hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on...
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 #define HPAGE_RESV_OWNER (1UL << (BITS_PER_LONG - 1))
44 #define HPAGE_RESV_UNMAPPED (1UL << (BITS_PER_LONG - 2))
45 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
46 /*
47 * These helpers are used to track how many pages are reserved for
48 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
49 * is guaranteed to have their future faults succeed.
50 *
51 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
52 * the reserve counters are updated with the hugetlb_lock held. It is safe
53 * to reset the VMA at fork() time as it is not in use yet and there is no
54 * chance of the global counters getting corrupted as a result of the values.
55 */
56 static unsigned long vma_resv_huge_pages(struct vm_area_struct *vma)
57 {
58 VM_BUG_ON(!is_vm_hugetlb_page(vma));
59 if (!(vma->vm_flags & VM_SHARED))
60 return (unsigned long)vma->vm_private_data & ~HPAGE_RESV_MASK;
61 return 0;
62 }
63
64 static void set_vma_resv_huge_pages(struct vm_area_struct *vma,
65 unsigned long reserve)
66 {
67 unsigned long flags;
68 VM_BUG_ON(!is_vm_hugetlb_page(vma));
69 VM_BUG_ON(vma->vm_flags & VM_SHARED);
70
71 flags = (unsigned long)vma->vm_private_data & HPAGE_RESV_MASK;
72 vma->vm_private_data = (void *)(reserve | flags);
73 }
74
75 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
76 {
77 unsigned long reserveflags = (unsigned long)vma->vm_private_data;
78 VM_BUG_ON(!is_vm_hugetlb_page(vma));
79 vma->vm_private_data = (void *)(reserveflags | flags);
80 }
81
82 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
83 {
84 VM_BUG_ON(!is_vm_hugetlb_page(vma));
85 return ((unsigned long)vma->vm_private_data & flag) != 0;
86 }
87
88 /* Decrement the reserved pages in the hugepage pool by one */
89 static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
90 {
91 if (vma->vm_flags & VM_SHARED) {
92 /* Shared mappings always use reserves */
93 resv_huge_pages--;
94 } else {
95 /*
96 * Only the process that called mmap() has reserves for
97 * private mappings.
98 */
99 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
100 unsigned long flags, reserve;
101 resv_huge_pages--;
102 flags = (unsigned long)vma->vm_private_data &
103 HPAGE_RESV_MASK;
104 reserve = (unsigned long)vma->vm_private_data - 1;
105 vma->vm_private_data = (void *)(reserve | flags);
106 }
107 }
108 }
109
110 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
111 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
112 {
113 VM_BUG_ON(!is_vm_hugetlb_page(vma));
114 if (!(vma->vm_flags & VM_SHARED))
115 vma->vm_private_data = (void *)0;
116 }
117
118 /* Returns true if the VMA has associated reserve pages */
119 static int vma_has_private_reserves(struct vm_area_struct *vma)
120 {
121 if (vma->vm_flags & VM_SHARED)
122 return 0;
123 if (!vma_resv_huge_pages(vma))
124 return 0;
125 return 1;
126 }
127
128 static void clear_huge_page(struct page *page, unsigned long addr)
129 {
130 int i;
131
132 might_sleep();
133 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
134 cond_resched();
135 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
136 }
137 }
138
139 static void copy_huge_page(struct page *dst, struct page *src,
140 unsigned long addr, struct vm_area_struct *vma)
141 {
142 int i;
143
144 might_sleep();
145 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
146 cond_resched();
147 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
148 }
149 }
150
151 static void enqueue_huge_page(struct page *page)
152 {
153 int nid = page_to_nid(page);
154 list_add(&page->lru, &hugepage_freelists[nid]);
155 free_huge_pages++;
156 free_huge_pages_node[nid]++;
157 }
158
159 static struct page *dequeue_huge_page(void)
160 {
161 int nid;
162 struct page *page = NULL;
163
164 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
165 if (!list_empty(&hugepage_freelists[nid])) {
166 page = list_entry(hugepage_freelists[nid].next,
167 struct page, lru);
168 list_del(&page->lru);
169 free_huge_pages--;
170 free_huge_pages_node[nid]--;
171 break;
172 }
173 }
174 return page;
175 }
176
177 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
178 unsigned long address, int avoid_reserve)
179 {
180 int nid;
181 struct page *page = NULL;
182 struct mempolicy *mpol;
183 nodemask_t *nodemask;
184 struct zonelist *zonelist = huge_zonelist(vma, address,
185 htlb_alloc_mask, &mpol, &nodemask);
186 struct zone *zone;
187 struct zoneref *z;
188
189 /*
190 * A child process with MAP_PRIVATE mappings created by their parent
191 * have no page reserves. This check ensures that reservations are
192 * not "stolen". The child may still get SIGKILLed
193 */
194 if (!vma_has_private_reserves(vma) &&
195 free_huge_pages - resv_huge_pages == 0)
196 return NULL;
197
198 /* If reserves cannot be used, ensure enough pages are in the pool */
199 if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
200 return NULL;
201
202 for_each_zone_zonelist_nodemask(zone, z, zonelist,
203 MAX_NR_ZONES - 1, nodemask) {
204 nid = zone_to_nid(zone);
205 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
206 !list_empty(&hugepage_freelists[nid])) {
207 page = list_entry(hugepage_freelists[nid].next,
208 struct page, lru);
209 list_del(&page->lru);
210 free_huge_pages--;
211 free_huge_pages_node[nid]--;
212
213 if (!avoid_reserve)
214 decrement_hugepage_resv_vma(vma);
215
216 break;
217 }
218 }
219 mpol_cond_put(mpol);
220 return page;
221 }
222
223 static void update_and_free_page(struct page *page)
224 {
225 int i;
226 nr_huge_pages--;
227 nr_huge_pages_node[page_to_nid(page)]--;
228 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
229 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
230 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
231 1 << PG_private | 1<< PG_writeback);
232 }
233 set_compound_page_dtor(page, NULL);
234 set_page_refcounted(page);
235 arch_release_hugepage(page);
236 __free_pages(page, HUGETLB_PAGE_ORDER);
237 }
238
239 static void free_huge_page(struct page *page)
240 {
241 int nid = page_to_nid(page);
242 struct address_space *mapping;
243
244 mapping = (struct address_space *) page_private(page);
245 set_page_private(page, 0);
246 BUG_ON(page_count(page));
247 INIT_LIST_HEAD(&page->lru);
248
249 spin_lock(&hugetlb_lock);
250 if (surplus_huge_pages_node[nid]) {
251 update_and_free_page(page);
252 surplus_huge_pages--;
253 surplus_huge_pages_node[nid]--;
254 } else {
255 enqueue_huge_page(page);
256 }
257 spin_unlock(&hugetlb_lock);
258 if (mapping)
259 hugetlb_put_quota(mapping, 1);
260 }
261
262 /*
263 * Increment or decrement surplus_huge_pages. Keep node-specific counters
264 * balanced by operating on them in a round-robin fashion.
