hugetlb: add a list for tracking in-use HugeTLB pages
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/node.h>
32 #include "internal.h"
33
34 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
35 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
36 unsigned long hugepages_treat_as_movable;
37
38 static int hugetlb_max_hstate;
39 unsigned int default_hstate_idx;
40 struct hstate hstates[HUGE_MAX_HSTATE];
41
42 __initdata LIST_HEAD(huge_boot_pages);
43
44 /* for command line parsing */
45 static struct hstate * __initdata parsed_hstate;
46 static unsigned long __initdata default_hstate_max_huge_pages;
47 static unsigned long __initdata default_hstate_size;
48
49 #define for_each_hstate(h) \
50 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
51
52 /*
53 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 */
55 static DEFINE_SPINLOCK(hugetlb_lock);
56
57 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 {
59 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60
61 spin_unlock(&spool->lock);
62
63 /* If no pages are used, and no other handles to the subpool
64 * remain, free the subpool the subpool remain */
65 if (free)
66 kfree(spool);
67 }
68
69 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 {
71 struct hugepage_subpool *spool;
72
73 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
74 if (!spool)
75 return NULL;
76
77 spin_lock_init(&spool->lock);
78 spool->count = 1;
79 spool->max_hpages = nr_blocks;
80 spool->used_hpages = 0;
81
82 return spool;
83 }
84
85 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 {
87 spin_lock(&spool->lock);
88 BUG_ON(!spool->count);
89 spool->count--;
90 unlock_or_release_subpool(spool);
91 }
92
93 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
94 long delta)
95 {
96 int ret = 0;
97
98 if (!spool)
99 return 0;
100
101 spin_lock(&spool->lock);
102 if ((spool->used_hpages + delta) <= spool->max_hpages) {
103 spool->used_hpages += delta;
104 } else {
105 ret = -ENOMEM;
106 }
107 spin_unlock(&spool->lock);
108
109 return ret;
110 }
111
112 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
113 long delta)
114 {
115 if (!spool)
116 return;
117
118 spin_lock(&spool->lock);
119 spool->used_hpages -= delta;
120 /* If hugetlbfs_put_super couldn't free spool due to
121 * an outstanding quota reference, free it now. */
122 unlock_or_release_subpool(spool);
123 }
124
125 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 {
127 return HUGETLBFS_SB(inode->i_sb)->spool;
128 }
129
130 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 {
132 return subpool_inode(vma->vm_file->f_dentry->d_inode);
133 }
134
135 /*
136 * Region tracking -- allows tracking of reservations and instantiated pages
137 * across the pages in a mapping.
138 *
139 * The region data structures are protected by a combination of the mmap_sem
140 * and the hugetlb_instantion_mutex. To access or modify a region the caller
141 * must either hold the mmap_sem for write, or the mmap_sem for read and
142 * the hugetlb_instantiation mutex:
143 *
144 * down_write(&mm->mmap_sem);
145 * or
146 * down_read(&mm->mmap_sem);
147 * mutex_lock(&hugetlb_instantiation_mutex);
148 */
149 struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153 };
154
155 static long region_add(struct list_head *head, long f, long t)
156 {
157 struct file_region *rg, *nrg, *trg;
158
159 /* Locate the region we are either in or before. */
160 list_for_each_entry(rg, head, link)
161 if (f <= rg->to)
162 break;
163
164 /* Round our left edge to the current segment if it encloses us. */
165 if (f > rg->from)
166 f = rg->from;
167
168 /* Check for and consume any regions we now overlap with. */
169 nrg = rg;
170 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171 if (&rg->link == head)
172 break;
173 if (rg->from > t)
174 break;
175
176 /* If this area reaches higher then extend our area to
177 * include it completely. If this is not the first area
178 * which we intend to reuse, free it. */
179 if (rg->to > t)
180 t = rg->to;
181 if (rg != nrg) {
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 }
186 nrg->from = f;
187 nrg->to = t;
188 return 0;
189 }
190
191 static long region_chg(struct list_head *head, long f, long t)
192 {
193 struct file_region *rg, *nrg;
194 long chg = 0;
195
196 /* Locate the region we are before or in. */
197 list_for_each_entry(rg, head, link)
198 if (f <= rg->to)
199 break;
200
201 /* If we are below the current region then a new region is required.
202 * Subtle, allocate a new region at the position but make it zero
203 * size such that we can guarantee to record the reservation. */
204 if (&rg->link == head || t < rg->from) {
205 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206 if (!nrg)
207 return -ENOMEM;
208 nrg->from = f;
209 nrg->to = f;
210 INIT_LIST_HEAD(&nrg->link);
211 list_add(&nrg->link, rg->link.prev);
212
213 return t - f;
214 }
215
216 /* Round our left edge to the current segment if it encloses us. */
217 if (f > rg->from)
218 f = rg->from;
219 chg = t - f;
220
221 /* Check for and consume any regions we now overlap with. */
222 list_for_each_entry(rg, rg->link.prev, link) {
223 if (&rg->link == head)
224 break;
225 if (rg->from > t)
226 return chg;
227
228 /* We overlap with this area, if it extends further than
229 * us then we must extend ourselves. Account for its
230 * existing reservation. */
231 if (rg->to > t) {
232 chg += rg->to - t;
233 t = rg->to;
234 }
235 chg -= rg->to - rg->from;
236 }
237 return chg;
238 }
239
240 static long region_truncate(struct list_head *head, long end)
241 {
242 struct file_region *rg, *trg;
243 long chg = 0;
244
245 /* Locate the region we are either in or before. */
246 list_for_each_entry(rg, head, link)
247 if (end <= rg->to)
248 break;
249 if (&rg->link == head)
250 return 0;
251
252 /* If we are in the middle of a region then adjust it. */
253 if (end > rg->from) {
254 chg = rg->to - end;
255 rg->to = end;
256 rg = list_entry(rg->link.next, typeof(*rg), link);
257 }
258
259 /* Drop any remaining regions. */
260 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
261 if (&rg->link == head)
262 break;
263 chg += rg->to - rg->from;
264 list_del(&rg->link);
265 kfree(rg);
266 }
267 return chg;
268 }
269
270 static long region_count(struct list_head *head, long f, long t)
271 {
272 struct file_region *rg;
273 long chg = 0;
274
275 /* Locate each segment we overlap with, and count that overlap. */
276 list_for_each_entry(rg, head, link) {
277 long seg_from;
278 long seg_to;
279
280 if (rg->to <= f)
281 continue;
282 if (rg->from >= t)
283 break;
284
285 seg_from = max(rg->from, f);
286 seg_to = min(rg->to, t);
287
288 chg += seg_to - seg_from;
289 }
290
291 return chg;
292 }
293
294 /*
295 * Convert the address within this vma to the page offset within
296 * the mapping, in pagecache page units; huge pages here.
297 */
298 static pgoff_t vma_hugecache_offset(struct hstate *h,
299 struct vm_area_struct *vma, unsigned long address)
300 {
301 return ((address - vma->vm_start) >> huge_page_shift(h)) +
302 (vma->vm_pgoff >> huge_page_order(h));
303 }
304
305 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
306 unsigned long address)
307 {
308 return vma_hugecache_offset(hstate_vma(vma), vma, address);
309 }
310
311 /*
312 * Return the size of the pages allocated when backing a VMA. In the majority
313 * cases this will be same size as used by the page table entries.
314 */
315 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 {
317 struct hstate *hstate;
318
319 if (!is_vm_hugetlb_page(vma))
320 return PAGE_SIZE;
321
322 hstate = hstate_vma(vma);
323
324 return 1UL << (hstate->order + PAGE_SHIFT);
325 }
326 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327
328 /*
329 * Return the page size being used by the MMU to back a VMA. In the majority
330 * of cases, the page size used by the kernel matches the MMU size. On
331 * architectures where it differs, an architecture-specific version of this
332 * function is required.
333 */
334 #ifndef vma_mmu_pagesize
335 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 {
337 return vma_kernel_pagesize(vma);
338 }
339 #endif
340
341 /*
342 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
343 * bits of the reservation map pointer, which are always clear due to
344 * alignment.
345 */
346 #define HPAGE_RESV_OWNER (1UL << 0)
347 #define HPAGE_RESV_UNMAPPED (1UL << 1)
348 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349
350 /*
351 * These helpers are used to track how many pages are reserved for
352 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
353 * is guaranteed to have their future faults succeed.
354 *
355 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
356 * the reserve counters are updated with the hugetlb_lock held. It is safe
357 * to reset the VMA at fork() time as it is not in use yet and there is no
358 * chance of the global counters getting corrupted as a result of the values.
359 *
360 * The private mapping reservation is represented in a subtly different
361 * manner to a shared mapping. A shared mapping has a region map associated
362 * with the underlying file, this region map represents the backing file
363 * pages which have ever had a reservation assigned which this persists even
364 * after the page is instantiated. A private mapping has a region map
365 * associated with the original mmap which is attached to all VMAs which
366 * reference it, this region map represents those offsets which have consumed
367 * reservation ie. where pages have been instantiated.
368 */
369 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 {
371 return (unsigned long)vma->vm_private_data;
372 }
373
374 static void set_vma_private_data(struct vm_area_struct *vma,
375 unsigned long value)
376 {
377 vma->vm_private_data = (void *)value;
378 }
379
380 struct resv_map {
381 struct kref refs;
382 struct list_head regions;
383 };
384
385 static struct resv_map *resv_map_alloc(void)
386 {
387 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
388 if (!resv_map)
389 return NULL;
390
391 kref_init(&resv_map->refs);
392 INIT_LIST_HEAD(&resv_map->regions);
393
394 return resv_map;
395 }
396
397 static void resv_map_release(struct kref *ref)
398 {
399 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400
401 /* Clear out any active regions before we release the map. */
402 region_truncate(&resv_map->regions, 0);
403 kfree(resv_map);
404 }
405
406 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 {
408 VM_BUG_ON(!is_vm_hugetlb_page(vma));
409 if (!(vma->vm_flags & VM_MAYSHARE))
410 return (struct resv_map *)(get_vma_private_data(vma) &
411 ~HPAGE_RESV_MASK);
412 return NULL;
413 }
414
415 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 {
417 VM_BUG_ON(!is_vm_hugetlb_page(vma));
418 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419
420 set_vma_private_data(vma, (get_vma_private_data(vma) &
421 HPAGE_RESV_MASK) | (unsigned long)map);
422 }
423
424 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 {
426 VM_BUG_ON(!is_vm_hugetlb_page(vma));
427 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428
429 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 }
431
432 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 {
434 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435
436 return (get_vma_private_data(vma) & flag) != 0;
437 }
438
439 /* Decrement the reserved pages in the hugepage pool by one */
440 static void decrement_hugepage_resv_vma(struct hstate *h,
441 struct vm_area_struct *vma)
442 {
443 if (vma->vm_flags & VM_NORESERVE)
444 return;
445
446 if (vma->vm_flags & VM_MAYSHARE) {
447 /* Shared mappings always use reserves */
448 h->resv_huge_pages--;
449 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 /*
451 * Only the process that called mmap() has reserves for
452 * private mappings.
