722e3f2a8dc5b56f768287096e6787c57b6f2469
[deliverable/linux.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/ksm.h>
34
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37
38 /*
39 * A few notes about the KSM scanning process,
40 * to make it easier to understand the data structures below:
41 *
42 * In order to reduce excessive scanning, KSM sorts the memory pages by their
43 * contents into a data structure that holds pointers to the pages' locations.
44 *
45 * Since the contents of the pages may change at any moment, KSM cannot just
46 * insert the pages into a normal sorted tree and expect it to find anything.
47 * Therefore KSM uses two data structures - the stable and the unstable tree.
48 *
49 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50 * by their contents. Because each such page is write-protected, searching on
51 * this tree is fully assured to be working (except when pages are unmapped),
52 * and therefore this tree is called the stable tree.
53 *
54 * In addition to the stable tree, KSM uses a second data structure called the
55 * unstable tree: this tree holds pointers to pages which have been found to
56 * be "unchanged for a period of time". The unstable tree sorts these pages
57 * by their contents, but since they are not write-protected, KSM cannot rely
58 * upon the unstable tree to work correctly - the unstable tree is liable to
59 * be corrupted as its contents are modified, and so it is called unstable.
60 *
61 * KSM solves this problem by several techniques:
62 *
63 * 1) The unstable tree is flushed every time KSM completes scanning all
64 * memory areas, and then the tree is rebuilt again from the beginning.
65 * 2) KSM will only insert into the unstable tree, pages whose hash value
66 * has not changed since the previous scan of all memory areas.
67 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68 * colors of the nodes and not on their contents, assuring that even when
69 * the tree gets "corrupted" it won't get out of balance, so scanning time
70 * remains the same (also, searching and inserting nodes in an rbtree uses
71 * the same algorithm, so we have no overhead when we flush and rebuild).
72 * 4) KSM never flushes the stable tree, which means that even if it were to
73 * take 10 attempts to find a page in the unstable tree, once it is found,
74 * it is secured in the stable tree. (When we scan a new page, we first
75 * compare it against the stable tree, and then against the unstable tree.)
76 */
77
78 /**
79 * struct mm_slot - ksm information per mm that is being scanned
80 * @link: link to the mm_slots hash list
81 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82 * @rmap_list: head for this mm_slot's list of rmap_items
83 * @mm: the mm that this information is valid for
84 */
85 struct mm_slot {
86 struct hlist_node link;
87 struct list_head mm_list;
88 struct list_head rmap_list;
89 struct mm_struct *mm;
90 };
91
92 /**
93 * struct ksm_scan - cursor for scanning
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
96 * @rmap_item: the current rmap that we are scanning inside the rmap_list
97 * @seqnr: count of completed full scans (needed when removing unstable node)
98 *
99 * There is only the one ksm_scan instance of this cursor structure.
100 */
101 struct ksm_scan {
102 struct mm_slot *mm_slot;
103 unsigned long address;
104 struct rmap_item *rmap_item;
105 unsigned long seqnr;
106 };
107
108 /**
109 * struct rmap_item - reverse mapping item for virtual addresses
110 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
111 * @mm: the memory structure this rmap_item is pointing into
112 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
113 * @oldchecksum: previous checksum of the page at that virtual address
114 * @node: rb_node of this rmap_item in either unstable or stable tree
115 * @next: next rmap_item hanging off the same node of the stable tree
116 * @prev: previous rmap_item hanging off the same node of the stable tree
117 */
118 struct rmap_item {
119 struct list_head link;
120 struct mm_struct *mm;
121 unsigned long address; /* + low bits used for flags below */
122 union {
123 unsigned int oldchecksum; /* when unstable */
124 struct rmap_item *next; /* when stable */
125 };
126 union {
127 struct rb_node node; /* when tree node */
128 struct rmap_item *prev; /* in stable list */
129 };
130 };
131
132 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
133 #define NODE_FLAG 0x100 /* is a node of unstable or stable tree */
134 #define STABLE_FLAG 0x200 /* is a node or list item of stable tree */
135
136 /* The stable and unstable tree heads */
137 static struct rb_root root_stable_tree = RB_ROOT;
138 static struct rb_root root_unstable_tree = RB_ROOT;
139
140 #define MM_SLOTS_HASH_HEADS 1024
141 static struct hlist_head *mm_slots_hash;
142
143 static struct mm_slot ksm_mm_head = {
144 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
145 };
146 static struct ksm_scan ksm_scan = {
147 .mm_slot = &ksm_mm_head,
148 };
149
150 static struct kmem_cache *rmap_item_cache;
151 static struct kmem_cache *mm_slot_cache;
152
153 /* The number of nodes in the stable tree */
154 static unsigned long ksm_pages_shared;
155
156 /* The number of page slots additionally sharing those nodes */
157 static unsigned long ksm_pages_sharing;
158
159 /* The number of nodes in the unstable tree */
160 static unsigned long ksm_pages_unshared;
161
162 /* The number of rmap_items in use: to calculate pages_volatile */
163 static unsigned long ksm_rmap_items;
164
165 /* Limit on the number of unswappable pages used */
166 static unsigned long ksm_max_kernel_pages;
167
168 /* Number of pages ksmd should scan in one batch */
169 static unsigned int ksm_thread_pages_to_scan;
170
171 /* Milliseconds ksmd should sleep between batches */
172 static unsigned int ksm_thread_sleep_millisecs;
173
174 #define KSM_RUN_STOP 0
175 #define KSM_RUN_MERGE 1
176 #define KSM_RUN_UNMERGE 2
177 static unsigned int ksm_run;
178
179 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
180 static DEFINE_MUTEX(ksm_thread_mutex);
181 static DEFINE_SPINLOCK(ksm_mmlist_lock);
182
183 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
184 sizeof(struct __struct), __alignof__(struct __struct),\
185 (__flags), NULL)
186
187 static int __init ksm_slab_init(void)
188 {
189 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
190 if (!rmap_item_cache)
191 goto out;
192
193 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
194 if (!mm_slot_cache)
195 goto out_free;
196
197 return 0;
198
199 out_free:
200 kmem_cache_destroy(rmap_item_cache);
201 out:
202 return -ENOMEM;
203 }
204
205 static void __init ksm_slab_free(void)
206 {
207 kmem_cache_destroy(mm_slot_cache);
208 kmem_cache_destroy(rmap_item_cache);
209 mm_slot_cache = NULL;
210 }
211
212 static inline struct rmap_item *alloc_rmap_item(void)
213 {
214 struct rmap_item *rmap_item;
