ksm: shrink 32-bit rmap_item back to 32 bytes
[deliverable/linux.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root root_unstable_tree[MAX_NUMNODES];
187 static struct rb_root root_stable_tree[MAX_NUMNODES];
188
189 /* Recently migrated nodes of stable tree, pending proper placement */
190 static LIST_HEAD(migrate_nodes);
191
192 #define MM_SLOTS_HASH_BITS 10
193 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
194
195 static struct mm_slot ksm_mm_head = {
196 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
197 };
198 static struct ksm_scan ksm_scan = {
199 .mm_slot = &ksm_mm_head,
200 };
201
202 static struct kmem_cache *rmap_item_cache;
203 static struct kmem_cache *stable_node_cache;
204 static struct kmem_cache *mm_slot_cache;
205
206 /* The number of nodes in the stable tree */
207 static unsigned long ksm_pages_shared;
208
209 /* The number of page slots additionally sharing those nodes */
210 static unsigned long ksm_pages_sharing;
211
212 /* The number of nodes in the unstable tree */
213 static unsigned long ksm_pages_unshared;
214
215 /* The number of rmap_items in use: to calculate pages_volatile */
216 static unsigned long ksm_rmap_items;
217
218 /* Number of pages ksmd should scan in one batch */
219 static unsigned int ksm_thread_pages_to_scan = 100;
220
221 /* Milliseconds ksmd should sleep between batches */
222 static unsigned int ksm_thread_sleep_millisecs = 20;
223
224 #ifdef CONFIG_NUMA
225 /* Zeroed when merging across nodes is not allowed */
226 static unsigned int ksm_merge_across_nodes = 1;
227 #else
228 #define ksm_merge_across_nodes 1U
229 #endif
230
231 #define KSM_RUN_STOP 0
232 #define KSM_RUN_MERGE 1
233 #define KSM_RUN_UNMERGE 2
234 #define KSM_RUN_OFFLINE 4
235 static unsigned long ksm_run = KSM_RUN_STOP;
236 static void wait_while_offlining(void);
237
238 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
239 static DEFINE_MUTEX(ksm_thread_mutex);
240 static DEFINE_SPINLOCK(ksm_mmlist_lock);
241
242 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
243 sizeof(struct __struct), __alignof__(struct __struct),\
244 (__flags), NULL)
245
246 static int __init ksm_slab_init(void)
247 {
248 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
249 if (!rmap_item_cache)
250 goto out;
251
252 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
253 if (!stable_node_cache)
254 goto out_free1;
255
256 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
257 if (!mm_slot_cache)
258 goto out_free2;
259
260 return 0;
261
262 out_free2:
263 kmem_cache_destroy(stable_node_cache);
264 out_free1:
265 kmem_cache_destroy(rmap_item_cache);
266 out:
267 return -ENOMEM;
268 }
269
270 static void __init ksm_slab_free(void)
271 {
272 kmem_cache_destroy(mm_slot_cache);
273 kmem_cache_destroy(stable_node_cache);
274 kmem_cache_destroy(rmap_item_cache);
275 mm_slot_cache = NULL;
276 }
277
278 static inline struct rmap_item *alloc_rmap_item(void)
279 {
280 struct rmap_item *rmap_item;
281
282 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
283 if (rmap_item)
284 ksm_rmap_items++;
285 return rmap_item;
286 }
287
288 static inline void free_rmap_item(struct rmap_item *rmap_item)
289 {
290 ksm_rmap_items--;
291 rmap_item->mm = NULL; /* debug safety */
292 kmem_cache_free(rmap_item_cache, rmap_item);
293 }
294
295 static inline struct stable_node *alloc_stable_node(void)
296 {
297 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
298 }
299
300 static inline void free_stable_node(struct stable_node *stable_node)
301 {
302 kmem_cache_free(stable_node_cache, stable_node);
303 }
304
305 static inline struct mm_slot *alloc_mm_slot(void)
306 {
307 if (!mm_slot_cache) /* initialization failed */
308 return NULL;
309 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
310 }
311
312 static inline void free_mm_slot(struct mm_slot *mm_slot)
313 {
314 kmem_cache_free(mm_slot_cache, mm_slot);
315 }
316
317 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
318 {
319 struct hlist_node *node;
320 struct mm_slot *slot;
321
322 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
323 if (slot->mm == mm)
324 return slot;
325
326 return NULL;
327 }
328
329 static void insert_to_mm_slots_hash(struct mm_struct *mm,
330 struct mm_slot *mm_slot)
331 {
332 mm_slot->mm = mm;
333 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
334 }
335
336 /*
337 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
338 * page tables after it has passed through ksm_exit() - which, if necessary,
339 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
340 * a special flag: they can just back out as soon as mm_users goes to zero.
341 * ksm_test_exit() is used throughout to make this test for exit: in some
342 * places for correctness, in some places just to avoid unnecessary work.
343 */
344 static inline bool ksm_test_exit(struct mm_struct *mm)
345 {
346 return atomic_read(&mm->mm_users) == 0;
347 }
348
349 /*
350 * We use break_ksm to break COW on a ksm page: it's a stripped down
351 *
352 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
353 * put_page(page);
354 *
355 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
356 * in case the application has unmapped and remapped mm,addr meanwhile.
357 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
358 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
359 */
360 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
361 {
362 struct page *page;
363 int ret = 0;
364
365 do {
366 cond_resched();
367 page = follow_page(vma, addr, FOLL_GET);
368 if (IS_ERR_OR_NULL(page))
369 break;
370 if (PageKsm(page))
371 ret = handle_mm_fault(vma->vm_mm, vma, addr,
372 FAULT_FLAG_WRITE);
373 else
374 ret = VM_FAULT_WRITE;
375 put_page(page);
376 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
377 /*
378 * We must loop because handle_mm_fault() may back out if there's
379 * any difficulty e.g. if pte accessed bit gets updated concurrently.
380 *
381 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
382 * COW has been broken, even if the vma does not permit VM_WRITE;
383 * but note that a concurrent fault might break PageKsm for us.
384 *
385 * VM_FAULT_SIGBUS could occur if we race with truncation of the
386 * backing file, which also invalidates anonymous pages: that's
387 * okay, that truncation will have unmapped the PageKsm for us.
388 *
389 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
390 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
391 * current task has TIF_MEMDIE set, and will be OOM killed on return
392 * to user; and ksmd, having no mm, would never be chosen for that.
393 *
394 * But if the mm is in a limited mem_cgroup, then the fault may fail
395 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
396 * even ksmd can fail in this way - though it's usually breaking ksm
397 * just to undo a merge it made a moment before, so unlikely to oom.
