hugetlb: modular state for hugetlb page size
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 unsigned long max_huge_pages;
26 unsigned long sysctl_overcommit_huge_pages;
27 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
28 unsigned long hugepages_treat_as_movable;
29
30 struct hstate default_hstate;
31
32 /*
33 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
34 */
35 static DEFINE_SPINLOCK(hugetlb_lock);
36
37 /*
38 * Region tracking -- allows tracking of reservations and instantiated pages
39 * across the pages in a mapping.
40 *
41 * The region data structures are protected by a combination of the mmap_sem
42 * and the hugetlb_instantion_mutex. To access or modify a region the caller
43 * must either hold the mmap_sem for write, or the mmap_sem for read and
44 * the hugetlb_instantiation mutex:
45 *
46 * down_write(&mm->mmap_sem);
47 * or
48 * down_read(&mm->mmap_sem);
49 * mutex_lock(&hugetlb_instantiation_mutex);
50 */
51 struct file_region {
52 struct list_head link;
53 long from;
54 long to;
55 };
56
57 static long region_add(struct list_head *head, long f, long t)
58 {
59 struct file_region *rg, *nrg, *trg;
60
61 /* Locate the region we are either in or before. */
62 list_for_each_entry(rg, head, link)
63 if (f <= rg->to)
64 break;
65
66 /* Round our left edge to the current segment if it encloses us. */
67 if (f > rg->from)
68 f = rg->from;
69
70 /* Check for and consume any regions we now overlap with. */
71 nrg = rg;
72 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
73 if (&rg->link == head)
74 break;
75 if (rg->from > t)
76 break;
77
78 /* If this area reaches higher then extend our area to
79 * include it completely. If this is not the first area
80 * which we intend to reuse, free it. */
81 if (rg->to > t)
82 t = rg->to;
83 if (rg != nrg) {
84 list_del(&rg->link);
85 kfree(rg);
86 }
87 }
88 nrg->from = f;
89 nrg->to = t;
90 return 0;
91 }
92
93 static long region_chg(struct list_head *head, long f, long t)
94 {
95 struct file_region *rg, *nrg;
96 long chg = 0;
97
98 /* Locate the region we are before or in. */
99 list_for_each_entry(rg, head, link)
100 if (f <= rg->to)
101 break;
102
103 /* If we are below the current region then a new region is required.
104 * Subtle, allocate a new region at the position but make it zero
105 * size such that we can guarantee to record the reservation. */
106 if (&rg->link == head || t < rg->from) {
107 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
108 if (!nrg)
109 return -ENOMEM;
110 nrg->from = f;
111 nrg->to = f;
112 INIT_LIST_HEAD(&nrg->link);
113 list_add(&nrg->link, rg->link.prev);
114
115 return t - f;
116 }
117
118 /* Round our left edge to the current segment if it encloses us. */
119 if (f > rg->from)
120 f = rg->from;
121 chg = t - f;
122
123 /* Check for and consume any regions we now overlap with. */
124 list_for_each_entry(rg, rg->link.prev, link) {
125 if (&rg->link == head)
126 break;
127 if (rg->from > t)
128 return chg;
129
130 /* We overlap with this area, if it extends futher than
131 * us then we must extend ourselves. Account for its
132 * existing reservation. */
133 if (rg->to > t) {
134 chg += rg->to - t;
135 t = rg->to;
136 }
137 chg -= rg->to - rg->from;
138 }
139 return chg;
140 }
141
142 static long region_truncate(struct list_head *head, long end)
143 {
144 struct file_region *rg, *trg;
145 long chg = 0;
146
147 /* Locate the region we are either in or before. */
148 list_for_each_entry(rg, head, link)
149 if (end <= rg->to)
150 break;
151 if (&rg->link == head)
152 return 0;
153
154 /* If we are in the middle of a region then adjust it. */
155 if (end > rg->from) {
156 chg = rg->to - end;
157 rg->to = end;
158 rg = list_entry(rg->link.next, typeof(*rg), link);
159 }
160
161 /* Drop any remaining regions. */
162 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
163 if (&rg->link == head)
164 break;
165 chg += rg->to - rg->from;
166 list_del(&rg->link);
167 kfree(rg);
168 }
169 return chg;
170 }
171
172 static long region_count(struct list_head *head, long f, long t)
173 {
174 struct file_region *rg;
175 long chg = 0;
176
177 /* Locate each segment we overlap with, and count that overlap. */
178 list_for_each_entry(rg, head, link) {
179 int seg_from;
180 int seg_to;
181
182 if (rg->to <= f)
183 continue;
184 if (rg->from >= t)
185 break;
186
187 seg_from = max(rg->from, f);
188 seg_to = min(rg->to, t);
189
190 chg += seg_to - seg_from;
191 }
192
193 return chg;
194 }
195
196 /*
197 * Convert the address within this vma to the page offset within
198 * the mapping, in pagecache page units; huge pages here.
199 */
200 static pgoff_t vma_hugecache_offset(struct hstate *h,
201 struct vm_area_struct *vma, unsigned long address)
202 {
203 return ((address - vma->vm_start) >> huge_page_shift(h)) +
204 (vma->vm_pgoff >> huge_page_order(h));
205 }
206
207 /*
208 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
209 * bits of the reservation map pointer, which are always clear due to
210 * alignment.
211 */
212 #define HPAGE_RESV_OWNER (1UL << 0)
213 #define HPAGE_RESV_UNMAPPED (1UL << 1)
214 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
215
216 /*
217 * These helpers are used to track how many pages are reserved for
218 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
219 * is guaranteed to have their future faults succeed.
220 *
221 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
222 * the reserve counters are updated with the hugetlb_lock held. It is safe
223 * to reset the VMA at fork() time as it is not in use yet and there is no
224 * chance of the global counters getting corrupted as a result of the values.
225 *
226 * The private mapping reservation is represented in a subtly different
227 * manner to a shared mapping. A shared mapping has a region map associated
228 * with the underlying file, this region map represents the backing file
229 * pages which have ever had a reservation assigned which this persists even
230 * after the page is instantiated. A private mapping has a region map
231 * associated with the original mmap which is attached to all VMAs which
232 * reference it, this region map represents those offsets which have consumed
233 * reservation ie. where pages have been instantiated.