215
216 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
217 if (rmap_item)
218 ksm_rmap_items++;
219 return rmap_item;
220 }
221
222 static inline void free_rmap_item(struct rmap_item *rmap_item)
223 {
224 ksm_rmap_items--;
225 rmap_item->mm = NULL; /* debug safety */
226 kmem_cache_free(rmap_item_cache, rmap_item);
227 }
228
229 static inline struct mm_slot *alloc_mm_slot(void)
230 {
231 if (!mm_slot_cache) /* initialization failed */
232 return NULL;
233 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
234 }
235
236 static inline void free_mm_slot(struct mm_slot *mm_slot)
237 {
238 kmem_cache_free(mm_slot_cache, mm_slot);
239 }
240
241 static int __init mm_slots_hash_init(void)
242 {
243 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
244 GFP_KERNEL);
245 if (!mm_slots_hash)
246 return -ENOMEM;
247 return 0;
248 }
249
250 static void __init mm_slots_hash_free(void)
251 {
252 kfree(mm_slots_hash);
253 }
254
255 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
256 {
257 struct mm_slot *mm_slot;
258 struct hlist_head *bucket;
259 struct hlist_node *node;
260
261 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
262 % MM_SLOTS_HASH_HEADS];
263 hlist_for_each_entry(mm_slot, node, bucket, link) {
264 if (mm == mm_slot->mm)
265 return mm_slot;
266 }
267 return NULL;
268 }
269
270 static void insert_to_mm_slots_hash(struct mm_struct *mm,
271 struct mm_slot *mm_slot)
272 {
273 struct hlist_head *bucket;
274
275 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
276 % MM_SLOTS_HASH_HEADS];
277 mm_slot->mm = mm;
278 INIT_LIST_HEAD(&mm_slot->rmap_list);
279 hlist_add_head(&mm_slot->link, bucket);
280 }
281
282 static inline int in_stable_tree(struct rmap_item *rmap_item)
283 {
284 return rmap_item->address & STABLE_FLAG;
285 }
286
287 /*
288 * We use break_ksm to break COW on a ksm page: it's a stripped down
289 *
290 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
291 * put_page(page);
292 *
293 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
294 * in case the application has unmapped and remapped mm,addr meanwhile.
295 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
296 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
297 */
298 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
299 {
300 struct page *page;
301 int ret = 0;
302
303 do {
304 cond_resched();
305 page = follow_page(vma, addr, FOLL_GET);
306 if (!page)
307 break;
308 if (PageKsm(page))
309 ret = handle_mm_fault(vma->vm_mm, vma, addr,
310 FAULT_FLAG_WRITE);
311 else
312 ret = VM_FAULT_WRITE;
313 put_page(page);
314 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
315 /*
316 * We must loop because handle_mm_fault() may back out if there's
317 * any difficulty e.g. if pte accessed bit gets updated concurrently.
318 *
319 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
320 * COW has been broken, even if the vma does not permit VM_WRITE;
321 * but note that a concurrent fault might break PageKsm for us.
322 *
323 * VM_FAULT_SIGBUS could occur if we race with truncation of the
324 * backing file, which also invalidates anonymous pages: that's
325 * okay, that truncation will have unmapped the PageKsm for us.
326 *
327 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
328 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
329 * current task has TIF_MEMDIE set, and will be OOM killed on return
330 * to user; and ksmd, having no mm, would never be chosen for that.
331 *
332 * But if the mm is in a limited mem_cgroup, then the fault may fail
333 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
334 * even ksmd can fail in this way - though it's usually breaking ksm
335 * just to undo a merge it made a moment before, so unlikely to oom.
336 *
337 * That's a pity: we might therefore have more kernel pages allocated
338 * than we're counting as nodes in the stable tree; but ksm_do_scan
339 * will retry to break_cow on each pass, so should recover the page
340 * in due course. The important thing is to not let VM_MERGEABLE
341 * be cleared while any such pages might remain in the area.
342 */
343 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
344 }
345
346 static void break_cow(struct mm_struct *mm, unsigned long addr)
347 {
348 struct vm_area_struct *vma;
349
350 down_read(&mm->mmap_sem);
351 if (ksm_test_exit(mm))
352 goto out;
353 vma = find_vma(mm, addr);
354 if (!vma || vma->vm_start > addr)
355 goto out;
356 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
357 goto out;
358 break_ksm(vma, addr);
359 out:
360 up_read(&mm->mmap_sem);
361 }
362
363 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
364 {
365 struct mm_struct *mm = rmap_item->mm;
366 unsigned long addr = rmap_item->address;
367 struct vm_area_struct *vma;
368 struct page *page;
369
370 down_read(&mm->mmap_sem);
371 if (ksm_test_exit(mm))
372 goto out;
373 vma = find_vma(mm, addr);
374 if (!vma || vma->vm_start > addr)
375 goto out;
376 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
377 goto out;
378
379 page = follow_page(vma, addr, FOLL_GET);
380 if (!page)
381 goto out;
382 if (PageAnon(page)) {
383 flush_anon_page(vma, page, addr);
384 flush_dcache_page(page);
385 } else {
386 put_page(page);
387 out: page = NULL;
388 }
389 up_read(&mm->mmap_sem);
390 return page;
391 }
392
393 /*
394 * get_ksm_page: checks if the page at the virtual address in rmap_item
395 * is still PageKsm, in which case we can trust the content of the page,
396 * and it returns the gotten page; but NULL if the page has been zapped.
397 */
398 static struct page *get_ksm_page(struct rmap_item *rmap_item)
399 {
400 struct page *page;
401
402 page = get_mergeable_page(rmap_item);
403 if (page && !PageKsm(page)) {
404 put_page(page);
405 page = NULL;
406 }
407 return page;
408 }
409
410 /*
411 * Removing rmap_item from stable or unstable tree.
412 * This function will clean the information from the stable/unstable tree.
413 */
414 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
415 {
416 if (in_stable_tree(rmap_item)) {
417 struct rmap_item *next_item = rmap_item->next;
418
419 if (rmap_item->address & NODE_FLAG) {
420 if (next_item) {
421 rb_replace_node(&rmap_item->node,
422 &next_item->node,
423 &root_stable_tree);
424 next_item->address |= NODE_FLAG;
425 ksm_pages_sharing--;
426 } else {
427 rb_erase(&rmap_item->node, &root_stable_tree);
428 ksm_pages_shared--;
429 }
430 } else {
431 struct rmap_item *prev_item = rmap_item->prev;
432
433 BUG_ON(prev_item->next != rmap_item);
434 prev_item->next = next_item;
435 if (next_item) {
436 BUG_ON(next_item->prev != rmap_item);
437 next_item->prev = rmap_item->prev;
438 }
439 ksm_pages_sharing--;
440 }
441
442 rmap_item->next = NULL;
443
444 } else if (rmap_item->address & NODE_FLAG) {
445 unsigned char age;
446 /*
447 * Usually ksmd can and must skip the rb_erase, because
448 * root_unstable_tree was already reset to RB_ROOT.
