mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93 {
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112 {
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130 return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
136 *
137 * The region data structures are protected by a combination of the mmap_sem
138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
139 * must either hold the mmap_sem for write, or the mmap_sem for read and
140 * the hugetlb_instantiation_mutex:
141 *
142 * down_write(&mm->mmap_sem);
143 * or
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
146 */
147 struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
226 /* We overlap with this area, if it extends further than
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
275 long seg_from;
276 long seg_to;
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290 }
291
292 /*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
298 {
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305 {
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
322 return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335 return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344 #define HPAGE_RESV_OWNER (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
366 */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369 return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374 {
375 vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 if (!(vma->vm_flags & VM_MAYSHARE))
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
410 return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434 return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440 VM_BUG_ON(!is_vm_hugetlb_page(vma));
441 if (!(vma->vm_flags & VM_MAYSHARE))
442 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448 if (vma->vm_flags & VM_NORESERVE) {
449 /*
450 * This address is already reserved by other process(chg == 0),
451 * so, we should decrement reserved count. Without decrementing,
452 * reserve count remains after releasing inode, because this
453 * allocated page will go into page cache and is regarded as
454 * coming from reserved pool in releasing step. Currently, we
455 * don't have any other solution to deal with this situation
456 * properly, so add work-around here.
457 */
458 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459 return 1;
460 else
461 return 0;
462 }
463
464 /* Shared mappings always use reserves */
465 if (vma->vm_flags & VM_MAYSHARE)
466 return 1;
467
468 /*
469 * Only the process that called mmap() has reserves for
470 * private mappings.
471 */
472 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473 return 1;
474
475 return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480 int i;
481 struct hstate *h = page_hstate(src);
482 struct page *dst_base = dst;
483 struct page *src_base = src;
484
485 for (i = 0; i < pages_per_huge_page(h); ) {
486 cond_resched();
487 copy_highpage(dst, src);
488
489 i++;
490 dst = mem_map_next(dst, dst_base, i);
491 src = mem_map_next(src, src_base, i);
492 }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497 int i;
498 struct hstate *h = page_hstate(src);
499
500 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501 copy_gigantic_page(dst, src);
502 return;
503 }
504
505 might_sleep();
506 for (i = 0; i < pages_per_huge_page(h); i++) {
507 cond_resched();
508 copy_highpage(dst + i, src + i);
509 }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514 int nid = page_to_nid(page);
515 list_move(&page->lru, &h->hugepage_freelists[nid]);
516 h->free_huge_pages++;
517 h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522 struct page *page;
523
524 if (list_empty(&h->hugepage_freelists[nid]))
525 return NULL;
526 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527 list_move(&page->lru, &h->hugepage_activelist);
528 set_page_refcounted(page);
529 h->free_huge_pages--;
530 h->free_huge_pages_node[nid]--;
531 return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535 struct vm_area_struct *vma,
536 unsigned long address, int avoid_reserve,
537 long chg)
538 {
539 struct page *page = NULL;
540 struct mempolicy *mpol;
541 nodemask_t *nodemask;
542 struct zonelist *zonelist;
543 struct zone *zone;
544 struct zoneref *z;
545 unsigned int cpuset_mems_cookie;
546
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
552 if (!vma_has_reserves(vma, chg) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
555
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
559
560 retry_cpuset:
561 cpuset_mems_cookie = get_mems_allowed();
562 zonelist = huge_zonelist(vma, address,
563 htlb_alloc_mask, &mpol, &nodemask);
564
565 for_each_zone_zonelist_nodemask(zone, z, zonelist,
566 MAX_NR_ZONES - 1, nodemask) {
567 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568 page = dequeue_huge_page_node(h, zone_to_nid(zone));
569 if (page) {
570 if (avoid_reserve)
571 break;
572 if (!vma_has_reserves(vma, chg))
573 break;
574
575 h->resv_huge_pages--;
576 break;
577 }
578 }
579 }
580
581 mpol_cond_put(mpol);
582 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
583 goto retry_cpuset;
584 return page;
585
586 err:
587 return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592 int i;
593
594 VM_BUG_ON(h->order >= MAX_ORDER);
595
596 h->nr_huge_pages--;
597 h->nr_huge_pages_node[page_to_nid(page)]--;
598 for (i = 0; i < pages_per_huge_page(h); i++) {
599 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600 1 << PG_referenced | 1 << PG_dirty |
601 1 << PG_active | 1 << PG_reserved |
602 1 << PG_private | 1 << PG_writeback);
603 }
604 VM_BUG_ON(hugetlb_cgroup_from_page(page));
605 set_compound_page_dtor(page, NULL);
606 set_page_refcounted(page);
607 arch_release_hugepage(page);
608 __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613 struct hstate *h;
614
615 for_each_hstate(h) {
616 if (huge_page_size(h) == size)
617 return h;
618 }
619 return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624 /*
625 * Can't pass hstate in here because it is called from the
626 * compound page destructor.
627 */
628 struct hstate *h = page_hstate(page);
629 int nid = page_to_nid(page);
630 struct hugepage_subpool *spool =
631 (struct hugepage_subpool *)page_private(page);
632
633 set_page_private(page, 0);
634 page->mapping = NULL;
635 BUG_ON(page_count(page));
636 BUG_ON(page_mapcount(page));
637
638 spin_lock(&hugetlb_lock);
639 hugetlb_cgroup_uncharge_page(hstate_index(h),
640 pages_per_huge_page(h), page);
641 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
642 /* remove the page from active list */
643 list_del(&page->lru);
644 update_and_free_page(h, page);
645 h->surplus_huge_pages--;
646 h->surplus_huge_pages_node[nid]--;
647 } else {
648 arch_clear_hugepage_flags(page);
649 enqueue_huge_page(h, page);
650 }
651 spin_unlock(&hugetlb_lock);
652 hugepage_subpool_put_pages(spool, 1);
653 }
654
655 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
656 {
657 INIT_LIST_HEAD(&page->lru);
658 set_compound_page_dtor(page, free_huge_page);
659 spin_lock(&hugetlb_lock);
660 set_hugetlb_cgroup(page, NULL);
661 h->nr_huge_pages++;
662 h->nr_huge_pages_node[nid]++;
663 spin_unlock(&hugetlb_lock);
664 put_page(page); /* free it into the hugepage allocator */
665 }
666
667 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668 {
669 int i;
670 int nr_pages = 1 << order;
671 struct page *p = page + 1;
672
673 /* we rely on prep_new_huge_page to set the destructor */
674 set_compound_order(page, order);
675 __SetPageHead(page);
676 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677 __SetPageTail(p);
678 set_page_count(p, 0);
679 p->first_page = page;
680 }
681 }
682
683 /*
684 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685 * transparent huge pages. See the PageTransHuge() documentation for more
686 * details.
687 */
688 int PageHuge(struct page *page)
689 {
690 compound_page_dtor *dtor;
691
692 if (!PageCompound(page))
693 return 0;
694
695 page = compound_head(page);
696 dtor = get_compound_page_dtor(page);
697
698 return dtor == free_huge_page;
699 }
700 EXPORT_SYMBOL_GPL(PageHuge);
701
702 pgoff_t __basepage_index(struct page *page)
703 {
704 struct page *page_head = compound_head(page);
705 pgoff_t index = page_index(page_head);
706 unsigned long compound_idx;
707
708 if (!PageHuge(page_head))
709 return page_index(page);
710
711 if (compound_order(page_head) >= MAX_ORDER)
712 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
713 else
714 compound_idx = page - page_head;
715
716 return (index << compound_order(page_head)) + compound_idx;
717 }
718
719 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
720 {
721 struct page *page;
722
723 if (h->order >= MAX_ORDER)
724 return NULL;
725
726 page = alloc_pages_exact_node(nid,
727 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
728 __GFP_REPEAT|__GFP_NOWARN,
729 huge_page_order(h));
730 if (page) {
731 if (arch_prepare_hugepage(page)) {
732 __free_pages(page, huge_page_order(h));
733 return NULL;
734 }
735 prep_new_huge_page(h, page, nid);
736 }
737
738 return page;
739 }
740
741 /*
742 * common helper functions for hstate_next_node_to_{alloc|free}.
743 * We may have allocated or freed a huge page based on a different
744 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
745 * be outside of *nodes_allowed. Ensure that we use an allowed
746 * node for alloc or free.
747 */
748 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
749 {
750 nid = next_node(nid, *nodes_allowed);
751 if (nid == MAX_NUMNODES)
752 nid = first_node(*nodes_allowed);
753 VM_BUG_ON(nid >= MAX_NUMNODES);
754
755 return nid;
756 }
757
758 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760 if (!node_isset(nid, *nodes_allowed))
761 nid = next_node_allowed(nid, nodes_allowed);
762 return nid;
763 }
764
765 /*
766 * returns the previously saved node ["this node"] from which to
767 * allocate a persistent huge page for the pool and advance the
768 * next node from which to allocate, handling wrap at end of node
769 * mask.
770 */
771 static int hstate_next_node_to_alloc(struct hstate *h,
772 nodemask_t *nodes_allowed)
773 {
774 int nid;
775
776 VM_BUG_ON(!nodes_allowed);
777
778 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
779 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
780
781 return nid;
782 }
783
784 /*
785 * helper for free_pool_huge_page() - return the previously saved
786 * node ["this node"] from which to free a huge page. Advance the
787 * next node id whether or not we find a free huge page to free so
788 * that the next attempt to free addresses the next node.
789 */
790 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
791 {
792 int nid;
793
794 VM_BUG_ON(!nodes_allowed);
795
796 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
797 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
798
799 return nid;
800 }
801
802 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
803 for (nr_nodes = nodes_weight(*mask); \
804 nr_nodes > 0 && \
805 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
806 nr_nodes--)
807
808 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
809 for (nr_nodes = nodes_weight(*mask); \
810 nr_nodes > 0 && \
811 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
812 nr_nodes--)
813
814 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816 struct page *page;
817 int nr_nodes, node;
818 int ret = 0;
819
820 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
821 page = alloc_fresh_huge_page_node(h, node);
822 if (page) {
823 ret = 1;
824 break;
825 }
826 }
827
828 if (ret)
829 count_vm_event(HTLB_BUDDY_PGALLOC);
830 else
831 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
833 return ret;
834 }
835
836 /*
837 * Free huge page from pool from next node to free.
838 * Attempt to keep persistent huge pages more or less
839 * balanced over allowed nodes.
840 * Called with hugetlb_lock locked.
841 */
842 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
843 bool acct_surplus)
844 {
845 int nr_nodes, node;
846 int ret = 0;
847
848 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
849 /*
850 * If we're returning unused surplus pages, only examine
851 * nodes with surplus pages.
