Pull ec into release branch
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 /*
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
35 */
36 static DEFINE_SPINLOCK(hugetlb_lock);
37
38 static void clear_huge_page(struct page *page, unsigned long addr)
39 {
40 int i;
41
42 might_sleep();
43 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
44 cond_resched();
45 clear_user_highpage(page + i, addr);
46 }
47 }
48
49 static void copy_huge_page(struct page *dst, struct page *src,
50 unsigned long addr, struct vm_area_struct *vma)
51 {
52 int i;
53
54 might_sleep();
55 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
56 cond_resched();
57 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58 }
59 }
60
61 static void enqueue_huge_page(struct page *page)
62 {
63 int nid = page_to_nid(page);
64 list_add(&page->lru, &hugepage_freelists[nid]);
65 free_huge_pages++;
66 free_huge_pages_node[nid]++;
67 }
68
69 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
70 unsigned long address)
71 {
72 int nid;
73 struct page *page = NULL;
74 struct zonelist *zonelist = huge_zonelist(vma, address,
75 htlb_alloc_mask);
76 struct zone **z;
77
78 for (z = zonelist->zones; *z; z++) {
79 nid = zone_to_nid(*z);
80 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
81 !list_empty(&hugepage_freelists[nid])) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
87 }
88 }
89 return page;
90 }
91
92 static void free_huge_page(struct page *page)
93 {
94 BUG_ON(page_count(page));
95
96 INIT_LIST_HEAD(&page->lru);
97
98 spin_lock(&hugetlb_lock);
99 enqueue_huge_page(page);
100 spin_unlock(&hugetlb_lock);
101 }
102
103 static int alloc_fresh_huge_page(void)
104 {
105 static int prev_nid;
106 struct page *page;
107 int nid;
108
109 /*
110 * Copy static prev_nid to local nid, work on that, then copy it
111 * back to prev_nid afterwards: otherwise there's a window in which
112 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
113 * But we don't need to use a spin_lock here: it really doesn't
114 * matter if occasionally a racer chooses the same nid as we do.
115 */
116 nid = next_node(prev_nid, node_online_map);
117 if (nid == MAX_NUMNODES)
118 nid = first_node(node_online_map);
119 prev_nid = nid;
120
121 page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
122 HUGETLB_PAGE_ORDER);
123 if (page) {
124 set_compound_page_dtor(page, free_huge_page);
125 spin_lock(&hugetlb_lock);
126 nr_huge_pages++;
127 nr_huge_pages_node[page_to_nid(page)]++;
128 spin_unlock(&hugetlb_lock);
129 put_page(page); /* free it into the hugepage allocator */
130 return 1;
131 }
132 return 0;
133 }
134
135 static struct page *alloc_huge_page(struct vm_area_struct *vma,
136 unsigned long addr)
137 {
138 struct page *page;
139
140 spin_lock(&hugetlb_lock);
141 if (vma->vm_flags & VM_MAYSHARE)
142 resv_huge_pages--;
143 else if (free_huge_pages <= resv_huge_pages)
144 goto fail;
145
146 page = dequeue_huge_page(vma, addr);
147 if (!page)
148 goto fail;
149
150 spin_unlock(&hugetlb_lock);
151 set_page_refcounted(page);
152 return page;
153
154 fail:
155 if (vma->vm_flags & VM_MAYSHARE)
156 resv_huge_pages++;
157 spin_unlock(&hugetlb_lock);
158 return NULL;
159 }
160
161 static int __init hugetlb_init(void)
162 {
163 unsigned long i;
164
165 if (HPAGE_SHIFT == 0)
166 return 0;
167
168 for (i = 0; i < MAX_NUMNODES; ++i)
169 INIT_LIST_HEAD(&hugepage_freelists[i]);
170
171 for (i = 0; i < max_huge_pages; ++i) {
172 if (!alloc_fresh_huge_page())
173 break;
174 }
175 max_huge_pages = free_huge_pages = nr_huge_pages = i;
176 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
177 return 0;
178 }
179 module_init(hugetlb_init);
180
