ec7b86ebf9d914c714c65b0375a204886aade969
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
441 {
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
453 h->resv_huge_pages--;
454 }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 int nid = page_to_nid(page);
512 list_move(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 struct page *page;
520
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_move(&page->lru, &h->hugepage_activelist);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
534 {
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
555
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
559
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
569 }
570 }
571
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
576
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584 int i;
585
586 VM_BUG_ON(h->order >= MAX_ORDER);
587
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
595 }
596 VM_BUG_ON(hugetlb_cgroup_from_page(page));
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
599 arch_release_hugepage(page);
600 __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605 struct hstate *h;
606
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
610 }
611 return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616 /*
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
619 */
620 struct hstate *h = page_hstate(page);
621 int nid = page_to_nid(page);
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
624
625 set_page_private(page, 0);
626 page->mapping = NULL;
627 BUG_ON(page_count(page));
628 BUG_ON(page_mapcount(page));
629
630 spin_lock(&hugetlb_lock);
631 hugetlb_cgroup_uncharge_page(hstate_index(h),
632 pages_per_huge_page(h), page);
633 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 /* remove the page from active list */
635 list_del(&page->lru);
636 update_and_free_page(h, page);
637 h->surplus_huge_pages--;
638 h->surplus_huge_pages_node[nid]--;
639 } else {
640 enqueue_huge_page(h, page);
641 }
642 spin_unlock(&hugetlb_lock);
643 hugepage_subpool_put_pages(spool, 1);
644 }
645
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648 INIT_LIST_HEAD(&page->lru);
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
651 set_hugetlb_cgroup(page, NULL);
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656 }
657
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
669 set_page_count(p, 0);
670 p->first_page = page;
671 }
672 }
673
674 int PageHuge(struct page *page)
675 {
676 compound_page_dtor *dtor;
677
678 if (!PageCompound(page))
679 return 0;
680
681 page = compound_head(page);
682 dtor = get_compound_page_dtor(page);
683
684 return dtor == free_huge_page;
685 }
686 EXPORT_SYMBOL_GPL(PageHuge);
687
688 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
689 {
690 struct page *page;
691
692 if (h->order >= MAX_ORDER)
693 return NULL;
694
695 page = alloc_pages_exact_node(nid,
696 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697 __GFP_REPEAT|__GFP_NOWARN,
698 huge_page_order(h));
699 if (page) {
700 if (arch_prepare_hugepage(page)) {
701 __free_pages(page, huge_page_order(h));
702 return NULL;
703 }
704 prep_new_huge_page(h, page, nid);
705 }
706
707 return page;
708 }
709
710 /*
711 * common helper functions for hstate_next_node_to_{alloc|free}.
712 * We may have allocated or freed a huge page based on a different
713 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714 * be outside of *nodes_allowed. Ensure that we use an allowed
715 * node for alloc or free.
716 */
717 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718 {
719 nid = next_node(nid, *nodes_allowed);
720 if (nid == MAX_NUMNODES)
721 nid = first_node(*nodes_allowed);
722 VM_BUG_ON(nid >= MAX_NUMNODES);
723
724 return nid;
725 }
726
727 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728 {
729 if (!node_isset(nid, *nodes_allowed))
730 nid = next_node_allowed(nid, nodes_allowed);
731 return nid;
732 }
733
734 /*
735 * returns the previously saved node ["this node"] from which to
736 * allocate a persistent huge page for the pool and advance the
737 * next node from which to allocate, handling wrap at end of node
738 * mask.
739 */
740 static int hstate_next_node_to_alloc(struct hstate *h,
741 nodemask_t *nodes_allowed)
742 {
743 int nid;
744
745 VM_BUG_ON(!nodes_allowed);
746
747 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749
750 return nid;
751 }
752
753 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754 {
755 struct page *page;
756 int start_nid;
757 int next_nid;
758 int ret = 0;
759
760 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761 next_nid = start_nid;
762
763 do {
764 page = alloc_fresh_huge_page_node(h, next_nid);
765 if (page) {
766 ret = 1;
767 break;
768 }
769 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770 } while (next_nid != start_nid);
771
772 if (ret)
773 count_vm_event(HTLB_BUDDY_PGALLOC);
774 else
775 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776
777 return ret;
778 }
779
780 /*
781 * helper for free_pool_huge_page() - return the previously saved
782 * node ["this node"] from which to free a huge page. Advance the
783 * next node id whether or not we find a free huge page to free so
784 * that the next attempt to free addresses the next node.
785 */
786 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787 {
788 int nid;
789
790 VM_BUG_ON(!nodes_allowed);
791
792 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794
795 return nid;
796 }
797
798 /*
799 * Free huge page from pool from next node to free.
800 * Attempt to keep persistent huge pages more or less
801 * balanced over allowed nodes.
802 * Called with hugetlb_lock locked.
803 */
804 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805 bool acct_surplus)
806 {
807 int start_nid;
808 int next_nid;
809 int ret = 0;
810
811 start_nid = hstate_next_node_to_free(h, nodes_allowed);
812 next_nid = start_nid;
813
814 do {
815 /*
816 * If we're returning unused surplus pages, only examine
817 * nodes with surplus pages.
818 */
819 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820 !list_empty(&h->hugepage_freelists[next_nid])) {
821 struct page *page =
822 list_entry(h->hugepage_freelists[next_nid].next,
823 struct page, lru);
824 list_del(&page->lru);
825 h->free_huge_pages--;
826 h->free_huge_pages_node[next_nid]--;
827 if (acct_surplus) {
828 h->surplus_huge_pages--;
829 h->surplus_huge_pages_node[next_nid]--;
830 }
831 update_and_free_page(h, page);
832 ret = 1;
833 break;
834 }
835 next_nid = hstate_next_node_to_free(h, nodes_allowed);
836 } while (next_nid != start_nid);
837
838 return ret;
839 }
840
841 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842 {
843 struct page *page;
844 unsigned int r_nid;
845
846 if (h->order >= MAX_ORDER)
847 return NULL;
848
849 /*
850 * Assume we will successfully allocate the surplus page to
851 * prevent racing processes from causing the surplus to exceed
852 * overcommit
853 *
854 * This however introduces a different race, where a process B
855 * tries to grow the static hugepage pool while alloc_pages() is
856 * called by process A. B will only examine the per-node
857 * counters in determining if surplus huge pages can be
858 * converted to normal huge pages in adjust_pool_surplus(). A
859 * won't be able to increment the per-node counter, until the
860 * lock is dropped by B, but B doesn't drop hugetlb_lock until
861 * no more huge pages can be converted from surplus to normal
862 * state (and doesn't try to convert again). Thus, we have a
863 * case where a surplus huge page exists, the pool is grown, and
864 * the surplus huge page still exists after, even though it
865 * should just have been converted to a normal huge page. This
866 * does not leak memory, though, as the hugepage will be freed
867 * once it is out of use. It also does not allow the counters to
868 * go out of whack in adjust_pool_surplus() as we don't modify
869 * the node values until we've gotten the hugepage and only the
870 * per-node value is checked there.
871 */
872 spin_lock(&hugetlb_lock);
873 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874 spin_unlock(&hugetlb_lock);
875 return NULL;
876 } else {
877 h->nr_huge_pages++;
878 h->surplus_huge_pages++;
879 }
880 spin_unlock(&hugetlb_lock);
881
882 if (nid == NUMA_NO_NODE)
883 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884 __GFP_REPEAT|__GFP_NOWARN,
885 huge_page_order(h));
886 else
887 page = alloc_pages_exact_node(nid,
888 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890
891 if (page && arch_prepare_hugepage(page)) {
892 __free_pages(page, huge_page_order(h));
893 page = NULL;
894 }
895
896 spin_lock(&hugetlb_lock);
897 if (page) {
898 INIT_LIST_HEAD(&page->lru);
899 r_nid = page_to_nid(page);
900 set_compound_page_dtor(page, free_huge_page);
901 set_hugetlb_cgroup(page, NULL);
902 /*
903 * We incremented the global counters already
904 */
905 h->nr_huge_pages_node[r_nid]++;
906 h->surplus_huge_pages_node[r_nid]++;
907 __count_vm_event(HTLB_BUDDY_PGALLOC);
908 } else {
909 h->nr_huge_pages--;
910 h->surplus_huge_pages--;
911 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912 }
913 spin_unlock(&hugetlb_lock);
914
915 return page;
916 }
917
918 /*
919 * This allocation function is useful in the context where vma is irrelevant.
920 * E.g. soft-offlining uses this function because it only cares physical
921 * address of error page.
922 */
923 struct page *alloc_huge_page_node(struct hstate *h, int nid)
924 {
925 struct page *page;
926
927 spin_lock(&hugetlb_lock);
928 page = dequeue_huge_page_node(h, nid);
929 spin_unlock(&hugetlb_lock);
930
931 if (!page) {
932 page = alloc_buddy_huge_page(h, nid);
933 if (page) {
934 spin_lock(&hugetlb_lock);
935 list_move(&page->lru, &h->hugepage_activelist);
936 spin_unlock(&hugetlb_lock);
937 }
938 }
939
940 return page;
941 }
942
943 /*
944 * Increase the hugetlb pool such that it can accommodate a reservation
945 * of size 'delta'.
946 */
947 static int gather_surplus_pages(struct hstate *h, int delta)
948 {
949 struct list_head surplus_list;
950 struct page *page, *tmp;
951 int ret, i;
952 int needed, allocated;
953 bool alloc_ok = true;
954
955 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
956 if (needed <= 0) {
957 h->resv_huge_pages += delta;
958 return 0;
959 }
960
961 allocated = 0;
962 INIT_LIST_HEAD(&surplus_list);
963
964 ret = -ENOMEM;
965 retry:
966 spin_unlock(&hugetlb_lock);
967 for (i = 0; i < needed; i++) {
968 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
969 if (!page) {
970 alloc_ok = false;
971 break;
972 }
973 list_add(&page->lru, &surplus_list);
974 }
975 allocated += i;
976
977 /*
978 * After retaking hugetlb_lock, we need to recalculate 'needed'
979 * because either resv_huge_pages or free_huge_pages may have changed.
