
3564 /*
3565 * If memory error occurs between mmap() and fault, some process
3566 * don't have hwpoisoned swap entry for errored virtual address.
3567 * So we need to block hugepage fault by PG_hwpoison bit check.
3568 */
3569 if (unlikely(PageHWPoison(page))) {
3570 ret = VM_FAULT_HWPOISON |
3571 VM_FAULT_SET_HINDEX(hstate_index(h));
3572 goto backout_unlocked;
3573 }
3574 }
3575
3576 /*
3577 * If we are going to COW a private mapping later, we examine the
3578 * pending reservations for this page now. This will ensure that
3579 * any allocations necessary to record that reservation occur outside
3580 * the spinlock.
3581 */
3582 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3583 if (vma_needs_reservation(h, vma, address) < 0) {
3584 ret = VM_FAULT_OOM;
3585 goto backout_unlocked;
3586 }
3587 /* Just decrements count, does not deallocate */
3588 vma_end_reservation(h, vma, address);
3589 }
3590
3591 ptl = huge_pte_lockptr(h, mm, ptep);
3592 spin_lock(ptl);
3593 size = i_size_read(mapping->host) >> huge_page_shift(h);
3594 if (idx >= size)
3595 goto backout;
3596
3597 ret = 0;
3598 if (!huge_pte_none(huge_ptep_get(ptep)))
3599 goto backout;
3600
3601 if (anon_rmap) {
3602 ClearPagePrivate(page);
3603 hugepage_add_new_anon_rmap(page, vma, address);
3604 } else
3605 page_dup_rmap(page, true);
3606 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3607 && (vma->vm_flags & VM_SHARED)));
3608 set_huge_pte_at(mm, address, ptep, new_pte);
3609
3610 hugetlb_count_add(pages_per_huge_page(h), mm);
3611 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3612 /* Optimization, do the COW without a second fault */
3613 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3614 }
3615
3616 spin_unlock(ptl);
3617 unlock_page(page);
3618 out:
3619 return ret;
3620
3621 backout:
3622 spin_unlock(ptl);
3623 backout_unlocked:
3624 unlock_page(page);
3625 put_page(page);
3626 goto out;
3627 }
3628
3629 #ifdef CONFIG_SMP
3630 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3631 struct vm_area_struct *vma,
3632 struct address_space *mapping,
3633 pgoff_t idx, unsigned long address)
3634 {
3635 unsigned long key[2];
3636 u32 hash;
3637
3638 if (vma->vm_flags & VM_SHARED) {
3639 key[0] = (unsigned long) mapping;
3640 key[1] = idx;
3641 } else {
3642 key[0] = (unsigned long) mm;
3643 key[1] = address >> huge_page_shift(h);
3644 }
3645
3646 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3647
3648 return hash & (num_fault_mutexes - 1);
3649 }
3650 #else
3651 /*
3652 * For uniprocesor systems we always use a single mutex, so just
3653 * return 0 and avoid the hashing overhead.
3654 */
3655 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3656 struct vm_area_struct *vma,
3657 struct address_space *mapping,
3658 pgoff_t idx, unsigned long address)
3659 {
3660 return 0;
3661 }
3662 #endif
3663
3664 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3665 unsigned long address, unsigned int flags)
3666 {
3667 pte_t *ptep, entry;
3668 spinlock_t *ptl;
3669 int ret;
3670 u32 hash;
3671 pgoff_t idx;
3672 struct page *page = NULL;
3673 struct page *pagecache_page = NULL;
3674 struct hstate *h = hstate_vma(vma);
3675 struct address_space *mapping;
3676 int need_wait_lock = 0;
3677
3678 address &= huge_page_mask(h);
3679
3680 ptep = huge_pte_offset(mm, address);
3681 if (ptep) {
3682 entry = huge_ptep_get(ptep);
3683 if (unlikely(is_hugetlb_entry_migration(entry))) {
3684 migration_entry_wait_huge(vma, mm, ptep);
3685 return 0;
3686 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3687 return VM_FAULT_HWPOISON_LARGE |
3688 VM_FAULT_SET_HINDEX(hstate_index(h));
3689 } else {
3690 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3691 if (!ptep)
3692 return VM_FAULT_OOM;
3693 }
3694
3695 mapping = vma->vm_file->f_mapping;
3696 idx = vma_hugecache_offset(h, vma, address);
3697
3698 /*
3699 * Serialize hugepage allocation and instantiation, so that we don't
3700 * get spurious allocation failures if two CPUs race to instantiate
3701 * the same page in the page cache.