449 * But be careful when an mm is exiting: do the rb_erase
450 * if this rmap_item was inserted by this scan, rather
451 * than left over from before.
452 */
453 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
454 BUG_ON(age > 1);
455 if (!age)
456 rb_erase(&rmap_item->node, &root_unstable_tree);
457 ksm_pages_unshared--;
458 }
459
460 rmap_item->address &= PAGE_MASK;
461
462 cond_resched(); /* we're called from many long loops */
463 }
464
465 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
466 struct list_head *cur)
467 {
468 struct rmap_item *rmap_item;
469
470 while (cur != &mm_slot->rmap_list) {
471 rmap_item = list_entry(cur, struct rmap_item, link);
472 cur = cur->next;
473 remove_rmap_item_from_tree(rmap_item);
474 list_del(&rmap_item->link);
475 free_rmap_item(rmap_item);
476 }
477 }
478
479 /*
480 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
481 * than check every pte of a given vma, the locking doesn't quite work for
482 * that - an rmap_item is assigned to the stable tree after inserting ksm
483 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
484 * rmap_items from parent to child at fork time (so as not to waste time
485 * if exit comes before the next scan reaches it).
486 *
487 * Similarly, although we'd like to remove rmap_items (so updating counts
488 * and freeing memory) when unmerging an area, it's easier to leave that
489 * to the next pass of ksmd - consider, for example, how ksmd might be
490 * in cmp_and_merge_page on one of the rmap_items we would be removing.
491 */
492 static int unmerge_ksm_pages(struct vm_area_struct *vma,
493 unsigned long start, unsigned long end)
494 {
495 unsigned long addr;
496 int err = 0;
497
498 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
499 if (ksm_test_exit(vma->vm_mm))
500 break;
501 if (signal_pending(current))
502 err = -ERESTARTSYS;
503 else
504 err = break_ksm(vma, addr);
505 }
506 return err;
507 }
508
509 static int unmerge_and_remove_all_rmap_items(void)
510 {
511 struct mm_slot *mm_slot;
512 struct mm_struct *mm;
513 struct vm_area_struct *vma;
514 int err = 0;
515
516 spin_lock(&ksm_mmlist_lock);
517 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
518 struct mm_slot, mm_list);
519 spin_unlock(&ksm_mmlist_lock);
520
521 for (mm_slot = ksm_scan.mm_slot;
522 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
523 mm = mm_slot->mm;
524 down_read(&mm->mmap_sem);
525 for (vma = mm->mmap; vma; vma = vma->vm_next) {
526 if (ksm_test_exit(mm))
527 break;
528 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529 continue;
530 err = unmerge_ksm_pages(vma,
531 vma->vm_start, vma->vm_end);
532 if (err)
533 goto error;
534 }
535
536 remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
537
538 spin_lock(&ksm_mmlist_lock);
539 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
540 struct mm_slot, mm_list);
541 if (ksm_test_exit(mm)) {
542 hlist_del(&mm_slot->link);
543 list_del(&mm_slot->mm_list);
544 spin_unlock(&ksm_mmlist_lock);
545
546 free_mm_slot(mm_slot);
547 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
548 up_read(&mm->mmap_sem);
549 mmdrop(mm);
550 } else {
551 spin_unlock(&ksm_mmlist_lock);
552 up_read(&mm->mmap_sem);
553 }
554 }
555
556 ksm_scan.seqnr = 0;
557 return 0;
558
559 error:
560 up_read(&mm->mmap_sem);
561 spin_lock(&ksm_mmlist_lock);
562 ksm_scan.mm_slot = &ksm_mm_head;
563 spin_unlock(&ksm_mmlist_lock);
564 return err;
565 }
566
567 static u32 calc_checksum(struct page *page)
568 {
569 u32 checksum;
570 void *addr = kmap_atomic(page, KM_USER0);
571 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
572 kunmap_atomic(addr, KM_USER0);
573 return checksum;
574 }
575
576 static int memcmp_pages(struct page *page1, struct page *page2)
577 {
578 char *addr1, *addr2;
579 int ret;
580
581 addr1 = kmap_atomic(page1, KM_USER0);
582 addr2 = kmap_atomic(page2, KM_USER1);
583 ret = memcmp(addr1, addr2, PAGE_SIZE);
584 kunmap_atomic(addr2, KM_USER1);
585 kunmap_atomic(addr1, KM_USER0);
586 return ret;
587 }
588
589 static inline int pages_identical(struct page *page1, struct page *page2)
590 {
591 return !memcmp_pages(page1, page2);
592 }
593
594 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
595 pte_t *orig_pte)
596 {
597 struct mm_struct *mm = vma->vm_mm;
598 unsigned long addr;
599 pte_t *ptep;
600 spinlock_t *ptl;
601 int swapped;
602 int err = -EFAULT;
603
604 addr = page_address_in_vma(page, vma);
605 if (addr == -EFAULT)
606 goto out;
607
608 ptep = page_check_address(page, mm, addr, &ptl, 0);
609 if (!ptep)
610 goto out;
611
612 if (pte_write(*ptep)) {
613 pte_t entry;
614
615 swapped = PageSwapCache(page);
616 flush_cache_page(vma, addr, page_to_pfn(page));
617 /*
618 * Ok this is tricky, when get_user_pages_fast() run it doesnt
619 * take any lock, therefore the check that we are going to make
620 * with the pagecount against the mapcount is racey and
621 * O_DIRECT can happen right after the check.
622 * So we clear the pte and flush the tlb before the check
623 * this assure us that no O_DIRECT can happen after the check
624 * or in the middle of the check.
625 */
626 entry = ptep_clear_flush(vma, addr, ptep);
627 /*
628 * Check that no O_DIRECT or similar I/O is in progress on the
629 * page
630 */
631 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
632 set_pte_at_notify(mm, addr, ptep, entry);
633 goto out_unlock;
634 }
635 entry = pte_wrprotect(entry);
636 set_pte_at_notify(mm, addr, ptep, entry);
637 }
638 *orig_pte = *ptep;
639 err = 0;
640
641 out_unlock:
642 pte_unmap_unlock(ptep, ptl);
643 out:
644 return err;
645 }
646
647 /**
648 * replace_page - replace page in vma by new ksm page
649 * @vma: vma that holds the pte pointing to oldpage
650 * @oldpage: the page we are replacing by newpage
651 * @newpage: the ksm page we replace oldpage by
652 * @orig_pte: the original value of the pte
653 *
654 * Returns 0 on success, -EFAULT on failure.
