hugetlb: Add hugetlb_dynamic_pool sysctl
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35
36 /*
37 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
38 */
39 static DEFINE_SPINLOCK(hugetlb_lock);
40
41 static void clear_huge_page(struct page *page, unsigned long addr)
42 {
43 int i;
44
45 might_sleep();
46 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
47 cond_resched();
48 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
49 }
50 }
51
52 static void copy_huge_page(struct page *dst, struct page *src,
53 unsigned long addr, struct vm_area_struct *vma)
54 {
55 int i;
56
57 might_sleep();
58 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
59 cond_resched();
60 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
61 }
62 }
63
64 static void enqueue_huge_page(struct page *page)
65 {
66 int nid = page_to_nid(page);
67 list_add(&page->lru, &hugepage_freelists[nid]);
68 free_huge_pages++;
69 free_huge_pages_node[nid]++;
70 }
71
72 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
73 unsigned long address)
74 {
75 int nid;
76 struct page *page = NULL;
77 struct mempolicy *mpol;
78 struct zonelist *zonelist = huge_zonelist(vma, address,
79 htlb_alloc_mask, &mpol);
80 struct zone **z;
81
82 for (z = zonelist->zones; *z; z++) {
83 nid = zone_to_nid(*z);
84 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
85 !list_empty(&hugepage_freelists[nid])) {
86 page = list_entry(hugepage_freelists[nid].next,
87 struct page, lru);
88 list_del(&page->lru);
89 free_huge_pages--;
90 free_huge_pages_node[nid]--;
91 if (vma && vma->vm_flags & VM_MAYSHARE)
92 resv_huge_pages--;
93 break;
94 }
95 }
96 mpol_free(mpol); /* unref if mpol !NULL */
97 return page;
98 }
99
100 static void update_and_free_page(struct page *page)
101 {
102 int i;
103 nr_huge_pages--;
104 nr_huge_pages_node[page_to_nid(page)]--;
105 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
106 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
107 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
108 1 << PG_private | 1<< PG_writeback);
109 }
110 set_compound_page_dtor(page, NULL);
111 set_page_refcounted(page);
112 __free_pages(page, HUGETLB_PAGE_ORDER);
113 }
114
115 static void free_huge_page(struct page *page)
116 {
117 int nid = page_to_nid(page);
118
119 BUG_ON(page_count(page));
120 INIT_LIST_HEAD(&page->lru);
121
122 spin_lock(&hugetlb_lock);
123 if (surplus_huge_pages_node[nid]) {
124 update_and_free_page(page);
125 surplus_huge_pages--;
126 surplus_huge_pages_node[nid]--;
127 } else {
128 enqueue_huge_page(page);
129 }
130 spin_unlock(&hugetlb_lock);
131 }
132
133 /*
134 * Increment or decrement surplus_huge_pages. Keep node-specific counters
135 * balanced by operating on them in a round-robin fashion.
136 * Returns 1 if an adjustment was made.
137 */
138 static int adjust_pool_surplus(int delta)
139 {
140 static int prev_nid;
141 int nid = prev_nid;
142 int ret = 0;
143
144 VM_BUG_ON(delta != -1 && delta != 1);
145 do {
146 nid = next_node(nid, node_online_map);
147 if (nid == MAX_NUMNODES)
148 nid = first_node(node_online_map);
149
150 /* To shrink on this node, there must be a surplus page */
151 if (delta < 0 && !surplus_huge_pages_node[nid])
152 continue;
153 /* Surplus cannot exceed the total number of pages */
154 if (delta > 0 && surplus_huge_pages_node[nid] >=
155 nr_huge_pages_node[nid])
156 continue;
157
158 surplus_huge_pages += delta;
159 surplus_huge_pages_node[nid] += delta;
160 ret = 1;
161 break;
162 } while (nid != prev_nid);
163
164 prev_nid = nid;
165 return ret;
166 }
167
168 static int alloc_fresh_huge_page(void)
169 {
170 static int prev_nid;
171 struct page *page;
172 int nid;
173
174 /*
175 * Copy static prev_nid to local nid, work on that, then copy it
176 * back to prev_nid afterwards: otherwise there's a window in which
177 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
178 * But we don't need to use a spin_lock here: it really doesn't
179 * matter if occasionally a racer chooses the same nid as we do.