3702 */
3703 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3704 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3705
3706 entry = huge_ptep_get(ptep);
3707 if (huge_pte_none(entry)) {
3708 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3709 goto out_mutex;
3710 }
3711
3712 ret = 0;
3713
3714 /*
3715 * entry could be a migration/hwpoison entry at this point, so this
3716 * check prevents the kernel from going below assuming that we have
3717 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3718 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3719 * handle it.
3720 */
3721 if (!pte_present(entry))
3722 goto out_mutex;
3723
3724 /*
3725 * If we are going to COW the mapping later, we examine the pending
3726 * reservations for this page now. This will ensure that any
3727 * allocations necessary to record that reservation occur outside the
3728 * spinlock. For private mappings, we also lookup the pagecache
3729 * page now as it is used to determine if a reservation has been
3730 * consumed.
3731 */
3732 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3733 if (vma_needs_reservation(h, vma, address) < 0) {
3734 ret = VM_FAULT_OOM;
3735 goto out_mutex;
3736 }
3737 /* Just decrements count, does not deallocate */
3738 vma_end_reservation(h, vma, address);
3739
3740 if (!(vma->vm_flags & VM_MAYSHARE))
3741 pagecache_page = hugetlbfs_pagecache_page(h,
3742 vma, address);
3743 }
3744
3745 ptl = huge_pte_lock(h, mm, ptep);
3746
3747 /* Check for a racing update before calling hugetlb_cow */
3748 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3749 goto out_ptl;
3750
3751 /*
3752 * hugetlb_cow() requires page locks of pte_page(entry) and
3753 * pagecache_page, so here we need take the former one
3754 * when page != pagecache_page or !pagecache_page.
3755 */
3756 page = pte_page(entry);
3757 if (page != pagecache_page)
3758 if (!trylock_page(page)) {
3759 need_wait_lock = 1;
3760 goto out_ptl;
3761 }
3762
3763 get_page(page);
3764
3765 if (flags & FAULT_FLAG_WRITE) {
3766 if (!huge_pte_write(entry)) {
3767 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3768 pagecache_page, ptl);
3769 goto out_put_page;
3770 }
3771 entry = huge_pte_mkdirty(entry);
3772 }
3773 entry = pte_mkyoung(entry);
3774 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3775 flags & FAULT_FLAG_WRITE))
3776 update_mmu_cache(vma, address, ptep);
3777 out_put_page:
3778 if (page != pagecache_page)
3779 unlock_page(page);
3780 put_page(page);
3781 out_ptl:
3782 spin_unlock(ptl);
3783
3784 if (pagecache_page) {
3785 unlock_page(pagecache_page);
3786 put_page(pagecache_page);
3787 }
3788 out_mutex:
3789 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3790 /*
3791 * Generally it's safe to hold refcount during waiting page lock. But
3792 * here we just wait to defer the next page fault to avoid busy loop and
3793 * the page is not used after unlocked before returning from the current
3794 * page fault. So we are safe from accessing freed page, even if we wait
3795 * here without taking refcount.