655 */
656 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
657 struct page *newpage, pte_t orig_pte)
658 {
659 struct mm_struct *mm = vma->vm_mm;
660 pgd_t *pgd;
661 pud_t *pud;
662 pmd_t *pmd;
663 pte_t *ptep;
664 spinlock_t *ptl;
665 unsigned long addr;
666 pgprot_t prot;
667 int err = -EFAULT;
668
669 prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
670
671 addr = page_address_in_vma(oldpage, vma);
672 if (addr == -EFAULT)
673 goto out;
674
675 pgd = pgd_offset(mm, addr);
676 if (!pgd_present(*pgd))
677 goto out;
678
679 pud = pud_offset(pgd, addr);
680 if (!pud_present(*pud))
681 goto out;
682
683 pmd = pmd_offset(pud, addr);
684 if (!pmd_present(*pmd))
685 goto out;
686
687 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
688 if (!pte_same(*ptep, orig_pte)) {
689 pte_unmap_unlock(ptep, ptl);
690 goto out;
691 }
692
693 get_page(newpage);
694 page_add_ksm_rmap(newpage);
695
696 flush_cache_page(vma, addr, pte_pfn(*ptep));
697 ptep_clear_flush(vma, addr, ptep);
698 set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
699
700 page_remove_rmap(oldpage);
701 put_page(oldpage);
702
703 pte_unmap_unlock(ptep, ptl);
704 err = 0;
705 out:
706 return err;
707 }
708
709 /*
710 * try_to_merge_one_page - take two pages and merge them into one
711 * @vma: the vma that hold the pte pointing into oldpage
712 * @oldpage: the page that we want to replace with newpage
713 * @newpage: the page that we want to map instead of oldpage
714 *
715 * Note:
716 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
717 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
718 *
719 * This function returns 0 if the pages were merged, -EFAULT otherwise.
720 */
721 static int try_to_merge_one_page(struct vm_area_struct *vma,
722 struct page *oldpage,
723 struct page *newpage)
724 {
725 pte_t orig_pte = __pte(0);
726 int err = -EFAULT;
727
728 if (!(vma->vm_flags & VM_MERGEABLE))
729 goto out;
730
731 if (!PageAnon(oldpage))
732 goto out;
733
734 get_page(newpage);
735 get_page(oldpage);
736
737 /*
738 * We need the page lock to read a stable PageSwapCache in
739 * write_protect_page(). We use trylock_page() instead of
740 * lock_page() because we don't want to wait here - we
741 * prefer to continue scanning and merging different pages,
742 * then come back to this page when it is unlocked.
743 */
744 if (!trylock_page(oldpage))
745 goto out_putpage;
746 /*
747 * If this anonymous page is mapped only here, its pte may need
748 * to be write-protected. If it's mapped elsewhere, all of its
749 * ptes are necessarily already write-protected. But in either
750 * case, we need to lock and check page_count is not raised.
751 */
752 if (write_protect_page(vma, oldpage, &orig_pte)) {
753 unlock_page(oldpage);
754 goto out_putpage;
755 }
756 unlock_page(oldpage);
757
758 if (pages_identical(oldpage, newpage))
759 err = replace_page(vma, oldpage, newpage, orig_pte);
760
761 out_putpage:
762 put_page(oldpage);
763 put_page(newpage);
764 out:
765 return err;
766 }
767
768 /*
769 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
770 * but no new kernel page is allocated: kpage must already be a ksm page.
771 */
772 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
773 unsigned long addr1,
774 struct page *page1,
775 struct page *kpage)
776 {
777 struct vm_area_struct *vma;
778 int err = -EFAULT;
779
780 down_read(&mm1->mmap_sem);
781 if (ksm_test_exit(mm1))
782 goto out;
783
784 vma = find_vma(mm1, addr1);
785 if (!vma || vma->vm_start > addr1)
786 goto out;
787
788 err = try_to_merge_one_page(vma, page1, kpage);
789 out:
790 up_read(&mm1->mmap_sem);
791 return err;
792 }
793
794 /*
795 * try_to_merge_two_pages - take two identical pages and prepare them
796 * to be merged into one page.
797 *
798 * This function returns 0 if we successfully mapped two identical pages
799 * into one page, -EFAULT otherwise.
800 *
801 * Note that this function allocates a new kernel page: if one of the pages
802 * is already a ksm page, try_to_merge_with_ksm_page should be used.
803 */
804 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
805 struct page *page1, struct mm_struct *mm2,
806 unsigned long addr2, struct page *page2)
807 {
808 struct vm_area_struct *vma;
809 struct page *kpage;
810 int err = -EFAULT;
811
812 /*
813 * The number of nodes in the stable tree
814 * is the number of kernel pages that we hold.
815 */
816 if (ksm_max_kernel_pages &&
817 ksm_max_kernel_pages <= ksm_pages_shared)
818 return err;
819
820 kpage = alloc_page(GFP_HIGHUSER);
821 if (!kpage)
822 return err;
823
824 down_read(&mm1->mmap_sem);
825 if (ksm_test_exit(mm1)) {
826 up_read(&mm1->mmap_sem);
827 goto out;
828 }
829 vma = find_vma(mm1, addr1);
830 if (!vma || vma->vm_start > addr1) {
831 up_read(&mm1->mmap_sem);
832 goto out;
833 }
834
835 copy_user_highpage(kpage, page1, addr1, vma);
836 err = try_to_merge_one_page(vma, page1, kpage);
837 up_read(&mm1->mmap_sem);
838
839 if (!err) {
840 err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
841 /*
842 * If that fails, we have a ksm page with only one pte
843 * pointing to it: so break it.
844 */
845 if (err)
846 break_cow(mm1, addr1);
847 }
848 out:
849 put_page(kpage);
850 return err;
851 }
852
853 /*
854 * stable_tree_search - search page inside the stable tree
855 * @page: the page that we are searching identical pages to.
856 * @page2: pointer into identical page that we are holding inside the stable
857 * tree that we have found.
858 * @rmap_item: the reverse mapping item
859 *
860 * This function checks if there is a page inside the stable tree
861 * with identical content to the page that we are scanning right now.
862 *
863 * This function return rmap_item pointer to the identical item if found,
864 * NULL otherwise.