234 */
235 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
236 {
237 return (unsigned long)vma->vm_private_data;
238 }
239
240 static void set_vma_private_data(struct vm_area_struct *vma,
241 unsigned long value)
242 {
243 vma->vm_private_data = (void *)value;
244 }
245
246 struct resv_map {
247 struct kref refs;
248 struct list_head regions;
249 };
250
251 struct resv_map *resv_map_alloc(void)
252 {
253 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
254 if (!resv_map)
255 return NULL;
256
257 kref_init(&resv_map->refs);
258 INIT_LIST_HEAD(&resv_map->regions);
259
260 return resv_map;
261 }
262
263 void resv_map_release(struct kref *ref)
264 {
265 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
266
267 /* Clear out any active regions before we release the map. */
268 region_truncate(&resv_map->regions, 0);
269 kfree(resv_map);
270 }
271
272 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
273 {
274 VM_BUG_ON(!is_vm_hugetlb_page(vma));
275 if (!(vma->vm_flags & VM_SHARED))
276 return (struct resv_map *)(get_vma_private_data(vma) &
277 ~HPAGE_RESV_MASK);
278 return 0;
279 }
280
281 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
282 {
283 VM_BUG_ON(!is_vm_hugetlb_page(vma));
284 VM_BUG_ON(vma->vm_flags & VM_SHARED);
285
286 set_vma_private_data(vma, (get_vma_private_data(vma) &
287 HPAGE_RESV_MASK) | (unsigned long)map);
288 }
289
290 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
291 {
292 VM_BUG_ON(!is_vm_hugetlb_page(vma));
293 VM_BUG_ON(vma->vm_flags & VM_SHARED);
294
295 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
296 }
297
298 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
299 {
300 VM_BUG_ON(!is_vm_hugetlb_page(vma));
301
302 return (get_vma_private_data(vma) & flag) != 0;
303 }
304
305 /* Decrement the reserved pages in the hugepage pool by one */
306 static void decrement_hugepage_resv_vma(struct hstate *h,
307 struct vm_area_struct *vma)
308 {
309 if (vma->vm_flags & VM_NORESERVE)
310 return;
311
312 if (vma->vm_flags & VM_SHARED) {
313 /* Shared mappings always use reserves */
314 h->resv_huge_pages--;
315 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
316 /*
317 * Only the process that called mmap() has reserves for
318 * private mappings.
319 */
320 h->resv_huge_pages--;
321 }
322 }
323
324 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
325 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
326 {
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 if (!(vma->vm_flags & VM_SHARED))
329 vma->vm_private_data = (void *)0;
330 }
331
332 /* Returns true if the VMA has associated reserve pages */
333 static int vma_has_private_reserves(struct vm_area_struct *vma)
334 {
335 if (vma->vm_flags & VM_SHARED)
336 return 0;
337 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
338 return 0;
339 return 1;
340 }
341
342 static void clear_huge_page(struct page *page,
343 unsigned long addr, unsigned long sz)
344 {
345 int i;
346
347 might_sleep();
348 for (i = 0; i < sz/PAGE_SIZE; i++) {
349 cond_resched();
350 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
351 }
352 }
353
354 static void copy_huge_page(struct page *dst, struct page *src,
355 unsigned long addr, struct vm_area_struct *vma)
356 {
357 int i;
358 struct hstate *h = hstate_vma(vma);
359
360 might_sleep();
361 for (i = 0; i < pages_per_huge_page(h); i++) {
362 cond_resched();
363 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
364 }
365 }
366
367 static void enqueue_huge_page(struct hstate *h, struct page *page)
368 {
369 int nid = page_to_nid(page);
370 list_add(&page->lru, &h->hugepage_freelists[nid]);
371 h->free_huge_pages++;
372 h->free_huge_pages_node[nid]++;
373 }
374
375 static struct page *dequeue_huge_page(struct hstate *h)
376 {
377 int nid;
378 struct page *page = NULL;
379
380 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
381 if (!list_empty(&h->hugepage_freelists[nid])) {
382 page = list_entry(h->hugepage_freelists[nid].next,
383 struct page, lru);
384 list_del(&page->lru);
385 h->free_huge_pages--;
386 h->free_huge_pages_node[nid]--;
387 break;
388 }
389 }
390 return page;
391 }
392
393 static struct page *dequeue_huge_page_vma(struct hstate *h,
394 struct vm_area_struct *vma,
395 unsigned long address, int avoid_reserve)
396 {
397 int nid;
398 struct page *page = NULL;
399 struct mempolicy *mpol;
400 nodemask_t *nodemask;
401 struct zonelist *zonelist = huge_zonelist(vma, address,
402 htlb_alloc_mask, &mpol, &nodemask);
403 struct zone *zone;
404 struct zoneref *z;
405
406 /*
407 * A child process with MAP_PRIVATE mappings created by their parent
408 * have no page reserves. This check ensures that reservations are
409 * not "stolen". The child may still get SIGKILLed
410 */
411 if (!vma_has_private_reserves(vma) &&
412 h->free_huge_pages - h->resv_huge_pages == 0)
413 return NULL;
414
415 /* If reserves cannot be used, ensure enough pages are in the pool */
416 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
417 return NULL;
418
419 for_each_zone_zonelist_nodemask(zone, z, zonelist,
420 MAX_NR_ZONES - 1, nodemask) {
421 nid = zone_to_nid(zone);
422 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
423 !list_empty(&h->hugepage_freelists[nid])) {
424 page = list_entry(h->hugepage_freelists[nid].next,
425 struct page, lru);
426 list_del(&page->lru);
427 h->free_huge_pages--;
428 h->free_huge_pages_node[nid]--;
429
430 if (!avoid_reserve)
431 decrement_hugepage_resv_vma(h, vma);
432
433 break;
434 }
435 }
436 mpol_cond_put(mpol);
437 return page;
438 }
439
440 static void update_and_free_page(struct hstate *h, struct page *page)
441 {
442 int i;
443
444 h->nr_huge_pages--;
445 h->nr_huge_pages_node[page_to_nid(page)]--;
446 for (i = 0; i < pages_per_huge_page(h); i++) {
447 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
448 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
449 1 << PG_private | 1<< PG_writeback);
450 }
451 set_compound_page_dtor(page, NULL);
452 set_page_refcounted(page);
453 arch_release_hugepage(page);
454 __free_pages(page, huge_page_order(h));
455 }
456
457 static void free_huge_page(struct page *page)
458 {
459 /*
460 * Can't pass hstate in here because it is called from the
461 * compound page destructor.
462 */
463 struct hstate *h = &default_hstate;
464 int nid = page_to_nid(page);
465 struct address_space *mapping;
466
467 mapping = (struct address_space *) page_private(page);
468 set_page_private(page, 0);
469 BUG_ON(page_count(page));
470 INIT_LIST_HEAD(&page->lru);
471
472 spin_lock(&hugetlb_lock);
473 if (h->surplus_huge_pages_node[nid]) {
474 update_and_free_page(h, page);
475 h->surplus_huge_pages--;
476 h->surplus_huge_pages_node[nid]--;
477 } else {
478 enqueue_huge_page(h, page);
479 }
480 spin_unlock(&hugetlb_lock);
481 if (mapping)
482 hugetlb_put_quota(mapping, 1);
483 }
484
485 /*
486 * Increment or decrement surplus_huge_pages. Keep node-specific counters
487 * balanced by operating on them in a round-robin fashion.
488 * Returns 1 if an adjustment was made.