265 * Returns 1 if an adjustment was made.
266 */
267 static int adjust_pool_surplus(int delta)
268 {
269 static int prev_nid;
270 int nid = prev_nid;
271 int ret = 0;
272
273 VM_BUG_ON(delta != -1 && delta != 1);
274 do {
275 nid = next_node(nid, node_online_map);
276 if (nid == MAX_NUMNODES)
277 nid = first_node(node_online_map);
278
279 /* To shrink on this node, there must be a surplus page */
280 if (delta < 0 && !surplus_huge_pages_node[nid])
281 continue;
282 /* Surplus cannot exceed the total number of pages */
283 if (delta > 0 && surplus_huge_pages_node[nid] >=
284 nr_huge_pages_node[nid])
285 continue;
286
287 surplus_huge_pages += delta;
288 surplus_huge_pages_node[nid] += delta;
289 ret = 1;
290 break;
291 } while (nid != prev_nid);
292
293 prev_nid = nid;
294 return ret;
295 }
296
297 static struct page *alloc_fresh_huge_page_node(int nid)
298 {
299 struct page *page;
300
301 page = alloc_pages_node(nid,
302 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
303 __GFP_REPEAT|__GFP_NOWARN,
304 HUGETLB_PAGE_ORDER);
305 if (page) {
306 if (arch_prepare_hugepage(page)) {
307 __free_pages(page, HUGETLB_PAGE_ORDER);
308 return NULL;
309 }
310 set_compound_page_dtor(page, free_huge_page);
311 spin_lock(&hugetlb_lock);
312 nr_huge_pages++;
313 nr_huge_pages_node[nid]++;
314 spin_unlock(&hugetlb_lock);
315 put_page(page); /* free it into the hugepage allocator */
316 }
317
318 return page;
319 }
320
321 static int alloc_fresh_huge_page(void)
322 {
323 struct page *page;
324 int start_nid;
325 int next_nid;
326 int ret = 0;
327
328 start_nid = hugetlb_next_nid;
329
330 do {
331 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
332 if (page)
333 ret = 1;
334 /*
335 * Use a helper variable to find the next node and then
336 * copy it back to hugetlb_next_nid afterwards:
337 * otherwise there's a window in which a racer might
338 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
339 * But we don't need to use a spin_lock here: it really
340 * doesn't matter if occasionally a racer chooses the
341 * same nid as we do. Move nid forward in the mask even
342 * if we just successfully allocated a hugepage so that
343 * the next caller gets hugepages on the next node.
344 */
345 next_nid = next_node(hugetlb_next_nid, node_online_map);
346 if (next_nid == MAX_NUMNODES)
347 next_nid = first_node(node_online_map);
348 hugetlb_next_nid = next_nid;
349 } while (!page && hugetlb_next_nid != start_nid);
350
351 if (ret)
352 count_vm_event(HTLB_BUDDY_PGALLOC);
353 else
354 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
355
356 return ret;
357 }
358
359 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
360 unsigned long address)
361 {
362 struct page *page;
363 unsigned int nid;
364
365 /*
366 * Assume we will successfully allocate the surplus page to
367 * prevent racing processes from causing the surplus to exceed
368 * overcommit
369 *
370 * This however introduces a different race, where a process B
371 * tries to grow the static hugepage pool while alloc_pages() is
372 * called by process A. B will only examine the per-node
373 * counters in determining if surplus huge pages can be
374 * converted to normal huge pages in adjust_pool_surplus(). A
375 * won't be able to increment the per-node counter, until the
376 * lock is dropped by B, but B doesn't drop hugetlb_lock until
377 * no more huge pages can be converted from surplus to normal
378 * state (and doesn't try to convert again). Thus, we have a
379 * case where a surplus huge page exists, the pool is grown, and
380 * the surplus huge page still exists after, even though it
381 * should just have been converted to a normal huge page. This
382 * does not leak memory, though, as the hugepage will be freed
383 * once it is out of use. It also does not allow the counters to
384 * go out of whack in adjust_pool_surplus() as we don't modify
385 * the node values until we've gotten the hugepage and only the
386 * per-node value is checked there.
387 */
388 spin_lock(&hugetlb_lock);
389 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
390 spin_unlock(&hugetlb_lock);
391 return NULL;
392 } else {
393 nr_huge_pages++;
394 surplus_huge_pages++;
395 }
396 spin_unlock(&hugetlb_lock);
397
398 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
399 __GFP_REPEAT|__GFP_NOWARN,
400 HUGETLB_PAGE_ORDER);
401
402 spin_lock(&hugetlb_lock);
403 if (page) {
404 /*
405 * This page is now managed by the hugetlb allocator and has
406 * no users -- drop the buddy allocator's reference.
