hugetlb: fix pool shrinking while in restricted cpuset
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 static void clear_huge_page(struct page *page, unsigned long addr)
44 {
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 }
52 }
53
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
56 {
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 }
64 }
65
66 static void enqueue_huge_page(struct page *page)
67 {
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72 }
73
74 static struct page *dequeue_huge_page(void)
75 {
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90 }
91
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
94 {
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 struct zonelist *zonelist = huge_zonelist(vma, address,
99 htlb_alloc_mask, &mpol);
100 struct zone **z;
101
102 for (z = zonelist->zones; *z; z++) {
103 nid = zone_to_nid(*z);
104 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
105 !list_empty(&hugepage_freelists[nid])) {
106 page = list_entry(hugepage_freelists[nid].next,
107 struct page, lru);
108 list_del(&page->lru);
109 free_huge_pages--;
110 free_huge_pages_node[nid]--;
111 if (vma && vma->vm_flags & VM_MAYSHARE)
112 resv_huge_pages--;
113 break;
114 }
115 }
116 mpol_free(mpol); /* unref if mpol !NULL */
117 return page;
118 }
119
120 static void update_and_free_page(struct page *page)
121 {
122 int i;
123 nr_huge_pages--;
124 nr_huge_pages_node[page_to_nid(page)]--;
125 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
126 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
127 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
128 1 << PG_private | 1<< PG_writeback);
129 }
130 set_compound_page_dtor(page, NULL);
131 set_page_refcounted(page);
132 __free_pages(page, HUGETLB_PAGE_ORDER);
133 }
134
135 static void free_huge_page(struct page *page)
136 {
137 int nid = page_to_nid(page);
138 struct address_space *mapping;
139
140 mapping = (struct address_space *) page_private(page);
141 set_page_private(page, 0);
142 BUG_ON(page_count(page));
143 INIT_LIST_HEAD(&page->lru);
144
145 spin_lock(&hugetlb_lock);
146 if (surplus_huge_pages_node[nid]) {
147 update_and_free_page(page);
148 surplus_huge_pages--;
149 surplus_huge_pages_node[nid]--;
150 } else {
151 enqueue_huge_page(page);
152 }
153 spin_unlock(&hugetlb_lock);
154 if (mapping)
155 hugetlb_put_quota(mapping, 1);
156 }
157
158 /*
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
162 */
163 static int adjust_pool_surplus(int delta)
164 {
165 static int prev_nid;
166 int nid = prev_nid;
167 int ret = 0;
168
169 VM_BUG_ON(delta != -1 && delta != 1);
170 do {
171 nid = next_node(nid, node_online_map);
172 if (nid == MAX_NUMNODES)
173 nid = first_node(node_online_map);
174
175 /* To shrink on this node, there must be a surplus page */
176 if (delta < 0 && !surplus_huge_pages_node[nid])
177 continue;
178 /* Surplus cannot exceed the total number of pages */
179 if (delta > 0 && surplus_huge_pages_node[nid] >=
180 nr_huge_pages_node[nid])
181 continue;
182
183 surplus_huge_pages += delta;
184 surplus_huge_pages_node[nid] += delta;
185 ret = 1;
186 break;
187 } while (nid != prev_nid);
188
189 prev_nid = nid;
190 return ret;
191 }
192
193 static struct page *alloc_fresh_huge_page_node(int nid)
194 {
195 struct page *page;
196
197 page = alloc_pages_node(nid,
198 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
199 HUGETLB_PAGE_ORDER);
200 if (page) {
201 set_compound_page_dtor(page, free_huge_page);
202 spin_lock(&hugetlb_lock);
203 nr_huge_pages++;
204 nr_huge_pages_node[nid]++;
205 spin_unlock(&hugetlb_lock);
206 put_page(page); /* free it into the hugepage allocator */
207 }
208
209 return page;
210 }
211
212 static int alloc_fresh_huge_page(void)
213 {
214 struct page *page;
215 int start_nid;
216 int next_nid;
217 int ret = 0;
218