489 */
490 static int adjust_pool_surplus(struct hstate *h, int delta)
491 {
492 static int prev_nid;
493 int nid = prev_nid;
494 int ret = 0;
495
496 VM_BUG_ON(delta != -1 && delta != 1);
497 do {
498 nid = next_node(nid, node_online_map);
499 if (nid == MAX_NUMNODES)
500 nid = first_node(node_online_map);
501
502 /* To shrink on this node, there must be a surplus page */
503 if (delta < 0 && !h->surplus_huge_pages_node[nid])
504 continue;
505 /* Surplus cannot exceed the total number of pages */
506 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
507 h->nr_huge_pages_node[nid])
508 continue;
509
510 h->surplus_huge_pages += delta;
511 h->surplus_huge_pages_node[nid] += delta;
512 ret = 1;
513 break;
514 } while (nid != prev_nid);
515
516 prev_nid = nid;
517 return ret;
518 }
519
520 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
521 {
522 set_compound_page_dtor(page, free_huge_page);
523 spin_lock(&hugetlb_lock);
524 h->nr_huge_pages++;
525 h->nr_huge_pages_node[nid]++;
526 spin_unlock(&hugetlb_lock);
527 put_page(page); /* free it into the hugepage allocator */
528 }
529
530 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
531 {
532 struct page *page;
533
534 page = alloc_pages_node(nid,
535 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
536 __GFP_REPEAT|__GFP_NOWARN,
537 huge_page_order(h));
538 if (page) {
539 if (arch_prepare_hugepage(page)) {
540 __free_pages(page, HUGETLB_PAGE_ORDER);
541 return NULL;
542 }
543 prep_new_huge_page(h, page, nid);
544 }
545
546 return page;
547 }
548
549 static int alloc_fresh_huge_page(struct hstate *h)
550 {
551 struct page *page;
552 int start_nid;
553 int next_nid;
554 int ret = 0;
555
556 start_nid = h->hugetlb_next_nid;
557
558 do {
559 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
560 if (page)
561 ret = 1;
562 /*
563 * Use a helper variable to find the next node and then
564 * copy it back to hugetlb_next_nid afterwards:
565 * otherwise there's a window in which a racer might
566 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
567 * But we don't need to use a spin_lock here: it really
568 * doesn't matter if occasionally a racer chooses the
569 * same nid as we do. Move nid forward in the mask even
570 * if we just successfully allocated a hugepage so that
571 * the next caller gets hugepages on the next node.
572 */
573 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
574 if (next_nid == MAX_NUMNODES)
575 next_nid = first_node(node_online_map);
576 h->hugetlb_next_nid = next_nid;
577 } while (!page && h->hugetlb_next_nid != start_nid);
578
579 if (ret)
580 count_vm_event(HTLB_BUDDY_PGALLOC);
581 else
582 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
583
584 return ret;
585 }
586
587 static struct page *alloc_buddy_huge_page(struct hstate *h,
588 struct vm_area_struct *vma, unsigned long address)
589 {
590 struct page *page;
591 unsigned int nid;
592
593 /*
594 * Assume we will successfully allocate the surplus page to
595 * prevent racing processes from causing the surplus to exceed
596 * overcommit
597 *
598 * This however introduces a different race, where a process B
599 * tries to grow the static hugepage pool while alloc_pages() is
600 * called by process A. B will only examine the per-node
601 * counters in determining if surplus huge pages can be
602 * converted to normal huge pages in adjust_pool_surplus(). A
603 * won't be able to increment the per-node counter, until the
604 * lock is dropped by B, but B doesn't drop hugetlb_lock until
605 * no more huge pages can be converted from surplus to normal
606 * state (and doesn't try to convert again). Thus, we have a
607 * case where a surplus huge page exists, the pool is grown, and
608 * the surplus huge page still exists after, even though it
609 * should just have been converted to a normal huge page. This
610 * does not leak memory, though, as the hugepage will be freed
611 * once it is out of use. It also does not allow the counters to
612 * go out of whack in adjust_pool_surplus() as we don't modify
613 * the node values until we've gotten the hugepage and only the
614 * per-node value is checked there.
615 */
616 spin_lock(&hugetlb_lock);
617 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
618 spin_unlock(&hugetlb_lock);
619 return NULL;
620 } else {
621 h->nr_huge_pages++;
622 h->surplus_huge_pages++;
623 }
624 spin_unlock(&hugetlb_lock);
625
626 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
627 __GFP_REPEAT|__GFP_NOWARN,
628 huge_page_order(h));
629
630 spin_lock(&hugetlb_lock);
631 if (page) {
632 /*
633 * This page is now managed by the hugetlb allocator and has
634 * no users -- drop the buddy allocator's reference.
635 */
636 put_page_testzero(page);
637 VM_BUG_ON(page_count(page));
638 nid = page_to_nid(page);
639 set_compound_page_dtor(page, free_huge_page);
640 /*
641 * We incremented the global counters already
642 */
643 h->nr_huge_pages_node[nid]++;
644 h->surplus_huge_pages_node[nid]++;
645 __count_vm_event(HTLB_BUDDY_PGALLOC);
646 } else {
647 h->nr_huge_pages--;
648 h->surplus_huge_pages--;
649 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
650 }
651 spin_unlock(&hugetlb_lock);
652
653 return page;
654 }
655
656 /*
657 * Increase the hugetlb pool such that it can accomodate a reservation
658 * of size 'delta'.
659 */
660 static int gather_surplus_pages(struct hstate *h, int delta)
661 {
662 struct list_head surplus_list;
663 struct page *page, *tmp;
664 int ret, i;
665 int needed, allocated;
666
667 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
668 if (needed <= 0) {
669 h->resv_huge_pages += delta;
670 return 0;
671 }
672
673 allocated = 0;
674 INIT_LIST_HEAD(&surplus_list);
675
676 ret = -ENOMEM;
677 retry:
678 spin_unlock(&hugetlb_lock);
679 for (i = 0; i < needed; i++) {
680 page = alloc_buddy_huge_page(h, NULL, 0);
681 if (!page) {
682 /*
683 * We were not able to allocate enough pages to
684 * satisfy the entire reservation so we free what
685 * we've allocated so far.
686 */
687 spin_lock(&hugetlb_lock);
688 needed = 0;
689 goto free;
690 }
691
692 list_add(&page->lru, &surplus_list);
693 }
694 allocated += needed;
695
696 /*
697 * After retaking hugetlb_lock, we need to recalculate 'needed'
698 * because either resv_huge_pages or free_huge_pages may have changed.
699 */
700 spin_lock(&hugetlb_lock);
701 needed = (h->resv_huge_pages + delta) -
702 (h->free_huge_pages + allocated);
703 if (needed > 0)
704 goto retry;
705
706 /*
707 * The surplus_list now contains _at_least_ the number of extra pages
708 * needed to accomodate the reservation. Add the appropriate number
709 * of pages to the hugetlb pool and free the extras back to the buddy
710 * allocator. Commit the entire reservation here to prevent another
711 * process from stealing the pages as they are added to the pool but
712 * before they are reserved.
