cfq-iosched: get rid of the need for __GFP_NOFAIL in cfq_find_alloc_queue()
[deliverable/linux.git] / mm / kmemleak.c
1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/gfp.h>
76 #include <linux/fs.h>
77 #include <linux/debugfs.h>
78 #include <linux/seq_file.h>
79 #include <linux/cpumask.h>
80 #include <linux/spinlock.h>
81 #include <linux/mutex.h>
82 #include <linux/rcupdate.h>
83 #include <linux/stacktrace.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/hardirq.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
94 #include <linux/mm.h>
95
96 #include <asm/sections.h>
97 #include <asm/processor.h>
98 #include <asm/atomic.h>
99
100 #include <linux/kmemleak.h>
101
102 /*
103 * Kmemleak configuration and common defines.
104 */
105 #define MAX_TRACE 16 /* stack trace length */
106 #define REPORTS_NR 50 /* maximum number of reported leaks */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define MSECS_SCAN_YIELD 10 /* CPU yielding period */
109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111
112 #define BYTES_PER_POINTER sizeof(void *)
113
114 /* GFP bitmask for kmemleak internal allocations */
115 #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long offset;
121 size_t length;
122 };
123
124 /*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132 struct kmemleak_object {
133 spinlock_t lock;
134 unsigned long flags; /* object status flags */
135 struct list_head object_list;
136 struct list_head gray_list;
137 struct prio_tree_node tree_node;
138 struct rcu_head rcu; /* object_list lockless traversal */
139 /* object usage count; object freed when use_count == 0 */
140 atomic_t use_count;
141 unsigned long pointer;
142 size_t size;
143 /* minimum number of a pointers found before it is considered leak */
144 int min_count;
145 /* the total number of pointers found pointing to this object */
146 int count;
147 /* memory ranges to be scanned inside an object (empty for all) */
148 struct hlist_head area_list;
149 unsigned long trace[MAX_TRACE];
150 unsigned int trace_len;
151 unsigned long jiffies; /* creation timestamp */
152 pid_t pid; /* pid of the current task */
153 char comm[TASK_COMM_LEN]; /* executable name */
154 };
155
156 /* flag representing the memory block allocation status */
157 #define OBJECT_ALLOCATED (1 << 0)
158 /* flag set after the first reporting of an unreference object */
159 #define OBJECT_REPORTED (1 << 1)
160 /* flag set to not scan the object */
161 #define OBJECT_NO_SCAN (1 << 2)
162
163 /* the list of all allocated objects */
164 static LIST_HEAD(object_list);
165 /* the list of gray-colored objects (see color_gray comment below) */
166 static LIST_HEAD(gray_list);
167 /* prio search tree for object boundaries */
168 static struct prio_tree_root object_tree_root;
169 /* rw_lock protecting the access to object_list and prio_tree_root */
170 static DEFINE_RWLOCK(kmemleak_lock);
171
172 /* allocation caches for kmemleak internal data */
173 static struct kmem_cache *object_cache;
174 static struct kmem_cache *scan_area_cache;
175
176 /* set if tracing memory operations is enabled */
177 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
178 /* set in the late_initcall if there were no errors */
179 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
180 /* enables or disables early logging of the memory operations */
181 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
182 /* set if a fata kmemleak error has occurred */
183 static atomic_t kmemleak_error = ATOMIC_INIT(0);
184
185 /* minimum and maximum address that may be valid pointers */
186 static unsigned long min_addr = ULONG_MAX;
187 static unsigned long max_addr;
188
189 /* used for yielding the CPU to other tasks during scanning */
190 static unsigned long next_scan_yield;
191 static struct task_struct *scan_thread;
192 static unsigned long jiffies_scan_yield;
193 /* used to avoid reporting of recently allocated objects */
194 static unsigned long jiffies_min_age;
195 static unsigned long jiffies_last_scan;
196 /* delay between automatic memory scannings */
197 static signed long jiffies_scan_wait;
198 /* enables or disables the task stacks scanning */
199 static int kmemleak_stack_scan = 1;
200 /* protects the memory scanning, parameters and debug/kmemleak file access */
201 static DEFINE_MUTEX(scan_mutex);
202
203 /* number of leaks reported (for limitation purposes) */
204 static int reported_leaks;
205
206 /*
207 * Early object allocation/freeing logging. Kmemleak is initialized after the
208 * kernel allocator. However, both the kernel allocator and kmemleak may
209 * allocate memory blocks which need to be tracked. Kmemleak defines an
210 * arbitrary buffer to hold the allocation/freeing information before it is
211 * fully initialized.
212 */
213
214 /* kmemleak operation type for early logging */
215 enum {
216 KMEMLEAK_ALLOC,
217 KMEMLEAK_FREE,
218 KMEMLEAK_NOT_LEAK,
219 KMEMLEAK_IGNORE,
220 KMEMLEAK_SCAN_AREA,
221 KMEMLEAK_NO_SCAN
222 };
223
224 /*
225 * Structure holding the information passed to kmemleak callbacks during the
226 * early logging.
227 */
228 struct early_log {
229 int op_type; /* kmemleak operation type */
230 const void *ptr; /* allocated/freed memory block */
231 size_t size; /* memory block size */
232 int min_count; /* minimum reference count */
233 unsigned long offset; /* scan area offset */
234 size_t length; /* scan area length */
235 };
236
237 /* early logging buffer and current position */
238 static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
239 static int crt_early_log;
240
241 static void kmemleak_disable(void);
242
243 /*
244 * Print a warning and dump the stack trace.
