mm: have zonelist contains structs with both a zone pointer and zone_idx
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
37
38 /*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41 static DEFINE_SPINLOCK(hugetlb_lock);
42
43 static void clear_huge_page(struct page *page, unsigned long addr)
44 {
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 }
52 }
53
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
56 {
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 }
64 }
65
66 static void enqueue_huge_page(struct page *page)
67 {
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72 }
73
74 static struct page *dequeue_huge_page(void)
75 {
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90 }
91
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
94 {
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 struct zonelist *zonelist = huge_zonelist(vma, address,
99 htlb_alloc_mask, &mpol);
100 struct zone *zone;
101 struct zoneref *z;
102
103 for_each_zone_zonelist(zone, z, zonelist, MAX_NR_ZONES - 1) {
104 nid = zone_to_nid(zone);
105 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
106 !list_empty(&hugepage_freelists[nid])) {
107 page = list_entry(hugepage_freelists[nid].next,
108 struct page, lru);
109 list_del(&page->lru);
110 free_huge_pages--;
111 free_huge_pages_node[nid]--;
112 if (vma && vma->vm_flags & VM_MAYSHARE)
113 resv_huge_pages--;
114 break;
115 }
116 }
117 mpol_free(mpol); /* unref if mpol !NULL */
118 return page;
119 }
120
121 static void update_and_free_page(struct page *page)
122 {
123 int i;
124 nr_huge_pages--;
125 nr_huge_pages_node[page_to_nid(page)]--;
126 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
127 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
128 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
129 1 << PG_private | 1<< PG_writeback);
130 }
131 set_compound_page_dtor(page, NULL);
132 set_page_refcounted(page);
133 __free_pages(page, HUGETLB_PAGE_ORDER);
134 }
135
136 static void free_huge_page(struct page *page)
137 {
138 int nid = page_to_nid(page);
139 struct address_space *mapping;
140
141 mapping = (struct address_space *) page_private(page);
142 set_page_private(page, 0);
143 BUG_ON(page_count(page));
144 INIT_LIST_HEAD(&page->lru);
145
146 spin_lock(&hugetlb_lock);
147 if (surplus_huge_pages_node[nid]) {
148 update_and_free_page(page);
149 surplus_huge_pages--;
150 surplus_huge_pages_node[nid]--;
151 } else {
152 enqueue_huge_page(page);
153 }
154 spin_unlock(&hugetlb_lock);
155 if (mapping)
156 hugetlb_put_quota(mapping, 1);
157 }
158
159 /*
160 * Increment or decrement surplus_huge_pages. Keep node-specific counters
161 * balanced by operating on them in a round-robin fashion.
162 * Returns 1 if an adjustment was made.
163 */
164 static int adjust_pool_surplus(int delta)
165 {
166 static int prev_nid;
167 int nid = prev_nid;
168 int ret = 0;
169
170 VM_BUG_ON(delta != -1 && delta != 1);
171 do {
172 nid = next_node(nid, node_online_map);
173 if (nid == MAX_NUMNODES)
174 nid = first_node(node_online_map);
175
176 /* To shrink on this node, there must be a surplus page */
177 if (delta < 0 && !surplus_huge_pages_node[nid])
178 continue;
179 /* Surplus cannot exceed the total number of pages */
180 if (delta > 0 && surplus_huge_pages_node[nid] >=
181 nr_huge_pages_node[nid])
182 continue;
183
184 surplus_huge_pages += delta;
185 surplus_huge_pages_node[nid] += delta;
186 ret = 1;
187 break;
188 } while (nid != prev_nid);
189
190 prev_nid = nid;
191 return ret;
192 }
193
194 static struct page *alloc_fresh_huge_page_node(int nid)
195 {
196 struct page *page;
197
198 page = alloc_pages_node(nid,
199 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
200 HUGETLB_PAGE_ORDER);
201 if (page) {
202 set_compound_page_dtor(page, free_huge_page);
203 spin_lock(&hugetlb_lock);
204 nr_huge_pages++;
205 nr_huge_pages_node[nid]++;
206 spin_unlock(&hugetlb_lock);
207 put_page(page); /* free it into the hugepage allocator */
208 }
209
210 return page;
211 }
212
213 static int alloc_fresh_huge_page(void)
214 {
215 struct page *page;
216 int start_nid;
217 int next_nid;
218 int ret = 0;
219
220 start_nid = hugetlb_next_nid;
221
222 do {
223 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
224 if (page)
225 ret = 1;
226 /*
227 * Use a helper variable to find the next node and then
228 * copy it back to hugetlb_next_nid afterwards:
229 * otherwise there's a window in which a racer might
230 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
231 * But we don't need to use a spin_lock here: it really
232 * doesn't matter if occasionally a racer chooses the
233 * same nid as we do. Move nid forward in the mask even
234 * if we just successfully allocated a hugepage so that
235 * the next caller gets hugepages on the next node.