852 */
853 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
854 !list_empty(&h->hugepage_freelists[node])) {
855 struct page *page =
856 list_entry(h->hugepage_freelists[node].next,
857 struct page, lru);
858 list_del(&page->lru);
859 h->free_huge_pages--;
860 h->free_huge_pages_node[node]--;
861 if (acct_surplus) {
862 h->surplus_huge_pages--;
863 h->surplus_huge_pages_node[node]--;
864 }
865 update_and_free_page(h, page);
866 ret = 1;
867 break;
868 }
869 }
870
871 return ret;
872 }
873
874 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
875 {
876 struct page *page;
877 unsigned int r_nid;
878
879 if (h->order >= MAX_ORDER)
880 return NULL;
881
882 /*
883 * Assume we will successfully allocate the surplus page to
884 * prevent racing processes from causing the surplus to exceed
885 * overcommit
886 *
887 * This however introduces a different race, where a process B
888 * tries to grow the static hugepage pool while alloc_pages() is
889 * called by process A. B will only examine the per-node
890 * counters in determining if surplus huge pages can be
891 * converted to normal huge pages in adjust_pool_surplus(). A
892 * won't be able to increment the per-node counter, until the
893 * lock is dropped by B, but B doesn't drop hugetlb_lock until
894 * no more huge pages can be converted from surplus to normal
895 * state (and doesn't try to convert again). Thus, we have a
896 * case where a surplus huge page exists, the pool is grown, and
897 * the surplus huge page still exists after, even though it
898 * should just have been converted to a normal huge page. This
899 * does not leak memory, though, as the hugepage will be freed
900 * once it is out of use. It also does not allow the counters to
901 * go out of whack in adjust_pool_surplus() as we don't modify
902 * the node values until we've gotten the hugepage and only the
903 * per-node value is checked there.
904 */
905 spin_lock(&hugetlb_lock);
906 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
907 spin_unlock(&hugetlb_lock);
908 return NULL;
909 } else {
910 h->nr_huge_pages++;
911 h->surplus_huge_pages++;
912 }
913 spin_unlock(&hugetlb_lock);
914
915 if (nid == NUMA_NO_NODE)
916 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
917 __GFP_REPEAT|__GFP_NOWARN,
918 huge_page_order(h));
919 else
920 page = alloc_pages_exact_node(nid,
921 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
922 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
923
924 if (page && arch_prepare_hugepage(page)) {
925 __free_pages(page, huge_page_order(h));
926 page = NULL;
927 }
928
929 spin_lock(&hugetlb_lock);
930 if (page) {
931 INIT_LIST_HEAD(&page->lru);
932 r_nid = page_to_nid(page);
933 set_compound_page_dtor(page, free_huge_page);
934 set_hugetlb_cgroup(page, NULL);
935 /*
936 * We incremented the global counters already
937 */
938 h->nr_huge_pages_node[r_nid]++;
939 h->surplus_huge_pages_node[r_nid]++;
940 __count_vm_event(HTLB_BUDDY_PGALLOC);
941 } else {
942 h->nr_huge_pages--;
943 h->surplus_huge_pages--;
944 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
945 }
946 spin_unlock(&hugetlb_lock);
947
948 return page;
949 }
950
951 /*
952 * This allocation function is useful in the context where vma is irrelevant.
953 * E.g. soft-offlining uses this function because it only cares physical
954 * address of error page.
955 */
956 struct page *alloc_huge_page_node(struct hstate *h, int nid)
957 {
958 struct page *page;
959
960 spin_lock(&hugetlb_lock);
961 page = dequeue_huge_page_node(h, nid);
962 spin_unlock(&hugetlb_lock);
963
964 if (!page)
965 page = alloc_buddy_huge_page(h, nid);
966
967 return page;
968 }
969
970 /*
971 * Increase the hugetlb pool such that it can accommodate a reservation
972 * of size 'delta'.
973 */
974 static int gather_surplus_pages(struct hstate *h, int delta)
975 {
976 struct list_head surplus_list;
977 struct page *page, *tmp;
978 int ret, i;
979 int needed, allocated;
980 bool alloc_ok = true;
981
982 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
983 if (needed <= 0) {
984 h->resv_huge_pages += delta;
985 return 0;
986 }
987
988 allocated = 0;
989 INIT_LIST_HEAD(&surplus_list);
990
991 ret = -ENOMEM;
992 retry:
993 spin_unlock(&hugetlb_lock);
994 for (i = 0; i < needed; i++) {
995 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
996 if (!page) {
997 alloc_ok = false;
998 break;
999 }
1000 list_add(&page->lru, &surplus_list);
1001 }
1002 allocated += i;
1003
1004 /*
1005 * After retaking hugetlb_lock, we need to recalculate 'needed'
1006 * because either resv_huge_pages or free_huge_pages may have changed.
1007 */
1008 spin_lock(&hugetlb_lock);
1009 needed = (h->resv_huge_pages + delta) -
1010 (h->free_huge_pages + allocated);
1011 if (needed > 0) {
1012 if (alloc_ok)
1013 goto retry;
1014 /*
1015 * We were not able to allocate enough pages to
1016 * satisfy the entire reservation so we free what
1017 * we've allocated so far.
1018 */
1019 goto free;
1020 }
1021 /*
1022 * The surplus_list now contains _at_least_ the number of extra pages
1023 * needed to accommodate the reservation. Add the appropriate number
1024 * of pages to the hugetlb pool and free the extras back to the buddy
1025 * allocator. Commit the entire reservation here to prevent another
1026 * process from stealing the pages as they are added to the pool but
1027 * before they are reserved.
1028 */
1029 needed += allocated;
1030 h->resv_huge_pages += delta;
1031 ret = 0;
1032
1033 /* Free the needed pages to the hugetlb pool */
1034 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1035 if ((--needed) < 0)
1036 break;
1037 /*
1038 * This page is now managed by the hugetlb allocator and has
1039 * no users -- drop the buddy allocator's reference.
1040 */
1041 put_page_testzero(page);
1042 VM_BUG_ON(page_count(page));
1043 enqueue_huge_page(h, page);
1044 }
1045 free:
1046 spin_unlock(&hugetlb_lock);
1047
1048 /* Free unnecessary surplus pages to the buddy allocator */
1049 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1050 put_page(page);
1051 spin_lock(&hugetlb_lock);
1052
1053 return ret;
1054 }
1055
1056 /*
1057 * When releasing a hugetlb pool reservation, any surplus pages that were
1058 * allocated to satisfy the reservation must be explicitly freed if they were
1059 * never used.
1060 * Called with hugetlb_lock held.
1061 */
1062 static void return_unused_surplus_pages(struct hstate *h,
1063 unsigned long unused_resv_pages)
1064 {
1065 unsigned long nr_pages;
1066
1067 /* Uncommit the reservation */
1068 h->resv_huge_pages -= unused_resv_pages;
1069
1070 /* Cannot return gigantic pages currently */
1071 if (h->order >= MAX_ORDER)
1072 return;
1073
1074 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1075
1076 /*
1077 * We want to release as many surplus pages as possible, spread
1078 * evenly across all nodes with memory. Iterate across these nodes
1079 * until we can no longer free unreserved surplus pages. This occurs
1080 * when the nodes with surplus pages have no free pages.
1081 * free_pool_huge_page() will balance the the freed pages across the
1082 * on-line nodes with memory and will handle the hstate accounting.
1083 */
1084 while (nr_pages--) {
1085 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1086 break;
1087 }
1088 }
1089
1090 /*
1091 * Determine if the huge page at addr within the vma has an associated
1092 * reservation. Where it does not we will need to logically increase
1093 * reservation and actually increase subpool usage before an allocation
1094 * can occur. Where any new reservation would be required the
1095 * reservation change is prepared, but not committed. Once the page
1096 * has been allocated from the subpool and instantiated the change should
1097 * be committed via vma_commit_reservation. No action is required on
1098 * failure.
1099 */
1100 static long vma_needs_reservation(struct hstate *h,
1101 struct vm_area_struct *vma, unsigned long addr)
1102 {
1103 struct address_space *mapping = vma->vm_file->f_mapping;
1104 struct inode *inode = mapping->host;
1105
1106 if (vma->vm_flags & VM_MAYSHARE) {
1107 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108 return region_chg(&inode->i_mapping->private_list,
1109 idx, idx + 1);
1110
1111 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1112 return 1;
1113
1114 } else {
1115 long err;
1116 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1117 struct resv_map *reservations = vma_resv_map(vma);
1118
1119 err = region_chg(&reservations->regions, idx, idx + 1);
1120 if (err < 0)
1121 return err;
1122 return 0;
1123 }
1124 }
1125 static void vma_commit_reservation(struct hstate *h,
1126 struct vm_area_struct *vma, unsigned long addr)
1127 {
1128 struct address_space *mapping = vma->vm_file->f_mapping;
1129 struct inode *inode = mapping->host;
1130
1131 if (vma->vm_flags & VM_MAYSHARE) {
1132 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1133 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1134
1135 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1136 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1137 struct resv_map *reservations = vma_resv_map(vma);
1138
1139 /* Mark this page used in the map. */
1140 region_add(&reservations->regions, idx, idx + 1);
1141 }
1142 }
1143
1144 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1145 unsigned long addr, int avoid_reserve)
1146 {
1147 struct hugepage_subpool *spool = subpool_vma(vma);
1148 struct hstate *h = hstate_vma(vma);
1149 struct page *page;
1150 long chg;
1151 int ret, idx;
1152 struct hugetlb_cgroup *h_cg;
1153
1154 idx = hstate_index(h);
1155 /*
1156 * Processes that did not create the mapping will have no
1157 * reserves and will not have accounted against subpool
1158 * limit. Check that the subpool limit can be made before
1159 * satisfying the allocation MAP_NORESERVE mappings may also
1160 * need pages and subpool limit allocated allocated if no reserve
1161 * mapping overlaps.
1162 */
1163 chg = vma_needs_reservation(h, vma, addr);
1164 if (chg < 0)
1165 return ERR_PTR(-ENOMEM);
1166 if (chg)
1167 if (hugepage_subpool_get_pages(spool, chg))
1168 return ERR_PTR(-ENOSPC);
1169
1170 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1171 if (ret) {
1172 hugepage_subpool_put_pages(spool, chg);
1173 return ERR_PTR(-ENOSPC);
1174 }
1175 spin_lock(&hugetlb_lock);
1176 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1177 if (!page) {
1178 spin_unlock(&hugetlb_lock);
1179 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1180 if (!page) {
1181 hugetlb_cgroup_uncharge_cgroup(idx,
1182 pages_per_huge_page(h),
1183 h_cg);
1184 hugepage_subpool_put_pages(spool, chg);
1185 return ERR_PTR(-ENOSPC);
1186 }
1187 spin_lock(&hugetlb_lock);
1188 list_move(&page->lru, &h->hugepage_activelist);
1189 /* Fall through */
1190 }
1191 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1192 spin_unlock(&hugetlb_lock);
1193
1194 set_page_private(page, (unsigned long)spool);
1195
1196 vma_commit_reservation(h, vma, addr);
1197 return page;
1198 }
1199
1200 int __weak alloc_bootmem_huge_page(struct hstate *h)
1201 {
1202 struct huge_bootmem_page *m;
1203 int nr_nodes, node;
1204
1205 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1206 void *addr;
1207
1208 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1209 huge_page_size(h), huge_page_size(h), 0);
1210
1211 if (addr) {
1212 /*
1213 * Use the beginning of the huge page to store the
1214 * huge_bootmem_page struct (until gather_bootmem
1215 * puts them into the mem_map).