453 */
454 h->resv_huge_pages--;
455 }
456 }
457
458 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
459 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460 {
461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
462 if (!(vma->vm_flags & VM_MAYSHARE))
463 vma->vm_private_data = (void *)0;
464 }
465
466 /* Returns true if the VMA has associated reserve pages */
467 static int vma_has_reserves(struct vm_area_struct *vma)
468 {
469 if (vma->vm_flags & VM_MAYSHARE)
470 return 1;
471 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
472 return 1;
473 return 0;
474 }
475
476 static void copy_gigantic_page(struct page *dst, struct page *src)
477 {
478 int i;
479 struct hstate *h = page_hstate(src);
480 struct page *dst_base = dst;
481 struct page *src_base = src;
482
483 for (i = 0; i < pages_per_huge_page(h); ) {
484 cond_resched();
485 copy_highpage(dst, src);
486
487 i++;
488 dst = mem_map_next(dst, dst_base, i);
489 src = mem_map_next(src, src_base, i);
490 }
491 }
492
493 void copy_huge_page(struct page *dst, struct page *src)
494 {
495 int i;
496 struct hstate *h = page_hstate(src);
497
498 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
499 copy_gigantic_page(dst, src);
500 return;
501 }
502
503 might_sleep();
504 for (i = 0; i < pages_per_huge_page(h); i++) {
505 cond_resched();
506 copy_highpage(dst + i, src + i);
507 }
508 }
509
510 static void enqueue_huge_page(struct hstate *h, struct page *page)
511 {
512 int nid = page_to_nid(page);
513 list_move(&page->lru, &h->hugepage_freelists[nid]);
514 h->free_huge_pages++;
515 h->free_huge_pages_node[nid]++;
516 }
517
518 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519 {
520 struct page *page;
521
522 if (list_empty(&h->hugepage_freelists[nid]))
523 return NULL;
524 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
525 list_move(&page->lru, &h->hugepage_activelist);
526 set_page_refcounted(page);
527 h->free_huge_pages--;
528 h->free_huge_pages_node[nid]--;
529 return page;
530 }
531
532 static struct page *dequeue_huge_page_vma(struct hstate *h,
533 struct vm_area_struct *vma,
534 unsigned long address, int avoid_reserve)
535 {
536 struct page *page = NULL;
537 struct mempolicy *mpol;
538 nodemask_t *nodemask;
539 struct zonelist *zonelist;
540 struct zone *zone;
541 struct zoneref *z;
542 unsigned int cpuset_mems_cookie;
543
544 retry_cpuset:
545 cpuset_mems_cookie = get_mems_allowed();
546 zonelist = huge_zonelist(vma, address,
547 htlb_alloc_mask, &mpol, &nodemask);
548 /*
549 * A child process with MAP_PRIVATE mappings created by their parent
550 * have no page reserves. This check ensures that reservations are
551 * not "stolen". The child may still get SIGKILLed
552 */
553 if (!vma_has_reserves(vma) &&
554 h->free_huge_pages - h->resv_huge_pages == 0)
555 goto err;
556
557 /* If reserves cannot be used, ensure enough pages are in the pool */
558 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559 goto err;
560
561 for_each_zone_zonelist_nodemask(zone, z, zonelist,
562 MAX_NR_ZONES - 1, nodemask) {
563 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
564 page = dequeue_huge_page_node(h, zone_to_nid(zone));
565 if (page) {
566 if (!avoid_reserve)
567 decrement_hugepage_resv_vma(h, vma);
568 break;
569 }
570 }
571 }
572
573 mpol_cond_put(mpol);
574 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
575 goto retry_cpuset;
576 return page;
577
578 err:
579 mpol_cond_put(mpol);
580 return NULL;
581 }
582
583 static void update_and_free_page(struct hstate *h, struct page *page)
584 {
585 int i;
586
587 VM_BUG_ON(h->order >= MAX_ORDER);
588
589 h->nr_huge_pages--;
590 h->nr_huge_pages_node[page_to_nid(page)]--;
591 for (i = 0; i < pages_per_huge_page(h); i++) {
592 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
593 1 << PG_referenced | 1 << PG_dirty |
594 1 << PG_active | 1 << PG_reserved |
595 1 << PG_private | 1 << PG_writeback);
596 }
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
599 arch_release_hugepage(page);
600 __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605 struct hstate *h;
606
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
610 }
611 return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616 /*
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
619 */
620 struct hstate *h = page_hstate(page);
621 int nid = page_to_nid(page);
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
624
625 set_page_private(page, 0);
626 page->mapping = NULL;
627 BUG_ON(page_count(page));
628 BUG_ON(page_mapcount(page));
629
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 /* remove the page from active list */
633 list_del(&page->lru);
634 update_and_free_page(h, page);
635 h->surplus_huge_pages--;
636 h->surplus_huge_pages_node[nid]--;
637 } else {
638 enqueue_huge_page(h, page);
639 }
640 spin_unlock(&hugetlb_lock);
641 hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646 INIT_LIST_HEAD(&page->lru);
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
649 h->nr_huge_pages++;
650 h->nr_huge_pages_node[nid]++;
651 spin_unlock(&hugetlb_lock);
652 put_page(page); /* free it into the hugepage allocator */
653 }
654
655 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656 {
657 int i;
658 int nr_pages = 1 << order;
659 struct page *p = page + 1;
660
661 /* we rely on prep_new_huge_page to set the destructor */
662 set_compound_order(page, order);
663 __SetPageHead(page);
664 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
665 __SetPageTail(p);
666 set_page_count(p, 0);
667 p->first_page = page;
668 }
669 }
670
671 int PageHuge(struct page *page)
672 {
673 compound_page_dtor *dtor;
674
675 if (!PageCompound(page))
676 return 0;
677
678 page = compound_head(page);
679 dtor = get_compound_page_dtor(page);
680
681 return dtor == free_huge_page;
682 }
683 EXPORT_SYMBOL_GPL(PageHuge);
684
685 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
686 {
687 struct page *page;
688
689 if (h->order >= MAX_ORDER)
690 return NULL;
691
692 page = alloc_pages_exact_node(nid,
693 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
694 __GFP_REPEAT|__GFP_NOWARN,
695 huge_page_order(h));
696 if (page) {
697 if (arch_prepare_hugepage(page)) {
698 __free_pages(page, huge_page_order(h));
699 return NULL;
700 }
701 prep_new_huge_page(h, page, nid);
702 }
703
704 return page;
705 }
706
707 /*
708 * common helper functions for hstate_next_node_to_{alloc|free}.
709 * We may have allocated or freed a huge page based on a different
710 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
711 * be outside of *nodes_allowed. Ensure that we use an allowed
712 * node for alloc or free.
713 */
714 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
715 {
716 nid = next_node(nid, *nodes_allowed);
717 if (nid == MAX_NUMNODES)
718 nid = first_node(*nodes_allowed);
719 VM_BUG_ON(nid >= MAX_NUMNODES);
720
721 return nid;
722 }
723
724 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
725 {
726 if (!node_isset(nid, *nodes_allowed))
727 nid = next_node_allowed(nid, nodes_allowed);
728 return nid;
729 }
730
731 /*
732 * returns the previously saved node ["this node"] from which to
733 * allocate a persistent huge page for the pool and advance the
734 * next node from which to allocate, handling wrap at end of node
735 * mask.
736 */
737 static int hstate_next_node_to_alloc(struct hstate *h,
738 nodemask_t *nodes_allowed)
739 {
740 int nid;
741
742 VM_BUG_ON(!nodes_allowed);
743
744 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
745 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
746
747 return nid;
748 }
749
750 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
751 {
752 struct page *page;
753 int start_nid;
754 int next_nid;
755 int ret = 0;
756
757 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
758 next_nid = start_nid;
759
760 do {
761 page = alloc_fresh_huge_page_node(h, next_nid);
762 if (page) {
763 ret = 1;
764 break;
765 }
766 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
767 } while (next_nid != start_nid);
768
769 if (ret)
770 count_vm_event(HTLB_BUDDY_PGALLOC);
771 else
772 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
773
774 return ret;
775 }
776
777 /*
778 * helper for free_pool_huge_page() - return the previously saved
779 * node ["this node"] from which to free a huge page. Advance the
780 * next node id whether or not we find a free huge page to free so
781 * that the next attempt to free addresses the next node.
782 */
783 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
784 {
785 int nid;
786
787 VM_BUG_ON(!nodes_allowed);
788
789 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
790 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
791
792 return nid;
793 }
794
795 /*
796 * Free huge page from pool from next node to free.
797 * Attempt to keep persistent huge pages more or less
798 * balanced over allowed nodes.
799 * Called with hugetlb_lock locked.
800 */
801 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
802 bool acct_surplus)
803 {
804 int start_nid;
805 int next_nid;
806 int ret = 0;
807
808 start_nid = hstate_next_node_to_free(h, nodes_allowed);
809 next_nid = start_nid;
810
811 do {
812 /*
813 * If we're returning unused surplus pages, only examine
814 * nodes with surplus pages.
815 */
816 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
817 !list_empty(&h->hugepage_freelists[next_nid])) {
818 struct page *page =
819 list_entry(h->hugepage_freelists[next_nid].next,
820 struct page, lru);
821 list_del(&page->lru);
822 h->free_huge_pages--;
823 h->free_huge_pages_node[next_nid]--;
824 if (acct_surplus) {
825 h->surplus_huge_pages--;
826 h->surplus_huge_pages_node[next_nid]--;
827 }
828 update_and_free_page(h, page);
829 ret = 1;
830 break;
831 }
832 next_nid = hstate_next_node_to_free(h, nodes_allowed);
833 } while (next_nid != start_nid);
834
835 return ret;
836 }
837
838 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
839 {
840 struct page *page;
841 unsigned int r_nid;
842
843 if (h->order >= MAX_ORDER)
844 return NULL;
845
846 /*
847 * Assume we will successfully allocate the surplus page to
848 * prevent racing processes from causing the surplus to exceed
849 * overcommit
850 *
851 * This however introduces a different race, where a process B
852 * tries to grow the static hugepage pool while alloc_pages() is
853 * called by process A. B will only examine the per-node
854 * counters in determining if surplus huge pages can be
855 * converted to normal huge pages in adjust_pool_surplus(). A
856 * won't be able to increment the per-node counter, until the
857 * lock is dropped by B, but B doesn't drop hugetlb_lock until
858 * no more huge pages can be converted from surplus to normal
859 * state (and doesn't try to convert again). Thus, we have a
860 * case where a surplus huge page exists, the pool is grown, and
861 * the surplus huge page still exists after, even though it
862 * should just have been converted to a normal huge page. This
863 * does not leak memory, though, as the hugepage will be freed
864 * once it is out of use. It also does not allow the counters to
865 * go out of whack in adjust_pool_surplus() as we don't modify
866 * the node values until we've gotten the hugepage and only the
867 * per-node value is checked there.
868 */
869 spin_lock(&hugetlb_lock);
870 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
871 spin_unlock(&hugetlb_lock);
872 return NULL;
873 } else {
874 h->nr_huge_pages++;
875 h->surplus_huge_pages++;
876 }
877 spin_unlock(&hugetlb_lock);
878
879 if (nid == NUMA_NO_NODE)
880 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
881 __GFP_REPEAT|__GFP_NOWARN,
882 huge_page_order(h));
883 else
884 page = alloc_pages_exact_node(nid,
885 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
886 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
887
888 if (page && arch_prepare_hugepage(page)) {
889 __free_pages(page, huge_page_order(h));
890 page = NULL;
891 }
892
893 spin_lock(&hugetlb_lock);
894 if (page) {
895 INIT_LIST_HEAD(&page->lru);
896 r_nid = page_to_nid(page);
897 set_compound_page_dtor(page, free_huge_page);
898 /*
899 * We incremented the global counters already
900 */
901 h->nr_huge_pages_node[r_nid]++;
902 h->surplus_huge_pages_node[r_nid]++;
903 __count_vm_event(HTLB_BUDDY_PGALLOC);
904 } else {
905 h->nr_huge_pages--;
906 h->surplus_huge_pages--;
907 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
908 }
909 spin_unlock(&hugetlb_lock);
910
911 return page;
912 }
913
914 /*
915 * This allocation function is useful in the context where vma is irrelevant.