980 */
981 spin_lock(&hugetlb_lock);
982 needed = (h->resv_huge_pages + delta) -
983 (h->free_huge_pages + allocated);
984 if (needed > 0) {
985 if (alloc_ok)
986 goto retry;
987 /*
988 * We were not able to allocate enough pages to
989 * satisfy the entire reservation so we free what
990 * we've allocated so far.
991 */
992 goto free;
993 }
994 /*
995 * The surplus_list now contains _at_least_ the number of extra pages
996 * needed to accommodate the reservation. Add the appropriate number
997 * of pages to the hugetlb pool and free the extras back to the buddy
998 * allocator. Commit the entire reservation here to prevent another
999 * process from stealing the pages as they are added to the pool but
1000 * before they are reserved.
1001 */
1002 needed += allocated;
1003 h->resv_huge_pages += delta;
1004 ret = 0;
1005
1006 /* Free the needed pages to the hugetlb pool */
1007 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1008 if ((--needed) < 0)
1009 break;
1010 /*
1011 * This page is now managed by the hugetlb allocator and has
1012 * no users -- drop the buddy allocator's reference.
1013 */
1014 put_page_testzero(page);
1015 VM_BUG_ON(page_count(page));
1016 enqueue_huge_page(h, page);
1017 }
1018 free:
1019 spin_unlock(&hugetlb_lock);
1020
1021 /* Free unnecessary surplus pages to the buddy allocator */
1022 if (!list_empty(&surplus_list)) {
1023 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024 put_page(page);
1025 }
1026 }
1027 spin_lock(&hugetlb_lock);
1028
1029 return ret;
1030 }
1031
1032 /*
1033 * When releasing a hugetlb pool reservation, any surplus pages that were
1034 * allocated to satisfy the reservation must be explicitly freed if they were
1035 * never used.
1036 * Called with hugetlb_lock held.
1037 */
1038 static void return_unused_surplus_pages(struct hstate *h,
1039 unsigned long unused_resv_pages)
1040 {
1041 unsigned long nr_pages;
1042
1043 /* Uncommit the reservation */
1044 h->resv_huge_pages -= unused_resv_pages;
1045
1046 /* Cannot return gigantic pages currently */
1047 if (h->order >= MAX_ORDER)
1048 return;
1049
1050 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1051
1052 /*
1053 * We want to release as many surplus pages as possible, spread
1054 * evenly across all nodes with memory. Iterate across these nodes
1055 * until we can no longer free unreserved surplus pages. This occurs
1056 * when the nodes with surplus pages have no free pages.
1057 * free_pool_huge_page() will balance the the freed pages across the
1058 * on-line nodes with memory and will handle the hstate accounting.
1059 */
1060 while (nr_pages--) {
1061 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1062 break;
1063 }
1064 }
1065
1066 /*
1067 * Determine if the huge page at addr within the vma has an associated
1068 * reservation. Where it does not we will need to logically increase
1069 * reservation and actually increase subpool usage before an allocation
1070 * can occur. Where any new reservation would be required the
1071 * reservation change is prepared, but not committed. Once the page
1072 * has been allocated from the subpool and instantiated the change should
1073 * be committed via vma_commit_reservation. No action is required on
1074 * failure.
1075 */
1076 static long vma_needs_reservation(struct hstate *h,
1077 struct vm_area_struct *vma, unsigned long addr)
1078 {
1079 struct address_space *mapping = vma->vm_file->f_mapping;
1080 struct inode *inode = mapping->host;
1081
1082 if (vma->vm_flags & VM_MAYSHARE) {
1083 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1084 return region_chg(&inode->i_mapping->private_list,
1085 idx, idx + 1);
1086
1087 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 return 1;
1089
1090 } else {
1091 long err;
1092 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1093 struct resv_map *reservations = vma_resv_map(vma);
1094
1095 err = region_chg(&reservations->regions, idx, idx + 1);
1096 if (err < 0)
1097 return err;
1098 return 0;
1099 }
1100 }
1101 static void vma_commit_reservation(struct hstate *h,
1102 struct vm_area_struct *vma, unsigned long addr)
1103 {
1104 struct address_space *mapping = vma->vm_file->f_mapping;
1105 struct inode *inode = mapping->host;
1106
1107 if (vma->vm_flags & VM_MAYSHARE) {
1108 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1110
1111 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1112 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1113 struct resv_map *reservations = vma_resv_map(vma);
1114
1115 /* Mark this page used in the map. */
1116 region_add(&reservations->regions, idx, idx + 1);
1117 }
1118 }
1119
1120 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1121 unsigned long addr, int avoid_reserve)
1122 {
1123 struct hugepage_subpool *spool = subpool_vma(vma);
1124 struct hstate *h = hstate_vma(vma);
1125 struct page *page;
1126 long chg;
1127 int ret, idx;
1128 struct hugetlb_cgroup *h_cg;
1129
1130 idx = hstate_index(h);
1131 /*
1132 * Processes that did not create the mapping will have no
1133 * reserves and will not have accounted against subpool
1134 * limit. Check that the subpool limit can be made before
1135 * satisfying the allocation MAP_NORESERVE mappings may also
1136 * need pages and subpool limit allocated allocated if no reserve
1137 * mapping overlaps.
1138 */
1139 chg = vma_needs_reservation(h, vma, addr);
1140 if (chg < 0)
1141 return ERR_PTR(-ENOMEM);
1142 if (chg)
1143 if (hugepage_subpool_get_pages(spool, chg))
1144 return ERR_PTR(-ENOSPC);
1145
1146 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1147 if (ret) {
1148 hugepage_subpool_put_pages(spool, chg);
1149 return ERR_PTR(-ENOSPC);
1150 }
1151 spin_lock(&hugetlb_lock);
1152 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1153 spin_unlock(&hugetlb_lock);
1154
1155 if (!page) {
1156 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1157 if (!page) {
1158 hugetlb_cgroup_uncharge_cgroup(idx,
1159 pages_per_huge_page(h),
1160 h_cg);
1161 hugepage_subpool_put_pages(spool, chg);
1162 return ERR_PTR(-ENOSPC);
1163 }
1164 spin_lock(&hugetlb_lock);
1165 list_move(&page->lru, &h->hugepage_activelist);
1166 spin_unlock(&hugetlb_lock);
1167 }
1168
1169 set_page_private(page, (unsigned long)spool);
1170
1171 vma_commit_reservation(h, vma, addr);
1172 /* update page cgroup details */
1173 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1174 return page;
1175 }
1176
1177 int __weak alloc_bootmem_huge_page(struct hstate *h)
1178 {
1179 struct huge_bootmem_page *m;
1180 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1181
1182 while (nr_nodes) {
1183 void *addr;
1184
1185 addr = __alloc_bootmem_node_nopanic(
1186 NODE_DATA(hstate_next_node_to_alloc(h,
1187 &node_states[N_HIGH_MEMORY])),
1188 huge_page_size(h), huge_page_size(h), 0);
1189
1190 if (addr) {
1191 /*
1192 * Use the beginning of the huge page to store the
1193 * huge_bootmem_page struct (until gather_bootmem
1194 * puts them into the mem_map).
1195 */
1196 m = addr;
1197 goto found;
1198 }
1199 nr_nodes--;
1200 }
1201 return 0;
1202
1203 found:
1204 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1205 /* Put them into a private list first because mem_map is not up yet */
1206 list_add(&m->list, &huge_boot_pages);
1207 m->hstate = h;
1208 return 1;
1209 }
1210
1211 static void prep_compound_huge_page(struct page *page, int order)
1212 {
1213 if (unlikely(order > (MAX_ORDER - 1)))
1214 prep_compound_gigantic_page(page, order);
1215 else
1216 prep_compound_page(page, order);
1217 }
1218
1219 /* Put bootmem huge pages into the standard lists after mem_map is up */
1220 static void __init gather_bootmem_prealloc(void)
1221 {
1222 struct huge_bootmem_page *m;
1223
1224 list_for_each_entry(m, &huge_boot_pages, list) {
1225 struct hstate *h = m->hstate;
1226 struct page *page;
1227
1228 #ifdef CONFIG_HIGHMEM
1229 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1230 free_bootmem_late((unsigned long)m,
1231 sizeof(struct huge_bootmem_page));
1232 #else
1233 page = virt_to_page(m);
1234 #endif
1235 __ClearPageReserved(page);
1236 WARN_ON(page_count(page) != 1);
1237 prep_compound_huge_page(page, h->order);
1238 prep_new_huge_page(h, page, page_to_nid(page));
1239 /*
1240 * If we had gigantic hugepages allocated at boot time, we need
1241 * to restore the 'stolen' pages to totalram_pages in order to
1242 * fix confusing memory reports from free(1) and another
1243 * side-effects, like CommitLimit going negative.