398 *
399 * That's a pity: we might therefore have more kernel pages allocated
400 * than we're counting as nodes in the stable tree; but ksm_do_scan
401 * will retry to break_cow on each pass, so should recover the page
402 * in due course. The important thing is to not let VM_MERGEABLE
403 * be cleared while any such pages might remain in the area.
404 */
405 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
406 }
407
408 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
409 unsigned long addr)
410 {
411 struct vm_area_struct *vma;
412 if (ksm_test_exit(mm))
413 return NULL;
414 vma = find_vma(mm, addr);
415 if (!vma || vma->vm_start > addr)
416 return NULL;
417 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
418 return NULL;
419 return vma;
420 }
421
422 static void break_cow(struct rmap_item *rmap_item)
423 {
424 struct mm_struct *mm = rmap_item->mm;
425 unsigned long addr = rmap_item->address;
426 struct vm_area_struct *vma;
427
428 /*
429 * It is not an accident that whenever we want to break COW
430 * to undo, we also need to drop a reference to the anon_vma.
431 */
432 put_anon_vma(rmap_item->anon_vma);
433
434 down_read(&mm->mmap_sem);
435 vma = find_mergeable_vma(mm, addr);
436 if (vma)
437 break_ksm(vma, addr);
438 up_read(&mm->mmap_sem);
439 }
440
441 static struct page *page_trans_compound_anon(struct page *page)
442 {
443 if (PageTransCompound(page)) {
444 struct page *head = compound_trans_head(page);
445 /*
446 * head may actually be splitted and freed from under
447 * us but it's ok here.
448 */
449 if (PageAnon(head))
450 return head;
451 }
452 return NULL;
453 }
454
455 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
456 {
457 struct mm_struct *mm = rmap_item->mm;
458 unsigned long addr = rmap_item->address;
459 struct vm_area_struct *vma;
460 struct page *page;
461
462 down_read(&mm->mmap_sem);
463 vma = find_mergeable_vma(mm, addr);
464 if (!vma)
465 goto out;
466
467 page = follow_page(vma, addr, FOLL_GET);
468 if (IS_ERR_OR_NULL(page))
469 goto out;
470 if (PageAnon(page) || page_trans_compound_anon(page)) {
471 flush_anon_page(vma, page, addr);
472 flush_dcache_page(page);
473 } else {
474 put_page(page);
475 out: page = NULL;
476 }
477 up_read(&mm->mmap_sem);
478 return page;
479 }
480
481 /*
482 * This helper is used for getting right index into array of tree roots.
483 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
484 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
485 * every node has its own stable and unstable tree.
486 */
487 static inline int get_kpfn_nid(unsigned long kpfn)
488 {
489 return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
490 }
491
492 static void remove_node_from_stable_tree(struct stable_node *stable_node)
493 {
494 struct rmap_item *rmap_item;
495 struct hlist_node *hlist;
496
497 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
498 if (rmap_item->hlist.next)
499 ksm_pages_sharing--;
500 else
501 ksm_pages_shared--;
502 put_anon_vma(rmap_item->anon_vma);
503 rmap_item->address &= PAGE_MASK;
504 cond_resched();
505 }
506
507 if (stable_node->head == &migrate_nodes)
508 list_del(&stable_node->list);
509 else
510 rb_erase(&stable_node->node,
511 &root_stable_tree[NUMA(stable_node->nid)]);
512 free_stable_node(stable_node);
513 }
514
515 /*
516 * get_ksm_page: checks if the page indicated by the stable node
517 * is still its ksm page, despite having held no reference to it.
518 * In which case we can trust the content of the page, and it
519 * returns the gotten page; but if the page has now been zapped,
520 * remove the stale node from the stable tree and return NULL.
521 * But beware, the stable node's page might be being migrated.
522 *
523 * You would expect the stable_node to hold a reference to the ksm page.
524 * But if it increments the page's count, swapping out has to wait for
525 * ksmd to come around again before it can free the page, which may take
526 * seconds or even minutes: much too unresponsive. So instead we use a
527 * "keyhole reference": access to the ksm page from the stable node peeps
528 * out through its keyhole to see if that page still holds the right key,
529 * pointing back to this stable node. This relies on freeing a PageAnon
530 * page to reset its page->mapping to NULL, and relies on no other use of
531 * a page to put something that might look like our key in page->mapping.
532 * is on its way to being freed; but it is an anomaly to bear in mind.
533 */
534 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
535 {
536 struct page *page;
537 void *expected_mapping;
538 unsigned long kpfn;
539
540 expected_mapping = (void *)stable_node +
541 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
542 again:
543 kpfn = ACCESS_ONCE(stable_node->kpfn);
544 page = pfn_to_page(kpfn);
545
546 /*
547 * page is computed from kpfn, so on most architectures reading
548 * page->mapping is naturally ordered after reading node->kpfn,
549 * but on Alpha we need to be more careful.
550 */
551 smp_read_barrier_depends();
552 if (ACCESS_ONCE(page->mapping) != expected_mapping)
553 goto stale;
554
555 /*
556 * We cannot do anything with the page while its refcount is 0.
557 * Usually 0 means free, or tail of a higher-order page: in which
558 * case this node is no longer referenced, and should be freed;
559 * however, it might mean that the page is under page_freeze_refs().
560 * The __remove_mapping() case is easy, again the node is now stale;
561 * but if page is swapcache in migrate_page_move_mapping(), it might
562 * still be our page, in which case it's essential to keep the node.
563 */
564 while (!get_page_unless_zero(page)) {
565 /*
566 * Another check for page->mapping != expected_mapping would
567 * work here too. We have chosen the !PageSwapCache test to
568 * optimize the common case, when the page is or is about to
569 * be freed: PageSwapCache is cleared (under spin_lock_irq)
570 * in the freeze_refs section of __remove_mapping(); but Anon
571 * page->mapping reset to NULL later, in free_pages_prepare().
572 */
573 if (!PageSwapCache(page))
574 goto stale;
575 cpu_relax();
576 }
577
578 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
579 put_page(page);
580 goto stale;
581 }
582
583 if (lock_it) {
584 lock_page(page);
585 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
586 unlock_page(page);
587 put_page(page);
588 goto stale;
589 }
590 }
591 return page;
592
593 stale:
594 /*
595 * We come here from above when page->mapping or !PageSwapCache
596 * suggests that the node is stale; but it might be under migration.
597 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
598 * before checking whether node->kpfn has been changed.