916 * E.g. soft-offlining uses this function because it only cares physical
917 * address of error page.
918 */
919 struct page *alloc_huge_page_node(struct hstate *h, int nid)
920 {
921 struct page *page;
922
923 spin_lock(&hugetlb_lock);
924 page = dequeue_huge_page_node(h, nid);
925 spin_unlock(&hugetlb_lock);
926
927 if (!page)
928 page = alloc_buddy_huge_page(h, nid);
929
930 return page;
931 }
932
933 /*
934 * Increase the hugetlb pool such that it can accommodate a reservation
935 * of size 'delta'.
936 */
937 static int gather_surplus_pages(struct hstate *h, int delta)
938 {
939 struct list_head surplus_list;
940 struct page *page, *tmp;
941 int ret, i;
942 int needed, allocated;
943 bool alloc_ok = true;
944
945 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
946 if (needed <= 0) {
947 h->resv_huge_pages += delta;
948 return 0;
949 }
950
951 allocated = 0;
952 INIT_LIST_HEAD(&surplus_list);
953
954 ret = -ENOMEM;
955 retry:
956 spin_unlock(&hugetlb_lock);
957 for (i = 0; i < needed; i++) {
958 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
959 if (!page) {
960 alloc_ok = false;
961 break;
962 }
963 list_add(&page->lru, &surplus_list);
964 }
965 allocated += i;
966
967 /*
968 * After retaking hugetlb_lock, we need to recalculate 'needed'
969 * because either resv_huge_pages or free_huge_pages may have changed.
970 */
971 spin_lock(&hugetlb_lock);
972 needed = (h->resv_huge_pages + delta) -
973 (h->free_huge_pages + allocated);
974 if (needed > 0) {
975 if (alloc_ok)
976 goto retry;
977 /*
978 * We were not able to allocate enough pages to
979 * satisfy the entire reservation so we free what
980 * we've allocated so far.
981 */
982 goto free;
983 }
984 /*
985 * The surplus_list now contains _at_least_ the number of extra pages
986 * needed to accommodate the reservation. Add the appropriate number
987 * of pages to the hugetlb pool and free the extras back to the buddy
988 * allocator. Commit the entire reservation here to prevent another
989 * process from stealing the pages as they are added to the pool but
990 * before they are reserved.
991 */
992 needed += allocated;
993 h->resv_huge_pages += delta;
994 ret = 0;
995
996 /* Free the needed pages to the hugetlb pool */
997 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
998 if ((--needed) < 0)
999 break;
1000 /*
1001 * This page is now managed by the hugetlb allocator and has
1002 * no users -- drop the buddy allocator's reference.
1003 */
1004 put_page_testzero(page);
1005 VM_BUG_ON(page_count(page));
1006 enqueue_huge_page(h, page);
1007 }
1008 free:
1009 spin_unlock(&hugetlb_lock);
1010
1011 /* Free unnecessary surplus pages to the buddy allocator */
1012 if (!list_empty(&surplus_list)) {
1013 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1014 put_page(page);
1015 }
1016 }
1017 spin_lock(&hugetlb_lock);
1018
1019 return ret;
1020 }
1021
1022 /*
1023 * When releasing a hugetlb pool reservation, any surplus pages that were
1024 * allocated to satisfy the reservation must be explicitly freed if they were
1025 * never used.
1026 * Called with hugetlb_lock held.
1027 */
1028 static void return_unused_surplus_pages(struct hstate *h,
1029 unsigned long unused_resv_pages)
1030 {
1031 unsigned long nr_pages;
1032
1033 /* Uncommit the reservation */
1034 h->resv_huge_pages -= unused_resv_pages;
1035
1036 /* Cannot return gigantic pages currently */
1037 if (h->order >= MAX_ORDER)
1038 return;
1039
1040 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1041
1042 /*
1043 * We want to release as many surplus pages as possible, spread
1044 * evenly across all nodes with memory. Iterate across these nodes
1045 * until we can no longer free unreserved surplus pages. This occurs
1046 * when the nodes with surplus pages have no free pages.
1047 * free_pool_huge_page() will balance the the freed pages across the
1048 * on-line nodes with memory and will handle the hstate accounting.
1049 */
1050 while (nr_pages--) {
1051 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1052 break;
1053 }
1054 }
1055
1056 /*
1057 * Determine if the huge page at addr within the vma has an associated
1058 * reservation. Where it does not we will need to logically increase
1059 * reservation and actually increase subpool usage before an allocation
1060 * can occur. Where any new reservation would be required the
1061 * reservation change is prepared, but not committed. Once the page
1062 * has been allocated from the subpool and instantiated the change should
1063 * be committed via vma_commit_reservation. No action is required on
1064 * failure.
1065 */
1066 static long vma_needs_reservation(struct hstate *h,
1067 struct vm_area_struct *vma, unsigned long addr)
1068 {
1069 struct address_space *mapping = vma->vm_file->f_mapping;
1070 struct inode *inode = mapping->host;
1071
1072 if (vma->vm_flags & VM_MAYSHARE) {
1073 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1074 return region_chg(&inode->i_mapping->private_list,
1075 idx, idx + 1);
1076
1077 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1078 return 1;
1079
1080 } else {
1081 long err;
1082 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083 struct resv_map *reservations = vma_resv_map(vma);
1084
1085 err = region_chg(&reservations->regions, idx, idx + 1);
1086 if (err < 0)
1087 return err;
1088 return 0;
1089 }
1090 }
1091 static void vma_commit_reservation(struct hstate *h,
1092 struct vm_area_struct *vma, unsigned long addr)
1093 {
1094 struct address_space *mapping = vma->vm_file->f_mapping;
1095 struct inode *inode = mapping->host;
1096
1097 if (vma->vm_flags & VM_MAYSHARE) {
1098 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1100
1101 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103 struct resv_map *reservations = vma_resv_map(vma);
1104
1105 /* Mark this page used in the map. */
1106 region_add(&reservations->regions, idx, idx + 1);
1107 }
1108 }
1109
1110 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1111 unsigned long addr, int avoid_reserve)
1112 {
1113 struct hugepage_subpool *spool = subpool_vma(vma);
1114 struct hstate *h = hstate_vma(vma);
1115 struct page *page;
1116 long chg;
1117
1118 /*
1119 * Processes that did not create the mapping will have no
1120 * reserves and will not have accounted against subpool
1121 * limit. Check that the subpool limit can be made before
1122 * satisfying the allocation MAP_NORESERVE mappings may also
1123 * need pages and subpool limit allocated allocated if no reserve
1124 * mapping overlaps.
1125 */
1126 chg = vma_needs_reservation(h, vma, addr);
1127 if (chg < 0)
1128 return ERR_PTR(-ENOMEM);
1129 if (chg)
1130 if (hugepage_subpool_get_pages(spool, chg))
1131 return ERR_PTR(-ENOSPC);
1132
1133 spin_lock(&hugetlb_lock);
1134 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1135 spin_unlock(&hugetlb_lock);
1136
1137 if (!page) {
1138 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1139 if (!page) {
1140 hugepage_subpool_put_pages(spool, chg);
1141 return ERR_PTR(-ENOSPC);
1142 }
1143 }
1144
1145 set_page_private(page, (unsigned long)spool);
1146
1147 vma_commit_reservation(h, vma, addr);
1148
1149 return page;
1150 }
1151
1152 int __weak alloc_bootmem_huge_page(struct hstate *h)
1153 {
1154 struct huge_bootmem_page *m;
1155 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1156
1157 while (nr_nodes) {
1158 void *addr;
1159
1160 addr = __alloc_bootmem_node_nopanic(
1161 NODE_DATA(hstate_next_node_to_alloc(h,
1162 &node_states[N_HIGH_MEMORY])),
1163 huge_page_size(h), huge_page_size(h), 0);
1164
1165 if (addr) {
1166 /*
1167 * Use the beginning of the huge page to store the
1168 * huge_bootmem_page struct (until gather_bootmem
1169 * puts them into the mem_map).
1170 */
1171 m = addr;
1172 goto found;
1173 }
1174 nr_nodes--;
1175 }
1176 return 0;
1177
1178 found:
1179 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1180 /* Put them into a private list first because mem_map is not up yet */
1181 list_add(&m->list, &huge_boot_pages);
1182 m->hstate = h;
1183 return 1;
1184 }
1185
1186 static void prep_compound_huge_page(struct page *page, int order)
1187 {
1188 if (unlikely(order > (MAX_ORDER - 1)))
1189 prep_compound_gigantic_page(page, order);
1190 else
1191 prep_compound_page(page, order);
1192 }
1193
1194 /* Put bootmem huge pages into the standard lists after mem_map is up */
1195 static void __init gather_bootmem_prealloc(void)
1196 {
1197 struct huge_bootmem_page *m;
1198
1199 list_for_each_entry(m, &huge_boot_pages, list) {
1200 struct hstate *h = m->hstate;
1201 struct page *page;
1202
1203 #ifdef CONFIG_HIGHMEM
1204 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1205 free_bootmem_late((unsigned long)m,
1206 sizeof(struct huge_bootmem_page));
1207 #else
1208 page = virt_to_page(m);
1209 #endif
1210 __ClearPageReserved(page);
1211 WARN_ON(page_count(page) != 1);
1212 prep_compound_huge_page(page, h->order);
1213 prep_new_huge_page(h, page, page_to_nid(page));
1214 /*
1215 * If we had gigantic hugepages allocated at boot time, we need
1216 * to restore the 'stolen' pages to totalram_pages in order to
1217 * fix confusing memory reports from free(1) and another
1218 * side-effects, like CommitLimit going negative.
1219 */
1220 if (h->order > (MAX_ORDER - 1))
1221 totalram_pages += 1 << h->order;
1222 }
1223 }
1224
1225 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1226 {
1227 unsigned long i;
1228
1229 for (i = 0; i < h->max_huge_pages; ++i) {
1230 if (h->order >= MAX_ORDER) {
1231 if (!alloc_bootmem_huge_page(h))
1232 break;
1233 } else if (!alloc_fresh_huge_page(h,
1234 &node_states[N_HIGH_MEMORY]))
1235 break;
1236 }
1237 h->max_huge_pages = i;
1238 }
1239
1240 static void __init hugetlb_init_hstates(void)
1241 {
1242 struct hstate *h;
1243
1244 for_each_hstate(h) {
1245 /* oversize hugepages were init'ed in early boot */
1246 if (h->order < MAX_ORDER)
1247 hugetlb_hstate_alloc_pages(h);
1248 }
1249 }
1250
1251 static char * __init memfmt(char *buf, unsigned long n)
1252 {
1253 if (n >= (1UL << 30))
1254 sprintf(buf, "%lu GB", n >> 30);
1255 else if (n >= (1UL << 20))
1256 sprintf(buf, "%lu MB", n >> 20);
1257 else
1258 sprintf(buf, "%lu KB", n >> 10);
1259 return buf;
1260 }
1261
1262 static void __init report_hugepages(void)
1263 {
1264 struct hstate *h;
1265
1266 for_each_hstate(h) {
1267 char buf[32];
1268 printk(KERN_INFO "HugeTLB registered %s page size, "
1269 "pre-allocated %ld pages\n",
1270 memfmt(buf, huge_page_size(h)),
1271 h->free_huge_pages);
1272 }
1273 }
1274
1275 #ifdef CONFIG_HIGHMEM
1276 static void try_to_free_low(struct hstate *h, unsigned long count,
1277 nodemask_t *nodes_allowed)
1278 {
1279 int i;
1280
1281 if (h->order >= MAX_ORDER)
1282 return;
1283
1284 for_each_node_mask(i, *nodes_allowed) {
1285 struct page *page, *next;
1286 struct list_head *freel = &h->hugepage_freelists[i];
1287 list_for_each_entry_safe(page, next, freel, lru) {
1288 if (count >= h->nr_huge_pages)
1289 return;
1290 if (PageHighMem(page))
1291 continue;
1292 list_del(&page->lru);
1293 update_and_free_page(h, page);
1294 h->free_huge_pages--;
1295 h->free_huge_pages_node[page_to_nid(page)]--;
1296 }
1297 }
1298 }
1299 #else
1300 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1301 nodemask_t *nodes_allowed)
1302 {
1303 }
1304 #endif
1305
1306 /*
1307 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1308 * balanced by operating on them in a round-robin fashion.
