hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splits
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 /*
44 * Region tracking -- allows tracking of reservations and instantiated pages
45 * across the pages in a mapping.
46 *
47 * The region data structures are protected by a combination of the mmap_sem
48 * and the hugetlb_instantion_mutex. To access or modify a region the caller
49 * must either hold the mmap_sem for write, or the mmap_sem for read and
50 * the hugetlb_instantiation mutex:
51 *
52 * down_write(&mm->mmap_sem);
53 * or
54 * down_read(&mm->mmap_sem);
55 * mutex_lock(&hugetlb_instantiation_mutex);
56 */
57 struct file_region {
58 struct list_head link;
59 long from;
60 long to;
61 };
62
63 static long region_add(struct list_head *head, long f, long t)
64 {
65 struct file_region *rg, *nrg, *trg;
66
67 /* Locate the region we are either in or before. */
68 list_for_each_entry(rg, head, link)
69 if (f <= rg->to)
70 break;
71
72 /* Round our left edge to the current segment if it encloses us. */
73 if (f > rg->from)
74 f = rg->from;
75
76 /* Check for and consume any regions we now overlap with. */
77 nrg = rg;
78 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
79 if (&rg->link == head)
80 break;
81 if (rg->from > t)
82 break;
83
84 /* If this area reaches higher then extend our area to
85 * include it completely. If this is not the first area
86 * which we intend to reuse, free it. */
87 if (rg->to > t)
88 t = rg->to;
89 if (rg != nrg) {
90 list_del(&rg->link);
91 kfree(rg);
92 }
93 }
94 nrg->from = f;
95 nrg->to = t;
96 return 0;
97 }
98
99 static long region_chg(struct list_head *head, long f, long t)
100 {
101 struct file_region *rg, *nrg;
102 long chg = 0;
103
104 /* Locate the region we are before or in. */
105 list_for_each_entry(rg, head, link)
106 if (f <= rg->to)
107 break;
108
109 /* If we are below the current region then a new region is required.
110 * Subtle, allocate a new region at the position but make it zero
111 * size such that we can guarantee to record the reservation. */
112 if (&rg->link == head || t < rg->from) {
113 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
114 if (!nrg)
115 return -ENOMEM;
116 nrg->from = f;
117 nrg->to = f;
118 INIT_LIST_HEAD(&nrg->link);
119 list_add(&nrg->link, rg->link.prev);
120
121 return t - f;
122 }
123
124 /* Round our left edge to the current segment if it encloses us. */
125 if (f > rg->from)
126 f = rg->from;
127 chg = t - f;
128
129 /* Check for and consume any regions we now overlap with. */
130 list_for_each_entry(rg, rg->link.prev, link) {
131 if (&rg->link == head)
132 break;
133 if (rg->from > t)
134 return chg;
135
136 /* We overlap with this area, if it extends futher than
137 * us then we must extend ourselves. Account for its
138 * existing reservation. */
139 if (rg->to > t) {
140 chg += rg->to - t;
141 t = rg->to;
142 }
143 chg -= rg->to - rg->from;
144 }
145 return chg;
146 }
147
148 static long region_truncate(struct list_head *head, long end)
149 {
150 struct file_region *rg, *trg;
151 long chg = 0;
152
153 /* Locate the region we are either in or before. */
154 list_for_each_entry(rg, head, link)
155 if (end <= rg->to)
156 break;
157 if (&rg->link == head)
158 return 0;
159
160 /* If we are in the middle of a region then adjust it. */
161 if (end > rg->from) {
162 chg = rg->to - end;
163 rg->to = end;
164 rg = list_entry(rg->link.next, typeof(*rg), link);
165 }
166
167 /* Drop any remaining regions. */
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 chg += rg->to - rg->from;
172 list_del(&rg->link);
173 kfree(rg);
174 }
175 return chg;
176 }
177
178 static long region_count(struct list_head *head, long f, long t)
179 {
180 struct file_region *rg;
181 long chg = 0;
182
183 /* Locate each segment we overlap with, and count that overlap. */
184 list_for_each_entry(rg, head, link) {
185 int seg_from;
186 int seg_to;
187
188 if (rg->to <= f)
189 continue;
190 if (rg->from >= t)
191 break;
192
193 seg_from = max(rg->from, f);
194 seg_to = min(rg->to, t);
195
196 chg += seg_to - seg_from;
197 }
198
199 return chg;
200 }
201
202 /*
203 * Convert the address within this vma to the page offset within
204 * the mapping, in base page units.
205 */
206 static pgoff_t vma_page_offset(struct vm_area_struct *vma,
207 unsigned long address)
208 {
209 return ((address - vma->vm_start) >> PAGE_SHIFT) +
210 (vma->vm_pgoff >> PAGE_SHIFT);
211 }
212
213 /*
214 * Convert the address within this vma to the page offset within
215 * the mapping, in pagecache page units; huge pages here.
216 */
217 static pgoff_t vma_pagecache_offset(struct vm_area_struct *vma,
218 unsigned long address)
219 {
220 return ((address - vma->vm_start) >> HPAGE_SHIFT) +
221 (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
222 }
223
224 /*
225 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
226 * bits of the reservation map pointer, which are always clear due to
227 * alignment.
228 */
229 #define HPAGE_RESV_OWNER (1UL << 0)
230 #define HPAGE_RESV_UNMAPPED (1UL << 1)
231 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
232
233 /*
234 * These helpers are used to track how many pages are reserved for
235 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
236 * is guaranteed to have their future faults succeed.
237 *
238 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
239 * the reserve counters are updated with the hugetlb_lock held. It is safe
240 * to reset the VMA at fork() time as it is not in use yet and there is no
241 * chance of the global counters getting corrupted as a result of the values.
242 *
243 * The private mapping reservation is represented in a subtly different
244 * manner to a shared mapping. A shared mapping has a region map associated
245 * with the underlying file, this region map represents the backing file
246 * pages which have ever had a reservation assigned which this persists even
247 * after the page is instantiated. A private mapping has a region map
248 * associated with the original mmap which is attached to all VMAs which
249 * reference it, this region map represents those offsets which have consumed
250 * reservation ie. where pages have been instantiated.
