Merge tag 'upstream-3.15-rc1' of git://git.infradead.org/linux-ubifs
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
54 */
55 DEFINE_SPINLOCK(hugetlb_lock);
56
57 /*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74 }
75
76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90 }
91
92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98 }
99
100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102 {
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117 }
118
119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121 {
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130 }
131
132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136
137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139 return subpool_inode(file_inode(vma->vm_file));
140 }
141
142 /*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
145 *
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
148 */
149 struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153 };
154
155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157 struct list_head *head = &resv->regions;
158 struct file_region *rg, *nrg, *trg;
159
160 spin_lock(&resv->lock);
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
190 spin_unlock(&resv->lock);
191 return 0;
192 }
193
194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196 struct list_head *head = &resv->regions;
197 struct file_region *rg, *nrg = NULL;
198 long chg = 0;
199
200 retry:
201 spin_lock(&resv->lock);
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
222
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
238 goto out;
239
240 /* We overlap with this area, if it extends further than
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
249
250 out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255 out_nrg:
256 spin_unlock(&resv->lock);
257 return chg;
258 }
259
260 static long region_truncate(struct resv_map *resv, long end)
261 {
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *trg;
264 long chg = 0;
265
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
272 goto out;
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
289
290 out:
291 spin_unlock(&resv->lock);
292 return chg;
293 }
294
295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297 struct list_head *head = &resv->regions;
298 struct file_region *rg;
299 long chg = 0;
300
301 spin_lock(&resv->lock);
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
304 long seg_from;
305 long seg_to;
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
317 spin_unlock(&resv->lock);
318
319 return chg;
320 }
321
322 /*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
328 {
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
331 }
332
333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335 {
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338
339 /*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
352 return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355
356 /*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365 return vma_kernel_pagesize(vma);
366 }
367 #endif
368
369 /*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374 #define HPAGE_RESV_OWNER (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377
378 /*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
396 */
397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399 return (unsigned long)vma->vm_private_data;
400 }
401
402 static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404 {
405 vma->vm_private_data = (void *)value;
406 }
407
408 struct resv_map *resv_map_alloc(void)
409 {
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
415 spin_lock_init(&resv_map->lock);
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419 }
420
421 void resv_map_release(struct kref *ref)
422 {
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
426 region_truncate(resv_map, 0);
427 kfree(resv_map);
428 }
429
430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432 return inode->i_mapping->private_data;
433 }
434
435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437 VM_BUG_ON(!is_vm_hugetlb_page(vma));
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
447 }
448 }
449
450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452 VM_BUG_ON(!is_vm_hugetlb_page(vma));
453 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458
459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
462 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466
467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469 VM_BUG_ON(!is_vm_hugetlb_page(vma));
470
471 return (get_vma_private_data(vma) & flag) != 0;
472 }
473
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477 VM_BUG_ON(!is_vm_hugetlb_page(vma));
478 if (!(vma->vm_flags & VM_MAYSHARE))
479 vma->vm_private_data = (void *)0;
480 }
481
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
500
501 /* Shared mappings always use reserves */
502 if (vma->vm_flags & VM_MAYSHARE)
503 return 1;
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
511
512 return 0;
513 }
514
515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517 int nid = page_to_nid(page);
518 list_move(&page->lru, &h->hugepage_freelists[nid]);
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
521 }
522
523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525 struct page *page;
526
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
535 return NULL;
536 list_move(&page->lru, &h->hugepage_activelist);
537 set_page_refcounted(page);
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541 }
542
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546 if (hugepages_treat_as_movable || hugepage_migration_support(h))
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550 }
551
552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
554 unsigned long address, int avoid_reserve,
555 long chg)
556 {
557 struct page *page = NULL;
558 struct mempolicy *mpol;
559 nodemask_t *nodemask;
560 struct zonelist *zonelist;
561 struct zone *zone;
562 struct zoneref *z;
563 unsigned int cpuset_mems_cookie;
564
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
570 if (!vma_has_reserves(vma, chg) &&
571 h->free_huge_pages - h->resv_huge_pages == 0)
572 goto err;
573
574 /* If reserves cannot be used, ensure enough pages are in the pool */
575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576 goto err;
577
578 retry_cpuset:
579 cpuset_mems_cookie = read_mems_allowed_begin();
580 zonelist = huge_zonelist(vma, address,
581 htlb_alloc_mask(h), &mpol, &nodemask);
582
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
585 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
593 SetPagePrivate(page);
594 h->resv_huge_pages--;
595 break;
596 }
597 }
598 }
599
600 mpol_cond_put(mpol);
601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602 goto retry_cpuset;
603 return page;
604
605 err:
606 return NULL;
607 }
608
609 static void update_and_free_page(struct hstate *h, struct page *page)
610 {
611 int i;
612
613 VM_BUG_ON(h->order >= MAX_ORDER);
614
615 h->nr_huge_pages--;
616 h->nr_huge_pages_node[page_to_nid(page)]--;
617 for (i = 0; i < pages_per_huge_page(h); i++) {
618 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
619 1 << PG_referenced | 1 << PG_dirty |
620 1 << PG_active | 1 << PG_reserved |
621 1 << PG_private | 1 << PG_writeback);
622 }
623 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
624 set_compound_page_dtor(page, NULL);
625 set_page_refcounted(page);
626 arch_release_hugepage(page);
627 __free_pages(page, huge_page_order(h));
628 }
629
630 struct hstate *size_to_hstate(unsigned long size)
631 {
632 struct hstate *h;
633
634 for_each_hstate(h) {
635 if (huge_page_size(h) == size)
636 return h;
637 }
638 return NULL;
639 }
640
641 static void free_huge_page(struct page *page)
642 {
643 /*
644 * Can't pass hstate in here because it is called from the
645 * compound page destructor.
646 */
647 struct hstate *h = page_hstate(page);
648 int nid = page_to_nid(page);
649 struct hugepage_subpool *spool =
650 (struct hugepage_subpool *)page_private(page);
651 bool restore_reserve;
652
653 set_page_private(page, 0);
654 page->mapping = NULL;
655 BUG_ON(page_count(page));
656 BUG_ON(page_mapcount(page));
657 restore_reserve = PagePrivate(page);
658 ClearPagePrivate(page);
659
660 spin_lock(&hugetlb_lock);
661 hugetlb_cgroup_uncharge_page(hstate_index(h),
662 pages_per_huge_page(h), page);
663 if (restore_reserve)
664 h->resv_huge_pages++;
665
666 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
667 /* remove the page from active list */
668 list_del(&page->lru);
669 update_and_free_page(h, page);
670 h->surplus_huge_pages--;
671 h->surplus_huge_pages_node[nid]--;
672 } else {
673 arch_clear_hugepage_flags(page);
674 enqueue_huge_page(h, page);
675 }
676 spin_unlock(&hugetlb_lock);
677 hugepage_subpool_put_pages(spool, 1);
678 }
679
680 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
681 {
682 INIT_LIST_HEAD(&page->lru);
683 set_compound_page_dtor(page, free_huge_page);
684 spin_lock(&hugetlb_lock);
685 set_hugetlb_cgroup(page, NULL);
686 h->nr_huge_pages++;
687 h->nr_huge_pages_node[nid]++;
688 spin_unlock(&hugetlb_lock);
689 put_page(page); /* free it into the hugepage allocator */
690 }
691
692 static void __init prep_compound_gigantic_page(struct page *page,
693 unsigned long order)
694 {
695 int i;
696 int nr_pages = 1 << order;
697 struct page *p = page + 1;
698
699 /* we rely on prep_new_huge_page to set the destructor */
700 set_compound_order(page, order);
701 __SetPageHead(page);
702 __ClearPageReserved(page);
703 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
704 __SetPageTail(p);
705 /*
706 * For gigantic hugepages allocated through bootmem at
707 * boot, it's safer to be consistent with the not-gigantic
708 * hugepages and clear the PG_reserved bit from all tail pages
709 * too. Otherwse drivers using get_user_pages() to access tail
710 * pages may get the reference counting wrong if they see
711 * PG_reserved set on a tail page (despite the head page not
712 * having PG_reserved set). Enforcing this consistency between
713 * head and tail pages allows drivers to optimize away a check
714 * on the head page when they need know if put_page() is needed
715 * after get_user_pages().
716 */
717 __ClearPageReserved(p);
718 set_page_count(p, 0);
719 p->first_page = page;
720 }
721 }
722
723 /*
724 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
725 * transparent huge pages. See the PageTransHuge() documentation for more
726 * details.
727 */
728 int PageHuge(struct page *page)
729 {
730 if (!PageCompound(page))
731 return 0;
732
733 page = compound_head(page);
734 return get_compound_page_dtor(page) == free_huge_page;
735 }
736 EXPORT_SYMBOL_GPL(PageHuge);
737
738 /*
739 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
740 * normal or transparent huge pages.
741 */
742 int PageHeadHuge(struct page *page_head)
743 {
744 if (!PageHead(page_head))
745 return 0;
746
747 return get_compound_page_dtor(page_head) == free_huge_page;
748 }
749
750 pgoff_t __basepage_index(struct page *page)
751 {
752 struct page *page_head = compound_head(page);
753 pgoff_t index = page_index(page_head);
754 unsigned long compound_idx;
755
756 if (!PageHuge(page_head))
757 return page_index(page);
758
759 if (compound_order(page_head) >= MAX_ORDER)
760 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
761 else
762 compound_idx = page - page_head;
763
764 return (index << compound_order(page_head)) + compound_idx;
765 }
766
767 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
768 {
769 struct page *page;
770
771 if (h->order >= MAX_ORDER)
772 return NULL;
773
774 page = alloc_pages_exact_node(nid,
775 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
776 __GFP_REPEAT|__GFP_NOWARN,
777 huge_page_order(h));
778 if (page) {
779 if (arch_prepare_hugepage(page)) {
780 __free_pages(page, huge_page_order(h));
781 return NULL;
782 }
783 prep_new_huge_page(h, page, nid);
784 }
785
786 return page;
787 }
788
789 /*
790 * common helper functions for hstate_next_node_to_{alloc|free}.
791 * We may have allocated or freed a huge page based on a different
792 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
793 * be outside of *nodes_allowed. Ensure that we use an allowed
794 * node for alloc or free.
795 */
796 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
797 {
798 nid = next_node(nid, *nodes_allowed);
799 if (nid == MAX_NUMNODES)
800 nid = first_node(*nodes_allowed);
801 VM_BUG_ON(nid >= MAX_NUMNODES);
802
803 return nid;
804 }
805
806 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
807 {
808 if (!node_isset(nid, *nodes_allowed))
809 nid = next_node_allowed(nid, nodes_allowed);
810 return nid;
811 }
812
813 /*
814 * returns the previously saved node ["this node"] from which to
815 * allocate a persistent huge page for the pool and advance the
816 * next node from which to allocate, handling wrap at end of node
817 * mask.
818 */
819 static int hstate_next_node_to_alloc(struct hstate *h,
820 nodemask_t *nodes_allowed)
821 {
822 int nid;
823
824 VM_BUG_ON(!nodes_allowed);
825
826 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
827 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
828
829 return nid;
830 }
831
832 /*
833 * helper for free_pool_huge_page() - return the previously saved
834 * node ["this node"] from which to free a huge page. Advance the
835 * next node id whether or not we find a free huge page to free so
836 * that the next attempt to free addresses the next node.
837 */
838 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
839 {
840 int nid;
841
842 VM_BUG_ON(!nodes_allowed);
843
844 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
845 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
846
847 return nid;
848 }
849
850 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
851 for (nr_nodes = nodes_weight(*mask); \
852 nr_nodes > 0 && \
853 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
854 nr_nodes--)
855
856 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
857 for (nr_nodes = nodes_weight(*mask); \
858 nr_nodes > 0 && \
859 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
860 nr_nodes--)
861
862 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
863 {
864 struct page *page;
865 int nr_nodes, node;
866 int ret = 0;
867
868 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
869 page = alloc_fresh_huge_page_node(h, node);
870 if (page) {
871 ret = 1;
872 break;
873 }
874 }
875
876 if (ret)
877 count_vm_event(HTLB_BUDDY_PGALLOC);
878 else
879 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
880
881 return ret;
882 }
883
884 /*
885 * Free huge page from pool from next node to free.