3796 */
3797 if (need_wait_lock)
3798 wait_on_page_locked(page);
3799 return ret;
3800 }
3801
3802 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3803 struct page **pages, struct vm_area_struct **vmas,
3804 unsigned long *position, unsigned long *nr_pages,
3805 long i, unsigned int flags)
3806 {
3807 unsigned long pfn_offset;
3808 unsigned long vaddr = *position;
3809 unsigned long remainder = *nr_pages;
3810 struct hstate *h = hstate_vma(vma);
3811
3812 while (vaddr < vma->vm_end && remainder) {
3813 pte_t *pte;
3814 spinlock_t *ptl = NULL;
3815 int absent;
3816 struct page *page;
3817
3818 /*
3819 * If we have a pending SIGKILL, don't keep faulting pages and
3820 * potentially allocating memory.
3821 */
3822 if (unlikely(fatal_signal_pending(current))) {
3823 remainder = 0;
3824 break;
3825 }
3826
3827 /*
3828 * Some archs (sparc64, sh*) have multiple pte_ts to
3829 * each hugepage. We have to make sure we get the
3830 * first, for the page indexing below to work.
3831 *
3832 * Note that page table lock is not held when pte is null.
3833 */
3834 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3835 if (pte)
3836 ptl = huge_pte_lock(h, mm, pte);
3837 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3838
3839 /*
3840 * When coredumping, it suits get_dump_page if we just return
3841 * an error where there's an empty slot with no huge pagecache
3842 * to back it. This way, we avoid allocating a hugepage, and
3843 * the sparse dumpfile avoids allocating disk blocks, but its
3844 * huge holes still show up with zeroes where they need to be.
3845 */
3846 if (absent && (flags & FOLL_DUMP) &&
3847 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3848 if (pte)
3849 spin_unlock(ptl);
3850 remainder = 0;
3851 break;
3852 }
3853
3854 /*
3855 * We need call hugetlb_fault for both hugepages under migration
3856 * (in which case hugetlb_fault waits for the migration,) and
3857 * hwpoisoned hugepages (in which case we need to prevent the
3858 * caller from accessing to them.) In order to do this, we use
3859 * here is_swap_pte instead of is_hugetlb_entry_migration and
3860 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3861 * both cases, and because we can't follow correct pages
3862 * directly from any kind of swap entries.
3863 */
3864 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3865 ((flags & FOLL_WRITE) &&
3866 !huge_pte_write(huge_ptep_get(pte)))) {
3867 int ret;
3868
3869 if (pte)
3870 spin_unlock(ptl);
3871 ret = hugetlb_fault(mm, vma, vaddr,
3872 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3873 if (!(ret & VM_FAULT_ERROR))
3874 continue;
3875
3876 remainder = 0;
3877 break;
3878 }
3879
3880 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3881 page = pte_page(huge_ptep_get(pte));
3882 same_page:
3883 if (pages) {
3884 pages[i] = mem_map_offset(page, pfn_offset);
3885 get_page(pages[i]);
3886 }
3887
3888 if (vmas)
3889 vmas[i] = vma;
3890
3891 vaddr += PAGE_SIZE;
3892 ++pfn_offset;
3893 --remainder;
3894 ++i;
3895 if (vaddr < vma->vm_end && remainder &&
3896 pfn_offset < pages_per_huge_page(h)) {
3897 /*
3898 * We use pfn_offset to avoid touching the pageframes
3899 * of this compound page.