180 */
181 nid = next_node(prev_nid, node_online_map);
182 if (nid == MAX_NUMNODES)
183 nid = first_node(node_online_map);
184 prev_nid = nid;
185
186 page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
187 HUGETLB_PAGE_ORDER);
188 if (page) {
189 set_compound_page_dtor(page, free_huge_page);
190 spin_lock(&hugetlb_lock);
191 nr_huge_pages++;
192 nr_huge_pages_node[page_to_nid(page)]++;
193 spin_unlock(&hugetlb_lock);
194 put_page(page); /* free it into the hugepage allocator */
195 return 1;
196 }
197 return 0;
198 }
199
200 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
201 unsigned long address)
202 {
203 struct page *page;
204
205 /* Check if the dynamic pool is enabled */
206 if (!hugetlb_dynamic_pool)
207 return NULL;
208
209 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
210 HUGETLB_PAGE_ORDER);
211 if (page) {
212 set_compound_page_dtor(page, free_huge_page);
213 spin_lock(&hugetlb_lock);
214 nr_huge_pages++;
215 nr_huge_pages_node[page_to_nid(page)]++;
216 surplus_huge_pages++;
217 surplus_huge_pages_node[page_to_nid(page)]++;
218 spin_unlock(&hugetlb_lock);
219 }
220
221 return page;
222 }
223
224 /*
225 * Increase the hugetlb pool such that it can accomodate a reservation
226 * of size 'delta'.
227 */
228 static int gather_surplus_pages(int delta)
229 {
230 struct list_head surplus_list;
231 struct page *page, *tmp;
232 int ret, i;
233 int needed, allocated;
234
235 needed = (resv_huge_pages + delta) - free_huge_pages;
236 if (needed <= 0)
237 return 0;
238
239 allocated = 0;
240 INIT_LIST_HEAD(&surplus_list);
241
242 ret = -ENOMEM;
243 retry:
244 spin_unlock(&hugetlb_lock);
245 for (i = 0; i < needed; i++) {
246 page = alloc_buddy_huge_page(NULL, 0);
247 if (!page) {
248 /*
249 * We were not able to allocate enough pages to
250 * satisfy the entire reservation so we free what
251 * we've allocated so far.
252 */
253 spin_lock(&hugetlb_lock);
254 needed = 0;
255 goto free;
256 }
257
258 list_add(&page->lru, &surplus_list);
259 }
260 allocated += needed;
261
262 /*
263 * After retaking hugetlb_lock, we need to recalculate 'needed'
264 * because either resv_huge_pages or free_huge_pages may have changed.
265 */
266 spin_lock(&hugetlb_lock);
267 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
268 if (needed > 0)
269 goto retry;
270
271 /*
272 * The surplus_list now contains _at_least_ the number of extra pages
273 * needed to accomodate the reservation. Add the appropriate number
274 * of pages to the hugetlb pool and free the extras back to the buddy
275 * allocator.
276 */
277 needed += allocated;
278 ret = 0;
279 free:
280 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
281 list_del(&page->lru);
282 if ((--needed) >= 0)
283 enqueue_huge_page(page);
284 else
285 update_and_free_page(page);
286 }
287
288 return ret;
289 }
290
291 /*
292 * When releasing a hugetlb pool reservation, any surplus pages that were
293 * allocated to satisfy the reservation must be explicitly freed if they were
294 * never used.