236 */
237 next_nid = next_node(hugetlb_next_nid, node_online_map);
238 if (next_nid == MAX_NUMNODES)
239 next_nid = first_node(node_online_map);
240 hugetlb_next_nid = next_nid;
241 } while (!page && hugetlb_next_nid != start_nid);
242
243 return ret;
244 }
245
246 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
247 unsigned long address)
248 {
249 struct page *page;
250 unsigned int nid;
251
252 /*
253 * Assume we will successfully allocate the surplus page to
254 * prevent racing processes from causing the surplus to exceed
255 * overcommit
256 *
257 * This however introduces a different race, where a process B
258 * tries to grow the static hugepage pool while alloc_pages() is
259 * called by process A. B will only examine the per-node
260 * counters in determining if surplus huge pages can be
261 * converted to normal huge pages in adjust_pool_surplus(). A
262 * won't be able to increment the per-node counter, until the
263 * lock is dropped by B, but B doesn't drop hugetlb_lock until
264 * no more huge pages can be converted from surplus to normal
265 * state (and doesn't try to convert again). Thus, we have a
266 * case where a surplus huge page exists, the pool is grown, and
267 * the surplus huge page still exists after, even though it
268 * should just have been converted to a normal huge page. This
269 * does not leak memory, though, as the hugepage will be freed
270 * once it is out of use. It also does not allow the counters to
271 * go out of whack in adjust_pool_surplus() as we don't modify
272 * the node values until we've gotten the hugepage and only the
273 * per-node value is checked there.
274 */
275 spin_lock(&hugetlb_lock);
276 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
277 spin_unlock(&hugetlb_lock);
278 return NULL;
279 } else {
280 nr_huge_pages++;
281 surplus_huge_pages++;
282 }
283 spin_unlock(&hugetlb_lock);
284
285 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
286 HUGETLB_PAGE_ORDER);
287
288 spin_lock(&hugetlb_lock);
289 if (page) {
290 /*
291 * This page is now managed by the hugetlb allocator and has
292 * no users -- drop the buddy allocator's reference.
293 */
294 put_page_testzero(page);
295 VM_BUG_ON(page_count(page));
296 nid = page_to_nid(page);
297 set_compound_page_dtor(page, free_huge_page);
298 /*
299 * We incremented the global counters already
300 */
301 nr_huge_pages_node[nid]++;
302 surplus_huge_pages_node[nid]++;
303 } else {
304 nr_huge_pages--;
305 surplus_huge_pages--;
306 }
307 spin_unlock(&hugetlb_lock);
308
309 return page;
310 }
311
312 /*
313 * Increase the hugetlb pool such that it can accomodate a reservation
314 * of size 'delta'.
315 */
316 static int gather_surplus_pages(int delta)
317 {
318 struct list_head surplus_list;
319 struct page *page, *tmp;
320 int ret, i;
321 int needed, allocated;
322
323 needed = (resv_huge_pages + delta) - free_huge_pages;
324 if (needed <= 0) {
325 resv_huge_pages += delta;
326 return 0;
327 }
328
329 allocated = 0;
330 INIT_LIST_HEAD(&surplus_list);
331
332 ret = -ENOMEM;
333 retry:
334 spin_unlock(&hugetlb_lock);
335 for (i = 0; i < needed; i++) {
336 page = alloc_buddy_huge_page(NULL, 0);
337 if (!page) {
338 /*
339 * We were not able to allocate enough pages to
340 * satisfy the entire reservation so we free what
341 * we've allocated so far.
342 */
343 spin_lock(&hugetlb_lock);
344 needed = 0;
345 goto free;
346 }
347
348 list_add(&page->lru, &surplus_list);
349 }
350 allocated += needed;
351
352 /*
353 * After retaking hugetlb_lock, we need to recalculate 'needed'
354 * because either resv_huge_pages or free_huge_pages may have changed.
355 */
356 spin_lock(&hugetlb_lock);
357 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
358 if (needed > 0)
359 goto retry;
360
361 /*
362 * The surplus_list now contains _at_least_ the number of extra pages
363 * needed to accomodate the reservation. Add the appropriate number
364 * of pages to the hugetlb pool and free the extras back to the buddy
365 * allocator. Commit the entire reservation here to prevent another
366 * process from stealing the pages as they are added to the pool but
367 * before they are reserved.