251 */
252 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
253 {
254 return (unsigned long)vma->vm_private_data;
255 }
256
257 static void set_vma_private_data(struct vm_area_struct *vma,
258 unsigned long value)
259 {
260 vma->vm_private_data = (void *)value;
261 }
262
263 struct resv_map {
264 struct kref refs;
265 struct list_head regions;
266 };
267
268 struct resv_map *resv_map_alloc(void)
269 {
270 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
271 if (!resv_map)
272 return NULL;
273
274 kref_init(&resv_map->refs);
275 INIT_LIST_HEAD(&resv_map->regions);
276
277 return resv_map;
278 }
279
280 void resv_map_release(struct kref *ref)
281 {
282 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
283
284 /* Clear out any active regions before we release the map. */
285 region_truncate(&resv_map->regions, 0);
286 kfree(resv_map);
287 }
288
289 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
290 {
291 VM_BUG_ON(!is_vm_hugetlb_page(vma));
292 if (!(vma->vm_flags & VM_SHARED))
293 return (struct resv_map *)(get_vma_private_data(vma) &
294 ~HPAGE_RESV_MASK);
295 return 0;
296 }
297
298 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
299 {
300 VM_BUG_ON(!is_vm_hugetlb_page(vma));
301 VM_BUG_ON(vma->vm_flags & VM_SHARED);
302
303 set_vma_private_data(vma, (get_vma_private_data(vma) &
304 HPAGE_RESV_MASK) | (unsigned long)map);
305 }
306
307 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
308 {
309 VM_BUG_ON(!is_vm_hugetlb_page(vma));
310 VM_BUG_ON(vma->vm_flags & VM_SHARED);
311
312 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
313 }
314
315 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
316 {
317 VM_BUG_ON(!is_vm_hugetlb_page(vma));
318
319 return (get_vma_private_data(vma) & flag) != 0;
320 }
321
322 /* Decrement the reserved pages in the hugepage pool by one */
323 static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
324 {
325 if (vma->vm_flags & VM_NORESERVE)
326 return;
327
328 if (vma->vm_flags & VM_SHARED) {
329 /* Shared mappings always use reserves */
330 resv_huge_pages--;
331 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
332 /*
333 * Only the process that called mmap() has reserves for
334 * private mappings.
335 */
336 resv_huge_pages--;
337 }
338 }
339
340 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
341 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
342 {
343 VM_BUG_ON(!is_vm_hugetlb_page(vma));
344 if (!(vma->vm_flags & VM_SHARED))
345 vma->vm_private_data = (void *)0;
346 }
347
348 /* Returns true if the VMA has associated reserve pages */
349 static int vma_has_private_reserves(struct vm_area_struct *vma)
350 {
351 if (vma->vm_flags & VM_SHARED)
352 return 0;
353 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
354 return 0;
355 return 1;
356 }
357
358 static void clear_huge_page(struct page *page, unsigned long addr)
359 {
360 int i;
361
362 might_sleep();
363 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
364 cond_resched();
365 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
366 }
367 }
368
369 static void copy_huge_page(struct page *dst, struct page *src,
370 unsigned long addr, struct vm_area_struct *vma)
371 {
372 int i;
373
374 might_sleep();
375 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
376 cond_resched();
377 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
378 }
379 }
380
381 static void enqueue_huge_page(struct page *page)
382 {
383 int nid = page_to_nid(page);
384 list_add(&page->lru, &hugepage_freelists[nid]);
385 free_huge_pages++;
386 free_huge_pages_node[nid]++;
387 }
388
389 static struct page *dequeue_huge_page(void)
390 {
391 int nid;
392 struct page *page = NULL;
393
394 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
395 if (!list_empty(&hugepage_freelists[nid])) {
396 page = list_entry(hugepage_freelists[nid].next,
397 struct page, lru);
398 list_del(&page->lru);
399 free_huge_pages--;
400 free_huge_pages_node[nid]--;
401 break;
402 }
403 }
404 return page;
405 }
406
407 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
408 unsigned long address, int avoid_reserve)
409 {
410 int nid;
411 struct page *page = NULL;
412 struct mempolicy *mpol;
413 nodemask_t *nodemask;
414 struct zonelist *zonelist = huge_zonelist(vma, address,
415 htlb_alloc_mask, &mpol, &nodemask);
416 struct zone *zone;
417 struct zoneref *z;
418
419 /*
420 * A child process with MAP_PRIVATE mappings created by their parent
421 * have no page reserves. This check ensures that reservations are
422 * not "stolen". The child may still get SIGKILLed
423 */
424 if (!vma_has_private_reserves(vma) &&
425 free_huge_pages - resv_huge_pages == 0)
426 return NULL;
427
428 /* If reserves cannot be used, ensure enough pages are in the pool */
429 if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
430 return NULL;
431
432 for_each_zone_zonelist_nodemask(zone, z, zonelist,
433 MAX_NR_ZONES - 1, nodemask) {
434 nid = zone_to_nid(zone);
435 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
436 !list_empty(&hugepage_freelists[nid])) {
437 page = list_entry(hugepage_freelists[nid].next,
438 struct page, lru);
439 list_del(&page->lru);
440 free_huge_pages--;
441 free_huge_pages_node[nid]--;
442
443 if (!avoid_reserve)
444 decrement_hugepage_resv_vma(vma);
445
446 break;
447 }
448 }
449 mpol_cond_put(mpol);
450 return page;
451 }
452
453 static void update_and_free_page(struct page *page)
454 {
455 int i;
456 nr_huge_pages--;
457 nr_huge_pages_node[page_to_nid(page)]--;
458 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
459 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
460 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
461 1 << PG_private | 1<< PG_writeback);
462 }
463 set_compound_page_dtor(page, NULL);
464 set_page_refcounted(page);
465 arch_release_hugepage(page);
466 __free_pages(page, HUGETLB_PAGE_ORDER);
467 }
468
469 static void free_huge_page(struct page *page)
470 {
471 int nid = page_to_nid(page);
472 struct address_space *mapping;
473
474 mapping = (struct address_space *) page_private(page);
475 set_page_private(page, 0);
476 BUG_ON(page_count(page));
477 INIT_LIST_HEAD(&page->lru);
478
479 spin_lock(&hugetlb_lock);
480 if (surplus_huge_pages_node[nid]) {
481 update_and_free_page(page);
482 surplus_huge_pages--;
483 surplus_huge_pages_node[nid]--;
484 } else {
485 enqueue_huge_page(page);
486 }
487 spin_unlock(&hugetlb_lock);
488 if (mapping)
489 hugetlb_put_quota(mapping, 1);
490 }
491
492 /*
493 * Increment or decrement surplus_huge_pages. Keep node-specific counters
494 * balanced by operating on them in a round-robin fashion.
495 * Returns 1 if an adjustment was made.