3900 */
3901 goto same_page;
3902 }
3903 spin_unlock(ptl);
3904 }
3905 *nr_pages = remainder;
3906 *position = vaddr;
3907
3908 return i ? i : -EFAULT;
3909 }
3910
3911 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3912 unsigned long address, unsigned long end, pgprot_t newprot)
3913 {
3914 struct mm_struct *mm = vma->vm_mm;
3915 unsigned long start = address;
3916 pte_t *ptep;
3917 pte_t pte;
3918 struct hstate *h = hstate_vma(vma);
3919 unsigned long pages = 0;
3920
3921 BUG_ON(address >= end);
3922 flush_cache_range(vma, address, end);
3923
3924 mmu_notifier_invalidate_range_start(mm, start, end);
3925 i_mmap_lock_write(vma->vm_file->f_mapping);
3926 for (; address < end; address += huge_page_size(h)) {
3927 spinlock_t *ptl;
3928 ptep = huge_pte_offset(mm, address);
3929 if (!ptep)
3930 continue;
3931 ptl = huge_pte_lock(h, mm, ptep);
3932 if (huge_pmd_unshare(mm, &address, ptep)) {
3933 pages++;
3934 spin_unlock(ptl);
3935 continue;
3936 }
3937 pte = huge_ptep_get(ptep);
3938 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3939 spin_unlock(ptl);
3940 continue;
3941 }
3942 if (unlikely(is_hugetlb_entry_migration(pte))) {
3943 swp_entry_t entry = pte_to_swp_entry(pte);
3944
3945 if (is_write_migration_entry(entry)) {
3946 pte_t newpte;
3947
3948 make_migration_entry_read(&entry);
3949 newpte = swp_entry_to_pte(entry);
3950 set_huge_pte_at(mm, address, ptep, newpte);
3951 pages++;
3952 }
3953 spin_unlock(ptl);
3954 continue;
3955 }
3956 if (!huge_pte_none(pte)) {
3957 pte = huge_ptep_get_and_clear(mm, address, ptep);
3958 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3959 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3960 set_huge_pte_at(mm, address, ptep, pte);
3961 pages++;
3962 }
3963 spin_unlock(ptl);
3964 }
3965 /*
3966 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3967 * may have cleared our pud entry and done put_page on the page table:
3968 * once we release i_mmap_rwsem, another task can do the final put_page
3969 * and that page table be reused and filled with junk.
3970 */
3971 flush_tlb_range(vma, start, end);
3972 mmu_notifier_invalidate_range(mm, start, end);
3973 i_mmap_unlock_write(vma->vm_file->f_mapping);
3974 mmu_notifier_invalidate_range_end(mm, start, end);
3975
3976 return pages << h->order;
3977 }
3978
3979 int hugetlb_reserve_pages(struct inode *inode,
3980 long from, long to,
3981 struct vm_area_struct *vma,
3982 vm_flags_t vm_flags)
3983 {
3984 long ret, chg;
3985 struct hstate *h = hstate_inode(inode);
3986 struct hugepage_subpool *spool = subpool_inode(inode);
3987 struct resv_map *resv_map;
3988 long gbl_reserve;
3989
3990 /*
3991 * Only apply hugepage reservation if asked. At fault time, an
3992 * attempt will be made for VM_NORESERVE to allocate a page
3993 * without using reserves
3994 */
3995 if (vm_flags & VM_NORESERVE)
3996 return 0;
3997
3998 /*
3999 * Shared mappings base their reservation on the number of pages that
4000 * are already allocated on behalf of the file. Private mappings need
4001 * to reserve the full area even if read-only as mprotect() may be
4002 * called to make the mapping read-write. Assume !vma is a shm mapping
4003 */
4004 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4005 resv_map = inode_resv_map(inode);
4006
4007 chg = region_chg(resv_map, from, to);
4008
4009 } else {
4010 resv_map = resv_map_alloc();
4011 if (!resv_map)
4012 return -ENOMEM;
4013
4014 chg = to - from;
4015
4016 set_vma_resv_map(vma, resv_map);
4017 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4018 }
4019
4020 if (chg < 0) {
4021 ret = chg;
4022 goto out_err;
4023 }
4024
4025 /*
4026 * There must be enough pages in the subpool for the mapping. If
4027 * the subpool has a minimum size, there may be some global
4028 * reservations already in place (gbl_reserve).
4029 */
4030 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4031 if (gbl_reserve < 0) {
4032 ret = -ENOSPC;
4033 goto out_err;
4034 }
4035
4036 /*
4037 * Check enough hugepages are available for the reservation.