368 */
369 needed += allocated;
370 resv_huge_pages += delta;
371 ret = 0;
372 free:
373 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
374 list_del(&page->lru);
375 if ((--needed) >= 0)
376 enqueue_huge_page(page);
377 else {
378 /*
379 * The page has a reference count of zero already, so
380 * call free_huge_page directly instead of using
381 * put_page. This must be done with hugetlb_lock
382 * unlocked which is safe because free_huge_page takes
383 * hugetlb_lock before deciding how to free the page.
384 */
385 spin_unlock(&hugetlb_lock);
386 free_huge_page(page);
387 spin_lock(&hugetlb_lock);
388 }
389 }
390
391 return ret;
392 }
393
394 /*
395 * When releasing a hugetlb pool reservation, any surplus pages that were
396 * allocated to satisfy the reservation must be explicitly freed if they were
397 * never used.
398 */
399 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
400 {
401 static int nid = -1;
402 struct page *page;
403 unsigned long nr_pages;
404
405 /*
406 * We want to release as many surplus pages as possible, spread
407 * evenly across all nodes. Iterate across all nodes until we
408 * can no longer free unreserved surplus pages. This occurs when
409 * the nodes with surplus pages have no free pages.
410 */
411 unsigned long remaining_iterations = num_online_nodes();
412
413 /* Uncommit the reservation */
414 resv_huge_pages -= unused_resv_pages;
415
416 nr_pages = min(unused_resv_pages, surplus_huge_pages);
417
418 while (remaining_iterations-- && nr_pages) {
419 nid = next_node(nid, node_online_map);
420 if (nid == MAX_NUMNODES)
421 nid = first_node(node_online_map);
422
423 if (!surplus_huge_pages_node[nid])
424 continue;
425
426 if (!list_empty(&hugepage_freelists[nid])) {
427 page = list_entry(hugepage_freelists[nid].next,
428 struct page, lru);
429 list_del(&page->lru);
430 update_and_free_page(page);
431 free_huge_pages--;
432 free_huge_pages_node[nid]--;
433 surplus_huge_pages--;
434 surplus_huge_pages_node[nid]--;
435 nr_pages--;
436 remaining_iterations = num_online_nodes();
437 }
438 }
439 }
440
441
442 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
443 unsigned long addr)
444 {
445 struct page *page;
446
447 spin_lock(&hugetlb_lock);
448 page = dequeue_huge_page_vma(vma, addr);
449 spin_unlock(&hugetlb_lock);
450 return page ? page : ERR_PTR(-VM_FAULT_OOM);
451 }
452
453 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
454 unsigned long addr)
455 {
456 struct page *page = NULL;
457
458 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
459 return ERR_PTR(-VM_FAULT_SIGBUS);
460
461 spin_lock(&hugetlb_lock);
462 if (free_huge_pages > resv_huge_pages)
463 page = dequeue_huge_page_vma(vma, addr);
464 spin_unlock(&hugetlb_lock);
465 if (!page) {
466 page = alloc_buddy_huge_page(vma, addr);
467 if (!page) {
468 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
469 return ERR_PTR(-VM_FAULT_OOM);
470 }
471 }
472 return page;
473 }
474
475 static struct page *alloc_huge_page(struct vm_area_struct *vma,
476 unsigned long addr)
477 {
478 struct page *page;
479 struct address_space *mapping = vma->vm_file->f_mapping;
480
481 if (vma->vm_flags & VM_MAYSHARE)
482 page = alloc_huge_page_shared(vma, addr);
483 else
484 page = alloc_huge_page_private(vma, addr);
485
486 if (!IS_ERR(page)) {
487 set_page_refcounted(page);
488 set_page_private(page, (unsigned long) mapping);
489 }
490 return page;
491 }
492
493 static int __init hugetlb_init(void)
494 {
495 unsigned long i;
496
497 if (HPAGE_SHIFT == 0)
498 return 0;
499
500 for (i = 0; i < MAX_NUMNODES; ++i)
501 INIT_LIST_HEAD(&hugepage_freelists[i]);
502
503 hugetlb_next_nid = first_node(node_online_map);
504
505 for (i = 0; i < max_huge_pages; ++i) {
506 if (!alloc_fresh_huge_page())
507 break;
508 }
509 max_huge_pages = free_huge_pages = nr_huge_pages = i;
510 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
511 return 0;
512 }
513 module_init(hugetlb_init);
514
515 static int __init hugetlb_setup(char *s)
516 {
517 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
518 max_huge_pages = 0;
519 return 1;
520 }
521 __setup("hugepages=", hugetlb_setup);
522
523 static unsigned int cpuset_mems_nr(unsigned int *array)
524 {
525 int node;
526 unsigned int nr = 0;
527
528 for_each_node_mask(node, cpuset_current_mems_allowed)
529 nr += array[node];
530
531 return nr;
532 }
533
534 #ifdef CONFIG_SYSCTL
535 #ifdef CONFIG_HIGHMEM
536 static void try_to_free_low(unsigned long count)
537 {
538 int i;
539
540 for (i = 0; i < MAX_NUMNODES; ++i) {
541 struct page *page, *next;
542 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
543 if (count >= nr_huge_pages)
544 return;
545 if (PageHighMem(page))
546 continue;
547 list_del(&page->lru);
548 update_and_free_page(page);
549 free_huge_pages--;
550 free_huge_pages_node[page_to_nid(page)]--;
551 }
552 }
553 }
554 #else
555 static inline void try_to_free_low(unsigned long count)
556 {
557 }
558 #endif
559
560 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
561 static unsigned long set_max_huge_pages(unsigned long count)
562 {
563 unsigned long min_count, ret;
564
565 /*
566 * Increase the pool size
567 * First take pages out of surplus state. Then make up the
568 * remaining difference by allocating fresh huge pages.