407 */
408 put_page_testzero(page);
409 VM_BUG_ON(page_count(page));
410 nid = page_to_nid(page);
411 set_compound_page_dtor(page, free_huge_page);
412 /*
413 * We incremented the global counters already
414 */
415 nr_huge_pages_node[nid]++;
416 surplus_huge_pages_node[nid]++;
417 __count_vm_event(HTLB_BUDDY_PGALLOC);
418 } else {
419 nr_huge_pages--;
420 surplus_huge_pages--;
421 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
422 }
423 spin_unlock(&hugetlb_lock);
424
425 return page;
426 }
427
428 /*
429 * Increase the hugetlb pool such that it can accomodate a reservation
430 * of size 'delta'.
431 */
432 static int gather_surplus_pages(int delta)
433 {
434 struct list_head surplus_list;
435 struct page *page, *tmp;
436 int ret, i;
437 int needed, allocated;
438
439 needed = (resv_huge_pages + delta) - free_huge_pages;
440 if (needed <= 0) {
441 resv_huge_pages += delta;
442 return 0;
443 }
444
445 allocated = 0;
446 INIT_LIST_HEAD(&surplus_list);
447
448 ret = -ENOMEM;
449 retry:
450 spin_unlock(&hugetlb_lock);
451 for (i = 0; i < needed; i++) {
452 page = alloc_buddy_huge_page(NULL, 0);
453 if (!page) {
454 /*
455 * We were not able to allocate enough pages to
456 * satisfy the entire reservation so we free what
457 * we've allocated so far.
458 */
459 spin_lock(&hugetlb_lock);
460 needed = 0;
461 goto free;
462 }
463
464 list_add(&page->lru, &surplus_list);
465 }
466 allocated += needed;
467
468 /*
469 * After retaking hugetlb_lock, we need to recalculate 'needed'
470 * because either resv_huge_pages or free_huge_pages may have changed.
471 */
472 spin_lock(&hugetlb_lock);
473 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
474 if (needed > 0)
475 goto retry;
476
477 /*
478 * The surplus_list now contains _at_least_ the number of extra pages
479 * needed to accomodate the reservation. Add the appropriate number
480 * of pages to the hugetlb pool and free the extras back to the buddy
481 * allocator. Commit the entire reservation here to prevent another
482 * process from stealing the pages as they are added to the pool but
483 * before they are reserved.
484 */
485 needed += allocated;
486 resv_huge_pages += delta;
487 ret = 0;
488 free:
489 /* Free the needed pages to the hugetlb pool */
490 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
491 if ((--needed) < 0)
492 break;
493 list_del(&page->lru);
494 enqueue_huge_page(page);
495 }
496
497 /* Free unnecessary surplus pages to the buddy allocator */
498 if (!list_empty(&surplus_list)) {
499 spin_unlock(&hugetlb_lock);
500 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
501 list_del(&page->lru);
502 /*
503 * The page has a reference count of zero already, so
504 * call free_huge_page directly instead of using
505 * put_page. This must be done with hugetlb_lock
506 * unlocked which is safe because free_huge_page takes
507 * hugetlb_lock before deciding how to free the page.
508 */
509 free_huge_page(page);
510 }
511 spin_lock(&hugetlb_lock);
512 }
513
514 return ret;
515 }
516
517 /*
518 * When releasing a hugetlb pool reservation, any surplus pages that were
519 * allocated to satisfy the reservation must be explicitly freed if they were
520 * never used.
521 */
522 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
523 {
524 static int nid = -1;
525 struct page *page;
526 unsigned long nr_pages;
527
528 /*
529 * We want to release as many surplus pages as possible, spread
530 * evenly across all nodes. Iterate across all nodes until we
531 * can no longer free unreserved surplus pages. This occurs when
532 * the nodes with surplus pages have no free pages.
533 */
534 unsigned long remaining_iterations = num_online_nodes();
535
536 /* Uncommit the reservation */
537 resv_huge_pages -= unused_resv_pages;
538
539 nr_pages = min(unused_resv_pages, surplus_huge_pages);
540
541 while (remaining_iterations-- && nr_pages) {
542 nid = next_node(nid, node_online_map);
543 if (nid == MAX_NUMNODES)
544 nid = first_node(node_online_map);
545
546 if (!surplus_huge_pages_node[nid])
547 continue;
548
549 if (!list_empty(&hugepage_freelists[nid])) {
550 page = list_entry(hugepage_freelists[nid].next,
551 struct page, lru);
552 list_del(&page->lru);
553 update_and_free_page(page);
554 free_huge_pages--;
555 free_huge_pages_node[nid]--;
556 surplus_huge_pages--;
557 surplus_huge_pages_node[nid]--;
558 nr_pages--;
559 remaining_iterations = num_online_nodes();
560 }
561 }
562 }
563
564 static struct page *alloc_huge_page(struct vm_area_struct *vma,
565 unsigned long addr, int avoid_reserve)
566 {
567 struct page *page;
568 struct address_space *mapping = vma->vm_file->f_mapping;
569 struct inode *inode = mapping->host;
570 unsigned int chg = 0;
571
572 /*
573 * Processes that did not create the mapping will have no reserves and
574 * will not have accounted against quota. Check that the quota can be
575 * made before satisfying the allocation
576 */
577 if (!(vma->vm_flags & VM_SHARED) &&
578 !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
579 chg = 1;
580 if (hugetlb_get_quota(inode->i_mapping, chg))
581 return ERR_PTR(-ENOSPC);
582 }
583
584 spin_lock(&hugetlb_lock);
585 page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
586 spin_unlock(&hugetlb_lock);
587
588 if (!page) {
589 page = alloc_buddy_huge_page(vma, addr);
590 if (!page) {
591 hugetlb_put_quota(inode->i_mapping, chg);
592 return ERR_PTR(-VM_FAULT_OOM);
593 }
594 }
595
596 set_page_refcounted(page);
597 set_page_private(page, (unsigned long) mapping);
598
599 return page;
600 }
601
602 static int __init hugetlb_init(void)
603 {
604 unsigned long i;
605
606 if (HPAGE_SHIFT == 0)
607 return 0;
608
609 for (i = 0; i < MAX_NUMNODES; ++i)
610 INIT_LIST_HEAD(&hugepage_freelists[i]);
611
612 hugetlb_next_nid = first_node(node_online_map);
613
614 for (i = 0; i < max_huge_pages; ++i) {
615 if (!alloc_fresh_huge_page())
616 break;
617 }
618 max_huge_pages = free_huge_pages = nr_huge_pages = i;