4038 * Hand the pages back to the subpool if there are not
4039 */
4040 ret = hugetlb_acct_memory(h, gbl_reserve);
4041 if (ret < 0) {
4042 /* put back original number of pages, chg */
4043 (void)hugepage_subpool_put_pages(spool, chg);
4044 goto out_err;
4045 }
4046
4047 /*
4048 * Account for the reservations made. Shared mappings record regions
4049 * that have reservations as they are shared by multiple VMAs.
4050 * When the last VMA disappears, the region map says how much
4051 * the reservation was and the page cache tells how much of
4052 * the reservation was consumed. Private mappings are per-VMA and
4053 * only the consumed reservations are tracked. When the VMA
4054 * disappears, the original reservation is the VMA size and the
4055 * consumed reservations are stored in the map. Hence, nothing
4056 * else has to be done for private mappings here
4057 */
4058 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4059 long add = region_add(resv_map, from, to);
4060
4061 if (unlikely(chg > add)) {
4062 /*
4063 * pages in this range were added to the reserve
4064 * map between region_chg and region_add. This
4065 * indicates a race with alloc_huge_page. Adjust
4066 * the subpool and reserve counts modified above
4067 * based on the difference.
4068 */
4069 long rsv_adjust;
4070
4071 rsv_adjust = hugepage_subpool_put_pages(spool,
4072 chg - add);
4073 hugetlb_acct_memory(h, -rsv_adjust);
4074 }
4075 }
4076 return 0;
4077 out_err:
4078 if (!vma || vma->vm_flags & VM_MAYSHARE)
4079 region_abort(resv_map, from, to);
4080 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4081 kref_put(&resv_map->refs, resv_map_release);
4082 return ret;
4083 }
4084
4085 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4086 long freed)
4087 {
4088 struct hstate *h = hstate_inode(inode);
4089 struct resv_map *resv_map = inode_resv_map(inode);
4090 long chg = 0;
4091 struct hugepage_subpool *spool = subpool_inode(inode);
4092 long gbl_reserve;
4093
4094 if (resv_map) {
4095 chg = region_del(resv_map, start, end);
4096 /*
4097 * region_del() can fail in the rare case where a region
4098 * must be split and another region descriptor can not be
4099 * allocated. If end == LONG_MAX, it will not fail.
4100 */
4101 if (chg < 0)
4102 return chg;
4103 }
4104
4105 spin_lock(&inode->i_lock);
4106 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4107 spin_unlock(&inode->i_lock);
4108
4109 /*
4110 * If the subpool has a minimum size, the number of global
4111 * reservations to be released may be adjusted.
4112 */
4113 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4114 hugetlb_acct_memory(h, -gbl_reserve);
4115
4116 return 0;
4117 }
4118
4119 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4120 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4121 struct vm_area_struct *vma,
4122 unsigned long addr, pgoff_t idx)
4123 {
4124 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4125 svma->vm_start;
4126 unsigned long sbase = saddr & PUD_MASK;
4127 unsigned long s_end = sbase + PUD_SIZE;
4128
4129 /* Allow segments to share if only one is marked locked */
4130 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4131 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4132
4133 /*
4134 * match the virtual addresses, permission and the alignment of the
4135 * page table page.
4136 */
4137 if (pmd_index(addr) != pmd_index(saddr) ||
4138 vm_flags != svm_flags ||
4139 sbase < svma->vm_start || svma->vm_end < s_end)
4140 return 0;
4141
4142 return saddr;
4143 }
4144
4145 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4146 {
4147 unsigned long base = addr & PUD_MASK;
4148 unsigned long end = base + PUD_SIZE;
4149
4150 /*
4151 * check on proper vm_flags and page table alignment
4152 */
4153 if (vma->vm_flags & VM_MAYSHARE &&
4154 vma->vm_start <= base && end <= vma->vm_end)
4155 return true;
4156 return false;
4157 }
4158
4159 /*
4160 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4161 * and returns the corresponding pte. While this is not necessary for the
4162 * !shared pmd case because we can allocate the pmd later as well, it makes the
4163 * code much cleaner. pmd allocation is essential for the shared case because
4164 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4165 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4166 * bad pmd for sharing.