569 *
570 * We might race with alloc_buddy_huge_page() here and be unable
571 * to convert a surplus huge page to a normal huge page. That is
572 * not critical, though, it just means the overall size of the
573 * pool might be one hugepage larger than it needs to be, but
574 * within all the constraints specified by the sysctls.
575 */
576 spin_lock(&hugetlb_lock);
577 while (surplus_huge_pages && count > persistent_huge_pages) {
578 if (!adjust_pool_surplus(-1))
579 break;
580 }
581
582 while (count > persistent_huge_pages) {
583 int ret;
584 /*
585 * If this allocation races such that we no longer need the
586 * page, free_huge_page will handle it by freeing the page
587 * and reducing the surplus.
588 */
589 spin_unlock(&hugetlb_lock);
590 ret = alloc_fresh_huge_page();
591 spin_lock(&hugetlb_lock);
592 if (!ret)
593 goto out;
594
595 }
596
597 /*
598 * Decrease the pool size
599 * First return free pages to the buddy allocator (being careful
600 * to keep enough around to satisfy reservations). Then place
601 * pages into surplus state as needed so the pool will shrink
602 * to the desired size as pages become free.
603 *
604 * By placing pages into the surplus state independent of the
605 * overcommit value, we are allowing the surplus pool size to
606 * exceed overcommit. There are few sane options here. Since
607 * alloc_buddy_huge_page() is checking the global counter,
608 * though, we'll note that we're not allowed to exceed surplus
609 * and won't grow the pool anywhere else. Not until one of the
610 * sysctls are changed, or the surplus pages go out of use.
611 */
612 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
613 min_count = max(count, min_count);
614 try_to_free_low(min_count);
615 while (min_count < persistent_huge_pages) {
616 struct page *page = dequeue_huge_page();
617 if (!page)
618 break;
619 update_and_free_page(page);
620 }
621 while (count < persistent_huge_pages) {
622 if (!adjust_pool_surplus(1))
623 break;
624 }
625 out:
626 ret = persistent_huge_pages;
627 spin_unlock(&hugetlb_lock);
628 return ret;
629 }
630
631 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
632 struct file *file, void __user *buffer,
633 size_t *length, loff_t *ppos)
634 {
635 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
636 max_huge_pages = set_max_huge_pages(max_huge_pages);
637 return 0;
638 }
639
640 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
641 struct file *file, void __user *buffer,
642 size_t *length, loff_t *ppos)
643 {
644 proc_dointvec(table, write, file, buffer, length, ppos);
645 if (hugepages_treat_as_movable)
646 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
647 else
648 htlb_alloc_mask = GFP_HIGHUSER;
649 return 0;
650 }
651
652 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
653 struct file *file, void __user *buffer,
654 size_t *length, loff_t *ppos)
655 {
656 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
657 spin_lock(&hugetlb_lock);
658 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
659 spin_unlock(&hugetlb_lock);
660 return 0;
661 }
662
663 #endif /* CONFIG_SYSCTL */
664
665 int hugetlb_report_meminfo(char *buf)
666 {
667 return sprintf(buf,
668 "HugePages_Total: %5lu\n"
669 "HugePages_Free: %5lu\n"
670 "HugePages_Rsvd: %5lu\n"
671 "HugePages_Surp: %5lu\n"
672 "Hugepagesize: %5lu kB\n",
673 nr_huge_pages,
674 free_huge_pages,
675 resv_huge_pages,
676 surplus_huge_pages,
677 HPAGE_SIZE/1024);
678 }
679
680 int hugetlb_report_node_meminfo(int nid, char *buf)
681 {
682 return sprintf(buf,
683 "Node %d HugePages_Total: %5u\n"
684 "Node %d HugePages_Free: %5u\n"
685 "Node %d HugePages_Surp: %5u\n",
686 nid, nr_huge_pages_node[nid],
687 nid, free_huge_pages_node[nid],
688 nid, surplus_huge_pages_node[nid]);
689 }
690
691 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
692 unsigned long hugetlb_total_pages(void)
693 {
694 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
695 }
696
697 /*
698 * We cannot handle pagefaults against hugetlb pages at all. They cause
699 * handle_mm_fault() to try to instantiate regular-sized pages in the
700 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
701 * this far.