619 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
620 return 0;
621 }
622 module_init(hugetlb_init);
623
624 static int __init hugetlb_setup(char *s)
625 {
626 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
627 max_huge_pages = 0;
628 return 1;
629 }
630 __setup("hugepages=", hugetlb_setup);
631
632 static unsigned int cpuset_mems_nr(unsigned int *array)
633 {
634 int node;
635 unsigned int nr = 0;
636
637 for_each_node_mask(node, cpuset_current_mems_allowed)
638 nr += array[node];
639
640 return nr;
641 }
642
643 #ifdef CONFIG_SYSCTL
644 #ifdef CONFIG_HIGHMEM
645 static void try_to_free_low(unsigned long count)
646 {
647 int i;
648
649 for (i = 0; i < MAX_NUMNODES; ++i) {
650 struct page *page, *next;
651 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
652 if (count >= nr_huge_pages)
653 return;
654 if (PageHighMem(page))
655 continue;
656 list_del(&page->lru);
657 update_and_free_page(page);
658 free_huge_pages--;
659 free_huge_pages_node[page_to_nid(page)]--;
660 }
661 }
662 }
663 #else
664 static inline void try_to_free_low(unsigned long count)
665 {
666 }
667 #endif
668
669 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
670 static unsigned long set_max_huge_pages(unsigned long count)
671 {
672 unsigned long min_count, ret;
673
674 /*
675 * Increase the pool size
676 * First take pages out of surplus state. Then make up the
677 * remaining difference by allocating fresh huge pages.
678 *
679 * We might race with alloc_buddy_huge_page() here and be unable
680 * to convert a surplus huge page to a normal huge page. That is
681 * not critical, though, it just means the overall size of the
682 * pool might be one hugepage larger than it needs to be, but
683 * within all the constraints specified by the sysctls.
684 */
685 spin_lock(&hugetlb_lock);
686 while (surplus_huge_pages && count > persistent_huge_pages) {
687 if (!adjust_pool_surplus(-1))
688 break;
689 }
690
691 while (count > persistent_huge_pages) {
692 /*
693 * If this allocation races such that we no longer need the
694 * page, free_huge_page will handle it by freeing the page
695 * and reducing the surplus.
696 */
697 spin_unlock(&hugetlb_lock);
698 ret = alloc_fresh_huge_page();
699 spin_lock(&hugetlb_lock);
700 if (!ret)
701 goto out;
702
703 }
704
705 /*
706 * Decrease the pool size
707 * First return free pages to the buddy allocator (being careful
708 * to keep enough around to satisfy reservations). Then place
709 * pages into surplus state as needed so the pool will shrink
710 * to the desired size as pages become free.
711 *
712 * By placing pages into the surplus state independent of the
713 * overcommit value, we are allowing the surplus pool size to
714 * exceed overcommit. There are few sane options here. Since
715 * alloc_buddy_huge_page() is checking the global counter,
716 * though, we'll note that we're not allowed to exceed surplus
717 * and won't grow the pool anywhere else. Not until one of the
718 * sysctls are changed, or the surplus pages go out of use.
719 */
720 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
721 min_count = max(count, min_count);
722 try_to_free_low(min_count);
723 while (min_count < persistent_huge_pages) {
724 struct page *page = dequeue_huge_page();
725 if (!page)
726 break;
727 update_and_free_page(page);
728 }
729 while (count < persistent_huge_pages) {
730 if (!adjust_pool_surplus(1))
731 break;
732 }
733 out:
734 ret = persistent_huge_pages;
735 spin_unlock(&hugetlb_lock);
736 return ret;
737 }
738
739 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
740 struct file *file, void __user *buffer,
741 size_t *length, loff_t *ppos)
742 {
743 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
744 max_huge_pages = set_max_huge_pages(max_huge_pages);
745 return 0;
746 }
747
748 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
749 struct file *file, void __user *buffer,
750 size_t *length, loff_t *ppos)
751 {
752 proc_dointvec(table, write, file, buffer, length, ppos);
753 if (hugepages_treat_as_movable)
754 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
755 else
756 htlb_alloc_mask = GFP_HIGHUSER;
757 return 0;
758 }
759
760 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
761 struct file *file, void __user *buffer,
762 size_t *length, loff_t *ppos)
763 {
764 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
765 spin_lock(&hugetlb_lock);
766 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
767 spin_unlock(&hugetlb_lock);
768 return 0;
769 }
770
771 #endif /* CONFIG_SYSCTL */
772
773 int hugetlb_report_meminfo(char *buf)
774 {
775 return sprintf(buf,
776 "HugePages_Total: %5lu\n"
777 "HugePages_Free: %5lu\n"
778 "HugePages_Rsvd: %5lu\n"
779 "HugePages_Surp: %5lu\n"
780 "Hugepagesize: %5lu kB\n",
781 nr_huge_pages,
782 free_huge_pages,
783 resv_huge_pages,
784 surplus_huge_pages,
785 HPAGE_SIZE/1024);
786 }
787
788 int hugetlb_report_node_meminfo(int nid, char *buf)
789 {
790 return sprintf(buf,
791 "Node %d HugePages_Total: %5u\n"
792 "Node %d HugePages_Free: %5u\n"
793 "Node %d HugePages_Surp: %5u\n",
794 nid, nr_huge_pages_node[nid],
795 nid, free_huge_pages_node[nid],
796 nid, surplus_huge_pages_node[nid]);
797 }
798
799 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
800 unsigned long hugetlb_total_pages(void)
801 {
802 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
803 }
804
805 static int hugetlb_acct_memory(long delta)
806 {
807 int ret = -ENOMEM;
808
809 spin_lock(&hugetlb_lock);
810 /*
811 * When cpuset is configured, it breaks the strict hugetlb page
812 * reservation as the accounting is done on a global variable. Such
813 * reservation is completely rubbish in the presence of cpuset because
814 * the reservation is not checked against page availability for the
815 * current cpuset. Application can still potentially OOM'ed by kernel
816 * with lack of free htlb page in cpuset that the task is in.