4167 */
4168 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4169 {
4170 struct vm_area_struct *vma = find_vma(mm, addr);
4171 struct address_space *mapping = vma->vm_file->f_mapping;
4172 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4173 vma->vm_pgoff;
4174 struct vm_area_struct *svma;
4175 unsigned long saddr;
4176 pte_t *spte = NULL;
4177 pte_t *pte;
4178 spinlock_t *ptl;
4179
4180 if (!vma_shareable(vma, addr))
4181 return (pte_t *)pmd_alloc(mm, pud, addr);
4182
4183 i_mmap_lock_write(mapping);
4184 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4185 if (svma == vma)
4186 continue;
4187
4188 saddr = page_table_shareable(svma, vma, addr, idx);
4189 if (saddr) {
4190 spte = huge_pte_offset(svma->vm_mm, saddr);
4191 if (spte) {
4192 mm_inc_nr_pmds(mm);
4193 get_page(virt_to_page(spte));
4194 break;
4195 }
4196 }
4197 }
4198
4199 if (!spte)
4200 goto out;
4201
4202 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4203 spin_lock(ptl);
4204 if (pud_none(*pud)) {
4205 pud_populate(mm, pud,
4206 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4207 } else {
4208 put_page(virt_to_page(spte));
4209 mm_inc_nr_pmds(mm);
4210 }
4211 spin_unlock(ptl);
4212 out:
4213 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4214 i_mmap_unlock_write(mapping);
4215 return pte;
4216 }
4217
4218 /*
4219 * unmap huge page backed by shared pte.
4220 *
4221 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4222 * indicated by page_count > 1, unmap is achieved by clearing pud and
4223 * decrementing the ref count. If count == 1, the pte page is not shared.
4224 *
4225 * called with page table lock held.
4226 *
4227 * returns: 1 successfully unmapped a shared pte page
4228 * 0 the underlying pte page is not shared, or it is the last user
4229 */
4230 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4231 {
4232 pgd_t *pgd = pgd_offset(mm, *addr);
4233 pud_t *pud = pud_offset(pgd, *addr);
4234
4235 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4236 if (page_count(virt_to_page(ptep)) == 1)
4237 return 0;
4238
4239 pud_clear(pud);
4240 put_page(virt_to_page(ptep));
4241 mm_dec_nr_pmds(mm);
4242 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4243 return 1;
4244 }
4245 #define want_pmd_share() (1)
4246 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4247 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4248 {
4249 return NULL;
4250 }
4251
4252 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4253 {
4254 return 0;
4255 }
4256 #define want_pmd_share() (0)
4257 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4258
4259 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4260 pte_t *huge_pte_alloc(struct mm_struct *mm,
4261 unsigned long addr, unsigned long sz)
4262 {
4263 pgd_t *pgd;
4264 pud_t *pud;
4265 pte_t *pte = NULL;
4266
4267 pgd = pgd_offset(mm, addr);
4268 pud = pud_alloc(mm, pgd, addr);
4269 if (pud) {
4270 if (sz == PUD_SIZE) {
4271 pte = (pte_t *)pud;
4272 } else {
4273 BUG_ON(sz != PMD_SIZE);
4274 if (want_pmd_share() && pud_none(*pud))
4275 pte = huge_pmd_share(mm, addr, pud);
4276 else
4277 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4278 }
4279 }
4280 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4281
4282 return pte;
4283 }
4284
4285 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4286 {
4287 pgd_t *pgd;
4288 pud_t *pud;
4289 pmd_t *pmd = NULL;
4290
4291 pgd = pgd_offset(mm, addr);
4292 if (pgd_present(*pgd)) {
4293 pud = pud_offset(pgd, addr);
4294 if (pud_present(*pud)) {
4295 if (pud_huge(*pud))
4296 return (pte_t *)pud;
4297 pmd = pmd_offset(pud, addr);
4298 }
4299 }
4300 return (pte_t *) pmd;
4301 }
4302
4303 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4304
4305 /*
4306 * These functions are overwritable if your architecture needs its own
4307 * behavior.