702 */
703 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
704 {
705 BUG();
706 return 0;
707 }
708
709 struct vm_operations_struct hugetlb_vm_ops = {
710 .fault = hugetlb_vm_op_fault,
711 };
712
713 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
714 int writable)
715 {
716 pte_t entry;
717
718 if (writable) {
719 entry =
720 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
721 } else {
722 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
723 }
724 entry = pte_mkyoung(entry);
725 entry = pte_mkhuge(entry);
726
727 return entry;
728 }
729
730 static void set_huge_ptep_writable(struct vm_area_struct *vma,
731 unsigned long address, pte_t *ptep)
732 {
733 pte_t entry;
734
735 entry = pte_mkwrite(pte_mkdirty(*ptep));
736 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
737 update_mmu_cache(vma, address, entry);
738 }
739 }
740
741
742 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
743 struct vm_area_struct *vma)
744 {
745 pte_t *src_pte, *dst_pte, entry;
746 struct page *ptepage;
747 unsigned long addr;
748 int cow;
749
750 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
751
752 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
753 src_pte = huge_pte_offset(src, addr);
754 if (!src_pte)
755 continue;
756 dst_pte = huge_pte_alloc(dst, addr);
757 if (!dst_pte)
758 goto nomem;
759
760 /* If the pagetables are shared don't copy or take references */
761 if (dst_pte == src_pte)
762 continue;
763
764 spin_lock(&dst->page_table_lock);
765 spin_lock(&src->page_table_lock);
766 if (!pte_none(*src_pte)) {
767 if (cow)
768 ptep_set_wrprotect(src, addr, src_pte);
769 entry = *src_pte;
770 ptepage = pte_page(entry);
771 get_page(ptepage);
772 set_huge_pte_at(dst, addr, dst_pte, entry);
773 }
774 spin_unlock(&src->page_table_lock);
775 spin_unlock(&dst->page_table_lock);
776 }
777 return 0;
778
779 nomem:
780 return -ENOMEM;
781 }
782
783 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
784 unsigned long end)
785 {
786 struct mm_struct *mm = vma->vm_mm;
787 unsigned long address;
788 pte_t *ptep;
789 pte_t pte;
790 struct page *page;
791 struct page *tmp;
792 /*
793 * A page gathering list, protected by per file i_mmap_lock. The
794 * lock is used to avoid list corruption from multiple unmapping
795 * of the same page since we are using page->lru.
796 */
797 LIST_HEAD(page_list);
798
799 WARN_ON(!is_vm_hugetlb_page(vma));
800 BUG_ON(start & ~HPAGE_MASK);
801 BUG_ON(end & ~HPAGE_MASK);
802
803 spin_lock(&mm->page_table_lock);
804 for (address = start; address < end; address += HPAGE_SIZE) {
805 ptep = huge_pte_offset(mm, address);
806 if (!ptep)
807 continue;
808
809 if (huge_pmd_unshare(mm, &address, ptep))
810 continue;
811
812 pte = huge_ptep_get_and_clear(mm, address, ptep);
813 if (pte_none(pte))
814 continue;
815
816 page = pte_page(pte);
817 if (pte_dirty(pte))
818 set_page_dirty(page);
819 list_add(&page->lru, &page_list);
820 }
821 spin_unlock(&mm->page_table_lock);
822 flush_tlb_range(vma, start, end);
823 list_for_each_entry_safe(page, tmp, &page_list, lru) {
824 list_del(&page->lru);
825 put_page(page);
826 }
827 }
828
829 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
830 unsigned long end)
831 {
832 /*
833 * It is undesirable to test vma->vm_file as it should be non-null
834 * for valid hugetlb area. However, vm_file will be NULL in the error
835 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
836 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
837 * to clean up. Since no pte has actually been setup, it is safe to
838 * do nothing in this case.