1244 */
1245 if (h->order > (MAX_ORDER - 1))
1246 totalram_pages += 1 << h->order;
1247 }
1248 }
1249
1250 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1251 {
1252 unsigned long i;
1253
1254 for (i = 0; i < h->max_huge_pages; ++i) {
1255 if (h->order >= MAX_ORDER) {
1256 if (!alloc_bootmem_huge_page(h))
1257 break;
1258 } else if (!alloc_fresh_huge_page(h,
1259 &node_states[N_HIGH_MEMORY]))
1260 break;
1261 }
1262 h->max_huge_pages = i;
1263 }
1264
1265 static void __init hugetlb_init_hstates(void)
1266 {
1267 struct hstate *h;
1268
1269 for_each_hstate(h) {
1270 /* oversize hugepages were init'ed in early boot */
1271 if (h->order < MAX_ORDER)
1272 hugetlb_hstate_alloc_pages(h);
1273 }
1274 }
1275
1276 static char * __init memfmt(char *buf, unsigned long n)
1277 {
1278 if (n >= (1UL << 30))
1279 sprintf(buf, "%lu GB", n >> 30);
1280 else if (n >= (1UL << 20))
1281 sprintf(buf, "%lu MB", n >> 20);
1282 else
1283 sprintf(buf, "%lu KB", n >> 10);
1284 return buf;
1285 }
1286
1287 static void __init report_hugepages(void)
1288 {
1289 struct hstate *h;
1290
1291 for_each_hstate(h) {
1292 char buf[32];
1293 printk(KERN_INFO "HugeTLB registered %s page size, "
1294 "pre-allocated %ld pages\n",
1295 memfmt(buf, huge_page_size(h)),
1296 h->free_huge_pages);
1297 }
1298 }
1299
1300 #ifdef CONFIG_HIGHMEM
1301 static void try_to_free_low(struct hstate *h, unsigned long count,
1302 nodemask_t *nodes_allowed)
1303 {
1304 int i;
1305
1306 if (h->order >= MAX_ORDER)
1307 return;
1308
1309 for_each_node_mask(i, *nodes_allowed) {
1310 struct page *page, *next;
1311 struct list_head *freel = &h->hugepage_freelists[i];
1312 list_for_each_entry_safe(page, next, freel, lru) {
1313 if (count >= h->nr_huge_pages)
1314 return;
1315 if (PageHighMem(page))
1316 continue;
1317 list_del(&page->lru);
1318 update_and_free_page(h, page);
1319 h->free_huge_pages--;
1320 h->free_huge_pages_node[page_to_nid(page)]--;
1321 }
1322 }
1323 }
1324 #else
1325 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1326 nodemask_t *nodes_allowed)
1327 {
1328 }
1329 #endif
1330
1331 /*
1332 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1333 * balanced by operating on them in a round-robin fashion.
1334 * Returns 1 if an adjustment was made.
1335 */
1336 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1337 int delta)
1338 {
1339 int start_nid, next_nid;
1340 int ret = 0;
1341
1342 VM_BUG_ON(delta != -1 && delta != 1);
1343
1344 if (delta < 0)
1345 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1346 else
1347 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1348 next_nid = start_nid;
1349
1350 do {
1351 int nid = next_nid;
1352 if (delta < 0) {
1353 /*
1354 * To shrink on this node, there must be a surplus page
1355 */
1356 if (!h->surplus_huge_pages_node[nid]) {
1357 next_nid = hstate_next_node_to_alloc(h,
1358 nodes_allowed);
1359 continue;
1360 }
1361 }
1362 if (delta > 0) {
1363 /*
1364 * Surplus cannot exceed the total number of pages
1365 */
1366 if (h->surplus_huge_pages_node[nid] >=
1367 h->nr_huge_pages_node[nid]) {
1368 next_nid = hstate_next_node_to_free(h,
1369 nodes_allowed);
1370 continue;
1371 }
1372 }
1373
1374 h->surplus_huge_pages += delta;
1375 h->surplus_huge_pages_node[nid] += delta;
1376 ret = 1;
1377 break;
1378 } while (next_nid != start_nid);
1379
1380 return ret;
1381 }
1382
1383 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1384 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1385 nodemask_t *nodes_allowed)
1386 {
1387 unsigned long min_count, ret;
1388
1389 if (h->order >= MAX_ORDER)
1390 return h->max_huge_pages;
1391
1392 /*
1393 * Increase the pool size
1394 * First take pages out of surplus state. Then make up the
1395 * remaining difference by allocating fresh huge pages.
1396 *
1397 * We might race with alloc_buddy_huge_page() here and be unable
1398 * to convert a surplus huge page to a normal huge page. That is
1399 * not critical, though, it just means the overall size of the
1400 * pool might be one hugepage larger than it needs to be, but
1401 * within all the constraints specified by the sysctls.
1402 */
1403 spin_lock(&hugetlb_lock);
1404 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1405 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1406 break;
1407 }
1408
1409 while (count > persistent_huge_pages(h)) {
1410 /*
1411 * If this allocation races such that we no longer need the
1412 * page, free_huge_page will handle it by freeing the page
1413 * and reducing the surplus.
1414 */
1415 spin_unlock(&hugetlb_lock);
1416 ret = alloc_fresh_huge_page(h, nodes_allowed);
1417 spin_lock(&hugetlb_lock);
1418 if (!ret)
1419 goto out;
1420
1421 /* Bail for signals. Probably ctrl-c from user */
1422 if (signal_pending(current))
1423 goto out;
1424 }
1425
1426 /*
1427 * Decrease the pool size
1428 * First return free pages to the buddy allocator (being careful
1429 * to keep enough around to satisfy reservations). Then place
1430 * pages into surplus state as needed so the pool will shrink
1431 * to the desired size as pages become free.
1432 *
1433 * By placing pages into the surplus state independent of the
1434 * overcommit value, we are allowing the surplus pool size to
1435 * exceed overcommit. There are few sane options here. Since
1436 * alloc_buddy_huge_page() is checking the global counter,
1437 * though, we'll note that we're not allowed to exceed surplus
1438 * and won't grow the pool anywhere else. Not until one of the
1439 * sysctls are changed, or the surplus pages go out of use.
1440 */
1441 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1442 min_count = max(count, min_count);
1443 try_to_free_low(h, min_count, nodes_allowed);
1444 while (min_count < persistent_huge_pages(h)) {
1445 if (!free_pool_huge_page(h, nodes_allowed, 0))
1446 break;
1447 }
1448 while (count < persistent_huge_pages(h)) {
1449 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1450 break;
1451 }
1452 out:
1453 ret = persistent_huge_pages(h);
1454 spin_unlock(&hugetlb_lock);
1455 return ret;
1456 }
1457
1458 #define HSTATE_ATTR_RO(_name) \
1459 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1460
1461 #define HSTATE_ATTR(_name) \
1462 static struct kobj_attribute _name##_attr = \
1463 __ATTR(_name, 0644, _name##_show, _name##_store)
1464
1465 static struct kobject *hugepages_kobj;
1466 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1467
1468 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1469
1470 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1471 {
1472 int i;
1473
1474 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1475 if (hstate_kobjs[i] == kobj) {
1476 if (nidp)
1477 *nidp = NUMA_NO_NODE;
1478 return &hstates[i];
1479 }
1480
1481 return kobj_to_node_hstate(kobj, nidp);
1482 }
1483
1484 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1485 struct kobj_attribute *attr, char *buf)
1486 {
1487 struct hstate *h;
1488 unsigned long nr_huge_pages;
1489 int nid;
1490
1491 h = kobj_to_hstate(kobj, &nid);
1492 if (nid == NUMA_NO_NODE)
1493 nr_huge_pages = h->nr_huge_pages;
1494 else
1495 nr_huge_pages = h->nr_huge_pages_node[nid];
1496
1497 return sprintf(buf, "%lu\n", nr_huge_pages);
1498 }
1499
1500 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1501 struct kobject *kobj, struct kobj_attribute *attr,
1502 const char *buf, size_t len)
1503 {
1504 int err;
1505 int nid;
1506 unsigned long count;
1507 struct hstate *h;
1508 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1509
1510 err = strict_strtoul(buf, 10, &count);
1511 if (err)
1512 goto out;
1513
1514 h = kobj_to_hstate(kobj, &nid);
1515 if (h->order >= MAX_ORDER) {
1516 err = -EINVAL;
1517 goto out;
1518 }
1519
1520 if (nid == NUMA_NO_NODE) {
1521 /*
1522 * global hstate attribute
1523 */
1524 if (!(obey_mempolicy &&
1525 init_nodemask_of_mempolicy(nodes_allowed))) {
1526 NODEMASK_FREE(nodes_allowed);
1527 nodes_allowed = &node_states[N_HIGH_MEMORY];
1528 }
1529 } else if (nodes_allowed) {
1530 /*
1531 * per node hstate attribute: adjust count to global,
1532 * but restrict alloc/free to the specified node.
1533 */
1534 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1535 init_nodemask_of_node(nodes_allowed, nid);
1536 } else
1537 nodes_allowed = &node_states[N_HIGH_MEMORY];
1538
1539 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1540
1541 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1542 NODEMASK_FREE(nodes_allowed);
1543
1544 return len;
1545 out:
1546 NODEMASK_FREE(nodes_allowed);
1547 return err;
1548 }
1549
1550 static ssize_t nr_hugepages_show(struct kobject *kobj,
1551 struct kobj_attribute *attr, char *buf)
1552 {
1553 return nr_hugepages_show_common(kobj, attr, buf);
1554 }
1555
1556 static ssize_t nr_hugepages_store(struct kobject *kobj,
1557 struct kobj_attribute *attr, const char *buf, size_t len)
1558 {
1559 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1560 }
1561 HSTATE_ATTR(nr_hugepages);
1562
1563 #ifdef CONFIG_NUMA
1564
1565 /*
1566 * hstate attribute for optionally mempolicy-based constraint on persistent
1567 * huge page alloc/free.