599 */
600 smp_rmb();
601 if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
602 goto again;
603 remove_node_from_stable_tree(stable_node);
604 return NULL;
605 }
606
607 /*
608 * Removing rmap_item from stable or unstable tree.
609 * This function will clean the information from the stable/unstable tree.
610 */
611 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
612 {
613 if (rmap_item->address & STABLE_FLAG) {
614 struct stable_node *stable_node;
615 struct page *page;
616
617 stable_node = rmap_item->head;
618 page = get_ksm_page(stable_node, true);
619 if (!page)
620 goto out;
621
622 hlist_del(&rmap_item->hlist);
623 unlock_page(page);
624 put_page(page);
625
626 if (stable_node->hlist.first)
627 ksm_pages_sharing--;
628 else
629 ksm_pages_shared--;
630
631 put_anon_vma(rmap_item->anon_vma);
632 rmap_item->address &= PAGE_MASK;
633
634 } else if (rmap_item->address & UNSTABLE_FLAG) {
635 unsigned char age;
636 /*
637 * Usually ksmd can and must skip the rb_erase, because
638 * root_unstable_tree was already reset to RB_ROOT.
639 * But be careful when an mm is exiting: do the rb_erase
640 * if this rmap_item was inserted by this scan, rather
641 * than left over from before.
642 */
643 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
644 BUG_ON(age > 1);
645 if (!age)
646 rb_erase(&rmap_item->node,
647 &root_unstable_tree[NUMA(rmap_item->nid)]);
648 ksm_pages_unshared--;
649 rmap_item->address &= PAGE_MASK;
650 }
651 out:
652 cond_resched(); /* we're called from many long loops */
653 }
654
655 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
656 struct rmap_item **rmap_list)
657 {
658 while (*rmap_list) {
659 struct rmap_item *rmap_item = *rmap_list;
660 *rmap_list = rmap_item->rmap_list;
661 remove_rmap_item_from_tree(rmap_item);
662 free_rmap_item(rmap_item);
663 }
664 }
665
666 /*
667 * Though it's very tempting to unmerge rmap_items from stable tree rather
668 * than check every pte of a given vma, the locking doesn't quite work for
669 * that - an rmap_item is assigned to the stable tree after inserting ksm
670 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
671 * rmap_items from parent to child at fork time (so as not to waste time
672 * if exit comes before the next scan reaches it).
673 *
674 * Similarly, although we'd like to remove rmap_items (so updating counts
675 * and freeing memory) when unmerging an area, it's easier to leave that
676 * to the next pass of ksmd - consider, for example, how ksmd might be
677 * in cmp_and_merge_page on one of the rmap_items we would be removing.
678 */
679 static int unmerge_ksm_pages(struct vm_area_struct *vma,
680 unsigned long start, unsigned long end)
681 {
682 unsigned long addr;
683 int err = 0;
684
685 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
686 if (ksm_test_exit(vma->vm_mm))
687 break;
688 if (signal_pending(current))
689 err = -ERESTARTSYS;
690 else
691 err = break_ksm(vma, addr);
692 }
693 return err;
694 }
695
696 #ifdef CONFIG_SYSFS
697 /*
698 * Only called through the sysfs control interface:
699 */
700 static int remove_stable_node(struct stable_node *stable_node)
701 {
702 struct page *page;
703 int err;
704
705 page = get_ksm_page(stable_node, true);
706 if (!page) {
707 /*
708 * get_ksm_page did remove_node_from_stable_tree itself.
709 */
710 return 0;
711 }
712
713 if (WARN_ON_ONCE(page_mapped(page))) {
714 /*
715 * This should not happen: but if it does, just refuse to let
716 * merge_across_nodes be switched - there is no need to panic.
717 */
718 err = -EBUSY;
719 } else {
720 /*
721 * The stable node did not yet appear stale to get_ksm_page(),
722 * since that allows for an unmapped ksm page to be recognized
723 * right up until it is freed; but the node is safe to remove.
724 * This page might be in a pagevec waiting to be freed,
725 * or it might be PageSwapCache (perhaps under writeback),
726 * or it might have been removed from swapcache a moment ago.
727 */
728 set_page_stable_node(page, NULL);
729 remove_node_from_stable_tree(stable_node);
730 err = 0;
731 }
732
733 unlock_page(page);
734 put_page(page);
735 return err;
736 }
737
738 static int remove_all_stable_nodes(void)
739 {
740 struct stable_node *stable_node;
741 struct list_head *this, *next;
742 int nid;
743 int err = 0;
744
745 for (nid = 0; nid < nr_node_ids; nid++) {
746 while (root_stable_tree[nid].rb_node) {
747 stable_node = rb_entry(root_stable_tree[nid].rb_node,
748 struct stable_node, node);
749 if (remove_stable_node(stable_node)) {
750 err = -EBUSY;
751 break; /* proceed to next nid */
752 }
753 cond_resched();
754 }
755 }
756 list_for_each_safe(this, next, &migrate_nodes) {
757 stable_node = list_entry(this, struct stable_node, list);
758 if (remove_stable_node(stable_node))
759 err = -EBUSY;
760 cond_resched();
761 }
762 return err;
763 }
764
765 static int unmerge_and_remove_all_rmap_items(void)
766 {
767 struct mm_slot *mm_slot;
768 struct mm_struct *mm;
769 struct vm_area_struct *vma;
770 int err = 0;
771
772 spin_lock(&ksm_mmlist_lock);
773 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
774 struct mm_slot, mm_list);
775 spin_unlock(&ksm_mmlist_lock);
776
777 for (mm_slot = ksm_scan.mm_slot;
778 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
779 mm = mm_slot->mm;
780 down_read(&mm->mmap_sem);
781 for (vma = mm->mmap; vma; vma = vma->vm_next) {
782 if (ksm_test_exit(mm))
783 break;
784 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
785 continue;
786 err = unmerge_ksm_pages(vma,
787 vma->vm_start, vma->vm_end);
788 if (err)
789 goto error;
790 }
791
792 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
793
794 spin_lock(&ksm_mmlist_lock);
795 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
796 struct mm_slot, mm_list);
797 if (ksm_test_exit(mm)) {
798 hash_del(&mm_slot->link);