1309 * Returns 1 if an adjustment was made.
1310 */
1311 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1312 int delta)
1313 {
1314 int start_nid, next_nid;
1315 int ret = 0;
1316
1317 VM_BUG_ON(delta != -1 && delta != 1);
1318
1319 if (delta < 0)
1320 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1321 else
1322 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1323 next_nid = start_nid;
1324
1325 do {
1326 int nid = next_nid;
1327 if (delta < 0) {
1328 /*
1329 * To shrink on this node, there must be a surplus page
1330 */
1331 if (!h->surplus_huge_pages_node[nid]) {
1332 next_nid = hstate_next_node_to_alloc(h,
1333 nodes_allowed);
1334 continue;
1335 }
1336 }
1337 if (delta > 0) {
1338 /*
1339 * Surplus cannot exceed the total number of pages
1340 */
1341 if (h->surplus_huge_pages_node[nid] >=
1342 h->nr_huge_pages_node[nid]) {
1343 next_nid = hstate_next_node_to_free(h,
1344 nodes_allowed);
1345 continue;
1346 }
1347 }
1348
1349 h->surplus_huge_pages += delta;
1350 h->surplus_huge_pages_node[nid] += delta;
1351 ret = 1;
1352 break;
1353 } while (next_nid != start_nid);
1354
1355 return ret;
1356 }
1357
1358 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1359 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1360 nodemask_t *nodes_allowed)
1361 {
1362 unsigned long min_count, ret;
1363
1364 if (h->order >= MAX_ORDER)
1365 return h->max_huge_pages;
1366
1367 /*
1368 * Increase the pool size
1369 * First take pages out of surplus state. Then make up the
1370 * remaining difference by allocating fresh huge pages.
1371 *
1372 * We might race with alloc_buddy_huge_page() here and be unable
1373 * to convert a surplus huge page to a normal huge page. That is
1374 * not critical, though, it just means the overall size of the
1375 * pool might be one hugepage larger than it needs to be, but
1376 * within all the constraints specified by the sysctls.
1377 */
1378 spin_lock(&hugetlb_lock);
1379 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1380 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1381 break;
1382 }
1383
1384 while (count > persistent_huge_pages(h)) {
1385 /*
1386 * If this allocation races such that we no longer need the
1387 * page, free_huge_page will handle it by freeing the page
1388 * and reducing the surplus.
1389 */
1390 spin_unlock(&hugetlb_lock);
1391 ret = alloc_fresh_huge_page(h, nodes_allowed);
1392 spin_lock(&hugetlb_lock);
1393 if (!ret)
1394 goto out;
1395
1396 /* Bail for signals. Probably ctrl-c from user */
1397 if (signal_pending(current))
1398 goto out;
1399 }
1400
1401 /*
1402 * Decrease the pool size
1403 * First return free pages to the buddy allocator (being careful
1404 * to keep enough around to satisfy reservations). Then place
1405 * pages into surplus state as needed so the pool will shrink
1406 * to the desired size as pages become free.
1407 *
1408 * By placing pages into the surplus state independent of the
1409 * overcommit value, we are allowing the surplus pool size to
1410 * exceed overcommit. There are few sane options here. Since
1411 * alloc_buddy_huge_page() is checking the global counter,
1412 * though, we'll note that we're not allowed to exceed surplus
1413 * and won't grow the pool anywhere else. Not until one of the
1414 * sysctls are changed, or the surplus pages go out of use.
1415 */
1416 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1417 min_count = max(count, min_count);
1418 try_to_free_low(h, min_count, nodes_allowed);
1419 while (min_count < persistent_huge_pages(h)) {
1420 if (!free_pool_huge_page(h, nodes_allowed, 0))
1421 break;
1422 }
1423 while (count < persistent_huge_pages(h)) {
1424 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1425 break;
1426 }
1427 out:
1428 ret = persistent_huge_pages(h);
1429 spin_unlock(&hugetlb_lock);
1430 return ret;
1431 }
1432
1433 #define HSTATE_ATTR_RO(_name) \
1434 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1435
1436 #define HSTATE_ATTR(_name) \
1437 static struct kobj_attribute _name##_attr = \
1438 __ATTR(_name, 0644, _name##_show, _name##_store)
1439
1440 static struct kobject *hugepages_kobj;
1441 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1442
1443 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1444
1445 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1446 {
1447 int i;
1448
1449 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1450 if (hstate_kobjs[i] == kobj) {
1451 if (nidp)
1452 *nidp = NUMA_NO_NODE;
1453 return &hstates[i];
1454 }
1455
1456 return kobj_to_node_hstate(kobj, nidp);
1457 }
1458
1459 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1460 struct kobj_attribute *attr, char *buf)
1461 {
1462 struct hstate *h;
1463 unsigned long nr_huge_pages;
1464 int nid;
1465
1466 h = kobj_to_hstate(kobj, &nid);
1467 if (nid == NUMA_NO_NODE)
1468 nr_huge_pages = h->nr_huge_pages;
1469 else
1470 nr_huge_pages = h->nr_huge_pages_node[nid];
1471
1472 return sprintf(buf, "%lu\n", nr_huge_pages);
1473 }
1474
1475 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1476 struct kobject *kobj, struct kobj_attribute *attr,
1477 const char *buf, size_t len)
1478 {
1479 int err;
1480 int nid;
1481 unsigned long count;
1482 struct hstate *h;
1483 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1484
1485 err = strict_strtoul(buf, 10, &count);
1486 if (err)
1487 goto out;
1488
1489 h = kobj_to_hstate(kobj, &nid);
1490 if (h->order >= MAX_ORDER) {
1491 err = -EINVAL;
1492 goto out;
1493 }
1494
1495 if (nid == NUMA_NO_NODE) {
1496 /*
1497 * global hstate attribute
1498 */
1499 if (!(obey_mempolicy &&
1500 init_nodemask_of_mempolicy(nodes_allowed))) {
1501 NODEMASK_FREE(nodes_allowed);
1502 nodes_allowed = &node_states[N_HIGH_MEMORY];
1503 }
1504 } else if (nodes_allowed) {
1505 /*
1506 * per node hstate attribute: adjust count to global,
1507 * but restrict alloc/free to the specified node.
1508 */
1509 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1510 init_nodemask_of_node(nodes_allowed, nid);
1511 } else
1512 nodes_allowed = &node_states[N_HIGH_MEMORY];
1513
1514 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1515
1516 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1517 NODEMASK_FREE(nodes_allowed);
1518
1519 return len;
1520 out:
1521 NODEMASK_FREE(nodes_allowed);
1522 return err;
1523 }
1524
1525 static ssize_t nr_hugepages_show(struct kobject *kobj,
1526 struct kobj_attribute *attr, char *buf)
1527 {
1528 return nr_hugepages_show_common(kobj, attr, buf);
1529 }
1530
1531 static ssize_t nr_hugepages_store(struct kobject *kobj,
1532 struct kobj_attribute *attr, const char *buf, size_t len)
1533 {
1534 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1535 }
1536 HSTATE_ATTR(nr_hugepages);
1537
1538 #ifdef CONFIG_NUMA
1539
1540 /*
1541 * hstate attribute for optionally mempolicy-based constraint on persistent
1542 * huge page alloc/free.
1543 */
1544 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1545 struct kobj_attribute *attr, char *buf)
1546 {
1547 return nr_hugepages_show_common(kobj, attr, buf);
1548 }
1549
1550 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1551 struct kobj_attribute *attr, const char *buf, size_t len)
1552 {
1553 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1554 }
1555 HSTATE_ATTR(nr_hugepages_mempolicy);
1556 #endif
1557
1558
1559 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1561 {
1562 struct hstate *h = kobj_to_hstate(kobj, NULL);
1563 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1564 }
1565
1566 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1567 struct kobj_attribute *attr, const char *buf, size_t count)
1568 {
1569 int err;
1570 unsigned long input;
1571 struct hstate *h = kobj_to_hstate(kobj, NULL);
1572
1573 if (h->order >= MAX_ORDER)
1574 return -EINVAL;
1575
1576 err = strict_strtoul(buf, 10, &input);
1577 if (err)
1578 return err;
1579
1580 spin_lock(&hugetlb_lock);
1581 h->nr_overcommit_huge_pages = input;
1582 spin_unlock(&hugetlb_lock);
1583
1584 return count;
1585 }
1586 HSTATE_ATTR(nr_overcommit_hugepages);
1587
1588 static ssize_t free_hugepages_show(struct kobject *kobj,
1589 struct kobj_attribute *attr, char *buf)
1590 {
1591 struct hstate *h;
1592 unsigned long free_huge_pages;
1593 int nid;
1594
1595 h = kobj_to_hstate(kobj, &nid);
1596 if (nid == NUMA_NO_NODE)
1597 free_huge_pages = h->free_huge_pages;
1598 else
1599 free_huge_pages = h->free_huge_pages_node[nid];
1600
1601 return sprintf(buf, "%lu\n", free_huge_pages);
1602 }
1603 HSTATE_ATTR_RO(free_hugepages);
1604
1605 static ssize_t resv_hugepages_show(struct kobject *kobj,
1606 struct kobj_attribute *attr, char *buf)
1607 {
1608 struct hstate *h = kobj_to_hstate(kobj, NULL);
1609 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1610 }
1611 HSTATE_ATTR_RO(resv_hugepages);
1612
1613 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615 {
1616 struct hstate *h;
1617 unsigned long surplus_huge_pages;
1618 int nid;
1619
1620 h = kobj_to_hstate(kobj, &nid);
1621 if (nid == NUMA_NO_NODE)
1622 surplus_huge_pages = h->surplus_huge_pages;
1623 else
1624 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1625
1626 return sprintf(buf, "%lu\n", surplus_huge_pages);
1627 }
1628 HSTATE_ATTR_RO(surplus_hugepages);
1629
1630 static struct attribute *hstate_attrs[] = {
1631 &nr_hugepages_attr.attr,
1632 &nr_overcommit_hugepages_attr.attr,
1633 &free_hugepages_attr.attr,
1634 &resv_hugepages_attr.attr,
1635 &surplus_hugepages_attr.attr,
1636 #ifdef CONFIG_NUMA
1637 &nr_hugepages_mempolicy_attr.attr,
1638 #endif
1639 NULL,
1640 };
1641
1642 static struct attribute_group hstate_attr_group = {
1643 .attrs = hstate_attrs,
1644 };
1645
1646 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1647 struct kobject **hstate_kobjs,
1648 struct attribute_group *hstate_attr_group)
1649 {
1650 int retval;
1651 int hi = hstate_index(h);
1652
1653 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1654 if (!hstate_kobjs[hi])
1655 return -ENOMEM;
1656
1657 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1658 if (retval)
1659 kobject_put(hstate_kobjs[hi]);
1660
1661 return retval;
1662 }
1663
1664 static void __init hugetlb_sysfs_init(void)
1665 {
1666 struct hstate *h;
1667 int err;
1668
1669 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1670 if (!hugepages_kobj)
1671 return;
1672
1673 for_each_hstate(h) {
1674 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1675 hstate_kobjs, &hstate_attr_group);
1676 if (err)
1677 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1678 h->name);
1679 }
1680 }
1681
1682 #ifdef CONFIG_NUMA
1683
1684 /*
1685 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1686 * with node devices in node_devices[] using a parallel array. The array
1687 * index of a node device or _hstate == node id.