1216 */
1217 m = addr;
1218 goto found;
1219 }
1220 }
1221 return 0;
1222
1223 found:
1224 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1225 /* Put them into a private list first because mem_map is not up yet */
1226 list_add(&m->list, &huge_boot_pages);
1227 m->hstate = h;
1228 return 1;
1229 }
1230
1231 static void prep_compound_huge_page(struct page *page, int order)
1232 {
1233 if (unlikely(order > (MAX_ORDER - 1)))
1234 prep_compound_gigantic_page(page, order);
1235 else
1236 prep_compound_page(page, order);
1237 }
1238
1239 /* Put bootmem huge pages into the standard lists after mem_map is up */
1240 static void __init gather_bootmem_prealloc(void)
1241 {
1242 struct huge_bootmem_page *m;
1243
1244 list_for_each_entry(m, &huge_boot_pages, list) {
1245 struct hstate *h = m->hstate;
1246 struct page *page;
1247
1248 #ifdef CONFIG_HIGHMEM
1249 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1250 free_bootmem_late((unsigned long)m,
1251 sizeof(struct huge_bootmem_page));
1252 #else
1253 page = virt_to_page(m);
1254 #endif
1255 __ClearPageReserved(page);
1256 WARN_ON(page_count(page) != 1);
1257 prep_compound_huge_page(page, h->order);
1258 prep_new_huge_page(h, page, page_to_nid(page));
1259 /*
1260 * If we had gigantic hugepages allocated at boot time, we need
1261 * to restore the 'stolen' pages to totalram_pages in order to
1262 * fix confusing memory reports from free(1) and another
1263 * side-effects, like CommitLimit going negative.
1264 */
1265 if (h->order > (MAX_ORDER - 1))
1266 adjust_managed_page_count(page, 1 << h->order);
1267 }
1268 }
1269
1270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1271 {
1272 unsigned long i;
1273
1274 for (i = 0; i < h->max_huge_pages; ++i) {
1275 if (h->order >= MAX_ORDER) {
1276 if (!alloc_bootmem_huge_page(h))
1277 break;
1278 } else if (!alloc_fresh_huge_page(h,
1279 &node_states[N_MEMORY]))
1280 break;
1281 }
1282 h->max_huge_pages = i;
1283 }
1284
1285 static void __init hugetlb_init_hstates(void)
1286 {
1287 struct hstate *h;
1288
1289 for_each_hstate(h) {
1290 /* oversize hugepages were init'ed in early boot */
1291 if (h->order < MAX_ORDER)
1292 hugetlb_hstate_alloc_pages(h);
1293 }
1294 }
1295
1296 static char * __init memfmt(char *buf, unsigned long n)
1297 {
1298 if (n >= (1UL << 30))
1299 sprintf(buf, "%lu GB", n >> 30);
1300 else if (n >= (1UL << 20))
1301 sprintf(buf, "%lu MB", n >> 20);
1302 else
1303 sprintf(buf, "%lu KB", n >> 10);
1304 return buf;
1305 }
1306
1307 static void __init report_hugepages(void)
1308 {
1309 struct hstate *h;
1310
1311 for_each_hstate(h) {
1312 char buf[32];
1313 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1314 memfmt(buf, huge_page_size(h)),
1315 h->free_huge_pages);
1316 }
1317 }
1318
1319 #ifdef CONFIG_HIGHMEM
1320 static void try_to_free_low(struct hstate *h, unsigned long count,
1321 nodemask_t *nodes_allowed)
1322 {
1323 int i;
1324
1325 if (h->order >= MAX_ORDER)
1326 return;
1327
1328 for_each_node_mask(i, *nodes_allowed) {
1329 struct page *page, *next;
1330 struct list_head *freel = &h->hugepage_freelists[i];
1331 list_for_each_entry_safe(page, next, freel, lru) {
1332 if (count >= h->nr_huge_pages)
1333 return;
1334 if (PageHighMem(page))
1335 continue;
1336 list_del(&page->lru);
1337 update_and_free_page(h, page);
1338 h->free_huge_pages--;
1339 h->free_huge_pages_node[page_to_nid(page)]--;
1340 }
1341 }
1342 }
1343 #else
1344 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1345 nodemask_t *nodes_allowed)
1346 {
1347 }
1348 #endif
1349
1350 /*
1351 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1352 * balanced by operating on them in a round-robin fashion.
1353 * Returns 1 if an adjustment was made.
1354 */
1355 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1356 int delta)
1357 {
1358 int nr_nodes, node;
1359
1360 VM_BUG_ON(delta != -1 && delta != 1);
1361
1362 if (delta < 0) {
1363 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1364 if (h->surplus_huge_pages_node[node])
1365 goto found;
1366 }
1367 } else {
1368 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1369 if (h->surplus_huge_pages_node[node] <
1370 h->nr_huge_pages_node[node])
1371 goto found;
1372 }
1373 }
1374 return 0;
1375
1376 found:
1377 h->surplus_huge_pages += delta;
1378 h->surplus_huge_pages_node[node] += delta;
1379 return 1;
1380 }
1381
1382 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1383 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1384 nodemask_t *nodes_allowed)
1385 {
1386 unsigned long min_count, ret;
1387
1388 if (h->order >= MAX_ORDER)
1389 return h->max_huge_pages;
1390
1391 /*
1392 * Increase the pool size
1393 * First take pages out of surplus state. Then make up the
1394 * remaining difference by allocating fresh huge pages.
1395 *
1396 * We might race with alloc_buddy_huge_page() here and be unable
1397 * to convert a surplus huge page to a normal huge page. That is
1398 * not critical, though, it just means the overall size of the
1399 * pool might be one hugepage larger than it needs to be, but
1400 * within all the constraints specified by the sysctls.
1401 */
1402 spin_lock(&hugetlb_lock);
1403 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1404 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1405 break;
1406 }
1407
1408 while (count > persistent_huge_pages(h)) {
1409 /*
1410 * If this allocation races such that we no longer need the
1411 * page, free_huge_page will handle it by freeing the page
1412 * and reducing the surplus.
1413 */
1414 spin_unlock(&hugetlb_lock);
1415 ret = alloc_fresh_huge_page(h, nodes_allowed);
1416 spin_lock(&hugetlb_lock);
1417 if (!ret)
1418 goto out;
1419
1420 /* Bail for signals. Probably ctrl-c from user */
1421 if (signal_pending(current))
1422 goto out;
1423 }
1424
1425 /*
1426 * Decrease the pool size
1427 * First return free pages to the buddy allocator (being careful
1428 * to keep enough around to satisfy reservations). Then place
1429 * pages into surplus state as needed so the pool will shrink
1430 * to the desired size as pages become free.
1431 *
1432 * By placing pages into the surplus state independent of the
1433 * overcommit value, we are allowing the surplus pool size to
1434 * exceed overcommit. There are few sane options here. Since
1435 * alloc_buddy_huge_page() is checking the global counter,
1436 * though, we'll note that we're not allowed to exceed surplus
1437 * and won't grow the pool anywhere else. Not until one of the
1438 * sysctls are changed, or the surplus pages go out of use.
1439 */
1440 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1441 min_count = max(count, min_count);
1442 try_to_free_low(h, min_count, nodes_allowed);
1443 while (min_count < persistent_huge_pages(h)) {
1444 if (!free_pool_huge_page(h, nodes_allowed, 0))
1445 break;
1446 }
1447 while (count < persistent_huge_pages(h)) {
1448 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1449 break;
1450 }
1451 out:
1452 ret = persistent_huge_pages(h);
1453 spin_unlock(&hugetlb_lock);
1454 return ret;
1455 }
1456
1457 #define HSTATE_ATTR_RO(_name) \
1458 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1459
1460 #define HSTATE_ATTR(_name) \
1461 static struct kobj_attribute _name##_attr = \
1462 __ATTR(_name, 0644, _name##_show, _name##_store)
1463
1464 static struct kobject *hugepages_kobj;
1465 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1466
1467 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1468
1469 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470 {
1471 int i;
1472
1473 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1474 if (hstate_kobjs[i] == kobj) {
1475 if (nidp)
1476 *nidp = NUMA_NO_NODE;
1477 return &hstates[i];
1478 }
1479
1480 return kobj_to_node_hstate(kobj, nidp);
1481 }
1482
1483 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1484 struct kobj_attribute *attr, char *buf)
1485 {
1486 struct hstate *h;
1487 unsigned long nr_huge_pages;
1488 int nid;
1489
1490 h = kobj_to_hstate(kobj, &nid);
1491 if (nid == NUMA_NO_NODE)
1492 nr_huge_pages = h->nr_huge_pages;
1493 else
1494 nr_huge_pages = h->nr_huge_pages_node[nid];
1495
1496 return sprintf(buf, "%lu\n", nr_huge_pages);
1497 }
1498
1499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1500 struct kobject *kobj, struct kobj_attribute *attr,
1501 const char *buf, size_t len)
1502 {
1503 int err;
1504 int nid;
1505 unsigned long count;
1506 struct hstate *h;
1507 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508
1509 err = kstrtoul(buf, 10, &count);
1510 if (err)
1511 goto out;
1512
1513 h = kobj_to_hstate(kobj, &nid);
1514 if (h->order >= MAX_ORDER) {
1515 err = -EINVAL;
1516 goto out;
1517 }
1518
1519 if (nid == NUMA_NO_NODE) {
1520 /*
1521 * global hstate attribute
1522 */
1523 if (!(obey_mempolicy &&
1524 init_nodemask_of_mempolicy(nodes_allowed))) {
1525 NODEMASK_FREE(nodes_allowed);
1526 nodes_allowed = &node_states[N_MEMORY];
1527 }
1528 } else if (nodes_allowed) {
1529 /*
1530 * per node hstate attribute: adjust count to global,
1531 * but restrict alloc/free to the specified node.
1532 */
1533 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1534 init_nodemask_of_node(nodes_allowed, nid);
1535 } else
1536 nodes_allowed = &node_states[N_MEMORY];
1537
1538 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539
1540 if (nodes_allowed != &node_states[N_MEMORY])
1541 NODEMASK_FREE(nodes_allowed);
1542
1543 return len;
1544 out:
1545 NODEMASK_FREE(nodes_allowed);
1546 return err;
1547 }
1548
1549 static ssize_t nr_hugepages_show(struct kobject *kobj,
1550 struct kobj_attribute *attr, char *buf)
1551 {
1552 return nr_hugepages_show_common(kobj, attr, buf);
1553 }
1554
1555 static ssize_t nr_hugepages_store(struct kobject *kobj,
1556 struct kobj_attribute *attr, const char *buf, size_t len)
1557 {
1558 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559 }
1560 HSTATE_ATTR(nr_hugepages);
1561
1562 #ifdef CONFIG_NUMA
1563
1564 /*
1565 * hstate attribute for optionally mempolicy-based constraint on persistent
1566 * huge page alloc/free.