496 */
497 static int adjust_pool_surplus(int delta)
498 {
499 static int prev_nid;
500 int nid = prev_nid;
501 int ret = 0;
502
503 VM_BUG_ON(delta != -1 && delta != 1);
504 do {
505 nid = next_node(nid, node_online_map);
506 if (nid == MAX_NUMNODES)
507 nid = first_node(node_online_map);
508
509 /* To shrink on this node, there must be a surplus page */
510 if (delta < 0 && !surplus_huge_pages_node[nid])
511 continue;
512 /* Surplus cannot exceed the total number of pages */
513 if (delta > 0 && surplus_huge_pages_node[nid] >=
514 nr_huge_pages_node[nid])
515 continue;
516
517 surplus_huge_pages += delta;
518 surplus_huge_pages_node[nid] += delta;
519 ret = 1;
520 break;
521 } while (nid != prev_nid);
522
523 prev_nid = nid;
524 return ret;
525 }
526
527 static struct page *alloc_fresh_huge_page_node(int nid)
528 {
529 struct page *page;
530
531 page = alloc_pages_node(nid,
532 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
533 __GFP_REPEAT|__GFP_NOWARN,
534 HUGETLB_PAGE_ORDER);
535 if (page) {
536 if (arch_prepare_hugepage(page)) {
537 __free_pages(page, HUGETLB_PAGE_ORDER);
538 return NULL;
539 }
540 set_compound_page_dtor(page, free_huge_page);
541 spin_lock(&hugetlb_lock);
542 nr_huge_pages++;
543 nr_huge_pages_node[nid]++;
544 spin_unlock(&hugetlb_lock);
545 put_page(page); /* free it into the hugepage allocator */
546 }
547
548 return page;
549 }
550
551 static int alloc_fresh_huge_page(void)
552 {
553 struct page *page;
554 int start_nid;
555 int next_nid;
556 int ret = 0;
557
558 start_nid = hugetlb_next_nid;
559
560 do {
561 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
562 if (page)
563 ret = 1;
564 /*
565 * Use a helper variable to find the next node and then
566 * copy it back to hugetlb_next_nid afterwards:
567 * otherwise there's a window in which a racer might
568 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
569 * But we don't need to use a spin_lock here: it really
570 * doesn't matter if occasionally a racer chooses the
571 * same nid as we do. Move nid forward in the mask even
572 * if we just successfully allocated a hugepage so that
573 * the next caller gets hugepages on the next node.
574 */
575 next_nid = next_node(hugetlb_next_nid, node_online_map);
576 if (next_nid == MAX_NUMNODES)
577 next_nid = first_node(node_online_map);
578 hugetlb_next_nid = next_nid;
579 } while (!page && hugetlb_next_nid != start_nid);
580
581 if (ret)
582 count_vm_event(HTLB_BUDDY_PGALLOC);
583 else
584 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
585
586 return ret;
587 }
588
589 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
590 unsigned long address)
591 {
592 struct page *page;
593 unsigned int nid;
594
595 /*
596 * Assume we will successfully allocate the surplus page to
597 * prevent racing processes from causing the surplus to exceed
598 * overcommit
599 *
600 * This however introduces a different race, where a process B
601 * tries to grow the static hugepage pool while alloc_pages() is
602 * called by process A. B will only examine the per-node
603 * counters in determining if surplus huge pages can be
604 * converted to normal huge pages in adjust_pool_surplus(). A
605 * won't be able to increment the per-node counter, until the
606 * lock is dropped by B, but B doesn't drop hugetlb_lock until
607 * no more huge pages can be converted from surplus to normal
608 * state (and doesn't try to convert again). Thus, we have a
609 * case where a surplus huge page exists, the pool is grown, and
610 * the surplus huge page still exists after, even though it
611 * should just have been converted to a normal huge page. This
612 * does not leak memory, though, as the hugepage will be freed
613 * once it is out of use. It also does not allow the counters to
614 * go out of whack in adjust_pool_surplus() as we don't modify
615 * the node values until we've gotten the hugepage and only the
616 * per-node value is checked there.
617 */
618 spin_lock(&hugetlb_lock);
619 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
620 spin_unlock(&hugetlb_lock);
621 return NULL;
622 } else {
623 nr_huge_pages++;
624 surplus_huge_pages++;
625 }
626 spin_unlock(&hugetlb_lock);
627
628 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
629 __GFP_REPEAT|__GFP_NOWARN,
630 HUGETLB_PAGE_ORDER);
631
632 spin_lock(&hugetlb_lock);
633 if (page) {
634 /*
635 * This page is now managed by the hugetlb allocator and has
636 * no users -- drop the buddy allocator's reference.
637 */
638 put_page_testzero(page);
639 VM_BUG_ON(page_count(page));
640 nid = page_to_nid(page);
641 set_compound_page_dtor(page, free_huge_page);
642 /*
643 * We incremented the global counters already
644 */
645 nr_huge_pages_node[nid]++;
646 surplus_huge_pages_node[nid]++;
647 __count_vm_event(HTLB_BUDDY_PGALLOC);
648 } else {
649 nr_huge_pages--;
650 surplus_huge_pages--;
651 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
652 }
653 spin_unlock(&hugetlb_lock);
654
655 return page;
656 }
657
658 /*
659 * Increase the hugetlb pool such that it can accomodate a reservation
660 * of size 'delta'.
661 */
662 static int gather_surplus_pages(int delta)
663 {
664 struct list_head surplus_list;
665 struct page *page, *tmp;
666 int ret, i;
667 int needed, allocated;
668
669 needed = (resv_huge_pages + delta) - free_huge_pages;
670 if (needed <= 0) {
671 resv_huge_pages += delta;
672 return 0;
673 }
674
675 allocated = 0;
676 INIT_LIST_HEAD(&surplus_list);
677
678 ret = -ENOMEM;
679 retry:
680 spin_unlock(&hugetlb_lock);
681 for (i = 0; i < needed; i++) {
682 page = alloc_buddy_huge_page(NULL, 0);
683 if (!page) {
684 /*
685 * We were not able to allocate enough pages to
686 * satisfy the entire reservation so we free what
687 * we've allocated so far.
688 */
689 spin_lock(&hugetlb_lock);
690 needed = 0;
691 goto free;
692 }
693
694 list_add(&page->lru, &surplus_list);
695 }
696 allocated += needed;
697
698 /*
699 * After retaking hugetlb_lock, we need to recalculate 'needed'
700 * because either resv_huge_pages or free_huge_pages may have changed.
701 */
702 spin_lock(&hugetlb_lock);
703 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
704 if (needed > 0)
705 goto retry;
706
707 /*
708 * The surplus_list now contains _at_least_ the number of extra pages
709 * needed to accomodate the reservation. Add the appropriate number
710 * of pages to the hugetlb pool and free the extras back to the buddy
711 * allocator. Commit the entire reservation here to prevent another
712 * process from stealing the pages as they are added to the pool but
713 * before they are reserved.