799 list_del(&mm_slot->mm_list);
800 spin_unlock(&ksm_mmlist_lock);
801
802 free_mm_slot(mm_slot);
803 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
804 up_read(&mm->mmap_sem);
805 mmdrop(mm);
806 } else {
807 spin_unlock(&ksm_mmlist_lock);
808 up_read(&mm->mmap_sem);
809 }
810 }
811
812 /* Clean up stable nodes, but don't worry if some are still busy */
813 remove_all_stable_nodes();
814 ksm_scan.seqnr = 0;
815 return 0;
816
817 error:
818 up_read(&mm->mmap_sem);
819 spin_lock(&ksm_mmlist_lock);
820 ksm_scan.mm_slot = &ksm_mm_head;
821 spin_unlock(&ksm_mmlist_lock);
822 return err;
823 }
824 #endif /* CONFIG_SYSFS */
825
826 static u32 calc_checksum(struct page *page)
827 {
828 u32 checksum;
829 void *addr = kmap_atomic(page);
830 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
831 kunmap_atomic(addr);
832 return checksum;
833 }
834
835 static int memcmp_pages(struct page *page1, struct page *page2)
836 {
837 char *addr1, *addr2;
838 int ret;
839
840 addr1 = kmap_atomic(page1);
841 addr2 = kmap_atomic(page2);
842 ret = memcmp(addr1, addr2, PAGE_SIZE);
843 kunmap_atomic(addr2);
844 kunmap_atomic(addr1);
845 return ret;
846 }
847
848 static inline int pages_identical(struct page *page1, struct page *page2)
849 {
850 return !memcmp_pages(page1, page2);
851 }
852
853 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
854 pte_t *orig_pte)
855 {
856 struct mm_struct *mm = vma->vm_mm;
857 unsigned long addr;
858 pte_t *ptep;
859 spinlock_t *ptl;
860 int swapped;
861 int err = -EFAULT;
862 unsigned long mmun_start; /* For mmu_notifiers */
863 unsigned long mmun_end; /* For mmu_notifiers */
864
865 addr = page_address_in_vma(page, vma);
866 if (addr == -EFAULT)
867 goto out;
868
869 BUG_ON(PageTransCompound(page));
870
871 mmun_start = addr;
872 mmun_end = addr + PAGE_SIZE;
873 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
874
875 ptep = page_check_address(page, mm, addr, &ptl, 0);
876 if (!ptep)
877 goto out_mn;
878
879 if (pte_write(*ptep) || pte_dirty(*ptep)) {
880 pte_t entry;
881
882 swapped = PageSwapCache(page);
883 flush_cache_page(vma, addr, page_to_pfn(page));
884 /*
885 * Ok this is tricky, when get_user_pages_fast() run it doesn't
886 * take any lock, therefore the check that we are going to make
887 * with the pagecount against the mapcount is racey and
888 * O_DIRECT can happen right after the check.
889 * So we clear the pte and flush the tlb before the check
890 * this assure us that no O_DIRECT can happen after the check
891 * or in the middle of the check.
892 */
893 entry = ptep_clear_flush(vma, addr, ptep);
894 /*
895 * Check that no O_DIRECT or similar I/O is in progress on the
896 * page
897 */
898 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
899 set_pte_at(mm, addr, ptep, entry);
900 goto out_unlock;
901 }
902 if (pte_dirty(entry))
903 set_page_dirty(page);
904 entry = pte_mkclean(pte_wrprotect(entry));
905 set_pte_at_notify(mm, addr, ptep, entry);
906 }
907 *orig_pte = *ptep;
908 err = 0;
909
910 out_unlock:
911 pte_unmap_unlock(ptep, ptl);
912 out_mn:
913 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
914 out:
915 return err;
916 }
917
918 /**
919 * replace_page - replace page in vma by new ksm page
920 * @vma: vma that holds the pte pointing to page
921 * @page: the page we are replacing by kpage
922 * @kpage: the ksm page we replace page by
923 * @orig_pte: the original value of the pte
924 *
925 * Returns 0 on success, -EFAULT on failure.
926 */
927 static int replace_page(struct vm_area_struct *vma, struct page *page,
928 struct page *kpage, pte_t orig_pte)
929 {
930 struct mm_struct *mm = vma->vm_mm;
931 pmd_t *pmd;
932 pte_t *ptep;
933 spinlock_t *ptl;
934 unsigned long addr;
935 int err = -EFAULT;
936 unsigned long mmun_start; /* For mmu_notifiers */
937 unsigned long mmun_end; /* For mmu_notifiers */
938
939 addr = page_address_in_vma(page, vma);
940 if (addr == -EFAULT)
941 goto out;
942
943 pmd = mm_find_pmd(mm, addr);
944 if (!pmd)
945 goto out;
946 BUG_ON(pmd_trans_huge(*pmd));
947
948 mmun_start = addr;
949 mmun_end = addr + PAGE_SIZE;
950 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
951
952 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
953 if (!pte_same(*ptep, orig_pte)) {
954 pte_unmap_unlock(ptep, ptl);
955 goto out_mn;
956 }
957
958 get_page(kpage);
959 page_add_anon_rmap(kpage, vma, addr);
960
961 flush_cache_page(vma, addr, pte_pfn(*ptep));
962 ptep_clear_flush(vma, addr, ptep);
963 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
964
965 page_remove_rmap(page);
966 if (!page_mapped(page))
967 try_to_free_swap(page);
968 put_page(page);
969
970 pte_unmap_unlock(ptep, ptl);
971 err = 0;
972 out_mn:
973 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
974 out:
975 return err;
976 }
977
978 static int page_trans_compound_anon_split(struct page *page)
979 {
980 int ret = 0;
981 struct page *transhuge_head = page_trans_compound_anon(page);
982 if (transhuge_head) {
983 /* Get the reference on the head to split it. */
984 if (get_page_unless_zero(transhuge_head)) {
985 /*
986 * Recheck we got the reference while the head
987 * was still anonymous.
988 */
989 if (PageAnon(transhuge_head))
990 ret = split_huge_page(transhuge_head);
991 else
992 /*
993 * Retry later if split_huge_page run
994 * from under us.
995 */
996 ret = 1;
997 put_page(transhuge_head);
998 } else
999 /* Retry later if split_huge_page run from under us. */
1000 ret = 1;
1001 }
1002 return ret;
1003 }
1004
1005 /*
1006 * try_to_merge_one_page - take two pages and merge them into one
1007 * @vma: the vma that holds the pte pointing to page
1008 * @page: the PageAnon page that we want to replace with kpage
1009 * @kpage: the PageKsm page that we want to map instead of page,
1010 * or NULL the first time when we want to use page as kpage.