886 * Attempt to keep persistent huge pages more or less
887 * balanced over allowed nodes.
888 * Called with hugetlb_lock locked.
889 */
890 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
891 bool acct_surplus)
892 {
893 int nr_nodes, node;
894 int ret = 0;
895
896 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
897 /*
898 * If we're returning unused surplus pages, only examine
899 * nodes with surplus pages.
900 */
901 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
902 !list_empty(&h->hugepage_freelists[node])) {
903 struct page *page =
904 list_entry(h->hugepage_freelists[node].next,
905 struct page, lru);
906 list_del(&page->lru);
907 h->free_huge_pages--;
908 h->free_huge_pages_node[node]--;
909 if (acct_surplus) {
910 h->surplus_huge_pages--;
911 h->surplus_huge_pages_node[node]--;
912 }
913 update_and_free_page(h, page);
914 ret = 1;
915 break;
916 }
917 }
918
919 return ret;
920 }
921
922 /*
923 * Dissolve a given free hugepage into free buddy pages. This function does
924 * nothing for in-use (including surplus) hugepages.
925 */
926 static void dissolve_free_huge_page(struct page *page)
927 {
928 spin_lock(&hugetlb_lock);
929 if (PageHuge(page) && !page_count(page)) {
930 struct hstate *h = page_hstate(page);
931 int nid = page_to_nid(page);
932 list_del(&page->lru);
933 h->free_huge_pages--;
934 h->free_huge_pages_node[nid]--;
935 update_and_free_page(h, page);
936 }
937 spin_unlock(&hugetlb_lock);
938 }
939
940 /*
941 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942 * make specified memory blocks removable from the system.
943 * Note that start_pfn should aligned with (minimum) hugepage size.
944 */
945 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
946 {
947 unsigned int order = 8 * sizeof(void *);
948 unsigned long pfn;
949 struct hstate *h;
950
951 /* Set scan step to minimum hugepage size */
952 for_each_hstate(h)
953 if (order > huge_page_order(h))
954 order = huge_page_order(h);
955 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
956 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
957 dissolve_free_huge_page(pfn_to_page(pfn));
958 }
959
960 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
961 {
962 struct page *page;
963 unsigned int r_nid;
964
965 if (h->order >= MAX_ORDER)
966 return NULL;
967
968 /*
969 * Assume we will successfully allocate the surplus page to
970 * prevent racing processes from causing the surplus to exceed
971 * overcommit
972 *
973 * This however introduces a different race, where a process B
974 * tries to grow the static hugepage pool while alloc_pages() is
975 * called by process A. B will only examine the per-node
976 * counters in determining if surplus huge pages can be
977 * converted to normal huge pages in adjust_pool_surplus(). A
978 * won't be able to increment the per-node counter, until the
979 * lock is dropped by B, but B doesn't drop hugetlb_lock until
980 * no more huge pages can be converted from surplus to normal
981 * state (and doesn't try to convert again). Thus, we have a
982 * case where a surplus huge page exists, the pool is grown, and
983 * the surplus huge page still exists after, even though it
984 * should just have been converted to a normal huge page. This
985 * does not leak memory, though, as the hugepage will be freed
986 * once it is out of use. It also does not allow the counters to
987 * go out of whack in adjust_pool_surplus() as we don't modify
988 * the node values until we've gotten the hugepage and only the
989 * per-node value is checked there.
990 */
991 spin_lock(&hugetlb_lock);
992 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
993 spin_unlock(&hugetlb_lock);
994 return NULL;
995 } else {
996 h->nr_huge_pages++;
997 h->surplus_huge_pages++;
998 }
999 spin_unlock(&hugetlb_lock);
1000
1001 if (nid == NUMA_NO_NODE)
1002 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1003 __GFP_REPEAT|__GFP_NOWARN,
1004 huge_page_order(h));
1005 else
1006 page = alloc_pages_exact_node(nid,
1007 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1008 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1009
1010 if (page && arch_prepare_hugepage(page)) {
1011 __free_pages(page, huge_page_order(h));
1012 page = NULL;
1013 }
1014
1015 spin_lock(&hugetlb_lock);
1016 if (page) {
1017 INIT_LIST_HEAD(&page->lru);
1018 r_nid = page_to_nid(page);
1019 set_compound_page_dtor(page, free_huge_page);
1020 set_hugetlb_cgroup(page, NULL);
1021 /*
1022 * We incremented the global counters already
1023 */
1024 h->nr_huge_pages_node[r_nid]++;
1025 h->surplus_huge_pages_node[r_nid]++;
1026 __count_vm_event(HTLB_BUDDY_PGALLOC);
1027 } else {
1028 h->nr_huge_pages--;
1029 h->surplus_huge_pages--;
1030 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1031 }
1032 spin_unlock(&hugetlb_lock);
1033
1034 return page;
1035 }
1036
1037 /*
1038 * This allocation function is useful in the context where vma is irrelevant.
1039 * E.g. soft-offlining uses this function because it only cares physical
1040 * address of error page.
1041 */
1042 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1043 {
1044 struct page *page = NULL;
1045
1046 spin_lock(&hugetlb_lock);
1047 if (h->free_huge_pages - h->resv_huge_pages > 0)
1048 page = dequeue_huge_page_node(h, nid);
1049 spin_unlock(&hugetlb_lock);
1050
1051 if (!page)
1052 page = alloc_buddy_huge_page(h, nid);
1053
1054 return page;
1055 }
1056
1057 /*
1058 * Increase the hugetlb pool such that it can accommodate a reservation
1059 * of size 'delta'.
1060 */
1061 static int gather_surplus_pages(struct hstate *h, int delta)
1062 {
1063 struct list_head surplus_list;
1064 struct page *page, *tmp;
1065 int ret, i;
1066 int needed, allocated;
1067 bool alloc_ok = true;
1068
1069 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1070 if (needed <= 0) {
1071 h->resv_huge_pages += delta;
1072 return 0;
1073 }
1074
1075 allocated = 0;
1076 INIT_LIST_HEAD(&surplus_list);
1077
1078 ret = -ENOMEM;
1079 retry:
1080 spin_unlock(&hugetlb_lock);
1081 for (i = 0; i < needed; i++) {
1082 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1083 if (!page) {
1084 alloc_ok = false;
1085 break;
1086 }
1087 list_add(&page->lru, &surplus_list);
1088 }
1089 allocated += i;
1090
1091 /*
1092 * After retaking hugetlb_lock, we need to recalculate 'needed'
1093 * because either resv_huge_pages or free_huge_pages may have changed.
1094 */
1095 spin_lock(&hugetlb_lock);
1096 needed = (h->resv_huge_pages + delta) -
1097 (h->free_huge_pages + allocated);
1098 if (needed > 0) {
1099 if (alloc_ok)
1100 goto retry;
1101 /*
1102 * We were not able to allocate enough pages to
1103 * satisfy the entire reservation so we free what
1104 * we've allocated so far.
1105 */
1106 goto free;
1107 }
1108 /*
1109 * The surplus_list now contains _at_least_ the number of extra pages
1110 * needed to accommodate the reservation. Add the appropriate number
1111 * of pages to the hugetlb pool and free the extras back to the buddy
1112 * allocator. Commit the entire reservation here to prevent another
1113 * process from stealing the pages as they are added to the pool but
1114 * before they are reserved.
1115 */
1116 needed += allocated;
1117 h->resv_huge_pages += delta;
1118 ret = 0;
1119
1120 /* Free the needed pages to the hugetlb pool */
1121 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1122 if ((--needed) < 0)
1123 break;
1124 /*
1125 * This page is now managed by the hugetlb allocator and has
1126 * no users -- drop the buddy allocator's reference.
1127 */
1128 put_page_testzero(page);
1129 VM_BUG_ON_PAGE(page_count(page), page);
1130 enqueue_huge_page(h, page);
1131 }
1132 free:
1133 spin_unlock(&hugetlb_lock);
1134
1135 /* Free unnecessary surplus pages to the buddy allocator */
1136 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1137 put_page(page);
1138 spin_lock(&hugetlb_lock);
1139
1140 return ret;
1141 }
1142
1143 /*
1144 * When releasing a hugetlb pool reservation, any surplus pages that were
1145 * allocated to satisfy the reservation must be explicitly freed if they were
1146 * never used.
1147 * Called with hugetlb_lock held.
1148 */
1149 static void return_unused_surplus_pages(struct hstate *h,
1150 unsigned long unused_resv_pages)
1151 {
1152 unsigned long nr_pages;
1153
1154 /* Uncommit the reservation */
1155 h->resv_huge_pages -= unused_resv_pages;
1156
1157 /* Cannot return gigantic pages currently */
1158 if (h->order >= MAX_ORDER)
1159 return;
1160
1161 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1162
1163 /*
1164 * We want to release as many surplus pages as possible, spread
1165 * evenly across all nodes with memory. Iterate across these nodes
1166 * until we can no longer free unreserved surplus pages. This occurs
1167 * when the nodes with surplus pages have no free pages.
1168 * free_pool_huge_page() will balance the the freed pages across the
1169 * on-line nodes with memory and will handle the hstate accounting.
1170 */
1171 while (nr_pages--) {
1172 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1173 break;
1174 }
1175 }
1176
1177 /*
1178 * Determine if the huge page at addr within the vma has an associated
1179 * reservation. Where it does not we will need to logically increase
1180 * reservation and actually increase subpool usage before an allocation
1181 * can occur. Where any new reservation would be required the
1182 * reservation change is prepared, but not committed. Once the page
1183 * has been allocated from the subpool and instantiated the change should
1184 * be committed via vma_commit_reservation. No action is required on
1185 * failure.
1186 */
1187 static long vma_needs_reservation(struct hstate *h,
1188 struct vm_area_struct *vma, unsigned long addr)
1189 {
1190 struct resv_map *resv;
1191 pgoff_t idx;
1192 long chg;
1193
1194 resv = vma_resv_map(vma);
1195 if (!resv)
1196 return 1;
1197
1198 idx = vma_hugecache_offset(h, vma, addr);
1199 chg = region_chg(resv, idx, idx + 1);
1200
1201 if (vma->vm_flags & VM_MAYSHARE)
1202 return chg;
1203 else
1204 return chg < 0 ? chg : 0;
1205 }
1206 static void vma_commit_reservation(struct hstate *h,
1207 struct vm_area_struct *vma, unsigned long addr)
1208 {
1209 struct resv_map *resv;
1210 pgoff_t idx;
1211
1212 resv = vma_resv_map(vma);
1213 if (!resv)
1214 return;
1215
1216 idx = vma_hugecache_offset(h, vma, addr);
1217 region_add(resv, idx, idx + 1);
1218 }
1219
1220 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221 unsigned long addr, int avoid_reserve)
1222 {
1223 struct hugepage_subpool *spool = subpool_vma(vma);
1224 struct hstate *h = hstate_vma(vma);
1225 struct page *page;
1226 long chg;
1227 int ret, idx;
1228 struct hugetlb_cgroup *h_cg;
1229
1230 idx = hstate_index(h);
1231 /*
1232 * Processes that did not create the mapping will have no
1233 * reserves and will not have accounted against subpool
1234 * limit. Check that the subpool limit can be made before
1235 * satisfying the allocation MAP_NORESERVE mappings may also
1236 * need pages and subpool limit allocated allocated if no reserve
1237 * mapping overlaps.