1567 */
1568 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1569 struct kobj_attribute *attr, char *buf)
1570 {
1571 return nr_hugepages_show_common(kobj, attr, buf);
1572 }
1573
1574 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1575 struct kobj_attribute *attr, const char *buf, size_t len)
1576 {
1577 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1578 }
1579 HSTATE_ATTR(nr_hugepages_mempolicy);
1580 #endif
1581
1582
1583 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1584 struct kobj_attribute *attr, char *buf)
1585 {
1586 struct hstate *h = kobj_to_hstate(kobj, NULL);
1587 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1588 }
1589
1590 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1591 struct kobj_attribute *attr, const char *buf, size_t count)
1592 {
1593 int err;
1594 unsigned long input;
1595 struct hstate *h = kobj_to_hstate(kobj, NULL);
1596
1597 if (h->order >= MAX_ORDER)
1598 return -EINVAL;
1599
1600 err = kstrtoul(buf, 10, &input);
1601 if (err)
1602 return err;
1603
1604 spin_lock(&hugetlb_lock);
1605 h->nr_overcommit_huge_pages = input;
1606 spin_unlock(&hugetlb_lock);
1607
1608 return count;
1609 }
1610 HSTATE_ATTR(nr_overcommit_hugepages);
1611
1612 static ssize_t free_hugepages_show(struct kobject *kobj,
1613 struct kobj_attribute *attr, char *buf)
1614 {
1615 struct hstate *h;
1616 unsigned long free_huge_pages;
1617 int nid;
1618
1619 h = kobj_to_hstate(kobj, &nid);
1620 if (nid == NUMA_NO_NODE)
1621 free_huge_pages = h->free_huge_pages;
1622 else
1623 free_huge_pages = h->free_huge_pages_node[nid];
1624
1625 return sprintf(buf, "%lu\n", free_huge_pages);
1626 }
1627 HSTATE_ATTR_RO(free_hugepages);
1628
1629 static ssize_t resv_hugepages_show(struct kobject *kobj,
1630 struct kobj_attribute *attr, char *buf)
1631 {
1632 struct hstate *h = kobj_to_hstate(kobj, NULL);
1633 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1634 }
1635 HSTATE_ATTR_RO(resv_hugepages);
1636
1637 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1638 struct kobj_attribute *attr, char *buf)
1639 {
1640 struct hstate *h;
1641 unsigned long surplus_huge_pages;
1642 int nid;
1643
1644 h = kobj_to_hstate(kobj, &nid);
1645 if (nid == NUMA_NO_NODE)
1646 surplus_huge_pages = h->surplus_huge_pages;
1647 else
1648 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1649
1650 return sprintf(buf, "%lu\n", surplus_huge_pages);
1651 }
1652 HSTATE_ATTR_RO(surplus_hugepages);
1653
1654 static struct attribute *hstate_attrs[] = {
1655 &nr_hugepages_attr.attr,
1656 &nr_overcommit_hugepages_attr.attr,
1657 &free_hugepages_attr.attr,
1658 &resv_hugepages_attr.attr,
1659 &surplus_hugepages_attr.attr,
1660 #ifdef CONFIG_NUMA
1661 &nr_hugepages_mempolicy_attr.attr,
1662 #endif
1663 NULL,
1664 };
1665
1666 static struct attribute_group hstate_attr_group = {
1667 .attrs = hstate_attrs,
1668 };
1669
1670 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1671 struct kobject **hstate_kobjs,
1672 struct attribute_group *hstate_attr_group)
1673 {
1674 int retval;
1675 int hi = hstate_index(h);
1676
1677 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1678 if (!hstate_kobjs[hi])
1679 return -ENOMEM;
1680
1681 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1682 if (retval)
1683 kobject_put(hstate_kobjs[hi]);
1684
1685 return retval;
1686 }
1687
1688 static void __init hugetlb_sysfs_init(void)
1689 {
1690 struct hstate *h;
1691 int err;
1692
1693 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1694 if (!hugepages_kobj)
1695 return;
1696
1697 for_each_hstate(h) {
1698 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1699 hstate_kobjs, &hstate_attr_group);
1700 if (err)
1701 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1702 }
1703 }
1704
1705 #ifdef CONFIG_NUMA
1706
1707 /*
1708 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1709 * with node devices in node_devices[] using a parallel array. The array
1710 * index of a node device or _hstate == node id.
1711 * This is here to avoid any static dependency of the node device driver, in
1712 * the base kernel, on the hugetlb module.
1713 */
1714 struct node_hstate {
1715 struct kobject *hugepages_kobj;
1716 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1717 };
1718 struct node_hstate node_hstates[MAX_NUMNODES];
1719
1720 /*
1721 * A subset of global hstate attributes for node devices
1722 */
1723 static struct attribute *per_node_hstate_attrs[] = {
1724 &nr_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &surplus_hugepages_attr.attr,
1727 NULL,
1728 };
1729
1730 static struct attribute_group per_node_hstate_attr_group = {
1731 .attrs = per_node_hstate_attrs,
1732 };
1733
1734 /*
1735 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1736 * Returns node id via non-NULL nidp.
1737 */
1738 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1739 {
1740 int nid;
1741
1742 for (nid = 0; nid < nr_node_ids; nid++) {
1743 struct node_hstate *nhs = &node_hstates[nid];
1744 int i;
1745 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1746 if (nhs->hstate_kobjs[i] == kobj) {
1747 if (nidp)
1748 *nidp = nid;
1749 return &hstates[i];
1750 }
1751 }
1752
1753 BUG();
1754 return NULL;
1755 }
1756
1757 /*
1758 * Unregister hstate attributes from a single node device.
1759 * No-op if no hstate attributes attached.
1760 */
1761 static void hugetlb_unregister_node(struct node *node)
1762 {
1763 struct hstate *h;
1764 struct node_hstate *nhs = &node_hstates[node->dev.id];
1765
1766 if (!nhs->hugepages_kobj)
1767 return; /* no hstate attributes */
1768
1769 for_each_hstate(h) {
1770 int idx = hstate_index(h);
1771 if (nhs->hstate_kobjs[idx]) {
1772 kobject_put(nhs->hstate_kobjs[idx]);
1773 nhs->hstate_kobjs[idx] = NULL;
1774 }
1775 }
1776
1777 kobject_put(nhs->hugepages_kobj);
1778 nhs->hugepages_kobj = NULL;
1779 }
1780
1781 /*
1782 * hugetlb module exit: unregister hstate attributes from node devices
1783 * that have them.
1784 */
1785 static void hugetlb_unregister_all_nodes(void)
1786 {
1787 int nid;
1788
1789 /*
1790 * disable node device registrations.
1791 */
1792 register_hugetlbfs_with_node(NULL, NULL);
1793
1794 /*
1795 * remove hstate attributes from any nodes that have them.
1796 */
1797 for (nid = 0; nid < nr_node_ids; nid++)
1798 hugetlb_unregister_node(node_devices[nid]);
1799 }
1800
1801 /*
1802 * Register hstate attributes for a single node device.
1803 * No-op if attributes already registered.
1804 */
1805 static void hugetlb_register_node(struct node *node)
1806 {
1807 struct hstate *h;
1808 struct node_hstate *nhs = &node_hstates[node->dev.id];
1809 int err;
1810
1811 if (nhs->hugepages_kobj)
1812 return; /* already allocated */
1813
1814 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1815 &node->dev.kobj);
1816 if (!nhs->hugepages_kobj)
1817 return;
1818
1819 for_each_hstate(h) {
1820 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1821 nhs->hstate_kobjs,
1822 &per_node_hstate_attr_group);
1823 if (err) {
1824 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1825 h->name, node->dev.id);
1826 hugetlb_unregister_node(node);
1827 break;
1828 }
1829 }
1830 }
1831
1832 /*
1833 * hugetlb init time: register hstate attributes for all registered node
1834 * devices of nodes that have memory. All on-line nodes should have
1835 * registered their associated device by this time.
1836 */
1837 static void hugetlb_register_all_nodes(void)
1838 {
1839 int nid;
1840
1841 for_each_node_state(nid, N_MEMORY) {
1842 struct node *node = node_devices[nid];
1843 if (node->dev.id == nid)
1844 hugetlb_register_node(node);
1845 }
1846
1847 /*
1848 * Let the node device driver know we're here so it can
1849 * [un]register hstate attributes on node hotplug.
1850 */
1851 register_hugetlbfs_with_node(hugetlb_register_node,
1852 hugetlb_unregister_node);
1853 }
1854 #else /* !CONFIG_NUMA */
1855
1856 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1857 {
1858 BUG();
1859 if (nidp)
1860 *nidp = -1;
1861 return NULL;
1862 }
1863
1864 static void hugetlb_unregister_all_nodes(void) { }
1865
1866 static void hugetlb_register_all_nodes(void) { }
1867
1868 #endif
1869
1870 static void __exit hugetlb_exit(void)
1871 {
1872 struct hstate *h;
1873
1874 hugetlb_unregister_all_nodes();
1875
1876 for_each_hstate(h) {
1877 kobject_put(hstate_kobjs[hstate_index(h)]);
1878 }
1879
1880 kobject_put(hugepages_kobj);
1881 }
1882 module_exit(hugetlb_exit);
1883
1884 static int __init hugetlb_init(void)
1885 {
1886 /* Some platform decide whether they support huge pages at boot
1887 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1888 * there is no such support
1889 */
1890 if (HPAGE_SHIFT == 0)
1891 return 0;
1892
1893 if (!size_to_hstate(default_hstate_size)) {
1894 default_hstate_size = HPAGE_SIZE;
1895 if (!size_to_hstate(default_hstate_size))
1896 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1897 }
1898 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1899 if (default_hstate_max_huge_pages)
1900 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1901
1902 hugetlb_init_hstates();
1903 gather_bootmem_prealloc();
1904 report_hugepages();
1905
1906 hugetlb_sysfs_init();
1907 hugetlb_register_all_nodes();
1908 hugetlb_cgroup_file_init();
1909
1910 return 0;
1911 }
1912 module_init(hugetlb_init);
1913
1914 /* Should be called on processing a hugepagesz=... option */
1915 void __init hugetlb_add_hstate(unsigned order)
1916 {
1917 struct hstate *h;
1918 unsigned long i;
1919
1920 if (size_to_hstate(PAGE_SIZE << order)) {
1921 pr_warning("hugepagesz= specified twice, ignoring\n");
1922 return;
1923 }
1924 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1925 BUG_ON(order == 0);
1926 h = &hstates[hugetlb_max_hstate++];
1927 h->order = order;
1928 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1929 h->nr_huge_pages = 0;
1930 h->free_huge_pages = 0;
1931 for (i = 0; i < MAX_NUMNODES; ++i)
1932 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1933 INIT_LIST_HEAD(&h->hugepage_activelist);
1934 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1935 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1936 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1937 huge_page_size(h)/1024);
1938
1939 parsed_hstate = h;
1940 }
1941
1942 static int __init hugetlb_nrpages_setup(char *s)
1943 {
1944 unsigned long *mhp;
1945 static unsigned long *last_mhp;
1946
1947 /*
1948 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1949 * so this hugepages= parameter goes to the "default hstate".
1950 */
1951 if (!hugetlb_max_hstate)
1952 mhp = &default_hstate_max_huge_pages;
1953 else
1954 mhp = &parsed_hstate->max_huge_pages;
1955
1956 if (mhp == last_mhp) {
1957 pr_warning("hugepages= specified twice without "
1958 "interleaving hugepagesz=, ignoring\n");
1959 return 1;
1960 }
1961
1962 if (sscanf(s, "%lu", mhp) <= 0)
1963 *mhp = 0;
1964
1965 /*
1966 * Global state is always initialized later in hugetlb_init.
1967 * But we need to allocate >= MAX_ORDER hstates here early to still
1968 * use the bootmem allocator.