714 */
715 needed += allocated;
716 resv_huge_pages += delta;
717 ret = 0;
718 free:
719 /* Free the needed pages to the hugetlb pool */
720 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
721 if ((--needed) < 0)
722 break;
723 list_del(&page->lru);
724 enqueue_huge_page(page);
725 }
726
727 /* Free unnecessary surplus pages to the buddy allocator */
728 if (!list_empty(&surplus_list)) {
729 spin_unlock(&hugetlb_lock);
730 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
731 list_del(&page->lru);
732 /*
733 * The page has a reference count of zero already, so
734 * call free_huge_page directly instead of using
735 * put_page. This must be done with hugetlb_lock
736 * unlocked which is safe because free_huge_page takes
737 * hugetlb_lock before deciding how to free the page.
738 */
739 free_huge_page(page);
740 }
741 spin_lock(&hugetlb_lock);
742 }
743
744 return ret;
745 }
746
747 /*
748 * When releasing a hugetlb pool reservation, any surplus pages that were
749 * allocated to satisfy the reservation must be explicitly freed if they were
750 * never used.
751 */
752 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
753 {
754 static int nid = -1;
755 struct page *page;
756 unsigned long nr_pages;
757
758 /*
759 * We want to release as many surplus pages as possible, spread
760 * evenly across all nodes. Iterate across all nodes until we
761 * can no longer free unreserved surplus pages. This occurs when
762 * the nodes with surplus pages have no free pages.
763 */
764 unsigned long remaining_iterations = num_online_nodes();
765
766 /* Uncommit the reservation */
767 resv_huge_pages -= unused_resv_pages;
768
769 nr_pages = min(unused_resv_pages, surplus_huge_pages);
770
771 while (remaining_iterations-- && nr_pages) {
772 nid = next_node(nid, node_online_map);
773 if (nid == MAX_NUMNODES)
774 nid = first_node(node_online_map);
775
776 if (!surplus_huge_pages_node[nid])
777 continue;
778
779 if (!list_empty(&hugepage_freelists[nid])) {
780 page = list_entry(hugepage_freelists[nid].next,
781 struct page, lru);
782 list_del(&page->lru);
783 update_and_free_page(page);
784 free_huge_pages--;
785 free_huge_pages_node[nid]--;
786 surplus_huge_pages--;
787 surplus_huge_pages_node[nid]--;
788 nr_pages--;
789 remaining_iterations = num_online_nodes();
790 }
791 }
792 }
793
794 /*
795 * Determine if the huge page at addr within the vma has an associated
796 * reservation. Where it does not we will need to logically increase
797 * reservation and actually increase quota before an allocation can occur.
798 * Where any new reservation would be required the reservation change is
799 * prepared, but not committed. Once the page has been quota'd allocated
800 * an instantiated the change should be committed via vma_commit_reservation.
801 * No action is required on failure.
802 */
803 static int vma_needs_reservation(struct vm_area_struct *vma, unsigned long addr)
804 {
805 struct address_space *mapping = vma->vm_file->f_mapping;
806 struct inode *inode = mapping->host;
807
808 if (vma->vm_flags & VM_SHARED) {
809 pgoff_t idx = vma_pagecache_offset(vma, addr);
810 return region_chg(&inode->i_mapping->private_list,
811 idx, idx + 1);
812
813 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
814 return 1;
815
816 } else {
817 int err;
818 pgoff_t idx = vma_pagecache_offset(vma, addr);
819 struct resv_map *reservations = vma_resv_map(vma);
820
821 err = region_chg(&reservations->regions, idx, idx + 1);
822 if (err < 0)
823 return err;
824 return 0;
825 }
826 }
827 static void vma_commit_reservation(struct vm_area_struct *vma,
828 unsigned long addr)
829 {
830 struct address_space *mapping = vma->vm_file->f_mapping;
831 struct inode *inode = mapping->host;
832
833 if (vma->vm_flags & VM_SHARED) {
834 pgoff_t idx = vma_pagecache_offset(vma, addr);
835 region_add(&inode->i_mapping->private_list, idx, idx + 1);
836
837 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 pgoff_t idx = vma_pagecache_offset(vma, addr);
839 struct resv_map *reservations = vma_resv_map(vma);
840
841 /* Mark this page used in the map. */
842 region_add(&reservations->regions, idx, idx + 1);
843 }
844 }
845
846 static struct page *alloc_huge_page(struct vm_area_struct *vma,
847 unsigned long addr, int avoid_reserve)
848 {
849 struct page *page;
850 struct address_space *mapping = vma->vm_file->f_mapping;
851 struct inode *inode = mapping->host;
852 unsigned int chg;
853
854 /*
855 * Processes that did not create the mapping will have no reserves and
856 * will not have accounted against quota. Check that the quota can be
857 * made before satisfying the allocation
858 * MAP_NORESERVE mappings may also need pages and quota allocated
859 * if no reserve mapping overlaps.
860 */
861 chg = vma_needs_reservation(vma, addr);
862 if (chg < 0)
863 return ERR_PTR(chg);
864 if (chg)
865 if (hugetlb_get_quota(inode->i_mapping, chg))
866 return ERR_PTR(-ENOSPC);
867
868 spin_lock(&hugetlb_lock);
869 page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
870 spin_unlock(&hugetlb_lock);
871
872 if (!page) {
873 page = alloc_buddy_huge_page(vma, addr);
874 if (!page) {
875 hugetlb_put_quota(inode->i_mapping, chg);
876 return ERR_PTR(-VM_FAULT_OOM);
877 }
878 }
879
880 set_page_refcounted(page);
881 set_page_private(page, (unsigned long) mapping);
882
883 vma_commit_reservation(vma, addr);
884
885 return page;
886 }
887
888 static int __init hugetlb_init(void)
889 {
890 unsigned long i;
891
892 if (HPAGE_SHIFT == 0)
893 return 0;
894
895 for (i = 0; i < MAX_NUMNODES; ++i)
896 INIT_LIST_HEAD(&hugepage_freelists[i]);
897
898 hugetlb_next_nid = first_node(node_online_map);
899
900 for (i = 0; i < max_huge_pages; ++i) {
901 if (!alloc_fresh_huge_page())
902 break;
903 }
904 max_huge_pages = free_huge_pages = nr_huge_pages = i;
905 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
906 return 0;
907 }
908 module_init(hugetlb_init);
909
910 static int __init hugetlb_setup(char *s)
911 {
912 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
913 max_huge_pages = 0;
914 return 1;
915 }
916 __setup("hugepages=", hugetlb_setup);
917
918 static unsigned int cpuset_mems_nr(unsigned int *array)
919 {
920 int node;
921 unsigned int nr = 0;
922
923 for_each_node_mask(node, cpuset_current_mems_allowed)
924 nr += array[node];
925
926 return nr;
927 }
928
929 #ifdef CONFIG_SYSCTL
930 #ifdef CONFIG_HIGHMEM
931 static void try_to_free_low(unsigned long count)
932 {
933 int i;
934
935 for (i = 0; i < MAX_NUMNODES; ++i) {
936 struct page *page, *next;
937 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
938 if (count >= nr_huge_pages)
939 return;
940 if (PageHighMem(page))
941 continue;
942 list_del(&page->lru);
943 update_and_free_page(page);
944 free_huge_pages--;
945 free_huge_pages_node[page_to_nid(page)]--;
946 }
947 }
948 }
949 #else
950 static inline void try_to_free_low(unsigned long count)
951 {
952 }
953 #endif
954
955 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
956 static unsigned long set_max_huge_pages(unsigned long count)
957 {
958 unsigned long min_count, ret;
959
960 /*
961 * Increase the pool size
962 * First take pages out of surplus state. Then make up the
963 * remaining difference by allocating fresh huge pages.