295 */
296 void return_unused_surplus_pages(unsigned long unused_resv_pages)
297 {
298 static int nid = -1;
299 struct page *page;
300 unsigned long nr_pages;
301
302 nr_pages = min(unused_resv_pages, surplus_huge_pages);
303
304 while (nr_pages) {
305 nid = next_node(nid, node_online_map);
306 if (nid == MAX_NUMNODES)
307 nid = first_node(node_online_map);
308
309 if (!surplus_huge_pages_node[nid])
310 continue;
311
312 if (!list_empty(&hugepage_freelists[nid])) {
313 page = list_entry(hugepage_freelists[nid].next,
314 struct page, lru);
315 list_del(&page->lru);
316 update_and_free_page(page);
317 free_huge_pages--;
318 free_huge_pages_node[nid]--;
319 surplus_huge_pages--;
320 surplus_huge_pages_node[nid]--;
321 nr_pages--;
322 }
323 }
324 }
325
326 static struct page *alloc_huge_page(struct vm_area_struct *vma,
327 unsigned long addr)
328 {
329 struct page *page = NULL;
330 int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
331
332 spin_lock(&hugetlb_lock);
333 if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
334 goto fail;
335
336 page = dequeue_huge_page(vma, addr);
337 if (!page)
338 goto fail;
339
340 spin_unlock(&hugetlb_lock);
341 set_page_refcounted(page);
342 return page;
343
344 fail:
345 spin_unlock(&hugetlb_lock);
346
347 /*
348 * Private mappings do not use reserved huge pages so the allocation
349 * may have failed due to an undersized hugetlb pool. Try to grab a
350 * surplus huge page from the buddy allocator.
351 */
352 if (!use_reserved_page)
353 page = alloc_buddy_huge_page(vma, addr);
354
355 return page;
356 }
357
358 static int __init hugetlb_init(void)
359 {
360 unsigned long i;
361
362 if (HPAGE_SHIFT == 0)
363 return 0;
364
365 for (i = 0; i < MAX_NUMNODES; ++i)
366 INIT_LIST_HEAD(&hugepage_freelists[i]);
367
368 for (i = 0; i < max_huge_pages; ++i) {
369 if (!alloc_fresh_huge_page())
370 break;
371 }
372 max_huge_pages = free_huge_pages = nr_huge_pages = i;
373 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
374 return 0;
375 }
376 module_init(hugetlb_init);
377
378 static int __init hugetlb_setup(char *s)
379 {
380 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
381 max_huge_pages = 0;
382 return 1;
383 }
384 __setup("hugepages=", hugetlb_setup);
385
386 static unsigned int cpuset_mems_nr(unsigned int *array)
387 {
388 int node;
389 unsigned int nr = 0;
390
391 for_each_node_mask(node, cpuset_current_mems_allowed)
392 nr += array[node];
393
394 return nr;
395 }
396
397 #ifdef CONFIG_SYSCTL
398 #ifdef CONFIG_HIGHMEM
399 static void try_to_free_low(unsigned long count)
400 {
401 int i;
402
403 for (i = 0; i < MAX_NUMNODES; ++i) {
404 struct page *page, *next;
405 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
406 if (PageHighMem(page))
407 continue;
408 list_del(&page->lru);
409 update_and_free_page(page);
410 free_huge_pages--;
411 free_huge_pages_node[page_to_nid(page)]--;
412 if (count >= nr_huge_pages)
413 return;
414 }
415 }
416 }
417 #else
418 static inline void try_to_free_low(unsigned long count)
419 {
420 }
421 #endif
422
423 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
424 static unsigned long set_max_huge_pages(unsigned long count)
425 {
426 unsigned long min_count, ret;
427
428 /*
429 * Increase the pool size
430 * First take pages out of surplus state. Then make up the
431 * remaining difference by allocating fresh huge pages.
432 */
433 spin_lock(&hugetlb_lock);
434 while (surplus_huge_pages && count > persistent_huge_pages) {
435 if (!adjust_pool_surplus(-1))
436 break;
437 }
438
439 while (count > persistent_huge_pages) {
440 int ret;
441 /*
442 * If this allocation races such that we no longer need the
443 * page, free_huge_page will handle it by freeing the page
444 * and reducing the surplus.