1011 *
1012 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1013 */
1014 static int try_to_merge_one_page(struct vm_area_struct *vma,
1015 struct page *page, struct page *kpage)
1016 {
1017 pte_t orig_pte = __pte(0);
1018 int err = -EFAULT;
1019
1020 if (page == kpage) /* ksm page forked */
1021 return 0;
1022
1023 if (!(vma->vm_flags & VM_MERGEABLE))
1024 goto out;
1025 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1026 goto out;
1027 BUG_ON(PageTransCompound(page));
1028 if (!PageAnon(page))
1029 goto out;
1030
1031 /*
1032 * We need the page lock to read a stable PageSwapCache in
1033 * write_protect_page(). We use trylock_page() instead of
1034 * lock_page() because we don't want to wait here - we
1035 * prefer to continue scanning and merging different pages,
1036 * then come back to this page when it is unlocked.
1037 */
1038 if (!trylock_page(page))
1039 goto out;
1040 /*
1041 * If this anonymous page is mapped only here, its pte may need
1042 * to be write-protected. If it's mapped elsewhere, all of its
1043 * ptes are necessarily already write-protected. But in either
1044 * case, we need to lock and check page_count is not raised.
1045 */
1046 if (write_protect_page(vma, page, &orig_pte) == 0) {
1047 if (!kpage) {
1048 /*
1049 * While we hold page lock, upgrade page from
1050 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1051 * stable_tree_insert() will update stable_node.
1052 */
1053 set_page_stable_node(page, NULL);
1054 mark_page_accessed(page);
1055 err = 0;
1056 } else if (pages_identical(page, kpage))
1057 err = replace_page(vma, page, kpage, orig_pte);
1058 }
1059
1060 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061 munlock_vma_page(page);
1062 if (!PageMlocked(kpage)) {
1063 unlock_page(page);
1064 lock_page(kpage);
1065 mlock_vma_page(kpage);
1066 page = kpage; /* for final unlock */
1067 }
1068 }
1069
1070 unlock_page(page);
1071 out:
1072 return err;
1073 }
1074
1075 /*
1076 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1077 * but no new kernel page is allocated: kpage must already be a ksm page.
1078 *
1079 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1080 */
1081 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1082 struct page *page, struct page *kpage)
1083 {
1084 struct mm_struct *mm = rmap_item->mm;
1085 struct vm_area_struct *vma;
1086 int err = -EFAULT;
1087
1088 down_read(&mm->mmap_sem);
1089 if (ksm_test_exit(mm))
1090 goto out;
1091 vma = find_vma(mm, rmap_item->address);
1092 if (!vma || vma->vm_start > rmap_item->address)
1093 goto out;
1094
1095 err = try_to_merge_one_page(vma, page, kpage);
1096 if (err)
1097 goto out;
1098
1099 /* Unstable nid is in union with stable anon_vma: remove first */
1100 remove_rmap_item_from_tree(rmap_item);
1101
1102 /* Must get reference to anon_vma while still holding mmap_sem */
1103 rmap_item->anon_vma = vma->anon_vma;
1104 get_anon_vma(vma->anon_vma);
1105 out:
1106 up_read(&mm->mmap_sem);
1107 return err;
1108 }
1109
1110 /*
1111 * try_to_merge_two_pages - take two identical pages and prepare them
1112 * to be merged into one page.
1113 *
1114 * This function returns the kpage if we successfully merged two identical
1115 * pages into one ksm page, NULL otherwise.
1116 *
1117 * Note that this function upgrades page to ksm page: if one of the pages
1118 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119 */
1120 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1121 struct page *page,
1122 struct rmap_item *tree_rmap_item,
1123 struct page *tree_page)
1124 {
1125 int err;
1126
1127 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1128 if (!err) {
1129 err = try_to_merge_with_ksm_page(tree_rmap_item,
1130 tree_page, page);
1131 /*
1132 * If that fails, we have a ksm page with only one pte
1133 * pointing to it: so break it.
1134 */
1135 if (err)
1136 break_cow(rmap_item);
1137 }
1138 return err ? NULL : page;
1139 }
1140
1141 /*
1142 * stable_tree_search - search for page inside the stable tree
1143 *
1144 * This function checks if there is a page inside the stable tree
1145 * with identical content to the page that we are scanning right now.
1146 *
1147 * This function returns the stable tree node of identical content if found,
1148 * NULL otherwise.
1149 */
1150 static struct page *stable_tree_search(struct page *page)
1151 {
1152 int nid;
1153 struct rb_node **new;
1154 struct rb_node *parent;
1155 struct stable_node *stable_node;
1156 struct stable_node *page_node;
1157
1158 page_node = page_stable_node(page);
1159 if (page_node && page_node->head != &migrate_nodes) {
1160 /* ksm page forked */
1161 get_page(page);
1162 return page;
1163 }
1164
1165 nid = get_kpfn_nid(page_to_pfn(page));
1166 again:
1167 new = &root_stable_tree[nid].rb_node;
1168 parent = NULL;
1169
1170 while (*new) {
1171 struct page *tree_page;
1172 int ret;
1173
1174 cond_resched();
1175 stable_node = rb_entry(*new, struct stable_node, node);
1176 tree_page = get_ksm_page(stable_node, false);
1177 if (!tree_page)
1178 return NULL;
1179
1180 ret = memcmp_pages(page, tree_page);
1181 put_page(tree_page);
1182
1183 parent = *new;
1184 if (ret < 0)
1185 new = &parent->rb_left;
1186 else if (ret > 0)
1187 new = &parent->rb_right;
1188 else {
1189 /*
1190 * Lock and unlock the stable_node's page (which
1191 * might already have been migrated) so that page
1192 * migration is sure to notice its raised count.
1193 * It would be more elegant to return stable_node
1194 * than kpage, but that involves more changes.
1195 */
1196 tree_page = get_ksm_page(stable_node, true);
1197 if (tree_page) {
1198 unlock_page(tree_page);
1199 if (get_kpfn_nid(stable_node->kpfn) !=
1200 NUMA(stable_node->nid)) {
1201 put_page(tree_page);
1202 goto replace;
1203 }
1204 return tree_page;
1205 }
1206 /*
1207 * There is now a place for page_node, but the tree may
1208 * have been rebalanced, so re-evaluate parent and new.
1209 */
1210 if (page_node)
1211 goto again;
1212 return NULL;
1213 }
1214 }
1215
1216 if (!page_node)
1217 return NULL;
1218
1219 list_del(&page_node->list);
1220 DO_NUMA(page_node->nid = nid);
1221 rb_link_node(&page_node->node, parent, new);
1222 rb_insert_color(&page_node->node, &root_stable_tree[nid]);
1223 get_page(page);
1224 return page;
1225
1226 replace:
1227 if (page_node) {
1228 list_del(&page_node->list);
1229 DO_NUMA(page_node->nid = nid);
1230 rb_replace_node(&stable_node->node,
1231 &page_node->node, &root_stable_tree[nid]);
1232 get_page(page);
1233 } else {
1234 rb_erase(&stable_node->node, &root_stable_tree[nid]);
1235 page = NULL;
1236 }
1237 stable_node->head = &migrate_nodes;
1238 list_add(&stable_node->list, stable_node->head);
1239 return page;
1240 }
1241
1242 /*
1243 * stable_tree_insert - insert stable tree node pointing to new ksm page
1244 * into the stable tree.