1969 */
1970 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1971 hugetlb_hstate_alloc_pages(parsed_hstate);
1972
1973 last_mhp = mhp;
1974
1975 return 1;
1976 }
1977 __setup("hugepages=", hugetlb_nrpages_setup);
1978
1979 static int __init hugetlb_default_setup(char *s)
1980 {
1981 default_hstate_size = memparse(s, &s);
1982 return 1;
1983 }
1984 __setup("default_hugepagesz=", hugetlb_default_setup);
1985
1986 static unsigned int cpuset_mems_nr(unsigned int *array)
1987 {
1988 int node;
1989 unsigned int nr = 0;
1990
1991 for_each_node_mask(node, cpuset_current_mems_allowed)
1992 nr += array[node];
1993
1994 return nr;
1995 }
1996
1997 #ifdef CONFIG_SYSCTL
1998 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1999 struct ctl_table *table, int write,
2000 void __user *buffer, size_t *length, loff_t *ppos)
2001 {
2002 struct hstate *h = &default_hstate;
2003 unsigned long tmp;
2004 int ret;
2005
2006 tmp = h->max_huge_pages;
2007
2008 if (write && h->order >= MAX_ORDER)
2009 return -EINVAL;
2010
2011 table->data = &tmp;
2012 table->maxlen = sizeof(unsigned long);
2013 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2014 if (ret)
2015 goto out;
2016
2017 if (write) {
2018 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2019 GFP_KERNEL | __GFP_NORETRY);
2020 if (!(obey_mempolicy &&
2021 init_nodemask_of_mempolicy(nodes_allowed))) {
2022 NODEMASK_FREE(nodes_allowed);
2023 nodes_allowed = &node_states[N_MEMORY];
2024 }
2025 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2026
2027 if (nodes_allowed != &node_states[N_MEMORY])
2028 NODEMASK_FREE(nodes_allowed);
2029 }
2030 out:
2031 return ret;
2032 }
2033
2034 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2035 void __user *buffer, size_t *length, loff_t *ppos)
2036 {
2037
2038 return hugetlb_sysctl_handler_common(false, table, write,
2039 buffer, length, ppos);
2040 }
2041
2042 #ifdef CONFIG_NUMA
2043 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2044 void __user *buffer, size_t *length, loff_t *ppos)
2045 {
2046 return hugetlb_sysctl_handler_common(true, table, write,
2047 buffer, length, ppos);
2048 }
2049 #endif /* CONFIG_NUMA */
2050
2051 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2052 void __user *buffer,
2053 size_t *length, loff_t *ppos)
2054 {
2055 proc_dointvec(table, write, buffer, length, ppos);
2056 if (hugepages_treat_as_movable)
2057 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2058 else
2059 htlb_alloc_mask = GFP_HIGHUSER;
2060 return 0;
2061 }
2062
2063 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2064 void __user *buffer,
2065 size_t *length, loff_t *ppos)
2066 {
2067 struct hstate *h = &default_hstate;
2068 unsigned long tmp;
2069 int ret;
2070
2071 tmp = h->nr_overcommit_huge_pages;
2072
2073 if (write && h->order >= MAX_ORDER)
2074 return -EINVAL;
2075
2076 table->data = &tmp;
2077 table->maxlen = sizeof(unsigned long);
2078 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2079 if (ret)
2080 goto out;
2081
2082 if (write) {
2083 spin_lock(&hugetlb_lock);
2084 h->nr_overcommit_huge_pages = tmp;
2085 spin_unlock(&hugetlb_lock);
2086 }
2087 out:
2088 return ret;
2089 }
2090
2091 #endif /* CONFIG_SYSCTL */
2092
2093 void hugetlb_report_meminfo(struct seq_file *m)
2094 {
2095 struct hstate *h = &default_hstate;
2096 seq_printf(m,
2097 "HugePages_Total: %5lu\n"
2098 "HugePages_Free: %5lu\n"
2099 "HugePages_Rsvd: %5lu\n"
2100 "HugePages_Surp: %5lu\n"
2101 "Hugepagesize: %8lu kB\n",
2102 h->nr_huge_pages,
2103 h->free_huge_pages,
2104 h->resv_huge_pages,
2105 h->surplus_huge_pages,
2106 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2107 }
2108
2109 int hugetlb_report_node_meminfo(int nid, char *buf)
2110 {
2111 struct hstate *h = &default_hstate;
2112 return sprintf(buf,
2113 "Node %d HugePages_Total: %5u\n"
2114 "Node %d HugePages_Free: %5u\n"
2115 "Node %d HugePages_Surp: %5u\n",
2116 nid, h->nr_huge_pages_node[nid],
2117 nid, h->free_huge_pages_node[nid],
2118 nid, h->surplus_huge_pages_node[nid]);
2119 }
2120
2121 void hugetlb_show_meminfo(void)
2122 {
2123 struct hstate *h;
2124 int nid;
2125
2126 for_each_node_state(nid, N_MEMORY)
2127 for_each_hstate(h)
2128 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2129 nid,
2130 h->nr_huge_pages_node[nid],
2131 h->free_huge_pages_node[nid],
2132 h->surplus_huge_pages_node[nid],
2133 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2134 }
2135
2136 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2137 unsigned long hugetlb_total_pages(void)
2138 {
2139 struct hstate *h;
2140 unsigned long nr_total_pages = 0;
2141
2142 for_each_hstate(h)
2143 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2144 return nr_total_pages;
2145 }
2146
2147 static int hugetlb_acct_memory(struct hstate *h, long delta)
2148 {
2149 int ret = -ENOMEM;
2150
2151 spin_lock(&hugetlb_lock);
2152 /*
2153 * When cpuset is configured, it breaks the strict hugetlb page
2154 * reservation as the accounting is done on a global variable. Such
2155 * reservation is completely rubbish in the presence of cpuset because
2156 * the reservation is not checked against page availability for the
2157 * current cpuset. Application can still potentially OOM'ed by kernel
2158 * with lack of free htlb page in cpuset that the task is in.
2159 * Attempt to enforce strict accounting with cpuset is almost
2160 * impossible (or too ugly) because cpuset is too fluid that
2161 * task or memory node can be dynamically moved between cpusets.
2162 *
2163 * The change of semantics for shared hugetlb mapping with cpuset is
2164 * undesirable. However, in order to preserve some of the semantics,
2165 * we fall back to check against current free page availability as
2166 * a best attempt and hopefully to minimize the impact of changing
2167 * semantics that cpuset has.
2168 */
2169 if (delta > 0) {
2170 if (gather_surplus_pages(h, delta) < 0)
2171 goto out;
2172
2173 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2174 return_unused_surplus_pages(h, delta);
2175 goto out;
2176 }
2177 }
2178
2179 ret = 0;
2180 if (delta < 0)
2181 return_unused_surplus_pages(h, (unsigned long) -delta);
2182
2183 out:
2184 spin_unlock(&hugetlb_lock);
2185 return ret;
2186 }
2187
2188 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2189 {
2190 struct resv_map *reservations = vma_resv_map(vma);
2191
2192 /*
2193 * This new VMA should share its siblings reservation map if present.
2194 * The VMA will only ever have a valid reservation map pointer where
2195 * it is being copied for another still existing VMA. As that VMA
2196 * has a reference to the reservation map it cannot disappear until
2197 * after this open call completes. It is therefore safe to take a
2198 * new reference here without additional locking.
2199 */
2200 if (reservations)
2201 kref_get(&reservations->refs);
2202 }
2203
2204 static void resv_map_put(struct vm_area_struct *vma)
2205 {
2206 struct resv_map *reservations = vma_resv_map(vma);
2207
2208 if (!reservations)
2209 return;
2210 kref_put(&reservations->refs, resv_map_release);
2211 }
2212
2213 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2214 {
2215 struct hstate *h = hstate_vma(vma);
2216 struct resv_map *reservations = vma_resv_map(vma);
2217 struct hugepage_subpool *spool = subpool_vma(vma);
2218 unsigned long reserve;
2219 unsigned long start;
2220 unsigned long end;
2221
2222 if (reservations) {
2223 start = vma_hugecache_offset(h, vma, vma->vm_start);
2224 end = vma_hugecache_offset(h, vma, vma->vm_end);
2225
2226 reserve = (end - start) -
2227 region_count(&reservations->regions, start, end);
2228
2229 resv_map_put(vma);
2230
2231 if (reserve) {
2232 hugetlb_acct_memory(h, -reserve);
2233 hugepage_subpool_put_pages(spool, reserve);
2234 }
2235 }
2236 }
2237
2238 /*
2239 * We cannot handle pagefaults against hugetlb pages at all. They cause
2240 * handle_mm_fault() to try to instantiate regular-sized pages in the
2241 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2242 * this far.
2243 */
2244 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2245 {
2246 BUG();
2247 return 0;
2248 }
2249
2250 const struct vm_operations_struct hugetlb_vm_ops = {
2251 .fault = hugetlb_vm_op_fault,
2252 .open = hugetlb_vm_op_open,
2253 .close = hugetlb_vm_op_close,
2254 };
2255
2256 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2257 int writable)
2258 {
2259 pte_t entry;
2260
2261 if (writable) {
2262 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2263 vma->vm_page_prot)));
2264 } else {
2265 entry = huge_pte_wrprotect(mk_huge_pte(page,
2266 vma->vm_page_prot));
2267 }
2268 entry = pte_mkyoung(entry);
2269 entry = pte_mkhuge(entry);
2270 entry = arch_make_huge_pte(entry, vma, page, writable);
2271
2272 return entry;
2273 }
2274
2275 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2276 unsigned long address, pte_t *ptep)
2277 {
2278 pte_t entry;
2279
2280 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2281 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2282 update_mmu_cache(vma, address, ptep);
2283 }
2284
2285
2286 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2287 struct vm_area_struct *vma)
2288 {
2289 pte_t *src_pte, *dst_pte, entry;
2290 struct page *ptepage;
2291 unsigned long addr;
2292 int cow;
2293 struct hstate *h = hstate_vma(vma);
2294 unsigned long sz = huge_page_size(h);
2295
2296 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2297
2298 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2299 src_pte = huge_pte_offset(src, addr);
2300 if (!src_pte)
2301 continue;
2302 dst_pte = huge_pte_alloc(dst, addr, sz);
2303 if (!dst_pte)
2304 goto nomem;
2305
2306 /* If the pagetables are shared don't copy or take references */
2307 if (dst_pte == src_pte)
2308 continue;
2309
2310 spin_lock(&dst->page_table_lock);
2311 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2312 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2313 if (cow)
2314 huge_ptep_set_wrprotect(src, addr, src_pte);
2315 entry = huge_ptep_get(src_pte);
2316 ptepage = pte_page(entry);
2317 get_page(ptepage);
2318 page_dup_rmap(ptepage);
2319 set_huge_pte_at(dst, addr, dst_pte, entry);
2320 }
2321 spin_unlock(&src->page_table_lock);
2322 spin_unlock(&dst->page_table_lock);
2323 }
2324 return 0;
2325
2326 nomem:
2327 return -ENOMEM;
2328 }
2329
2330 static int is_hugetlb_entry_migration(pte_t pte)
2331 {
2332 swp_entry_t swp;
2333
2334 if (huge_pte_none(pte) || pte_present(pte))
2335 return 0;
2336 swp = pte_to_swp_entry(pte);
2337 if (non_swap_entry(swp) && is_migration_entry(swp))
2338 return 1;
2339 else
2340 return 0;
2341 }
2342
2343 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2344 {
2345 swp_entry_t swp;
2346
2347 if (huge_pte_none(pte) || pte_present(pte))
2348 return 0;
2349 swp = pte_to_swp_entry(pte);
2350 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2351 return 1;
2352 else
2353 return 0;
2354 }
2355
2356 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2357 unsigned long start, unsigned long end,
2358 struct page *ref_page)
2359 {
2360 int force_flush = 0;
2361 struct mm_struct *mm = vma->vm_mm;
2362 unsigned long address;
2363 pte_t *ptep;
2364 pte_t pte;
2365 struct page *page;
2366 struct hstate *h = hstate_vma(vma);
2367 unsigned long sz = huge_page_size(h);
2368 const unsigned long mmun_start = start; /* For mmu_notifiers */
2369 const unsigned long mmun_end = end; /* For mmu_notifiers */
2370
2371 WARN_ON(!is_vm_hugetlb_page(vma));
2372 BUG_ON(start & ~huge_page_mask(h));
2373 BUG_ON(end & ~huge_page_mask(h));
2374
2375 tlb_start_vma(tlb, vma);
2376 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2377 again:
2378 spin_lock(&mm->page_table_lock);
2379 for (address = start; address < end; address += sz) {
2380 ptep = huge_pte_offset(mm, address);
2381 if (!ptep)
2382 continue;
2383
2384 if (huge_pmd_unshare(mm, &address, ptep))
2385 continue;
2386
2387 pte = huge_ptep_get(ptep);
2388 if (huge_pte_none(pte))
2389 continue;
2390
2391 /*
2392 * HWPoisoned hugepage is already unmapped and dropped reference
2393 */
2394 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2395 huge_pte_clear(mm, address, ptep);
2396 continue;
2397 }
2398
2399 page = pte_page(pte);
2400 /*
2401 * If a reference page is supplied, it is because a specific
2402 * page is being unmapped, not a range. Ensure the page we
2403 * are about to unmap is the actual page of interest.