839 */
840 if (vma->vm_file) {
841 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
842 __unmap_hugepage_range(vma, start, end);
843 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
844 }
845 }
846
847 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
848 unsigned long address, pte_t *ptep, pte_t pte)
849 {
850 struct page *old_page, *new_page;
851 int avoidcopy;
852
853 old_page = pte_page(pte);
854
855 /* If no-one else is actually using this page, avoid the copy
856 * and just make the page writable */
857 avoidcopy = (page_count(old_page) == 1);
858 if (avoidcopy) {
859 set_huge_ptep_writable(vma, address, ptep);
860 return 0;
861 }
862
863 page_cache_get(old_page);
864 new_page = alloc_huge_page(vma, address);
865
866 if (IS_ERR(new_page)) {
867 page_cache_release(old_page);
868 return -PTR_ERR(new_page);
869 }
870
871 spin_unlock(&mm->page_table_lock);
872 copy_huge_page(new_page, old_page, address, vma);
873 __SetPageUptodate(new_page);
874 spin_lock(&mm->page_table_lock);
875
876 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
877 if (likely(pte_same(*ptep, pte))) {
878 /* Break COW */
879 set_huge_pte_at(mm, address, ptep,
880 make_huge_pte(vma, new_page, 1));
881 /* Make the old page be freed below */
882 new_page = old_page;
883 }
884 page_cache_release(new_page);
885 page_cache_release(old_page);
886 return 0;
887 }
888
889 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
890 unsigned long address, pte_t *ptep, int write_access)
891 {
892 int ret = VM_FAULT_SIGBUS;
893 unsigned long idx;
894 unsigned long size;
895 struct page *page;
896 struct address_space *mapping;
897 pte_t new_pte;
898
899 mapping = vma->vm_file->f_mapping;
900 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
901 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
902
903 /*
904 * Use page lock to guard against racing truncation
905 * before we get page_table_lock.
906 */
907 retry:
908 page = find_lock_page(mapping, idx);
909 if (!page) {
910 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
911 if (idx >= size)
912 goto out;
913 page = alloc_huge_page(vma, address);
914 if (IS_ERR(page)) {
915 ret = -PTR_ERR(page);
916 goto out;
917 }
918 clear_huge_page(page, address);
919 __SetPageUptodate(page);
920
921 if (vma->vm_flags & VM_SHARED) {
922 int err;
923 struct inode *inode = mapping->host;
924
925 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
926 if (err) {
927 put_page(page);
928 if (err == -EEXIST)
929 goto retry;
930 goto out;
931 }
932
933 spin_lock(&inode->i_lock);
934 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
935 spin_unlock(&inode->i_lock);
936 } else
937 lock_page(page);
938 }
939
940 spin_lock(&mm->page_table_lock);
941 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
942 if (idx >= size)
943 goto backout;
944
945 ret = 0;
946 if (!pte_none(*ptep))
947 goto backout;
948
949 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
950 && (vma->vm_flags & VM_SHARED)));
951 set_huge_pte_at(mm, address, ptep, new_pte);
952
953 if (write_access && !(vma->vm_flags & VM_SHARED)) {
954 /* Optimization, do the COW without a second fault */
955 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
956 }
957
958 spin_unlock(&mm->page_table_lock);
959 unlock_page(page);
960 out:
961 return ret;
962
963 backout:
964 spin_unlock(&mm->page_table_lock);
965 unlock_page(page);
966 put_page(page);
967 goto out;
968 }
969
970 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
971 unsigned long address, int write_access)
972 {
973 pte_t *ptep;
974 pte_t entry;
975 int ret;
976 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
977
978 ptep = huge_pte_alloc(mm, address);
979 if (!ptep)
980 return VM_FAULT_OOM;
981
982 /*
983 * Serialize hugepage allocation and instantiation, so that we don't
984 * get spurious allocation failures if two CPUs race to instantiate
985 * the same page in the page cache.
