[PATCH] NUMA policies in the slab allocator V2
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16
17 #include <asm/page.h>
18 #include <asm/pgtable.h>
19
20 #include <linux/hugetlb.h>
21
22 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
23 static unsigned long nr_huge_pages, free_huge_pages;
24 unsigned long max_huge_pages;
25 static struct list_head hugepage_freelists[MAX_NUMNODES];
26 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
27 static unsigned int free_huge_pages_node[MAX_NUMNODES];
28
29 /*
30 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
31 */
32 static DEFINE_SPINLOCK(hugetlb_lock);
33
34 static void enqueue_huge_page(struct page *page)
35 {
36 int nid = page_to_nid(page);
37 list_add(&page->lru, &hugepage_freelists[nid]);
38 free_huge_pages++;
39 free_huge_pages_node[nid]++;
40 }
41
42 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
43 unsigned long address)
44 {
45 int nid = numa_node_id();
46 struct page *page = NULL;
47 struct zonelist *zonelist = huge_zonelist(vma, address);
48 struct zone **z;
49
50 for (z = zonelist->zones; *z; z++) {
51 nid = (*z)->zone_pgdat->node_id;
52 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
53 !list_empty(&hugepage_freelists[nid]))
54 break;
55 }
56
57 if (*z) {
58 page = list_entry(hugepage_freelists[nid].next,
59 struct page, lru);
60 list_del(&page->lru);
61 free_huge_pages--;
62 free_huge_pages_node[nid]--;
63 }
64 return page;
65 }
66
67 static struct page *alloc_fresh_huge_page(void)
68 {
69 static int nid = 0;
70 struct page *page;
71 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
72 HUGETLB_PAGE_ORDER);
73 nid = (nid + 1) % num_online_nodes();
74 if (page) {
75 spin_lock(&hugetlb_lock);
76 nr_huge_pages++;
77 nr_huge_pages_node[page_to_nid(page)]++;
78 spin_unlock(&hugetlb_lock);
79 }
80 return page;
81 }
82
83 void free_huge_page(struct page *page)
84 {
85 BUG_ON(page_count(page));
86
87 INIT_LIST_HEAD(&page->lru);
88 page[1].mapping = NULL;
89
90 spin_lock(&hugetlb_lock);
91 enqueue_huge_page(page);
92 spin_unlock(&hugetlb_lock);
93 }
94
95 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
96 {
97 struct page *page;
98 int i;
99
100 spin_lock(&hugetlb_lock);
101 page = dequeue_huge_page(vma, addr);
102 if (!page) {
103 spin_unlock(&hugetlb_lock);
104 return NULL;
105 }
106 spin_unlock(&hugetlb_lock);
107 set_page_count(page, 1);
108 page[1].mapping = (void *)free_huge_page;
109 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
110 clear_highpage(&page[i]);
111 return page;
112 }
113
114 static int __init hugetlb_init(void)
115 {
116 unsigned long i;
117 struct page *page;
118
119 if (HPAGE_SHIFT == 0)
120 return 0;
121
122 for (i = 0; i < MAX_NUMNODES; ++i)
123 INIT_LIST_HEAD(&hugepage_freelists[i]);
124
125 for (i = 0; i < max_huge_pages; ++i) {
126 page = alloc_fresh_huge_page();
127 if (!page)
128 break;
129 spin_lock(&hugetlb_lock);
130 enqueue_huge_page(page);
131 spin_unlock(&hugetlb_lock);
132 }
133 max_huge_pages = free_huge_pages = nr_huge_pages = i;
134 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
135 return 0;
136 }
137 module_init(hugetlb_init);
138
139 static int __init hugetlb_setup(char *s)
140 {