1568 */
1569 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1570 struct kobj_attribute *attr, char *buf)
1571 {
1572 return nr_hugepages_show_common(kobj, attr, buf);
1573 }
1574
1575 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1576 struct kobj_attribute *attr, const char *buf, size_t len)
1577 {
1578 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1579 }
1580 HSTATE_ATTR(nr_hugepages_mempolicy);
1581 #endif
1582
1583
1584 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1585 struct kobj_attribute *attr, char *buf)
1586 {
1587 struct hstate *h = kobj_to_hstate(kobj, NULL);
1588 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1589 }
1590
1591 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1592 struct kobj_attribute *attr, const char *buf, size_t count)
1593 {
1594 int err;
1595 unsigned long input;
1596 struct hstate *h = kobj_to_hstate(kobj, NULL);
1597
1598 if (h->order >= MAX_ORDER)
1599 return -EINVAL;
1600
1601 err = strict_strtoul(buf, 10, &input);
1602 if (err)
1603 return err;
1604
1605 spin_lock(&hugetlb_lock);
1606 h->nr_overcommit_huge_pages = input;
1607 spin_unlock(&hugetlb_lock);
1608
1609 return count;
1610 }
1611 HSTATE_ATTR(nr_overcommit_hugepages);
1612
1613 static ssize_t free_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615 {
1616 struct hstate *h;
1617 unsigned long free_huge_pages;
1618 int nid;
1619
1620 h = kobj_to_hstate(kobj, &nid);
1621 if (nid == NUMA_NO_NODE)
1622 free_huge_pages = h->free_huge_pages;
1623 else
1624 free_huge_pages = h->free_huge_pages_node[nid];
1625
1626 return sprintf(buf, "%lu\n", free_huge_pages);
1627 }
1628 HSTATE_ATTR_RO(free_hugepages);
1629
1630 static ssize_t resv_hugepages_show(struct kobject *kobj,
1631 struct kobj_attribute *attr, char *buf)
1632 {
1633 struct hstate *h = kobj_to_hstate(kobj, NULL);
1634 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1635 }
1636 HSTATE_ATTR_RO(resv_hugepages);
1637
1638 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1639 struct kobj_attribute *attr, char *buf)
1640 {
1641 struct hstate *h;
1642 unsigned long surplus_huge_pages;
1643 int nid;
1644
1645 h = kobj_to_hstate(kobj, &nid);
1646 if (nid == NUMA_NO_NODE)
1647 surplus_huge_pages = h->surplus_huge_pages;
1648 else
1649 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1650
1651 return sprintf(buf, "%lu\n", surplus_huge_pages);
1652 }
1653 HSTATE_ATTR_RO(surplus_hugepages);
1654
1655 static struct attribute *hstate_attrs[] = {
1656 &nr_hugepages_attr.attr,
1657 &nr_overcommit_hugepages_attr.attr,
1658 &free_hugepages_attr.attr,
1659 &resv_hugepages_attr.attr,
1660 &surplus_hugepages_attr.attr,
1661 #ifdef CONFIG_NUMA
1662 &nr_hugepages_mempolicy_attr.attr,
1663 #endif
1664 NULL,
1665 };
1666
1667 static struct attribute_group hstate_attr_group = {
1668 .attrs = hstate_attrs,
1669 };
1670
1671 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1672 struct kobject **hstate_kobjs,
1673 struct attribute_group *hstate_attr_group)
1674 {
1675 int retval;
1676 int hi = hstate_index(h);
1677
1678 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1679 if (!hstate_kobjs[hi])
1680 return -ENOMEM;
1681
1682 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1683 if (retval)
1684 kobject_put(hstate_kobjs[hi]);
1685
1686 return retval;
1687 }
1688
1689 static void __init hugetlb_sysfs_init(void)
1690 {
1691 struct hstate *h;
1692 int err;
1693
1694 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1695 if (!hugepages_kobj)
1696 return;
1697
1698 for_each_hstate(h) {
1699 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1700 hstate_kobjs, &hstate_attr_group);
1701 if (err)
1702 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1703 h->name);
1704 }
1705 }
1706
1707 #ifdef CONFIG_NUMA
1708
1709 /*
1710 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1711 * with node devices in node_devices[] using a parallel array. The array
1712 * index of a node device or _hstate == node id.
1713 * This is here to avoid any static dependency of the node device driver, in
1714 * the base kernel, on the hugetlb module.
1715 */
1716 struct node_hstate {
1717 struct kobject *hugepages_kobj;
1718 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1719 };
1720 struct node_hstate node_hstates[MAX_NUMNODES];
1721
1722 /*
1723 * A subset of global hstate attributes for node devices
1724 */
1725 static struct attribute *per_node_hstate_attrs[] = {
1726 &nr_hugepages_attr.attr,
1727 &free_hugepages_attr.attr,
1728 &surplus_hugepages_attr.attr,
1729 NULL,
1730 };
1731
1732 static struct attribute_group per_node_hstate_attr_group = {
1733 .attrs = per_node_hstate_attrs,
1734 };
1735
1736 /*
1737 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1738 * Returns node id via non-NULL nidp.
1739 */
1740 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1741 {
1742 int nid;
1743
1744 for (nid = 0; nid < nr_node_ids; nid++) {
1745 struct node_hstate *nhs = &node_hstates[nid];
1746 int i;
1747 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1748 if (nhs->hstate_kobjs[i] == kobj) {
1749 if (nidp)
1750 *nidp = nid;
1751 return &hstates[i];
1752 }
1753 }
1754
1755 BUG();
1756 return NULL;
1757 }
1758
1759 /*
1760 * Unregister hstate attributes from a single node device.
1761 * No-op if no hstate attributes attached.
1762 */
1763 void hugetlb_unregister_node(struct node *node)
1764 {
1765 struct hstate *h;
1766 struct node_hstate *nhs = &node_hstates[node->dev.id];
1767
1768 if (!nhs->hugepages_kobj)
1769 return; /* no hstate attributes */
1770
1771 for_each_hstate(h) {
1772 int idx = hstate_index(h);
1773 if (nhs->hstate_kobjs[idx]) {
1774 kobject_put(nhs->hstate_kobjs[idx]);
1775 nhs->hstate_kobjs[idx] = NULL;
1776 }
1777 }
1778
1779 kobject_put(nhs->hugepages_kobj);
1780 nhs->hugepages_kobj = NULL;
1781 }
1782
1783 /*
1784 * hugetlb module exit: unregister hstate attributes from node devices
1785 * that have them.
1786 */
1787 static void hugetlb_unregister_all_nodes(void)
1788 {
1789 int nid;
1790
1791 /*
1792 * disable node device registrations.
1793 */
1794 register_hugetlbfs_with_node(NULL, NULL);
1795
1796 /*
1797 * remove hstate attributes from any nodes that have them.
1798 */
1799 for (nid = 0; nid < nr_node_ids; nid++)
1800 hugetlb_unregister_node(&node_devices[nid]);
1801 }
1802
1803 /*
1804 * Register hstate attributes for a single node device.
1805 * No-op if attributes already registered.
1806 */
1807 void hugetlb_register_node(struct node *node)
1808 {
1809 struct hstate *h;
1810 struct node_hstate *nhs = &node_hstates[node->dev.id];
1811 int err;
1812
1813 if (nhs->hugepages_kobj)
1814 return; /* already allocated */
1815
1816 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1817 &node->dev.kobj);
1818 if (!nhs->hugepages_kobj)
1819 return;
1820
1821 for_each_hstate(h) {
1822 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1823 nhs->hstate_kobjs,
1824 &per_node_hstate_attr_group);
1825 if (err) {
1826 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1827 " for node %d\n",
1828 h->name, node->dev.id);
1829 hugetlb_unregister_node(node);
1830 break;
1831 }
1832 }
1833 }
1834
1835 /*
1836 * hugetlb init time: register hstate attributes for all registered node
1837 * devices of nodes that have memory. All on-line nodes should have
1838 * registered their associated device by this time.
1839 */
1840 static void hugetlb_register_all_nodes(void)
1841 {
1842 int nid;
1843
1844 for_each_node_state(nid, N_HIGH_MEMORY) {
1845 struct node *node = &node_devices[nid];
1846 if (node->dev.id == nid)
1847 hugetlb_register_node(node);
1848 }
1849
1850 /*
1851 * Let the node device driver know we're here so it can
1852 * [un]register hstate attributes on node hotplug.
1853 */
1854 register_hugetlbfs_with_node(hugetlb_register_node,
1855 hugetlb_unregister_node);
1856 }
1857 #else /* !CONFIG_NUMA */
1858
1859 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1860 {
1861 BUG();
1862 if (nidp)
1863 *nidp = -1;
1864 return NULL;
1865 }
1866
1867 static void hugetlb_unregister_all_nodes(void) { }
1868
1869 static void hugetlb_register_all_nodes(void) { }
1870
1871 #endif
1872
1873 static void __exit hugetlb_exit(void)
1874 {
1875 struct hstate *h;
1876
1877 hugetlb_unregister_all_nodes();
1878
1879 for_each_hstate(h) {
1880 kobject_put(hstate_kobjs[hstate_index(h)]);
1881 }
1882
1883 kobject_put(hugepages_kobj);
1884 }
1885 module_exit(hugetlb_exit);
1886
1887 static int __init hugetlb_init(void)
1888 {
1889 /* Some platform decide whether they support huge pages at boot
1890 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1891 * there is no such support
1892 */
1893 if (HPAGE_SHIFT == 0)
1894 return 0;
1895
1896 if (!size_to_hstate(default_hstate_size)) {
1897 default_hstate_size = HPAGE_SIZE;
1898 if (!size_to_hstate(default_hstate_size))
1899 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1900 }
1901 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1902 if (default_hstate_max_huge_pages)
1903 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1904
1905 hugetlb_init_hstates();
1906
1907 gather_bootmem_prealloc();
1908
1909 report_hugepages();
1910
1911 hugetlb_sysfs_init();
1912
1913 hugetlb_register_all_nodes();
1914
1915 return 0;
1916 }
1917 module_init(hugetlb_init);
1918
1919 /* Should be called on processing a hugepagesz=... option */
1920 void __init hugetlb_add_hstate(unsigned order)
1921 {
1922 struct hstate *h;
1923 unsigned long i;
1924
1925 if (size_to_hstate(PAGE_SIZE << order)) {
1926 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1927 return;
1928 }
1929 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1930 BUG_ON(order == 0);
1931 h = &hstates[hugetlb_max_hstate++];
1932 h->order = order;
1933 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1934 h->nr_huge_pages = 0;
1935 h->free_huge_pages = 0;
1936 for (i = 0; i < MAX_NUMNODES; ++i)
1937 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1938 INIT_LIST_HEAD(&h->hugepage_activelist);
1939 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1940 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1941 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1942 huge_page_size(h)/1024);
1943 /*
1944 * Add cgroup control files only if the huge page consists
1945 * of more than two normal pages. This is because we use
1946 * page[2].lru.next for storing cgoup details.