817 * Attempt to enforce strict accounting with cpuset is almost
818 * impossible (or too ugly) because cpuset is too fluid that
819 * task or memory node can be dynamically moved between cpusets.
820 *
821 * The change of semantics for shared hugetlb mapping with cpuset is
822 * undesirable. However, in order to preserve some of the semantics,
823 * we fall back to check against current free page availability as
824 * a best attempt and hopefully to minimize the impact of changing
825 * semantics that cpuset has.
826 */
827 if (delta > 0) {
828 if (gather_surplus_pages(delta) < 0)
829 goto out;
830
831 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
832 return_unused_surplus_pages(delta);
833 goto out;
834 }
835 }
836
837 ret = 0;
838 if (delta < 0)
839 return_unused_surplus_pages((unsigned long) -delta);
840
841 out:
842 spin_unlock(&hugetlb_lock);
843 return ret;
844 }
845
846 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
847 {
848 unsigned long reserve = vma_resv_huge_pages(vma);
849 if (reserve)
850 hugetlb_acct_memory(-reserve);
851 }
852
853 /*
854 * We cannot handle pagefaults against hugetlb pages at all. They cause
855 * handle_mm_fault() to try to instantiate regular-sized pages in the
856 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
857 * this far.
858 */
859 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
860 {
861 BUG();
862 return 0;
863 }
864
865 struct vm_operations_struct hugetlb_vm_ops = {
866 .fault = hugetlb_vm_op_fault,
867 .close = hugetlb_vm_op_close,
868 };
869
870 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
871 int writable)
872 {
873 pte_t entry;
874
875 if (writable) {
876 entry =
877 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
878 } else {
879 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
880 }
881 entry = pte_mkyoung(entry);
882 entry = pte_mkhuge(entry);
883
884 return entry;
885 }
886
887 static void set_huge_ptep_writable(struct vm_area_struct *vma,
888 unsigned long address, pte_t *ptep)
889 {
890 pte_t entry;
891
892 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
893 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
894 update_mmu_cache(vma, address, entry);
895 }
896 }
897
898
899 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
900 struct vm_area_struct *vma)
901 {
902 pte_t *src_pte, *dst_pte, entry;
903 struct page *ptepage;
904 unsigned long addr;
905 int cow;
906
907 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
908
909 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
910 src_pte = huge_pte_offset(src, addr);
911 if (!src_pte)
912 continue;
913 dst_pte = huge_pte_alloc(dst, addr);
914 if (!dst_pte)
915 goto nomem;
916
917 /* If the pagetables are shared don't copy or take references */
918 if (dst_pte == src_pte)
919 continue;
920
921 spin_lock(&dst->page_table_lock);
922 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
923 if (!huge_pte_none(huge_ptep_get(src_pte))) {
924 if (cow)
925 huge_ptep_set_wrprotect(src, addr, src_pte);
926 entry = huge_ptep_get(src_pte);
927 ptepage = pte_page(entry);
928 get_page(ptepage);
929 set_huge_pte_at(dst, addr, dst_pte, entry);
930 }
931 spin_unlock(&src->page_table_lock);
932 spin_unlock(&dst->page_table_lock);
933 }
934 return 0;
935
936 nomem:
937 return -ENOMEM;
938 }
939
940 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
941 unsigned long end, struct page *ref_page)
942 {
943 struct mm_struct *mm = vma->vm_mm;
944 unsigned long address;
945 pte_t *ptep;
946 pte_t pte;
947 struct page *page;
948 struct page *tmp;
949 /*
950 * A page gathering list, protected by per file i_mmap_lock. The
951 * lock is used to avoid list corruption from multiple unmapping
952 * of the same page since we are using page->lru.
953 */
954 LIST_HEAD(page_list);
955
956 WARN_ON(!is_vm_hugetlb_page(vma));
957 BUG_ON(start & ~HPAGE_MASK);
958 BUG_ON(end & ~HPAGE_MASK);
959
960 spin_lock(&mm->page_table_lock);
961 for (address = start; address < end; address += HPAGE_SIZE) {
962 ptep = huge_pte_offset(mm, address);
963 if (!ptep)
964 continue;
965
966 if (huge_pmd_unshare(mm, &address, ptep))
967 continue;
968
969 /*
970 * If a reference page is supplied, it is because a specific
971 * page is being unmapped, not a range. Ensure the page we
972 * are about to unmap is the actual page of interest.