986 */
987 mutex_lock(&hugetlb_instantiation_mutex);
988 entry = *ptep;
989 if (pte_none(entry)) {
990 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
991 mutex_unlock(&hugetlb_instantiation_mutex);
992 return ret;
993 }
994
995 ret = 0;
996
997 spin_lock(&mm->page_table_lock);
998 /* Check for a racing update before calling hugetlb_cow */
999 if (likely(pte_same(entry, *ptep)))
1000 if (write_access && !pte_write(entry))
1001 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1002 spin_unlock(&mm->page_table_lock);
1003 mutex_unlock(&hugetlb_instantiation_mutex);
1004
1005 return ret;
1006 }
1007
1008 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1009 struct page **pages, struct vm_area_struct **vmas,
1010 unsigned long *position, int *length, int i,
1011 int write)
1012 {
1013 unsigned long pfn_offset;
1014 unsigned long vaddr = *position;
1015 int remainder = *length;
1016
1017 spin_lock(&mm->page_table_lock);
1018 while (vaddr < vma->vm_end && remainder) {
1019 pte_t *pte;
1020 struct page *page;
1021
1022 /*
1023 * Some archs (sparc64, sh*) have multiple pte_ts to
1024 * each hugepage. We have to make * sure we get the
1025 * first, for the page indexing below to work.
1026 */
1027 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1028
1029 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1030 int ret;
1031
1032 spin_unlock(&mm->page_table_lock);
1033 ret = hugetlb_fault(mm, vma, vaddr, write);
1034 spin_lock(&mm->page_table_lock);
1035 if (!(ret & VM_FAULT_ERROR))
1036 continue;
1037
1038 remainder = 0;
1039 if (!i)
1040 i = -EFAULT;
1041 break;
1042 }
1043
1044 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1045 page = pte_page(*pte);
1046 same_page:
1047 if (pages) {
1048 get_page(page);
1049 pages[i] = page + pfn_offset;
1050 }
1051
1052 if (vmas)
1053 vmas[i] = vma;
1054
1055 vaddr += PAGE_SIZE;
1056 ++pfn_offset;
1057 --remainder;
1058 ++i;
1059 if (vaddr < vma->vm_end && remainder &&
1060 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1061 /*
1062 * We use pfn_offset to avoid touching the pageframes
1063 * of this compound page.
1064 */
1065 goto same_page;
1066 }
1067 }
1068 spin_unlock(&mm->page_table_lock);
1069 *length = remainder;
1070 *position = vaddr;
1071
1072 return i;
1073 }
1074
1075 void hugetlb_change_protection(struct vm_area_struct *vma,
1076 unsigned long address, unsigned long end, pgprot_t newprot)
1077 {
1078 struct mm_struct *mm = vma->vm_mm;
1079 unsigned long start = address;
1080 pte_t *ptep;
1081 pte_t pte;
1082
1083 BUG_ON(address >= end);
1084 flush_cache_range(vma, address, end);
1085
1086 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1087 spin_lock(&mm->page_table_lock);
1088 for (; address < end; address += HPAGE_SIZE) {
1089 ptep = huge_pte_offset(mm, address);
1090 if (!ptep)
1091 continue;
1092 if (huge_pmd_unshare(mm, &address, ptep))
1093 continue;
1094 if (!pte_none(*ptep)) {
1095 pte = huge_ptep_get_and_clear(mm, address, ptep);
1096 pte = pte_mkhuge(pte_modify(pte, newprot));
1097 set_huge_pte_at(mm, address, ptep, pte);
1098 }
1099 }
1100 spin_unlock(&mm->page_table_lock);
1101 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1102
1103 flush_tlb_range(vma, start, end);
1104 }
1105
1106 struct file_region {
1107 struct list_head link;
1108 long from;
1109 long to;
1110 };
1111
1112 static long region_add(struct list_head *head, long f, long t)
1113 {
1114 struct file_region *rg, *nrg, *trg;
1115
1116 /* Locate the region we are either in or before. */
1117 list_for_each_entry(rg, head, link)
1118 if (f <= rg->to)
1119 break;
1120
1121 /* Round our left edge to the current segment if it encloses us. */
1122 if (f > rg->from)
1123 f = rg->from;
1124
1125 /* Check for and consume any regions we now overlap with. */
1126 nrg = rg;
1127 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1128 if (&rg->link == head)
1129 break;
1130 if (rg->from > t)
1131 break;
1132
1133 /* If this area reaches higher then extend our area to
1134 * include it completely. If this is not the first area
1135 * which we intend to reuse, free it. */
1136 if (rg->to > t)
1137 t = rg->to;
1138 if (rg != nrg) {
1139 list_del(&rg->link);
1140 kfree(rg);
1141 }
1142 }
1143 nrg->from = f;
1144 nrg->to = t;
1145 return 0;
1146 }
1147
1148 static long region_chg(struct list_head *head, long f, long t)
1149 {
1150 struct file_region *rg, *nrg;
1151 long chg = 0;
1152
1153 /* Locate the region we are before or in. */
1154 list_for_each_entry(rg, head, link)
1155 if (f <= rg->to)
1156 break;
1157
1158 /* If we are below the current region then a new region is required.