1688 * This is here to avoid any static dependency of the node device driver, in
1689 * the base kernel, on the hugetlb module.
1690 */
1691 struct node_hstate {
1692 struct kobject *hugepages_kobj;
1693 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1694 };
1695 struct node_hstate node_hstates[MAX_NUMNODES];
1696
1697 /*
1698 * A subset of global hstate attributes for node devices
1699 */
1700 static struct attribute *per_node_hstate_attrs[] = {
1701 &nr_hugepages_attr.attr,
1702 &free_hugepages_attr.attr,
1703 &surplus_hugepages_attr.attr,
1704 NULL,
1705 };
1706
1707 static struct attribute_group per_node_hstate_attr_group = {
1708 .attrs = per_node_hstate_attrs,
1709 };
1710
1711 /*
1712 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1713 * Returns node id via non-NULL nidp.
1714 */
1715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1716 {
1717 int nid;
1718
1719 for (nid = 0; nid < nr_node_ids; nid++) {
1720 struct node_hstate *nhs = &node_hstates[nid];
1721 int i;
1722 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1723 if (nhs->hstate_kobjs[i] == kobj) {
1724 if (nidp)
1725 *nidp = nid;
1726 return &hstates[i];
1727 }
1728 }
1729
1730 BUG();
1731 return NULL;
1732 }
1733
1734 /*
1735 * Unregister hstate attributes from a single node device.
1736 * No-op if no hstate attributes attached.
1737 */
1738 void hugetlb_unregister_node(struct node *node)
1739 {
1740 struct hstate *h;
1741 struct node_hstate *nhs = &node_hstates[node->dev.id];
1742
1743 if (!nhs->hugepages_kobj)
1744 return; /* no hstate attributes */
1745
1746 for_each_hstate(h) {
1747 int idx = hstate_index(h);
1748 if (nhs->hstate_kobjs[idx]) {
1749 kobject_put(nhs->hstate_kobjs[idx]);
1750 nhs->hstate_kobjs[idx] = NULL;
1751 }
1752 }
1753
1754 kobject_put(nhs->hugepages_kobj);
1755 nhs->hugepages_kobj = NULL;
1756 }
1757
1758 /*
1759 * hugetlb module exit: unregister hstate attributes from node devices
1760 * that have them.
1761 */
1762 static void hugetlb_unregister_all_nodes(void)
1763 {
1764 int nid;
1765
1766 /*
1767 * disable node device registrations.
1768 */
1769 register_hugetlbfs_with_node(NULL, NULL);
1770
1771 /*
1772 * remove hstate attributes from any nodes that have them.
1773 */
1774 for (nid = 0; nid < nr_node_ids; nid++)
1775 hugetlb_unregister_node(&node_devices[nid]);
1776 }
1777
1778 /*
1779 * Register hstate attributes for a single node device.
1780 * No-op if attributes already registered.
1781 */
1782 void hugetlb_register_node(struct node *node)
1783 {
1784 struct hstate *h;
1785 struct node_hstate *nhs = &node_hstates[node->dev.id];
1786 int err;
1787
1788 if (nhs->hugepages_kobj)
1789 return; /* already allocated */
1790
1791 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1792 &node->dev.kobj);
1793 if (!nhs->hugepages_kobj)
1794 return;
1795
1796 for_each_hstate(h) {
1797 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1798 nhs->hstate_kobjs,
1799 &per_node_hstate_attr_group);
1800 if (err) {
1801 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1802 " for node %d\n",
1803 h->name, node->dev.id);
1804 hugetlb_unregister_node(node);
1805 break;
1806 }
1807 }
1808 }
1809
1810 /*
1811 * hugetlb init time: register hstate attributes for all registered node
1812 * devices of nodes that have memory. All on-line nodes should have
1813 * registered their associated device by this time.
1814 */
1815 static void hugetlb_register_all_nodes(void)
1816 {
1817 int nid;
1818
1819 for_each_node_state(nid, N_HIGH_MEMORY) {
1820 struct node *node = &node_devices[nid];
1821 if (node->dev.id == nid)
1822 hugetlb_register_node(node);
1823 }
1824
1825 /*
1826 * Let the node device driver know we're here so it can
1827 * [un]register hstate attributes on node hotplug.
1828 */
1829 register_hugetlbfs_with_node(hugetlb_register_node,
1830 hugetlb_unregister_node);
1831 }
1832 #else /* !CONFIG_NUMA */
1833
1834 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1835 {
1836 BUG();
1837 if (nidp)
1838 *nidp = -1;
1839 return NULL;
1840 }
1841
1842 static void hugetlb_unregister_all_nodes(void) { }
1843
1844 static void hugetlb_register_all_nodes(void) { }
1845
1846 #endif
1847
1848 static void __exit hugetlb_exit(void)
1849 {
1850 struct hstate *h;
1851
1852 hugetlb_unregister_all_nodes();
1853
1854 for_each_hstate(h) {
1855 kobject_put(hstate_kobjs[hstate_index(h)]);
1856 }
1857
1858 kobject_put(hugepages_kobj);
1859 }
1860 module_exit(hugetlb_exit);
1861
1862 static int __init hugetlb_init(void)
1863 {
1864 /* Some platform decide whether they support huge pages at boot
1865 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1866 * there is no such support
1867 */
1868 if (HPAGE_SHIFT == 0)
1869 return 0;
1870
1871 if (!size_to_hstate(default_hstate_size)) {
1872 default_hstate_size = HPAGE_SIZE;
1873 if (!size_to_hstate(default_hstate_size))
1874 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1875 }
1876 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1877 if (default_hstate_max_huge_pages)
1878 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1879
1880 hugetlb_init_hstates();
1881
1882 gather_bootmem_prealloc();
1883
1884 report_hugepages();
1885
1886 hugetlb_sysfs_init();
1887
1888 hugetlb_register_all_nodes();
1889
1890 return 0;
1891 }
1892 module_init(hugetlb_init);
1893
1894 /* Should be called on processing a hugepagesz=... option */
1895 void __init hugetlb_add_hstate(unsigned order)
1896 {
1897 struct hstate *h;
1898 unsigned long i;
1899
1900 if (size_to_hstate(PAGE_SIZE << order)) {
1901 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1902 return;
1903 }
1904 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1905 BUG_ON(order == 0);
1906 h = &hstates[hugetlb_max_hstate++];
1907 h->order = order;
1908 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1909 h->nr_huge_pages = 0;
1910 h->free_huge_pages = 0;
1911 for (i = 0; i < MAX_NUMNODES; ++i)
1912 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1913 INIT_LIST_HEAD(&h->hugepage_activelist);
1914 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1915 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1916 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1917 huge_page_size(h)/1024);
1918
1919 parsed_hstate = h;
1920 }
1921
1922 static int __init hugetlb_nrpages_setup(char *s)
1923 {
1924 unsigned long *mhp;
1925 static unsigned long *last_mhp;
1926
1927 /*
1928 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1929 * so this hugepages= parameter goes to the "default hstate".
1930 */
1931 if (!hugetlb_max_hstate)
1932 mhp = &default_hstate_max_huge_pages;
1933 else
1934 mhp = &parsed_hstate->max_huge_pages;
1935
1936 if (mhp == last_mhp) {
1937 printk(KERN_WARNING "hugepages= specified twice without "
1938 "interleaving hugepagesz=, ignoring\n");
1939 return 1;
1940 }
1941
1942 if (sscanf(s, "%lu", mhp) <= 0)
1943 *mhp = 0;
1944
1945 /*
1946 * Global state is always initialized later in hugetlb_init.
1947 * But we need to allocate >= MAX_ORDER hstates here early to still
1948 * use the bootmem allocator.
1949 */
1950 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1951 hugetlb_hstate_alloc_pages(parsed_hstate);
1952
1953 last_mhp = mhp;
1954
1955 return 1;
1956 }
1957 __setup("hugepages=", hugetlb_nrpages_setup);
1958
1959 static int __init hugetlb_default_setup(char *s)
1960 {
1961 default_hstate_size = memparse(s, &s);
1962 return 1;
1963 }
1964 __setup("default_hugepagesz=", hugetlb_default_setup);
1965
1966 static unsigned int cpuset_mems_nr(unsigned int *array)
1967 {
1968 int node;
1969 unsigned int nr = 0;
1970
1971 for_each_node_mask(node, cpuset_current_mems_allowed)
1972 nr += array[node];
1973
1974 return nr;
1975 }
1976
1977 #ifdef CONFIG_SYSCTL
1978 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1979 struct ctl_table *table, int write,
1980 void __user *buffer, size_t *length, loff_t *ppos)
1981 {
1982 struct hstate *h = &default_hstate;
1983 unsigned long tmp;
1984 int ret;
1985
1986 tmp = h->max_huge_pages;
1987
1988 if (write && h->order >= MAX_ORDER)
1989 return -EINVAL;
1990
1991 table->data = &tmp;
1992 table->maxlen = sizeof(unsigned long);
1993 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1994 if (ret)
1995 goto out;
1996
1997 if (write) {
1998 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1999 GFP_KERNEL | __GFP_NORETRY);
2000 if (!(obey_mempolicy &&
2001 init_nodemask_of_mempolicy(nodes_allowed))) {
2002 NODEMASK_FREE(nodes_allowed);
2003 nodes_allowed = &node_states[N_HIGH_MEMORY];
2004 }
2005 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2006
2007 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2008 NODEMASK_FREE(nodes_allowed);
2009 }
2010 out:
2011 return ret;
2012 }
2013
2014 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2015 void __user *buffer, size_t *length, loff_t *ppos)
2016 {
2017
2018 return hugetlb_sysctl_handler_common(false, table, write,
2019 buffer, length, ppos);
2020 }
2021
2022 #ifdef CONFIG_NUMA
2023 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2024 void __user *buffer, size_t *length, loff_t *ppos)
2025 {
2026 return hugetlb_sysctl_handler_common(true, table, write,
2027 buffer, length, ppos);
2028 }
2029 #endif /* CONFIG_NUMA */
2030
2031 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2032 void __user *buffer,
2033 size_t *length, loff_t *ppos)
2034 {
2035 proc_dointvec(table, write, buffer, length, ppos);
2036 if (hugepages_treat_as_movable)
2037 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2038 else
2039 htlb_alloc_mask = GFP_HIGHUSER;
2040 return 0;
2041 }
2042
2043 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2044 void __user *buffer,
2045 size_t *length, loff_t *ppos)
2046 {
2047 struct hstate *h = &default_hstate;
2048 unsigned long tmp;
2049 int ret;
2050
2051 tmp = h->nr_overcommit_huge_pages;
2052
2053 if (write && h->order >= MAX_ORDER)
2054 return -EINVAL;
2055
2056 table->data = &tmp;
2057 table->maxlen = sizeof(unsigned long);
2058 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2059 if (ret)
2060 goto out;
2061
2062 if (write) {
2063 spin_lock(&hugetlb_lock);
2064 h->nr_overcommit_huge_pages = tmp;
2065 spin_unlock(&hugetlb_lock);
2066 }
2067 out:
2068 return ret;
2069 }
2070
2071 #endif /* CONFIG_SYSCTL */
2072
2073 void hugetlb_report_meminfo(struct seq_file *m)
2074 {
2075 struct hstate *h = &default_hstate;
2076 seq_printf(m,
2077 "HugePages_Total: %5lu\n"
2078 "HugePages_Free: %5lu\n"
2079 "HugePages_Rsvd: %5lu\n"
2080 "HugePages_Surp: %5lu\n"
2081 "Hugepagesize: %8lu kB\n",
2082 h->nr_huge_pages,
2083 h->free_huge_pages,
2084 h->resv_huge_pages,
2085 h->surplus_huge_pages,
2086 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2087 }
2088
2089 int hugetlb_report_node_meminfo(int nid, char *buf)
2090 {
2091 struct hstate *h = &default_hstate;
2092 return sprintf(buf,
2093 "Node %d HugePages_Total: %5u\n"
2094 "Node %d HugePages_Free: %5u\n"
2095 "Node %d HugePages_Surp: %5u\n",
2096 nid, h->nr_huge_pages_node[nid],
2097 nid, h->free_huge_pages_node[nid],
2098 nid, h->surplus_huge_pages_node[nid]);
2099 }
2100
2101 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2102 unsigned long hugetlb_total_pages(void)
2103 {
2104 struct hstate *h = &default_hstate;
2105 return h->nr_huge_pages * pages_per_huge_page(h);
2106 }
2107
2108 static int hugetlb_acct_memory(struct hstate *h, long delta)
2109 {
2110 int ret = -ENOMEM;
2111
2112 spin_lock(&hugetlb_lock);
2113 /*
2114 * When cpuset is configured, it breaks the strict hugetlb page
2115 * reservation as the accounting is done on a global variable. Such
2116 * reservation is completely rubbish in the presence of cpuset because
2117 * the reservation is not checked against page availability for the
2118 * current cpuset. Application can still potentially OOM'ed by kernel
2119 * with lack of free htlb page in cpuset that the task is in.