181 static int __init hugetlb_setup(char *s)
182 {
183 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
184 max_huge_pages = 0;
185 return 1;
186 }
187 __setup("hugepages=", hugetlb_setup);
188
189 static unsigned int cpuset_mems_nr(unsigned int *array)
190 {
191 int node;
192 unsigned int nr = 0;
193
194 for_each_node_mask(node, cpuset_current_mems_allowed)
195 nr += array[node];
196
197 return nr;
198 }
199
200 #ifdef CONFIG_SYSCTL
201 static void update_and_free_page(struct page *page)
202 {
203 int i;
204 nr_huge_pages--;
205 nr_huge_pages_node[page_to_nid(page)]--;
206 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
207 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
208 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
209 1 << PG_private | 1<< PG_writeback);
210 }
211 set_compound_page_dtor(page, NULL);
212 set_page_refcounted(page);
213 __free_pages(page, HUGETLB_PAGE_ORDER);
214 }
215
216 #ifdef CONFIG_HIGHMEM
217 static void try_to_free_low(unsigned long count)
218 {
219 int i;
220
221 for (i = 0; i < MAX_NUMNODES; ++i) {
222 struct page *page, *next;
223 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
224 if (PageHighMem(page))
225 continue;
226 list_del(&page->lru);
227 update_and_free_page(page);
228 free_huge_pages--;
229 free_huge_pages_node[page_to_nid(page)]--;
230 if (count >= nr_huge_pages)
231 return;
232 }
233 }
234 }
235 #else
236 static inline void try_to_free_low(unsigned long count)
237 {
238 }
239 #endif
240
241 static unsigned long set_max_huge_pages(unsigned long count)
242 {
243 while (count > nr_huge_pages) {
244 if (!alloc_fresh_huge_page())
245 return nr_huge_pages;
246 }
247 if (count >= nr_huge_pages)
248 return nr_huge_pages;
249
250 spin_lock(&hugetlb_lock);
251 count = max(count, resv_huge_pages);
252 try_to_free_low(count);
253 while (count < nr_huge_pages) {
254 struct page *page = dequeue_huge_page(NULL, 0);
255 if (!page)
256 break;
257 update_and_free_page(page);
258 }
259 spin_unlock(&hugetlb_lock);
260 return nr_huge_pages;
261 }
262
263 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
264 struct file *file, void __user *buffer,
265 size_t *length, loff_t *ppos)
266 {
267 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
268 max_huge_pages = set_max_huge_pages(max_huge_pages);
269 return 0;
270 }
271
272 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
273 struct file *file, void __user *buffer,
274 size_t *length, loff_t *ppos)
275 {
276 proc_dointvec(table, write, file, buffer, length, ppos);
277 if (hugepages_treat_as_movable)
278 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
279 else
280 htlb_alloc_mask = GFP_HIGHUSER;
281 return 0;
282 }
283
284 #endif /* CONFIG_SYSCTL */
285
286 int hugetlb_report_meminfo(char *buf)
287 {
288 return sprintf(buf,
289 "HugePages_Total: %5lu\n"
290 "HugePages_Free: %5lu\n"
291 "HugePages_Rsvd: %5lu\n"
292 "Hugepagesize: %5lu kB\n",
293 nr_huge_pages,
294 free_huge_pages,
295 resv_huge_pages,
296 HPAGE_SIZE/1024);
297 }
298
299 int hugetlb_report_node_meminfo(int nid, char *buf)
300 {
301 return sprintf(buf,
302 "Node %d HugePages_Total: %5u\n"
303 "Node %d HugePages_Free: %5u\n",
304 nid, nr_huge_pages_node[nid],
305 nid, free_huge_pages_node[nid]);
306 }
307
308 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
309 unsigned long hugetlb_total_pages(void)
310 {
311 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
312 }
313
314 /*
315 * We cannot handle pagefaults against hugetlb pages at all. They cause
316 * handle_mm_fault() to try to instantiate regular-sized pages in the
317 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
318 * this far.