964 *
965 * We might race with alloc_buddy_huge_page() here and be unable
966 * to convert a surplus huge page to a normal huge page. That is
967 * not critical, though, it just means the overall size of the
968 * pool might be one hugepage larger than it needs to be, but
969 * within all the constraints specified by the sysctls.
970 */
971 spin_lock(&hugetlb_lock);
972 while (surplus_huge_pages && count > persistent_huge_pages) {
973 if (!adjust_pool_surplus(-1))
974 break;
975 }
976
977 while (count > persistent_huge_pages) {
978 /*
979 * If this allocation races such that we no longer need the
980 * page, free_huge_page will handle it by freeing the page
981 * and reducing the surplus.
982 */
983 spin_unlock(&hugetlb_lock);
984 ret = alloc_fresh_huge_page();
985 spin_lock(&hugetlb_lock);
986 if (!ret)
987 goto out;
988
989 }
990
991 /*
992 * Decrease the pool size
993 * First return free pages to the buddy allocator (being careful
994 * to keep enough around to satisfy reservations). Then place
995 * pages into surplus state as needed so the pool will shrink
996 * to the desired size as pages become free.
997 *
998 * By placing pages into the surplus state independent of the
999 * overcommit value, we are allowing the surplus pool size to
1000 * exceed overcommit. There are few sane options here. Since
1001 * alloc_buddy_huge_page() is checking the global counter,
1002 * though, we'll note that we're not allowed to exceed surplus
1003 * and won't grow the pool anywhere else. Not until one of the
1004 * sysctls are changed, or the surplus pages go out of use.
1005 */
1006 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
1007 min_count = max(count, min_count);
1008 try_to_free_low(min_count);
1009 while (min_count < persistent_huge_pages) {
1010 struct page *page = dequeue_huge_page();
1011 if (!page)
1012 break;
1013 update_and_free_page(page);
1014 }
1015 while (count < persistent_huge_pages) {
1016 if (!adjust_pool_surplus(1))
1017 break;
1018 }
1019 out:
1020 ret = persistent_huge_pages;
1021 spin_unlock(&hugetlb_lock);
1022 return ret;
1023 }
1024
1025 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1026 struct file *file, void __user *buffer,
1027 size_t *length, loff_t *ppos)
1028 {
1029 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1030 max_huge_pages = set_max_huge_pages(max_huge_pages);
1031 return 0;
1032 }
1033
1034 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1035 struct file *file, void __user *buffer,
1036 size_t *length, loff_t *ppos)
1037 {
1038 proc_dointvec(table, write, file, buffer, length, ppos);
1039 if (hugepages_treat_as_movable)
1040 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1041 else
1042 htlb_alloc_mask = GFP_HIGHUSER;
1043 return 0;
1044 }
1045
1046 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1047 struct file *file, void __user *buffer,
1048 size_t *length, loff_t *ppos)
1049 {
1050 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1051 spin_lock(&hugetlb_lock);
1052 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
1053 spin_unlock(&hugetlb_lock);
1054 return 0;
1055 }
1056
1057 #endif /* CONFIG_SYSCTL */
1058
1059 int hugetlb_report_meminfo(char *buf)
1060 {
1061 return sprintf(buf,
1062 "HugePages_Total: %5lu\n"
1063 "HugePages_Free: %5lu\n"
1064 "HugePages_Rsvd: %5lu\n"
1065 "HugePages_Surp: %5lu\n"
1066 "Hugepagesize: %5lu kB\n",
1067 nr_huge_pages,
1068 free_huge_pages,
1069 resv_huge_pages,
1070 surplus_huge_pages,
1071 HPAGE_SIZE/1024);
1072 }
1073
1074 int hugetlb_report_node_meminfo(int nid, char *buf)
1075 {
1076 return sprintf(buf,
1077 "Node %d HugePages_Total: %5u\n"
1078 "Node %d HugePages_Free: %5u\n"
1079 "Node %d HugePages_Surp: %5u\n",
1080 nid, nr_huge_pages_node[nid],
1081 nid, free_huge_pages_node[nid],
1082 nid, surplus_huge_pages_node[nid]);
1083 }
1084
1085 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1086 unsigned long hugetlb_total_pages(void)
1087 {
1088 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
1089 }
1090
1091 static int hugetlb_acct_memory(long delta)
1092 {
1093 int ret = -ENOMEM;
1094
1095 spin_lock(&hugetlb_lock);
1096 /*
1097 * When cpuset is configured, it breaks the strict hugetlb page
1098 * reservation as the accounting is done on a global variable. Such
1099 * reservation is completely rubbish in the presence of cpuset because
1100 * the reservation is not checked against page availability for the
1101 * current cpuset. Application can still potentially OOM'ed by kernel
1102 * with lack of free htlb page in cpuset that the task is in.
1103 * Attempt to enforce strict accounting with cpuset is almost
1104 * impossible (or too ugly) because cpuset is too fluid that
1105 * task or memory node can be dynamically moved between cpusets.
1106 *
1107 * The change of semantics for shared hugetlb mapping with cpuset is
1108 * undesirable. However, in order to preserve some of the semantics,
1109 * we fall back to check against current free page availability as
1110 * a best attempt and hopefully to minimize the impact of changing
1111 * semantics that cpuset has.