865 */
866 static struct rmap_item *stable_tree_search(struct page *page,
867 struct page **page2,
868 struct rmap_item *rmap_item)
869 {
870 struct rb_node *node = root_stable_tree.rb_node;
871
872 while (node) {
873 struct rmap_item *tree_rmap_item, *next_rmap_item;
874 int ret;
875
876 tree_rmap_item = rb_entry(node, struct rmap_item, node);
877 while (tree_rmap_item) {
878 BUG_ON(!in_stable_tree(tree_rmap_item));
879 cond_resched();
880 page2[0] = get_ksm_page(tree_rmap_item);
881 if (page2[0])
882 break;
883 next_rmap_item = tree_rmap_item->next;
884 remove_rmap_item_from_tree(tree_rmap_item);
885 tree_rmap_item = next_rmap_item;
886 }
887 if (!tree_rmap_item)
888 return NULL;
889
890 ret = memcmp_pages(page, page2[0]);
891
892 if (ret < 0) {
893 put_page(page2[0]);
894 node = node->rb_left;
895 } else if (ret > 0) {
896 put_page(page2[0]);
897 node = node->rb_right;
898 } else {
899 return tree_rmap_item;
900 }
901 }
902
903 return NULL;
904 }
905
906 /*
907 * stable_tree_insert - insert rmap_item pointing to new ksm page
908 * into the stable tree.
909 *
910 * @page: the page that we are searching identical page to inside the stable
911 * tree.
912 * @rmap_item: pointer to the reverse mapping item.
913 *
914 * This function returns rmap_item if success, NULL otherwise.
915 */
916 static struct rmap_item *stable_tree_insert(struct page *page,
917 struct rmap_item *rmap_item)
918 {
919 struct rb_node **new = &root_stable_tree.rb_node;
920 struct rb_node *parent = NULL;
921
922 while (*new) {
923 struct rmap_item *tree_rmap_item, *next_rmap_item;
924 struct page *tree_page;
925 int ret;
926
927 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
928 while (tree_rmap_item) {
929 BUG_ON(!in_stable_tree(tree_rmap_item));
930 cond_resched();
931 tree_page = get_ksm_page(tree_rmap_item);
932 if (tree_page)
933 break;
934 next_rmap_item = tree_rmap_item->next;
935 remove_rmap_item_from_tree(tree_rmap_item);
936 tree_rmap_item = next_rmap_item;
937 }
938 if (!tree_rmap_item)
939 return NULL;
940
941 ret = memcmp_pages(page, tree_page);
942 put_page(tree_page);
943
944 parent = *new;
945 if (ret < 0)
946 new = &parent->rb_left;
947 else if (ret > 0)
948 new = &parent->rb_right;
949 else {
950 /*
951 * It is not a bug that stable_tree_search() didn't
952 * find this node: because at that time our page was
953 * not yet write-protected, so may have changed since.
954 */
955 return NULL;
956 }
957 }
958
959 rmap_item->address |= NODE_FLAG | STABLE_FLAG;
960 rmap_item->next = NULL;
961 rb_link_node(&rmap_item->node, parent, new);
962 rb_insert_color(&rmap_item->node, &root_stable_tree);
963
964 ksm_pages_shared++;
965 return rmap_item;
966 }
967
968 /*
969 * unstable_tree_search_insert - search and insert items into the unstable tree.
970 *
971 * @page: the page that we are going to search for identical page or to insert
972 * into the unstable tree
973 * @page2: pointer into identical page that was found inside the unstable tree
974 * @rmap_item: the reverse mapping item of page
975 *
976 * This function searches for a page in the unstable tree identical to the
977 * page currently being scanned; and if no identical page is found in the
978 * tree, we insert rmap_item as a new object into the unstable tree.
979 *
980 * This function returns pointer to rmap_item found to be identical
981 * to the currently scanned page, NULL otherwise.
982 *
983 * This function does both searching and inserting, because they share
984 * the same walking algorithm in an rbtree.
985 */
986 static struct rmap_item *unstable_tree_search_insert(struct page *page,
987 struct page **page2,
988 struct rmap_item *rmap_item)
989 {
990 struct rb_node **new = &root_unstable_tree.rb_node;
991 struct rb_node *parent = NULL;
992
993 while (*new) {
994 struct rmap_item *tree_rmap_item;
995 int ret;
996
997 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
998 page2[0] = get_mergeable_page(tree_rmap_item);
999 if (!page2[0])
1000 return NULL;
1001
1002 /*
1003 * Don't substitute an unswappable ksm page
1004 * just for one good swappable forked page.
1005 */
1006 if (page == page2[0]) {
1007 put_page(page2[0]);
1008 return NULL;
1009 }
1010
1011 ret = memcmp_pages(page, page2[0]);
1012
1013 parent = *new;
1014 if (ret < 0) {
1015 put_page(page2[0]);
1016 new = &parent->rb_left;
1017 } else if (ret > 0) {
1018 put_page(page2[0]);
1019 new = &parent->rb_right;
1020 } else {
1021 return tree_rmap_item;
1022 }
1023 }
1024
1025 rmap_item->address |= NODE_FLAG;
1026 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1027 rb_link_node(&rmap_item->node, parent, new);
1028 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1029
1030 ksm_pages_unshared++;
1031 return NULL;
1032 }
1033
1034 /*
1035 * stable_tree_append - add another rmap_item to the linked list of
1036 * rmap_items hanging off a given node of the stable tree, all sharing
1037 * the same ksm page.
1038 */
1039 static void stable_tree_append(struct rmap_item *rmap_item,
1040 struct rmap_item *tree_rmap_item)
1041 {
1042 rmap_item->next = tree_rmap_item->next;
1043 rmap_item->prev = tree_rmap_item;
1044
1045 if (tree_rmap_item->next)
1046 tree_rmap_item->next->prev = rmap_item;
1047
1048 tree_rmap_item->next = rmap_item;
1049 rmap_item->address |= STABLE_FLAG;
1050
1051 ksm_pages_sharing++;
1052 }
1053
1054 /*
1055 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1056 * if not, compare checksum to previous and if it's the same, see if page can
1057 * be inserted into the unstable tree, or merged with a page already there and
1058 * both transferred to the stable tree.
1059 *
1060 * @page: the page that we are searching identical page to.