1245 *
1246 * This function returns the stable tree node just allocated on success,
1247 * NULL otherwise.
1248 */
1249 static struct stable_node *stable_tree_insert(struct page *kpage)
1250 {
1251 int nid;
1252 unsigned long kpfn;
1253 struct rb_node **new;
1254 struct rb_node *parent = NULL;
1255 struct stable_node *stable_node;
1256
1257 kpfn = page_to_pfn(kpage);
1258 nid = get_kpfn_nid(kpfn);
1259 new = &root_stable_tree[nid].rb_node;
1260
1261 while (*new) {
1262 struct page *tree_page;
1263 int ret;
1264
1265 cond_resched();
1266 stable_node = rb_entry(*new, struct stable_node, node);
1267 tree_page = get_ksm_page(stable_node, false);
1268 if (!tree_page)
1269 return NULL;
1270
1271 ret = memcmp_pages(kpage, tree_page);
1272 put_page(tree_page);
1273
1274 parent = *new;
1275 if (ret < 0)
1276 new = &parent->rb_left;
1277 else if (ret > 0)
1278 new = &parent->rb_right;
1279 else {
1280 /*
1281 * It is not a bug that stable_tree_search() didn't
1282 * find this node: because at that time our page was
1283 * not yet write-protected, so may have changed since.
1284 */
1285 return NULL;
1286 }
1287 }
1288
1289 stable_node = alloc_stable_node();
1290 if (!stable_node)
1291 return NULL;
1292
1293 INIT_HLIST_HEAD(&stable_node->hlist);
1294 stable_node->kpfn = kpfn;
1295 set_page_stable_node(kpage, stable_node);
1296 DO_NUMA(stable_node->nid = nid);
1297 rb_link_node(&stable_node->node, parent, new);
1298 rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1299
1300 return stable_node;
1301 }
1302
1303 /*
1304 * unstable_tree_search_insert - search for identical page,
1305 * else insert rmap_item into the unstable tree.
1306 *
1307 * This function searches for a page in the unstable tree identical to the
1308 * page currently being scanned; and if no identical page is found in the
1309 * tree, we insert rmap_item as a new object into the unstable tree.
1310 *
1311 * This function returns pointer to rmap_item found to be identical
1312 * to the currently scanned page, NULL otherwise.
1313 *
1314 * This function does both searching and inserting, because they share
1315 * the same walking algorithm in an rbtree.
1316 */
1317 static
1318 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1319 struct page *page,
1320 struct page **tree_pagep)
1321 {
1322 struct rb_node **new;
1323 struct rb_root *root;
1324 struct rb_node *parent = NULL;
1325 int nid;
1326
1327 nid = get_kpfn_nid(page_to_pfn(page));
1328 root = &root_unstable_tree[nid];
1329 new = &root->rb_node;
1330
1331 while (*new) {
1332 struct rmap_item *tree_rmap_item;
1333 struct page *tree_page;
1334 int ret;
1335
1336 cond_resched();
1337 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1338 tree_page = get_mergeable_page(tree_rmap_item);
1339 if (IS_ERR_OR_NULL(tree_page))
1340 return NULL;
1341
1342 /*
1343 * Don't substitute a ksm page for a forked page.
1344 */
1345 if (page == tree_page) {
1346 put_page(tree_page);
1347 return NULL;
1348 }
1349
1350 ret = memcmp_pages(page, tree_page);
1351
1352 parent = *new;
1353 if (ret < 0) {
1354 put_page(tree_page);
1355 new = &parent->rb_left;
1356 } else if (ret > 0) {
1357 put_page(tree_page);
1358 new = &parent->rb_right;
1359 } else if (!ksm_merge_across_nodes &&
1360 page_to_nid(tree_page) != nid) {
1361 /*
1362 * If tree_page has been migrated to another NUMA node,
1363 * it will be flushed out and put in the right unstable
1364 * tree next time: only merge with it when across_nodes.
1365 */
1366 put_page(tree_page);
1367 return NULL;
1368 } else {
1369 *tree_pagep = tree_page;
1370 return tree_rmap_item;
1371 }
1372 }
1373
1374 rmap_item->address |= UNSTABLE_FLAG;
1375 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1376 DO_NUMA(rmap_item->nid = nid);
1377 rb_link_node(&rmap_item->node, parent, new);
1378 rb_insert_color(&rmap_item->node, root);
1379
1380 ksm_pages_unshared++;
1381 return NULL;
1382 }
1383
1384 /*
1385 * stable_tree_append - add another rmap_item to the linked list of
1386 * rmap_items hanging off a given node of the stable tree, all sharing
1387 * the same ksm page.
1388 */
1389 static void stable_tree_append(struct rmap_item *rmap_item,
1390 struct stable_node *stable_node)
1391 {
1392 rmap_item->head = stable_node;
1393 rmap_item->address |= STABLE_FLAG;
1394 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1395
1396 if (rmap_item->hlist.next)
1397 ksm_pages_sharing++;
1398 else
1399 ksm_pages_shared++;
1400 }
1401
1402 /*
1403 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1404 * if not, compare checksum to previous and if it's the same, see if page can
1405 * be inserted into the unstable tree, or merged with a page already there and
1406 * both transferred to the stable tree.
1407 *
1408 * @page: the page that we are searching identical page to.
1409 * @rmap_item: the reverse mapping into the virtual address of this page
1410 */
1411 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1412 {
1413 struct rmap_item *tree_rmap_item;
1414 struct page *tree_page = NULL;
1415 struct stable_node *stable_node;
1416 struct page *kpage;
1417 unsigned int checksum;
1418 int err;
1419
1420 stable_node = page_stable_node(page);
1421 if (stable_node) {
1422 if (stable_node->head != &migrate_nodes &&
1423 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1424 rb_erase(&stable_node->node,
1425 &root_stable_tree[NUMA(stable_node->nid)]);
1426 stable_node->head = &migrate_nodes;
1427 list_add(&stable_node->list, stable_node->head);
1428 }
1429 if (stable_node->head != &migrate_nodes &&
1430 rmap_item->head == stable_node)
1431 return;
1432 }
1433
1434 /* We first start with searching the page inside the stable tree */
1435 kpage = stable_tree_search(page);
1436 if (kpage == page && rmap_item->head == stable_node) {
1437 put_page(kpage);
1438 return;
1439 }
1440
1441 remove_rmap_item_from_tree(rmap_item);
1442
1443 if (kpage) {
1444 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1445 if (!err) {
1446 /*
1447 * The page was successfully merged:
1448 * add its rmap_item to the stable tree.