2404 */
2405 if (ref_page) {
2406 if (page != ref_page)
2407 continue;
2408
2409 /*
2410 * Mark the VMA as having unmapped its page so that
2411 * future faults in this VMA will fail rather than
2412 * looking like data was lost
2413 */
2414 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2415 }
2416
2417 pte = huge_ptep_get_and_clear(mm, address, ptep);
2418 tlb_remove_tlb_entry(tlb, ptep, address);
2419 if (huge_pte_dirty(pte))
2420 set_page_dirty(page);
2421
2422 page_remove_rmap(page);
2423 force_flush = !__tlb_remove_page(tlb, page);
2424 if (force_flush)
2425 break;
2426 /* Bail out after unmapping reference page if supplied */
2427 if (ref_page)
2428 break;
2429 }
2430 spin_unlock(&mm->page_table_lock);
2431 /*
2432 * mmu_gather ran out of room to batch pages, we break out of
2433 * the PTE lock to avoid doing the potential expensive TLB invalidate
2434 * and page-free while holding it.
2435 */
2436 if (force_flush) {
2437 force_flush = 0;
2438 tlb_flush_mmu(tlb);
2439 if (address < end && !ref_page)
2440 goto again;
2441 }
2442 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2443 tlb_end_vma(tlb, vma);
2444 }
2445
2446 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2447 struct vm_area_struct *vma, unsigned long start,
2448 unsigned long end, struct page *ref_page)
2449 {
2450 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2451
2452 /*
2453 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2454 * test will fail on a vma being torn down, and not grab a page table
2455 * on its way out. We're lucky that the flag has such an appropriate
2456 * name, and can in fact be safely cleared here. We could clear it
2457 * before the __unmap_hugepage_range above, but all that's necessary
2458 * is to clear it before releasing the i_mmap_mutex. This works
2459 * because in the context this is called, the VMA is about to be
2460 * destroyed and the i_mmap_mutex is held.
2461 */
2462 vma->vm_flags &= ~VM_MAYSHARE;
2463 }
2464
2465 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2466 unsigned long end, struct page *ref_page)
2467 {
2468 struct mm_struct *mm;
2469 struct mmu_gather tlb;
2470
2471 mm = vma->vm_mm;
2472
2473 tlb_gather_mmu(&tlb, mm, start, end);
2474 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2475 tlb_finish_mmu(&tlb, start, end);
2476 }
2477
2478 /*
2479 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2480 * mappping it owns the reserve page for. The intention is to unmap the page
2481 * from other VMAs and let the children be SIGKILLed if they are faulting the
2482 * same region.
2483 */
2484 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2485 struct page *page, unsigned long address)
2486 {
2487 struct hstate *h = hstate_vma(vma);
2488 struct vm_area_struct *iter_vma;
2489 struct address_space *mapping;
2490 pgoff_t pgoff;
2491
2492 /*
2493 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2494 * from page cache lookup which is in HPAGE_SIZE units.
2495 */
2496 address = address & huge_page_mask(h);
2497 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2498 vma->vm_pgoff;
2499 mapping = file_inode(vma->vm_file)->i_mapping;
2500
2501 /*
2502 * Take the mapping lock for the duration of the table walk. As
2503 * this mapping should be shared between all the VMAs,
2504 * __unmap_hugepage_range() is called as the lock is already held
2505 */
2506 mutex_lock(&mapping->i_mmap_mutex);
2507 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2508 /* Do not unmap the current VMA */
2509 if (iter_vma == vma)
2510 continue;
2511
2512 /*
2513 * Unmap the page from other VMAs without their own reserves.
2514 * They get marked to be SIGKILLed if they fault in these
2515 * areas. This is because a future no-page fault on this VMA
2516 * could insert a zeroed page instead of the data existing
2517 * from the time of fork. This would look like data corruption
2518 */
2519 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2520 unmap_hugepage_range(iter_vma, address,
2521 address + huge_page_size(h), page);
2522 }
2523 mutex_unlock(&mapping->i_mmap_mutex);
2524
2525 return 1;
2526 }
2527
2528 /*
2529 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2530 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2531 * cannot race with other handlers or page migration.
2532 * Keep the pte_same checks anyway to make transition from the mutex easier.
2533 */
2534 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2535 unsigned long address, pte_t *ptep, pte_t pte,
2536 struct page *pagecache_page)
2537 {
2538 struct hstate *h = hstate_vma(vma);
2539 struct page *old_page, *new_page;
2540 int outside_reserve = 0;
2541 unsigned long mmun_start; /* For mmu_notifiers */
2542 unsigned long mmun_end; /* For mmu_notifiers */
2543
2544 old_page = pte_page(pte);
2545
2546 retry_avoidcopy:
2547 /* If no-one else is actually using this page, avoid the copy
2548 * and just make the page writable */
2549 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2550 page_move_anon_rmap(old_page, vma, address);
2551 set_huge_ptep_writable(vma, address, ptep);
2552 return 0;
2553 }
2554
2555 /*
2556 * If the process that created a MAP_PRIVATE mapping is about to
2557 * perform a COW due to a shared page count, attempt to satisfy
2558 * the allocation without using the existing reserves. The pagecache
2559 * page is used to determine if the reserve at this address was
2560 * consumed or not. If reserves were used, a partial faulted mapping
2561 * at the time of fork() could consume its reserves on COW instead
2562 * of the full address range.
2563 */
2564 if (!(vma->vm_flags & VM_MAYSHARE) &&
2565 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2566 old_page != pagecache_page)
2567 outside_reserve = 1;
2568
2569 page_cache_get(old_page);
2570
2571 /* Drop page_table_lock as buddy allocator may be called */
2572 spin_unlock(&mm->page_table_lock);
2573 new_page = alloc_huge_page(vma, address, outside_reserve);
2574
2575 if (IS_ERR(new_page)) {
2576 long err = PTR_ERR(new_page);
2577 page_cache_release(old_page);
2578
2579 /*
2580 * If a process owning a MAP_PRIVATE mapping fails to COW,
2581 * it is due to references held by a child and an insufficient
2582 * huge page pool. To guarantee the original mappers
2583 * reliability, unmap the page from child processes. The child
2584 * may get SIGKILLed if it later faults.
2585 */
2586 if (outside_reserve) {
2587 BUG_ON(huge_pte_none(pte));
2588 if (unmap_ref_private(mm, vma, old_page, address)) {
2589 BUG_ON(huge_pte_none(pte));
2590 spin_lock(&mm->page_table_lock);
2591 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2592 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2593 goto retry_avoidcopy;
2594 /*
2595 * race occurs while re-acquiring page_table_lock, and
2596 * our job is done.
2597 */
2598 return 0;
2599 }
2600 WARN_ON_ONCE(1);
2601 }
2602
2603 /* Caller expects lock to be held */
2604 spin_lock(&mm->page_table_lock);
2605 if (err == -ENOMEM)
2606 return VM_FAULT_OOM;
2607 else
2608 return VM_FAULT_SIGBUS;
2609 }
2610
2611 /*
2612 * When the original hugepage is shared one, it does not have
2613 * anon_vma prepared.
2614 */
2615 if (unlikely(anon_vma_prepare(vma))) {
2616 page_cache_release(new_page);
2617 page_cache_release(old_page);
2618 /* Caller expects lock to be held */
2619 spin_lock(&mm->page_table_lock);
2620 return VM_FAULT_OOM;
2621 }
2622
2623 copy_user_huge_page(new_page, old_page, address, vma,
2624 pages_per_huge_page(h));
2625 __SetPageUptodate(new_page);
2626
2627 mmun_start = address & huge_page_mask(h);
2628 mmun_end = mmun_start + huge_page_size(h);
2629 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2630 /*
2631 * Retake the page_table_lock to check for racing updates
2632 * before the page tables are altered
2633 */
2634 spin_lock(&mm->page_table_lock);
2635 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2636 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2637 /* Break COW */
2638 huge_ptep_clear_flush(vma, address, ptep);
2639 set_huge_pte_at(mm, address, ptep,
2640 make_huge_pte(vma, new_page, 1));
2641 page_remove_rmap(old_page);
2642 hugepage_add_new_anon_rmap(new_page, vma, address);
2643 /* Make the old page be freed below */
2644 new_page = old_page;
2645 }
2646 spin_unlock(&mm->page_table_lock);
2647 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2648 /* Caller expects lock to be held */
2649 spin_lock(&mm->page_table_lock);
2650 page_cache_release(new_page);
2651 page_cache_release(old_page);
2652 return 0;
2653 }
2654
2655 /* Return the pagecache page at a given address within a VMA */
2656 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2657 struct vm_area_struct *vma, unsigned long address)
2658 {
2659 struct address_space *mapping;
2660 pgoff_t idx;
2661
2662 mapping = vma->vm_file->f_mapping;
2663 idx = vma_hugecache_offset(h, vma, address);
2664
2665 return find_lock_page(mapping, idx);
2666 }
2667
2668 /*
2669 * Return whether there is a pagecache page to back given address within VMA.