141 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
142 max_huge_pages = 0;
143 return 1;
144 }
145 __setup("hugepages=", hugetlb_setup);
146
147 #ifdef CONFIG_SYSCTL
148 static void update_and_free_page(struct page *page)
149 {
150 int i;
151 nr_huge_pages--;
152 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
153 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
154 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
155 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
156 1 << PG_private | 1<< PG_writeback);
157 set_page_count(&page[i], 0);
158 }
159 set_page_count(page, 1);
160 __free_pages(page, HUGETLB_PAGE_ORDER);
161 }
162
163 #ifdef CONFIG_HIGHMEM
164 static void try_to_free_low(unsigned long count)
165 {
166 int i, nid;
167 for (i = 0; i < MAX_NUMNODES; ++i) {
168 struct page *page, *next;
169 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
170 if (PageHighMem(page))
171 continue;
172 list_del(&page->lru);
173 update_and_free_page(page);
174 nid = page_zone(page)->zone_pgdat->node_id;
175 free_huge_pages--;
176 free_huge_pages_node[nid]--;
177 if (count >= nr_huge_pages)
178 return;
179 }
180 }
181 }
182 #else
183 static inline void try_to_free_low(unsigned long count)
184 {
185 }
186 #endif
187
188 static unsigned long set_max_huge_pages(unsigned long count)
189 {
190 while (count > nr_huge_pages) {
191 struct page *page = alloc_fresh_huge_page();
192 if (!page)
193 return nr_huge_pages;
194 spin_lock(&hugetlb_lock);
195 enqueue_huge_page(page);
196 spin_unlock(&hugetlb_lock);
197 }
198 if (count >= nr_huge_pages)
199 return nr_huge_pages;
200
201 spin_lock(&hugetlb_lock);
202 try_to_free_low(count);
203 while (count < nr_huge_pages) {
204 struct page *page = dequeue_huge_page(NULL, 0);
205 if (!page)
206 break;
207 update_and_free_page(page);
208 }
209 spin_unlock(&hugetlb_lock);
210 return nr_huge_pages;
211 }
212
213 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
214 struct file *file, void __user *buffer,
215 size_t *length, loff_t *ppos)
216 {
217 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
218 max_huge_pages = set_max_huge_pages(max_huge_pages);
219 return 0;
220 }
221 #endif /* CONFIG_SYSCTL */
222
223 int hugetlb_report_meminfo(char *buf)
224 {
225 return sprintf(buf,
226 "HugePages_Total: %5lu\n"
227 "HugePages_Free: %5lu\n"
228 "Hugepagesize: %5lu kB\n",
229 nr_huge_pages,
230 free_huge_pages,
231 HPAGE_SIZE/1024);
232 }
233
234 int hugetlb_report_node_meminfo(int nid, char *buf)
235 {
236 return sprintf(buf,
237 "Node %d HugePages_Total: %5u\n"
238 "Node %d HugePages_Free: %5u\n",
239 nid, nr_huge_pages_node[nid],
240 nid, free_huge_pages_node[nid]);
241 }
242
243 int is_hugepage_mem_enough(size_t size)
244 {
245 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
246 }
247
248 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
249 unsigned long hugetlb_total_pages(void)
250 {
251 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
252 }
253
254 /*
255 * We cannot handle pagefaults against hugetlb pages at all. They cause
256 * handle_mm_fault() to try to instantiate regular-sized pages in the
257 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
258 * this far.