1449 */
1450 lock_page(kpage);
1451 stable_tree_append(rmap_item, page_stable_node(kpage));
1452 unlock_page(kpage);
1453 }
1454 put_page(kpage);
1455 return;
1456 }
1457
1458 /*
1459 * If the hash value of the page has changed from the last time
1460 * we calculated it, this page is changing frequently: therefore we
1461 * don't want to insert it in the unstable tree, and we don't want
1462 * to waste our time searching for something identical to it there.
1463 */
1464 checksum = calc_checksum(page);
1465 if (rmap_item->oldchecksum != checksum) {
1466 rmap_item->oldchecksum = checksum;
1467 return;
1468 }
1469
1470 tree_rmap_item =
1471 unstable_tree_search_insert(rmap_item, page, &tree_page);
1472 if (tree_rmap_item) {
1473 kpage = try_to_merge_two_pages(rmap_item, page,
1474 tree_rmap_item, tree_page);
1475 put_page(tree_page);
1476 if (kpage) {
1477 /*
1478 * The pages were successfully merged: insert new
1479 * node in the stable tree and add both rmap_items.
1480 */
1481 lock_page(kpage);
1482 stable_node = stable_tree_insert(kpage);
1483 if (stable_node) {
1484 stable_tree_append(tree_rmap_item, stable_node);
1485 stable_tree_append(rmap_item, stable_node);
1486 }
1487 unlock_page(kpage);
1488
1489 /*
1490 * If we fail to insert the page into the stable tree,
1491 * we will have 2 virtual addresses that are pointing
1492 * to a ksm page left outside the stable tree,
1493 * in which case we need to break_cow on both.
1494 */
1495 if (!stable_node) {
1496 break_cow(tree_rmap_item);
1497 break_cow(rmap_item);
1498 }
1499 }
1500 }
1501 }
1502
1503 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1504 struct rmap_item **rmap_list,
1505 unsigned long addr)
1506 {
1507 struct rmap_item *rmap_item;
1508
1509 while (*rmap_list) {
1510 rmap_item = *rmap_list;
1511 if ((rmap_item->address & PAGE_MASK) == addr)
1512 return rmap_item;
1513 if (rmap_item->address > addr)
1514 break;
1515 *rmap_list = rmap_item->rmap_list;
1516 remove_rmap_item_from_tree(rmap_item);
1517 free_rmap_item(rmap_item);
1518 }
1519
1520 rmap_item = alloc_rmap_item();
1521 if (rmap_item) {
1522 /* It has already been zeroed */
1523 rmap_item->mm = mm_slot->mm;
1524 rmap_item->address = addr;
1525 rmap_item->rmap_list = *rmap_list;
1526 *rmap_list = rmap_item;
1527 }
1528 return rmap_item;
1529 }
1530
1531 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1532 {
1533 struct mm_struct *mm;
1534 struct mm_slot *slot;
1535 struct vm_area_struct *vma;
1536 struct rmap_item *rmap_item;
1537 int nid;
1538
1539 if (list_empty(&ksm_mm_head.mm_list))
1540 return NULL;
1541
1542 slot = ksm_scan.mm_slot;
1543 if (slot == &ksm_mm_head) {
1544 /*
1545 * A number of pages can hang around indefinitely on per-cpu
1546 * pagevecs, raised page count preventing write_protect_page
1547 * from merging them. Though it doesn't really matter much,
1548 * it is puzzling to see some stuck in pages_volatile until
1549 * other activity jostles them out, and they also prevented
1550 * LTP's KSM test from succeeding deterministically; so drain
1551 * them here (here rather than on entry to ksm_do_scan(),
1552 * so we don't IPI too often when pages_to_scan is set low).
1553 */
1554 lru_add_drain_all();
1555
1556 /*
1557 * Whereas stale stable_nodes on the stable_tree itself
1558 * get pruned in the regular course of stable_tree_search(),
1559 * those moved out to the migrate_nodes list can accumulate:
1560 * so prune them once before each full scan.
1561 */
1562 if (!ksm_merge_across_nodes) {
1563 struct stable_node *stable_node;
1564 struct list_head *this, *next;
1565 struct page *page;
1566
1567 list_for_each_safe(this, next, &migrate_nodes) {
1568 stable_node = list_entry(this,
1569 struct stable_node, list);
1570 page = get_ksm_page(stable_node, false);
1571 if (page)
1572 put_page(page);
1573 cond_resched();
1574 }
1575 }
1576
1577 for (nid = 0; nid < nr_node_ids; nid++)
1578 root_unstable_tree[nid] = RB_ROOT;
1579
1580 spin_lock(&ksm_mmlist_lock);
1581 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1582 ksm_scan.mm_slot = slot;
1583 spin_unlock(&ksm_mmlist_lock);
1584 /*
1585 * Although we tested list_empty() above, a racing __ksm_exit
1586 * of the last mm on the list may have removed it since then.
1587 */
1588 if (slot == &ksm_mm_head)
1589 return NULL;
1590 next_mm:
1591 ksm_scan.address = 0;
1592 ksm_scan.rmap_list = &slot->rmap_list;
1593 }
1594
1595 mm = slot->mm;
1596 down_read(&mm->mmap_sem);
1597 if (ksm_test_exit(mm))
1598 vma = NULL;
1599 else
1600 vma = find_vma(mm, ksm_scan.address);
1601
1602 for (; vma; vma = vma->vm_next) {
1603 if (!(vma->vm_flags & VM_MERGEABLE))
1604 continue;
1605 if (ksm_scan.address < vma->vm_start)
1606 ksm_scan.address = vma->vm_start;
1607 if (!vma->anon_vma)
1608 ksm_scan.address = vma->vm_end;
1609
1610 while (ksm_scan.address < vma->vm_end) {
1611 if (ksm_test_exit(mm))
1612 break;
1613 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1614 if (IS_ERR_OR_NULL(*page)) {
1615 ksm_scan.address += PAGE_SIZE;
1616 cond_resched();
1617 continue;
1618 }
1619 if (PageAnon(*page) ||
1620 page_trans_compound_anon(*page)) {
1621 flush_anon_page(vma, *page, ksm_scan.address);
1622 flush_dcache_page(*page);
1623 rmap_item = get_next_rmap_item(slot,
1624 ksm_scan.rmap_list, ksm_scan.address);
1625 if (rmap_item) {
1626 ksm_scan.rmap_list =
1627 &rmap_item->rmap_list;
1628 ksm_scan.address += PAGE_SIZE;
1629 } else
1630 put_page(*page);
1631 up_read(&mm->mmap_sem);
1632 return rmap_item;
1633 }
1634 put_page(*page);
1635 ksm_scan.address += PAGE_SIZE;
1636 cond_resched();
1637 }
1638 }
1639
1640 if (ksm_test_exit(mm)) {
1641 ksm_scan.address = 0;
1642 ksm_scan.rmap_list = &slot->rmap_list;
1643 }
1644 /*
1645 * Nuke all the rmap_items that are above this current rmap:
1646 * because there were no VM_MERGEABLE vmas with such addresses.