1061 * @rmap_item: the reverse mapping into the virtual address of this page
1062 */
1063 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1064 {
1065 struct page *page2[1];
1066 struct rmap_item *tree_rmap_item;
1067 unsigned int checksum;
1068 int err;
1069
1070 if (in_stable_tree(rmap_item))
1071 remove_rmap_item_from_tree(rmap_item);
1072
1073 /* We first start with searching the page inside the stable tree */
1074 tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1075 if (tree_rmap_item) {
1076 if (page == page2[0]) /* forked */
1077 err = 0;
1078 else
1079 err = try_to_merge_with_ksm_page(rmap_item->mm,
1080 rmap_item->address,
1081 page, page2[0]);
1082 put_page(page2[0]);
1083
1084 if (!err) {
1085 /*
1086 * The page was successfully merged:
1087 * add its rmap_item to the stable tree.
1088 */
1089 stable_tree_append(rmap_item, tree_rmap_item);
1090 }
1091 return;
1092 }
1093
1094 /*
1095 * A ksm page might have got here by fork, but its other
1096 * references have already been removed from the stable tree.
1097 * Or it might be left over from a break_ksm which failed
1098 * when the mem_cgroup had reached its limit: try again now.
1099 */
1100 if (PageKsm(page))
1101 break_cow(rmap_item->mm, rmap_item->address);
1102
1103 /*
1104 * In case the hash value of the page was changed from the last time we
1105 * have calculated it, this page to be changed frequely, therefore we
1106 * don't want to insert it to the unstable tree, and we don't want to
1107 * waste our time to search if there is something identical to it there.
1108 */
1109 checksum = calc_checksum(page);
1110 if (rmap_item->oldchecksum != checksum) {
1111 rmap_item->oldchecksum = checksum;
1112 return;
1113 }
1114
1115 tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1116 if (tree_rmap_item) {
1117 err = try_to_merge_two_pages(rmap_item->mm,
1118 rmap_item->address, page,
1119 tree_rmap_item->mm,
1120 tree_rmap_item->address, page2[0]);
1121 /*
1122 * As soon as we merge this page, we want to remove the
1123 * rmap_item of the page we have merged with from the unstable
1124 * tree, and insert it instead as new node in the stable tree.
1125 */
1126 if (!err) {
1127 rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1128 tree_rmap_item->address &= ~NODE_FLAG;
1129 ksm_pages_unshared--;
1130
1131 /*
1132 * If we fail to insert the page into the stable tree,
1133 * we will have 2 virtual addresses that are pointing
1134 * to a ksm page left outside the stable tree,
1135 * in which case we need to break_cow on both.
1136 */
1137 if (stable_tree_insert(page2[0], tree_rmap_item))
1138 stable_tree_append(rmap_item, tree_rmap_item);
1139 else {
1140 break_cow(tree_rmap_item->mm,
1141 tree_rmap_item->address);
1142 break_cow(rmap_item->mm, rmap_item->address);
1143 }
1144 }
1145
1146 put_page(page2[0]);
1147 }
1148 }
1149
1150 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1151 struct list_head *cur,
1152 unsigned long addr)
1153 {
1154 struct rmap_item *rmap_item;
1155
1156 while (cur != &mm_slot->rmap_list) {
1157 rmap_item = list_entry(cur, struct rmap_item, link);
1158 if ((rmap_item->address & PAGE_MASK) == addr) {
1159 if (!in_stable_tree(rmap_item))
1160 remove_rmap_item_from_tree(rmap_item);
1161 return rmap_item;
1162 }
1163 if (rmap_item->address > addr)
1164 break;
1165 cur = cur->next;
1166 remove_rmap_item_from_tree(rmap_item);
1167 list_del(&rmap_item->link);
1168 free_rmap_item(rmap_item);
1169 }
1170
1171 rmap_item = alloc_rmap_item();
1172 if (rmap_item) {
1173 /* It has already been zeroed */
1174 rmap_item->mm = mm_slot->mm;
1175 rmap_item->address = addr;
1176 list_add_tail(&rmap_item->link, cur);
1177 }
1178 return rmap_item;
1179 }
1180
1181 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1182 {
1183 struct mm_struct *mm;
1184 struct mm_slot *slot;
1185 struct vm_area_struct *vma;
1186 struct rmap_item *rmap_item;
1187
1188 if (list_empty(&ksm_mm_head.mm_list))
1189 return NULL;
1190
1191 slot = ksm_scan.mm_slot;
1192 if (slot == &ksm_mm_head) {
1193 root_unstable_tree = RB_ROOT;
1194
1195 spin_lock(&ksm_mmlist_lock);
1196 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1197 ksm_scan.mm_slot = slot;
1198 spin_unlock(&ksm_mmlist_lock);
1199 next_mm:
1200 ksm_scan.address = 0;
1201 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1202 struct rmap_item, link);
1203 }
1204
1205 mm = slot->mm;
1206 down_read(&mm->mmap_sem);
1207 if (ksm_test_exit(mm))
1208 vma = NULL;
1209 else
1210 vma = find_vma(mm, ksm_scan.address);
1211
1212 for (; vma; vma = vma->vm_next) {
1213 if (!(vma->vm_flags & VM_MERGEABLE))
1214 continue;
1215 if (ksm_scan.address < vma->vm_start)
1216 ksm_scan.address = vma->vm_start;
1217 if (!vma->anon_vma)
1218 ksm_scan.address = vma->vm_end;
1219
1220 while (ksm_scan.address < vma->vm_end) {
1221 if (ksm_test_exit(mm))
1222 break;
1223 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1224 if (*page && PageAnon(*page)) {
1225 flush_anon_page(vma, *page, ksm_scan.address);
1226 flush_dcache_page(*page);
1227 rmap_item = get_next_rmap_item(slot,
1228 ksm_scan.rmap_item->link.next,
1229 ksm_scan.address);
1230 if (rmap_item) {
1231 ksm_scan.rmap_item = rmap_item;
1232 ksm_scan.address += PAGE_SIZE;
1233 } else
1234 put_page(*page);
1235 up_read(&mm->mmap_sem);
1236 return rmap_item;
1237 }
1238 if (*page)
1239 put_page(*page);
1240 ksm_scan.address += PAGE_SIZE;
1241 cond_resched();
1242 }
1243 }
1244
1245 if (ksm_test_exit(mm)) {
1246 ksm_scan.address = 0;
1247 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1248 struct rmap_item, link);
1249 }
1250 /*
1251 * Nuke all the rmap_items that are above this current rmap:
1252 * because there were no VM_MERGEABLE vmas with such addresses.
1253 */
1254 remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1255
1256 spin_lock(&ksm_mmlist_lock);
1257 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1258 struct mm_slot, mm_list);
1259 if (ksm_scan.address == 0) {
1260 /*
1261 * We've completed a full scan of all vmas, holding mmap_sem
1262 * throughout, and found no VM_MERGEABLE: so do the same as
1263 * __ksm_exit does to remove this mm from all our lists now.