713 */
714 needed += allocated;
715 h->resv_huge_pages += delta;
716 ret = 0;
717 free:
718 /* Free the needed pages to the hugetlb pool */
719 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
720 if ((--needed) < 0)
721 break;
722 list_del(&page->lru);
723 enqueue_huge_page(h, page);
724 }
725
726 /* Free unnecessary surplus pages to the buddy allocator */
727 if (!list_empty(&surplus_list)) {
728 spin_unlock(&hugetlb_lock);
729 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
730 list_del(&page->lru);
731 /*
732 * The page has a reference count of zero already, so
733 * call free_huge_page directly instead of using
734 * put_page. This must be done with hugetlb_lock
735 * unlocked which is safe because free_huge_page takes
736 * hugetlb_lock before deciding how to free the page.
737 */
738 free_huge_page(page);
739 }
740 spin_lock(&hugetlb_lock);
741 }
742
743 return ret;
744 }
745
746 /*
747 * When releasing a hugetlb pool reservation, any surplus pages that were
748 * allocated to satisfy the reservation must be explicitly freed if they were
749 * never used.
750 */
751 static void return_unused_surplus_pages(struct hstate *h,
752 unsigned long unused_resv_pages)
753 {
754 static int nid = -1;
755 struct page *page;
756 unsigned long nr_pages;
757
758 /*
759 * We want to release as many surplus pages as possible, spread
760 * evenly across all nodes. Iterate across all nodes until we
761 * can no longer free unreserved surplus pages. This occurs when
762 * the nodes with surplus pages have no free pages.
763 */
764 unsigned long remaining_iterations = num_online_nodes();
765
766 /* Uncommit the reservation */
767 h->resv_huge_pages -= unused_resv_pages;
768
769 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
770
771 while (remaining_iterations-- && nr_pages) {
772 nid = next_node(nid, node_online_map);
773 if (nid == MAX_NUMNODES)
774 nid = first_node(node_online_map);
775
776 if (!h->surplus_huge_pages_node[nid])
777 continue;
778
779 if (!list_empty(&h->hugepage_freelists[nid])) {
780 page = list_entry(h->hugepage_freelists[nid].next,
781 struct page, lru);
782 list_del(&page->lru);
783 update_and_free_page(h, page);
784 h->free_huge_pages--;
785 h->free_huge_pages_node[nid]--;
786 h->surplus_huge_pages--;
787 h->surplus_huge_pages_node[nid]--;
788 nr_pages--;
789 remaining_iterations = num_online_nodes();
790 }
791 }
792 }
793
794 /*
795 * Determine if the huge page at addr within the vma has an associated
796 * reservation. Where it does not we will need to logically increase
797 * reservation and actually increase quota before an allocation can occur.
798 * Where any new reservation would be required the reservation change is
799 * prepared, but not committed. Once the page has been quota'd allocated
800 * an instantiated the change should be committed via vma_commit_reservation.
801 * No action is required on failure.
802 */
803 static int vma_needs_reservation(struct hstate *h,
804 struct vm_area_struct *vma, unsigned long addr)
805 {
806 struct address_space *mapping = vma->vm_file->f_mapping;
807 struct inode *inode = mapping->host;
808
809 if (vma->vm_flags & VM_SHARED) {
810 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
811 return region_chg(&inode->i_mapping->private_list,
812 idx, idx + 1);
813
814 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
815 return 1;
816
817 } else {
818 int err;
819 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
820 struct resv_map *reservations = vma_resv_map(vma);
821
822 err = region_chg(&reservations->regions, idx, idx + 1);
823 if (err < 0)
824 return err;
825 return 0;
826 }
827 }
828 static void vma_commit_reservation(struct hstate *h,
829 struct vm_area_struct *vma, unsigned long addr)
830 {
831 struct address_space *mapping = vma->vm_file->f_mapping;
832 struct inode *inode = mapping->host;
833
834 if (vma->vm_flags & VM_SHARED) {
835 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
836 region_add(&inode->i_mapping->private_list, idx, idx + 1);
837
838 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
840 struct resv_map *reservations = vma_resv_map(vma);
841
842 /* Mark this page used in the map. */
843 region_add(&reservations->regions, idx, idx + 1);
844 }
845 }
846
847 static struct page *alloc_huge_page(struct vm_area_struct *vma,
848 unsigned long addr, int avoid_reserve)
849 {
850 struct hstate *h = hstate_vma(vma);
851 struct page *page;
852 struct address_space *mapping = vma->vm_file->f_mapping;
853 struct inode *inode = mapping->host;
854 unsigned int chg;
855
856 /*
857 * Processes that did not create the mapping will have no reserves and
858 * will not have accounted against quota. Check that the quota can be
859 * made before satisfying the allocation
860 * MAP_NORESERVE mappings may also need pages and quota allocated
861 * if no reserve mapping overlaps.
862 */
863 chg = vma_needs_reservation(h, vma, addr);
864 if (chg < 0)
865 return ERR_PTR(chg);
866 if (chg)
867 if (hugetlb_get_quota(inode->i_mapping, chg))
868 return ERR_PTR(-ENOSPC);
869
870 spin_lock(&hugetlb_lock);
871 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
872 spin_unlock(&hugetlb_lock);
873
874 if (!page) {
875 page = alloc_buddy_huge_page(h, vma, addr);
876 if (!page) {
877 hugetlb_put_quota(inode->i_mapping, chg);
878 return ERR_PTR(-VM_FAULT_OOM);
879 }
880 }
881
882 set_page_refcounted(page);
883 set_page_private(page, (unsigned long) mapping);
884
885 vma_commit_reservation(h, vma, addr);
886
887 return page;
888 }
889
890 static int __init hugetlb_init(void)
891 {
892 unsigned long i;
893 struct hstate *h = &default_hstate;
894
895 if (HPAGE_SHIFT == 0)
896 return 0;
897
898 if (!h->order) {
899 h->order = HPAGE_SHIFT - PAGE_SHIFT;
900 h->mask = HPAGE_MASK;
901 }
902
903 for (i = 0; i < MAX_NUMNODES; ++i)
904 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
905
906 h->hugetlb_next_nid = first_node(node_online_map);
907
908 for (i = 0; i < max_huge_pages; ++i) {
909 if (!alloc_fresh_huge_page(h))
910 break;
911 }
912 max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
913 printk(KERN_INFO "Total HugeTLB memory allocated, %ld\n",
914 h->free_huge_pages);
915 return 0;
916 }
917 module_init(hugetlb_init);
918
919 static int __init hugetlb_setup(char *s)
920 {
921 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
922 max_huge_pages = 0;
923 return 1;
924 }
925 __setup("hugepages=", hugetlb_setup);
926
927 static unsigned int cpuset_mems_nr(unsigned int *array)
928 {
929 int node;
930 unsigned int nr = 0;
931
932 for_each_node_mask(node, cpuset_current_mems_allowed)
933 nr += array[node];
934
935 return nr;
936 }
937
938 #ifdef CONFIG_SYSCTL
939 #ifdef CONFIG_HIGHMEM
940 static void try_to_free_low(struct hstate *h, unsigned long count)
941 {
942 int i;
943
944 for (i = 0; i < MAX_NUMNODES; ++i) {
945 struct page *page, *next;
946 struct list_head *freel = &h->hugepage_freelists[i];
947 list_for_each_entry_safe(page, next, freel, lru) {
948 if (count >= h->nr_huge_pages)
949 return;
950 if (PageHighMem(page))
951 continue;
952 list_del(&page->lru);
953 update_and_free_page(page);
954 h->free_huge_pages--;
955 h->free_huge_pages_node[page_to_nid(page)]--;
956 }
957 }
958 }
959 #else
960 static inline void try_to_free_low(struct hstate *h, unsigned long count)
961 {
962 }
963 #endif
964
965 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
966 static unsigned long set_max_huge_pages(unsigned long count)
967 {
968 unsigned long min_count, ret;
969 struct hstate *h = &default_hstate;
970
971 /*
972 * Increase the pool size
973 * First take pages out of surplus state. Then make up the
974 * remaining difference by allocating fresh huge pages.