1238 */
1239 chg = vma_needs_reservation(h, vma, addr);
1240 if (chg < 0)
1241 return ERR_PTR(-ENOMEM);
1242 if (chg || avoid_reserve)
1243 if (hugepage_subpool_get_pages(spool, 1))
1244 return ERR_PTR(-ENOSPC);
1245
1246 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247 if (ret) {
1248 if (chg || avoid_reserve)
1249 hugepage_subpool_put_pages(spool, 1);
1250 return ERR_PTR(-ENOSPC);
1251 }
1252 spin_lock(&hugetlb_lock);
1253 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254 if (!page) {
1255 spin_unlock(&hugetlb_lock);
1256 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1257 if (!page) {
1258 hugetlb_cgroup_uncharge_cgroup(idx,
1259 pages_per_huge_page(h),
1260 h_cg);
1261 if (chg || avoid_reserve)
1262 hugepage_subpool_put_pages(spool, 1);
1263 return ERR_PTR(-ENOSPC);
1264 }
1265 spin_lock(&hugetlb_lock);
1266 list_move(&page->lru, &h->hugepage_activelist);
1267 /* Fall through */
1268 }
1269 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270 spin_unlock(&hugetlb_lock);
1271
1272 set_page_private(page, (unsigned long)spool);
1273
1274 vma_commit_reservation(h, vma, addr);
1275 return page;
1276 }
1277
1278 /*
1279 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281 * where no ERR_VALUE is expected to be returned.
1282 */
1283 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284 unsigned long addr, int avoid_reserve)
1285 {
1286 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287 if (IS_ERR(page))
1288 page = NULL;
1289 return page;
1290 }
1291
1292 int __weak alloc_bootmem_huge_page(struct hstate *h)
1293 {
1294 struct huge_bootmem_page *m;
1295 int nr_nodes, node;
1296
1297 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298 void *addr;
1299
1300 addr = memblock_virt_alloc_try_nid_nopanic(
1301 huge_page_size(h), huge_page_size(h),
1302 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1303 if (addr) {
1304 /*
1305 * Use the beginning of the huge page to store the
1306 * huge_bootmem_page struct (until gather_bootmem
1307 * puts them into the mem_map).
1308 */
1309 m = addr;
1310 goto found;
1311 }
1312 }
1313 return 0;
1314
1315 found:
1316 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317 /* Put them into a private list first because mem_map is not up yet */
1318 list_add(&m->list, &huge_boot_pages);
1319 m->hstate = h;
1320 return 1;
1321 }
1322
1323 static void __init prep_compound_huge_page(struct page *page, int order)
1324 {
1325 if (unlikely(order > (MAX_ORDER - 1)))
1326 prep_compound_gigantic_page(page, order);
1327 else
1328 prep_compound_page(page, order);
1329 }
1330
1331 /* Put bootmem huge pages into the standard lists after mem_map is up */
1332 static void __init gather_bootmem_prealloc(void)
1333 {
1334 struct huge_bootmem_page *m;
1335
1336 list_for_each_entry(m, &huge_boot_pages, list) {
1337 struct hstate *h = m->hstate;
1338 struct page *page;
1339
1340 #ifdef CONFIG_HIGHMEM
1341 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342 memblock_free_late(__pa(m),
1343 sizeof(struct huge_bootmem_page));
1344 #else
1345 page = virt_to_page(m);
1346 #endif
1347 WARN_ON(page_count(page) != 1);
1348 prep_compound_huge_page(page, h->order);
1349 WARN_ON(PageReserved(page));
1350 prep_new_huge_page(h, page, page_to_nid(page));
1351 /*
1352 * If we had gigantic hugepages allocated at boot time, we need
1353 * to restore the 'stolen' pages to totalram_pages in order to
1354 * fix confusing memory reports from free(1) and another
1355 * side-effects, like CommitLimit going negative.
1356 */
1357 if (h->order > (MAX_ORDER - 1))
1358 adjust_managed_page_count(page, 1 << h->order);
1359 }
1360 }
1361
1362 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1363 {
1364 unsigned long i;
1365
1366 for (i = 0; i < h->max_huge_pages; ++i) {
1367 if (h->order >= MAX_ORDER) {
1368 if (!alloc_bootmem_huge_page(h))
1369 break;
1370 } else if (!alloc_fresh_huge_page(h,
1371 &node_states[N_MEMORY]))
1372 break;
1373 }
1374 h->max_huge_pages = i;
1375 }
1376
1377 static void __init hugetlb_init_hstates(void)
1378 {
1379 struct hstate *h;
1380
1381 for_each_hstate(h) {
1382 /* oversize hugepages were init'ed in early boot */
1383 if (h->order < MAX_ORDER)
1384 hugetlb_hstate_alloc_pages(h);
1385 }
1386 }
1387
1388 static char * __init memfmt(char *buf, unsigned long n)
1389 {
1390 if (n >= (1UL << 30))
1391 sprintf(buf, "%lu GB", n >> 30);
1392 else if (n >= (1UL << 20))
1393 sprintf(buf, "%lu MB", n >> 20);
1394 else
1395 sprintf(buf, "%lu KB", n >> 10);
1396 return buf;
1397 }
1398
1399 static void __init report_hugepages(void)
1400 {
1401 struct hstate *h;
1402
1403 for_each_hstate(h) {
1404 char buf[32];
1405 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406 memfmt(buf, huge_page_size(h)),
1407 h->free_huge_pages);
1408 }
1409 }
1410
1411 #ifdef CONFIG_HIGHMEM
1412 static void try_to_free_low(struct hstate *h, unsigned long count,
1413 nodemask_t *nodes_allowed)
1414 {
1415 int i;
1416
1417 if (h->order >= MAX_ORDER)
1418 return;
1419
1420 for_each_node_mask(i, *nodes_allowed) {
1421 struct page *page, *next;
1422 struct list_head *freel = &h->hugepage_freelists[i];
1423 list_for_each_entry_safe(page, next, freel, lru) {
1424 if (count >= h->nr_huge_pages)
1425 return;
1426 if (PageHighMem(page))
1427 continue;
1428 list_del(&page->lru);
1429 update_and_free_page(h, page);
1430 h->free_huge_pages--;
1431 h->free_huge_pages_node[page_to_nid(page)]--;
1432 }
1433 }
1434 }
1435 #else
1436 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437 nodemask_t *nodes_allowed)
1438 {
1439 }
1440 #endif
1441
1442 /*
1443 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1444 * balanced by operating on them in a round-robin fashion.
1445 * Returns 1 if an adjustment was made.
1446 */
1447 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448 int delta)
1449 {
1450 int nr_nodes, node;
1451
1452 VM_BUG_ON(delta != -1 && delta != 1);
1453
1454 if (delta < 0) {
1455 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456 if (h->surplus_huge_pages_node[node])
1457 goto found;
1458 }
1459 } else {
1460 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461 if (h->surplus_huge_pages_node[node] <
1462 h->nr_huge_pages_node[node])
1463 goto found;
1464 }
1465 }
1466 return 0;
1467
1468 found:
1469 h->surplus_huge_pages += delta;
1470 h->surplus_huge_pages_node[node] += delta;
1471 return 1;
1472 }
1473
1474 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476 nodemask_t *nodes_allowed)
1477 {
1478 unsigned long min_count, ret;
1479
1480 if (h->order >= MAX_ORDER)
1481 return h->max_huge_pages;
1482
1483 /*
1484 * Increase the pool size
1485 * First take pages out of surplus state. Then make up the
1486 * remaining difference by allocating fresh huge pages.
1487 *
1488 * We might race with alloc_buddy_huge_page() here and be unable
1489 * to convert a surplus huge page to a normal huge page. That is
1490 * not critical, though, it just means the overall size of the
1491 * pool might be one hugepage larger than it needs to be, but
1492 * within all the constraints specified by the sysctls.
1493 */
1494 spin_lock(&hugetlb_lock);
1495 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497 break;
1498 }
1499
1500 while (count > persistent_huge_pages(h)) {
1501 /*
1502 * If this allocation races such that we no longer need the
1503 * page, free_huge_page will handle it by freeing the page
1504 * and reducing the surplus.
1505 */
1506 spin_unlock(&hugetlb_lock);
1507 ret = alloc_fresh_huge_page(h, nodes_allowed);
1508 spin_lock(&hugetlb_lock);
1509 if (!ret)
1510 goto out;
1511
1512 /* Bail for signals. Probably ctrl-c from user */
1513 if (signal_pending(current))
1514 goto out;
1515 }
1516
1517 /*
1518 * Decrease the pool size
1519 * First return free pages to the buddy allocator (being careful
1520 * to keep enough around to satisfy reservations). Then place
1521 * pages into surplus state as needed so the pool will shrink
1522 * to the desired size as pages become free.
1523 *
1524 * By placing pages into the surplus state independent of the
1525 * overcommit value, we are allowing the surplus pool size to
1526 * exceed overcommit. There are few sane options here. Since
1527 * alloc_buddy_huge_page() is checking the global counter,
1528 * though, we'll note that we're not allowed to exceed surplus
1529 * and won't grow the pool anywhere else. Not until one of the
1530 * sysctls are changed, or the surplus pages go out of use.
1531 */
1532 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533 min_count = max(count, min_count);
1534 try_to_free_low(h, min_count, nodes_allowed);
1535 while (min_count < persistent_huge_pages(h)) {
1536 if (!free_pool_huge_page(h, nodes_allowed, 0))
1537 break;
1538 }
1539 while (count < persistent_huge_pages(h)) {
1540 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541 break;
1542 }
1543 out:
1544 ret = persistent_huge_pages(h);
1545 spin_unlock(&hugetlb_lock);
1546 return ret;
1547 }
1548
1549 #define HSTATE_ATTR_RO(_name) \
1550 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551
1552 #define HSTATE_ATTR(_name) \
1553 static struct kobj_attribute _name##_attr = \
1554 __ATTR(_name, 0644, _name##_show, _name##_store)
1555
1556 static struct kobject *hugepages_kobj;
1557 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558
1559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560
1561 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562 {
1563 int i;
1564
1565 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566 if (hstate_kobjs[i] == kobj) {
1567 if (nidp)
1568 *nidp = NUMA_NO_NODE;
1569 return &hstates[i];
1570 }
1571
1572 return kobj_to_node_hstate(kobj, nidp);
1573 }
1574
1575 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576 struct kobj_attribute *attr, char *buf)
1577 {
1578 struct hstate *h;
1579 unsigned long nr_huge_pages;
1580 int nid;
1581
1582 h = kobj_to_hstate(kobj, &nid);
1583 if (nid == NUMA_NO_NODE)
1584 nr_huge_pages = h->nr_huge_pages;
1585 else
1586 nr_huge_pages = h->nr_huge_pages_node[nid];
1587
1588 return sprintf(buf, "%lu\n", nr_huge_pages);
1589 }
1590
1591 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592 struct kobject *kobj, struct kobj_attribute *attr,
1593 const char *buf, size_t len)
1594 {
1595 int err;
1596 int nid;
1597 unsigned long count;
1598 struct hstate *h;
1599 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600
1601 err = kstrtoul(buf, 10, &count);
1602 if (err)
1603 goto out;
1604
1605 h = kobj_to_hstate(kobj, &nid);
1606 if (h->order >= MAX_ORDER) {
1607 err = -EINVAL;
1608 goto out;
1609 }
1610
1611 if (nid == NUMA_NO_NODE) {
1612 /*
1613 * global hstate attribute
1614 */
1615 if (!(obey_mempolicy &&
1616 init_nodemask_of_mempolicy(nodes_allowed))) {
1617 NODEMASK_FREE(nodes_allowed);
1618 nodes_allowed = &node_states[N_MEMORY];
1619 }
1620 } else if (nodes_allowed) {
1621 /*
1622 * per node hstate attribute: adjust count to global,
1623 * but restrict alloc/free to the specified node.
1624 */
1625 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626 init_nodemask_of_node(nodes_allowed, nid);
1627 } else
1628 nodes_allowed = &node_states[N_MEMORY];
1629
1630 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631
1632 if (nodes_allowed != &node_states[N_MEMORY])
1633 NODEMASK_FREE(nodes_allowed);
1634
1635 return len;
1636 out:
1637 NODEMASK_FREE(nodes_allowed);
1638 return err;
1639 }
1640
1641 static ssize_t nr_hugepages_show(struct kobject *kobj,
1642 struct kobj_attribute *attr, char *buf)
1643 {
1644 return nr_hugepages_show_common(kobj, attr, buf);
1645 }
1646
1647 static ssize_t nr_hugepages_store(struct kobject *kobj,
1648 struct kobj_attribute *attr, const char *buf, size_t len)
1649 {
1650 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651 }
1652 HSTATE_ATTR(nr_hugepages);
1653
1654 #ifdef CONFIG_NUMA
1655
1656 /*
1657 * hstate attribute for optionally mempolicy-based constraint on persistent
1658 * huge page alloc/free.