1264 * This applies either when cleaning up after __ksm_exit
1265 * (but beware: we can reach here even before __ksm_exit),
1266 * or when all VM_MERGEABLE areas have been unmapped (and
1267 * mmap_sem then protects against race with MADV_MERGEABLE).
1268 */
1269 hlist_del(&slot->link);
1270 list_del(&slot->mm_list);
1271 spin_unlock(&ksm_mmlist_lock);
1272
1273 free_mm_slot(slot);
1274 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1275 up_read(&mm->mmap_sem);
1276 mmdrop(mm);
1277 } else {
1278 spin_unlock(&ksm_mmlist_lock);
1279 up_read(&mm->mmap_sem);
1280 }
1281
1282 /* Repeat until we've completed scanning the whole list */
1283 slot = ksm_scan.mm_slot;
1284 if (slot != &ksm_mm_head)
1285 goto next_mm;
1286
1287 ksm_scan.seqnr++;
1288 return NULL;
1289 }
1290
1291 /**
1292 * ksm_do_scan - the ksm scanner main worker function.
1293 * @scan_npages - number of pages we want to scan before we return.
1294 */
1295 static void ksm_do_scan(unsigned int scan_npages)
1296 {
1297 struct rmap_item *rmap_item;
1298 struct page *page;
1299
1300 while (scan_npages--) {
1301 cond_resched();
1302 rmap_item = scan_get_next_rmap_item(&page);
1303 if (!rmap_item)
1304 return;
1305 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1306 cmp_and_merge_page(page, rmap_item);
1307 else if (page_mapcount(page) == 1) {
1308 /*
1309 * Replace now-unshared ksm page by ordinary page.
1310 */
1311 break_cow(rmap_item->mm, rmap_item->address);
1312 remove_rmap_item_from_tree(rmap_item);
1313 rmap_item->oldchecksum = calc_checksum(page);
1314 }
1315 put_page(page);
1316 }
1317 }
1318
1319 static int ksmd_should_run(void)
1320 {
1321 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1322 }
1323
1324 static int ksm_scan_thread(void *nothing)
1325 {
1326 set_user_nice(current, 5);
1327
1328 while (!kthread_should_stop()) {
1329 mutex_lock(&ksm_thread_mutex);
1330 if (ksmd_should_run())
1331 ksm_do_scan(ksm_thread_pages_to_scan);
1332 mutex_unlock(&ksm_thread_mutex);
1333
1334 if (ksmd_should_run()) {
1335 schedule_timeout_interruptible(
1336 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1337 } else {
1338 wait_event_interruptible(ksm_thread_wait,
1339 ksmd_should_run() || kthread_should_stop());
1340 }
1341 }
1342 return 0;
1343 }
1344
1345 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1346 unsigned long end, int advice, unsigned long *vm_flags)
1347 {
1348 struct mm_struct *mm = vma->vm_mm;
1349 int err;
1350
1351 switch (advice) {
1352 case MADV_MERGEABLE:
1353 /*
1354 * Be somewhat over-protective for now!
1355 */
1356 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1357 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1358 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1359 VM_MIXEDMAP | VM_SAO))
1360 return 0; /* just ignore the advice */
1361
1362 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1363 err = __ksm_enter(mm);
1364 if (err)
1365 return err;
1366 }
1367
1368 *vm_flags |= VM_MERGEABLE;
1369 break;
1370
1371 case MADV_UNMERGEABLE:
1372 if (!(*vm_flags & VM_MERGEABLE))
1373 return 0; /* just ignore the advice */
1374
1375 if (vma->anon_vma) {
1376 err = unmerge_ksm_pages(vma, start, end);
1377 if (err)
1378 return err;
1379 }
1380
1381 *vm_flags &= ~VM_MERGEABLE;
1382 break;
1383 }
1384
1385 return 0;
1386 }
1387
1388 int __ksm_enter(struct mm_struct *mm)
1389 {
1390 struct mm_slot *mm_slot;
1391 int needs_wakeup;
1392
1393 mm_slot = alloc_mm_slot();
1394 if (!mm_slot)
1395 return -ENOMEM;
1396
1397 /* Check ksm_run too? Would need tighter locking */
1398 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1399
1400 spin_lock(&ksm_mmlist_lock);
1401 insert_to_mm_slots_hash(mm, mm_slot);
1402 /*
1403 * Insert just behind the scanning cursor, to let the area settle
1404 * down a little; when fork is followed by immediate exec, we don't
1405 * want ksmd to waste time setting up and tearing down an rmap_list.
1406 */
1407 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1408 spin_unlock(&ksm_mmlist_lock);
1409
1410 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1411 atomic_inc(&mm->mm_count);
1412
1413 if (needs_wakeup)
1414 wake_up_interruptible(&ksm_thread_wait);
1415
1416 return 0;
1417 }
1418
1419 void __ksm_exit(struct mm_struct *mm,
1420 struct mmu_gather **tlbp, unsigned long end)
1421 {
1422 struct mm_slot *mm_slot;
1423 int easy_to_free = 0;
1424
1425 /*
1426 * This process is exiting: if it's straightforward (as is the
1427 * case when ksmd was never running), free mm_slot immediately.
1428 * But if it's at the cursor or has rmap_items linked to it, use
1429 * mmap_sem to synchronize with any break_cows before pagetables
1430 * are freed, and leave the mm_slot on the list for ksmd to free.
1431 * Beware: ksm may already have noticed it exiting and freed the slot.