4308 */
4309 struct page * __weak
4310 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4311 int write)
4312 {
4313 return ERR_PTR(-EINVAL);
4314 }
4315
4316 struct page * __weak
4317 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4318 pmd_t *pmd, int flags)
4319 {
4320 struct page *page = NULL;
4321 spinlock_t *ptl;
4322 retry:
4323 ptl = pmd_lockptr(mm, pmd);
4324 spin_lock(ptl);
4325 /*
4326 * make sure that the address range covered by this pmd is not
4327 * unmapped from other threads.
4328 */
4329 if (!pmd_huge(*pmd))
4330 goto out;
4331 if (pmd_present(*pmd)) {
4332 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4333 if (flags & FOLL_GET)
4334 get_page(page);
4335 } else {
4336 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4337 spin_unlock(ptl);
4338 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4339 goto retry;
4340 }
4341 /*
4342 * hwpoisoned entry is treated as no_page_table in
4343 * follow_page_mask().
4344 */
4345 }
4346 out:
4347 spin_unlock(ptl);
4348 return page;
4349 }
4350
4351 struct page * __weak
4352 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4353 pud_t *pud, int flags)
4354 {
4355 if (flags & FOLL_GET)
4356 return NULL;
4357
4358 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4359 }
4360
4361 #ifdef CONFIG_MEMORY_FAILURE
4362
4363 /*
4364 * This function is called from memory failure code.
4365 * Assume the caller holds page lock of the head page.
4366 */
4367 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4368 {
4369 struct hstate *h = page_hstate(hpage);
4370 int nid = page_to_nid(hpage);
4371 int ret = -EBUSY;
4372
4373 spin_lock(&hugetlb_lock);
4374 /*
4375 * Just checking !page_huge_active is not enough, because that could be
4376 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4377 */
4378 if (!page_huge_active(hpage) && !page_count(hpage)) {
4379 /*
4380 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4381 * but dangling hpage->lru can trigger list-debug warnings
4382 * (this happens when we call unpoison_memory() on it),
4383 * so let it point to itself with list_del_init().
4384 */
4385 list_del_init(&hpage->lru);
4386 set_page_refcounted(hpage);
4387 h->free_huge_pages--;
4388 h->free_huge_pages_node[nid]--;
4389 ret = 0;
4390 }
4391 spin_unlock(&hugetlb_lock);
4392 return ret;
4393 }
4394 #endif
4395
4396 bool isolate_huge_page(struct page *page, struct list_head *list)
4397 {
4398 bool ret = true;
4399
4400 VM_BUG_ON_PAGE(!PageHead(page), page);
4401 spin_lock(&hugetlb_lock);
4402 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4403 ret = false;
4404 goto unlock;
4405 }
4406 clear_page_huge_active(page);
4407 list_move_tail(&page->lru, list);
4408 unlock:
4409 spin_unlock(&hugetlb_lock);
4410 return ret;
4411 }
4412
4413 void putback_active_hugepage(struct page *page)
4414 {
4415 VM_BUG_ON_PAGE(!PageHead(page), page);
4416 spin_lock(&hugetlb_lock);
4417 set_page_huge_active(page);
4418 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4419 spin_unlock(&hugetlb_lock);
4420 put_page(page);
4421 }
This page took 0.124746 seconds and 5 git commands to generate.