319 */
320 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
321 {
322 BUG();
323 return 0;
324 }
325
326 struct vm_operations_struct hugetlb_vm_ops = {
327 .fault = hugetlb_vm_op_fault,
328 };
329
330 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
331 int writable)
332 {
333 pte_t entry;
334
335 if (writable) {
336 entry =
337 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
338 } else {
339 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
340 }
341 entry = pte_mkyoung(entry);
342 entry = pte_mkhuge(entry);
343
344 return entry;
345 }
346
347 static void set_huge_ptep_writable(struct vm_area_struct *vma,
348 unsigned long address, pte_t *ptep)
349 {
350 pte_t entry;
351
352 entry = pte_mkwrite(pte_mkdirty(*ptep));
353 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
354 update_mmu_cache(vma, address, entry);
355 lazy_mmu_prot_update(entry);
356 }
357 }
358
359
360 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
361 struct vm_area_struct *vma)
362 {
363 pte_t *src_pte, *dst_pte, entry;
364 struct page *ptepage;
365 unsigned long addr;
366 int cow;
367
368 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
369
370 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
371 src_pte = huge_pte_offset(src, addr);
372 if (!src_pte)
373 continue;
374 dst_pte = huge_pte_alloc(dst, addr);
375 if (!dst_pte)
376 goto nomem;
377 spin_lock(&dst->page_table_lock);
378 spin_lock(&src->page_table_lock);
379 if (!pte_none(*src_pte)) {
380 if (cow)
381 ptep_set_wrprotect(src, addr, src_pte);
382 entry = *src_pte;
383 ptepage = pte_page(entry);
384 get_page(ptepage);
385 set_huge_pte_at(dst, addr, dst_pte, entry);
386 }
387 spin_unlock(&src->page_table_lock);
388 spin_unlock(&dst->page_table_lock);
389 }
390 return 0;
391
392 nomem:
393 return -ENOMEM;
394 }
395
396 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
397 unsigned long end)
398 {
399 struct mm_struct *mm = vma->vm_mm;
400 unsigned long address;
401 pte_t *ptep;
402 pte_t pte;
403 struct page *page;
404 struct page *tmp;
405 /*
406 * A page gathering list, protected by per file i_mmap_lock. The
407 * lock is used to avoid list corruption from multiple unmapping
408 * of the same page since we are using page->lru.
409 */
410 LIST_HEAD(page_list);
411
412 WARN_ON(!is_vm_hugetlb_page(vma));
413 BUG_ON(start & ~HPAGE_MASK);
414 BUG_ON(end & ~HPAGE_MASK);
415
416 spin_lock(&mm->page_table_lock);
417 for (address = start; address < end; address += HPAGE_SIZE) {
418 ptep = huge_pte_offset(mm, address);
419 if (!ptep)
420 continue;
421
422 if (huge_pmd_unshare(mm, &address, ptep))
423 continue;
424
425 pte = huge_ptep_get_and_clear(mm, address, ptep);
426 if (pte_none(pte))
427 continue;
428
429 page = pte_page(pte);
430 if (pte_dirty(pte))
431 set_page_dirty(page);
432 list_add(&page->lru, &page_list);
433 }
434 spin_unlock(&mm->page_table_lock);
435 flush_tlb_range(vma, start, end);
436 list_for_each_entry_safe(page, tmp, &page_list, lru) {
437 list_del(&page->lru);
438 put_page(page);
439 }
440 }
441
442 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
443 unsigned long end)
444 {
445 /*
446 * It is undesirable to test vma->vm_file as it should be non-null
447 * for valid hugetlb area. However, vm_file will be NULL in the error
448 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
449 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
450 * to clean up. Since no pte has actually been setup, it is safe to
451 * do nothing in this case.