1159 * Subtle, allocate a new region at the position but make it zero
1160 * size such that we can guarantee to record the reservation. */
1161 if (&rg->link == head || t < rg->from) {
1162 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1163 if (!nrg)
1164 return -ENOMEM;
1165 nrg->from = f;
1166 nrg->to = f;
1167 INIT_LIST_HEAD(&nrg->link);
1168 list_add(&nrg->link, rg->link.prev);
1169
1170 return t - f;
1171 }
1172
1173 /* Round our left edge to the current segment if it encloses us. */
1174 if (f > rg->from)
1175 f = rg->from;
1176 chg = t - f;
1177
1178 /* Check for and consume any regions we now overlap with. */
1179 list_for_each_entry(rg, rg->link.prev, link) {
1180 if (&rg->link == head)
1181 break;
1182 if (rg->from > t)
1183 return chg;
1184
1185 /* We overlap with this area, if it extends futher than
1186 * us then we must extend ourselves. Account for its
1187 * existing reservation. */
1188 if (rg->to > t) {
1189 chg += rg->to - t;
1190 t = rg->to;
1191 }
1192 chg -= rg->to - rg->from;
1193 }
1194 return chg;
1195 }
1196
1197 static long region_truncate(struct list_head *head, long end)
1198 {
1199 struct file_region *rg, *trg;
1200 long chg = 0;
1201
1202 /* Locate the region we are either in or before. */
1203 list_for_each_entry(rg, head, link)
1204 if (end <= rg->to)
1205 break;
1206 if (&rg->link == head)
1207 return 0;
1208
1209 /* If we are in the middle of a region then adjust it. */
1210 if (end > rg->from) {
1211 chg = rg->to - end;
1212 rg->to = end;
1213 rg = list_entry(rg->link.next, typeof(*rg), link);
1214 }
1215
1216 /* Drop any remaining regions. */
1217 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1218 if (&rg->link == head)
1219 break;
1220 chg += rg->to - rg->from;
1221 list_del(&rg->link);
1222 kfree(rg);
1223 }
1224 return chg;
1225 }
1226
1227 static int hugetlb_acct_memory(long delta)
1228 {
1229 int ret = -ENOMEM;
1230
1231 spin_lock(&hugetlb_lock);
1232 /*
1233 * When cpuset is configured, it breaks the strict hugetlb page
1234 * reservation as the accounting is done on a global variable. Such
1235 * reservation is completely rubbish in the presence of cpuset because
1236 * the reservation is not checked against page availability for the
1237 * current cpuset. Application can still potentially OOM'ed by kernel
1238 * with lack of free htlb page in cpuset that the task is in.
1239 * Attempt to enforce strict accounting with cpuset is almost
1240 * impossible (or too ugly) because cpuset is too fluid that
1241 * task or memory node can be dynamically moved between cpusets.
1242 *
1243 * The change of semantics for shared hugetlb mapping with cpuset is
1244 * undesirable. However, in order to preserve some of the semantics,
1245 * we fall back to check against current free page availability as
1246 * a best attempt and hopefully to minimize the impact of changing
1247 * semantics that cpuset has.
1248 */
1249 if (delta > 0) {
1250 if (gather_surplus_pages(delta) < 0)
1251 goto out;
1252
1253 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1254 return_unused_surplus_pages(delta);
1255 goto out;
1256 }
1257 }
1258
1259 ret = 0;
1260 if (delta < 0)
1261 return_unused_surplus_pages((unsigned long) -delta);
1262
1263 out:
1264 spin_unlock(&hugetlb_lock);
1265 return ret;
1266 }
1267
1268 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1269 {
1270 long ret, chg;
1271
1272 chg = region_chg(&inode->i_mapping->private_list, from, to);
1273 if (chg < 0)
1274 return chg;
1275
1276 if (hugetlb_get_quota(inode->i_mapping, chg))
1277 return -ENOSPC;
1278 ret = hugetlb_acct_memory(chg);
1279 if (ret < 0) {
1280 hugetlb_put_quota(inode->i_mapping, chg);
1281 return ret;
1282 }
1283 region_add(&inode->i_mapping->private_list, from, to);
1284 return 0;
1285 }
1286
1287 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1288 {
1289 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1290
1291 spin_lock(&inode->i_lock);
1292 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1293 spin_unlock(&inode->i_lock);
1294
1295 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1296 hugetlb_acct_memory(-(chg - freed));
1297 }
This page took 0.058126 seconds and 6 git commands to generate.