245 */
246 #define kmemleak_warn(x...) do { \
247 pr_warning(x); \
248 dump_stack(); \
249 } while (0)
250
251 /*
252 * Macro invoked when a serious kmemleak condition occured and cannot be
253 * recovered from. Kmemleak will be disabled and further allocation/freeing
254 * tracing no longer available.
255 */
256 #define kmemleak_stop(x...) do { \
257 kmemleak_warn(x); \
258 kmemleak_disable(); \
259 } while (0)
260
261 /*
262 * Object colors, encoded with count and min_count:
263 * - white - orphan object, not enough references to it (count < min_count)
264 * - gray - not orphan, not marked as false positive (min_count == 0) or
265 * sufficient references to it (count >= min_count)
266 * - black - ignore, it doesn't contain references (e.g. text section)
267 * (min_count == -1). No function defined for this color.
268 * Newly created objects don't have any color assigned (object->count == -1)
269 * before the next memory scan when they become white.
270 */
271 static int color_white(const struct kmemleak_object *object)
272 {
273 return object->count != -1 && object->count < object->min_count;
274 }
275
276 static int color_gray(const struct kmemleak_object *object)
277 {
278 return object->min_count != -1 && object->count >= object->min_count;
279 }
280
281 /*
282 * Objects are considered unreferenced only if their color is white, they have
283 * not be deleted and have a minimum age to avoid false positives caused by
284 * pointers temporarily stored in CPU registers.
285 */
286 static int unreferenced_object(struct kmemleak_object *object)
287 {
288 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
289 time_before_eq(object->jiffies + jiffies_min_age,
290 jiffies_last_scan);
291 }
292
293 /*
294 * Printing of the unreferenced objects information to the seq file. The
295 * print_unreferenced function must be called with the object->lock held.
296 */
297 static void print_unreferenced(struct seq_file *seq,
298 struct kmemleak_object *object)
299 {
300 int i;
301
302 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
303 object->pointer, object->size);
304 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
305 object->comm, object->pid, object->jiffies);
306 seq_printf(seq, " backtrace:\n");
307
308 for (i = 0; i < object->trace_len; i++) {
309 void *ptr = (void *)object->trace[i];
310 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
311 }
312 }
313
314 /*
315 * Print the kmemleak_object information. This function is used mainly for
316 * debugging special cases when kmemleak operations. It must be called with
317 * the object->lock held.
318 */
319 static void dump_object_info(struct kmemleak_object *object)
320 {
321 struct stack_trace trace;
322
323 trace.nr_entries = object->trace_len;
324 trace.entries = object->trace;
325
326 pr_notice("Object 0x%08lx (size %zu):\n",
327 object->tree_node.start, object->size);
328 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
329 object->comm, object->pid, object->jiffies);
330 pr_notice(" min_count = %d\n", object->min_count);
331 pr_notice(" count = %d\n", object->count);
332 pr_notice(" backtrace:\n");
333 print_stack_trace(&trace, 4);
334 }
335
336 /*
337 * Look-up a memory block metadata (kmemleak_object) in the priority search
338 * tree based on a pointer value. If alias is 0, only values pointing to the
339 * beginning of the memory block are allowed. The kmemleak_lock must be held
340 * when calling this function.
341 */
342 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
343 {
344 struct prio_tree_node *node;
345 struct prio_tree_iter iter;
346 struct kmemleak_object *object;
347
348 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
349 node = prio_tree_next(&iter);
350 if (node) {
351 object = prio_tree_entry(node, struct kmemleak_object,
352 tree_node);
353 if (!alias && object->pointer != ptr) {
354 kmemleak_warn("Found object by alias");
355 object = NULL;
356 }
357 } else
358 object = NULL;
359
360 return object;
361 }
362
363 /*
364 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
365 * that once an object's use_count reached 0, the RCU freeing was already
366 * registered and the object should no longer be used. This function must be
367 * called under the protection of rcu_read_lock().
368 */
369 static int get_object(struct kmemleak_object *object)
370 {
371 return atomic_inc_not_zero(&object->use_count);
372 }
373
374 /*
375 * RCU callback to free a kmemleak_object.
376 */
377 static void free_object_rcu(struct rcu_head *rcu)
378 {
379 struct hlist_node *elem, *tmp;
380 struct kmemleak_scan_area *area;
381 struct kmemleak_object *object =
382 container_of(rcu, struct kmemleak_object, rcu);
383
384 /*
385 * Once use_count is 0 (guaranteed by put_object), there is no other
386 * code accessing this object, hence no need for locking.
387 */
388 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
389 hlist_del(elem);
390 kmem_cache_free(scan_area_cache, area);
391 }
392 kmem_cache_free(object_cache, object);
393 }
394
395 /*
396 * Decrement the object use_count. Once the count is 0, free the object using
397 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
398 * delete_object() path, the delayed RCU freeing ensures that there is no
399 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
400 * is also possible.
401 */
402 static void put_object(struct kmemleak_object *object)
403 {
404 if (!atomic_dec_and_test(&object->use_count))
405 return;
406
407 /* should only get here after delete_object was called */
408 WARN_ON(object->flags & OBJECT_ALLOCATED);
409
410 call_rcu(&object->rcu, free_object_rcu);
411 }
412
413 /*
414 * Look up an object in the prio search tree and increase its use_count.