452 */
453 if (vma->vm_file) {
454 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
455 __unmap_hugepage_range(vma, start, end);
456 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
457 }
458 }
459
460 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
461 unsigned long address, pte_t *ptep, pte_t pte)
462 {
463 struct page *old_page, *new_page;
464 int avoidcopy;
465
466 old_page = pte_page(pte);
467
468 /* If no-one else is actually using this page, avoid the copy
469 * and just make the page writable */
470 avoidcopy = (page_count(old_page) == 1);
471 if (avoidcopy) {
472 set_huge_ptep_writable(vma, address, ptep);
473 return 0;
474 }
475
476 page_cache_get(old_page);
477 new_page = alloc_huge_page(vma, address);
478
479 if (!new_page) {
480 page_cache_release(old_page);
481 return VM_FAULT_OOM;
482 }
483
484 spin_unlock(&mm->page_table_lock);
485 copy_huge_page(new_page, old_page, address, vma);
486 spin_lock(&mm->page_table_lock);
487
488 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
489 if (likely(pte_same(*ptep, pte))) {
490 /* Break COW */
491 set_huge_pte_at(mm, address, ptep,
492 make_huge_pte(vma, new_page, 1));
493 /* Make the old page be freed below */
494 new_page = old_page;
495 }
496 page_cache_release(new_page);
497 page_cache_release(old_page);
498 return 0;
499 }
500
501 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
502 unsigned long address, pte_t *ptep, int write_access)
503 {
504 int ret = VM_FAULT_SIGBUS;
505 unsigned long idx;
506 unsigned long size;
507 struct page *page;
508 struct address_space *mapping;
509 pte_t new_pte;
510
511 mapping = vma->vm_file->f_mapping;
512 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
513 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
514
515 /*
516 * Use page lock to guard against racing truncation
517 * before we get page_table_lock.
518 */
519 retry:
520 page = find_lock_page(mapping, idx);
521 if (!page) {
522 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
523 if (idx >= size)
524 goto out;
525 if (hugetlb_get_quota(mapping))
526 goto out;
527 page = alloc_huge_page(vma, address);
528 if (!page) {
529 hugetlb_put_quota(mapping);
530 ret = VM_FAULT_OOM;
531 goto out;
532 }
533 clear_huge_page(page, address);
534
535 if (vma->vm_flags & VM_SHARED) {
536 int err;
537
538 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
539 if (err) {
540 put_page(page);
541 hugetlb_put_quota(mapping);
542 if (err == -EEXIST)
543 goto retry;
544 goto out;
545 }
546 } else
547 lock_page(page);
548 }
549
550 spin_lock(&mm->page_table_lock);
551 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
552 if (idx >= size)
553 goto backout;
554
555 ret = 0;
556 if (!pte_none(*ptep))
557 goto backout;
558
559 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
560 && (vma->vm_flags & VM_SHARED)));
561 set_huge_pte_at(mm, address, ptep, new_pte);
562
563 if (write_access && !(vma->vm_flags & VM_SHARED)) {
564 /* Optimization, do the COW without a second fault */
565 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
566 }
567
568 spin_unlock(&mm->page_table_lock);
569 unlock_page(page);
570 out:
571 return ret;
572
573 backout:
574 spin_unlock(&mm->page_table_lock);
575 hugetlb_put_quota(mapping);
576 unlock_page(page);
577 put_page(page);
578 goto out;
579 }
580
581 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
582 unsigned long address, int write_access)
583 {
584 pte_t *ptep;
585 pte_t entry;
586 int ret;
587 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
588
589 ptep = huge_pte_alloc(mm, address);
590 if (!ptep)
591 return VM_FAULT_OOM;
592
593 /*
594 * Serialize hugepage allocation and instantiation, so that we don't
595 * get spurious allocation failures if two CPUs race to instantiate
596 * the same page in the page cache.
597 */
598 mutex_lock(&hugetlb_instantiation_mutex);
599 entry = *ptep;
600 if (pte_none(entry)) {
601 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
602 mutex_unlock(&hugetlb_instantiation_mutex);
603 return ret;
604 }
605
606 ret = 0;
607
608 spin_lock(&mm->page_table_lock);
609 /* Check for a racing update before calling hugetlb_cow */
610 if (likely(pte_same(entry, *ptep)))
611 if (write_access && !pte_write(entry))
612 ret = hugetlb_cow(mm, vma, address, ptep, entry);
613 spin_unlock(&mm->page_table_lock);
614 mutex_unlock(&hugetlb_instantiation_mutex);
615
616 return ret;
617 }
618
619 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
620 struct page **pages, struct vm_area_struct **vmas,
621 unsigned long *position, int *length, int i)
622 {
623 unsigned long pfn_offset;
624 unsigned long vaddr = *position;
625 int remainder = *length;
626
627 spin_lock(&mm->page_table_lock);
628 while (vaddr < vma->vm_end && remainder) {
629 pte_t *pte;
630 struct page *page;
631
632 /*
633 * Some archs (sparc64, sh*) have multiple pte_ts to
634 * each hugepage. We have to make * sure we get the
635 * first, for the page indexing below to work.