219 start_nid = hugetlb_next_nid;
220
221 do {
222 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
223 if (page)
224 ret = 1;
225 /*
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
235 */
236 next_nid = next_node(hugetlb_next_nid, node_online_map);
237 if (next_nid == MAX_NUMNODES)
238 next_nid = first_node(node_online_map);
239 hugetlb_next_nid = next_nid;
240 } while (!page && hugetlb_next_nid != start_nid);
241
242 return ret;
243 }
244
245 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
246 unsigned long address)
247 {
248 struct page *page;
249 unsigned int nid;
250
251 /*
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
254 * overcommit
255 *
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
273 */
274 spin_lock(&hugetlb_lock);
275 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
276 spin_unlock(&hugetlb_lock);
277 return NULL;
278 } else {
279 nr_huge_pages++;
280 surplus_huge_pages++;
281 }
282 spin_unlock(&hugetlb_lock);
283
284 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
285 HUGETLB_PAGE_ORDER);
286
287 spin_lock(&hugetlb_lock);
288 if (page) {
289 nid = page_to_nid(page);
290 set_compound_page_dtor(page, free_huge_page);
291 /*
292 * We incremented the global counters already
293 */
294 nr_huge_pages_node[nid]++;
295 surplus_huge_pages_node[nid]++;
296 } else {
297 nr_huge_pages--;
298 surplus_huge_pages--;
299 }
300 spin_unlock(&hugetlb_lock);
301
302 return page;
303 }
304
305 /*
306 * Increase the hugetlb pool such that it can accomodate a reservation
307 * of size 'delta'.
308 */
309 static int gather_surplus_pages(int delta)
310 {
311 struct list_head surplus_list;
312 struct page *page, *tmp;
313 int ret, i;
314 int needed, allocated;
315
316 needed = (resv_huge_pages + delta) - free_huge_pages;
317 if (needed <= 0) {
318 resv_huge_pages += delta;
319 return 0;
320 }
321
322 allocated = 0;
323 INIT_LIST_HEAD(&surplus_list);
324
325 ret = -ENOMEM;
326 retry:
327 spin_unlock(&hugetlb_lock);
328 for (i = 0; i < needed; i++) {
329 page = alloc_buddy_huge_page(NULL, 0);
330 if (!page) {
331 /*
332 * We were not able to allocate enough pages to
333 * satisfy the entire reservation so we free what
334 * we've allocated so far.
335 */
336 spin_lock(&hugetlb_lock);
337 needed = 0;
338 goto free;
339 }
340
341 list_add(&page->lru, &surplus_list);
342 }
343 allocated += needed;
344
345 /*
346 * After retaking hugetlb_lock, we need to recalculate 'needed'
347 * because either resv_huge_pages or free_huge_pages may have changed.
348 */
349 spin_lock(&hugetlb_lock);
350 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
351 if (needed > 0)
352 goto retry;
353
354 /*
355 * The surplus_list now contains _at_least_ the number of extra pages
356 * needed to accomodate the reservation. Add the appropriate number
357 * of pages to the hugetlb pool and free the extras back to the buddy
358 * allocator. Commit the entire reservation here to prevent another
359 * process from stealing the pages as they are added to the pool but
360 * before they are reserved.
361 */
362 needed += allocated;
363 resv_huge_pages += delta;
364 ret = 0;
365 free:
366 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
367 list_del(&page->lru);
368 if ((--needed) >= 0)
369 enqueue_huge_page(page);
370 else {
371 /*
372 * Decrement the refcount and free the page using its
373 * destructor. This must be done with hugetlb_lock
374 * unlocked which is safe because free_huge_page takes
375 * hugetlb_lock before deciding how to free the page.
376 */
377 spin_unlock(&hugetlb_lock);
378 put_page(page);
379 spin_lock(&hugetlb_lock);
380 }
381 }
382
383 return ret;
384 }
385
386 /*
387 * When releasing a hugetlb pool reservation, any surplus pages that were
388 * allocated to satisfy the reservation must be explicitly freed if they were
389 * never used.