445 */
446 spin_unlock(&hugetlb_lock);
447 ret = alloc_fresh_huge_page();
448 spin_lock(&hugetlb_lock);
449 if (!ret)
450 goto out;
451
452 }
453 if (count >= persistent_huge_pages)
454 goto out;
455
456 /*
457 * Decrease the pool size
458 * First return free pages to the buddy allocator (being careful
459 * to keep enough around to satisfy reservations). Then place
460 * pages into surplus state as needed so the pool will shrink
461 * to the desired size as pages become free.
462 */
463 min_count = max(count, resv_huge_pages);
464 try_to_free_low(min_count);
465 while (min_count < persistent_huge_pages) {
466 struct page *page = dequeue_huge_page(NULL, 0);
467 if (!page)
468 break;
469 update_and_free_page(page);
470 }
471 while (count < persistent_huge_pages) {
472 if (!adjust_pool_surplus(1))
473 break;
474 }
475 out:
476 ret = persistent_huge_pages;
477 spin_unlock(&hugetlb_lock);
478 return ret;
479 }
480
481 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
482 struct file *file, void __user *buffer,
483 size_t *length, loff_t *ppos)
484 {
485 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
486 max_huge_pages = set_max_huge_pages(max_huge_pages);
487 return 0;
488 }
489
490 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
491 struct file *file, void __user *buffer,
492 size_t *length, loff_t *ppos)
493 {
494 proc_dointvec(table, write, file, buffer, length, ppos);
495 if (hugepages_treat_as_movable)
496 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
497 else
498 htlb_alloc_mask = GFP_HIGHUSER;
499 return 0;
500 }
501
502 #endif /* CONFIG_SYSCTL */
503
504 int hugetlb_report_meminfo(char *buf)
505 {
506 return sprintf(buf,
507 "HugePages_Total: %5lu\n"
508 "HugePages_Free: %5lu\n"
509 "HugePages_Rsvd: %5lu\n"
510 "HugePages_Surp: %5lu\n"
511 "Hugepagesize: %5lu kB\n",
512 nr_huge_pages,
513 free_huge_pages,
514 resv_huge_pages,
515 surplus_huge_pages,
516 HPAGE_SIZE/1024);
517 }
518
519 int hugetlb_report_node_meminfo(int nid, char *buf)
520 {
521 return sprintf(buf,
522 "Node %d HugePages_Total: %5u\n"
523 "Node %d HugePages_Free: %5u\n",
524 nid, nr_huge_pages_node[nid],
525 nid, free_huge_pages_node[nid]);
526 }
527
528 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
529 unsigned long hugetlb_total_pages(void)
530 {
531 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
532 }
533
534 /*
535 * We cannot handle pagefaults against hugetlb pages at all. They cause
536 * handle_mm_fault() to try to instantiate regular-sized pages in the
537 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
538 * this far.