1659 */
1660 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661 struct kobj_attribute *attr, char *buf)
1662 {
1663 return nr_hugepages_show_common(kobj, attr, buf);
1664 }
1665
1666 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667 struct kobj_attribute *attr, const char *buf, size_t len)
1668 {
1669 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670 }
1671 HSTATE_ATTR(nr_hugepages_mempolicy);
1672 #endif
1673
1674
1675 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676 struct kobj_attribute *attr, char *buf)
1677 {
1678 struct hstate *h = kobj_to_hstate(kobj, NULL);
1679 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680 }
1681
1682 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683 struct kobj_attribute *attr, const char *buf, size_t count)
1684 {
1685 int err;
1686 unsigned long input;
1687 struct hstate *h = kobj_to_hstate(kobj, NULL);
1688
1689 if (h->order >= MAX_ORDER)
1690 return -EINVAL;
1691
1692 err = kstrtoul(buf, 10, &input);
1693 if (err)
1694 return err;
1695
1696 spin_lock(&hugetlb_lock);
1697 h->nr_overcommit_huge_pages = input;
1698 spin_unlock(&hugetlb_lock);
1699
1700 return count;
1701 }
1702 HSTATE_ATTR(nr_overcommit_hugepages);
1703
1704 static ssize_t free_hugepages_show(struct kobject *kobj,
1705 struct kobj_attribute *attr, char *buf)
1706 {
1707 struct hstate *h;
1708 unsigned long free_huge_pages;
1709 int nid;
1710
1711 h = kobj_to_hstate(kobj, &nid);
1712 if (nid == NUMA_NO_NODE)
1713 free_huge_pages = h->free_huge_pages;
1714 else
1715 free_huge_pages = h->free_huge_pages_node[nid];
1716
1717 return sprintf(buf, "%lu\n", free_huge_pages);
1718 }
1719 HSTATE_ATTR_RO(free_hugepages);
1720
1721 static ssize_t resv_hugepages_show(struct kobject *kobj,
1722 struct kobj_attribute *attr, char *buf)
1723 {
1724 struct hstate *h = kobj_to_hstate(kobj, NULL);
1725 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726 }
1727 HSTATE_ATTR_RO(resv_hugepages);
1728
1729 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730 struct kobj_attribute *attr, char *buf)
1731 {
1732 struct hstate *h;
1733 unsigned long surplus_huge_pages;
1734 int nid;
1735
1736 h = kobj_to_hstate(kobj, &nid);
1737 if (nid == NUMA_NO_NODE)
1738 surplus_huge_pages = h->surplus_huge_pages;
1739 else
1740 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741
1742 return sprintf(buf, "%lu\n", surplus_huge_pages);
1743 }
1744 HSTATE_ATTR_RO(surplus_hugepages);
1745
1746 static struct attribute *hstate_attrs[] = {
1747 &nr_hugepages_attr.attr,
1748 &nr_overcommit_hugepages_attr.attr,
1749 &free_hugepages_attr.attr,
1750 &resv_hugepages_attr.attr,
1751 &surplus_hugepages_attr.attr,
1752 #ifdef CONFIG_NUMA
1753 &nr_hugepages_mempolicy_attr.attr,
1754 #endif
1755 NULL,
1756 };
1757
1758 static struct attribute_group hstate_attr_group = {
1759 .attrs = hstate_attrs,
1760 };
1761
1762 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763 struct kobject **hstate_kobjs,
1764 struct attribute_group *hstate_attr_group)
1765 {
1766 int retval;
1767 int hi = hstate_index(h);
1768
1769 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770 if (!hstate_kobjs[hi])
1771 return -ENOMEM;
1772
1773 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774 if (retval)
1775 kobject_put(hstate_kobjs[hi]);
1776
1777 return retval;
1778 }
1779
1780 static void __init hugetlb_sysfs_init(void)
1781 {
1782 struct hstate *h;
1783 int err;
1784
1785 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786 if (!hugepages_kobj)
1787 return;
1788
1789 for_each_hstate(h) {
1790 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791 hstate_kobjs, &hstate_attr_group);
1792 if (err)
1793 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794 }
1795 }
1796
1797 #ifdef CONFIG_NUMA
1798
1799 /*
1800 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 * with node devices in node_devices[] using a parallel array. The array
1802 * index of a node device or _hstate == node id.
1803 * This is here to avoid any static dependency of the node device driver, in
1804 * the base kernel, on the hugetlb module.
1805 */
1806 struct node_hstate {
1807 struct kobject *hugepages_kobj;
1808 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1809 };
1810 struct node_hstate node_hstates[MAX_NUMNODES];
1811
1812 /*
1813 * A subset of global hstate attributes for node devices
1814 */
1815 static struct attribute *per_node_hstate_attrs[] = {
1816 &nr_hugepages_attr.attr,
1817 &free_hugepages_attr.attr,
1818 &surplus_hugepages_attr.attr,
1819 NULL,
1820 };
1821
1822 static struct attribute_group per_node_hstate_attr_group = {
1823 .attrs = per_node_hstate_attrs,
1824 };
1825
1826 /*
1827 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 * Returns node id via non-NULL nidp.
1829 */
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831 {
1832 int nid;
1833
1834 for (nid = 0; nid < nr_node_ids; nid++) {
1835 struct node_hstate *nhs = &node_hstates[nid];
1836 int i;
1837 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838 if (nhs->hstate_kobjs[i] == kobj) {
1839 if (nidp)
1840 *nidp = nid;
1841 return &hstates[i];
1842 }
1843 }
1844
1845 BUG();
1846 return NULL;
1847 }
1848
1849 /*
1850 * Unregister hstate attributes from a single node device.
1851 * No-op if no hstate attributes attached.
1852 */
1853 static void hugetlb_unregister_node(struct node *node)
1854 {
1855 struct hstate *h;
1856 struct node_hstate *nhs = &node_hstates[node->dev.id];
1857
1858 if (!nhs->hugepages_kobj)
1859 return; /* no hstate attributes */
1860
1861 for_each_hstate(h) {
1862 int idx = hstate_index(h);
1863 if (nhs->hstate_kobjs[idx]) {
1864 kobject_put(nhs->hstate_kobjs[idx]);
1865 nhs->hstate_kobjs[idx] = NULL;
1866 }
1867 }
1868
1869 kobject_put(nhs->hugepages_kobj);
1870 nhs->hugepages_kobj = NULL;
1871 }
1872
1873 /*
1874 * hugetlb module exit: unregister hstate attributes from node devices
1875 * that have them.
1876 */
1877 static void hugetlb_unregister_all_nodes(void)
1878 {
1879 int nid;
1880
1881 /*
1882 * disable node device registrations.
1883 */
1884 register_hugetlbfs_with_node(NULL, NULL);
1885
1886 /*
1887 * remove hstate attributes from any nodes that have them.
1888 */
1889 for (nid = 0; nid < nr_node_ids; nid++)
1890 hugetlb_unregister_node(node_devices[nid]);
1891 }
1892
1893 /*
1894 * Register hstate attributes for a single node device.
1895 * No-op if attributes already registered.
1896 */
1897 static void hugetlb_register_node(struct node *node)
1898 {
1899 struct hstate *h;
1900 struct node_hstate *nhs = &node_hstates[node->dev.id];
1901 int err;
1902
1903 if (nhs->hugepages_kobj)
1904 return; /* already allocated */
1905
1906 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907 &node->dev.kobj);
1908 if (!nhs->hugepages_kobj)
1909 return;
1910
1911 for_each_hstate(h) {
1912 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913 nhs->hstate_kobjs,
1914 &per_node_hstate_attr_group);
1915 if (err) {
1916 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917 h->name, node->dev.id);
1918 hugetlb_unregister_node(node);
1919 break;
1920 }
1921 }
1922 }
1923
1924 /*
1925 * hugetlb init time: register hstate attributes for all registered node
1926 * devices of nodes that have memory. All on-line nodes should have
1927 * registered their associated device by this time.
1928 */
1929 static void hugetlb_register_all_nodes(void)
1930 {
1931 int nid;
1932
1933 for_each_node_state(nid, N_MEMORY) {
1934 struct node *node = node_devices[nid];
1935 if (node->dev.id == nid)
1936 hugetlb_register_node(node);
1937 }
1938
1939 /*
1940 * Let the node device driver know we're here so it can
1941 * [un]register hstate attributes on node hotplug.
1942 */
1943 register_hugetlbfs_with_node(hugetlb_register_node,
1944 hugetlb_unregister_node);
1945 }
1946 #else /* !CONFIG_NUMA */
1947
1948 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949 {
1950 BUG();
1951 if (nidp)
1952 *nidp = -1;
1953 return NULL;
1954 }
1955
1956 static void hugetlb_unregister_all_nodes(void) { }
1957
1958 static void hugetlb_register_all_nodes(void) { }
1959
1960 #endif
1961
1962 static void __exit hugetlb_exit(void)
1963 {
1964 struct hstate *h;
1965
1966 hugetlb_unregister_all_nodes();
1967
1968 for_each_hstate(h) {
1969 kobject_put(hstate_kobjs[hstate_index(h)]);
1970 }
1971
1972 kobject_put(hugepages_kobj);
1973 kfree(htlb_fault_mutex_table);
1974 }
1975 module_exit(hugetlb_exit);
1976
1977 static int __init hugetlb_init(void)
1978 {
1979 int i;
1980
1981 /* Some platform decide whether they support huge pages at boot
1982 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1983 * there is no such support
1984 */
1985 if (HPAGE_SHIFT == 0)
1986 return 0;
1987
1988 if (!size_to_hstate(default_hstate_size)) {
1989 default_hstate_size = HPAGE_SIZE;
1990 if (!size_to_hstate(default_hstate_size))
1991 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1992 }
1993 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1994 if (default_hstate_max_huge_pages)
1995 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1996
1997 hugetlb_init_hstates();
1998 gather_bootmem_prealloc();
1999 report_hugepages();
2000
2001 hugetlb_sysfs_init();
2002 hugetlb_register_all_nodes();
2003 hugetlb_cgroup_file_init();
2004
2005 #ifdef CONFIG_SMP
2006 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2007 #else
2008 num_fault_mutexes = 1;
2009 #endif
2010 htlb_fault_mutex_table =
2011 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2012 BUG_ON(!htlb_fault_mutex_table);
2013
2014 for (i = 0; i < num_fault_mutexes; i++)
2015 mutex_init(&htlb_fault_mutex_table[i]);
2016 return 0;
2017 }
2018 module_init(hugetlb_init);
2019
2020 /* Should be called on processing a hugepagesz=... option */
2021 void __init hugetlb_add_hstate(unsigned order)
2022 {
2023 struct hstate *h;
2024 unsigned long i;
2025
2026 if (size_to_hstate(PAGE_SIZE << order)) {
2027 pr_warning("hugepagesz= specified twice, ignoring\n");
2028 return;
2029 }
2030 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2031 BUG_ON(order == 0);
2032 h = &hstates[hugetlb_max_hstate++];
2033 h->order = order;
2034 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2035 h->nr_huge_pages = 0;
2036 h->free_huge_pages = 0;
2037 for (i = 0; i < MAX_NUMNODES; ++i)
2038 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2039 INIT_LIST_HEAD(&h->hugepage_activelist);
2040 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2041 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2042 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2043 huge_page_size(h)/1024);
2044
2045 parsed_hstate = h;
2046 }
2047
2048 static int __init hugetlb_nrpages_setup(char *s)
2049 {
2050 unsigned long *mhp;
2051 static unsigned long *last_mhp;
2052
2053 /*
2054 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2055 * so this hugepages= parameter goes to the "default hstate".
2056 */
2057 if (!hugetlb_max_hstate)
2058 mhp = &default_hstate_max_huge_pages;
2059 else
2060 mhp = &parsed_hstate->max_huge_pages;
2061
2062 if (mhp == last_mhp) {
2063 pr_warning("hugepages= specified twice without "
2064 "interleaving hugepagesz=, ignoring\n");
2065 return 1;
2066 }
2067
2068 if (sscanf(s, "%lu", mhp) <= 0)
2069 *mhp = 0;
2070
2071 /*
2072 * Global state is always initialized later in hugetlb_init.