2120 * Attempt to enforce strict accounting with cpuset is almost
2121 * impossible (or too ugly) because cpuset is too fluid that
2122 * task or memory node can be dynamically moved between cpusets.
2123 *
2124 * The change of semantics for shared hugetlb mapping with cpuset is
2125 * undesirable. However, in order to preserve some of the semantics,
2126 * we fall back to check against current free page availability as
2127 * a best attempt and hopefully to minimize the impact of changing
2128 * semantics that cpuset has.
2129 */
2130 if (delta > 0) {
2131 if (gather_surplus_pages(h, delta) < 0)
2132 goto out;
2133
2134 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2135 return_unused_surplus_pages(h, delta);
2136 goto out;
2137 }
2138 }
2139
2140 ret = 0;
2141 if (delta < 0)
2142 return_unused_surplus_pages(h, (unsigned long) -delta);
2143
2144 out:
2145 spin_unlock(&hugetlb_lock);
2146 return ret;
2147 }
2148
2149 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2150 {
2151 struct resv_map *reservations = vma_resv_map(vma);
2152
2153 /*
2154 * This new VMA should share its siblings reservation map if present.
2155 * The VMA will only ever have a valid reservation map pointer where
2156 * it is being copied for another still existing VMA. As that VMA
2157 * has a reference to the reservation map it cannot disappear until
2158 * after this open call completes. It is therefore safe to take a
2159 * new reference here without additional locking.
2160 */
2161 if (reservations)
2162 kref_get(&reservations->refs);
2163 }
2164
2165 static void resv_map_put(struct vm_area_struct *vma)
2166 {
2167 struct resv_map *reservations = vma_resv_map(vma);
2168
2169 if (!reservations)
2170 return;
2171 kref_put(&reservations->refs, resv_map_release);
2172 }
2173
2174 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2175 {
2176 struct hstate *h = hstate_vma(vma);
2177 struct resv_map *reservations = vma_resv_map(vma);
2178 struct hugepage_subpool *spool = subpool_vma(vma);
2179 unsigned long reserve;
2180 unsigned long start;
2181 unsigned long end;
2182
2183 if (reservations) {
2184 start = vma_hugecache_offset(h, vma, vma->vm_start);
2185 end = vma_hugecache_offset(h, vma, vma->vm_end);
2186
2187 reserve = (end - start) -
2188 region_count(&reservations->regions, start, end);
2189
2190 resv_map_put(vma);
2191
2192 if (reserve) {
2193 hugetlb_acct_memory(h, -reserve);
2194 hugepage_subpool_put_pages(spool, reserve);
2195 }
2196 }
2197 }
2198
2199 /*
2200 * We cannot handle pagefaults against hugetlb pages at all. They cause
2201 * handle_mm_fault() to try to instantiate regular-sized pages in the
2202 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2203 * this far.
2204 */
2205 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2206 {
2207 BUG();
2208 return 0;
2209 }
2210
2211 const struct vm_operations_struct hugetlb_vm_ops = {
2212 .fault = hugetlb_vm_op_fault,
2213 .open = hugetlb_vm_op_open,
2214 .close = hugetlb_vm_op_close,
2215 };
2216
2217 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2218 int writable)
2219 {
2220 pte_t entry;
2221
2222 if (writable) {
2223 entry =
2224 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2225 } else {
2226 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2227 }
2228 entry = pte_mkyoung(entry);
2229 entry = pte_mkhuge(entry);
2230 entry = arch_make_huge_pte(entry, vma, page, writable);
2231
2232 return entry;
2233 }
2234
2235 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2236 unsigned long address, pte_t *ptep)
2237 {
2238 pte_t entry;
2239
2240 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2241 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2242 update_mmu_cache(vma, address, ptep);
2243 }
2244
2245
2246 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2247 struct vm_area_struct *vma)
2248 {
2249 pte_t *src_pte, *dst_pte, entry;
2250 struct page *ptepage;
2251 unsigned long addr;
2252 int cow;
2253 struct hstate *h = hstate_vma(vma);
2254 unsigned long sz = huge_page_size(h);
2255
2256 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2257
2258 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2259 src_pte = huge_pte_offset(src, addr);
2260 if (!src_pte)
2261 continue;
2262 dst_pte = huge_pte_alloc(dst, addr, sz);
2263 if (!dst_pte)
2264 goto nomem;
2265
2266 /* If the pagetables are shared don't copy or take references */
2267 if (dst_pte == src_pte)
2268 continue;
2269
2270 spin_lock(&dst->page_table_lock);
2271 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2272 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2273 if (cow)
2274 huge_ptep_set_wrprotect(src, addr, src_pte);
2275 entry = huge_ptep_get(src_pte);
2276 ptepage = pte_page(entry);
2277 get_page(ptepage);
2278 page_dup_rmap(ptepage);
2279 set_huge_pte_at(dst, addr, dst_pte, entry);
2280 }
2281 spin_unlock(&src->page_table_lock);
2282 spin_unlock(&dst->page_table_lock);
2283 }
2284 return 0;
2285
2286 nomem:
2287 return -ENOMEM;
2288 }
2289
2290 static int is_hugetlb_entry_migration(pte_t pte)
2291 {
2292 swp_entry_t swp;
2293
2294 if (huge_pte_none(pte) || pte_present(pte))
2295 return 0;
2296 swp = pte_to_swp_entry(pte);
2297 if (non_swap_entry(swp) && is_migration_entry(swp))
2298 return 1;
2299 else
2300 return 0;
2301 }
2302
2303 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2304 {
2305 swp_entry_t swp;
2306
2307 if (huge_pte_none(pte) || pte_present(pte))
2308 return 0;
2309 swp = pte_to_swp_entry(pte);
2310 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2311 return 1;
2312 else
2313 return 0;
2314 }
2315
2316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2317 unsigned long start, unsigned long end,
2318 struct page *ref_page)
2319 {
2320 int force_flush = 0;
2321 struct mm_struct *mm = vma->vm_mm;
2322 unsigned long address;
2323 pte_t *ptep;
2324 pte_t pte;
2325 struct page *page;
2326 struct hstate *h = hstate_vma(vma);
2327 unsigned long sz = huge_page_size(h);
2328
2329 WARN_ON(!is_vm_hugetlb_page(vma));
2330 BUG_ON(start & ~huge_page_mask(h));
2331 BUG_ON(end & ~huge_page_mask(h));
2332
2333 tlb_start_vma(tlb, vma);
2334 mmu_notifier_invalidate_range_start(mm, start, end);
2335 again:
2336 spin_lock(&mm->page_table_lock);
2337 for (address = start; address < end; address += sz) {
2338 ptep = huge_pte_offset(mm, address);
2339 if (!ptep)
2340 continue;
2341
2342 if (huge_pmd_unshare(mm, &address, ptep))
2343 continue;
2344
2345 pte = huge_ptep_get(ptep);
2346 if (huge_pte_none(pte))
2347 continue;
2348
2349 /*
2350 * HWPoisoned hugepage is already unmapped and dropped reference
2351 */
2352 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2353 continue;
2354
2355 page = pte_page(pte);
2356 /*
2357 * If a reference page is supplied, it is because a specific
2358 * page is being unmapped, not a range. Ensure the page we
2359 * are about to unmap is the actual page of interest.
2360 */
2361 if (ref_page) {
2362 if (page != ref_page)
2363 continue;
2364
2365 /*
2366 * Mark the VMA as having unmapped its page so that
2367 * future faults in this VMA will fail rather than
2368 * looking like data was lost
2369 */
2370 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2371 }
2372
2373 pte = huge_ptep_get_and_clear(mm, address, ptep);
2374 tlb_remove_tlb_entry(tlb, ptep, address);
2375 if (pte_dirty(pte))
2376 set_page_dirty(page);
2377
2378 page_remove_rmap(page);
2379 force_flush = !__tlb_remove_page(tlb, page);
2380 if (force_flush)
2381 break;
2382 /* Bail out after unmapping reference page if supplied */
2383 if (ref_page)
2384 break;
2385 }
2386 spin_unlock(&mm->page_table_lock);
2387 /*
2388 * mmu_gather ran out of room to batch pages, we break out of
2389 * the PTE lock to avoid doing the potential expensive TLB invalidate
2390 * and page-free while holding it.
2391 */
2392 if (force_flush) {
2393 force_flush = 0;
2394 tlb_flush_mmu(tlb);
2395 if (address < end && !ref_page)
2396 goto again;
2397 }
2398 mmu_notifier_invalidate_range_end(mm, start, end);
2399 tlb_end_vma(tlb, vma);
2400 }
2401
2402 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2403 unsigned long end, struct page *ref_page)
2404 {
2405 struct mm_struct *mm;
2406 struct mmu_gather tlb;
2407
2408 mm = vma->vm_mm;
2409
2410 tlb_gather_mmu(&tlb, mm, 0);
2411 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2412 tlb_finish_mmu(&tlb, start, end);
2413 }
2414
2415 /*
2416 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2417 * mappping it owns the reserve page for. The intention is to unmap the page
2418 * from other VMAs and let the children be SIGKILLed if they are faulting the
2419 * same region.