415 */
416 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
417 {
418 unsigned long flags;
419 struct kmemleak_object *object = NULL;
420
421 rcu_read_lock();
422 read_lock_irqsave(&kmemleak_lock, flags);
423 if (ptr >= min_addr && ptr < max_addr)
424 object = lookup_object(ptr, alias);
425 read_unlock_irqrestore(&kmemleak_lock, flags);
426
427 /* check whether the object is still available */
428 if (object && !get_object(object))
429 object = NULL;
430 rcu_read_unlock();
431
432 return object;
433 }
434
435 /*
436 * Create the metadata (struct kmemleak_object) corresponding to an allocated
437 * memory block and add it to the object_list and object_tree_root.
438 */
439 static void create_object(unsigned long ptr, size_t size, int min_count,
440 gfp_t gfp)
441 {
442 unsigned long flags;
443 struct kmemleak_object *object;
444 struct prio_tree_node *node;
445 struct stack_trace trace;
446
447 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
448 if (!object) {
449 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
450 return;
451 }
452
453 INIT_LIST_HEAD(&object->object_list);
454 INIT_LIST_HEAD(&object->gray_list);
455 INIT_HLIST_HEAD(&object->area_list);
456 spin_lock_init(&object->lock);
457 atomic_set(&object->use_count, 1);
458 object->flags = OBJECT_ALLOCATED;
459 object->pointer = ptr;
460 object->size = size;
461 object->min_count = min_count;
462 object->count = -1; /* no color initially */
463 object->jiffies = jiffies;
464
465 /* task information */
466 if (in_irq()) {
467 object->pid = 0;
468 strncpy(object->comm, "hardirq", sizeof(object->comm));
469 } else if (in_softirq()) {
470 object->pid = 0;
471 strncpy(object->comm, "softirq", sizeof(object->comm));
472 } else {
473 object->pid = current->pid;
474 /*
475 * There is a small chance of a race with set_task_comm(),
476 * however using get_task_comm() here may cause locking
477 * dependency issues with current->alloc_lock. In the worst
478 * case, the command line is not correct.
479 */
480 strncpy(object->comm, current->comm, sizeof(object->comm));
481 }
482
483 /* kernel backtrace */
484 trace.max_entries = MAX_TRACE;
485 trace.nr_entries = 0;
486 trace.entries = object->trace;
487 trace.skip = 1;
488 save_stack_trace(&trace);
489 object->trace_len = trace.nr_entries;
490
491 INIT_PRIO_TREE_NODE(&object->tree_node);
492 object->tree_node.start = ptr;
493 object->tree_node.last = ptr + size - 1;
494
495 write_lock_irqsave(&kmemleak_lock, flags);
496 min_addr = min(min_addr, ptr);
497 max_addr = max(max_addr, ptr + size);
498 node = prio_tree_insert(&object_tree_root, &object->tree_node);
499 /*
500 * The code calling the kernel does not yet have the pointer to the
501 * memory block to be able to free it. However, we still hold the
502 * kmemleak_lock here in case parts of the kernel started freeing
503 * random memory blocks.
504 */
505 if (node != &object->tree_node) {
506 unsigned long flags;
507
508 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
509 "(already existing)\n", ptr);
510 object = lookup_object(ptr, 1);
511 spin_lock_irqsave(&object->lock, flags);
512 dump_object_info(object);
513 spin_unlock_irqrestore(&object->lock, flags);
514
515 goto out;
516 }
517 list_add_tail_rcu(&object->object_list, &object_list);
518 out:
519 write_unlock_irqrestore(&kmemleak_lock, flags);
520 }
521
522 /*
523 * Remove the metadata (struct kmemleak_object) for a memory block from the
524 * object_list and object_tree_root and decrement its use_count.
525 */
526 static void delete_object(unsigned long ptr)
527 {
528 unsigned long flags;
529 struct kmemleak_object *object;
530
531 write_lock_irqsave(&kmemleak_lock, flags);
532 object = lookup_object(ptr, 0);
533 if (!object) {
534 #ifdef DEBUG
535 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
536 ptr);
537 #endif
538 write_unlock_irqrestore(&kmemleak_lock, flags);
539 return;
540 }
541 prio_tree_remove(&object_tree_root, &object->tree_node);
542 list_del_rcu(&object->object_list);
543 write_unlock_irqrestore(&kmemleak_lock, flags);
544
545 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
546 WARN_ON(atomic_read(&object->use_count) < 1);
547
548 /*
549 * Locking here also ensures that the corresponding memory block
550 * cannot be freed when it is being scanned.
551 */
552 spin_lock_irqsave(&object->lock, flags);
553 object->flags &= ~OBJECT_ALLOCATED;
554 spin_unlock_irqrestore(&object->lock, flags);
555 put_object(object);
556 }
557
558 /*
559 * Make a object permanently as gray-colored so that it can no longer be
560 * reported as a leak. This is used in general to mark a false positive.
561 */
562 static void make_gray_object(unsigned long ptr)
563 {
564 unsigned long flags;
565 struct kmemleak_object *object;
566
567 object = find_and_get_object(ptr, 0);
568 if (!object) {
569 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
570 return;
571 }
572
573 spin_lock_irqsave(&object->lock, flags);
574 object->min_count = 0;
575 spin_unlock_irqrestore(&object->lock, flags);
576 put_object(object);
577 }
578
579 /*
580 * Mark the object as black-colored so that it is ignored from scans and
581 * reporting.