2073 * But we need to allocate >= MAX_ORDER hstates here early to still
2074 * use the bootmem allocator.
2075 */
2076 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2077 hugetlb_hstate_alloc_pages(parsed_hstate);
2078
2079 last_mhp = mhp;
2080
2081 return 1;
2082 }
2083 __setup("hugepages=", hugetlb_nrpages_setup);
2084
2085 static int __init hugetlb_default_setup(char *s)
2086 {
2087 default_hstate_size = memparse(s, &s);
2088 return 1;
2089 }
2090 __setup("default_hugepagesz=", hugetlb_default_setup);
2091
2092 static unsigned int cpuset_mems_nr(unsigned int *array)
2093 {
2094 int node;
2095 unsigned int nr = 0;
2096
2097 for_each_node_mask(node, cpuset_current_mems_allowed)
2098 nr += array[node];
2099
2100 return nr;
2101 }
2102
2103 #ifdef CONFIG_SYSCTL
2104 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2105 struct ctl_table *table, int write,
2106 void __user *buffer, size_t *length, loff_t *ppos)
2107 {
2108 struct hstate *h = &default_hstate;
2109 unsigned long tmp;
2110 int ret;
2111
2112 tmp = h->max_huge_pages;
2113
2114 if (write && h->order >= MAX_ORDER)
2115 return -EINVAL;
2116
2117 table->data = &tmp;
2118 table->maxlen = sizeof(unsigned long);
2119 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2120 if (ret)
2121 goto out;
2122
2123 if (write) {
2124 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2125 GFP_KERNEL | __GFP_NORETRY);
2126 if (!(obey_mempolicy &&
2127 init_nodemask_of_mempolicy(nodes_allowed))) {
2128 NODEMASK_FREE(nodes_allowed);
2129 nodes_allowed = &node_states[N_MEMORY];
2130 }
2131 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2132
2133 if (nodes_allowed != &node_states[N_MEMORY])
2134 NODEMASK_FREE(nodes_allowed);
2135 }
2136 out:
2137 return ret;
2138 }
2139
2140 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2141 void __user *buffer, size_t *length, loff_t *ppos)
2142 {
2143
2144 return hugetlb_sysctl_handler_common(false, table, write,
2145 buffer, length, ppos);
2146 }
2147
2148 #ifdef CONFIG_NUMA
2149 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2150 void __user *buffer, size_t *length, loff_t *ppos)
2151 {
2152 return hugetlb_sysctl_handler_common(true, table, write,
2153 buffer, length, ppos);
2154 }
2155 #endif /* CONFIG_NUMA */
2156
2157 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2158 void __user *buffer,
2159 size_t *length, loff_t *ppos)
2160 {
2161 struct hstate *h = &default_hstate;
2162 unsigned long tmp;
2163 int ret;
2164
2165 tmp = h->nr_overcommit_huge_pages;
2166
2167 if (write && h->order >= MAX_ORDER)
2168 return -EINVAL;
2169
2170 table->data = &tmp;
2171 table->maxlen = sizeof(unsigned long);
2172 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2173 if (ret)
2174 goto out;
2175
2176 if (write) {
2177 spin_lock(&hugetlb_lock);
2178 h->nr_overcommit_huge_pages = tmp;
2179 spin_unlock(&hugetlb_lock);
2180 }
2181 out:
2182 return ret;
2183 }
2184
2185 #endif /* CONFIG_SYSCTL */
2186
2187 void hugetlb_report_meminfo(struct seq_file *m)
2188 {
2189 struct hstate *h = &default_hstate;
2190 seq_printf(m,
2191 "HugePages_Total: %5lu\n"
2192 "HugePages_Free: %5lu\n"
2193 "HugePages_Rsvd: %5lu\n"
2194 "HugePages_Surp: %5lu\n"
2195 "Hugepagesize: %8lu kB\n",
2196 h->nr_huge_pages,
2197 h->free_huge_pages,
2198 h->resv_huge_pages,
2199 h->surplus_huge_pages,
2200 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2201 }
2202
2203 int hugetlb_report_node_meminfo(int nid, char *buf)
2204 {
2205 struct hstate *h = &default_hstate;
2206 return sprintf(buf,
2207 "Node %d HugePages_Total: %5u\n"
2208 "Node %d HugePages_Free: %5u\n"
2209 "Node %d HugePages_Surp: %5u\n",
2210 nid, h->nr_huge_pages_node[nid],
2211 nid, h->free_huge_pages_node[nid],
2212 nid, h->surplus_huge_pages_node[nid]);
2213 }
2214
2215 void hugetlb_show_meminfo(void)
2216 {
2217 struct hstate *h;
2218 int nid;
2219
2220 for_each_node_state(nid, N_MEMORY)
2221 for_each_hstate(h)
2222 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2223 nid,
2224 h->nr_huge_pages_node[nid],
2225 h->free_huge_pages_node[nid],
2226 h->surplus_huge_pages_node[nid],
2227 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2228 }
2229
2230 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2231 unsigned long hugetlb_total_pages(void)
2232 {
2233 struct hstate *h;
2234 unsigned long nr_total_pages = 0;
2235
2236 for_each_hstate(h)
2237 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2238 return nr_total_pages;
2239 }
2240
2241 static int hugetlb_acct_memory(struct hstate *h, long delta)
2242 {
2243 int ret = -ENOMEM;
2244
2245 spin_lock(&hugetlb_lock);
2246 /*
2247 * When cpuset is configured, it breaks the strict hugetlb page
2248 * reservation as the accounting is done on a global variable. Such
2249 * reservation is completely rubbish in the presence of cpuset because
2250 * the reservation is not checked against page availability for the
2251 * current cpuset. Application can still potentially OOM'ed by kernel
2252 * with lack of free htlb page in cpuset that the task is in.
2253 * Attempt to enforce strict accounting with cpuset is almost
2254 * impossible (or too ugly) because cpuset is too fluid that
2255 * task or memory node can be dynamically moved between cpusets.
2256 *
2257 * The change of semantics for shared hugetlb mapping with cpuset is
2258 * undesirable. However, in order to preserve some of the semantics,
2259 * we fall back to check against current free page availability as
2260 * a best attempt and hopefully to minimize the impact of changing
2261 * semantics that cpuset has.
2262 */
2263 if (delta > 0) {
2264 if (gather_surplus_pages(h, delta) < 0)
2265 goto out;
2266
2267 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2268 return_unused_surplus_pages(h, delta);
2269 goto out;
2270 }
2271 }
2272
2273 ret = 0;
2274 if (delta < 0)
2275 return_unused_surplus_pages(h, (unsigned long) -delta);
2276
2277 out:
2278 spin_unlock(&hugetlb_lock);
2279 return ret;
2280 }
2281
2282 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2283 {
2284 struct resv_map *resv = vma_resv_map(vma);
2285
2286 /*
2287 * This new VMA should share its siblings reservation map if present.
2288 * The VMA will only ever have a valid reservation map pointer where
2289 * it is being copied for another still existing VMA. As that VMA
2290 * has a reference to the reservation map it cannot disappear until
2291 * after this open call completes. It is therefore safe to take a
2292 * new reference here without additional locking.
2293 */
2294 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2295 kref_get(&resv->refs);
2296 }
2297
2298 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2299 {
2300 struct hstate *h = hstate_vma(vma);
2301 struct resv_map *resv = vma_resv_map(vma);
2302 struct hugepage_subpool *spool = subpool_vma(vma);
2303 unsigned long reserve, start, end;
2304
2305 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2306 return;
2307
2308 start = vma_hugecache_offset(h, vma, vma->vm_start);
2309 end = vma_hugecache_offset(h, vma, vma->vm_end);
2310
2311 reserve = (end - start) - region_count(resv, start, end);
2312
2313 kref_put(&resv->refs, resv_map_release);
2314
2315 if (reserve) {
2316 hugetlb_acct_memory(h, -reserve);
2317 hugepage_subpool_put_pages(spool, reserve);
2318 }
2319 }
2320
2321 /*
2322 * We cannot handle pagefaults against hugetlb pages at all. They cause
2323 * handle_mm_fault() to try to instantiate regular-sized pages in the
2324 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2325 * this far.
2326 */
2327 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2328 {
2329 BUG();
2330 return 0;
2331 }
2332
2333 const struct vm_operations_struct hugetlb_vm_ops = {
2334 .fault = hugetlb_vm_op_fault,
2335 .open = hugetlb_vm_op_open,
2336 .close = hugetlb_vm_op_close,
2337 };
2338
2339 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2340 int writable)
2341 {
2342 pte_t entry;
2343
2344 if (writable) {
2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2346 vma->vm_page_prot)));
2347 } else {
2348 entry = huge_pte_wrprotect(mk_huge_pte(page,
2349 vma->vm_page_prot));
2350 }
2351 entry = pte_mkyoung(entry);
2352 entry = pte_mkhuge(entry);
2353 entry = arch_make_huge_pte(entry, vma, page, writable);
2354
2355 return entry;
2356 }
2357
2358 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2359 unsigned long address, pte_t *ptep)
2360 {
2361 pte_t entry;
2362
2363 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2364 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2365 update_mmu_cache(vma, address, ptep);
2366 }
2367
2368
2369 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2370 struct vm_area_struct *vma)
2371 {
2372 pte_t *src_pte, *dst_pte, entry;
2373 struct page *ptepage;
2374 unsigned long addr;
2375 int cow;
2376 struct hstate *h = hstate_vma(vma);
2377 unsigned long sz = huge_page_size(h);
2378 unsigned long mmun_start; /* For mmu_notifiers */
2379 unsigned long mmun_end; /* For mmu_notifiers */
2380 int ret = 0;
2381
2382 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2383
2384 mmun_start = vma->vm_start;
2385 mmun_end = vma->vm_end;
2386 if (cow)
2387 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2388
2389 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2390 spinlock_t *src_ptl, *dst_ptl;
2391 src_pte = huge_pte_offset(src, addr);
2392 if (!src_pte)
2393 continue;
2394 dst_pte = huge_pte_alloc(dst, addr, sz);
2395 if (!dst_pte) {
2396 ret = -ENOMEM;
2397 break;
2398 }
2399
2400 /* If the pagetables are shared don't copy or take references */
2401 if (dst_pte == src_pte)
2402 continue;
2403
2404 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2405 src_ptl = huge_pte_lockptr(h, src, src_pte);
2406 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2407 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2408 if (cow)
2409 huge_ptep_set_wrprotect(src, addr, src_pte);
2410 entry = huge_ptep_get(src_pte);
2411 ptepage = pte_page(entry);
2412 get_page(ptepage);
2413 page_dup_rmap(ptepage);
2414 set_huge_pte_at(dst, addr, dst_pte, entry);
2415 }
2416 spin_unlock(src_ptl);
2417 spin_unlock(dst_ptl);
2418 }
2419
2420 if (cow)
2421 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2422
2423 return ret;
2424 }
2425
2426 static int is_hugetlb_entry_migration(pte_t pte)
2427 {
2428 swp_entry_t swp;
2429
2430 if (huge_pte_none(pte) || pte_present(pte))
2431 return 0;
2432 swp = pte_to_swp_entry(pte);
2433 if (non_swap_entry(swp) && is_migration_entry(swp))
2434 return 1;
2435 else
2436 return 0;
2437 }
2438
2439 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2440 {
2441 swp_entry_t swp;
2442
2443 if (huge_pte_none(pte) || pte_present(pte))
2444 return 0;
2445 swp = pte_to_swp_entry(pte);
2446 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2447 return 1;
2448 else
2449 return 0;
2450 }
2451
2452 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2453 unsigned long start, unsigned long end,
2454 struct page *ref_page)
2455 {
2456 int force_flush = 0;
2457 struct mm_struct *mm = vma->vm_mm;
2458 unsigned long address;
2459 pte_t *ptep;
2460 pte_t pte;
2461 spinlock_t *ptl;
2462 struct page *page;
2463 struct hstate *h = hstate_vma(vma);
2464 unsigned long sz = huge_page_size(h);
2465 const unsigned long mmun_start = start; /* For mmu_notifiers */
2466 const unsigned long mmun_end = end; /* For mmu_notifiers */
2467
2468 WARN_ON(!is_vm_hugetlb_page(vma));
2469 BUG_ON(start & ~huge_page_mask(h));
2470 BUG_ON(end & ~huge_page_mask(h));
2471
2472 tlb_start_vma(tlb, vma);
2473 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2474 again:
2475 for (address = start; address < end; address += sz) {
2476 ptep = huge_pte_offset(mm, address);
2477 if (!ptep)
2478 continue;
2479
2480 ptl = huge_pte_lock(h, mm, ptep);
2481 if (huge_pmd_unshare(mm, &address, ptep))
2482 goto unlock;
2483
2484 pte = huge_ptep_get(ptep);
2485 if (huge_pte_none(pte))
2486 goto unlock;
2487
2488 /*
2489 * HWPoisoned hugepage is already unmapped and dropped reference
2490 */
2491 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2492 huge_pte_clear(mm, address, ptep);
2493 goto unlock;
2494 }
2495
2496 page = pte_page(pte);
2497 /*
2498 * If a reference page is supplied, it is because a specific
2499 * page is being unmapped, not a range. Ensure the page we
2500 * are about to unmap is the actual page of interest.