973 */
974 if (ref_page) {
975 pte = huge_ptep_get(ptep);
976 if (huge_pte_none(pte))
977 continue;
978 page = pte_page(pte);
979 if (page != ref_page)
980 continue;
981
982 /*
983 * Mark the VMA as having unmapped its page so that
984 * future faults in this VMA will fail rather than
985 * looking like data was lost
986 */
987 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
988 }
989
990 pte = huge_ptep_get_and_clear(mm, address, ptep);
991 if (huge_pte_none(pte))
992 continue;
993
994 page = pte_page(pte);
995 if (pte_dirty(pte))
996 set_page_dirty(page);
997 list_add(&page->lru, &page_list);
998 }
999 spin_unlock(&mm->page_table_lock);
1000 flush_tlb_range(vma, start, end);
1001 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1002 list_del(&page->lru);
1003 put_page(page);
1004 }
1005 }
1006
1007 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1008 unsigned long end, struct page *ref_page)
1009 {
1010 /*
1011 * It is undesirable to test vma->vm_file as it should be non-null
1012 * for valid hugetlb area. However, vm_file will be NULL in the error
1013 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
1014 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
1015 * to clean up. Since no pte has actually been setup, it is safe to
1016 * do nothing in this case.
1017 */
1018 if (vma->vm_file) {
1019 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1020 __unmap_hugepage_range(vma, start, end, ref_page);
1021 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1022 }
1023 }
1024
1025 /*
1026 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1027 * mappping it owns the reserve page for. The intention is to unmap the page
1028 * from other VMAs and let the children be SIGKILLed if they are faulting the
1029 * same region.
1030 */
1031 int unmap_ref_private(struct mm_struct *mm,
1032 struct vm_area_struct *vma,
1033 struct page *page,
1034 unsigned long address)
1035 {
1036 struct vm_area_struct *iter_vma;
1037 struct address_space *mapping;
1038 struct prio_tree_iter iter;
1039 pgoff_t pgoff;
1040
1041 /*
1042 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1043 * from page cache lookup which is in HPAGE_SIZE units.
1044 */
1045 address = address & huge_page_mask(hstate_vma(vma));
1046 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1047 + (vma->vm_pgoff >> PAGE_SHIFT);
1048 mapping = (struct address_space *)page_private(page);
1049
1050 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1051 /* Do not unmap the current VMA */
1052 if (iter_vma == vma)
1053 continue;
1054
1055 /*
1056 * Unmap the page from other VMAs without their own reserves.
1057 * They get marked to be SIGKILLed if they fault in these
1058 * areas. This is because a future no-page fault on this VMA
1059 * could insert a zeroed page instead of the data existing
1060 * from the time of fork. This would look like data corruption
1061 */
1062 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1063 unmap_hugepage_range(iter_vma,
1064 address, address + HPAGE_SIZE,
1065 page);
1066 }
1067
1068 return 1;
1069 }
1070
1071 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1072 unsigned long address, pte_t *ptep, pte_t pte,
1073 struct page *pagecache_page)
1074 {
1075 struct page *old_page, *new_page;
1076 int avoidcopy;
1077 int outside_reserve = 0;
1078
1079 old_page = pte_page(pte);
1080
1081 retry_avoidcopy:
1082 /* If no-one else is actually using this page, avoid the copy
1083 * and just make the page writable */
1084 avoidcopy = (page_count(old_page) == 1);
1085 if (avoidcopy) {
1086 set_huge_ptep_writable(vma, address, ptep);
1087 return 0;
1088 }
1089
1090 /*
1091 * If the process that created a MAP_PRIVATE mapping is about to
1092 * perform a COW due to a shared page count, attempt to satisfy
1093 * the allocation without using the existing reserves. The pagecache
1094 * page is used to determine if the reserve at this address was
1095 * consumed or not. If reserves were used, a partial faulted mapping
1096 * at the time of fork() could consume its reserves on COW instead
1097 * of the full address range.
1098 */
1099 if (!(vma->vm_flags & VM_SHARED) &&
1100 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1101 old_page != pagecache_page)
1102 outside_reserve = 1;
1103
1104 page_cache_get(old_page);
1105 new_page = alloc_huge_page(vma, address, outside_reserve);
1106
1107 if (IS_ERR(new_page)) {
1108 page_cache_release(old_page);
1109
1110 /*
1111 * If a process owning a MAP_PRIVATE mapping fails to COW,
1112 * it is due to references held by a child and an insufficient
1113 * huge page pool. To guarantee the original mappers
1114 * reliability, unmap the page from child processes. The child
1115 * may get SIGKILLed if it later faults.
1116 */
1117 if (outside_reserve) {
1118 BUG_ON(huge_pte_none(pte));
1119 if (unmap_ref_private(mm, vma, old_page, address)) {
1120 BUG_ON(page_count(old_page) != 1);
1121 BUG_ON(huge_pte_none(pte));
1122 goto retry_avoidcopy;
1123 }
1124 WARN_ON_ONCE(1);
1125 }
1126
1127 return -PTR_ERR(new_page);
1128 }
1129
1130 spin_unlock(&mm->page_table_lock);
1131 copy_huge_page(new_page, old_page, address, vma);
1132 __SetPageUptodate(new_page);
1133 spin_lock(&mm->page_table_lock);
1134
1135 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1136 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1137 /* Break COW */
1138 huge_ptep_clear_flush(vma, address, ptep);
1139 set_huge_pte_at(mm, address, ptep,
1140 make_huge_pte(vma, new_page, 1));
1141 /* Make the old page be freed below */
1142 new_page = old_page;
1143 }
1144 page_cache_release(new_page);
1145 page_cache_release(old_page);
1146 return 0;
1147 }
1148
1149 /* Return the pagecache page at a given address within a VMA */
1150 static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
1151 unsigned long address)
1152 {
1153 struct address_space *mapping;
1154 unsigned long idx;
1155
1156 mapping = vma->vm_file->f_mapping;
1157 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
1158 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
1159
1160 return find_lock_page(mapping, idx);
1161 }
1162
1163 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1164 unsigned long address, pte_t *ptep, int write_access)
1165 {
1166 int ret = VM_FAULT_SIGBUS;
1167 unsigned long idx;
1168 unsigned long size;
1169 struct page *page;
1170 struct address_space *mapping;
1171 pte_t new_pte;
1172
1173 /*
1174 * Currently, we are forced to kill the process in the event the
1175 * original mapper has unmapped pages from the child due to a failed
1176 * COW. Warn that such a situation has occured as it may not be obvious
1177 */
1178 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1179 printk(KERN_WARNING
1180 "PID %d killed due to inadequate hugepage pool\n",
1181 current->pid);
1182 return ret;
1183 }
1184
1185 mapping = vma->vm_file->f_mapping;
1186 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
1187 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
1188
1189 /*
1190 * Use page lock to guard against racing truncation
1191 * before we get page_table_lock.