1947 */
1948 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1949 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1950
1951 parsed_hstate = h;
1952 }
1953
1954 static int __init hugetlb_nrpages_setup(char *s)
1955 {
1956 unsigned long *mhp;
1957 static unsigned long *last_mhp;
1958
1959 /*
1960 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1961 * so this hugepages= parameter goes to the "default hstate".
1962 */
1963 if (!hugetlb_max_hstate)
1964 mhp = &default_hstate_max_huge_pages;
1965 else
1966 mhp = &parsed_hstate->max_huge_pages;
1967
1968 if (mhp == last_mhp) {
1969 printk(KERN_WARNING "hugepages= specified twice without "
1970 "interleaving hugepagesz=, ignoring\n");
1971 return 1;
1972 }
1973
1974 if (sscanf(s, "%lu", mhp) <= 0)
1975 *mhp = 0;
1976
1977 /*
1978 * Global state is always initialized later in hugetlb_init.
1979 * But we need to allocate >= MAX_ORDER hstates here early to still
1980 * use the bootmem allocator.
1981 */
1982 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1983 hugetlb_hstate_alloc_pages(parsed_hstate);
1984
1985 last_mhp = mhp;
1986
1987 return 1;
1988 }
1989 __setup("hugepages=", hugetlb_nrpages_setup);
1990
1991 static int __init hugetlb_default_setup(char *s)
1992 {
1993 default_hstate_size = memparse(s, &s);
1994 return 1;
1995 }
1996 __setup("default_hugepagesz=", hugetlb_default_setup);
1997
1998 static unsigned int cpuset_mems_nr(unsigned int *array)
1999 {
2000 int node;
2001 unsigned int nr = 0;
2002
2003 for_each_node_mask(node, cpuset_current_mems_allowed)
2004 nr += array[node];
2005
2006 return nr;
2007 }
2008
2009 #ifdef CONFIG_SYSCTL
2010 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2011 struct ctl_table *table, int write,
2012 void __user *buffer, size_t *length, loff_t *ppos)
2013 {
2014 struct hstate *h = &default_hstate;
2015 unsigned long tmp;
2016 int ret;
2017
2018 tmp = h->max_huge_pages;
2019
2020 if (write && h->order >= MAX_ORDER)
2021 return -EINVAL;
2022
2023 table->data = &tmp;
2024 table->maxlen = sizeof(unsigned long);
2025 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2026 if (ret)
2027 goto out;
2028
2029 if (write) {
2030 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2031 GFP_KERNEL | __GFP_NORETRY);
2032 if (!(obey_mempolicy &&
2033 init_nodemask_of_mempolicy(nodes_allowed))) {
2034 NODEMASK_FREE(nodes_allowed);
2035 nodes_allowed = &node_states[N_HIGH_MEMORY];
2036 }
2037 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2038
2039 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2040 NODEMASK_FREE(nodes_allowed);
2041 }
2042 out:
2043 return ret;
2044 }
2045
2046 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2047 void __user *buffer, size_t *length, loff_t *ppos)
2048 {
2049
2050 return hugetlb_sysctl_handler_common(false, table, write,
2051 buffer, length, ppos);
2052 }
2053
2054 #ifdef CONFIG_NUMA
2055 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2056 void __user *buffer, size_t *length, loff_t *ppos)
2057 {
2058 return hugetlb_sysctl_handler_common(true, table, write,
2059 buffer, length, ppos);
2060 }
2061 #endif /* CONFIG_NUMA */
2062
2063 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2064 void __user *buffer,
2065 size_t *length, loff_t *ppos)
2066 {
2067 proc_dointvec(table, write, buffer, length, ppos);
2068 if (hugepages_treat_as_movable)
2069 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2070 else
2071 htlb_alloc_mask = GFP_HIGHUSER;
2072 return 0;
2073 }
2074
2075 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2076 void __user *buffer,
2077 size_t *length, loff_t *ppos)
2078 {
2079 struct hstate *h = &default_hstate;
2080 unsigned long tmp;
2081 int ret;
2082
2083 tmp = h->nr_overcommit_huge_pages;
2084
2085 if (write && h->order >= MAX_ORDER)
2086 return -EINVAL;
2087
2088 table->data = &tmp;
2089 table->maxlen = sizeof(unsigned long);
2090 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2091 if (ret)
2092 goto out;
2093
2094 if (write) {
2095 spin_lock(&hugetlb_lock);
2096 h->nr_overcommit_huge_pages = tmp;
2097 spin_unlock(&hugetlb_lock);
2098 }
2099 out:
2100 return ret;
2101 }
2102
2103 #endif /* CONFIG_SYSCTL */
2104
2105 void hugetlb_report_meminfo(struct seq_file *m)
2106 {
2107 struct hstate *h = &default_hstate;
2108 seq_printf(m,
2109 "HugePages_Total: %5lu\n"
2110 "HugePages_Free: %5lu\n"
2111 "HugePages_Rsvd: %5lu\n"
2112 "HugePages_Surp: %5lu\n"
2113 "Hugepagesize: %8lu kB\n",
2114 h->nr_huge_pages,
2115 h->free_huge_pages,
2116 h->resv_huge_pages,
2117 h->surplus_huge_pages,
2118 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2119 }
2120
2121 int hugetlb_report_node_meminfo(int nid, char *buf)
2122 {
2123 struct hstate *h = &default_hstate;
2124 return sprintf(buf,
2125 "Node %d HugePages_Total: %5u\n"
2126 "Node %d HugePages_Free: %5u\n"
2127 "Node %d HugePages_Surp: %5u\n",
2128 nid, h->nr_huge_pages_node[nid],
2129 nid, h->free_huge_pages_node[nid],
2130 nid, h->surplus_huge_pages_node[nid]);
2131 }
2132
2133 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2134 unsigned long hugetlb_total_pages(void)
2135 {
2136 struct hstate *h = &default_hstate;
2137 return h->nr_huge_pages * pages_per_huge_page(h);
2138 }
2139
2140 static int hugetlb_acct_memory(struct hstate *h, long delta)
2141 {
2142 int ret = -ENOMEM;
2143
2144 spin_lock(&hugetlb_lock);
2145 /*
2146 * When cpuset is configured, it breaks the strict hugetlb page
2147 * reservation as the accounting is done on a global variable. Such
2148 * reservation is completely rubbish in the presence of cpuset because
2149 * the reservation is not checked against page availability for the
2150 * current cpuset. Application can still potentially OOM'ed by kernel
2151 * with lack of free htlb page in cpuset that the task is in.
2152 * Attempt to enforce strict accounting with cpuset is almost
2153 * impossible (or too ugly) because cpuset is too fluid that
2154 * task or memory node can be dynamically moved between cpusets.
2155 *
2156 * The change of semantics for shared hugetlb mapping with cpuset is
2157 * undesirable. However, in order to preserve some of the semantics,
2158 * we fall back to check against current free page availability as
2159 * a best attempt and hopefully to minimize the impact of changing
2160 * semantics that cpuset has.
2161 */
2162 if (delta > 0) {
2163 if (gather_surplus_pages(h, delta) < 0)
2164 goto out;
2165
2166 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2167 return_unused_surplus_pages(h, delta);
2168 goto out;
2169 }
2170 }
2171
2172 ret = 0;
2173 if (delta < 0)
2174 return_unused_surplus_pages(h, (unsigned long) -delta);
2175
2176 out:
2177 spin_unlock(&hugetlb_lock);
2178 return ret;
2179 }
2180
2181 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2182 {
2183 struct resv_map *reservations = vma_resv_map(vma);
2184
2185 /*
2186 * This new VMA should share its siblings reservation map if present.
2187 * The VMA will only ever have a valid reservation map pointer where
2188 * it is being copied for another still existing VMA. As that VMA
2189 * has a reference to the reservation map it cannot disappear until
2190 * after this open call completes. It is therefore safe to take a
2191 * new reference here without additional locking.
2192 */
2193 if (reservations)
2194 kref_get(&reservations->refs);
2195 }
2196
2197 static void resv_map_put(struct vm_area_struct *vma)
2198 {
2199 struct resv_map *reservations = vma_resv_map(vma);
2200
2201 if (!reservations)
2202 return;
2203 kref_put(&reservations->refs, resv_map_release);
2204 }
2205
2206 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2207 {
2208 struct hstate *h = hstate_vma(vma);
2209 struct resv_map *reservations = vma_resv_map(vma);
2210 struct hugepage_subpool *spool = subpool_vma(vma);
2211 unsigned long reserve;
2212 unsigned long start;
2213 unsigned long end;
2214
2215 if (reservations) {
2216 start = vma_hugecache_offset(h, vma, vma->vm_start);
2217 end = vma_hugecache_offset(h, vma, vma->vm_end);
2218
2219 reserve = (end - start) -
2220 region_count(&reservations->regions, start, end);
2221
2222 resv_map_put(vma);
2223
2224 if (reserve) {
2225 hugetlb_acct_memory(h, -reserve);
2226 hugepage_subpool_put_pages(spool, reserve);
2227 }
2228 }
2229 }
2230
2231 /*
2232 * We cannot handle pagefaults against hugetlb pages at all. They cause
2233 * handle_mm_fault() to try to instantiate regular-sized pages in the
2234 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2235 * this far.