2420 */
2421 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2422 struct page *page, unsigned long address)
2423 {
2424 struct hstate *h = hstate_vma(vma);
2425 struct vm_area_struct *iter_vma;
2426 struct address_space *mapping;
2427 struct prio_tree_iter iter;
2428 pgoff_t pgoff;
2429
2430 /*
2431 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2432 * from page cache lookup which is in HPAGE_SIZE units.
2433 */
2434 address = address & huge_page_mask(h);
2435 pgoff = vma_hugecache_offset(h, vma, address);
2436 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2437
2438 /*
2439 * Take the mapping lock for the duration of the table walk. As
2440 * this mapping should be shared between all the VMAs,
2441 * __unmap_hugepage_range() is called as the lock is already held
2442 */
2443 mutex_lock(&mapping->i_mmap_mutex);
2444 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2445 /* Do not unmap the current VMA */
2446 if (iter_vma == vma)
2447 continue;
2448
2449 /*
2450 * Unmap the page from other VMAs without their own reserves.
2451 * They get marked to be SIGKILLed if they fault in these
2452 * areas. This is because a future no-page fault on this VMA
2453 * could insert a zeroed page instead of the data existing
2454 * from the time of fork. This would look like data corruption
2455 */
2456 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2457 unmap_hugepage_range(iter_vma, address,
2458 address + huge_page_size(h), page);
2459 }
2460 mutex_unlock(&mapping->i_mmap_mutex);
2461
2462 return 1;
2463 }
2464
2465 /*
2466 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2467 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2468 * cannot race with other handlers or page migration.
2469 * Keep the pte_same checks anyway to make transition from the mutex easier.
2470 */
2471 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2472 unsigned long address, pte_t *ptep, pte_t pte,
2473 struct page *pagecache_page)
2474 {
2475 struct hstate *h = hstate_vma(vma);
2476 struct page *old_page, *new_page;
2477 int avoidcopy;
2478 int outside_reserve = 0;
2479
2480 old_page = pte_page(pte);
2481
2482 retry_avoidcopy:
2483 /* If no-one else is actually using this page, avoid the copy
2484 * and just make the page writable */
2485 avoidcopy = (page_mapcount(old_page) == 1);
2486 if (avoidcopy) {
2487 if (PageAnon(old_page))
2488 page_move_anon_rmap(old_page, vma, address);
2489 set_huge_ptep_writable(vma, address, ptep);
2490 return 0;
2491 }
2492
2493 /*
2494 * If the process that created a MAP_PRIVATE mapping is about to
2495 * perform a COW due to a shared page count, attempt to satisfy
2496 * the allocation without using the existing reserves. The pagecache
2497 * page is used to determine if the reserve at this address was
2498 * consumed or not. If reserves were used, a partial faulted mapping
2499 * at the time of fork() could consume its reserves on COW instead
2500 * of the full address range.
2501 */
2502 if (!(vma->vm_flags & VM_MAYSHARE) &&
2503 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2504 old_page != pagecache_page)
2505 outside_reserve = 1;
2506
2507 page_cache_get(old_page);
2508
2509 /* Drop page_table_lock as buddy allocator may be called */
2510 spin_unlock(&mm->page_table_lock);
2511 new_page = alloc_huge_page(vma, address, outside_reserve);
2512
2513 if (IS_ERR(new_page)) {
2514 long err = PTR_ERR(new_page);
2515 page_cache_release(old_page);
2516
2517 /*
2518 * If a process owning a MAP_PRIVATE mapping fails to COW,
2519 * it is due to references held by a child and an insufficient
2520 * huge page pool. To guarantee the original mappers
2521 * reliability, unmap the page from child processes. The child
2522 * may get SIGKILLed if it later faults.
2523 */
2524 if (outside_reserve) {
2525 BUG_ON(huge_pte_none(pte));
2526 if (unmap_ref_private(mm, vma, old_page, address)) {
2527 BUG_ON(huge_pte_none(pte));
2528 spin_lock(&mm->page_table_lock);
2529 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2530 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2531 goto retry_avoidcopy;
2532 /*
2533 * race occurs while re-acquiring page_table_lock, and
2534 * our job is done.
2535 */
2536 return 0;
2537 }
2538 WARN_ON_ONCE(1);
2539 }
2540
2541 /* Caller expects lock to be held */
2542 spin_lock(&mm->page_table_lock);
2543 if (err == -ENOMEM)
2544 return VM_FAULT_OOM;
2545 else
2546 return VM_FAULT_SIGBUS;
2547 }
2548
2549 /*
2550 * When the original hugepage is shared one, it does not have
2551 * anon_vma prepared.
2552 */
2553 if (unlikely(anon_vma_prepare(vma))) {
2554 page_cache_release(new_page);
2555 page_cache_release(old_page);
2556 /* Caller expects lock to be held */
2557 spin_lock(&mm->page_table_lock);
2558 return VM_FAULT_OOM;
2559 }
2560
2561 copy_user_huge_page(new_page, old_page, address, vma,
2562 pages_per_huge_page(h));
2563 __SetPageUptodate(new_page);
2564
2565 /*
2566 * Retake the page_table_lock to check for racing updates
2567 * before the page tables are altered
2568 */
2569 spin_lock(&mm->page_table_lock);
2570 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2571 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2572 /* Break COW */
2573 mmu_notifier_invalidate_range_start(mm,
2574 address & huge_page_mask(h),
2575 (address & huge_page_mask(h)) + huge_page_size(h));
2576 huge_ptep_clear_flush(vma, address, ptep);
2577 set_huge_pte_at(mm, address, ptep,
2578 make_huge_pte(vma, new_page, 1));
2579 page_remove_rmap(old_page);
2580 hugepage_add_new_anon_rmap(new_page, vma, address);
2581 /* Make the old page be freed below */
2582 new_page = old_page;
2583 mmu_notifier_invalidate_range_end(mm,
2584 address & huge_page_mask(h),
2585 (address & huge_page_mask(h)) + huge_page_size(h));
2586 }
2587 page_cache_release(new_page);
2588 page_cache_release(old_page);
2589 return 0;
2590 }
2591
2592 /* Return the pagecache page at a given address within a VMA */
2593 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2594 struct vm_area_struct *vma, unsigned long address)
2595 {
2596 struct address_space *mapping;
2597 pgoff_t idx;
2598
2599 mapping = vma->vm_file->f_mapping;
2600 idx = vma_hugecache_offset(h, vma, address);
2601
2602 return find_lock_page(mapping, idx);
2603 }
2604
2605 /*
2606 * Return whether there is a pagecache page to back given address within VMA.
2607 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2608 */
2609 static bool hugetlbfs_pagecache_present(struct hstate *h,
2610 struct vm_area_struct *vma, unsigned long address)
2611 {
2612 struct address_space *mapping;
2613 pgoff_t idx;
2614 struct page *page;
2615
2616 mapping = vma->vm_file->f_mapping;
2617 idx = vma_hugecache_offset(h, vma, address);
2618
2619 page = find_get_page(mapping, idx);
2620 if (page)
2621 put_page(page);
2622 return page != NULL;
2623 }
2624
2625 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2626 unsigned long address, pte_t *ptep, unsigned int flags)
2627 {
2628 struct hstate *h = hstate_vma(vma);
2629 int ret = VM_FAULT_SIGBUS;
2630 int anon_rmap = 0;
2631 pgoff_t idx;
2632 unsigned long size;
2633 struct page *page;
2634 struct address_space *mapping;
2635 pte_t new_pte;
2636
2637 /*
2638 * Currently, we are forced to kill the process in the event the
2639 * original mapper has unmapped pages from the child due to a failed
2640 * COW. Warn that such a situation has occurred as it may not be obvious
2641 */
2642 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2643 printk(KERN_WARNING
2644 "PID %d killed due to inadequate hugepage pool\n",
2645 current->pid);
2646 return ret;
2647 }
2648
2649 mapping = vma->vm_file->f_mapping;
2650 idx = vma_hugecache_offset(h, vma, address);
2651
2652 /*
2653 * Use page lock to guard against racing truncation
2654 * before we get page_table_lock.
2655 */
2656 retry:
2657 page = find_lock_page(mapping, idx);
2658 if (!page) {
2659 size = i_size_read(mapping->host) >> huge_page_shift(h);
2660 if (idx >= size)
2661 goto out;
2662 page = alloc_huge_page(vma, address, 0);
2663 if (IS_ERR(page)) {
2664 ret = PTR_ERR(page);
2665 if (ret == -ENOMEM)
2666 ret = VM_FAULT_OOM;
2667 else
2668 ret = VM_FAULT_SIGBUS;
2669 goto out;
2670 }
2671 clear_huge_page(page, address, pages_per_huge_page(h));
2672 __SetPageUptodate(page);
2673
2674 if (vma->vm_flags & VM_MAYSHARE) {
2675 int err;
2676 struct inode *inode = mapping->host;
2677
2678 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2679 if (err) {
2680 put_page(page);
2681 if (err == -EEXIST)
2682 goto retry;
2683 goto out;
2684 }
2685
2686 spin_lock(&inode->i_lock);
2687 inode->i_blocks += blocks_per_huge_page(h);
2688 spin_unlock(&inode->i_lock);
2689 } else {
2690 lock_page(page);
2691 if (unlikely(anon_vma_prepare(vma))) {
2692 ret = VM_FAULT_OOM;
2693 goto backout_unlocked;
2694 }
2695 anon_rmap = 1;
2696 }
2697 } else {
2698 /*
2699 * If memory error occurs between mmap() and fault, some process
2700 * don't have hwpoisoned swap entry for errored virtual address.
2701 * So we need to block hugepage fault by PG_hwpoison bit check.
2702 */
2703 if (unlikely(PageHWPoison(page))) {
2704 ret = VM_FAULT_HWPOISON |
2705 VM_FAULT_SET_HINDEX(hstate_index(h));
2706 goto backout_unlocked;
2707 }
2708 }
2709
2710 /*
2711 * If we are going to COW a private mapping later, we examine the
2712 * pending reservations for this page now. This will ensure that
2713 * any allocations necessary to record that reservation occur outside
2714 * the spinlock.
2715 */
2716 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2717 if (vma_needs_reservation(h, vma, address) < 0) {
2718 ret = VM_FAULT_OOM;
2719 goto backout_unlocked;
2720 }
2721
2722 spin_lock(&mm->page_table_lock);
2723 size = i_size_read(mapping->host) >> huge_page_shift(h);
2724 if (idx >= size)
2725 goto backout;
2726
2727 ret = 0;
2728 if (!huge_pte_none(huge_ptep_get(ptep)))
2729 goto backout;
2730
2731 if (anon_rmap)
2732 hugepage_add_new_anon_rmap(page, vma, address);
2733 else
2734 page_dup_rmap(page);
2735 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2736 && (vma->vm_flags & VM_SHARED)));
2737 set_huge_pte_at(mm, address, ptep, new_pte);
2738
2739 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2740 /* Optimization, do the COW without a second fault */
2741 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2742 }
2743
2744 spin_unlock(&mm->page_table_lock);
2745 unlock_page(page);
2746 out:
2747 return ret;
2748
2749 backout:
2750 spin_unlock(&mm->page_table_lock);
2751 backout_unlocked:
2752 unlock_page(page);
2753 put_page(page);
2754 goto out;
2755 }
2756
2757 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2758 unsigned long address, unsigned int flags)
2759 {
2760 pte_t *ptep;
2761 pte_t entry;
2762 int ret;
2763 struct page *page = NULL;
2764 struct page *pagecache_page = NULL;
2765 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2766 struct hstate *h = hstate_vma(vma);
2767
2768 address &= huge_page_mask(h);
2769
2770 ptep = huge_pte_offset(mm, address);
2771 if (ptep) {
2772 entry = huge_ptep_get(ptep);
2773 if (unlikely(is_hugetlb_entry_migration(entry))) {
2774 migration_entry_wait(mm, (pmd_t *)ptep, address);
2775 return 0;
2776 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2777 return VM_FAULT_HWPOISON_LARGE |
2778 VM_FAULT_SET_HINDEX(hstate_index(h));
2779 }
2780
2781 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2782 if (!ptep)
2783 return VM_FAULT_OOM;
2784
2785 /*
2786 * Serialize hugepage allocation and instantiation, so that we don't
2787 * get spurious allocation failures if two CPUs race to instantiate
2788 * the same page in the page cache.