1112 */
1113 if (delta > 0) {
1114 if (gather_surplus_pages(delta) < 0)
1115 goto out;
1116
1117 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1118 return_unused_surplus_pages(delta);
1119 goto out;
1120 }
1121 }
1122
1123 ret = 0;
1124 if (delta < 0)
1125 return_unused_surplus_pages((unsigned long) -delta);
1126
1127 out:
1128 spin_unlock(&hugetlb_lock);
1129 return ret;
1130 }
1131
1132 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1133 {
1134 struct resv_map *reservations = vma_resv_map(vma);
1135
1136 /*
1137 * This new VMA should share its siblings reservation map if present.
1138 * The VMA will only ever have a valid reservation map pointer where
1139 * it is being copied for another still existing VMA. As that VMA
1140 * has a reference to the reservation map it cannot dissappear until
1141 * after this open call completes. It is therefore safe to take a
1142 * new reference here without additional locking.
1143 */
1144 if (reservations)
1145 kref_get(&reservations->refs);
1146 }
1147
1148 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1149 {
1150 struct resv_map *reservations = vma_resv_map(vma);
1151 unsigned long reserve;
1152 unsigned long start;
1153 unsigned long end;
1154
1155 if (reservations) {
1156 start = vma_pagecache_offset(vma, vma->vm_start);
1157 end = vma_pagecache_offset(vma, vma->vm_end);
1158
1159 reserve = (end - start) -
1160 region_count(&reservations->regions, start, end);
1161
1162 kref_put(&reservations->refs, resv_map_release);
1163
1164 if (reserve)
1165 hugetlb_acct_memory(-reserve);
1166 }
1167 }
1168
1169 /*
1170 * We cannot handle pagefaults against hugetlb pages at all. They cause
1171 * handle_mm_fault() to try to instantiate regular-sized pages in the
1172 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1173 * this far.
1174 */
1175 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1176 {
1177 BUG();
1178 return 0;
1179 }
1180
1181 struct vm_operations_struct hugetlb_vm_ops = {
1182 .fault = hugetlb_vm_op_fault,
1183 .open = hugetlb_vm_op_open,
1184 .close = hugetlb_vm_op_close,
1185 };
1186
1187 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1188 int writable)
1189 {
1190 pte_t entry;
1191
1192 if (writable) {
1193 entry =
1194 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1195 } else {
1196 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1197 }
1198 entry = pte_mkyoung(entry);
1199 entry = pte_mkhuge(entry);
1200
1201 return entry;
1202 }
1203
1204 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1205 unsigned long address, pte_t *ptep)
1206 {
1207 pte_t entry;
1208
1209 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1210 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1211 update_mmu_cache(vma, address, entry);
1212 }
1213 }
1214
1215
1216 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1217 struct vm_area_struct *vma)
1218 {
1219 pte_t *src_pte, *dst_pte, entry;
1220 struct page *ptepage;
1221 unsigned long addr;
1222 int cow;
1223
1224 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1225
1226 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
1227 src_pte = huge_pte_offset(src, addr);
1228 if (!src_pte)
1229 continue;
1230 dst_pte = huge_pte_alloc(dst, addr);
1231 if (!dst_pte)
1232 goto nomem;
1233
1234 /* If the pagetables are shared don't copy or take references */
1235 if (dst_pte == src_pte)
1236 continue;
1237
1238 spin_lock(&dst->page_table_lock);
1239 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1240 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1241 if (cow)
1242 huge_ptep_set_wrprotect(src, addr, src_pte);
1243 entry = huge_ptep_get(src_pte);
1244 ptepage = pte_page(entry);
1245 get_page(ptepage);
1246 set_huge_pte_at(dst, addr, dst_pte, entry);
1247 }
1248 spin_unlock(&src->page_table_lock);
1249 spin_unlock(&dst->page_table_lock);
1250 }
1251 return 0;
1252
1253 nomem:
1254 return -ENOMEM;
1255 }
1256
1257 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1258 unsigned long end, struct page *ref_page)
1259 {
1260 struct mm_struct *mm = vma->vm_mm;
1261 unsigned long address;
1262 pte_t *ptep;
1263 pte_t pte;
1264 struct page *page;
1265 struct page *tmp;
1266 /*
1267 * A page gathering list, protected by per file i_mmap_lock. The
1268 * lock is used to avoid list corruption from multiple unmapping
1269 * of the same page since we are using page->lru.
1270 */
1271 LIST_HEAD(page_list);
1272
1273 WARN_ON(!is_vm_hugetlb_page(vma));
1274 BUG_ON(start & ~HPAGE_MASK);
1275 BUG_ON(end & ~HPAGE_MASK);
1276
1277 spin_lock(&mm->page_table_lock);
1278 for (address = start; address < end; address += HPAGE_SIZE) {
1279 ptep = huge_pte_offset(mm, address);
1280 if (!ptep)
1281 continue;
1282
1283 if (huge_pmd_unshare(mm, &address, ptep))
1284 continue;
1285
1286 /*
1287 * If a reference page is supplied, it is because a specific
1288 * page is being unmapped, not a range. Ensure the page we
1289 * are about to unmap is the actual page of interest.
1290 */
1291 if (ref_page) {
1292 pte = huge_ptep_get(ptep);
1293 if (huge_pte_none(pte))
1294 continue;
1295 page = pte_page(pte);
1296 if (page != ref_page)
1297 continue;
1298
1299 /*
1300 * Mark the VMA as having unmapped its page so that
1301 * future faults in this VMA will fail rather than
1302 * looking like data was lost
1303 */
1304 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1305 }
1306
1307 pte = huge_ptep_get_and_clear(mm, address, ptep);
1308 if (huge_pte_none(pte))
1309 continue;
1310
1311 page = pte_page(pte);
1312 if (pte_dirty(pte))
1313 set_page_dirty(page);
1314 list_add(&page->lru, &page_list);
1315 }
1316 spin_unlock(&mm->page_table_lock);
1317 flush_tlb_range(vma, start, end);
1318 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1319 list_del(&page->lru);
1320 put_page(page);
1321 }
1322 }
1323
1324 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1325 unsigned long end, struct page *ref_page)
1326 {
1327 /*
1328 * It is undesirable to test vma->vm_file as it should be non-null
1329 * for valid hugetlb area. However, vm_file will be NULL in the error
1330 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
1331 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
1332 * to clean up. Since no pte has actually been setup, it is safe to
1333 * do nothing in this case.
1334 */
1335 if (vma->vm_file) {
1336 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1337 __unmap_hugepage_range(vma, start, end, ref_page);
1338 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1339 }
1340 }
1341
1342 /*
1343 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1344 * mappping it owns the reserve page for. The intention is to unmap the page
1345 * from other VMAs and let the children be SIGKILLed if they are faulting the
1346 * same region.