975 *
976 * We might race with alloc_buddy_huge_page() here and be unable
977 * to convert a surplus huge page to a normal huge page. That is
978 * not critical, though, it just means the overall size of the
979 * pool might be one hugepage larger than it needs to be, but
980 * within all the constraints specified by the sysctls.
981 */
982 spin_lock(&hugetlb_lock);
983 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
984 if (!adjust_pool_surplus(h, -1))
985 break;
986 }
987
988 while (count > persistent_huge_pages(h)) {
989 /*
990 * If this allocation races such that we no longer need the
991 * page, free_huge_page will handle it by freeing the page
992 * and reducing the surplus.
993 */
994 spin_unlock(&hugetlb_lock);
995 ret = alloc_fresh_huge_page(h);
996 spin_lock(&hugetlb_lock);
997 if (!ret)
998 goto out;
999
1000 }
1001
1002 /*
1003 * Decrease the pool size
1004 * First return free pages to the buddy allocator (being careful
1005 * to keep enough around to satisfy reservations). Then place
1006 * pages into surplus state as needed so the pool will shrink
1007 * to the desired size as pages become free.
1008 *
1009 * By placing pages into the surplus state independent of the
1010 * overcommit value, we are allowing the surplus pool size to
1011 * exceed overcommit. There are few sane options here. Since
1012 * alloc_buddy_huge_page() is checking the global counter,
1013 * though, we'll note that we're not allowed to exceed surplus
1014 * and won't grow the pool anywhere else. Not until one of the
1015 * sysctls are changed, or the surplus pages go out of use.
1016 */
1017 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1018 min_count = max(count, min_count);
1019 try_to_free_low(h, min_count);
1020 while (min_count < persistent_huge_pages(h)) {
1021 struct page *page = dequeue_huge_page(h);
1022 if (!page)
1023 break;
1024 update_and_free_page(h, page);
1025 }
1026 while (count < persistent_huge_pages(h)) {
1027 if (!adjust_pool_surplus(h, 1))
1028 break;
1029 }
1030 out:
1031 ret = persistent_huge_pages(h);
1032 spin_unlock(&hugetlb_lock);
1033 return ret;
1034 }
1035
1036 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1037 struct file *file, void __user *buffer,
1038 size_t *length, loff_t *ppos)
1039 {
1040 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1041 max_huge_pages = set_max_huge_pages(max_huge_pages);
1042 return 0;
1043 }
1044
1045 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1046 struct file *file, void __user *buffer,
1047 size_t *length, loff_t *ppos)
1048 {
1049 proc_dointvec(table, write, file, buffer, length, ppos);
1050 if (hugepages_treat_as_movable)
1051 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1052 else
1053 htlb_alloc_mask = GFP_HIGHUSER;
1054 return 0;
1055 }
1056
1057 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1058 struct file *file, void __user *buffer,
1059 size_t *length, loff_t *ppos)
1060 {
1061 struct hstate *h = &default_hstate;
1062 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1063 spin_lock(&hugetlb_lock);
1064 h->nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
1065 spin_unlock(&hugetlb_lock);
1066 return 0;
1067 }
1068
1069 #endif /* CONFIG_SYSCTL */
1070
1071 int hugetlb_report_meminfo(char *buf)
1072 {
1073 struct hstate *h = &default_hstate;
1074 return sprintf(buf,
1075 "HugePages_Total: %5lu\n"
1076 "HugePages_Free: %5lu\n"
1077 "HugePages_Rsvd: %5lu\n"
1078 "HugePages_Surp: %5lu\n"
1079 "Hugepagesize: %5lu kB\n",
1080 h->nr_huge_pages,
1081 h->free_huge_pages,
1082 h->resv_huge_pages,
1083 h->surplus_huge_pages,
1084 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1085 }
1086
1087 int hugetlb_report_node_meminfo(int nid, char *buf)
1088 {
1089 struct hstate *h = &default_hstate;
1090 return sprintf(buf,
1091 "Node %d HugePages_Total: %5u\n"
1092 "Node %d HugePages_Free: %5u\n"
1093 "Node %d HugePages_Surp: %5u\n",
1094 nid, h->nr_huge_pages_node[nid],
1095 nid, h->free_huge_pages_node[nid],
1096 nid, h->surplus_huge_pages_node[nid]);
1097 }
1098
1099 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1100 unsigned long hugetlb_total_pages(void)
1101 {
1102 struct hstate *h = &default_hstate;
1103 return h->nr_huge_pages * pages_per_huge_page(h);
1104 }
1105
1106 static int hugetlb_acct_memory(struct hstate *h, long delta)
1107 {
1108 int ret = -ENOMEM;
1109
1110 spin_lock(&hugetlb_lock);
1111 /*
1112 * When cpuset is configured, it breaks the strict hugetlb page
1113 * reservation as the accounting is done on a global variable. Such
1114 * reservation is completely rubbish in the presence of cpuset because
1115 * the reservation is not checked against page availability for the
1116 * current cpuset. Application can still potentially OOM'ed by kernel
1117 * with lack of free htlb page in cpuset that the task is in.
1118 * Attempt to enforce strict accounting with cpuset is almost
1119 * impossible (or too ugly) because cpuset is too fluid that
1120 * task or memory node can be dynamically moved between cpusets.
1121 *
1122 * The change of semantics for shared hugetlb mapping with cpuset is
1123 * undesirable. However, in order to preserve some of the semantics,
1124 * we fall back to check against current free page availability as
1125 * a best attempt and hopefully to minimize the impact of changing
1126 * semantics that cpuset has.