390 */
391 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
392 {
393 static int nid = -1;
394 struct page *page;
395 unsigned long nr_pages;
396
397 /* Uncommit the reservation */
398 resv_huge_pages -= unused_resv_pages;
399
400 nr_pages = min(unused_resv_pages, surplus_huge_pages);
401
402 while (nr_pages) {
403 nid = next_node(nid, node_online_map);
404 if (nid == MAX_NUMNODES)
405 nid = first_node(node_online_map);
406
407 if (!surplus_huge_pages_node[nid])
408 continue;
409
410 if (!list_empty(&hugepage_freelists[nid])) {
411 page = list_entry(hugepage_freelists[nid].next,
412 struct page, lru);
413 list_del(&page->lru);
414 update_and_free_page(page);
415 free_huge_pages--;
416 free_huge_pages_node[nid]--;
417 surplus_huge_pages--;
418 surplus_huge_pages_node[nid]--;
419 nr_pages--;
420 }
421 }
422 }
423
424
425 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
426 unsigned long addr)
427 {
428 struct page *page;
429
430 spin_lock(&hugetlb_lock);
431 page = dequeue_huge_page_vma(vma, addr);
432 spin_unlock(&hugetlb_lock);
433 return page ? page : ERR_PTR(-VM_FAULT_OOM);
434 }
435
436 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
437 unsigned long addr)
438 {
439 struct page *page = NULL;
440
441 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
442 return ERR_PTR(-VM_FAULT_SIGBUS);
443
444 spin_lock(&hugetlb_lock);
445 if (free_huge_pages > resv_huge_pages)
446 page = dequeue_huge_page_vma(vma, addr);
447 spin_unlock(&hugetlb_lock);
448 if (!page) {
449 page = alloc_buddy_huge_page(vma, addr);
450 if (!page) {
451 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
452 return ERR_PTR(-VM_FAULT_OOM);
453 }
454 }
455 return page;
456 }
457
458 static struct page *alloc_huge_page(struct vm_area_struct *vma,
459 unsigned long addr)
460 {
461 struct page *page;
462 struct address_space *mapping = vma->vm_file->f_mapping;
463
464 if (vma->vm_flags & VM_MAYSHARE)
465 page = alloc_huge_page_shared(vma, addr);
466 else
467 page = alloc_huge_page_private(vma, addr);
468
469 if (!IS_ERR(page)) {
470 set_page_refcounted(page);
471 set_page_private(page, (unsigned long) mapping);
472 }
473 return page;
474 }
475
476 static int __init hugetlb_init(void)
477 {
478 unsigned long i;
479
480 if (HPAGE_SHIFT == 0)
481 return 0;
482
483 for (i = 0; i < MAX_NUMNODES; ++i)
484 INIT_LIST_HEAD(&hugepage_freelists[i]);
485
486 hugetlb_next_nid = first_node(node_online_map);
487
488 for (i = 0; i < max_huge_pages; ++i) {
489 if (!alloc_fresh_huge_page())
490 break;
491 }
492 max_huge_pages = free_huge_pages = nr_huge_pages = i;
493 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
494 return 0;
495 }
496 module_init(hugetlb_init);
497
498 static int __init hugetlb_setup(char *s)
499 {
500 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
501 max_huge_pages = 0;
502 return 1;
503 }
504 __setup("hugepages=", hugetlb_setup);
505
506 static unsigned int cpuset_mems_nr(unsigned int *array)
507 {
508 int node;
509 unsigned int nr = 0;
510
511 for_each_node_mask(node, cpuset_current_mems_allowed)
512 nr += array[node];
513
514 return nr;
515 }
516
517 #ifdef CONFIG_SYSCTL
518 #ifdef CONFIG_HIGHMEM
519 static void try_to_free_low(unsigned long count)
520 {
521 int i;
522
523 for (i = 0; i < MAX_NUMNODES; ++i) {
524 struct page *page, *next;
525 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
526 if (count >= nr_huge_pages)
527 return;
528 if (PageHighMem(page))
529 continue;
530 list_del(&page->lru);
531 update_and_free_page(page);
532 free_huge_pages--;
533 free_huge_pages_node[page_to_nid(page)]--;
534 }
535 }
536 }
537 #else
538 static inline void try_to_free_low(unsigned long count)
539 {
540 }
541 #endif
542
543 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
544 static unsigned long set_max_huge_pages(unsigned long count)
545 {
546 unsigned long min_count, ret;
547
548 /*
549 * Increase the pool size
550 * First take pages out of surplus state. Then make up the
551 * remaining difference by allocating fresh huge pages.
552 *
553 * We might race with alloc_buddy_huge_page() here and be unable
554 * to convert a surplus huge page to a normal huge page. That is
555 * not critical, though, it just means the overall size of the
556 * pool might be one hugepage larger than it needs to be, but
557 * within all the constraints specified by the sysctls.