259 */
260 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
261 unsigned long address, int *unused)
262 {
263 BUG();
264 return NULL;
265 }
266
267 struct vm_operations_struct hugetlb_vm_ops = {
268 .nopage = hugetlb_nopage,
269 };
270
271 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
272 int writable)
273 {
274 pte_t entry;
275
276 if (writable) {
277 entry =
278 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
279 } else {
280 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
281 }
282 entry = pte_mkyoung(entry);
283 entry = pte_mkhuge(entry);
284
285 return entry;
286 }
287
288 static void set_huge_ptep_writable(struct vm_area_struct *vma,
289 unsigned long address, pte_t *ptep)
290 {
291 pte_t entry;
292
293 entry = pte_mkwrite(pte_mkdirty(*ptep));
294 ptep_set_access_flags(vma, address, ptep, entry, 1);
295 update_mmu_cache(vma, address, entry);
296 lazy_mmu_prot_update(entry);
297 }
298
299
300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
301 struct vm_area_struct *vma)
302 {
303 pte_t *src_pte, *dst_pte, entry;
304 struct page *ptepage;
305 unsigned long addr;
306 int cow;
307
308 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
309
310 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
311 src_pte = huge_pte_offset(src, addr);
312 if (!src_pte)
313 continue;
314 dst_pte = huge_pte_alloc(dst, addr);
315 if (!dst_pte)
316 goto nomem;
317 spin_lock(&dst->page_table_lock);
318 spin_lock(&src->page_table_lock);
319 if (!pte_none(*src_pte)) {
320 if (cow)
321 ptep_set_wrprotect(src, addr, src_pte);
322 entry = *src_pte;
323 ptepage = pte_page(entry);
324 get_page(ptepage);
325 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
326 set_huge_pte_at(dst, addr, dst_pte, entry);
327 }
328 spin_unlock(&src->page_table_lock);
329 spin_unlock(&dst->page_table_lock);
330 }
331 return 0;
332
333 nomem:
334 return -ENOMEM;
335 }
336
337 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
338 unsigned long end)
339 {
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
342 pte_t *ptep;
343 pte_t pte;
344 struct page *page;
345
346 WARN_ON(!is_vm_hugetlb_page(vma));
347 BUG_ON(start & ~HPAGE_MASK);
348 BUG_ON(end & ~HPAGE_MASK);
349
350 spin_lock(&mm->page_table_lock);
351
352 /* Update high watermark before we lower rss */
353 update_hiwater_rss(mm);
354
355 for (address = start; address < end; address += HPAGE_SIZE) {
356 ptep = huge_pte_offset(mm, address);
357 if (!ptep)
358 continue;
359
360 pte = huge_ptep_get_and_clear(mm, address, ptep);
361 if (pte_none(pte))
362 continue;
363
364 page = pte_page(pte);
365 put_page(page);
366 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
367 }
368
369 spin_unlock(&mm->page_table_lock);
370 flush_tlb_range(vma, start, end);
371 }
372
373 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
374 unsigned long address, pte_t *ptep, pte_t pte)
375 {
376 struct page *old_page, *new_page;
377 int i, avoidcopy;
378
379 old_page = pte_page(pte);
380
381 /* If no-one else is actually using this page, avoid the copy
382 * and just make the page writable */
383 avoidcopy = (page_count(old_page) == 1);
384 if (avoidcopy) {
385 set_huge_ptep_writable(vma, address, ptep);
386 return VM_FAULT_MINOR;
387 }
388
389 page_cache_get(old_page);
390 new_page = alloc_huge_page(vma, address);
391
392 if (!new_page) {
393 page_cache_release(old_page);
394
395 /* Logically this is OOM, not a SIGBUS, but an OOM
396 * could cause the kernel to go killing other
397 * processes which won't help the hugepage situation
398 * at all (?) */
399 return VM_FAULT_SIGBUS;
400 }
401
402 spin_unlock(&mm->page_table_lock);
403 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
404 copy_user_highpage(new_page + i, old_page + i,
405 address + i*PAGE_SIZE);
406 spin_lock(&mm->page_table_lock);
407
408 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
409 if (likely(pte_same(*ptep, pte))) {
410 /* Break COW */
411 set_huge_pte_at(mm, address, ptep,
412 make_huge_pte(vma, new_page, 1));
413 /* Make the old page be freed below */
414 new_page = old_page;
415 }
416 page_cache_release(new_page);
417 page_cache_release(old_page);
418 return VM_FAULT_MINOR;
419 }
420
421 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
422 unsigned long address, pte_t *ptep, int write_access)
423 {
424 int ret = VM_FAULT_SIGBUS;
425 unsigned long idx;
426 unsigned long size;
427 struct page *page;
428 struct address_space *mapping;
429 pte_t new_pte;
430
431 mapping = vma->vm_file->f_mapping;
432 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
433 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
434
435 /*
436 * Use page lock to guard against racing truncation
437 * before we get page_table_lock.