539 */
540 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
541 {
542 BUG();
543 return 0;
544 }
545
546 struct vm_operations_struct hugetlb_vm_ops = {
547 .fault = hugetlb_vm_op_fault,
548 };
549
550 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
551 int writable)
552 {
553 pte_t entry;
554
555 if (writable) {
556 entry =
557 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
558 } else {
559 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
560 }
561 entry = pte_mkyoung(entry);
562 entry = pte_mkhuge(entry);
563
564 return entry;
565 }
566
567 static void set_huge_ptep_writable(struct vm_area_struct *vma,
568 unsigned long address, pte_t *ptep)
569 {
570 pte_t entry;
571
572 entry = pte_mkwrite(pte_mkdirty(*ptep));
573 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
574 update_mmu_cache(vma, address, entry);
575 }
576 }
577
578
579 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
580 struct vm_area_struct *vma)
581 {
582 pte_t *src_pte, *dst_pte, entry;
583 struct page *ptepage;
584 unsigned long addr;
585 int cow;
586
587 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
588
589 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
590 src_pte = huge_pte_offset(src, addr);
591 if (!src_pte)
592 continue;
593 dst_pte = huge_pte_alloc(dst, addr);
594 if (!dst_pte)
595 goto nomem;
596 spin_lock(&dst->page_table_lock);
597 spin_lock(&src->page_table_lock);
598 if (!pte_none(*src_pte)) {
599 if (cow)
600 ptep_set_wrprotect(src, addr, src_pte);
601 entry = *src_pte;
602 ptepage = pte_page(entry);
603 get_page(ptepage);
604 set_huge_pte_at(dst, addr, dst_pte, entry);
605 }
606 spin_unlock(&src->page_table_lock);
607 spin_unlock(&dst->page_table_lock);
608 }
609 return 0;
610
611 nomem:
612 return -ENOMEM;
613 }
614
615 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
616 unsigned long end)
617 {
618 struct mm_struct *mm = vma->vm_mm;
619 unsigned long address;
620 pte_t *ptep;
621 pte_t pte;
622 struct page *page;
623 struct page *tmp;
624 /*
625 * A page gathering list, protected by per file i_mmap_lock. The
626 * lock is used to avoid list corruption from multiple unmapping
627 * of the same page since we are using page->lru.
628 */
629 LIST_HEAD(page_list);
630
631 WARN_ON(!is_vm_hugetlb_page(vma));
632 BUG_ON(start & ~HPAGE_MASK);
633 BUG_ON(end & ~HPAGE_MASK);
634
635 spin_lock(&mm->page_table_lock);
636 for (address = start; address < end; address += HPAGE_SIZE) {
637 ptep = huge_pte_offset(mm, address);
638 if (!ptep)
639 continue;
640
641 if (huge_pmd_unshare(mm, &address, ptep))
642 continue;
643
644 pte = huge_ptep_get_and_clear(mm, address, ptep);
645 if (pte_none(pte))
646 continue;
647
648 page = pte_page(pte);
649 if (pte_dirty(pte))
650 set_page_dirty(page);
651 list_add(&page->lru, &page_list);
652 }
653 spin_unlock(&mm->page_table_lock);
654 flush_tlb_range(vma, start, end);
655 list_for_each_entry_safe(page, tmp, &page_list, lru) {
656 list_del(&page->lru);
657 put_page(page);
658 }
659 }
660
661 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
662 unsigned long end)
663 {
664 /*
665 * It is undesirable to test vma->vm_file as it should be non-null
666 * for valid hugetlb area. However, vm_file will be NULL in the error
667 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
668 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
669 * to clean up. Since no pte has actually been setup, it is safe to
670 * do nothing in this case.
671 */
672 if (vma->vm_file) {
673 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
674 __unmap_hugepage_range(vma, start, end);
675 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
676 }
677 }
678
679 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
680 unsigned long address, pte_t *ptep, pte_t pte)
681 {
682 struct page *old_page, *new_page;
683 int avoidcopy;
684
685 old_page = pte_page(pte);
686
687 /* If no-one else is actually using this page, avoid the copy
688 * and just make the page writable */
689 avoidcopy = (page_count(old_page) == 1);
690 if (avoidcopy) {
691 set_huge_ptep_writable(vma, address, ptep);
692 return 0;
693 }
694
695 page_cache_get(old_page);
696 new_page = alloc_huge_page(vma, address);
697
698 if (!new_page) {
699 page_cache_release(old_page);
700 return VM_FAULT_OOM;
701 }
702
703 spin_unlock(&mm->page_table_lock);
704 copy_huge_page(new_page, old_page, address, vma);
705 spin_lock(&mm->page_table_lock);
706
707 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
708 if (likely(pte_same(*ptep, pte))) {
709 /* Break COW */
710 set_huge_pte_at(mm, address, ptep,
711 make_huge_pte(vma, new_page, 1));
712 /* Make the old page be freed below */
713 new_page = old_page;
714 }
715 page_cache_release(new_page);
716 page_cache_release(old_page);
717 return 0;
718 }
719
720 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
721 unsigned long address, pte_t *ptep, int write_access)
722 {
723 int ret = VM_FAULT_SIGBUS;
724 unsigned long idx;
725 unsigned long size;
726 struct page *page;
727 struct address_space *mapping;
728 pte_t new_pte;
729
730 mapping = vma->vm_file->f_mapping;
731 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
732 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
733
734 /*
735 * Use page lock to guard against racing truncation
736 * before we get page_table_lock.