558 */
559 spin_lock(&hugetlb_lock);
560 while (surplus_huge_pages && count > persistent_huge_pages) {
561 if (!adjust_pool_surplus(-1))
562 break;
563 }
564
565 while (count > persistent_huge_pages) {
566 int ret;
567 /*
568 * If this allocation races such that we no longer need the
569 * page, free_huge_page will handle it by freeing the page
570 * and reducing the surplus.
571 */
572 spin_unlock(&hugetlb_lock);
573 ret = alloc_fresh_huge_page();
574 spin_lock(&hugetlb_lock);
575 if (!ret)
576 goto out;
577
578 }
579
580 /*
581 * Decrease the pool size
582 * First return free pages to the buddy allocator (being careful
583 * to keep enough around to satisfy reservations). Then place
584 * pages into surplus state as needed so the pool will shrink
585 * to the desired size as pages become free.
586 *
587 * By placing pages into the surplus state independent of the
588 * overcommit value, we are allowing the surplus pool size to
589 * exceed overcommit. There are few sane options here. Since
590 * alloc_buddy_huge_page() is checking the global counter,
591 * though, we'll note that we're not allowed to exceed surplus
592 * and won't grow the pool anywhere else. Not until one of the
593 * sysctls are changed, or the surplus pages go out of use.
594 */
595 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
596 min_count = max(count, min_count);
597 try_to_free_low(min_count);
598 while (min_count < persistent_huge_pages) {
599 struct page *page = dequeue_huge_page();
600 if (!page)
601 break;
602 update_and_free_page(page);
603 }
604 while (count < persistent_huge_pages) {
605 if (!adjust_pool_surplus(1))
606 break;
607 }
608 out:
609 ret = persistent_huge_pages;
610 spin_unlock(&hugetlb_lock);
611 return ret;
612 }
613
614 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
615 struct file *file, void __user *buffer,
616 size_t *length, loff_t *ppos)
617 {
618 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
619 max_huge_pages = set_max_huge_pages(max_huge_pages);
620 return 0;
621 }
622
623 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
624 struct file *file, void __user *buffer,
625 size_t *length, loff_t *ppos)
626 {
627 proc_dointvec(table, write, file, buffer, length, ppos);
628 if (hugepages_treat_as_movable)
629 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
630 else
631 htlb_alloc_mask = GFP_HIGHUSER;
632 return 0;
633 }
634
635 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
636 struct file *file, void __user *buffer,
637 size_t *length, loff_t *ppos)
638 {
639 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
640 spin_lock(&hugetlb_lock);
641 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
642 spin_unlock(&hugetlb_lock);
643 return 0;
644 }
645
646 #endif /* CONFIG_SYSCTL */
647
648 int hugetlb_report_meminfo(char *buf)
649 {
650 return sprintf(buf,
651 "HugePages_Total: %5lu\n"
652 "HugePages_Free: %5lu\n"
653 "HugePages_Rsvd: %5lu\n"
654 "HugePages_Surp: %5lu\n"
655 "Hugepagesize: %5lu kB\n",
656 nr_huge_pages,
657 free_huge_pages,
658 resv_huge_pages,
659 surplus_huge_pages,
660 HPAGE_SIZE/1024);
661 }
662
663 int hugetlb_report_node_meminfo(int nid, char *buf)
664 {
665 return sprintf(buf,
666 "Node %d HugePages_Total: %5u\n"
667 "Node %d HugePages_Free: %5u\n",
668 nid, nr_huge_pages_node[nid],
669 nid, free_huge_pages_node[nid]);
670 }
671
672 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
673 unsigned long hugetlb_total_pages(void)
674 {
675 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
676 }
677
678 /*
679 * We cannot handle pagefaults against hugetlb pages at all. They cause
680 * handle_mm_fault() to try to instantiate regular-sized pages in the
681 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
682 * this far.