1127 */
1128 if (delta > 0) {
1129 if (gather_surplus_pages(h, delta) < 0)
1130 goto out;
1131
1132 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1133 return_unused_surplus_pages(h, delta);
1134 goto out;
1135 }
1136 }
1137
1138 ret = 0;
1139 if (delta < 0)
1140 return_unused_surplus_pages(h, (unsigned long) -delta);
1141
1142 out:
1143 spin_unlock(&hugetlb_lock);
1144 return ret;
1145 }
1146
1147 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1148 {
1149 struct resv_map *reservations = vma_resv_map(vma);
1150
1151 /*
1152 * This new VMA should share its siblings reservation map if present.
1153 * The VMA will only ever have a valid reservation map pointer where
1154 * it is being copied for another still existing VMA. As that VMA
1155 * has a reference to the reservation map it cannot dissappear until
1156 * after this open call completes. It is therefore safe to take a
1157 * new reference here without additional locking.
1158 */
1159 if (reservations)
1160 kref_get(&reservations->refs);
1161 }
1162
1163 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1164 {
1165 struct hstate *h = hstate_vma(vma);
1166 struct resv_map *reservations = vma_resv_map(vma);
1167 unsigned long reserve;
1168 unsigned long start;
1169 unsigned long end;
1170
1171 if (reservations) {
1172 start = vma_hugecache_offset(h, vma, vma->vm_start);
1173 end = vma_hugecache_offset(h, vma, vma->vm_end);
1174
1175 reserve = (end - start) -
1176 region_count(&reservations->regions, start, end);
1177
1178 kref_put(&reservations->refs, resv_map_release);
1179
1180 if (reserve)
1181 hugetlb_acct_memory(h, -reserve);
1182 }
1183 }
1184
1185 /*
1186 * We cannot handle pagefaults against hugetlb pages at all. They cause
1187 * handle_mm_fault() to try to instantiate regular-sized pages in the
1188 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1189 * this far.
1190 */
1191 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1192 {
1193 BUG();
1194 return 0;
1195 }
1196
1197 struct vm_operations_struct hugetlb_vm_ops = {
1198 .fault = hugetlb_vm_op_fault,
1199 .open = hugetlb_vm_op_open,
1200 .close = hugetlb_vm_op_close,
1201 };
1202
1203 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1204 int writable)
1205 {
1206 pte_t entry;
1207
1208 if (writable) {
1209 entry =
1210 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1211 } else {
1212 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1213 }
1214 entry = pte_mkyoung(entry);
1215 entry = pte_mkhuge(entry);
1216
1217 return entry;
1218 }
1219
1220 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1221 unsigned long address, pte_t *ptep)
1222 {
1223 pte_t entry;
1224
1225 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1226 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1227 update_mmu_cache(vma, address, entry);
1228 }
1229 }
1230
1231
1232 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1233 struct vm_area_struct *vma)
1234 {
1235 pte_t *src_pte, *dst_pte, entry;
1236 struct page *ptepage;
1237 unsigned long addr;
1238 int cow;
1239 struct hstate *h = hstate_vma(vma);
1240 unsigned long sz = huge_page_size(h);
1241
1242 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1243
1244 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1245 src_pte = huge_pte_offset(src, addr);
1246 if (!src_pte)
1247 continue;
1248 dst_pte = huge_pte_alloc(dst, addr, sz);
1249 if (!dst_pte)
1250 goto nomem;
1251
1252 /* If the pagetables are shared don't copy or take references */
1253 if (dst_pte == src_pte)
1254 continue;
1255
1256 spin_lock(&dst->page_table_lock);
1257 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1258 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1259 if (cow)
1260 huge_ptep_set_wrprotect(src, addr, src_pte);
1261 entry = huge_ptep_get(src_pte);
1262 ptepage = pte_page(entry);
1263 get_page(ptepage);
1264 set_huge_pte_at(dst, addr, dst_pte, entry);
1265 }
1266 spin_unlock(&src->page_table_lock);
1267 spin_unlock(&dst->page_table_lock);
1268 }
1269 return 0;
1270
1271 nomem:
1272 return -ENOMEM;
1273 }
1274
1275 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1276 unsigned long end, struct page *ref_page)
1277 {
1278 struct mm_struct *mm = vma->vm_mm;
1279 unsigned long address;
1280 pte_t *ptep;
1281 pte_t pte;
1282 struct page *page;
1283 struct page *tmp;
1284 struct hstate *h = hstate_vma(vma);
1285 unsigned long sz = huge_page_size(h);
1286
1287 /*
1288 * A page gathering list, protected by per file i_mmap_lock. The
1289 * lock is used to avoid list corruption from multiple unmapping
1290 * of the same page since we are using page->lru.
1291 */
1292 LIST_HEAD(page_list);
1293
1294 WARN_ON(!is_vm_hugetlb_page(vma));
1295 BUG_ON(start & ~huge_page_mask(h));
1296 BUG_ON(end & ~huge_page_mask(h));
1297
1298 spin_lock(&mm->page_table_lock);
1299 for (address = start; address < end; address += sz) {
1300 ptep = huge_pte_offset(mm, address);
1301 if (!ptep)
1302 continue;
1303
1304 if (huge_pmd_unshare(mm, &address, ptep))
1305 continue;
1306
1307 /*
1308 * If a reference page is supplied, it is because a specific
1309 * page is being unmapped, not a range. Ensure the page we
1310 * are about to unmap is the actual page of interest.
1311 */
1312 if (ref_page) {
1313 pte = huge_ptep_get(ptep);
1314 if (huge_pte_none(pte))
1315 continue;
1316 page = pte_page(pte);
1317 if (page != ref_page)
1318 continue;
1319
1320 /*
1321 * Mark the VMA as having unmapped its page so that
1322 * future faults in this VMA will fail rather than
1323 * looking like data was lost
1324 */
1325 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1326 }
1327
1328 pte = huge_ptep_get_and_clear(mm, address, ptep);
1329 if (huge_pte_none(pte))
1330 continue;
1331
1332 page = pte_page(pte);
1333 if (pte_dirty(pte))
1334 set_page_dirty(page);
1335 list_add(&page->lru, &page_list);
1336 }
1337 spin_unlock(&mm->page_table_lock);
1338 flush_tlb_range(vma, start, end);
1339 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1340 list_del(&page->lru);
1341 put_page(page);
1342 }
1343 }
1344
1345 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1346 unsigned long end, struct page *ref_page)
1347 {
1348 /*
1349 * It is undesirable to test vma->vm_file as it should be non-null
1350 * for valid hugetlb area. However, vm_file will be NULL in the error
1351 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
1352 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
1353 * to clean up. Since no pte has actually been setup, it is safe to
1354 * do nothing in this case.
1355 */
1356 if (vma->vm_file) {
1357 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1358 __unmap_hugepage_range(vma, start, end, ref_page);
1359 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1360 }
1361 }
1362
1363 /*
1364 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1365 * mappping it owns the reserve page for. The intention is to unmap the page
1366 * from other VMAs and let the children be SIGKILLed if they are faulting the
1367 * same region.