582 */
583 static void make_black_object(unsigned long ptr)
584 {
585 unsigned long flags;
586 struct kmemleak_object *object;
587
588 object = find_and_get_object(ptr, 0);
589 if (!object) {
590 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
591 return;
592 }
593
594 spin_lock_irqsave(&object->lock, flags);
595 object->min_count = -1;
596 spin_unlock_irqrestore(&object->lock, flags);
597 put_object(object);
598 }
599
600 /*
601 * Add a scanning area to the object. If at least one such area is added,
602 * kmemleak will only scan these ranges rather than the whole memory block.
603 */
604 static void add_scan_area(unsigned long ptr, unsigned long offset,
605 size_t length, gfp_t gfp)
606 {
607 unsigned long flags;
608 struct kmemleak_object *object;
609 struct kmemleak_scan_area *area;
610
611 object = find_and_get_object(ptr, 0);
612 if (!object) {
613 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
614 ptr);
615 return;
616 }
617
618 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
619 if (!area) {
620 kmemleak_warn("Cannot allocate a scan area\n");
621 goto out;
622 }
623
624 spin_lock_irqsave(&object->lock, flags);
625 if (offset + length > object->size) {
626 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
627 dump_object_info(object);
628 kmem_cache_free(scan_area_cache, area);
629 goto out_unlock;
630 }
631
632 INIT_HLIST_NODE(&area->node);
633 area->offset = offset;
634 area->length = length;
635
636 hlist_add_head(&area->node, &object->area_list);
637 out_unlock:
638 spin_unlock_irqrestore(&object->lock, flags);
639 out:
640 put_object(object);
641 }
642
643 /*
644 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
645 * pointer. Such object will not be scanned by kmemleak but references to it
646 * are searched.
647 */
648 static void object_no_scan(unsigned long ptr)
649 {
650 unsigned long flags;
651 struct kmemleak_object *object;
652
653 object = find_and_get_object(ptr, 0);
654 if (!object) {
655 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
656 return;
657 }
658
659 spin_lock_irqsave(&object->lock, flags);
660 object->flags |= OBJECT_NO_SCAN;
661 spin_unlock_irqrestore(&object->lock, flags);
662 put_object(object);
663 }
664
665 /*
666 * Log an early kmemleak_* call to the early_log buffer. These calls will be
667 * processed later once kmemleak is fully initialized.
668 */
669 static void log_early(int op_type, const void *ptr, size_t size,
670 int min_count, unsigned long offset, size_t length)
671 {
672 unsigned long flags;
673 struct early_log *log;
674
675 if (crt_early_log >= ARRAY_SIZE(early_log)) {
676 pr_warning("Early log buffer exceeded\n");
677 kmemleak_disable();
678 return;
679 }
680
681 /*
682 * There is no need for locking since the kernel is still in UP mode
683 * at this stage. Disabling the IRQs is enough.
684 */
685 local_irq_save(flags);
686 log = &early_log[crt_early_log];
687 log->op_type = op_type;
688 log->ptr = ptr;
689 log->size = size;
690 log->min_count = min_count;
691 log->offset = offset;
692 log->length = length;
693 crt_early_log++;
694 local_irq_restore(flags);
695 }
696
697 /*
698 * Memory allocation function callback. This function is called from the
699 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
700 * vmalloc etc.).
701 */
702 void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
703 {
704 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
705
706 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
707 create_object((unsigned long)ptr, size, min_count, gfp);
708 else if (atomic_read(&kmemleak_early_log))
709 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
710 }
711 EXPORT_SYMBOL_GPL(kmemleak_alloc);
712
713 /*
714 * Memory freeing function callback. This function is called from the kernel
715 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
716 */
717 void kmemleak_free(const void *ptr)
718 {
719 pr_debug("%s(0x%p)\n", __func__, ptr);
720
721 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
722 delete_object((unsigned long)ptr);
723 else if (atomic_read(&kmemleak_early_log))
724 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
725 }
726 EXPORT_SYMBOL_GPL(kmemleak_free);
727
728 /*
729 * Mark an already allocated memory block as a false positive. This will cause
730 * the block to no longer be reported as leak and always be scanned.
731 */
732 void kmemleak_not_leak(const void *ptr)
733 {
734 pr_debug("%s(0x%p)\n", __func__, ptr);
735
736 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
737 make_gray_object((unsigned long)ptr);
738 else if (atomic_read(&kmemleak_early_log))
739 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
740 }
741 EXPORT_SYMBOL(kmemleak_not_leak);
742
743 /*
744 * Ignore a memory block. This is usually done when it is known that the
745 * corresponding block is not a leak and does not contain any references to
746 * other allocated memory blocks.
747 */
748 void kmemleak_ignore(const void *ptr)
749 {
750 pr_debug("%s(0x%p)\n", __func__, ptr);
751
752 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
753 make_black_object((unsigned long)ptr);
754 else if (atomic_read(&kmemleak_early_log))
755 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
756 }
757 EXPORT_SYMBOL(kmemleak_ignore);
758
759 /*
760 * Limit the range to be scanned in an allocated memory block.
761 */
762 void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
763 gfp_t gfp)
764 {
765 pr_debug("%s(0x%p)\n", __func__, ptr);
766
767 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
768 add_scan_area((unsigned long)ptr, offset, length, gfp);
769 else if (atomic_read(&kmemleak_early_log))
770 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
771 }
772 EXPORT_SYMBOL(kmemleak_scan_area);
773
774 /*
775 * Inform kmemleak not to scan the given memory block.