683 */
684 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
685 {
686 BUG();
687 return 0;
688 }
689
690 struct vm_operations_struct hugetlb_vm_ops = {
691 .fault = hugetlb_vm_op_fault,
692 };
693
694 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
695 int writable)
696 {
697 pte_t entry;
698
699 if (writable) {
700 entry =
701 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
702 } else {
703 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
704 }
705 entry = pte_mkyoung(entry);
706 entry = pte_mkhuge(entry);
707
708 return entry;
709 }
710
711 static void set_huge_ptep_writable(struct vm_area_struct *vma,
712 unsigned long address, pte_t *ptep)
713 {
714 pte_t entry;
715
716 entry = pte_mkwrite(pte_mkdirty(*ptep));
717 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
718 update_mmu_cache(vma, address, entry);
719 }
720 }
721
722
723 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
724 struct vm_area_struct *vma)
725 {
726 pte_t *src_pte, *dst_pte, entry;
727 struct page *ptepage;
728 unsigned long addr;
729 int cow;
730
731 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
732
733 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
734 src_pte = huge_pte_offset(src, addr);
735 if (!src_pte)
736 continue;
737 dst_pte = huge_pte_alloc(dst, addr);
738 if (!dst_pte)
739 goto nomem;
740
741 /* If the pagetables are shared don't copy or take references */
742 if (dst_pte == src_pte)
743 continue;
744
745 spin_lock(&dst->page_table_lock);
746 spin_lock(&src->page_table_lock);
747 if (!pte_none(*src_pte)) {
748 if (cow)
749 ptep_set_wrprotect(src, addr, src_pte);
750 entry = *src_pte;
751 ptepage = pte_page(entry);
752 get_page(ptepage);
753 set_huge_pte_at(dst, addr, dst_pte, entry);
754 }
755 spin_unlock(&src->page_table_lock);
756 spin_unlock(&dst->page_table_lock);
757 }
758 return 0;
759
760 nomem:
761 return -ENOMEM;
762 }
763
764 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
765 unsigned long end)
766 {
767 struct mm_struct *mm = vma->vm_mm;
768 unsigned long address;
769 pte_t *ptep;
770 pte_t pte;
771 struct page *page;
772 struct page *tmp;
773 /*
774 * A page gathering list, protected by per file i_mmap_lock. The
775 * lock is used to avoid list corruption from multiple unmapping
776 * of the same page since we are using page->lru.
777 */
778 LIST_HEAD(page_list);
779
780 WARN_ON(!is_vm_hugetlb_page(vma));
781 BUG_ON(start & ~HPAGE_MASK);
782 BUG_ON(end & ~HPAGE_MASK);
783
784 spin_lock(&mm->page_table_lock);
785 for (address = start; address < end; address += HPAGE_SIZE) {
786 ptep = huge_pte_offset(mm, address);
787 if (!ptep)
788 continue;
789
790 if (huge_pmd_unshare(mm, &address, ptep))
791 continue;
792
793 pte = huge_ptep_get_and_clear(mm, address, ptep);
794 if (pte_none(pte))
795 continue;
796
797 page = pte_page(pte);
798 if (pte_dirty(pte))
799 set_page_dirty(page);
800 list_add(&page->lru, &page_list);
801 }
802 spin_unlock(&mm->page_table_lock);
803 flush_tlb_range(vma, start, end);
804 list_for_each_entry_safe(page, tmp, &page_list, lru) {
805 list_del(&page->lru);
806 put_page(page);
807 }
808 }
809
810 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
811 unsigned long end)
812 {
813 /*
814 * It is undesirable to test vma->vm_file as it should be non-null
815 * for valid hugetlb area. However, vm_file will be NULL in the error
816 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
817 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
818 * to clean up. Since no pte has actually been setup, it is safe to
819 * do nothing in this case.