1368 */
1369 int unmap_ref_private(struct mm_struct *mm,
1370 struct vm_area_struct *vma,
1371 struct page *page,
1372 unsigned long address)
1373 {
1374 struct vm_area_struct *iter_vma;
1375 struct address_space *mapping;
1376 struct prio_tree_iter iter;
1377 pgoff_t pgoff;
1378
1379 /*
1380 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1381 * from page cache lookup which is in HPAGE_SIZE units.
1382 */
1383 address = address & huge_page_mask(hstate_vma(vma));
1384 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1385 + (vma->vm_pgoff >> PAGE_SHIFT);
1386 mapping = (struct address_space *)page_private(page);
1387
1388 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1389 /* Do not unmap the current VMA */
1390 if (iter_vma == vma)
1391 continue;
1392
1393 /*
1394 * Unmap the page from other VMAs without their own reserves.
1395 * They get marked to be SIGKILLed if they fault in these
1396 * areas. This is because a future no-page fault on this VMA
1397 * could insert a zeroed page instead of the data existing
1398 * from the time of fork. This would look like data corruption
1399 */
1400 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1401 unmap_hugepage_range(iter_vma,
1402 address, address + HPAGE_SIZE,
1403 page);
1404 }
1405
1406 return 1;
1407 }
1408
1409 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1410 unsigned long address, pte_t *ptep, pte_t pte,
1411 struct page *pagecache_page)
1412 {
1413 struct hstate *h = hstate_vma(vma);
1414 struct page *old_page, *new_page;
1415 int avoidcopy;
1416 int outside_reserve = 0;
1417
1418 old_page = pte_page(pte);
1419
1420 retry_avoidcopy:
1421 /* If no-one else is actually using this page, avoid the copy
1422 * and just make the page writable */
1423 avoidcopy = (page_count(old_page) == 1);
1424 if (avoidcopy) {
1425 set_huge_ptep_writable(vma, address, ptep);
1426 return 0;
1427 }
1428
1429 /*
1430 * If the process that created a MAP_PRIVATE mapping is about to
1431 * perform a COW due to a shared page count, attempt to satisfy
1432 * the allocation without using the existing reserves. The pagecache
1433 * page is used to determine if the reserve at this address was
1434 * consumed or not. If reserves were used, a partial faulted mapping
1435 * at the time of fork() could consume its reserves on COW instead
1436 * of the full address range.
1437 */
1438 if (!(vma->vm_flags & VM_SHARED) &&
1439 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1440 old_page != pagecache_page)
1441 outside_reserve = 1;
1442
1443 page_cache_get(old_page);
1444 new_page = alloc_huge_page(vma, address, outside_reserve);
1445
1446 if (IS_ERR(new_page)) {
1447 page_cache_release(old_page);
1448
1449 /*
1450 * If a process owning a MAP_PRIVATE mapping fails to COW,
1451 * it is due to references held by a child and an insufficient
1452 * huge page pool. To guarantee the original mappers
1453 * reliability, unmap the page from child processes. The child
1454 * may get SIGKILLed if it later faults.
1455 */
1456 if (outside_reserve) {
1457 BUG_ON(huge_pte_none(pte));
1458 if (unmap_ref_private(mm, vma, old_page, address)) {
1459 BUG_ON(page_count(old_page) != 1);
1460 BUG_ON(huge_pte_none(pte));
1461 goto retry_avoidcopy;
1462 }
1463 WARN_ON_ONCE(1);
1464 }
1465
1466 return -PTR_ERR(new_page);
1467 }
1468
1469 spin_unlock(&mm->page_table_lock);
1470 copy_huge_page(new_page, old_page, address, vma);
1471 __SetPageUptodate(new_page);
1472 spin_lock(&mm->page_table_lock);
1473
1474 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1475 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1476 /* Break COW */
1477 huge_ptep_clear_flush(vma, address, ptep);
1478 set_huge_pte_at(mm, address, ptep,
1479 make_huge_pte(vma, new_page, 1));
1480 /* Make the old page be freed below */
1481 new_page = old_page;
1482 }
1483 page_cache_release(new_page);
1484 page_cache_release(old_page);
1485 return 0;
1486 }
1487
1488 /* Return the pagecache page at a given address within a VMA */
1489 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1490 struct vm_area_struct *vma, unsigned long address)
1491 {
1492 struct address_space *mapping;
1493 pgoff_t idx;
1494
1495 mapping = vma->vm_file->f_mapping;
1496 idx = vma_hugecache_offset(h, vma, address);
1497
1498 return find_lock_page(mapping, idx);
1499 }
1500
1501 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1502 unsigned long address, pte_t *ptep, int write_access)
1503 {
1504 struct hstate *h = hstate_vma(vma);
1505 int ret = VM_FAULT_SIGBUS;
1506 pgoff_t idx;
1507 unsigned long size;
1508 struct page *page;
1509 struct address_space *mapping;
1510 pte_t new_pte;
1511
1512 /*
1513 * Currently, we are forced to kill the process in the event the
1514 * original mapper has unmapped pages from the child due to a failed
1515 * COW. Warn that such a situation has occured as it may not be obvious
1516 */
1517 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1518 printk(KERN_WARNING
1519 "PID %d killed due to inadequate hugepage pool\n",
1520 current->pid);
1521 return ret;
1522 }
1523
1524 mapping = vma->vm_file->f_mapping;
1525 idx = vma_hugecache_offset(h, vma, address);
1526
1527 /*
1528 * Use page lock to guard against racing truncation
1529 * before we get page_table_lock.
1530 */
1531 retry:
1532 page = find_lock_page(mapping, idx);
1533 if (!page) {
1534 size = i_size_read(mapping->host) >> huge_page_shift(h);
1535 if (idx >= size)
1536 goto out;
1537 page = alloc_huge_page(vma, address, 0);
1538 if (IS_ERR(page)) {
1539 ret = -PTR_ERR(page);
1540 goto out;
1541 }
1542 clear_huge_page(page, address, huge_page_size(h));
1543 __SetPageUptodate(page);
1544
1545 if (vma->vm_flags & VM_SHARED) {
1546 int err;
1547 struct inode *inode = mapping->host;
1548
1549 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1550 if (err) {
1551 put_page(page);
1552 if (err == -EEXIST)
1553 goto retry;
1554 goto out;
1555 }
1556
1557 spin_lock(&inode->i_lock);
1558 inode->i_blocks += blocks_per_huge_page(h);
1559 spin_unlock(&inode->i_lock);
1560 } else
1561 lock_page(page);
1562 }
1563
1564 spin_lock(&mm->page_table_lock);
1565 size = i_size_read(mapping->host) >> huge_page_shift(h);
1566 if (idx >= size)
1567 goto backout;
1568
1569 ret = 0;
1570 if (!huge_pte_none(huge_ptep_get(ptep)))
1571 goto backout;
1572
1573 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1574 && (vma->vm_flags & VM_SHARED)));
1575 set_huge_pte_at(mm, address, ptep, new_pte);
1576
1577 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1578 /* Optimization, do the COW without a second fault */
1579 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1580 }
1581
1582 spin_unlock(&mm->page_table_lock);
1583 unlock_page(page);
1584 out:
1585 return ret;
1586
1587 backout:
1588 spin_unlock(&mm->page_table_lock);
1589 unlock_page(page);
1590 put_page(page);
1591 goto out;
1592 }
1593
1594 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1595 unsigned long address, int write_access)
1596 {
1597 pte_t *ptep;
1598 pte_t entry;
1599 int ret;
1600 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1601 struct hstate *h = hstate_vma(vma);
1602
1603 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1604 if (!ptep)
1605 return VM_FAULT_OOM;
1606
1607 /*
1608 * Serialize hugepage allocation and instantiation, so that we don't
1609 * get spurious allocation failures if two CPUs race to instantiate
1610 * the same page in the page cache.