776 */
777 void kmemleak_no_scan(const void *ptr)
778 {
779 pr_debug("%s(0x%p)\n", __func__, ptr);
780
781 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
782 object_no_scan((unsigned long)ptr);
783 else if (atomic_read(&kmemleak_early_log))
784 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
785 }
786 EXPORT_SYMBOL(kmemleak_no_scan);
787
788 /*
789 * Yield the CPU so that other tasks get a chance to run. The yielding is
790 * rate-limited to avoid excessive number of calls to the schedule() function
791 * during memory scanning.
792 */
793 static void scan_yield(void)
794 {
795 might_sleep();
796
797 if (time_is_before_eq_jiffies(next_scan_yield)) {
798 schedule();
799 next_scan_yield = jiffies + jiffies_scan_yield;
800 }
801 }
802
803 /*
804 * Memory scanning is a long process and it needs to be interruptable. This
805 * function checks whether such interrupt condition occured.
806 */
807 static int scan_should_stop(void)
808 {
809 if (!atomic_read(&kmemleak_enabled))
810 return 1;
811
812 /*
813 * This function may be called from either process or kthread context,
814 * hence the need to check for both stop conditions.
815 */
816 if (current->mm)
817 return signal_pending(current);
818 else
819 return kthread_should_stop();
820
821 return 0;
822 }
823
824 /*
825 * Scan a memory block (exclusive range) for valid pointers and add those
826 * found to the gray list.
827 */
828 static void scan_block(void *_start, void *_end,
829 struct kmemleak_object *scanned)
830 {
831 unsigned long *ptr;
832 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
833 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
834
835 for (ptr = start; ptr < end; ptr++) {
836 unsigned long flags;
837 unsigned long pointer = *ptr;
838 struct kmemleak_object *object;
839
840 if (scan_should_stop())
841 break;
842
843 /*
844 * When scanning a memory block with a corresponding
845 * kmemleak_object, the CPU yielding is handled in the calling
846 * code since it holds the object->lock to avoid the block
847 * freeing.
848 */
849 if (!scanned)
850 scan_yield();
851
852 object = find_and_get_object(pointer, 1);
853 if (!object)
854 continue;
855 if (object == scanned) {
856 /* self referenced, ignore */
857 put_object(object);
858 continue;
859 }
860
861 /*
862 * Avoid the lockdep recursive warning on object->lock being
863 * previously acquired in scan_object(). These locks are
864 * enclosed by scan_mutex.
865 */
866 spin_lock_irqsave_nested(&object->lock, flags,
867 SINGLE_DEPTH_NESTING);
868 if (!color_white(object)) {
869 /* non-orphan, ignored or new */
870 spin_unlock_irqrestore(&object->lock, flags);
871 put_object(object);
872 continue;
873 }
874
875 /*
876 * Increase the object's reference count (number of pointers
877 * to the memory block). If this count reaches the required
878 * minimum, the object's color will become gray and it will be
879 * added to the gray_list.
880 */
881 object->count++;
882 if (color_gray(object))
883 list_add_tail(&object->gray_list, &gray_list);
884 else
885 put_object(object);
886 spin_unlock_irqrestore(&object->lock, flags);
887 }
888 }
889
890 /*
891 * Scan a memory block corresponding to a kmemleak_object. A condition is
892 * that object->use_count >= 1.
893 */
894 static void scan_object(struct kmemleak_object *object)
895 {
896 struct kmemleak_scan_area *area;
897 struct hlist_node *elem;
898 unsigned long flags;
899
900 /*
901 * Once the object->lock is aquired, the corresponding memory block
902 * cannot be freed (the same lock is aquired in delete_object).
903 */
904 spin_lock_irqsave(&object->lock, flags);
905 if (object->flags & OBJECT_NO_SCAN)
906 goto out;
907 if (!(object->flags & OBJECT_ALLOCATED))
908 /* already freed object */
909 goto out;
910 if (hlist_empty(&object->area_list))
911 scan_block((void *)object->pointer,
912 (void *)(object->pointer + object->size), object);
913 else
914 hlist_for_each_entry(area, elem, &object->area_list, node)
915 scan_block((void *)(object->pointer + area->offset),
916 (void *)(object->pointer + area->offset
917 + area->length), object);
918 out:
919 spin_unlock_irqrestore(&object->lock, flags);
920 }
921
922 /*
923 * Scan data sections and all the referenced memory blocks allocated via the
924 * kernel's standard allocators. This function must be called with the
925 * scan_mutex held.
926 */
927 static void kmemleak_scan(void)
928 {
929 unsigned long flags;
930 struct kmemleak_object *object, *tmp;
931 struct task_struct *task;
932 int i;
933 int new_leaks = 0;
934
935 jiffies_last_scan = jiffies;
936
937 /* prepare the kmemleak_object's */
938 rcu_read_lock();
939 list_for_each_entry_rcu(object, &object_list, object_list) {
940 spin_lock_irqsave(&object->lock, flags);
941 #ifdef DEBUG
942 /*
943 * With a few exceptions there should be a maximum of
944 * 1 reference to any object at this point.