820 */
821 if (vma->vm_file) {
822 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
823 __unmap_hugepage_range(vma, start, end);
824 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
825 }
826 }
827
828 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
829 unsigned long address, pte_t *ptep, pte_t pte)
830 {
831 struct page *old_page, *new_page;
832 int avoidcopy;
833
834 old_page = pte_page(pte);
835
836 /* If no-one else is actually using this page, avoid the copy
837 * and just make the page writable */
838 avoidcopy = (page_count(old_page) == 1);
839 if (avoidcopy) {
840 set_huge_ptep_writable(vma, address, ptep);
841 return 0;
842 }
843
844 page_cache_get(old_page);
845 new_page = alloc_huge_page(vma, address);
846
847 if (IS_ERR(new_page)) {
848 page_cache_release(old_page);
849 return -PTR_ERR(new_page);
850 }
851
852 spin_unlock(&mm->page_table_lock);
853 copy_huge_page(new_page, old_page, address, vma);
854 __SetPageUptodate(new_page);
855 spin_lock(&mm->page_table_lock);
856
857 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
858 if (likely(pte_same(*ptep, pte))) {
859 /* Break COW */
860 set_huge_pte_at(mm, address, ptep,
861 make_huge_pte(vma, new_page, 1));
862 /* Make the old page be freed below */
863 new_page = old_page;
864 }
865 page_cache_release(new_page);
866 page_cache_release(old_page);
867 return 0;
868 }
869
870 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
871 unsigned long address, pte_t *ptep, int write_access)
872 {
873 int ret = VM_FAULT_SIGBUS;
874 unsigned long idx;
875 unsigned long size;
876 struct page *page;
877 struct address_space *mapping;
878 pte_t new_pte;
879
880 mapping = vma->vm_file->f_mapping;
881 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
882 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
883
884 /*
885 * Use page lock to guard against racing truncation
886 * before we get page_table_lock.
887 */
888 retry:
889 page = find_lock_page(mapping, idx);
890 if (!page) {
891 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
892 if (idx >= size)
893 goto out;
894 page = alloc_huge_page(vma, address);
895 if (IS_ERR(page)) {
896 ret = -PTR_ERR(page);
897 goto out;
898 }
899 clear_huge_page(page, address);
900 __SetPageUptodate(page);
901
902 if (vma->vm_flags & VM_SHARED) {
903 int err;
904 struct inode *inode = mapping->host;
905
906 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
907 if (err) {
908 put_page(page);
909 if (err == -EEXIST)
910 goto retry;
911 goto out;
912 }
913
914 spin_lock(&inode->i_lock);
915 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
916 spin_unlock(&inode->i_lock);
917 } else
918 lock_page(page);
919 }
920
921 spin_lock(&mm->page_table_lock);
922 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
923 if (idx >= size)
924 goto backout;
925
926 ret = 0;
927 if (!pte_none(*ptep))
928 goto backout;
929
930 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
931 && (vma->vm_flags & VM_SHARED)));
932 set_huge_pte_at(mm, address, ptep, new_pte);
933
934 if (write_access && !(vma->vm_flags & VM_SHARED)) {
935 /* Optimization, do the COW without a second fault */
936 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
937 }
938
939 spin_unlock(&mm->page_table_lock);
940 unlock_page(page);
941 out:
942 return ret;
943
944 backout:
945 spin_unlock(&mm->page_table_lock);
946 unlock_page(page);
947 put_page(page);
948 goto out;
949 }
950
951 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
952 unsigned long address, int write_access)
953 {
954 pte_t *ptep;
955 pte_t entry;
956 int ret;
957 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
958
959 ptep = huge_pte_alloc(mm, address);
960 if (!ptep)
961 return VM_FAULT_OOM;
962
963 /*
964 * Serialize hugepage allocation and instantiation, so that we don't
965 * get spurious allocation failures if two CPUs race to instantiate
966 * the same page in the page cache.
967 */
968 mutex_lock(&hugetlb_instantiation_mutex);
969 entry = *ptep;
970 if (pte_none(entry)) {
971 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
972 mutex_unlock(&hugetlb_instantiation_mutex);
973 return ret;
974 }
975
976 ret = 0;
977
978 spin_lock(&mm->page_table_lock);
979 /* Check for a racing update before calling hugetlb_cow */
980 if (likely(pte_same(entry, *ptep)))
981 if (write_access && !pte_write(entry))
982 ret = hugetlb_cow(mm, vma, address, ptep, entry);
983 spin_unlock(&mm->page_table_lock);
984 mutex_unlock(&hugetlb_instantiation_mutex);
985
986 return ret;
987 }
988
989 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
990 struct page **pages, struct vm_area_struct **vmas,
991 unsigned long *position, int *length, int i,
992 int write)
993 {
994 unsigned long pfn_offset;
995 unsigned long vaddr = *position;
996 int remainder = *length;
997
998 spin_lock(&mm->page_table_lock);
999 while (vaddr < vma->vm_end && remainder) {
1000 pte_t *pte;
1001 struct page *page;
1002
1003 /*
1004 * Some archs (sparc64, sh*) have multiple pte_ts to
1005 * each hugepage. We have to make * sure we get the
1006 * first, for the page indexing below to work.