2236 */
2237 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2238 {
2239 BUG();
2240 return 0;
2241 }
2242
2243 const struct vm_operations_struct hugetlb_vm_ops = {
2244 .fault = hugetlb_vm_op_fault,
2245 .open = hugetlb_vm_op_open,
2246 .close = hugetlb_vm_op_close,
2247 };
2248
2249 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2250 int writable)
2251 {
2252 pte_t entry;
2253
2254 if (writable) {
2255 entry =
2256 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2257 } else {
2258 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2259 }
2260 entry = pte_mkyoung(entry);
2261 entry = pte_mkhuge(entry);
2262 entry = arch_make_huge_pte(entry, vma, page, writable);
2263
2264 return entry;
2265 }
2266
2267 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2268 unsigned long address, pte_t *ptep)
2269 {
2270 pte_t entry;
2271
2272 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2273 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2274 update_mmu_cache(vma, address, ptep);
2275 }
2276
2277
2278 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2279 struct vm_area_struct *vma)
2280 {
2281 pte_t *src_pte, *dst_pte, entry;
2282 struct page *ptepage;
2283 unsigned long addr;
2284 int cow;
2285 struct hstate *h = hstate_vma(vma);
2286 unsigned long sz = huge_page_size(h);
2287
2288 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2289
2290 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2291 src_pte = huge_pte_offset(src, addr);
2292 if (!src_pte)
2293 continue;
2294 dst_pte = huge_pte_alloc(dst, addr, sz);
2295 if (!dst_pte)
2296 goto nomem;
2297
2298 /* If the pagetables are shared don't copy or take references */
2299 if (dst_pte == src_pte)
2300 continue;
2301
2302 spin_lock(&dst->page_table_lock);
2303 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2304 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2305 if (cow)
2306 huge_ptep_set_wrprotect(src, addr, src_pte);
2307 entry = huge_ptep_get(src_pte);
2308 ptepage = pte_page(entry);
2309 get_page(ptepage);
2310 page_dup_rmap(ptepage);
2311 set_huge_pte_at(dst, addr, dst_pte, entry);
2312 }
2313 spin_unlock(&src->page_table_lock);
2314 spin_unlock(&dst->page_table_lock);
2315 }
2316 return 0;
2317
2318 nomem:
2319 return -ENOMEM;
2320 }
2321
2322 static int is_hugetlb_entry_migration(pte_t pte)
2323 {
2324 swp_entry_t swp;
2325
2326 if (huge_pte_none(pte) || pte_present(pte))
2327 return 0;
2328 swp = pte_to_swp_entry(pte);
2329 if (non_swap_entry(swp) && is_migration_entry(swp))
2330 return 1;
2331 else
2332 return 0;
2333 }
2334
2335 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2336 {
2337 swp_entry_t swp;
2338
2339 if (huge_pte_none(pte) || pte_present(pte))
2340 return 0;
2341 swp = pte_to_swp_entry(pte);
2342 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2343 return 1;
2344 else
2345 return 0;
2346 }
2347
2348 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2349 unsigned long start, unsigned long end,
2350 struct page *ref_page)
2351 {
2352 int force_flush = 0;
2353 struct mm_struct *mm = vma->vm_mm;
2354 unsigned long address;
2355 pte_t *ptep;
2356 pte_t pte;
2357 struct page *page;
2358 struct hstate *h = hstate_vma(vma);
2359 unsigned long sz = huge_page_size(h);
2360
2361 WARN_ON(!is_vm_hugetlb_page(vma));
2362 BUG_ON(start & ~huge_page_mask(h));
2363 BUG_ON(end & ~huge_page_mask(h));
2364
2365 tlb_start_vma(tlb, vma);
2366 mmu_notifier_invalidate_range_start(mm, start, end);
2367 again:
2368 spin_lock(&mm->page_table_lock);
2369 for (address = start; address < end; address += sz) {
2370 ptep = huge_pte_offset(mm, address);
2371 if (!ptep)
2372 continue;
2373
2374 if (huge_pmd_unshare(mm, &address, ptep))
2375 continue;
2376
2377 pte = huge_ptep_get(ptep);
2378 if (huge_pte_none(pte))
2379 continue;
2380
2381 /*
2382 * HWPoisoned hugepage is already unmapped and dropped reference
2383 */
2384 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2385 continue;
2386
2387 page = pte_page(pte);
2388 /*
2389 * If a reference page is supplied, it is because a specific
2390 * page is being unmapped, not a range. Ensure the page we
2391 * are about to unmap is the actual page of interest.
2392 */
2393 if (ref_page) {
2394 if (page != ref_page)
2395 continue;
2396
2397 /*
2398 * Mark the VMA as having unmapped its page so that
2399 * future faults in this VMA will fail rather than
2400 * looking like data was lost
2401 */
2402 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2403 }
2404
2405 pte = huge_ptep_get_and_clear(mm, address, ptep);
2406 tlb_remove_tlb_entry(tlb, ptep, address);
2407 if (pte_dirty(pte))
2408 set_page_dirty(page);
2409
2410 page_remove_rmap(page);
2411 force_flush = !__tlb_remove_page(tlb, page);
2412 if (force_flush)
2413 break;
2414 /* Bail out after unmapping reference page if supplied */
2415 if (ref_page)
2416 break;
2417 }
2418 spin_unlock(&mm->page_table_lock);
2419 /*
2420 * mmu_gather ran out of room to batch pages, we break out of
2421 * the PTE lock to avoid doing the potential expensive TLB invalidate
2422 * and page-free while holding it.
2423 */
2424 if (force_flush) {
2425 force_flush = 0;
2426 tlb_flush_mmu(tlb);
2427 if (address < end && !ref_page)
2428 goto again;
2429 }
2430 mmu_notifier_invalidate_range_end(mm, start, end);
2431 tlb_end_vma(tlb, vma);
2432 }
2433
2434 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2435 unsigned long end, struct page *ref_page)
2436 {
2437 struct mm_struct *mm;
2438 struct mmu_gather tlb;
2439
2440 mm = vma->vm_mm;
2441
2442 tlb_gather_mmu(&tlb, mm, 0);
2443 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2444 tlb_finish_mmu(&tlb, start, end);
2445 }
2446
2447 /*
2448 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2449 * mappping it owns the reserve page for. The intention is to unmap the page
2450 * from other VMAs and let the children be SIGKILLed if they are faulting the
2451 * same region.
2452 */
2453 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2454 struct page *page, unsigned long address)
2455 {
2456 struct hstate *h = hstate_vma(vma);
2457 struct vm_area_struct *iter_vma;
2458 struct address_space *mapping;
2459 struct prio_tree_iter iter;
2460 pgoff_t pgoff;
2461
2462 /*
2463 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2464 * from page cache lookup which is in HPAGE_SIZE units.
2465 */
2466 address = address & huge_page_mask(h);
2467 pgoff = vma_hugecache_offset(h, vma, address);
2468 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2469
2470 /*
2471 * Take the mapping lock for the duration of the table walk. As
2472 * this mapping should be shared between all the VMAs,
2473 * __unmap_hugepage_range() is called as the lock is already held
2474 */
2475 mutex_lock(&mapping->i_mmap_mutex);
2476 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2477 /* Do not unmap the current VMA */
2478 if (iter_vma == vma)
2479 continue;
2480
2481 /*
2482 * Unmap the page from other VMAs without their own reserves.
2483 * They get marked to be SIGKILLed if they fault in these
2484 * areas. This is because a future no-page fault on this VMA
2485 * could insert a zeroed page instead of the data existing
2486 * from the time of fork. This would look like data corruption
2487 */
2488 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2489 unmap_hugepage_range(iter_vma, address,
2490 address + huge_page_size(h), page);
2491 }
2492 mutex_unlock(&mapping->i_mmap_mutex);
2493
2494 return 1;
2495 }
2496
2497 /*
2498 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2499 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2500 * cannot race with other handlers or page migration.
2501 * Keep the pte_same checks anyway to make transition from the mutex easier.
2502 */
2503 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2504 unsigned long address, pte_t *ptep, pte_t pte,
2505 struct page *pagecache_page)
2506 {
2507 struct hstate *h = hstate_vma(vma);
2508 struct page *old_page, *new_page;
2509 int avoidcopy;
2510 int outside_reserve = 0;
2511
2512 old_page = pte_page(pte);
2513
2514 retry_avoidcopy:
2515 /* If no-one else is actually using this page, avoid the copy
2516 * and just make the page writable */
2517 avoidcopy = (page_mapcount(old_page) == 1);
2518 if (avoidcopy) {
2519 if (PageAnon(old_page))
2520 page_move_anon_rmap(old_page, vma, address);
2521 set_huge_ptep_writable(vma, address, ptep);
2522 return 0;
2523 }
2524
2525 /*
2526 * If the process that created a MAP_PRIVATE mapping is about to
2527 * perform a COW due to a shared page count, attempt to satisfy
2528 * the allocation without using the existing reserves. The pagecache
2529 * page is used to determine if the reserve at this address was
2530 * consumed or not. If reserves were used, a partial faulted mapping
2531 * at the time of fork() could consume its reserves on COW instead
2532 * of the full address range.
2533 */
2534 if (!(vma->vm_flags & VM_MAYSHARE) &&
2535 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2536 old_page != pagecache_page)
2537 outside_reserve = 1;
2538
2539 page_cache_get(old_page);
2540
2541 /* Drop page_table_lock as buddy allocator may be called */
2542 spin_unlock(&mm->page_table_lock);
2543 new_page = alloc_huge_page(vma, address, outside_reserve);
2544
2545 if (IS_ERR(new_page)) {
2546 long err = PTR_ERR(new_page);
2547 page_cache_release(old_page);
2548
2549 /*
2550 * If a process owning a MAP_PRIVATE mapping fails to COW,
2551 * it is due to references held by a child and an insufficient
2552 * huge page pool. To guarantee the original mappers
2553 * reliability, unmap the page from child processes. The child
2554 * may get SIGKILLed if it later faults.