945 */
946 if (atomic_read(&object->use_count) > 1) {
947 pr_debug("object->use_count = %d\n",
948 atomic_read(&object->use_count));
949 dump_object_info(object);
950 }
951 #endif
952 /* reset the reference count (whiten the object) */
953 object->count = 0;
954 if (color_gray(object) && get_object(object))
955 list_add_tail(&object->gray_list, &gray_list);
956
957 spin_unlock_irqrestore(&object->lock, flags);
958 }
959 rcu_read_unlock();
960
961 /* data/bss scanning */
962 scan_block(_sdata, _edata, NULL);
963 scan_block(__bss_start, __bss_stop, NULL);
964
965 #ifdef CONFIG_SMP
966 /* per-cpu sections scanning */
967 for_each_possible_cpu(i)
968 scan_block(__per_cpu_start + per_cpu_offset(i),
969 __per_cpu_end + per_cpu_offset(i), NULL);
970 #endif
971
972 /*
973 * Struct page scanning for each node. The code below is not yet safe
974 * with MEMORY_HOTPLUG.
975 */
976 for_each_online_node(i) {
977 pg_data_t *pgdat = NODE_DATA(i);
978 unsigned long start_pfn = pgdat->node_start_pfn;
979 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
980 unsigned long pfn;
981
982 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
983 struct page *page;
984
985 if (!pfn_valid(pfn))
986 continue;
987 page = pfn_to_page(pfn);
988 /* only scan if page is in use */
989 if (page_count(page) == 0)
990 continue;
991 scan_block(page, page + 1, NULL);
992 }
993 }
994
995 /*
996 * Scanning the task stacks may introduce false negatives and it is
997 * not enabled by default.
998 */
999 if (kmemleak_stack_scan) {
1000 read_lock(&tasklist_lock);
1001 for_each_process(task)
1002 scan_block(task_stack_page(task),
1003 task_stack_page(task) + THREAD_SIZE, NULL);
1004 read_unlock(&tasklist_lock);
1005 }
1006
1007 /*
1008 * Scan the objects already referenced from the sections scanned
1009 * above. More objects will be referenced and, if there are no memory
1010 * leaks, all the objects will be scanned. The list traversal is safe
1011 * for both tail additions and removals from inside the loop. The
1012 * kmemleak objects cannot be freed from outside the loop because their
1013 * use_count was increased.
1014 */
1015 object = list_entry(gray_list.next, typeof(*object), gray_list);
1016 while (&object->gray_list != &gray_list) {
1017 scan_yield();
1018
1019 /* may add new objects to the list */
1020 if (!scan_should_stop())
1021 scan_object(object);
1022
1023 tmp = list_entry(object->gray_list.next, typeof(*object),
1024 gray_list);
1025
1026 /* remove the object from the list and release it */
1027 list_del(&object->gray_list);
1028 put_object(object);
1029
1030 object = tmp;
1031 }
1032 WARN_ON(!list_empty(&gray_list));
1033
1034 /*
1035 * If scanning was stopped do not report any new unreferenced objects.
1036 */
1037 if (scan_should_stop())
1038 return;
1039
1040 /*
1041 * Scanning result reporting.
1042 */
1043 rcu_read_lock();
1044 list_for_each_entry_rcu(object, &object_list, object_list) {
1045 spin_lock_irqsave(&object->lock, flags);
1046 if (unreferenced_object(object) &&
1047 !(object->flags & OBJECT_REPORTED)) {
1048 object->flags |= OBJECT_REPORTED;
1049 new_leaks++;
1050 }
1051 spin_unlock_irqrestore(&object->lock, flags);
1052 }
1053 rcu_read_unlock();
1054
1055 if (new_leaks)
1056 pr_info("%d new suspected memory leaks (see "
1057 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1058
1059 }
1060
1061 /*
1062 * Thread function performing automatic memory scanning. Unreferenced objects
1063 * at the end of a memory scan are reported but only the first time.
1064 */
1065 static int kmemleak_scan_thread(void *arg)
1066 {
1067 static int first_run = 1;
1068
1069 pr_info("Automatic memory scanning thread started\n");
1070
1071 /*
1072 * Wait before the first scan to allow the system to fully initialize.
1073 */
1074 if (first_run) {
1075 first_run = 0;
1076 ssleep(SECS_FIRST_SCAN);
1077 }
1078
1079 while (!kthread_should_stop()) {
1080 signed long timeout = jiffies_scan_wait;
1081
1082 mutex_lock(&scan_mutex);
1083 kmemleak_scan();
1084 mutex_unlock(&scan_mutex);
1085
1086 /* wait before the next scan */
1087 while (timeout && !kthread_should_stop())
1088 timeout = schedule_timeout_interruptible(timeout);
1089 }
1090
1091 pr_info("Automatic memory scanning thread ended\n");
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * Start the automatic memory scanning thread. This function must be called
1098 * with the scan_mutex held.
1099 */
1100 void start_scan_thread(void)
1101 {
1102 if (scan_thread)
1103 return;
1104 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1105 if (IS_ERR(scan_thread)) {
1106 pr_warning("Failed to create the scan thread\n");
1107 scan_thread = NULL;
1108 }
1109 }
1110
1111 /*
1112 * Stop the automatic memory scanning thread. This function must be called
1113 * with the scan_mutex held.
1114 */
1115 void stop_scan_thread(void)
1116 {
1117 if (scan_thread) {
1118 kthread_stop(scan_thread);
1119 scan_thread = NULL;
1120 }
1121 }
1122
1123 /*
1124 * Iterate over the object_list and return the first valid object at or after
1125 * the required position with its use_count incremented. The function triggers
1126 * a memory scanning when the pos argument points to the first position.