1007 */
1008 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1009
1010 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1011 int ret;
1012
1013 spin_unlock(&mm->page_table_lock);
1014 ret = hugetlb_fault(mm, vma, vaddr, write);
1015 spin_lock(&mm->page_table_lock);
1016 if (!(ret & VM_FAULT_ERROR))
1017 continue;
1018
1019 remainder = 0;
1020 if (!i)
1021 i = -EFAULT;
1022 break;
1023 }
1024
1025 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1026 page = pte_page(*pte);
1027 same_page:
1028 if (pages) {
1029 get_page(page);
1030 pages[i] = page + pfn_offset;
1031 }
1032
1033 if (vmas)
1034 vmas[i] = vma;
1035
1036 vaddr += PAGE_SIZE;
1037 ++pfn_offset;
1038 --remainder;
1039 ++i;
1040 if (vaddr < vma->vm_end && remainder &&
1041 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1042 /*
1043 * We use pfn_offset to avoid touching the pageframes
1044 * of this compound page.
1045 */
1046 goto same_page;
1047 }
1048 }
1049 spin_unlock(&mm->page_table_lock);
1050 *length = remainder;
1051 *position = vaddr;
1052
1053 return i;
1054 }
1055
1056 void hugetlb_change_protection(struct vm_area_struct *vma,
1057 unsigned long address, unsigned long end, pgprot_t newprot)
1058 {
1059 struct mm_struct *mm = vma->vm_mm;
1060 unsigned long start = address;
1061 pte_t *ptep;
1062 pte_t pte;
1063
1064 BUG_ON(address >= end);
1065 flush_cache_range(vma, address, end);
1066
1067 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1068 spin_lock(&mm->page_table_lock);
1069 for (; address < end; address += HPAGE_SIZE) {
1070 ptep = huge_pte_offset(mm, address);
1071 if (!ptep)
1072 continue;
1073 if (huge_pmd_unshare(mm, &address, ptep))
1074 continue;
1075 if (!pte_none(*ptep)) {
1076 pte = huge_ptep_get_and_clear(mm, address, ptep);
1077 pte = pte_mkhuge(pte_modify(pte, newprot));
1078 set_huge_pte_at(mm, address, ptep, pte);
1079 }
1080 }
1081 spin_unlock(&mm->page_table_lock);
1082 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1083
1084 flush_tlb_range(vma, start, end);
1085 }
1086
1087 struct file_region {
1088 struct list_head link;
1089 long from;
1090 long to;
1091 };
1092
1093 static long region_add(struct list_head *head, long f, long t)
1094 {
1095 struct file_region *rg, *nrg, *trg;
1096
1097 /* Locate the region we are either in or before. */
1098 list_for_each_entry(rg, head, link)
1099 if (f <= rg->to)
1100 break;
1101
1102 /* Round our left edge to the current segment if it encloses us. */
1103 if (f > rg->from)
1104 f = rg->from;
1105
1106 /* Check for and consume any regions we now overlap with. */
1107 nrg = rg;
1108 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1109 if (&rg->link == head)
1110 break;
1111 if (rg->from > t)
1112 break;
1113
1114 /* If this area reaches higher then extend our area to
1115 * include it completely. If this is not the first area
1116 * which we intend to reuse, free it. */
1117 if (rg->to > t)
1118 t = rg->to;
1119 if (rg != nrg) {
1120 list_del(&rg->link);
1121 kfree(rg);
1122 }
1123 }
1124 nrg->from = f;
1125 nrg->to = t;
1126 return 0;
1127 }
1128
1129 static long region_chg(struct list_head *head, long f, long t)
1130 {
1131 struct file_region *rg, *nrg;
1132 long chg = 0;
1133
1134 /* Locate the region we are before or in. */
1135 list_for_each_entry(rg, head, link)
1136 if (f <= rg->to)
1137 break;
1138
1139 /* If we are below the current region then a new region is required.