1611 */
1612 mutex_lock(&hugetlb_instantiation_mutex);
1613 entry = huge_ptep_get(ptep);
1614 if (huge_pte_none(entry)) {
1615 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1616 mutex_unlock(&hugetlb_instantiation_mutex);
1617 return ret;
1618 }
1619
1620 ret = 0;
1621
1622 spin_lock(&mm->page_table_lock);
1623 /* Check for a racing update before calling hugetlb_cow */
1624 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1625 if (write_access && !pte_write(entry)) {
1626 struct page *page;
1627 page = hugetlbfs_pagecache_page(h, vma, address);
1628 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1629 if (page) {
1630 unlock_page(page);
1631 put_page(page);
1632 }
1633 }
1634 spin_unlock(&mm->page_table_lock);
1635 mutex_unlock(&hugetlb_instantiation_mutex);
1636
1637 return ret;
1638 }
1639
1640 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1641 struct page **pages, struct vm_area_struct **vmas,
1642 unsigned long *position, int *length, int i,
1643 int write)
1644 {
1645 unsigned long pfn_offset;
1646 unsigned long vaddr = *position;
1647 int remainder = *length;
1648 struct hstate *h = hstate_vma(vma);
1649
1650 spin_lock(&mm->page_table_lock);
1651 while (vaddr < vma->vm_end && remainder) {
1652 pte_t *pte;
1653 struct page *page;
1654
1655 /*
1656 * Some archs (sparc64, sh*) have multiple pte_ts to
1657 * each hugepage. We have to make * sure we get the
1658 * first, for the page indexing below to work.
1659 */
1660 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
1661
1662 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1663 (write && !pte_write(huge_ptep_get(pte)))) {
1664 int ret;
1665
1666 spin_unlock(&mm->page_table_lock);
1667 ret = hugetlb_fault(mm, vma, vaddr, write);
1668 spin_lock(&mm->page_table_lock);
1669 if (!(ret & VM_FAULT_ERROR))
1670 continue;
1671
1672 remainder = 0;
1673 if (!i)
1674 i = -EFAULT;
1675 break;
1676 }
1677
1678 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1679 page = pte_page(huge_ptep_get(pte));
1680 same_page:
1681 if (pages) {
1682 get_page(page);
1683 pages[i] = page + pfn_offset;
1684 }
1685
1686 if (vmas)
1687 vmas[i] = vma;
1688
1689 vaddr += PAGE_SIZE;
1690 ++pfn_offset;
1691 --remainder;
1692 ++i;
1693 if (vaddr < vma->vm_end && remainder &&
1694 pfn_offset < pages_per_huge_page(h)) {
1695 /*
1696 * We use pfn_offset to avoid touching the pageframes
1697 * of this compound page.
1698 */
1699 goto same_page;
1700 }
1701 }
1702 spin_unlock(&mm->page_table_lock);
1703 *length = remainder;
1704 *position = vaddr;
1705
1706 return i;
1707 }
1708
1709 void hugetlb_change_protection(struct vm_area_struct *vma,
1710 unsigned long address, unsigned long end, pgprot_t newprot)
1711 {
1712 struct mm_struct *mm = vma->vm_mm;
1713 unsigned long start = address;
1714 pte_t *ptep;
1715 pte_t pte;
1716 struct hstate *h = hstate_vma(vma);
1717
1718 BUG_ON(address >= end);
1719 flush_cache_range(vma, address, end);
1720
1721 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1722 spin_lock(&mm->page_table_lock);
1723 for (; address < end; address += huge_page_size(h)) {
1724 ptep = huge_pte_offset(mm, address);
1725 if (!ptep)
1726 continue;
1727 if (huge_pmd_unshare(mm, &address, ptep))
1728 continue;
1729 if (!huge_pte_none(huge_ptep_get(ptep))) {
1730 pte = huge_ptep_get_and_clear(mm, address, ptep);
1731 pte = pte_mkhuge(pte_modify(pte, newprot));
1732 set_huge_pte_at(mm, address, ptep, pte);
1733 }
1734 }
1735 spin_unlock(&mm->page_table_lock);
1736 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1737
1738 flush_tlb_range(vma, start, end);
1739 }
1740
1741 int hugetlb_reserve_pages(struct inode *inode,
1742 long from, long to,
1743 struct vm_area_struct *vma)
1744 {
1745 long ret, chg;
1746 struct hstate *h = hstate_inode(inode);
1747
1748 if (vma && vma->vm_flags & VM_NORESERVE)
1749 return 0;
1750
1751 /*
1752 * Shared mappings base their reservation on the number of pages that
1753 * are already allocated on behalf of the file. Private mappings need
1754 * to reserve the full area even if read-only as mprotect() may be
1755 * called to make the mapping read-write. Assume !vma is a shm mapping
1756 */
1757 if (!vma || vma->vm_flags & VM_SHARED)
1758 chg = region_chg(&inode->i_mapping->private_list, from, to);
1759 else {
1760 struct resv_map *resv_map = resv_map_alloc();
1761 if (!resv_map)
1762 return -ENOMEM;
1763
1764 chg = to - from;
1765
1766 set_vma_resv_map(vma, resv_map);
1767 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1768 }
1769
1770 if (chg < 0)
1771 return chg;
1772
1773 if (hugetlb_get_quota(inode->i_mapping, chg))
1774 return -ENOSPC;
1775 ret = hugetlb_acct_memory(h, chg);
1776 if (ret < 0) {
1777 hugetlb_put_quota(inode->i_mapping, chg);
1778 return ret;
1779 }
1780 if (!vma || vma->vm_flags & VM_SHARED)
1781 region_add(&inode->i_mapping->private_list, from, to);
1782 return 0;
1783 }
1784
1785 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1786 {
1787 struct hstate *h = hstate_inode(inode);
1788 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1789
1790 spin_lock(&inode->i_lock);
1791 inode->i_blocks -= blocks_per_huge_page(h);
1792 spin_unlock(&inode->i_lock);
1793
1794 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1795 hugetlb_acct_memory(h, -(chg - freed));
1796 }
This page took 0.067746 seconds and 6 git commands to generate.