1127 */
1128 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1129 {
1130 struct kmemleak_object *object;
1131 loff_t n = *pos;
1132
1133 if (!n)
1134 reported_leaks = 0;
1135 if (reported_leaks >= REPORTS_NR)
1136 return NULL;
1137
1138 rcu_read_lock();
1139 list_for_each_entry_rcu(object, &object_list, object_list) {
1140 if (n-- > 0)
1141 continue;
1142 if (get_object(object))
1143 goto out;
1144 }
1145 object = NULL;
1146 out:
1147 rcu_read_unlock();
1148 return object;
1149 }
1150
1151 /*
1152 * Return the next object in the object_list. The function decrements the
1153 * use_count of the previous object and increases that of the next one.
1154 */
1155 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1156 {
1157 struct kmemleak_object *prev_obj = v;
1158 struct kmemleak_object *next_obj = NULL;
1159 struct list_head *n = &prev_obj->object_list;
1160
1161 ++(*pos);
1162 if (reported_leaks >= REPORTS_NR)
1163 goto out;
1164
1165 rcu_read_lock();
1166 list_for_each_continue_rcu(n, &object_list) {
1167 next_obj = list_entry(n, struct kmemleak_object, object_list);
1168 if (get_object(next_obj))
1169 break;
1170 }
1171 rcu_read_unlock();
1172 out:
1173 put_object(prev_obj);
1174 return next_obj;
1175 }
1176
1177 /*
1178 * Decrement the use_count of the last object required, if any.
1179 */
1180 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1181 {
1182 if (v)
1183 put_object(v);
1184 }
1185
1186 /*
1187 * Print the information for an unreferenced object to the seq file.
1188 */
1189 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1190 {
1191 struct kmemleak_object *object = v;
1192 unsigned long flags;
1193
1194 spin_lock_irqsave(&object->lock, flags);
1195 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) {
1196 print_unreferenced(seq, object);
1197 reported_leaks++;
1198 }
1199 spin_unlock_irqrestore(&object->lock, flags);
1200 return 0;
1201 }
1202
1203 static const struct seq_operations kmemleak_seq_ops = {
1204 .start = kmemleak_seq_start,
1205 .next = kmemleak_seq_next,
1206 .stop = kmemleak_seq_stop,
1207 .show = kmemleak_seq_show,
1208 };
1209
1210 static int kmemleak_open(struct inode *inode, struct file *file)
1211 {
1212 int ret = 0;
1213
1214 if (!atomic_read(&kmemleak_enabled))
1215 return -EBUSY;
1216
1217 ret = mutex_lock_interruptible(&scan_mutex);
1218 if (ret < 0)
1219 goto out;
1220 if (file->f_mode & FMODE_READ) {
1221 ret = seq_open(file, &kmemleak_seq_ops);
1222 if (ret < 0)
1223 goto scan_unlock;
1224 }
1225 return ret;
1226
1227 scan_unlock:
1228 mutex_unlock(&scan_mutex);
1229 out:
1230 return ret;
1231 }
1232
1233 static int kmemleak_release(struct inode *inode, struct file *file)
1234 {
1235 int ret = 0;
1236
1237 if (file->f_mode & FMODE_READ)
1238 seq_release(inode, file);
1239 mutex_unlock(&scan_mutex);
1240
1241 return ret;
1242 }
1243
1244 /*
1245 * File write operation to configure kmemleak at run-time. The following
1246 * commands can be written to the /sys/kernel/debug/kmemleak file:
1247 * off - disable kmemleak (irreversible)
1248 * stack=on - enable the task stacks scanning
1249 * stack=off - disable the tasks stacks scanning
1250 * scan=on - start the automatic memory scanning thread
1251 * scan=off - stop the automatic memory scanning thread
1252 * scan=... - set the automatic memory scanning period in seconds (0 to
1253 * disable it)
1254 * scan - trigger a memory scan
1255 */
1256 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1257 size_t size, loff_t *ppos)
1258 {
1259 char buf[64];
1260 int buf_size;
1261
1262 if (!atomic_read(&kmemleak_enabled))
1263 return -EBUSY;
1264
1265 buf_size = min(size, (sizeof(buf) - 1));
1266 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1267 return -EFAULT;
1268 buf[buf_size] = 0;
1269
1270 if (strncmp(buf, "off", 3) == 0)
1271 kmemleak_disable();
1272 else if (strncmp(buf, "stack=on", 8) == 0)
1273 kmemleak_stack_scan = 1;
1274 else if (strncmp(buf, "stack=off", 9) == 0)
1275 kmemleak_stack_scan = 0;
1276 else if (strncmp(buf, "scan=on", 7) == 0)
1277 start_scan_thread();
1278 else if (strncmp(buf, "scan=off", 8) == 0)
1279 stop_scan_thread();
1280 else if (strncmp(buf, "scan=", 5) == 0) {
1281 unsigned long secs;
1282 int err;
1283
1284 err = strict_strtoul(buf + 5, 0, &secs);
1285 if (err < 0)
1286 return err;
1287 stop_scan_thread();
1288 if (secs) {
1289 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1290 start_scan_thread();
1291 }
1292 } else if (strncmp(buf, "scan", 4) == 0)
1293 kmemleak_scan();
1294 else
1295 return -EINVAL;
1296
1297 /* ignore the rest of the buffer, only one command at a time */
1298 *ppos += size;
1299 return size;
1300 }
1301
1302 static const struct file_operations kmemleak_fops = {
1303 .owner = THIS_MODULE,
1304 .open = kmemleak_open,
1305 .read = seq_read,
1306 .write = kmemleak_write,
1307 .llseek = seq_lseek,
1308 .release = kmemleak_release,
1309 };
1310
1311 /*
1312 * Perform the freeing of the kmemleak internal objects after waiting for any
1313 * current memory scan to complete.