1192 */
1193 retry:
1194 page = find_lock_page(mapping, idx);
1195 if (!page) {
1196 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1197 if (idx >= size)
1198 goto out;
1199 page = alloc_huge_page(vma, address, 0);
1200 if (IS_ERR(page)) {
1201 ret = -PTR_ERR(page);
1202 goto out;
1203 }
1204 clear_huge_page(page, address);
1205 __SetPageUptodate(page);
1206
1207 if (vma->vm_flags & VM_SHARED) {
1208 int err;
1209 struct inode *inode = mapping->host;
1210
1211 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1212 if (err) {
1213 put_page(page);
1214 if (err == -EEXIST)
1215 goto retry;
1216 goto out;
1217 }
1218
1219 spin_lock(&inode->i_lock);
1220 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
1221 spin_unlock(&inode->i_lock);
1222 } else
1223 lock_page(page);
1224 }
1225
1226 spin_lock(&mm->page_table_lock);
1227 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1228 if (idx >= size)
1229 goto backout;
1230
1231 ret = 0;
1232 if (!huge_pte_none(huge_ptep_get(ptep)))
1233 goto backout;
1234
1235 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1236 && (vma->vm_flags & VM_SHARED)));
1237 set_huge_pte_at(mm, address, ptep, new_pte);
1238
1239 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1240 /* Optimization, do the COW without a second fault */
1241 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1242 }
1243
1244 spin_unlock(&mm->page_table_lock);
1245 unlock_page(page);
1246 out:
1247 return ret;
1248
1249 backout:
1250 spin_unlock(&mm->page_table_lock);
1251 unlock_page(page);
1252 put_page(page);
1253 goto out;
1254 }
1255
1256 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1257 unsigned long address, int write_access)
1258 {
1259 pte_t *ptep;
1260 pte_t entry;
1261 int ret;
1262 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1263
1264 ptep = huge_pte_alloc(mm, address);
1265 if (!ptep)
1266 return VM_FAULT_OOM;
1267
1268 /*
1269 * Serialize hugepage allocation and instantiation, so that we don't
1270 * get spurious allocation failures if two CPUs race to instantiate
1271 * the same page in the page cache.
1272 */
1273 mutex_lock(&hugetlb_instantiation_mutex);
1274 entry = huge_ptep_get(ptep);
1275 if (huge_pte_none(entry)) {
1276 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1277 mutex_unlock(&hugetlb_instantiation_mutex);
1278 return ret;
1279 }
1280
1281 ret = 0;
1282
1283 spin_lock(&mm->page_table_lock);
1284 /* Check for a racing update before calling hugetlb_cow */
1285 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1286 if (write_access && !pte_write(entry)) {
1287 struct page *page;
1288 page = hugetlbfs_pagecache_page(vma, address);
1289 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1290 if (page) {
1291 unlock_page(page);
1292 put_page(page);
1293 }
1294 }
1295 spin_unlock(&mm->page_table_lock);
1296 mutex_unlock(&hugetlb_instantiation_mutex);
1297
1298 return ret;
1299 }
1300
1301 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1302 struct page **pages, struct vm_area_struct **vmas,
1303 unsigned long *position, int *length, int i,
1304 int write)
1305 {
1306 unsigned long pfn_offset;
1307 unsigned long vaddr = *position;
1308 int remainder = *length;
1309
1310 spin_lock(&mm->page_table_lock);
1311 while (vaddr < vma->vm_end && remainder) {
1312 pte_t *pte;
1313 struct page *page;
1314
1315 /*
1316 * Some archs (sparc64, sh*) have multiple pte_ts to
1317 * each hugepage. We have to make * sure we get the
1318 * first, for the page indexing below to work.
1319 */
1320 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1321
1322 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1323 (write && !pte_write(huge_ptep_get(pte)))) {
1324 int ret;
1325
1326 spin_unlock(&mm->page_table_lock);
1327 ret = hugetlb_fault(mm, vma, vaddr, write);
1328 spin_lock(&mm->page_table_lock);
1329 if (!(ret & VM_FAULT_ERROR))
1330 continue;
1331
1332 remainder = 0;
1333 if (!i)
1334 i = -EFAULT;
1335 break;
1336 }
1337
1338 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1339 page = pte_page(huge_ptep_get(pte));
1340 same_page:
1341 if (pages) {
1342 get_page(page);
1343 pages[i] = page + pfn_offset;
1344 }
1345
1346 if (vmas)
1347 vmas[i] = vma;
1348
1349 vaddr += PAGE_SIZE;
1350 ++pfn_offset;
1351 --remainder;
1352 ++i;
1353 if (vaddr < vma->vm_end && remainder &&
1354 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1355 /*
1356 * We use pfn_offset to avoid touching the pageframes
1357 * of this compound page.