2670 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2671 */
2672 static bool hugetlbfs_pagecache_present(struct hstate *h,
2673 struct vm_area_struct *vma, unsigned long address)
2674 {
2675 struct address_space *mapping;
2676 pgoff_t idx;
2677 struct page *page;
2678
2679 mapping = vma->vm_file->f_mapping;
2680 idx = vma_hugecache_offset(h, vma, address);
2681
2682 page = find_get_page(mapping, idx);
2683 if (page)
2684 put_page(page);
2685 return page != NULL;
2686 }
2687
2688 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2689 unsigned long address, pte_t *ptep, unsigned int flags)
2690 {
2691 struct hstate *h = hstate_vma(vma);
2692 int ret = VM_FAULT_SIGBUS;
2693 int anon_rmap = 0;
2694 pgoff_t idx;
2695 unsigned long size;
2696 struct page *page;
2697 struct address_space *mapping;
2698 pte_t new_pte;
2699
2700 /*
2701 * Currently, we are forced to kill the process in the event the
2702 * original mapper has unmapped pages from the child due to a failed
2703 * COW. Warn that such a situation has occurred as it may not be obvious
2704 */
2705 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2706 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2707 current->pid);
2708 return ret;
2709 }
2710
2711 mapping = vma->vm_file->f_mapping;
2712 idx = vma_hugecache_offset(h, vma, address);
2713
2714 /*
2715 * Use page lock to guard against racing truncation
2716 * before we get page_table_lock.
2717 */
2718 retry:
2719 page = find_lock_page(mapping, idx);
2720 if (!page) {
2721 size = i_size_read(mapping->host) >> huge_page_shift(h);
2722 if (idx >= size)
2723 goto out;
2724 page = alloc_huge_page(vma, address, 0);
2725 if (IS_ERR(page)) {
2726 ret = PTR_ERR(page);
2727 if (ret == -ENOMEM)
2728 ret = VM_FAULT_OOM;
2729 else
2730 ret = VM_FAULT_SIGBUS;
2731 goto out;
2732 }
2733 clear_huge_page(page, address, pages_per_huge_page(h));
2734 __SetPageUptodate(page);
2735
2736 if (vma->vm_flags & VM_MAYSHARE) {
2737 int err;
2738 struct inode *inode = mapping->host;
2739
2740 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2741 if (err) {
2742 put_page(page);
2743 if (err == -EEXIST)
2744 goto retry;
2745 goto out;
2746 }
2747
2748 spin_lock(&inode->i_lock);
2749 inode->i_blocks += blocks_per_huge_page(h);
2750 spin_unlock(&inode->i_lock);
2751 } else {
2752 lock_page(page);
2753 if (unlikely(anon_vma_prepare(vma))) {
2754 ret = VM_FAULT_OOM;
2755 goto backout_unlocked;
2756 }
2757 anon_rmap = 1;
2758 }
2759 } else {
2760 /*
2761 * If memory error occurs between mmap() and fault, some process
2762 * don't have hwpoisoned swap entry for errored virtual address.
2763 * So we need to block hugepage fault by PG_hwpoison bit check.
2764 */
2765 if (unlikely(PageHWPoison(page))) {
2766 ret = VM_FAULT_HWPOISON |
2767 VM_FAULT_SET_HINDEX(hstate_index(h));
2768 goto backout_unlocked;
2769 }
2770 }
2771
2772 /*
2773 * If we are going to COW a private mapping later, we examine the
2774 * pending reservations for this page now. This will ensure that
2775 * any allocations necessary to record that reservation occur outside
2776 * the spinlock.
2777 */
2778 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2779 if (vma_needs_reservation(h, vma, address) < 0) {
2780 ret = VM_FAULT_OOM;
2781 goto backout_unlocked;
2782 }
2783
2784 spin_lock(&mm->page_table_lock);
2785 size = i_size_read(mapping->host) >> huge_page_shift(h);
2786 if (idx >= size)
2787 goto backout;
2788
2789 ret = 0;
2790 if (!huge_pte_none(huge_ptep_get(ptep)))
2791 goto backout;
2792
2793 if (anon_rmap)
2794 hugepage_add_new_anon_rmap(page, vma, address);
2795 else
2796 page_dup_rmap(page);
2797 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2798 && (vma->vm_flags & VM_SHARED)));
2799 set_huge_pte_at(mm, address, ptep, new_pte);
2800
2801 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2802 /* Optimization, do the COW without a second fault */
2803 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2804 }
2805
2806 spin_unlock(&mm->page_table_lock);
2807 unlock_page(page);
2808 out:
2809 return ret;
2810
2811 backout:
2812 spin_unlock(&mm->page_table_lock);
2813 backout_unlocked:
2814 unlock_page(page);
2815 put_page(page);
2816 goto out;
2817 }
2818
2819 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2820 unsigned long address, unsigned int flags)
2821 {
2822 pte_t *ptep;
2823 pte_t entry;
2824 int ret;
2825 struct page *page = NULL;
2826 struct page *pagecache_page = NULL;
2827 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2828 struct hstate *h = hstate_vma(vma);
2829
2830 address &= huge_page_mask(h);
2831
2832 ptep = huge_pte_offset(mm, address);
2833 if (ptep) {
2834 entry = huge_ptep_get(ptep);
2835 if (unlikely(is_hugetlb_entry_migration(entry))) {
2836 migration_entry_wait_huge(mm, ptep);
2837 return 0;
2838 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2839 return VM_FAULT_HWPOISON_LARGE |
2840 VM_FAULT_SET_HINDEX(hstate_index(h));
2841 }
2842
2843 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2844 if (!ptep)
2845 return VM_FAULT_OOM;
2846
2847 /*
2848 * Serialize hugepage allocation and instantiation, so that we don't
2849 * get spurious allocation failures if two CPUs race to instantiate
2850 * the same page in the page cache.
2851 */
2852 mutex_lock(&hugetlb_instantiation_mutex);
2853 entry = huge_ptep_get(ptep);
2854 if (huge_pte_none(entry)) {
2855 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2856 goto out_mutex;
2857 }
2858
2859 ret = 0;
2860
2861 /*
2862 * If we are going to COW the mapping later, we examine the pending
2863 * reservations for this page now. This will ensure that any
2864 * allocations necessary to record that reservation occur outside the
2865 * spinlock. For private mappings, we also lookup the pagecache
2866 * page now as it is used to determine if a reservation has been
2867 * consumed.
2868 */
2869 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2870 if (vma_needs_reservation(h, vma, address) < 0) {
2871 ret = VM_FAULT_OOM;
2872 goto out_mutex;
2873 }
2874
2875 if (!(vma->vm_flags & VM_MAYSHARE))
2876 pagecache_page = hugetlbfs_pagecache_page(h,
2877 vma, address);
2878 }
2879
2880 /*
2881 * hugetlb_cow() requires page locks of pte_page(entry) and
2882 * pagecache_page, so here we need take the former one
2883 * when page != pagecache_page or !pagecache_page.
2884 * Note that locking order is always pagecache_page -> page,
2885 * so no worry about deadlock.
2886 */
2887 page = pte_page(entry);
2888 get_page(page);
2889 if (page != pagecache_page)
2890 lock_page(page);
2891
2892 spin_lock(&mm->page_table_lock);
2893 /* Check for a racing update before calling hugetlb_cow */
2894 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2895 goto out_page_table_lock;
2896
2897
2898 if (flags & FAULT_FLAG_WRITE) {
2899 if (!huge_pte_write(entry)) {
2900 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2901 pagecache_page);
2902 goto out_page_table_lock;
2903 }
2904 entry = huge_pte_mkdirty(entry);
2905 }
2906 entry = pte_mkyoung(entry);
2907 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2908 flags & FAULT_FLAG_WRITE))
2909 update_mmu_cache(vma, address, ptep);
2910
2911 out_page_table_lock:
2912 spin_unlock(&mm->page_table_lock);
2913
2914 if (pagecache_page) {
2915 unlock_page(pagecache_page);
2916 put_page(pagecache_page);
2917 }
2918 if (page != pagecache_page)
2919 unlock_page(page);
2920 put_page(page);
2921
2922 out_mutex:
2923 mutex_unlock(&hugetlb_instantiation_mutex);
2924
2925 return ret;
2926 }
2927
2928 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2929 struct page **pages, struct vm_area_struct **vmas,
2930 unsigned long *position, unsigned long *nr_pages,
2931 long i, unsigned int flags)
2932 {
2933 unsigned long pfn_offset;
2934 unsigned long vaddr = *position;
2935 unsigned long remainder = *nr_pages;
2936 struct hstate *h = hstate_vma(vma);
2937
2938 spin_lock(&mm->page_table_lock);
2939 while (vaddr < vma->vm_end && remainder) {
2940 pte_t *pte;
2941 int absent;
2942 struct page *page;
2943
2944 /*
2945 * Some archs (sparc64, sh*) have multiple pte_ts to
2946 * each hugepage. We have to make sure we get the
2947 * first, for the page indexing below to work.
2948 */
2949 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2950 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2951
2952 /*
2953 * When coredumping, it suits get_dump_page if we just return
2954 * an error where there's an empty slot with no huge pagecache
2955 * to back it. This way, we avoid allocating a hugepage, and
2956 * the sparse dumpfile avoids allocating disk blocks, but its
2957 * huge holes still show up with zeroes where they need to be.
2958 */
2959 if (absent && (flags & FOLL_DUMP) &&
2960 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2961 remainder = 0;
2962 break;
2963 }
2964
2965 /*
2966 * We need call hugetlb_fault for both hugepages under migration
2967 * (in which case hugetlb_fault waits for the migration,) and
2968 * hwpoisoned hugepages (in which case we need to prevent the
2969 * caller from accessing to them.) In order to do this, we use
2970 * here is_swap_pte instead of is_hugetlb_entry_migration and
2971 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2972 * both cases, and because we can't follow correct pages
2973 * directly from any kind of swap entries.
2974 */
2975 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2976 ((flags & FOLL_WRITE) &&
2977 !huge_pte_write(huge_ptep_get(pte)))) {
2978 int ret;
2979
2980 spin_unlock(&mm->page_table_lock);
2981 ret = hugetlb_fault(mm, vma, vaddr,
2982 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2983 spin_lock(&mm->page_table_lock);
2984 if (!(ret & VM_FAULT_ERROR))
2985 continue;
2986
2987 remainder = 0;
2988 break;
2989 }
2990
2991 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2992 page = pte_page(huge_ptep_get(pte));
2993 same_page:
2994 if (pages) {
2995 pages[i] = mem_map_offset(page, pfn_offset);
2996 get_page(pages[i]);
2997 }
2998
2999 if (vmas)
3000 vmas[i] = vma;
3001
3002 vaddr += PAGE_SIZE;
3003 ++pfn_offset;
3004 --remainder;
3005 ++i;
3006 if (vaddr < vma->vm_end && remainder &&
3007 pfn_offset < pages_per_huge_page(h)) {
3008 /*
3009 * We use pfn_offset to avoid touching the pageframes
3010 * of this compound page.