2555 */
2556 if (outside_reserve) {
2557 BUG_ON(huge_pte_none(pte));
2558 if (unmap_ref_private(mm, vma, old_page, address)) {
2559 BUG_ON(huge_pte_none(pte));
2560 spin_lock(&mm->page_table_lock);
2561 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2562 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2563 goto retry_avoidcopy;
2564 /*
2565 * race occurs while re-acquiring page_table_lock, and
2566 * our job is done.
2567 */
2568 return 0;
2569 }
2570 WARN_ON_ONCE(1);
2571 }
2572
2573 /* Caller expects lock to be held */
2574 spin_lock(&mm->page_table_lock);
2575 if (err == -ENOMEM)
2576 return VM_FAULT_OOM;
2577 else
2578 return VM_FAULT_SIGBUS;
2579 }
2580
2581 /*
2582 * When the original hugepage is shared one, it does not have
2583 * anon_vma prepared.
2584 */
2585 if (unlikely(anon_vma_prepare(vma))) {
2586 page_cache_release(new_page);
2587 page_cache_release(old_page);
2588 /* Caller expects lock to be held */
2589 spin_lock(&mm->page_table_lock);
2590 return VM_FAULT_OOM;
2591 }
2592
2593 copy_user_huge_page(new_page, old_page, address, vma,
2594 pages_per_huge_page(h));
2595 __SetPageUptodate(new_page);
2596
2597 /*
2598 * Retake the page_table_lock to check for racing updates
2599 * before the page tables are altered
2600 */
2601 spin_lock(&mm->page_table_lock);
2602 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2603 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2604 /* Break COW */
2605 mmu_notifier_invalidate_range_start(mm,
2606 address & huge_page_mask(h),
2607 (address & huge_page_mask(h)) + huge_page_size(h));
2608 huge_ptep_clear_flush(vma, address, ptep);
2609 set_huge_pte_at(mm, address, ptep,
2610 make_huge_pte(vma, new_page, 1));
2611 page_remove_rmap(old_page);
2612 hugepage_add_new_anon_rmap(new_page, vma, address);
2613 /* Make the old page be freed below */
2614 new_page = old_page;
2615 mmu_notifier_invalidate_range_end(mm,
2616 address & huge_page_mask(h),
2617 (address & huge_page_mask(h)) + huge_page_size(h));
2618 }
2619 page_cache_release(new_page);
2620 page_cache_release(old_page);
2621 return 0;
2622 }
2623
2624 /* Return the pagecache page at a given address within a VMA */
2625 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2626 struct vm_area_struct *vma, unsigned long address)
2627 {
2628 struct address_space *mapping;
2629 pgoff_t idx;
2630
2631 mapping = vma->vm_file->f_mapping;
2632 idx = vma_hugecache_offset(h, vma, address);
2633
2634 return find_lock_page(mapping, idx);
2635 }
2636
2637 /*
2638 * Return whether there is a pagecache page to back given address within VMA.
2639 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2640 */
2641 static bool hugetlbfs_pagecache_present(struct hstate *h,
2642 struct vm_area_struct *vma, unsigned long address)
2643 {
2644 struct address_space *mapping;
2645 pgoff_t idx;
2646 struct page *page;
2647
2648 mapping = vma->vm_file->f_mapping;
2649 idx = vma_hugecache_offset(h, vma, address);
2650
2651 page = find_get_page(mapping, idx);
2652 if (page)
2653 put_page(page);
2654 return page != NULL;
2655 }
2656
2657 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2658 unsigned long address, pte_t *ptep, unsigned int flags)
2659 {
2660 struct hstate *h = hstate_vma(vma);
2661 int ret = VM_FAULT_SIGBUS;
2662 int anon_rmap = 0;
2663 pgoff_t idx;
2664 unsigned long size;
2665 struct page *page;
2666 struct address_space *mapping;
2667 pte_t new_pte;
2668
2669 /*
2670 * Currently, we are forced to kill the process in the event the
2671 * original mapper has unmapped pages from the child due to a failed
2672 * COW. Warn that such a situation has occurred as it may not be obvious
2673 */
2674 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2675 printk(KERN_WARNING
2676 "PID %d killed due to inadequate hugepage pool\n",
2677 current->pid);
2678 return ret;
2679 }
2680
2681 mapping = vma->vm_file->f_mapping;
2682 idx = vma_hugecache_offset(h, vma, address);
2683
2684 /*
2685 * Use page lock to guard against racing truncation
2686 * before we get page_table_lock.
2687 */
2688 retry:
2689 page = find_lock_page(mapping, idx);
2690 if (!page) {
2691 size = i_size_read(mapping->host) >> huge_page_shift(h);
2692 if (idx >= size)
2693 goto out;
2694 page = alloc_huge_page(vma, address, 0);
2695 if (IS_ERR(page)) {
2696 ret = PTR_ERR(page);
2697 if (ret == -ENOMEM)
2698 ret = VM_FAULT_OOM;
2699 else
2700 ret = VM_FAULT_SIGBUS;
2701 goto out;
2702 }
2703 clear_huge_page(page, address, pages_per_huge_page(h));
2704 __SetPageUptodate(page);
2705
2706 if (vma->vm_flags & VM_MAYSHARE) {
2707 int err;
2708 struct inode *inode = mapping->host;
2709
2710 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2711 if (err) {
2712 put_page(page);
2713 if (err == -EEXIST)
2714 goto retry;
2715 goto out;
2716 }
2717
2718 spin_lock(&inode->i_lock);
2719 inode->i_blocks += blocks_per_huge_page(h);
2720 spin_unlock(&inode->i_lock);
2721 } else {
2722 lock_page(page);
2723 if (unlikely(anon_vma_prepare(vma))) {
2724 ret = VM_FAULT_OOM;
2725 goto backout_unlocked;
2726 }
2727 anon_rmap = 1;
2728 }
2729 } else {
2730 /*
2731 * If memory error occurs between mmap() and fault, some process
2732 * don't have hwpoisoned swap entry for errored virtual address.
2733 * So we need to block hugepage fault by PG_hwpoison bit check.
2734 */
2735 if (unlikely(PageHWPoison(page))) {
2736 ret = VM_FAULT_HWPOISON |
2737 VM_FAULT_SET_HINDEX(hstate_index(h));
2738 goto backout_unlocked;
2739 }
2740 }
2741
2742 /*
2743 * If we are going to COW a private mapping later, we examine the
2744 * pending reservations for this page now. This will ensure that
2745 * any allocations necessary to record that reservation occur outside
2746 * the spinlock.
2747 */
2748 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2749 if (vma_needs_reservation(h, vma, address) < 0) {
2750 ret = VM_FAULT_OOM;
2751 goto backout_unlocked;
2752 }
2753
2754 spin_lock(&mm->page_table_lock);
2755 size = i_size_read(mapping->host) >> huge_page_shift(h);
2756 if (idx >= size)
2757 goto backout;
2758
2759 ret = 0;
2760 if (!huge_pte_none(huge_ptep_get(ptep)))
2761 goto backout;
2762
2763 if (anon_rmap)
2764 hugepage_add_new_anon_rmap(page, vma, address);
2765 else
2766 page_dup_rmap(page);
2767 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2768 && (vma->vm_flags & VM_SHARED)));
2769 set_huge_pte_at(mm, address, ptep, new_pte);
2770
2771 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2772 /* Optimization, do the COW without a second fault */
2773 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2774 }
2775
2776 spin_unlock(&mm->page_table_lock);
2777 unlock_page(page);
2778 out:
2779 return ret;
2780
2781 backout:
2782 spin_unlock(&mm->page_table_lock);
2783 backout_unlocked:
2784 unlock_page(page);
2785 put_page(page);
2786 goto out;
2787 }
2788
2789 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2790 unsigned long address, unsigned int flags)
2791 {
2792 pte_t *ptep;
2793 pte_t entry;
2794 int ret;
2795 struct page *page = NULL;
2796 struct page *pagecache_page = NULL;
2797 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2798 struct hstate *h = hstate_vma(vma);
2799
2800 address &= huge_page_mask(h);
2801
2802 ptep = huge_pte_offset(mm, address);
2803 if (ptep) {
2804 entry = huge_ptep_get(ptep);
2805 if (unlikely(is_hugetlb_entry_migration(entry))) {
2806 migration_entry_wait(mm, (pmd_t *)ptep, address);
2807 return 0;
2808 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2809 return VM_FAULT_HWPOISON_LARGE |
2810 VM_FAULT_SET_HINDEX(hstate_index(h));
2811 }
2812
2813 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2814 if (!ptep)
2815 return VM_FAULT_OOM;
2816
2817 /*
2818 * Serialize hugepage allocation and instantiation, so that we don't
2819 * get spurious allocation failures if two CPUs race to instantiate
2820 * the same page in the page cache.
2821 */
2822 mutex_lock(&hugetlb_instantiation_mutex);
2823 entry = huge_ptep_get(ptep);
2824 if (huge_pte_none(entry)) {
2825 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2826 goto out_mutex;
2827 }
2828
2829 ret = 0;
2830
2831 /*
2832 * If we are going to COW the mapping later, we examine the pending
2833 * reservations for this page now. This will ensure that any
2834 * allocations necessary to record that reservation occur outside the
2835 * spinlock. For private mappings, we also lookup the pagecache
2836 * page now as it is used to determine if a reservation has been
2837 * consumed.
2838 */
2839 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2840 if (vma_needs_reservation(h, vma, address) < 0) {
2841 ret = VM_FAULT_OOM;
2842 goto out_mutex;
2843 }
2844
2845 if (!(vma->vm_flags & VM_MAYSHARE))
2846 pagecache_page = hugetlbfs_pagecache_page(h,
2847 vma, address);
2848 }
2849
2850 /*
2851 * hugetlb_cow() requires page locks of pte_page(entry) and
2852 * pagecache_page, so here we need take the former one
2853 * when page != pagecache_page or !pagecache_page.