1347 */
1348 int unmap_ref_private(struct mm_struct *mm,
1349 struct vm_area_struct *vma,
1350 struct page *page,
1351 unsigned long address)
1352 {
1353 struct vm_area_struct *iter_vma;
1354 struct address_space *mapping;
1355 struct prio_tree_iter iter;
1356 pgoff_t pgoff;
1357
1358 /*
1359 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1360 * from page cache lookup which is in HPAGE_SIZE units.
1361 */
1362 address = address & huge_page_mask(hstate_vma(vma));
1363 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1364 + (vma->vm_pgoff >> PAGE_SHIFT);
1365 mapping = (struct address_space *)page_private(page);
1366
1367 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1368 /* Do not unmap the current VMA */
1369 if (iter_vma == vma)
1370 continue;
1371
1372 /*
1373 * Unmap the page from other VMAs without their own reserves.
1374 * They get marked to be SIGKILLed if they fault in these
1375 * areas. This is because a future no-page fault on this VMA
1376 * could insert a zeroed page instead of the data existing
1377 * from the time of fork. This would look like data corruption
1378 */
1379 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1380 unmap_hugepage_range(iter_vma,
1381 address, address + HPAGE_SIZE,
1382 page);
1383 }
1384
1385 return 1;
1386 }
1387
1388 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1389 unsigned long address, pte_t *ptep, pte_t pte,
1390 struct page *pagecache_page)
1391 {
1392 struct page *old_page, *new_page;
1393 int avoidcopy;
1394 int outside_reserve = 0;
1395
1396 old_page = pte_page(pte);
1397
1398 retry_avoidcopy:
1399 /* If no-one else is actually using this page, avoid the copy
1400 * and just make the page writable */
1401 avoidcopy = (page_count(old_page) == 1);
1402 if (avoidcopy) {
1403 set_huge_ptep_writable(vma, address, ptep);
1404 return 0;
1405 }
1406
1407 /*
1408 * If the process that created a MAP_PRIVATE mapping is about to
1409 * perform a COW due to a shared page count, attempt to satisfy
1410 * the allocation without using the existing reserves. The pagecache
1411 * page is used to determine if the reserve at this address was
1412 * consumed or not. If reserves were used, a partial faulted mapping
1413 * at the time of fork() could consume its reserves on COW instead
1414 * of the full address range.
1415 */
1416 if (!(vma->vm_flags & VM_SHARED) &&
1417 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1418 old_page != pagecache_page)
1419 outside_reserve = 1;
1420
1421 page_cache_get(old_page);
1422 new_page = alloc_huge_page(vma, address, outside_reserve);
1423
1424 if (IS_ERR(new_page)) {
1425 page_cache_release(old_page);
1426
1427 /*
1428 * If a process owning a MAP_PRIVATE mapping fails to COW,
1429 * it is due to references held by a child and an insufficient
1430 * huge page pool. To guarantee the original mappers
1431 * reliability, unmap the page from child processes. The child
1432 * may get SIGKILLed if it later faults.
1433 */
1434 if (outside_reserve) {
1435 BUG_ON(huge_pte_none(pte));
1436 if (unmap_ref_private(mm, vma, old_page, address)) {
1437 BUG_ON(page_count(old_page) != 1);
1438 BUG_ON(huge_pte_none(pte));
1439 goto retry_avoidcopy;
1440 }
1441 WARN_ON_ONCE(1);
1442 }
1443
1444 return -PTR_ERR(new_page);
1445 }
1446
1447 spin_unlock(&mm->page_table_lock);
1448 copy_huge_page(new_page, old_page, address, vma);
1449 __SetPageUptodate(new_page);
1450 spin_lock(&mm->page_table_lock);
1451
1452 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1453 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1454 /* Break COW */
1455 huge_ptep_clear_flush(vma, address, ptep);
1456 set_huge_pte_at(mm, address, ptep,
1457 make_huge_pte(vma, new_page, 1));
1458 /* Make the old page be freed below */
1459 new_page = old_page;
1460 }
1461 page_cache_release(new_page);
1462 page_cache_release(old_page);
1463 return 0;
1464 }
1465
1466 /* Return the pagecache page at a given address within a VMA */
1467 static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
1468 unsigned long address)
1469 {
1470 struct address_space *mapping;
1471 pgoff_t idx;
1472
1473 mapping = vma->vm_file->f_mapping;
1474 idx = vma_pagecache_offset(vma, address);
1475
1476 return find_lock_page(mapping, idx);
1477 }
1478
1479 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1480 unsigned long address, pte_t *ptep, int write_access)
1481 {
1482 int ret = VM_FAULT_SIGBUS;
1483 pgoff_t idx;
1484 unsigned long size;
1485 struct page *page;
1486 struct address_space *mapping;
1487 pte_t new_pte;
1488
1489 /*
1490 * Currently, we are forced to kill the process in the event the
1491 * original mapper has unmapped pages from the child due to a failed
1492 * COW. Warn that such a situation has occured as it may not be obvious
1493 */
1494 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1495 printk(KERN_WARNING
1496 "PID %d killed due to inadequate hugepage pool\n",
1497 current->pid);
1498 return ret;
1499 }
1500
1501 mapping = vma->vm_file->f_mapping;
1502 idx = vma_pagecache_offset(vma, address);
1503
1504 /*
1505 * Use page lock to guard against racing truncation
1506 * before we get page_table_lock.
1507 */
1508 retry:
1509 page = find_lock_page(mapping, idx);
1510 if (!page) {
1511 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1512 if (idx >= size)
1513 goto out;
1514 page = alloc_huge_page(vma, address, 0);
1515 if (IS_ERR(page)) {
1516 ret = -PTR_ERR(page);
1517 goto out;
1518 }
1519 clear_huge_page(page, address);
1520 __SetPageUptodate(page);
1521
1522 if (vma->vm_flags & VM_SHARED) {
1523 int err;
1524 struct inode *inode = mapping->host;
1525
1526 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1527 if (err) {
1528 put_page(page);
1529 if (err == -EEXIST)
1530 goto retry;
1531 goto out;
1532 }
1533
1534 spin_lock(&inode->i_lock);
1535 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
1536 spin_unlock(&inode->i_lock);
1537 } else
1538 lock_page(page);
1539 }
1540
1541 spin_lock(&mm->page_table_lock);
1542 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
1543 if (idx >= size)
1544 goto backout;
1545
1546 ret = 0;
1547 if (!huge_pte_none(huge_ptep_get(ptep)))
1548 goto backout;
1549
1550 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1551 && (vma->vm_flags & VM_SHARED)));
1552 set_huge_pte_at(mm, address, ptep, new_pte);
1553
1554 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1555 /* Optimization, do the COW without a second fault */
1556 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1557 }
1558
1559 spin_unlock(&mm->page_table_lock);
1560 unlock_page(page);
1561 out:
1562 return ret;
1563
1564 backout:
1565 spin_unlock(&mm->page_table_lock);
1566 unlock_page(page);
1567 put_page(page);
1568 goto out;
1569 }
1570
1571 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1572 unsigned long address, int write_access)
1573 {
1574 pte_t *ptep;
1575 pte_t entry;
1576 int ret;
1577 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1578
1579 ptep = huge_pte_alloc(mm, address);
1580 if (!ptep)
1581 return VM_FAULT_OOM;
1582
1583 /*
1584 * Serialize hugepage allocation and instantiation, so that we don't
1585 * get spurious allocation failures if two CPUs race to instantiate
1586 * the same page in the page cache.