1432 */
1433
1434 spin_lock(&ksm_mmlist_lock);
1435 mm_slot = get_mm_slot(mm);
1436 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1437 if (list_empty(&mm_slot->rmap_list)) {
1438 hlist_del(&mm_slot->link);
1439 list_del(&mm_slot->mm_list);
1440 easy_to_free = 1;
1441 } else {
1442 list_move(&mm_slot->mm_list,
1443 &ksm_scan.mm_slot->mm_list);
1444 }
1445 }
1446 spin_unlock(&ksm_mmlist_lock);
1447
1448 if (easy_to_free) {
1449 free_mm_slot(mm_slot);
1450 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1451 mmdrop(mm);
1452 } else if (mm_slot) {
1453 tlb_finish_mmu(*tlbp, 0, end);
1454 down_write(&mm->mmap_sem);
1455 up_write(&mm->mmap_sem);
1456 *tlbp = tlb_gather_mmu(mm, 1);
1457 }
1458 }
1459
1460 #define KSM_ATTR_RO(_name) \
1461 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1462 #define KSM_ATTR(_name) \
1463 static struct kobj_attribute _name##_attr = \
1464 __ATTR(_name, 0644, _name##_show, _name##_store)
1465
1466 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1467 struct kobj_attribute *attr, char *buf)
1468 {
1469 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1470 }
1471
1472 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1473 struct kobj_attribute *attr,
1474 const char *buf, size_t count)
1475 {
1476 unsigned long msecs;
1477 int err;
1478
1479 err = strict_strtoul(buf, 10, &msecs);
1480 if (err || msecs > UINT_MAX)
1481 return -EINVAL;
1482
1483 ksm_thread_sleep_millisecs = msecs;
1484
1485 return count;
1486 }
1487 KSM_ATTR(sleep_millisecs);
1488
1489 static ssize_t pages_to_scan_show(struct kobject *kobj,
1490 struct kobj_attribute *attr, char *buf)
1491 {
1492 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1493 }
1494
1495 static ssize_t pages_to_scan_store(struct kobject *kobj,
1496 struct kobj_attribute *attr,
1497 const char *buf, size_t count)
1498 {
1499 int err;
1500 unsigned long nr_pages;
1501
1502 err = strict_strtoul(buf, 10, &nr_pages);
1503 if (err || nr_pages > UINT_MAX)
1504 return -EINVAL;
1505
1506 ksm_thread_pages_to_scan = nr_pages;
1507
1508 return count;
1509 }
1510 KSM_ATTR(pages_to_scan);
1511
1512 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1513 char *buf)
1514 {
1515 return sprintf(buf, "%u\n", ksm_run);
1516 }
1517
1518 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1519 const char *buf, size_t count)
1520 {
1521 int err;
1522 unsigned long flags;
1523
1524 err = strict_strtoul(buf, 10, &flags);
1525 if (err || flags > UINT_MAX)
1526 return -EINVAL;
1527 if (flags > KSM_RUN_UNMERGE)
1528 return -EINVAL;
1529
1530 /*
1531 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1532 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1533 * breaking COW to free the unswappable pages_shared (but leaves
1534 * mm_slots on the list for when ksmd may be set running again).
1535 */
1536
1537 mutex_lock(&ksm_thread_mutex);
1538 if (ksm_run != flags) {
1539 ksm_run = flags;
1540 if (flags & KSM_RUN_UNMERGE) {
1541 err = unmerge_and_remove_all_rmap_items();
1542 if (err) {
1543 ksm_run = KSM_RUN_STOP;
1544 count = err;
1545 }
1546 }
1547 }
1548 mutex_unlock(&ksm_thread_mutex);
1549
1550 if (flags & KSM_RUN_MERGE)
1551 wake_up_interruptible(&ksm_thread_wait);
1552
1553 return count;
1554 }
1555 KSM_ATTR(run);
1556
1557 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1558 struct kobj_attribute *attr,
1559 const char *buf, size_t count)
1560 {
1561 int err;
1562 unsigned long nr_pages;
1563
1564 err = strict_strtoul(buf, 10, &nr_pages);
1565 if (err)
1566 return -EINVAL;
1567
1568 ksm_max_kernel_pages = nr_pages;
1569
1570 return count;
1571 }
1572
1573 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1574 struct kobj_attribute *attr, char *buf)
1575 {
1576 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1577 }
1578 KSM_ATTR(max_kernel_pages);
1579
1580 static ssize_t pages_shared_show(struct kobject *kobj,
1581 struct kobj_attribute *attr, char *buf)
1582 {
1583 return sprintf(buf, "%lu\n", ksm_pages_shared);
1584 }
1585 KSM_ATTR_RO(pages_shared);
1586
1587 static ssize_t pages_sharing_show(struct kobject *kobj,
1588 struct kobj_attribute *attr, char *buf)
1589 {
1590 return sprintf(buf, "%lu\n", ksm_pages_sharing);
1591 }
1592 KSM_ATTR_RO(pages_sharing);
1593
1594 static ssize_t pages_unshared_show(struct kobject *kobj,
1595 struct kobj_attribute *attr, char *buf)
1596 {
1597 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1598 }
1599 KSM_ATTR_RO(pages_unshared);
1600
1601 static ssize_t pages_volatile_show(struct kobject *kobj,
1602 struct kobj_attribute *attr, char *buf)
1603 {
1604 long ksm_pages_volatile;
1605
1606 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1607 - ksm_pages_sharing - ksm_pages_unshared;
1608 /*
1609 * It was not worth any locking to calculate that statistic,
1610 * but it might therefore sometimes be negative: conceal that.
1611 */
1612 if (ksm_pages_volatile < 0)
1613 ksm_pages_volatile = 0;
1614 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1615 }
1616 KSM_ATTR_RO(pages_volatile);
1617
1618 static ssize_t full_scans_show(struct kobject *kobj,
1619 struct kobj_attribute *attr, char *buf)
1620 {
1621 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1622 }
1623 KSM_ATTR_RO(full_scans);
1624
1625 static struct attribute *ksm_attrs[] = {
1626 &sleep_millisecs_attr.attr,
1627 &pages_to_scan_attr.attr,
1628 &run_attr.attr,
1629 &max_kernel_pages_attr.attr,
1630 &pages_shared_attr.attr,
1631 &pages_sharing_attr.attr,
1632 &pages_unshared_attr.attr,
1633 &pages_volatile_attr.attr,
1634 &full_scans_attr.attr,
1635 NULL,
1636 };
1637
1638 static struct attribute_group ksm_attr_group = {
1639 .attrs = ksm_attrs,
1640 .name = "ksm",
1641 };
1642
1643 static int __init ksm_init(void)
1644 {
1645 struct task_struct *ksm_thread;
1646 int err;
1647
1648 err = ksm_slab_init();
1649 if (err)
1650 goto out;
1651
1652 err = mm_slots_hash_init();
1653 if (err)
1654 goto out_free1;
1655
1656 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1657 if (IS_ERR(ksm_thread)) {
1658 printk(KERN_ERR "ksm: creating kthread failed\n");
1659 err = PTR_ERR(ksm_thread);
1660 goto out_free2;
1661 }
1662
1663 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1664 if (err) {
1665 printk(KERN_ERR "ksm: register sysfs failed\n");
1666 goto out_free3;
1667 }
1668
1669 return 0;
1670
1671 out_free3:
1672 kthread_stop(ksm_thread);
1673 out_free2:
1674 mm_slots_hash_free();
1675 out_free1:
1676 ksm_slab_free();
1677 out:
1678 return err;
1679 }
1680 module_init(ksm_init)
This page took 0.080982 seconds and 4 git commands to generate.