636 */
637 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
638
639 if (!pte || pte_none(*pte)) {
640 int ret;
641
642 spin_unlock(&mm->page_table_lock);
643 ret = hugetlb_fault(mm, vma, vaddr, 0);
644 spin_lock(&mm->page_table_lock);
645 if (!(ret & VM_FAULT_MAJOR))
646 continue;
647
648 remainder = 0;
649 if (!i)
650 i = -EFAULT;
651 break;
652 }
653
654 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
655 page = pte_page(*pte);
656 same_page:
657 if (pages) {
658 get_page(page);
659 pages[i] = page + pfn_offset;
660 }
661
662 if (vmas)
663 vmas[i] = vma;
664
665 vaddr += PAGE_SIZE;
666 ++pfn_offset;
667 --remainder;
668 ++i;
669 if (vaddr < vma->vm_end && remainder &&
670 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
671 /*
672 * We use pfn_offset to avoid touching the pageframes
673 * of this compound page.
674 */
675 goto same_page;
676 }
677 }
678 spin_unlock(&mm->page_table_lock);
679 *length = remainder;
680 *position = vaddr;
681
682 return i;
683 }
684
685 void hugetlb_change_protection(struct vm_area_struct *vma,
686 unsigned long address, unsigned long end, pgprot_t newprot)
687 {
688 struct mm_struct *mm = vma->vm_mm;
689 unsigned long start = address;
690 pte_t *ptep;
691 pte_t pte;
692
693 BUG_ON(address >= end);
694 flush_cache_range(vma, address, end);
695
696 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
697 spin_lock(&mm->page_table_lock);
698 for (; address < end; address += HPAGE_SIZE) {
699 ptep = huge_pte_offset(mm, address);
700 if (!ptep)
701 continue;
702 if (huge_pmd_unshare(mm, &address, ptep))
703 continue;
704 if (!pte_none(*ptep)) {
705 pte = huge_ptep_get_and_clear(mm, address, ptep);
706 pte = pte_mkhuge(pte_modify(pte, newprot));
707 set_huge_pte_at(mm, address, ptep, pte);
708 lazy_mmu_prot_update(pte);
709 }
710 }
711 spin_unlock(&mm->page_table_lock);
712 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
713
714 flush_tlb_range(vma, start, end);
715 }
716
717 struct file_region {
718 struct list_head link;
719 long from;
720 long to;
721 };
722
723 static long region_add(struct list_head *head, long f, long t)
724 {
725 struct file_region *rg, *nrg, *trg;
726
727 /* Locate the region we are either in or before. */
728 list_for_each_entry(rg, head, link)
729 if (f <= rg->to)
730 break;
731
732 /* Round our left edge to the current segment if it encloses us. */
733 if (f > rg->from)
734 f = rg->from;
735
736 /* Check for and consume any regions we now overlap with. */
737 nrg = rg;
738 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
739 if (&rg->link == head)
740 break;
741 if (rg->from > t)
742 break;
743
744 /* If this area reaches higher then extend our area to
745 * include it completely. If this is not the first area
746 * which we intend to reuse, free it. */
747 if (rg->to > t)
748 t = rg->to;
749 if (rg != nrg) {
750 list_del(&rg->link);
751 kfree(rg);
752 }
753 }
754 nrg->from = f;
755 nrg->to = t;
756 return 0;
757 }
758
759 static long region_chg(struct list_head *head, long f, long t)
760 {
761 struct file_region *rg, *nrg;
762 long chg = 0;
763
764 /* Locate the region we are before or in. */
765 list_for_each_entry(rg, head, link)
766 if (f <= rg->to)
767 break;
768
769 /* If we are below the current region then a new region is required.