737 */
738 retry:
739 page = find_lock_page(mapping, idx);
740 if (!page) {
741 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
742 if (idx >= size)
743 goto out;
744 if (hugetlb_get_quota(mapping))
745 goto out;
746 page = alloc_huge_page(vma, address);
747 if (!page) {
748 hugetlb_put_quota(mapping);
749 ret = VM_FAULT_OOM;
750 goto out;
751 }
752 clear_huge_page(page, address);
753
754 if (vma->vm_flags & VM_SHARED) {
755 int err;
756
757 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
758 if (err) {
759 put_page(page);
760 hugetlb_put_quota(mapping);
761 if (err == -EEXIST)
762 goto retry;
763 goto out;
764 }
765 } else
766 lock_page(page);
767 }
768
769 spin_lock(&mm->page_table_lock);
770 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
771 if (idx >= size)
772 goto backout;
773
774 ret = 0;
775 if (!pte_none(*ptep))
776 goto backout;
777
778 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
779 && (vma->vm_flags & VM_SHARED)));
780 set_huge_pte_at(mm, address, ptep, new_pte);
781
782 if (write_access && !(vma->vm_flags & VM_SHARED)) {
783 /* Optimization, do the COW without a second fault */
784 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
785 }
786
787 spin_unlock(&mm->page_table_lock);
788 unlock_page(page);
789 out:
790 return ret;
791
792 backout:
793 spin_unlock(&mm->page_table_lock);
794 hugetlb_put_quota(mapping);
795 unlock_page(page);
796 put_page(page);
797 goto out;
798 }
799
800 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
801 unsigned long address, int write_access)
802 {
803 pte_t *ptep;
804 pte_t entry;
805 int ret;
806 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
807
808 ptep = huge_pte_alloc(mm, address);
809 if (!ptep)
810 return VM_FAULT_OOM;
811
812 /*
813 * Serialize hugepage allocation and instantiation, so that we don't
814 * get spurious allocation failures if two CPUs race to instantiate
815 * the same page in the page cache.
816 */
817 mutex_lock(&hugetlb_instantiation_mutex);
818 entry = *ptep;
819 if (pte_none(entry)) {
820 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
821 mutex_unlock(&hugetlb_instantiation_mutex);
822 return ret;
823 }
824
825 ret = 0;
826
827 spin_lock(&mm->page_table_lock);
828 /* Check for a racing update before calling hugetlb_cow */
829 if (likely(pte_same(entry, *ptep)))
830 if (write_access && !pte_write(entry))
831 ret = hugetlb_cow(mm, vma, address, ptep, entry);
832 spin_unlock(&mm->page_table_lock);
833 mutex_unlock(&hugetlb_instantiation_mutex);
834
835 return ret;
836 }
837
838 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
839 struct page **pages, struct vm_area_struct **vmas,
840 unsigned long *position, int *length, int i)
841 {
842 unsigned long pfn_offset;
843 unsigned long vaddr = *position;
844 int remainder = *length;
845
846 spin_lock(&mm->page_table_lock);
847 while (vaddr < vma->vm_end && remainder) {
848 pte_t *pte;
849 struct page *page;
850
851 /*
852 * Some archs (sparc64, sh*) have multiple pte_ts to
853 * each hugepage. We have to make * sure we get the
854 * first, for the page indexing below to work.