1314 */
1315 static int kmemleak_cleanup_thread(void *arg)
1316 {
1317 struct kmemleak_object *object;
1318
1319 mutex_lock(&scan_mutex);
1320 stop_scan_thread();
1321
1322 rcu_read_lock();
1323 list_for_each_entry_rcu(object, &object_list, object_list)
1324 delete_object(object->pointer);
1325 rcu_read_unlock();
1326 mutex_unlock(&scan_mutex);
1327
1328 return 0;
1329 }
1330
1331 /*
1332 * Start the clean-up thread.
1333 */
1334 static void kmemleak_cleanup(void)
1335 {
1336 struct task_struct *cleanup_thread;
1337
1338 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1339 "kmemleak-clean");
1340 if (IS_ERR(cleanup_thread))
1341 pr_warning("Failed to create the clean-up thread\n");
1342 }
1343
1344 /*
1345 * Disable kmemleak. No memory allocation/freeing will be traced once this
1346 * function is called. Disabling kmemleak is an irreversible operation.
1347 */
1348 static void kmemleak_disable(void)
1349 {
1350 /* atomically check whether it was already invoked */
1351 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1352 return;
1353
1354 /* stop any memory operation tracing */
1355 atomic_set(&kmemleak_early_log, 0);
1356 atomic_set(&kmemleak_enabled, 0);
1357
1358 /* check whether it is too early for a kernel thread */
1359 if (atomic_read(&kmemleak_initialized))
1360 kmemleak_cleanup();
1361
1362 pr_info("Kernel memory leak detector disabled\n");
1363 }
1364
1365 /*
1366 * Allow boot-time kmemleak disabling (enabled by default).
1367 */
1368 static int kmemleak_boot_config(char *str)
1369 {
1370 if (!str)
1371 return -EINVAL;
1372 if (strcmp(str, "off") == 0)
1373 kmemleak_disable();
1374 else if (strcmp(str, "on") != 0)
1375 return -EINVAL;
1376 return 0;
1377 }
1378 early_param("kmemleak", kmemleak_boot_config);
1379
1380 /*
1381 * Kmemleak initialization.
1382 */
1383 void __init kmemleak_init(void)
1384 {
1385 int i;
1386 unsigned long flags;
1387
1388 jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1389 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1390 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1391
1392 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1393 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1394 INIT_PRIO_TREE_ROOT(&object_tree_root);
1395
1396 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1397 local_irq_save(flags);
1398 if (!atomic_read(&kmemleak_error)) {
1399 atomic_set(&kmemleak_enabled, 1);
1400 atomic_set(&kmemleak_early_log, 0);
1401 }
1402 local_irq_restore(flags);
1403
1404 /*
1405 * This is the point where tracking allocations is safe. Automatic
1406 * scanning is started during the late initcall. Add the early logged
1407 * callbacks to the kmemleak infrastructure.
1408 */
1409 for (i = 0; i < crt_early_log; i++) {
1410 struct early_log *log = &early_log[i];
1411
1412 switch (log->op_type) {
1413 case KMEMLEAK_ALLOC:
1414 kmemleak_alloc(log->ptr, log->size, log->min_count,
1415 GFP_KERNEL);
1416 break;
1417 case KMEMLEAK_FREE:
1418 kmemleak_free(log->ptr);
1419 break;
1420 case KMEMLEAK_NOT_LEAK:
1421 kmemleak_not_leak(log->ptr);
1422 break;
1423 case KMEMLEAK_IGNORE:
1424 kmemleak_ignore(log->ptr);
1425 break;
1426 case KMEMLEAK_SCAN_AREA:
1427 kmemleak_scan_area(log->ptr, log->offset, log->length,
1428 GFP_KERNEL);
1429 break;
1430 case KMEMLEAK_NO_SCAN:
1431 kmemleak_no_scan(log->ptr);
1432 break;
1433 default:
1434 WARN_ON(1);
1435 }
1436 }
1437 }
1438
1439 /*
1440 * Late initialization function.
1441 */
1442 static int __init kmemleak_late_init(void)
1443 {
1444 struct dentry *dentry;
1445
1446 atomic_set(&kmemleak_initialized, 1);
1447
1448 if (atomic_read(&kmemleak_error)) {
1449 /*
1450 * Some error occured and kmemleak was disabled. There is a
1451 * small chance that kmemleak_disable() was called immediately
1452 * after setting kmemleak_initialized and we may end up with
1453 * two clean-up threads but serialized by scan_mutex.
1454 */
1455 kmemleak_cleanup();
1456 return -ENOMEM;
1457 }
1458
1459 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1460 &kmemleak_fops);
1461 if (!dentry)
1462 pr_warning("Failed to create the debugfs kmemleak file\n");
1463 mutex_lock(&scan_mutex);
1464 start_scan_thread();
1465 mutex_unlock(&scan_mutex);
1466
1467 pr_info("Kernel memory leak detector initialized\n");
1468
1469 return 0;
1470 }
1471 late_initcall(kmemleak_late_init);
This page took 0.064388 seconds and 5 git commands to generate.