1140 * Subtle, allocate a new region at the position but make it zero
1141 * size such that we can guarantee to record the reservation. */
1142 if (&rg->link == head || t < rg->from) {
1143 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1144 if (!nrg)
1145 return -ENOMEM;
1146 nrg->from = f;
1147 nrg->to = f;
1148 INIT_LIST_HEAD(&nrg->link);
1149 list_add(&nrg->link, rg->link.prev);
1150
1151 return t - f;
1152 }
1153
1154 /* Round our left edge to the current segment if it encloses us. */
1155 if (f > rg->from)
1156 f = rg->from;
1157 chg = t - f;
1158
1159 /* Check for and consume any regions we now overlap with. */
1160 list_for_each_entry(rg, rg->link.prev, link) {
1161 if (&rg->link == head)
1162 break;
1163 if (rg->from > t)
1164 return chg;
1165
1166 /* We overlap with this area, if it extends futher than
1167 * us then we must extend ourselves. Account for its
1168 * existing reservation. */
1169 if (rg->to > t) {
1170 chg += rg->to - t;
1171 t = rg->to;
1172 }
1173 chg -= rg->to - rg->from;
1174 }
1175 return chg;
1176 }
1177
1178 static long region_truncate(struct list_head *head, long end)
1179 {
1180 struct file_region *rg, *trg;
1181 long chg = 0;
1182
1183 /* Locate the region we are either in or before. */
1184 list_for_each_entry(rg, head, link)
1185 if (end <= rg->to)
1186 break;
1187 if (&rg->link == head)
1188 return 0;
1189
1190 /* If we are in the middle of a region then adjust it. */
1191 if (end > rg->from) {
1192 chg = rg->to - end;
1193 rg->to = end;
1194 rg = list_entry(rg->link.next, typeof(*rg), link);
1195 }
1196
1197 /* Drop any remaining regions. */
1198 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1199 if (&rg->link == head)
1200 break;
1201 chg += rg->to - rg->from;
1202 list_del(&rg->link);
1203 kfree(rg);
1204 }
1205 return chg;
1206 }
1207
1208 static int hugetlb_acct_memory(long delta)
1209 {
1210 int ret = -ENOMEM;
1211
1212 spin_lock(&hugetlb_lock);
1213 /*
1214 * When cpuset is configured, it breaks the strict hugetlb page
1215 * reservation as the accounting is done on a global variable. Such
1216 * reservation is completely rubbish in the presence of cpuset because
1217 * the reservation is not checked against page availability for the
1218 * current cpuset. Application can still potentially OOM'ed by kernel
1219 * with lack of free htlb page in cpuset that the task is in.
1220 * Attempt to enforce strict accounting with cpuset is almost
1221 * impossible (or too ugly) because cpuset is too fluid that
1222 * task or memory node can be dynamically moved between cpusets.
1223 *
1224 * The change of semantics for shared hugetlb mapping with cpuset is
1225 * undesirable. However, in order to preserve some of the semantics,
1226 * we fall back to check against current free page availability as
1227 * a best attempt and hopefully to minimize the impact of changing
1228 * semantics that cpuset has.
1229 */
1230 if (delta > 0) {
1231 if (gather_surplus_pages(delta) < 0)
1232 goto out;
1233
1234 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1235 return_unused_surplus_pages(delta);
1236 goto out;
1237 }
1238 }
1239
1240 ret = 0;
1241 if (delta < 0)
1242 return_unused_surplus_pages((unsigned long) -delta);
1243
1244 out:
1245 spin_unlock(&hugetlb_lock);
1246 return ret;
1247 }
1248
1249 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1250 {
1251 long ret, chg;
1252
1253 chg = region_chg(&inode->i_mapping->private_list, from, to);
1254 if (chg < 0)
1255 return chg;
1256
1257 if (hugetlb_get_quota(inode->i_mapping, chg))
1258 return -ENOSPC;
1259 ret = hugetlb_acct_memory(chg);
1260 if (ret < 0) {
1261 hugetlb_put_quota(inode->i_mapping, chg);
1262 return ret;
1263 }
1264 region_add(&inode->i_mapping->private_list, from, to);
1265 return 0;
1266 }
1267
1268 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1269 {
1270 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1271
1272 spin_lock(&inode->i_lock);
1273 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1274 spin_unlock(&inode->i_lock);
1275
1276 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1277 hugetlb_acct_memory(-(chg - freed));
1278 }
This page took 0.054184 seconds and 6 git commands to generate.