855 */
856 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
857
858 if (!pte || pte_none(*pte)) {
859 int ret;
860
861 spin_unlock(&mm->page_table_lock);
862 ret = hugetlb_fault(mm, vma, vaddr, 0);
863 spin_lock(&mm->page_table_lock);
864 if (!(ret & VM_FAULT_ERROR))
865 continue;
866
867 remainder = 0;
868 if (!i)
869 i = -EFAULT;
870 break;
871 }
872
873 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
874 page = pte_page(*pte);
875 same_page:
876 if (pages) {
877 get_page(page);
878 pages[i] = page + pfn_offset;
879 }
880
881 if (vmas)
882 vmas[i] = vma;
883
884 vaddr += PAGE_SIZE;
885 ++pfn_offset;
886 --remainder;
887 ++i;
888 if (vaddr < vma->vm_end && remainder &&
889 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
890 /*
891 * We use pfn_offset to avoid touching the pageframes
892 * of this compound page.
893 */
894 goto same_page;
895 }
896 }
897 spin_unlock(&mm->page_table_lock);
898 *length = remainder;
899 *position = vaddr;
900
901 return i;
902 }
903
904 void hugetlb_change_protection(struct vm_area_struct *vma,
905 unsigned long address, unsigned long end, pgprot_t newprot)
906 {
907 struct mm_struct *mm = vma->vm_mm;
908 unsigned long start = address;
909 pte_t *ptep;
910 pte_t pte;
911
912 BUG_ON(address >= end);
913 flush_cache_range(vma, address, end);
914
915 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
916 spin_lock(&mm->page_table_lock);
917 for (; address < end; address += HPAGE_SIZE) {
918 ptep = huge_pte_offset(mm, address);
919 if (!ptep)
920 continue;
921 if (huge_pmd_unshare(mm, &address, ptep))
922 continue;
923 if (!pte_none(*ptep)) {
924 pte = huge_ptep_get_and_clear(mm, address, ptep);
925 pte = pte_mkhuge(pte_modify(pte, newprot));
926 set_huge_pte_at(mm, address, ptep, pte);
927 }
928 }
929 spin_unlock(&mm->page_table_lock);
930 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
931
932 flush_tlb_range(vma, start, end);
933 }
934
935 struct file_region {
936 struct list_head link;
937 long from;
938 long to;
939 };
940
941 static long region_add(struct list_head *head, long f, long t)
942 {
943 struct file_region *rg, *nrg, *trg;
944
945 /* Locate the region we are either in or before. */
946 list_for_each_entry(rg, head, link)
947 if (f <= rg->to)
948 break;
949
950 /* Round our left edge to the current segment if it encloses us. */
951 if (f > rg->from)
952 f = rg->from;
953
954 /* Check for and consume any regions we now overlap with. */
955 nrg = rg;
956 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
957 if (&rg->link == head)
958 break;
959 if (rg->from > t)
960 break;
961
962 /* If this area reaches higher then extend our area to
963 * include it completely. If this is not the first area
964 * which we intend to reuse, free it. */
965 if (rg->to > t)
966 t = rg->to;
967 if (rg != nrg) {
968 list_del(&rg->link);
969 kfree(rg);
970 }
971 }
972 nrg->from = f;
973 nrg->to = t;
974 return 0;
975 }
976
977 static long region_chg(struct list_head *head, long f, long t)
978 {
979 struct file_region *rg, *nrg;
980 long chg = 0;
981
982 /* Locate the region we are before or in. */
983 list_for_each_entry(rg, head, link)
984 if (f <= rg->to)
985 break;
986
987 /* If we are below the current region then a new region is required.