3011 */
3012 goto same_page;
3013 }
3014 }
3015 spin_unlock(&mm->page_table_lock);
3016 *nr_pages = remainder;
3017 *position = vaddr;
3018
3019 return i ? i : -EFAULT;
3020 }
3021
3022 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3023 unsigned long address, unsigned long end, pgprot_t newprot)
3024 {
3025 struct mm_struct *mm = vma->vm_mm;
3026 unsigned long start = address;
3027 pte_t *ptep;
3028 pte_t pte;
3029 struct hstate *h = hstate_vma(vma);
3030 unsigned long pages = 0;
3031
3032 BUG_ON(address >= end);
3033 flush_cache_range(vma, address, end);
3034
3035 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3036 spin_lock(&mm->page_table_lock);
3037 for (; address < end; address += huge_page_size(h)) {
3038 ptep = huge_pte_offset(mm, address);
3039 if (!ptep)
3040 continue;
3041 if (huge_pmd_unshare(mm, &address, ptep)) {
3042 pages++;
3043 continue;
3044 }
3045 if (!huge_pte_none(huge_ptep_get(ptep))) {
3046 pte = huge_ptep_get_and_clear(mm, address, ptep);
3047 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3048 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3049 set_huge_pte_at(mm, address, ptep, pte);
3050 pages++;
3051 }
3052 }
3053 spin_unlock(&mm->page_table_lock);
3054 /*
3055 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3056 * may have cleared our pud entry and done put_page on the page table:
3057 * once we release i_mmap_mutex, another task can do the final put_page
3058 * and that page table be reused and filled with junk.
3059 */
3060 flush_tlb_range(vma, start, end);
3061 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3062
3063 return pages << h->order;
3064 }
3065
3066 int hugetlb_reserve_pages(struct inode *inode,
3067 long from, long to,
3068 struct vm_area_struct *vma,
3069 vm_flags_t vm_flags)
3070 {
3071 long ret, chg;
3072 struct hstate *h = hstate_inode(inode);
3073 struct hugepage_subpool *spool = subpool_inode(inode);
3074
3075 /*
3076 * Only apply hugepage reservation if asked. At fault time, an
3077 * attempt will be made for VM_NORESERVE to allocate a page
3078 * without using reserves
3079 */
3080 if (vm_flags & VM_NORESERVE)
3081 return 0;
3082
3083 /*
3084 * Shared mappings base their reservation on the number of pages that
3085 * are already allocated on behalf of the file. Private mappings need
3086 * to reserve the full area even if read-only as mprotect() may be
3087 * called to make the mapping read-write. Assume !vma is a shm mapping
3088 */
3089 if (!vma || vma->vm_flags & VM_MAYSHARE)
3090 chg = region_chg(&inode->i_mapping->private_list, from, to);
3091 else {
3092 struct resv_map *resv_map = resv_map_alloc();
3093 if (!resv_map)
3094 return -ENOMEM;
3095
3096 chg = to - from;
3097
3098 set_vma_resv_map(vma, resv_map);
3099 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3100 }
3101
3102 if (chg < 0) {
3103 ret = chg;
3104 goto out_err;
3105 }
3106
3107 /* There must be enough pages in the subpool for the mapping */
3108 if (hugepage_subpool_get_pages(spool, chg)) {
3109 ret = -ENOSPC;
3110 goto out_err;
3111 }
3112
3113 /*
3114 * Check enough hugepages are available for the reservation.
3115 * Hand the pages back to the subpool if there are not
3116 */
3117 ret = hugetlb_acct_memory(h, chg);
3118 if (ret < 0) {
3119 hugepage_subpool_put_pages(spool, chg);
3120 goto out_err;
3121 }
3122
3123 /*
3124 * Account for the reservations made. Shared mappings record regions
3125 * that have reservations as they are shared by multiple VMAs.
3126 * When the last VMA disappears, the region map says how much
3127 * the reservation was and the page cache tells how much of
3128 * the reservation was consumed. Private mappings are per-VMA and
3129 * only the consumed reservations are tracked. When the VMA
3130 * disappears, the original reservation is the VMA size and the
3131 * consumed reservations are stored in the map. Hence, nothing
3132 * else has to be done for private mappings here
3133 */
3134 if (!vma || vma->vm_flags & VM_MAYSHARE)
3135 region_add(&inode->i_mapping->private_list, from, to);
3136 return 0;
3137 out_err:
3138 if (vma)
3139 resv_map_put(vma);
3140 return ret;
3141 }
3142
3143 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3144 {
3145 struct hstate *h = hstate_inode(inode);
3146 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3147 struct hugepage_subpool *spool = subpool_inode(inode);
3148
3149 spin_lock(&inode->i_lock);
3150 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3151 spin_unlock(&inode->i_lock);
3152
3153 hugepage_subpool_put_pages(spool, (chg - freed));
3154 hugetlb_acct_memory(h, -(chg - freed));
3155 }
3156
3157 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3158 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3159 struct vm_area_struct *vma,
3160 unsigned long addr, pgoff_t idx)
3161 {
3162 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3163 svma->vm_start;
3164 unsigned long sbase = saddr & PUD_MASK;
3165 unsigned long s_end = sbase + PUD_SIZE;
3166
3167 /* Allow segments to share if only one is marked locked */
3168 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3169 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3170
3171 /*
3172 * match the virtual addresses, permission and the alignment of the
3173 * page table page.
3174 */
3175 if (pmd_index(addr) != pmd_index(saddr) ||
3176 vm_flags != svm_flags ||
3177 sbase < svma->vm_start || svma->vm_end < s_end)
3178 return 0;
3179
3180 return saddr;
3181 }
3182
3183 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3184 {
3185 unsigned long base = addr & PUD_MASK;
3186 unsigned long end = base + PUD_SIZE;
3187
3188 /*
3189 * check on proper vm_flags and page table alignment
3190 */
3191 if (vma->vm_flags & VM_MAYSHARE &&
3192 vma->vm_start <= base && end <= vma->vm_end)
3193 return 1;
3194 return 0;
3195 }
3196
3197 /*
3198 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3199 * and returns the corresponding pte. While this is not necessary for the
3200 * !shared pmd case because we can allocate the pmd later as well, it makes the
3201 * code much cleaner. pmd allocation is essential for the shared case because
3202 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3203 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3204 * bad pmd for sharing.
3205 */
3206 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3207 {
3208 struct vm_area_struct *vma = find_vma(mm, addr);
3209 struct address_space *mapping = vma->vm_file->f_mapping;
3210 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3211 vma->vm_pgoff;
3212 struct vm_area_struct *svma;
3213 unsigned long saddr;
3214 pte_t *spte = NULL;
3215 pte_t *pte;
3216
3217 if (!vma_shareable(vma, addr))
3218 return (pte_t *)pmd_alloc(mm, pud, addr);
3219
3220 mutex_lock(&mapping->i_mmap_mutex);
3221 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3222 if (svma == vma)
3223 continue;
3224
3225 saddr = page_table_shareable(svma, vma, addr, idx);
3226 if (saddr) {
3227 spte = huge_pte_offset(svma->vm_mm, saddr);
3228 if (spte) {
3229 get_page(virt_to_page(spte));
3230 break;
3231 }
3232 }
3233 }
3234
3235 if (!spte)
3236 goto out;
3237
3238 spin_lock(&mm->page_table_lock);
3239 if (pud_none(*pud))
3240 pud_populate(mm, pud,
3241 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3242 else
3243 put_page(virt_to_page(spte));
3244 spin_unlock(&mm->page_table_lock);
3245 out:
3246 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3247 mutex_unlock(&mapping->i_mmap_mutex);
3248 return pte;
3249 }
3250
3251 /*
3252 * unmap huge page backed by shared pte.
3253 *
3254 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3255 * indicated by page_count > 1, unmap is achieved by clearing pud and
3256 * decrementing the ref count. If count == 1, the pte page is not shared.
3257 *
3258 * called with vma->vm_mm->page_table_lock held.
3259 *
3260 * returns: 1 successfully unmapped a shared pte page
3261 * 0 the underlying pte page is not shared, or it is the last user
3262 */
3263 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3264 {
3265 pgd_t *pgd = pgd_offset(mm, *addr);
3266 pud_t *pud = pud_offset(pgd, *addr);
3267
3268 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3269 if (page_count(virt_to_page(ptep)) == 1)
3270 return 0;
3271
3272 pud_clear(pud);
3273 put_page(virt_to_page(ptep));
3274 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3275 return 1;
3276 }
3277 #define want_pmd_share() (1)
3278 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3279 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3280 {
3281 return NULL;
3282 }
3283 #define want_pmd_share() (0)
3284 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3285
3286 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3287 pte_t *huge_pte_alloc(struct mm_struct *mm,
3288 unsigned long addr, unsigned long sz)
3289 {
3290 pgd_t *pgd;
3291 pud_t *pud;
3292 pte_t *pte = NULL;
3293
3294 pgd = pgd_offset(mm, addr);
3295 pud = pud_alloc(mm, pgd, addr);
3296 if (pud) {
3297 if (sz == PUD_SIZE) {
3298 pte = (pte_t *)pud;
3299 } else {
3300 BUG_ON(sz != PMD_SIZE);
3301 if (want_pmd_share() && pud_none(*pud))
3302 pte = huge_pmd_share(mm, addr, pud);
3303 else
3304 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3305 }
3306 }
3307 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3308
3309 return pte;
3310 }
3311
3312 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3313 {
3314 pgd_t *pgd;
3315 pud_t *pud;
3316 pmd_t *pmd = NULL;
3317
3318 pgd = pgd_offset(mm, addr);
3319 if (pgd_present(*pgd)) {
3320 pud = pud_offset(pgd, addr);
3321 if (pud_present(*pud)) {
3322 if (pud_huge(*pud))
3323 return (pte_t *)pud;
3324 pmd = pmd_offset(pud, addr);
3325 }
3326 }
3327 return (pte_t *) pmd;
3328 }
3329
3330 struct page *
3331 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3332 pmd_t *pmd, int write)
3333 {
3334 struct page *page;
3335
3336 page = pte_page(*(pte_t *)pmd);
3337 if (page)
3338 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3339 return page;
3340 }
3341
3342 struct page *
3343 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3344 pud_t *pud, int write)
3345 {
3346 struct page *page;
3347
3348 page = pte_page(*(pte_t *)pud);
3349 if (page)
3350 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3351 return page;
3352 }
3353
3354 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3355
3356 /* Can be overriden by architectures */
3357 __attribute__((weak)) struct page *
3358 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3359 pud_t *pud, int write)
3360 {
3361 BUG();
3362 return NULL;
3363 }
3364
3365 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3366
3367 #ifdef CONFIG_MEMORY_FAILURE
3368
3369 /* Should be called in hugetlb_lock */
3370 static int is_hugepage_on_freelist(struct page *hpage)
3371 {
3372 struct page *page;
3373 struct page *tmp;
3374 struct hstate *h = page_hstate(hpage);
3375 int nid = page_to_nid(hpage);
3376
3377 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3378 if (page == hpage)
3379 return 1;
3380 return 0;
3381 }
3382
3383 /*
3384 * This function is called from memory failure code.
3385 * Assume the caller holds page lock of the head page.
3386 */
3387 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3388 {
3389 struct hstate *h = page_hstate(hpage);
3390 int nid = page_to_nid(hpage);
3391 int ret = -EBUSY;
3392
3393 spin_lock(&hugetlb_lock);
3394 if (is_hugepage_on_freelist(hpage)) {
3395 /*
3396 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3397 * but dangling hpage->lru can trigger list-debug warnings
3398 * (this happens when we call unpoison_memory() on it),
3399 * so let it point to itself with list_del_init().
3400 */
3401 list_del_init(&hpage->lru);
3402 set_page_refcounted(hpage);
3403 h->free_huge_pages--;
3404 h->free_huge_pages_node[nid]--;
3405 ret = 0;
3406 }
3407 spin_unlock(&hugetlb_lock);
3408 return ret;
3409 }
3410 #endif
This page took 0.176836 seconds and 6 git commands to generate.