2501 */
2502 if (ref_page) {
2503 if (page != ref_page)
2504 goto unlock;
2505
2506 /*
2507 * Mark the VMA as having unmapped its page so that
2508 * future faults in this VMA will fail rather than
2509 * looking like data was lost
2510 */
2511 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2512 }
2513
2514 pte = huge_ptep_get_and_clear(mm, address, ptep);
2515 tlb_remove_tlb_entry(tlb, ptep, address);
2516 if (huge_pte_dirty(pte))
2517 set_page_dirty(page);
2518
2519 page_remove_rmap(page);
2520 force_flush = !__tlb_remove_page(tlb, page);
2521 if (force_flush) {
2522 spin_unlock(ptl);
2523 break;
2524 }
2525 /* Bail out after unmapping reference page if supplied */
2526 if (ref_page) {
2527 spin_unlock(ptl);
2528 break;
2529 }
2530 unlock:
2531 spin_unlock(ptl);
2532 }
2533 /*
2534 * mmu_gather ran out of room to batch pages, we break out of
2535 * the PTE lock to avoid doing the potential expensive TLB invalidate
2536 * and page-free while holding it.
2537 */
2538 if (force_flush) {
2539 force_flush = 0;
2540 tlb_flush_mmu(tlb);
2541 if (address < end && !ref_page)
2542 goto again;
2543 }
2544 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2545 tlb_end_vma(tlb, vma);
2546 }
2547
2548 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2549 struct vm_area_struct *vma, unsigned long start,
2550 unsigned long end, struct page *ref_page)
2551 {
2552 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2553
2554 /*
2555 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2556 * test will fail on a vma being torn down, and not grab a page table
2557 * on its way out. We're lucky that the flag has such an appropriate
2558 * name, and can in fact be safely cleared here. We could clear it
2559 * before the __unmap_hugepage_range above, but all that's necessary
2560 * is to clear it before releasing the i_mmap_mutex. This works
2561 * because in the context this is called, the VMA is about to be
2562 * destroyed and the i_mmap_mutex is held.
2563 */
2564 vma->vm_flags &= ~VM_MAYSHARE;
2565 }
2566
2567 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2568 unsigned long end, struct page *ref_page)
2569 {
2570 struct mm_struct *mm;
2571 struct mmu_gather tlb;
2572
2573 mm = vma->vm_mm;
2574
2575 tlb_gather_mmu(&tlb, mm, start, end);
2576 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2577 tlb_finish_mmu(&tlb, start, end);
2578 }
2579
2580 /*
2581 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2582 * mappping it owns the reserve page for. The intention is to unmap the page
2583 * from other VMAs and let the children be SIGKILLed if they are faulting the
2584 * same region.
2585 */
2586 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2587 struct page *page, unsigned long address)
2588 {
2589 struct hstate *h = hstate_vma(vma);
2590 struct vm_area_struct *iter_vma;
2591 struct address_space *mapping;
2592 pgoff_t pgoff;
2593
2594 /*
2595 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2596 * from page cache lookup which is in HPAGE_SIZE units.
2597 */
2598 address = address & huge_page_mask(h);
2599 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2600 vma->vm_pgoff;
2601 mapping = file_inode(vma->vm_file)->i_mapping;
2602
2603 /*
2604 * Take the mapping lock for the duration of the table walk. As
2605 * this mapping should be shared between all the VMAs,
2606 * __unmap_hugepage_range() is called as the lock is already held
2607 */
2608 mutex_lock(&mapping->i_mmap_mutex);
2609 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2610 /* Do not unmap the current VMA */
2611 if (iter_vma == vma)
2612 continue;
2613
2614 /*
2615 * Unmap the page from other VMAs without their own reserves.
2616 * They get marked to be SIGKILLed if they fault in these
2617 * areas. This is because a future no-page fault on this VMA
2618 * could insert a zeroed page instead of the data existing
2619 * from the time of fork. This would look like data corruption
2620 */
2621 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2622 unmap_hugepage_range(iter_vma, address,
2623 address + huge_page_size(h), page);
2624 }
2625 mutex_unlock(&mapping->i_mmap_mutex);
2626
2627 return 1;
2628 }
2629
2630 /*
2631 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2632 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2633 * cannot race with other handlers or page migration.
2634 * Keep the pte_same checks anyway to make transition from the mutex easier.
2635 */
2636 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2637 unsigned long address, pte_t *ptep, pte_t pte,
2638 struct page *pagecache_page, spinlock_t *ptl)
2639 {
2640 struct hstate *h = hstate_vma(vma);
2641 struct page *old_page, *new_page;
2642 int outside_reserve = 0;
2643 unsigned long mmun_start; /* For mmu_notifiers */
2644 unsigned long mmun_end; /* For mmu_notifiers */
2645
2646 old_page = pte_page(pte);
2647
2648 retry_avoidcopy:
2649 /* If no-one else is actually using this page, avoid the copy
2650 * and just make the page writable */
2651 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2652 page_move_anon_rmap(old_page, vma, address);
2653 set_huge_ptep_writable(vma, address, ptep);
2654 return 0;
2655 }
2656
2657 /*
2658 * If the process that created a MAP_PRIVATE mapping is about to
2659 * perform a COW due to a shared page count, attempt to satisfy
2660 * the allocation without using the existing reserves. The pagecache
2661 * page is used to determine if the reserve at this address was
2662 * consumed or not. If reserves were used, a partial faulted mapping
2663 * at the time of fork() could consume its reserves on COW instead
2664 * of the full address range.
2665 */
2666 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2667 old_page != pagecache_page)
2668 outside_reserve = 1;
2669
2670 page_cache_get(old_page);
2671
2672 /* Drop page table lock as buddy allocator may be called */
2673 spin_unlock(ptl);
2674 new_page = alloc_huge_page(vma, address, outside_reserve);
2675
2676 if (IS_ERR(new_page)) {
2677 long err = PTR_ERR(new_page);
2678 page_cache_release(old_page);
2679
2680 /*
2681 * If a process owning a MAP_PRIVATE mapping fails to COW,
2682 * it is due to references held by a child and an insufficient
2683 * huge page pool. To guarantee the original mappers
2684 * reliability, unmap the page from child processes. The child
2685 * may get SIGKILLed if it later faults.
2686 */
2687 if (outside_reserve) {
2688 BUG_ON(huge_pte_none(pte));
2689 if (unmap_ref_private(mm, vma, old_page, address)) {
2690 BUG_ON(huge_pte_none(pte));
2691 spin_lock(ptl);
2692 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2693 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2694 goto retry_avoidcopy;
2695 /*
2696 * race occurs while re-acquiring page table
2697 * lock, and our job is done.
2698 */
2699 return 0;
2700 }
2701 WARN_ON_ONCE(1);
2702 }
2703
2704 /* Caller expects lock to be held */
2705 spin_lock(ptl);
2706 if (err == -ENOMEM)
2707 return VM_FAULT_OOM;
2708 else
2709 return VM_FAULT_SIGBUS;
2710 }
2711
2712 /*
2713 * When the original hugepage is shared one, it does not have
2714 * anon_vma prepared.
2715 */
2716 if (unlikely(anon_vma_prepare(vma))) {
2717 page_cache_release(new_page);
2718 page_cache_release(old_page);
2719 /* Caller expects lock to be held */
2720 spin_lock(ptl);
2721 return VM_FAULT_OOM;
2722 }
2723
2724 copy_user_huge_page(new_page, old_page, address, vma,
2725 pages_per_huge_page(h));
2726 __SetPageUptodate(new_page);
2727
2728 mmun_start = address & huge_page_mask(h);
2729 mmun_end = mmun_start + huge_page_size(h);
2730 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2731 /*
2732 * Retake the page table lock to check for racing updates
2733 * before the page tables are altered
2734 */
2735 spin_lock(ptl);
2736 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2737 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2738 ClearPagePrivate(new_page);
2739
2740 /* Break COW */
2741 huge_ptep_clear_flush(vma, address, ptep);
2742 set_huge_pte_at(mm, address, ptep,
2743 make_huge_pte(vma, new_page, 1));
2744 page_remove_rmap(old_page);
2745 hugepage_add_new_anon_rmap(new_page, vma, address);
2746 /* Make the old page be freed below */
2747 new_page = old_page;
2748 }
2749 spin_unlock(ptl);
2750 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2751 page_cache_release(new_page);
2752 page_cache_release(old_page);
2753
2754 /* Caller expects lock to be held */
2755 spin_lock(ptl);
2756 return 0;
2757 }
2758
2759 /* Return the pagecache page at a given address within a VMA */
2760 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2761 struct vm_area_struct *vma, unsigned long address)
2762 {
2763 struct address_space *mapping;
2764 pgoff_t idx;
2765
2766 mapping = vma->vm_file->f_mapping;
2767 idx = vma_hugecache_offset(h, vma, address);
2768
2769 return find_lock_page(mapping, idx);
2770 }
2771
2772 /*
2773 * Return whether there is a pagecache page to back given address within VMA.
2774 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2775 */
2776 static bool hugetlbfs_pagecache_present(struct hstate *h,
2777 struct vm_area_struct *vma, unsigned long address)
2778 {
2779 struct address_space *mapping;
2780 pgoff_t idx;
2781 struct page *page;
2782
2783 mapping = vma->vm_file->f_mapping;
2784 idx = vma_hugecache_offset(h, vma, address);
2785
2786 page = find_get_page(mapping, idx);
2787 if (page)
2788 put_page(page);
2789 return page != NULL;
2790 }
2791
2792 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2793 struct address_space *mapping, pgoff_t idx,
2794 unsigned long address, pte_t *ptep, unsigned int flags)
2795 {
2796 struct hstate *h = hstate_vma(vma);
2797 int ret = VM_FAULT_SIGBUS;
2798 int anon_rmap = 0;
2799 unsigned long size;
2800 struct page *page;
2801 pte_t new_pte;
2802 spinlock_t *ptl;
2803
2804 /*
2805 * Currently, we are forced to kill the process in the event the
2806 * original mapper has unmapped pages from the child due to a failed
2807 * COW. Warn that such a situation has occurred as it may not be obvious
2808 */
2809 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2810 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2811 current->pid);
2812 return ret;
2813 }
2814
2815 /*
2816 * Use page lock to guard against racing truncation
2817 * before we get page_table_lock.