988 * Subtle, allocate a new region at the position but make it zero
989 * size such that we can guarentee to record the reservation. */
990 if (&rg->link == head || t < rg->from) {
991 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
992 if (nrg == 0)
993 return -ENOMEM;
994 nrg->from = f;
995 nrg->to = f;
996 INIT_LIST_HEAD(&nrg->link);
997 list_add(&nrg->link, rg->link.prev);
998
999 return t - f;
1000 }
1001
1002 /* Round our left edge to the current segment if it encloses us. */
1003 if (f > rg->from)
1004 f = rg->from;
1005 chg = t - f;
1006
1007 /* Check for and consume any regions we now overlap with. */
1008 list_for_each_entry(rg, rg->link.prev, link) {
1009 if (&rg->link == head)
1010 break;
1011 if (rg->from > t)
1012 return chg;
1013
1014 /* We overlap with this area, if it extends futher than
1015 * us then we must extend ourselves. Account for its
1016 * existing reservation. */
1017 if (rg->to > t) {
1018 chg += rg->to - t;
1019 t = rg->to;
1020 }
1021 chg -= rg->to - rg->from;
1022 }
1023 return chg;
1024 }
1025
1026 static long region_truncate(struct list_head *head, long end)
1027 {
1028 struct file_region *rg, *trg;
1029 long chg = 0;
1030
1031 /* Locate the region we are either in or before. */
1032 list_for_each_entry(rg, head, link)
1033 if (end <= rg->to)
1034 break;
1035 if (&rg->link == head)
1036 return 0;
1037
1038 /* If we are in the middle of a region then adjust it. */
1039 if (end > rg->from) {
1040 chg = rg->to - end;
1041 rg->to = end;
1042 rg = list_entry(rg->link.next, typeof(*rg), link);
1043 }
1044
1045 /* Drop any remaining regions. */
1046 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1047 if (&rg->link == head)
1048 break;
1049 chg += rg->to - rg->from;
1050 list_del(&rg->link);
1051 kfree(rg);
1052 }
1053 return chg;
1054 }
1055
1056 static int hugetlb_acct_memory(long delta)
1057 {
1058 int ret = -ENOMEM;
1059
1060 spin_lock(&hugetlb_lock);
1061 /*
1062 * When cpuset is configured, it breaks the strict hugetlb page
1063 * reservation as the accounting is done on a global variable. Such
1064 * reservation is completely rubbish in the presence of cpuset because
1065 * the reservation is not checked against page availability for the
1066 * current cpuset. Application can still potentially OOM'ed by kernel
1067 * with lack of free htlb page in cpuset that the task is in.
1068 * Attempt to enforce strict accounting with cpuset is almost
1069 * impossible (or too ugly) because cpuset is too fluid that
1070 * task or memory node can be dynamically moved between cpusets.
1071 *
1072 * The change of semantics for shared hugetlb mapping with cpuset is
1073 * undesirable. However, in order to preserve some of the semantics,
1074 * we fall back to check against current free page availability as
1075 * a best attempt and hopefully to minimize the impact of changing
1076 * semantics that cpuset has.
1077 */
1078 if (delta > 0) {
1079 if (gather_surplus_pages(delta) < 0)
1080 goto out;
1081
1082 if (delta > cpuset_mems_nr(free_huge_pages_node))
1083 goto out;
1084 }
1085
1086 ret = 0;
1087 resv_huge_pages += delta;
1088 if (delta < 0)
1089 return_unused_surplus_pages((unsigned long) -delta);
1090
1091 out:
1092 spin_unlock(&hugetlb_lock);
1093 return ret;
1094 }
1095
1096 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1097 {
1098 long ret, chg;
1099
1100 chg = region_chg(&inode->i_mapping->private_list, from, to);
1101 if (chg < 0)
1102 return chg;
1103
1104 ret = hugetlb_acct_memory(chg);
1105 if (ret < 0)
1106 return ret;
1107 region_add(&inode->i_mapping->private_list, from, to);
1108 return 0;
1109 }
1110
1111 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1112 {
1113 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1114 hugetlb_acct_memory(freed - chg);
1115 }
This page took 0.082494 seconds and 6 git commands to generate.