1358 */
1359 goto same_page;
1360 }
1361 }
1362 spin_unlock(&mm->page_table_lock);
1363 *length = remainder;
1364 *position = vaddr;
1365
1366 return i;
1367 }
1368
1369 void hugetlb_change_protection(struct vm_area_struct *vma,
1370 unsigned long address, unsigned long end, pgprot_t newprot)
1371 {
1372 struct mm_struct *mm = vma->vm_mm;
1373 unsigned long start = address;
1374 pte_t *ptep;
1375 pte_t pte;
1376
1377 BUG_ON(address >= end);
1378 flush_cache_range(vma, address, end);
1379
1380 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1381 spin_lock(&mm->page_table_lock);
1382 for (; address < end; address += HPAGE_SIZE) {
1383 ptep = huge_pte_offset(mm, address);
1384 if (!ptep)
1385 continue;
1386 if (huge_pmd_unshare(mm, &address, ptep))
1387 continue;
1388 if (!huge_pte_none(huge_ptep_get(ptep))) {
1389 pte = huge_ptep_get_and_clear(mm, address, ptep);
1390 pte = pte_mkhuge(pte_modify(pte, newprot));
1391 set_huge_pte_at(mm, address, ptep, pte);
1392 }
1393 }
1394 spin_unlock(&mm->page_table_lock);
1395 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1396
1397 flush_tlb_range(vma, start, end);
1398 }
1399
1400 struct file_region {
1401 struct list_head link;
1402 long from;
1403 long to;
1404 };
1405
1406 static long region_add(struct list_head *head, long f, long t)
1407 {
1408 struct file_region *rg, *nrg, *trg;
1409
1410 /* Locate the region we are either in or before. */
1411 list_for_each_entry(rg, head, link)
1412 if (f <= rg->to)
1413 break;
1414
1415 /* Round our left edge to the current segment if it encloses us. */
1416 if (f > rg->from)
1417 f = rg->from;
1418
1419 /* Check for and consume any regions we now overlap with. */
1420 nrg = rg;
1421 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1422 if (&rg->link == head)
1423 break;
1424 if (rg->from > t)
1425 break;
1426
1427 /* If this area reaches higher then extend our area to
1428 * include it completely. If this is not the first area
1429 * which we intend to reuse, free it. */
1430 if (rg->to > t)
1431 t = rg->to;
1432 if (rg != nrg) {
1433 list_del(&rg->link);
1434 kfree(rg);
1435 }
1436 }
1437 nrg->from = f;
1438 nrg->to = t;
1439 return 0;
1440 }
1441
1442 static long region_chg(struct list_head *head, long f, long t)
1443 {
1444 struct file_region *rg, *nrg;
1445 long chg = 0;
1446
1447 /* Locate the region we are before or in. */
1448 list_for_each_entry(rg, head, link)
1449 if (f <= rg->to)
1450 break;
1451
1452 /* If we are below the current region then a new region is required.
1453 * Subtle, allocate a new region at the position but make it zero
1454 * size such that we can guarantee to record the reservation. */
1455 if (&rg->link == head || t < rg->from) {
1456 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1457 if (!nrg)
1458 return -ENOMEM;
1459 nrg->from = f;
1460 nrg->to = f;
1461 INIT_LIST_HEAD(&nrg->link);
1462 list_add(&nrg->link, rg->link.prev);
1463
1464 return t - f;
1465 }
1466
1467 /* Round our left edge to the current segment if it encloses us. */
1468 if (f > rg->from)
1469 f = rg->from;
1470 chg = t - f;
1471
1472 /* Check for and consume any regions we now overlap with. */
1473 list_for_each_entry(rg, rg->link.prev, link) {
1474 if (&rg->link == head)
1475 break;
1476 if (rg->from > t)
1477 return chg;
1478
1479 /* We overlap with this area, if it extends futher than
1480 * us then we must extend ourselves. Account for its
1481 * existing reservation. */
1482 if (rg->to > t) {
1483 chg += rg->to - t;
1484 t = rg->to;
1485 }
1486 chg -= rg->to - rg->from;
1487 }
1488 return chg;
1489 }
1490
1491 static long region_truncate(struct list_head *head, long end)
1492 {
1493 struct file_region *rg, *trg;
1494 long chg = 0;
1495
1496 /* Locate the region we are either in or before. */
1497 list_for_each_entry(rg, head, link)
1498 if (end <= rg->to)
1499 break;
1500 if (&rg->link == head)
1501 return 0;
1502
1503 /* If we are in the middle of a region then adjust it. */
1504 if (end > rg->from) {
1505 chg = rg->to - end;
1506 rg->to = end;
1507 rg = list_entry(rg->link.next, typeof(*rg), link);
1508 }
1509
1510 /* Drop any remaining regions. */
1511 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1512 if (&rg->link == head)
1513 break;
1514 chg += rg->to - rg->from;
1515 list_del(&rg->link);
1516 kfree(rg);
1517 }
1518 return chg;
1519 }
1520
1521 int hugetlb_reserve_pages(struct inode *inode,
1522 long from, long to,
1523 struct vm_area_struct *vma)
1524 {
1525 long ret, chg;
1526
1527 /*
1528 * Shared mappings base their reservation on the number of pages that
1529 * are already allocated on behalf of the file. Private mappings need
1530 * to reserve the full area even if read-only as mprotect() may be
1531 * called to make the mapping read-write. Assume !vma is a shm mapping
1532 */
1533 if (!vma || vma->vm_flags & VM_SHARED)
1534 chg = region_chg(&inode->i_mapping->private_list, from, to);
1535 else {
1536 chg = to - from;
1537 set_vma_resv_huge_pages(vma, chg);
1538 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1539 }
1540
1541 if (chg < 0)
1542 return chg;
1543
1544 if (hugetlb_get_quota(inode->i_mapping, chg))
1545 return -ENOSPC;
1546 ret = hugetlb_acct_memory(chg);
1547 if (ret < 0) {
1548 hugetlb_put_quota(inode->i_mapping, chg);
1549 return ret;
1550 }
1551 if (!vma || vma->vm_flags & VM_SHARED)
1552 region_add(&inode->i_mapping->private_list, from, to);
1553 return 0;
1554 }
1555
1556 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1557 {
1558 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1559
1560 spin_lock(&inode->i_lock);
1561 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1562 spin_unlock(&inode->i_lock);
1563
1564 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1565 hugetlb_acct_memory(-(chg - freed));
1566 }
This page took 0.061324 seconds and 6 git commands to generate.