2789 */
2790 mutex_lock(&hugetlb_instantiation_mutex);
2791 entry = huge_ptep_get(ptep);
2792 if (huge_pte_none(entry)) {
2793 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2794 goto out_mutex;
2795 }
2796
2797 ret = 0;
2798
2799 /*
2800 * If we are going to COW the mapping later, we examine the pending
2801 * reservations for this page now. This will ensure that any
2802 * allocations necessary to record that reservation occur outside the
2803 * spinlock. For private mappings, we also lookup the pagecache
2804 * page now as it is used to determine if a reservation has been
2805 * consumed.
2806 */
2807 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2808 if (vma_needs_reservation(h, vma, address) < 0) {
2809 ret = VM_FAULT_OOM;
2810 goto out_mutex;
2811 }
2812
2813 if (!(vma->vm_flags & VM_MAYSHARE))
2814 pagecache_page = hugetlbfs_pagecache_page(h,
2815 vma, address);
2816 }
2817
2818 /*
2819 * hugetlb_cow() requires page locks of pte_page(entry) and
2820 * pagecache_page, so here we need take the former one
2821 * when page != pagecache_page or !pagecache_page.
2822 * Note that locking order is always pagecache_page -> page,
2823 * so no worry about deadlock.
2824 */
2825 page = pte_page(entry);
2826 get_page(page);
2827 if (page != pagecache_page)
2828 lock_page(page);
2829
2830 spin_lock(&mm->page_table_lock);
2831 /* Check for a racing update before calling hugetlb_cow */
2832 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2833 goto out_page_table_lock;
2834
2835
2836 if (flags & FAULT_FLAG_WRITE) {
2837 if (!pte_write(entry)) {
2838 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2839 pagecache_page);
2840 goto out_page_table_lock;
2841 }
2842 entry = pte_mkdirty(entry);
2843 }
2844 entry = pte_mkyoung(entry);
2845 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2846 flags & FAULT_FLAG_WRITE))
2847 update_mmu_cache(vma, address, ptep);
2848
2849 out_page_table_lock:
2850 spin_unlock(&mm->page_table_lock);
2851
2852 if (pagecache_page) {
2853 unlock_page(pagecache_page);
2854 put_page(pagecache_page);
2855 }
2856 if (page != pagecache_page)
2857 unlock_page(page);
2858 put_page(page);
2859
2860 out_mutex:
2861 mutex_unlock(&hugetlb_instantiation_mutex);
2862
2863 return ret;
2864 }
2865
2866 /* Can be overriden by architectures */
2867 __attribute__((weak)) struct page *
2868 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2869 pud_t *pud, int write)
2870 {
2871 BUG();
2872 return NULL;
2873 }
2874
2875 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2876 struct page **pages, struct vm_area_struct **vmas,
2877 unsigned long *position, int *length, int i,
2878 unsigned int flags)
2879 {
2880 unsigned long pfn_offset;
2881 unsigned long vaddr = *position;
2882 int remainder = *length;
2883 struct hstate *h = hstate_vma(vma);
2884
2885 spin_lock(&mm->page_table_lock);
2886 while (vaddr < vma->vm_end && remainder) {
2887 pte_t *pte;
2888 int absent;
2889 struct page *page;
2890
2891 /*
2892 * Some archs (sparc64, sh*) have multiple pte_ts to
2893 * each hugepage. We have to make sure we get the
2894 * first, for the page indexing below to work.
2895 */
2896 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2897 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2898
2899 /*
2900 * When coredumping, it suits get_dump_page if we just return
2901 * an error where there's an empty slot with no huge pagecache
2902 * to back it. This way, we avoid allocating a hugepage, and
2903 * the sparse dumpfile avoids allocating disk blocks, but its
2904 * huge holes still show up with zeroes where they need to be.
2905 */
2906 if (absent && (flags & FOLL_DUMP) &&
2907 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2908 remainder = 0;
2909 break;
2910 }
2911
2912 if (absent ||
2913 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2914 int ret;
2915
2916 spin_unlock(&mm->page_table_lock);
2917 ret = hugetlb_fault(mm, vma, vaddr,
2918 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2919 spin_lock(&mm->page_table_lock);
2920 if (!(ret & VM_FAULT_ERROR))
2921 continue;
2922
2923 remainder = 0;
2924 break;
2925 }
2926
2927 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2928 page = pte_page(huge_ptep_get(pte));
2929 same_page:
2930 if (pages) {
2931 pages[i] = mem_map_offset(page, pfn_offset);
2932 get_page(pages[i]);
2933 }
2934
2935 if (vmas)
2936 vmas[i] = vma;
2937
2938 vaddr += PAGE_SIZE;
2939 ++pfn_offset;
2940 --remainder;
2941 ++i;
2942 if (vaddr < vma->vm_end && remainder &&
2943 pfn_offset < pages_per_huge_page(h)) {
2944 /*
2945 * We use pfn_offset to avoid touching the pageframes
2946 * of this compound page.
2947 */
2948 goto same_page;
2949 }
2950 }
2951 spin_unlock(&mm->page_table_lock);
2952 *length = remainder;
2953 *position = vaddr;
2954
2955 return i ? i : -EFAULT;
2956 }
2957
2958 void hugetlb_change_protection(struct vm_area_struct *vma,
2959 unsigned long address, unsigned long end, pgprot_t newprot)
2960 {
2961 struct mm_struct *mm = vma->vm_mm;
2962 unsigned long start = address;
2963 pte_t *ptep;
2964 pte_t pte;
2965 struct hstate *h = hstate_vma(vma);
2966
2967 BUG_ON(address >= end);
2968 flush_cache_range(vma, address, end);
2969
2970 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2971 spin_lock(&mm->page_table_lock);
2972 for (; address < end; address += huge_page_size(h)) {
2973 ptep = huge_pte_offset(mm, address);
2974 if (!ptep)
2975 continue;
2976 if (huge_pmd_unshare(mm, &address, ptep))
2977 continue;
2978 if (!huge_pte_none(huge_ptep_get(ptep))) {
2979 pte = huge_ptep_get_and_clear(mm, address, ptep);
2980 pte = pte_mkhuge(pte_modify(pte, newprot));
2981 set_huge_pte_at(mm, address, ptep, pte);
2982 }
2983 }
2984 spin_unlock(&mm->page_table_lock);
2985 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2986
2987 flush_tlb_range(vma, start, end);
2988 }
2989
2990 int hugetlb_reserve_pages(struct inode *inode,
2991 long from, long to,
2992 struct vm_area_struct *vma,
2993 vm_flags_t vm_flags)
2994 {
2995 long ret, chg;
2996 struct hstate *h = hstate_inode(inode);
2997 struct hugepage_subpool *spool = subpool_inode(inode);
2998
2999 /*
3000 * Only apply hugepage reservation if asked. At fault time, an
3001 * attempt will be made for VM_NORESERVE to allocate a page
3002 * without using reserves
3003 */
3004 if (vm_flags & VM_NORESERVE)
3005 return 0;
3006
3007 /*
3008 * Shared mappings base their reservation on the number of pages that
3009 * are already allocated on behalf of the file. Private mappings need
3010 * to reserve the full area even if read-only as mprotect() may be
3011 * called to make the mapping read-write. Assume !vma is a shm mapping
3012 */
3013 if (!vma || vma->vm_flags & VM_MAYSHARE)
3014 chg = region_chg(&inode->i_mapping->private_list, from, to);
3015 else {
3016 struct resv_map *resv_map = resv_map_alloc();
3017 if (!resv_map)
3018 return -ENOMEM;
3019
3020 chg = to - from;
3021
3022 set_vma_resv_map(vma, resv_map);
3023 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3024 }
3025
3026 if (chg < 0) {
3027 ret = chg;
3028 goto out_err;
3029 }
3030
3031 /* There must be enough pages in the subpool for the mapping */
3032 if (hugepage_subpool_get_pages(spool, chg)) {
3033 ret = -ENOSPC;
3034 goto out_err;
3035 }
3036
3037 /*
3038 * Check enough hugepages are available for the reservation.
3039 * Hand the pages back to the subpool if there are not
3040 */
3041 ret = hugetlb_acct_memory(h, chg);
3042 if (ret < 0) {
3043 hugepage_subpool_put_pages(spool, chg);
3044 goto out_err;
3045 }
3046
3047 /*
3048 * Account for the reservations made. Shared mappings record regions
3049 * that have reservations as they are shared by multiple VMAs.
3050 * When the last VMA disappears, the region map says how much
3051 * the reservation was and the page cache tells how much of
3052 * the reservation was consumed. Private mappings are per-VMA and
3053 * only the consumed reservations are tracked. When the VMA
3054 * disappears, the original reservation is the VMA size and the
3055 * consumed reservations are stored in the map. Hence, nothing
3056 * else has to be done for private mappings here
3057 */
3058 if (!vma || vma->vm_flags & VM_MAYSHARE)
3059 region_add(&inode->i_mapping->private_list, from, to);
3060 return 0;
3061 out_err:
3062 if (vma)
3063 resv_map_put(vma);
3064 return ret;
3065 }
3066
3067 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3068 {
3069 struct hstate *h = hstate_inode(inode);
3070 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3071 struct hugepage_subpool *spool = subpool_inode(inode);
3072
3073 spin_lock(&inode->i_lock);
3074 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3075 spin_unlock(&inode->i_lock);
3076
3077 hugepage_subpool_put_pages(spool, (chg - freed));
3078 hugetlb_acct_memory(h, -(chg - freed));
3079 }
3080
3081 #ifdef CONFIG_MEMORY_FAILURE
3082
3083 /* Should be called in hugetlb_lock */
3084 static int is_hugepage_on_freelist(struct page *hpage)
3085 {
3086 struct page *page;
3087 struct page *tmp;
3088 struct hstate *h = page_hstate(hpage);
3089 int nid = page_to_nid(hpage);
3090
3091 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3092 if (page == hpage)
3093 return 1;
3094 return 0;
3095 }
3096
3097 /*
3098 * This function is called from memory failure code.
3099 * Assume the caller holds page lock of the head page.
3100 */
3101 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3102 {
3103 struct hstate *h = page_hstate(hpage);
3104 int nid = page_to_nid(hpage);
3105 int ret = -EBUSY;
3106
3107 spin_lock(&hugetlb_lock);
3108 if (is_hugepage_on_freelist(hpage)) {
3109 list_del(&hpage->lru);
3110 set_page_refcounted(hpage);
3111 h->free_huge_pages--;
3112 h->free_huge_pages_node[nid]--;
3113 ret = 0;
3114 }
3115 spin_unlock(&hugetlb_lock);
3116 return ret;
3117 }
3118 #endif
This page took 0.095464 seconds and 5 git commands to generate.