2854 * Note that locking order is always pagecache_page -> page,
2855 * so no worry about deadlock.
2856 */
2857 page = pte_page(entry);
2858 get_page(page);
2859 if (page != pagecache_page)
2860 lock_page(page);
2861
2862 spin_lock(&mm->page_table_lock);
2863 /* Check for a racing update before calling hugetlb_cow */
2864 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2865 goto out_page_table_lock;
2866
2867
2868 if (flags & FAULT_FLAG_WRITE) {
2869 if (!pte_write(entry)) {
2870 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2871 pagecache_page);
2872 goto out_page_table_lock;
2873 }
2874 entry = pte_mkdirty(entry);
2875 }
2876 entry = pte_mkyoung(entry);
2877 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2878 flags & FAULT_FLAG_WRITE))
2879 update_mmu_cache(vma, address, ptep);
2880
2881 out_page_table_lock:
2882 spin_unlock(&mm->page_table_lock);
2883
2884 if (pagecache_page) {
2885 unlock_page(pagecache_page);
2886 put_page(pagecache_page);
2887 }
2888 if (page != pagecache_page)
2889 unlock_page(page);
2890 put_page(page);
2891
2892 out_mutex:
2893 mutex_unlock(&hugetlb_instantiation_mutex);
2894
2895 return ret;
2896 }
2897
2898 /* Can be overriden by architectures */
2899 __attribute__((weak)) struct page *
2900 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2901 pud_t *pud, int write)
2902 {
2903 BUG();
2904 return NULL;
2905 }
2906
2907 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2908 struct page **pages, struct vm_area_struct **vmas,
2909 unsigned long *position, int *length, int i,
2910 unsigned int flags)
2911 {
2912 unsigned long pfn_offset;
2913 unsigned long vaddr = *position;
2914 int remainder = *length;
2915 struct hstate *h = hstate_vma(vma);
2916
2917 spin_lock(&mm->page_table_lock);
2918 while (vaddr < vma->vm_end && remainder) {
2919 pte_t *pte;
2920 int absent;
2921 struct page *page;
2922
2923 /*
2924 * Some archs (sparc64, sh*) have multiple pte_ts to
2925 * each hugepage. We have to make sure we get the
2926 * first, for the page indexing below to work.
2927 */
2928 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2929 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2930
2931 /*
2932 * When coredumping, it suits get_dump_page if we just return
2933 * an error where there's an empty slot with no huge pagecache
2934 * to back it. This way, we avoid allocating a hugepage, and
2935 * the sparse dumpfile avoids allocating disk blocks, but its
2936 * huge holes still show up with zeroes where they need to be.
2937 */
2938 if (absent && (flags & FOLL_DUMP) &&
2939 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2940 remainder = 0;
2941 break;
2942 }
2943
2944 if (absent ||
2945 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2946 int ret;
2947
2948 spin_unlock(&mm->page_table_lock);
2949 ret = hugetlb_fault(mm, vma, vaddr,
2950 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2951 spin_lock(&mm->page_table_lock);
2952 if (!(ret & VM_FAULT_ERROR))
2953 continue;
2954
2955 remainder = 0;
2956 break;
2957 }
2958
2959 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2960 page = pte_page(huge_ptep_get(pte));
2961 same_page:
2962 if (pages) {
2963 pages[i] = mem_map_offset(page, pfn_offset);
2964 get_page(pages[i]);
2965 }
2966
2967 if (vmas)
2968 vmas[i] = vma;
2969
2970 vaddr += PAGE_SIZE;
2971 ++pfn_offset;
2972 --remainder;
2973 ++i;
2974 if (vaddr < vma->vm_end && remainder &&
2975 pfn_offset < pages_per_huge_page(h)) {
2976 /*
2977 * We use pfn_offset to avoid touching the pageframes
2978 * of this compound page.
2979 */
2980 goto same_page;
2981 }
2982 }
2983 spin_unlock(&mm->page_table_lock);
2984 *length = remainder;
2985 *position = vaddr;
2986
2987 return i ? i : -EFAULT;
2988 }
2989
2990 void hugetlb_change_protection(struct vm_area_struct *vma,
2991 unsigned long address, unsigned long end, pgprot_t newprot)
2992 {
2993 struct mm_struct *mm = vma->vm_mm;
2994 unsigned long start = address;
2995 pte_t *ptep;
2996 pte_t pte;
2997 struct hstate *h = hstate_vma(vma);
2998
2999 BUG_ON(address >= end);
3000 flush_cache_range(vma, address, end);
3001
3002 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3003 spin_lock(&mm->page_table_lock);
3004 for (; address < end; address += huge_page_size(h)) {
3005 ptep = huge_pte_offset(mm, address);
3006 if (!ptep)
3007 continue;
3008 if (huge_pmd_unshare(mm, &address, ptep))
3009 continue;
3010 if (!huge_pte_none(huge_ptep_get(ptep))) {
3011 pte = huge_ptep_get_and_clear(mm, address, ptep);
3012 pte = pte_mkhuge(pte_modify(pte, newprot));
3013 set_huge_pte_at(mm, address, ptep, pte);
3014 }
3015 }
3016 spin_unlock(&mm->page_table_lock);
3017 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3018
3019 flush_tlb_range(vma, start, end);
3020 }
3021
3022 int hugetlb_reserve_pages(struct inode *inode,
3023 long from, long to,
3024 struct vm_area_struct *vma,
3025 vm_flags_t vm_flags)
3026 {
3027 long ret, chg;
3028 struct hstate *h = hstate_inode(inode);
3029 struct hugepage_subpool *spool = subpool_inode(inode);
3030
3031 /*
3032 * Only apply hugepage reservation if asked. At fault time, an
3033 * attempt will be made for VM_NORESERVE to allocate a page
3034 * without using reserves
3035 */
3036 if (vm_flags & VM_NORESERVE)
3037 return 0;
3038
3039 /*
3040 * Shared mappings base their reservation on the number of pages that
3041 * are already allocated on behalf of the file. Private mappings need
3042 * to reserve the full area even if read-only as mprotect() may be
3043 * called to make the mapping read-write. Assume !vma is a shm mapping
3044 */
3045 if (!vma || vma->vm_flags & VM_MAYSHARE)
3046 chg = region_chg(&inode->i_mapping->private_list, from, to);
3047 else {
3048 struct resv_map *resv_map = resv_map_alloc();
3049 if (!resv_map)
3050 return -ENOMEM;
3051
3052 chg = to - from;
3053
3054 set_vma_resv_map(vma, resv_map);
3055 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3056 }
3057
3058 if (chg < 0) {
3059 ret = chg;
3060 goto out_err;
3061 }
3062
3063 /* There must be enough pages in the subpool for the mapping */
3064 if (hugepage_subpool_get_pages(spool, chg)) {
3065 ret = -ENOSPC;
3066 goto out_err;
3067 }
3068
3069 /*
3070 * Check enough hugepages are available for the reservation.
3071 * Hand the pages back to the subpool if there are not
3072 */
3073 ret = hugetlb_acct_memory(h, chg);
3074 if (ret < 0) {
3075 hugepage_subpool_put_pages(spool, chg);
3076 goto out_err;
3077 }
3078
3079 /*
3080 * Account for the reservations made. Shared mappings record regions
3081 * that have reservations as they are shared by multiple VMAs.
3082 * When the last VMA disappears, the region map says how much
3083 * the reservation was and the page cache tells how much of
3084 * the reservation was consumed. Private mappings are per-VMA and
3085 * only the consumed reservations are tracked. When the VMA
3086 * disappears, the original reservation is the VMA size and the
3087 * consumed reservations are stored in the map. Hence, nothing
3088 * else has to be done for private mappings here
3089 */
3090 if (!vma || vma->vm_flags & VM_MAYSHARE)
3091 region_add(&inode->i_mapping->private_list, from, to);
3092 return 0;
3093 out_err:
3094 if (vma)
3095 resv_map_put(vma);
3096 return ret;
3097 }
3098
3099 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3100 {
3101 struct hstate *h = hstate_inode(inode);
3102 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3103 struct hugepage_subpool *spool = subpool_inode(inode);
3104
3105 spin_lock(&inode->i_lock);
3106 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3107 spin_unlock(&inode->i_lock);
3108
3109 hugepage_subpool_put_pages(spool, (chg - freed));
3110 hugetlb_acct_memory(h, -(chg - freed));
3111 }
3112
3113 #ifdef CONFIG_MEMORY_FAILURE
3114
3115 /* Should be called in hugetlb_lock */
3116 static int is_hugepage_on_freelist(struct page *hpage)
3117 {
3118 struct page *page;
3119 struct page *tmp;
3120 struct hstate *h = page_hstate(hpage);
3121 int nid = page_to_nid(hpage);
3122
3123 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3124 if (page == hpage)
3125 return 1;
3126 return 0;
3127 }
3128
3129 /*
3130 * This function is called from memory failure code.
3131 * Assume the caller holds page lock of the head page.
3132 */
3133 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3134 {
3135 struct hstate *h = page_hstate(hpage);
3136 int nid = page_to_nid(hpage);
3137 int ret = -EBUSY;
3138
3139 spin_lock(&hugetlb_lock);
3140 if (is_hugepage_on_freelist(hpage)) {
3141 list_del(&hpage->lru);
3142 set_page_refcounted(hpage);
3143 h->free_huge_pages--;
3144 h->free_huge_pages_node[nid]--;
3145 ret = 0;
3146 }
3147 spin_unlock(&hugetlb_lock);
3148 return ret;
3149 }
3150 #endif
This page took 0.256172 seconds and 4 git commands to generate.