1587 */
1588 mutex_lock(&hugetlb_instantiation_mutex);
1589 entry = huge_ptep_get(ptep);
1590 if (huge_pte_none(entry)) {
1591 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1592 mutex_unlock(&hugetlb_instantiation_mutex);
1593 return ret;
1594 }
1595
1596 ret = 0;
1597
1598 spin_lock(&mm->page_table_lock);
1599 /* Check for a racing update before calling hugetlb_cow */
1600 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1601 if (write_access && !pte_write(entry)) {
1602 struct page *page;
1603 page = hugetlbfs_pagecache_page(vma, address);
1604 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1605 if (page) {
1606 unlock_page(page);
1607 put_page(page);
1608 }
1609 }
1610 spin_unlock(&mm->page_table_lock);
1611 mutex_unlock(&hugetlb_instantiation_mutex);
1612
1613 return ret;
1614 }
1615
1616 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1617 struct page **pages, struct vm_area_struct **vmas,
1618 unsigned long *position, int *length, int i,
1619 int write)
1620 {
1621 unsigned long pfn_offset;
1622 unsigned long vaddr = *position;
1623 int remainder = *length;
1624
1625 spin_lock(&mm->page_table_lock);
1626 while (vaddr < vma->vm_end && remainder) {
1627 pte_t *pte;
1628 struct page *page;
1629
1630 /*
1631 * Some archs (sparc64, sh*) have multiple pte_ts to
1632 * each hugepage. We have to make * sure we get the
1633 * first, for the page indexing below to work.
1634 */
1635 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1636
1637 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1638 (write && !pte_write(huge_ptep_get(pte)))) {
1639 int ret;
1640
1641 spin_unlock(&mm->page_table_lock);
1642 ret = hugetlb_fault(mm, vma, vaddr, write);
1643 spin_lock(&mm->page_table_lock);
1644 if (!(ret & VM_FAULT_ERROR))
1645 continue;
1646
1647 remainder = 0;
1648 if (!i)
1649 i = -EFAULT;
1650 break;
1651 }
1652
1653 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1654 page = pte_page(huge_ptep_get(pte));
1655 same_page:
1656 if (pages) {
1657 get_page(page);
1658 pages[i] = page + pfn_offset;
1659 }
1660
1661 if (vmas)
1662 vmas[i] = vma;
1663
1664 vaddr += PAGE_SIZE;
1665 ++pfn_offset;
1666 --remainder;
1667 ++i;
1668 if (vaddr < vma->vm_end && remainder &&
1669 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1670 /*
1671 * We use pfn_offset to avoid touching the pageframes
1672 * of this compound page.
1673 */
1674 goto same_page;
1675 }
1676 }
1677 spin_unlock(&mm->page_table_lock);
1678 *length = remainder;
1679 *position = vaddr;
1680
1681 return i;
1682 }
1683
1684 void hugetlb_change_protection(struct vm_area_struct *vma,
1685 unsigned long address, unsigned long end, pgprot_t newprot)
1686 {
1687 struct mm_struct *mm = vma->vm_mm;
1688 unsigned long start = address;
1689 pte_t *ptep;
1690 pte_t pte;
1691
1692 BUG_ON(address >= end);
1693 flush_cache_range(vma, address, end);
1694
1695 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1696 spin_lock(&mm->page_table_lock);
1697 for (; address < end; address += HPAGE_SIZE) {
1698 ptep = huge_pte_offset(mm, address);
1699 if (!ptep)
1700 continue;
1701 if (huge_pmd_unshare(mm, &address, ptep))
1702 continue;
1703 if (!huge_pte_none(huge_ptep_get(ptep))) {
1704 pte = huge_ptep_get_and_clear(mm, address, ptep);
1705 pte = pte_mkhuge(pte_modify(pte, newprot));
1706 set_huge_pte_at(mm, address, ptep, pte);
1707 }
1708 }
1709 spin_unlock(&mm->page_table_lock);
1710 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1711
1712 flush_tlb_range(vma, start, end);
1713 }
1714
1715 int hugetlb_reserve_pages(struct inode *inode,
1716 long from, long to,
1717 struct vm_area_struct *vma)
1718 {
1719 long ret, chg;
1720
1721 if (vma && vma->vm_flags & VM_NORESERVE)
1722 return 0;
1723
1724 /*
1725 * Shared mappings base their reservation on the number of pages that
1726 * are already allocated on behalf of the file. Private mappings need
1727 * to reserve the full area even if read-only as mprotect() may be
1728 * called to make the mapping read-write. Assume !vma is a shm mapping
1729 */
1730 if (!vma || vma->vm_flags & VM_SHARED)
1731 chg = region_chg(&inode->i_mapping->private_list, from, to);
1732 else {
1733 struct resv_map *resv_map = resv_map_alloc();
1734 if (!resv_map)
1735 return -ENOMEM;
1736
1737 chg = to - from;
1738
1739 set_vma_resv_map(vma, resv_map);
1740 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1741 }
1742
1743 if (chg < 0)
1744 return chg;
1745
1746 if (hugetlb_get_quota(inode->i_mapping, chg))
1747 return -ENOSPC;
1748 ret = hugetlb_acct_memory(chg);
1749 if (ret < 0) {
1750 hugetlb_put_quota(inode->i_mapping, chg);
1751 return ret;
1752 }
1753 if (!vma || vma->vm_flags & VM_SHARED)
1754 region_add(&inode->i_mapping->private_list, from, to);
1755 return 0;
1756 }
1757
1758 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1759 {
1760 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1761
1762 spin_lock(&inode->i_lock);
1763 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1764 spin_unlock(&inode->i_lock);
1765
1766 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1767 hugetlb_acct_memory(-(chg - freed));
1768 }
This page took 0.094934 seconds and 6 git commands to generate.