438 */
439 retry:
440 page = find_lock_page(mapping, idx);
441 if (!page) {
442 if (hugetlb_get_quota(mapping))
443 goto out;
444 page = alloc_huge_page(vma, address);
445 if (!page) {
446 hugetlb_put_quota(mapping);
447 goto out;
448 }
449
450 if (vma->vm_flags & VM_SHARED) {
451 int err;
452
453 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
454 if (err) {
455 put_page(page);
456 hugetlb_put_quota(mapping);
457 if (err == -EEXIST)
458 goto retry;
459 goto out;
460 }
461 } else
462 lock_page(page);
463 }
464
465 spin_lock(&mm->page_table_lock);
466 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
467 if (idx >= size)
468 goto backout;
469
470 ret = VM_FAULT_MINOR;
471 if (!pte_none(*ptep))
472 goto backout;
473
474 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
475 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
476 && (vma->vm_flags & VM_SHARED)));
477 set_huge_pte_at(mm, address, ptep, new_pte);
478
479 if (write_access && !(vma->vm_flags & VM_SHARED)) {
480 /* Optimization, do the COW without a second fault */
481 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
482 }
483
484 spin_unlock(&mm->page_table_lock);
485 unlock_page(page);
486 out:
487 return ret;
488
489 backout:
490 spin_unlock(&mm->page_table_lock);
491 hugetlb_put_quota(mapping);
492 unlock_page(page);
493 put_page(page);
494 goto out;
495 }
496
497 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
498 unsigned long address, int write_access)
499 {
500 pte_t *ptep;
501 pte_t entry;
502 int ret;
503
504 ptep = huge_pte_alloc(mm, address);
505 if (!ptep)
506 return VM_FAULT_OOM;
507
508 entry = *ptep;
509 if (pte_none(entry))
510 return hugetlb_no_page(mm, vma, address, ptep, write_access);
511
512 ret = VM_FAULT_MINOR;
513
514 spin_lock(&mm->page_table_lock);
515 /* Check for a racing update before calling hugetlb_cow */
516 if (likely(pte_same(entry, *ptep)))
517 if (write_access && !pte_write(entry))
518 ret = hugetlb_cow(mm, vma, address, ptep, entry);
519 spin_unlock(&mm->page_table_lock);
520
521 return ret;
522 }
523
524 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
525 struct page **pages, struct vm_area_struct **vmas,
526 unsigned long *position, int *length, int i)
527 {
528 unsigned long vpfn, vaddr = *position;
529 int remainder = *length;
530
531 vpfn = vaddr/PAGE_SIZE;
532 spin_lock(&mm->page_table_lock);
533 while (vaddr < vma->vm_end && remainder) {
534 pte_t *pte;
535 struct page *page;
536
537 /*
538 * Some archs (sparc64, sh*) have multiple pte_ts to
539 * each hugepage. We have to make * sure we get the
540 * first, for the page indexing below to work.
541 */
542 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
543
544 if (!pte || pte_none(*pte)) {
545 int ret;
546
547 spin_unlock(&mm->page_table_lock);
548 ret = hugetlb_fault(mm, vma, vaddr, 0);
549 spin_lock(&mm->page_table_lock);
550 if (ret == VM_FAULT_MINOR)
551 continue;
552
553 remainder = 0;
554 if (!i)
555 i = -EFAULT;
556 break;
557 }
558
559 if (pages) {
560 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
561 get_page(page);
562 pages[i] = page;
563 }
564
565 if (vmas)
566 vmas[i] = vma;
567
568 vaddr += PAGE_SIZE;
569 ++vpfn;
570 --remainder;
571 ++i;
572 }
573 spin_unlock(&mm->page_table_lock);
574 *length = remainder;
575 *position = vaddr;
576
577 return i;
578 }
This page took 0.041772 seconds and 5 git commands to generate.