2818 */
2819 retry:
2820 page = find_lock_page(mapping, idx);
2821 if (!page) {
2822 size = i_size_read(mapping->host) >> huge_page_shift(h);
2823 if (idx >= size)
2824 goto out;
2825 page = alloc_huge_page(vma, address, 0);
2826 if (IS_ERR(page)) {
2827 ret = PTR_ERR(page);
2828 if (ret == -ENOMEM)
2829 ret = VM_FAULT_OOM;
2830 else
2831 ret = VM_FAULT_SIGBUS;
2832 goto out;
2833 }
2834 clear_huge_page(page, address, pages_per_huge_page(h));
2835 __SetPageUptodate(page);
2836
2837 if (vma->vm_flags & VM_MAYSHARE) {
2838 int err;
2839 struct inode *inode = mapping->host;
2840
2841 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2842 if (err) {
2843 put_page(page);
2844 if (err == -EEXIST)
2845 goto retry;
2846 goto out;
2847 }
2848 ClearPagePrivate(page);
2849
2850 spin_lock(&inode->i_lock);
2851 inode->i_blocks += blocks_per_huge_page(h);
2852 spin_unlock(&inode->i_lock);
2853 } else {
2854 lock_page(page);
2855 if (unlikely(anon_vma_prepare(vma))) {
2856 ret = VM_FAULT_OOM;
2857 goto backout_unlocked;
2858 }
2859 anon_rmap = 1;
2860 }
2861 } else {
2862 /*
2863 * If memory error occurs between mmap() and fault, some process
2864 * don't have hwpoisoned swap entry for errored virtual address.
2865 * So we need to block hugepage fault by PG_hwpoison bit check.
2866 */
2867 if (unlikely(PageHWPoison(page))) {
2868 ret = VM_FAULT_HWPOISON |
2869 VM_FAULT_SET_HINDEX(hstate_index(h));
2870 goto backout_unlocked;
2871 }
2872 }
2873
2874 /*
2875 * If we are going to COW a private mapping later, we examine the
2876 * pending reservations for this page now. This will ensure that
2877 * any allocations necessary to record that reservation occur outside
2878 * the spinlock.
2879 */
2880 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2881 if (vma_needs_reservation(h, vma, address) < 0) {
2882 ret = VM_FAULT_OOM;
2883 goto backout_unlocked;
2884 }
2885
2886 ptl = huge_pte_lockptr(h, mm, ptep);
2887 spin_lock(ptl);
2888 size = i_size_read(mapping->host) >> huge_page_shift(h);
2889 if (idx >= size)
2890 goto backout;
2891
2892 ret = 0;
2893 if (!huge_pte_none(huge_ptep_get(ptep)))
2894 goto backout;
2895
2896 if (anon_rmap) {
2897 ClearPagePrivate(page);
2898 hugepage_add_new_anon_rmap(page, vma, address);
2899 }
2900 else
2901 page_dup_rmap(page);
2902 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2903 && (vma->vm_flags & VM_SHARED)));
2904 set_huge_pte_at(mm, address, ptep, new_pte);
2905
2906 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2907 /* Optimization, do the COW without a second fault */
2908 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2909 }
2910
2911 spin_unlock(ptl);
2912 unlock_page(page);
2913 out:
2914 return ret;
2915
2916 backout:
2917 spin_unlock(ptl);
2918 backout_unlocked:
2919 unlock_page(page);
2920 put_page(page);
2921 goto out;
2922 }
2923
2924 #ifdef CONFIG_SMP
2925 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2926 struct vm_area_struct *vma,
2927 struct address_space *mapping,
2928 pgoff_t idx, unsigned long address)
2929 {
2930 unsigned long key[2];
2931 u32 hash;
2932
2933 if (vma->vm_flags & VM_SHARED) {
2934 key[0] = (unsigned long) mapping;
2935 key[1] = idx;
2936 } else {
2937 key[0] = (unsigned long) mm;
2938 key[1] = address >> huge_page_shift(h);
2939 }
2940
2941 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2942
2943 return hash & (num_fault_mutexes - 1);
2944 }
2945 #else
2946 /*
2947 * For uniprocesor systems we always use a single mutex, so just
2948 * return 0 and avoid the hashing overhead.
2949 */
2950 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2951 struct vm_area_struct *vma,
2952 struct address_space *mapping,
2953 pgoff_t idx, unsigned long address)
2954 {
2955 return 0;
2956 }
2957 #endif
2958
2959 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2960 unsigned long address, unsigned int flags)
2961 {
2962 pte_t *ptep, entry;
2963 spinlock_t *ptl;
2964 int ret;
2965 u32 hash;
2966 pgoff_t idx;
2967 struct page *page = NULL;
2968 struct page *pagecache_page = NULL;
2969 struct hstate *h = hstate_vma(vma);
2970 struct address_space *mapping;
2971
2972 address &= huge_page_mask(h);
2973
2974 ptep = huge_pte_offset(mm, address);
2975 if (ptep) {
2976 entry = huge_ptep_get(ptep);
2977 if (unlikely(is_hugetlb_entry_migration(entry))) {
2978 migration_entry_wait_huge(vma, mm, ptep);
2979 return 0;
2980 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2981 return VM_FAULT_HWPOISON_LARGE |
2982 VM_FAULT_SET_HINDEX(hstate_index(h));
2983 }
2984
2985 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2986 if (!ptep)
2987 return VM_FAULT_OOM;
2988
2989 mapping = vma->vm_file->f_mapping;
2990 idx = vma_hugecache_offset(h, vma, address);
2991
2992 /*
2993 * Serialize hugepage allocation and instantiation, so that we don't
2994 * get spurious allocation failures if two CPUs race to instantiate
2995 * the same page in the page cache.
2996 */
2997 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
2998 mutex_lock(&htlb_fault_mutex_table[hash]);
2999
3000 entry = huge_ptep_get(ptep);
3001 if (huge_pte_none(entry)) {
3002 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3003 goto out_mutex;
3004 }
3005
3006 ret = 0;
3007
3008 /*
3009 * If we are going to COW the mapping later, we examine the pending
3010 * reservations for this page now. This will ensure that any
3011 * allocations necessary to record that reservation occur outside the
3012 * spinlock. For private mappings, we also lookup the pagecache
3013 * page now as it is used to determine if a reservation has been
3014 * consumed.
3015 */
3016 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3017 if (vma_needs_reservation(h, vma, address) < 0) {
3018 ret = VM_FAULT_OOM;
3019 goto out_mutex;
3020 }
3021
3022 if (!(vma->vm_flags & VM_MAYSHARE))
3023 pagecache_page = hugetlbfs_pagecache_page(h,
3024 vma, address);
3025 }
3026
3027 /*
3028 * hugetlb_cow() requires page locks of pte_page(entry) and
3029 * pagecache_page, so here we need take the former one
3030 * when page != pagecache_page or !pagecache_page.
3031 * Note that locking order is always pagecache_page -> page,
3032 * so no worry about deadlock.
3033 */
3034 page = pte_page(entry);
3035 get_page(page);
3036 if (page != pagecache_page)
3037 lock_page(page);
3038
3039 ptl = huge_pte_lockptr(h, mm, ptep);
3040 spin_lock(ptl);
3041 /* Check for a racing update before calling hugetlb_cow */
3042 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3043 goto out_ptl;
3044
3045
3046 if (flags & FAULT_FLAG_WRITE) {
3047 if (!huge_pte_write(entry)) {
3048 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3049 pagecache_page, ptl);
3050 goto out_ptl;
3051 }
3052 entry = huge_pte_mkdirty(entry);
3053 }
3054 entry = pte_mkyoung(entry);
3055 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3056 flags & FAULT_FLAG_WRITE))
3057 update_mmu_cache(vma, address, ptep);
3058
3059 out_ptl:
3060 spin_unlock(ptl);
3061
3062 if (pagecache_page) {
3063 unlock_page(pagecache_page);
3064 put_page(pagecache_page);
3065 }
3066 if (page != pagecache_page)
3067 unlock_page(page);
3068 put_page(page);
3069
3070 out_mutex:
3071 mutex_unlock(&htlb_fault_mutex_table[hash]);
3072 return ret;
3073 }
3074
3075 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3076 struct page **pages, struct vm_area_struct **vmas,
3077 unsigned long *position, unsigned long *nr_pages,
3078 long i, unsigned int flags)
3079 {
3080 unsigned long pfn_offset;
3081 unsigned long vaddr = *position;
3082 unsigned long remainder = *nr_pages;
3083 struct hstate *h = hstate_vma(vma);
3084
3085 while (vaddr < vma->vm_end && remainder) {
3086 pte_t *pte;
3087 spinlock_t *ptl = NULL;
3088 int absent;
3089 struct page *page;
3090
3091 /*
3092 * Some archs (sparc64, sh*) have multiple pte_ts to
3093 * each hugepage. We have to make sure we get the
3094 * first, for the page indexing below to work.
3095 *
3096 * Note that page table lock is not held when pte is null.
3097 */
3098 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3099 if (pte)
3100 ptl = huge_pte_lock(h, mm, pte);
3101 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3102
3103 /*
3104 * When coredumping, it suits get_dump_page if we just return
3105 * an error where there's an empty slot with no huge pagecache
3106 * to back it. This way, we avoid allocating a hugepage, and
3107 * the sparse dumpfile avoids allocating disk blocks, but its
3108 * huge holes still show up with zeroes where they need to be.
3109 */
3110 if (absent && (flags & FOLL_DUMP) &&
3111 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3112 if (pte)
3113 spin_unlock(ptl);
3114 remainder = 0;
3115 break;
3116 }
3117
3118 /*
3119 * We need call hugetlb_fault for both hugepages under migration
3120 * (in which case hugetlb_fault waits for the migration,) and
3121 * hwpoisoned hugepages (in which case we need to prevent the
3122 * caller from accessing to them.) In order to do this, we use
3123 * here is_swap_pte instead of is_hugetlb_entry_migration and
3124 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3125 * both cases, and because we can't follow correct pages
3126 * directly from any kind of swap entries.
3127 */
3128 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3129 ((flags & FOLL_WRITE) &&
3130 !huge_pte_write(huge_ptep_get(pte)))) {
3131 int ret;
3132
3133 if (pte)
3134 spin_unlock(ptl);
3135 ret = hugetlb_fault(mm, vma, vaddr,
3136 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3137 if (!(ret & VM_FAULT_ERROR))
3138 continue;
3139
3140 remainder = 0;
3141 break;
3142 }
3143
3144 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3145 page = pte_page(huge_ptep_get(pte));
3146 same_page:
3147 if (pages) {
3148 pages[i] = mem_map_offset(page, pfn_offset);
3149 get_page_foll(pages[i]);
3150 }
3151
3152 if (vmas)
3153 vmas[i] = vma;
3154
3155 vaddr += PAGE_SIZE;
3156 ++pfn_offset;
3157 --remainder;
3158 ++i;
3159 if (vaddr < vma->vm_end && remainder &&
3160 pfn_offset < pages_per_huge_page(h)) {
3161 /*
3162 * We use pfn_offset to avoid touching the pageframes
3163 * of this compound page.
3164 */
3165 goto same_page;
3166 }
3167 spin_unlock(ptl);
3168 }
3169 *nr_pages = remainder;
3170 *position = vaddr;
3171
3172 return i ? i : -EFAULT;
3173 }
3174
3175 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3176 unsigned long address, unsigned long end, pgprot_t newprot)
3177 {
3178 struct mm_struct *mm = vma->vm_mm;
3179 unsigned long start = address;
3180 pte_t *ptep;
3181 pte_t pte;
3182 struct hstate *h = hstate_vma(vma);
3183 unsigned long pages = 0;
3184
3185 BUG_ON(address >= end);
3186 flush_cache_range(vma, address, end);
3187
3188 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3189 for (; address < end; address += huge_page_size(h)) {
3190 spinlock_t *ptl;
3191 ptep = huge_pte_offset(mm, address);
3192 if (!ptep)
3193 continue;
3194 ptl = huge_pte_lock(h, mm, ptep);
3195 if (huge_pmd_unshare(mm, &address, ptep)) {
3196 pages++;
3197 spin_unlock(ptl);
3198 continue;
3199 }
3200 if (!huge_pte_none(huge_ptep_get(ptep))) {
3201 pte = huge_ptep_get_and_clear(mm, address, ptep);
3202 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3203 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3204 set_huge_pte_at(mm, address, ptep, pte);
3205 pages++;
3206 }
3207 spin_unlock(ptl);
3208 }
3209 /*
3210 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3211 * may have cleared our pud entry and done put_page on the page table:
3212 * once we release i_mmap_mutex, another task can do the final put_page
3213 * and that page table be reused and filled with junk.