770 * Subtle, allocate a new region at the position but make it zero
771 * size such that we can guarentee to record the reservation. */
772 if (&rg->link == head || t < rg->from) {
773 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
774 if (nrg == 0)
775 return -ENOMEM;
776 nrg->from = f;
777 nrg->to = f;
778 INIT_LIST_HEAD(&nrg->link);
779 list_add(&nrg->link, rg->link.prev);
780
781 return t - f;
782 }
783
784 /* Round our left edge to the current segment if it encloses us. */
785 if (f > rg->from)
786 f = rg->from;
787 chg = t - f;
788
789 /* Check for and consume any regions we now overlap with. */
790 list_for_each_entry(rg, rg->link.prev, link) {
791 if (&rg->link == head)
792 break;
793 if (rg->from > t)
794 return chg;
795
796 /* We overlap with this area, if it extends futher than
797 * us then we must extend ourselves. Account for its
798 * existing reservation. */
799 if (rg->to > t) {
800 chg += rg->to - t;
801 t = rg->to;
802 }
803 chg -= rg->to - rg->from;
804 }
805 return chg;
806 }
807
808 static long region_truncate(struct list_head *head, long end)
809 {
810 struct file_region *rg, *trg;
811 long chg = 0;
812
813 /* Locate the region we are either in or before. */
814 list_for_each_entry(rg, head, link)
815 if (end <= rg->to)
816 break;
817 if (&rg->link == head)
818 return 0;
819
820 /* If we are in the middle of a region then adjust it. */
821 if (end > rg->from) {
822 chg = rg->to - end;
823 rg->to = end;
824 rg = list_entry(rg->link.next, typeof(*rg), link);
825 }
826
827 /* Drop any remaining regions. */
828 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
829 if (&rg->link == head)
830 break;
831 chg += rg->to - rg->from;
832 list_del(&rg->link);
833 kfree(rg);
834 }
835 return chg;
836 }
837
838 static int hugetlb_acct_memory(long delta)
839 {
840 int ret = -ENOMEM;
841
842 spin_lock(&hugetlb_lock);
843 if ((delta + resv_huge_pages) <= free_huge_pages) {
844 resv_huge_pages += delta;
845 ret = 0;
846 }
847 spin_unlock(&hugetlb_lock);
848 return ret;
849 }
850
851 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
852 {
853 long ret, chg;
854
855 chg = region_chg(&inode->i_mapping->private_list, from, to);
856 if (chg < 0)
857 return chg;
858 /*
859 * When cpuset is configured, it breaks the strict hugetlb page
860 * reservation as the accounting is done on a global variable. Such
861 * reservation is completely rubbish in the presence of cpuset because
862 * the reservation is not checked against page availability for the
863 * current cpuset. Application can still potentially OOM'ed by kernel
864 * with lack of free htlb page in cpuset that the task is in.
865 * Attempt to enforce strict accounting with cpuset is almost
866 * impossible (or too ugly) because cpuset is too fluid that
867 * task or memory node can be dynamically moved between cpusets.
868 *
869 * The change of semantics for shared hugetlb mapping with cpuset is
870 * undesirable. However, in order to preserve some of the semantics,
871 * we fall back to check against current free page availability as
872 * a best attempt and hopefully to minimize the impact of changing
873 * semantics that cpuset has.
874 */
875 if (chg > cpuset_mems_nr(free_huge_pages_node))
876 return -ENOMEM;
877
878 ret = hugetlb_acct_memory(chg);
879 if (ret < 0)
880 return ret;
881 region_add(&inode->i_mapping->private_list, from, to);
882 return 0;
883 }
884
885 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
886 {
887 long chg = region_truncate(&inode->i_mapping->private_list, offset);
888 hugetlb_acct_memory(freed - chg);
889 }
This page took 0.098103 seconds and 6 git commands to generate.