3214 */
3215 flush_tlb_range(vma, start, end);
3216 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3217
3218 return pages << h->order;
3219 }
3220
3221 int hugetlb_reserve_pages(struct inode *inode,
3222 long from, long to,
3223 struct vm_area_struct *vma,
3224 vm_flags_t vm_flags)
3225 {
3226 long ret, chg;
3227 struct hstate *h = hstate_inode(inode);
3228 struct hugepage_subpool *spool = subpool_inode(inode);
3229 struct resv_map *resv_map;
3230
3231 /*
3232 * Only apply hugepage reservation if asked. At fault time, an
3233 * attempt will be made for VM_NORESERVE to allocate a page
3234 * without using reserves
3235 */
3236 if (vm_flags & VM_NORESERVE)
3237 return 0;
3238
3239 /*
3240 * Shared mappings base their reservation on the number of pages that
3241 * are already allocated on behalf of the file. Private mappings need
3242 * to reserve the full area even if read-only as mprotect() may be
3243 * called to make the mapping read-write. Assume !vma is a shm mapping
3244 */
3245 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3246 resv_map = inode_resv_map(inode);
3247
3248 chg = region_chg(resv_map, from, to);
3249
3250 } else {
3251 resv_map = resv_map_alloc();
3252 if (!resv_map)
3253 return -ENOMEM;
3254
3255 chg = to - from;
3256
3257 set_vma_resv_map(vma, resv_map);
3258 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3259 }
3260
3261 if (chg < 0) {
3262 ret = chg;
3263 goto out_err;
3264 }
3265
3266 /* There must be enough pages in the subpool for the mapping */
3267 if (hugepage_subpool_get_pages(spool, chg)) {
3268 ret = -ENOSPC;
3269 goto out_err;
3270 }
3271
3272 /*
3273 * Check enough hugepages are available for the reservation.
3274 * Hand the pages back to the subpool if there are not
3275 */
3276 ret = hugetlb_acct_memory(h, chg);
3277 if (ret < 0) {
3278 hugepage_subpool_put_pages(spool, chg);
3279 goto out_err;
3280 }
3281
3282 /*
3283 * Account for the reservations made. Shared mappings record regions
3284 * that have reservations as they are shared by multiple VMAs.
3285 * When the last VMA disappears, the region map says how much
3286 * the reservation was and the page cache tells how much of
3287 * the reservation was consumed. Private mappings are per-VMA and
3288 * only the consumed reservations are tracked. When the VMA
3289 * disappears, the original reservation is the VMA size and the
3290 * consumed reservations are stored in the map. Hence, nothing
3291 * else has to be done for private mappings here
3292 */
3293 if (!vma || vma->vm_flags & VM_MAYSHARE)
3294 region_add(resv_map, from, to);
3295 return 0;
3296 out_err:
3297 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3298 kref_put(&resv_map->refs, resv_map_release);
3299 return ret;
3300 }
3301
3302 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3303 {
3304 struct hstate *h = hstate_inode(inode);
3305 struct resv_map *resv_map = inode_resv_map(inode);
3306 long chg = 0;
3307 struct hugepage_subpool *spool = subpool_inode(inode);
3308
3309 if (resv_map)
3310 chg = region_truncate(resv_map, offset);
3311 spin_lock(&inode->i_lock);
3312 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3313 spin_unlock(&inode->i_lock);
3314
3315 hugepage_subpool_put_pages(spool, (chg - freed));
3316 hugetlb_acct_memory(h, -(chg - freed));
3317 }
3318
3319 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3320 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3321 struct vm_area_struct *vma,
3322 unsigned long addr, pgoff_t idx)
3323 {
3324 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3325 svma->vm_start;
3326 unsigned long sbase = saddr & PUD_MASK;
3327 unsigned long s_end = sbase + PUD_SIZE;
3328
3329 /* Allow segments to share if only one is marked locked */
3330 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3331 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3332
3333 /*
3334 * match the virtual addresses, permission and the alignment of the
3335 * page table page.
3336 */
3337 if (pmd_index(addr) != pmd_index(saddr) ||
3338 vm_flags != svm_flags ||
3339 sbase < svma->vm_start || svma->vm_end < s_end)
3340 return 0;
3341
3342 return saddr;
3343 }
3344
3345 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3346 {
3347 unsigned long base = addr & PUD_MASK;
3348 unsigned long end = base + PUD_SIZE;
3349
3350 /*
3351 * check on proper vm_flags and page table alignment
3352 */
3353 if (vma->vm_flags & VM_MAYSHARE &&
3354 vma->vm_start <= base && end <= vma->vm_end)
3355 return 1;
3356 return 0;
3357 }
3358
3359 /*
3360 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3361 * and returns the corresponding pte. While this is not necessary for the
3362 * !shared pmd case because we can allocate the pmd later as well, it makes the
3363 * code much cleaner. pmd allocation is essential for the shared case because
3364 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3365 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3366 * bad pmd for sharing.
3367 */
3368 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3369 {
3370 struct vm_area_struct *vma = find_vma(mm, addr);
3371 struct address_space *mapping = vma->vm_file->f_mapping;
3372 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3373 vma->vm_pgoff;
3374 struct vm_area_struct *svma;
3375 unsigned long saddr;
3376 pte_t *spte = NULL;
3377 pte_t *pte;
3378 spinlock_t *ptl;
3379
3380 if (!vma_shareable(vma, addr))
3381 return (pte_t *)pmd_alloc(mm, pud, addr);
3382
3383 mutex_lock(&mapping->i_mmap_mutex);
3384 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3385 if (svma == vma)
3386 continue;
3387
3388 saddr = page_table_shareable(svma, vma, addr, idx);
3389 if (saddr) {
3390 spte = huge_pte_offset(svma->vm_mm, saddr);
3391 if (spte) {
3392 get_page(virt_to_page(spte));
3393 break;
3394 }
3395 }
3396 }
3397
3398 if (!spte)
3399 goto out;
3400
3401 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3402 spin_lock(ptl);
3403 if (pud_none(*pud))
3404 pud_populate(mm, pud,
3405 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3406 else
3407 put_page(virt_to_page(spte));
3408 spin_unlock(ptl);
3409 out:
3410 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3411 mutex_unlock(&mapping->i_mmap_mutex);
3412 return pte;
3413 }
3414
3415 /*
3416 * unmap huge page backed by shared pte.
3417 *
3418 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3419 * indicated by page_count > 1, unmap is achieved by clearing pud and
3420 * decrementing the ref count. If count == 1, the pte page is not shared.
3421 *
3422 * called with page table lock held.
3423 *
3424 * returns: 1 successfully unmapped a shared pte page
3425 * 0 the underlying pte page is not shared, or it is the last user
3426 */
3427 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3428 {
3429 pgd_t *pgd = pgd_offset(mm, *addr);
3430 pud_t *pud = pud_offset(pgd, *addr);
3431
3432 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3433 if (page_count(virt_to_page(ptep)) == 1)
3434 return 0;
3435
3436 pud_clear(pud);
3437 put_page(virt_to_page(ptep));
3438 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3439 return 1;
3440 }
3441 #define want_pmd_share() (1)
3442 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3443 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3444 {
3445 return NULL;
3446 }
3447 #define want_pmd_share() (0)
3448 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3449
3450 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3451 pte_t *huge_pte_alloc(struct mm_struct *mm,
3452 unsigned long addr, unsigned long sz)
3453 {
3454 pgd_t *pgd;
3455 pud_t *pud;
3456 pte_t *pte = NULL;
3457
3458 pgd = pgd_offset(mm, addr);
3459 pud = pud_alloc(mm, pgd, addr);
3460 if (pud) {
3461 if (sz == PUD_SIZE) {
3462 pte = (pte_t *)pud;
3463 } else {
3464 BUG_ON(sz != PMD_SIZE);
3465 if (want_pmd_share() && pud_none(*pud))
3466 pte = huge_pmd_share(mm, addr, pud);
3467 else
3468 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3469 }
3470 }
3471 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3472
3473 return pte;
3474 }
3475
3476 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3477 {
3478 pgd_t *pgd;
3479 pud_t *pud;
3480 pmd_t *pmd = NULL;
3481
3482 pgd = pgd_offset(mm, addr);
3483 if (pgd_present(*pgd)) {
3484 pud = pud_offset(pgd, addr);
3485 if (pud_present(*pud)) {
3486 if (pud_huge(*pud))
3487 return (pte_t *)pud;
3488 pmd = pmd_offset(pud, addr);
3489 }
3490 }
3491 return (pte_t *) pmd;
3492 }
3493
3494 struct page *
3495 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3496 pmd_t *pmd, int write)
3497 {
3498 struct page *page;
3499
3500 page = pte_page(*(pte_t *)pmd);
3501 if (page)
3502 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3503 return page;
3504 }
3505
3506 struct page *
3507 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3508 pud_t *pud, int write)
3509 {
3510 struct page *page;
3511
3512 page = pte_page(*(pte_t *)pud);
3513 if (page)
3514 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3515 return page;
3516 }
3517
3518 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3519
3520 /* Can be overriden by architectures */
3521 __attribute__((weak)) struct page *
3522 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3523 pud_t *pud, int write)
3524 {
3525 BUG();
3526 return NULL;
3527 }
3528
3529 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3530
3531 #ifdef CONFIG_MEMORY_FAILURE
3532
3533 /* Should be called in hugetlb_lock */
3534 static int is_hugepage_on_freelist(struct page *hpage)
3535 {
3536 struct page *page;
3537 struct page *tmp;
3538 struct hstate *h = page_hstate(hpage);
3539 int nid = page_to_nid(hpage);
3540
3541 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3542 if (page == hpage)
3543 return 1;
3544 return 0;
3545 }
3546
3547 /*
3548 * This function is called from memory failure code.
3549 * Assume the caller holds page lock of the head page.
3550 */
3551 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3552 {
3553 struct hstate *h = page_hstate(hpage);
3554 int nid = page_to_nid(hpage);
3555 int ret = -EBUSY;
3556
3557 spin_lock(&hugetlb_lock);
3558 if (is_hugepage_on_freelist(hpage)) {
3559 /*
3560 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3561 * but dangling hpage->lru can trigger list-debug warnings
3562 * (this happens when we call unpoison_memory() on it),
3563 * so let it point to itself with list_del_init().
3564 */
3565 list_del_init(&hpage->lru);
3566 set_page_refcounted(hpage);
3567 h->free_huge_pages--;
3568 h->free_huge_pages_node[nid]--;
3569 ret = 0;
3570 }
3571 spin_unlock(&hugetlb_lock);
3572 return ret;
3573 }
3574 #endif
3575
3576 bool isolate_huge_page(struct page *page, struct list_head *list)
3577 {
3578 VM_BUG_ON_PAGE(!PageHead(page), page);
3579 if (!get_page_unless_zero(page))
3580 return false;
3581 spin_lock(&hugetlb_lock);
3582 list_move_tail(&page->lru, list);
3583 spin_unlock(&hugetlb_lock);
3584 return true;
3585 }
3586
3587 void putback_active_hugepage(struct page *page)
3588 {
3589 VM_BUG_ON_PAGE(!PageHead(page), page);
3590 spin_lock(&hugetlb_lock);
3591 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3592 spin_unlock(&hugetlb_lock);
3593 put_page(page);
3594 }
3595
3596 bool is_hugepage_active(struct page *page)
3597 {
3598 VM_BUG_ON_PAGE(!PageHuge(page), page);
3599 /*
3600 * This function can be called for a tail page because the caller,
3601 * scan_movable_pages, scans through a given pfn-range which typically
3602 * covers one memory block. In systems using gigantic hugepage (1GB
3603 * for x86_64,) a hugepage is larger than a memory block, and we don't
3604 * support migrating such large hugepages for now, so return false
3605 * when called for tail pages.
3606 */
3607 if (PageTail(page))
3608 return false;
3609 /*
3610 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3611 * so we should return false for them.
3612 */
3613 if (unlikely(PageHWPoison(page)))
3614 return false;
3615 return page_count(page) > 0;
3616 }
This page took 0.102418 seconds and 6 git commands to generate.