1647 */
1648 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1649
1650 spin_lock(&ksm_mmlist_lock);
1651 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1652 struct mm_slot, mm_list);
1653 if (ksm_scan.address == 0) {
1654 /*
1655 * We've completed a full scan of all vmas, holding mmap_sem
1656 * throughout, and found no VM_MERGEABLE: so do the same as
1657 * __ksm_exit does to remove this mm from all our lists now.
1658 * This applies either when cleaning up after __ksm_exit
1659 * (but beware: we can reach here even before __ksm_exit),
1660 * or when all VM_MERGEABLE areas have been unmapped (and
1661 * mmap_sem then protects against race with MADV_MERGEABLE).
1662 */
1663 hash_del(&slot->link);
1664 list_del(&slot->mm_list);
1665 spin_unlock(&ksm_mmlist_lock);
1666
1667 free_mm_slot(slot);
1668 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1669 up_read(&mm->mmap_sem);
1670 mmdrop(mm);
1671 } else {
1672 spin_unlock(&ksm_mmlist_lock);
1673 up_read(&mm->mmap_sem);
1674 }
1675
1676 /* Repeat until we've completed scanning the whole list */
1677 slot = ksm_scan.mm_slot;
1678 if (slot != &ksm_mm_head)
1679 goto next_mm;
1680
1681 ksm_scan.seqnr++;
1682 return NULL;
1683 }
1684
1685 /**
1686 * ksm_do_scan - the ksm scanner main worker function.
1687 * @scan_npages - number of pages we want to scan before we return.
1688 */
1689 static void ksm_do_scan(unsigned int scan_npages)
1690 {
1691 struct rmap_item *rmap_item;
1692 struct page *uninitialized_var(page);
1693
1694 while (scan_npages-- && likely(!freezing(current))) {
1695 cond_resched();
1696 rmap_item = scan_get_next_rmap_item(&page);
1697 if (!rmap_item)
1698 return;
1699 cmp_and_merge_page(page, rmap_item);
1700 put_page(page);
1701 }
1702 }
1703
1704 static int ksmd_should_run(void)
1705 {
1706 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1707 }
1708
1709 static int ksm_scan_thread(void *nothing)
1710 {
1711 set_freezable();
1712 set_user_nice(current, 5);
1713
1714 while (!kthread_should_stop()) {
1715 mutex_lock(&ksm_thread_mutex);
1716 wait_while_offlining();
1717 if (ksmd_should_run())
1718 ksm_do_scan(ksm_thread_pages_to_scan);
1719 mutex_unlock(&ksm_thread_mutex);
1720
1721 try_to_freeze();
1722
1723 if (ksmd_should_run()) {
1724 schedule_timeout_interruptible(
1725 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1726 } else {
1727 wait_event_freezable(ksm_thread_wait,
1728 ksmd_should_run() || kthread_should_stop());
1729 }
1730 }
1731 return 0;
1732 }
1733
1734 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1735 unsigned long end, int advice, unsigned long *vm_flags)
1736 {
1737 struct mm_struct *mm = vma->vm_mm;
1738 int err;
1739
1740 switch (advice) {
1741 case MADV_MERGEABLE:
1742 /*
1743 * Be somewhat over-protective for now!
1744 */
1745 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1746 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1747 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1748 return 0; /* just ignore the advice */
1749
1750 #ifdef VM_SAO
1751 if (*vm_flags & VM_SAO)
1752 return 0;
1753 #endif
1754
1755 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1756 err = __ksm_enter(mm);
1757 if (err)
1758 return err;
1759 }
1760
1761 *vm_flags |= VM_MERGEABLE;
1762 break;
1763
1764 case MADV_UNMERGEABLE:
1765 if (!(*vm_flags & VM_MERGEABLE))
1766 return 0; /* just ignore the advice */
1767
1768 if (vma->anon_vma) {
1769 err = unmerge_ksm_pages(vma, start, end);
1770 if (err)
1771 return err;
1772 }
1773
1774 *vm_flags &= ~VM_MERGEABLE;
1775 break;
1776 }
1777
1778 return 0;
1779 }
1780
1781 int __ksm_enter(struct mm_struct *mm)
1782 {
1783 struct mm_slot *mm_slot;
1784 int needs_wakeup;
1785
1786 mm_slot = alloc_mm_slot();
1787 if (!mm_slot)
1788 return -ENOMEM;
1789
1790 /* Check ksm_run too? Would need tighter locking */
1791 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1792
1793 spin_lock(&ksm_mmlist_lock);
1794 insert_to_mm_slots_hash(mm, mm_slot);
1795 /*
1796 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1797 * insert just behind the scanning cursor, to let the area settle
1798 * down a little; when fork is followed by immediate exec, we don't
1799 * want ksmd to waste time setting up and tearing down an rmap_list.
1800 *
1801 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1802 * scanning cursor, otherwise KSM pages in newly forked mms will be
1803 * missed: then we might as well insert at the end of the list.
1804 */
1805 if (ksm_run & KSM_RUN_UNMERGE)
1806 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1807 else
1808 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1809 spin_unlock(&ksm_mmlist_lock);
1810
1811 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1812 atomic_inc(&mm->mm_count);
1813
1814 if (needs_wakeup)
1815 wake_up_interruptible(&ksm_thread_wait);
1816
1817 return 0;
1818 }
1819
1820 void __ksm_exit(struct mm_struct *mm)
1821 {
1822 struct mm_slot *mm_slot;
1823 int easy_to_free = 0;
1824
1825 /*
1826 * This process is exiting: if it's straightforward (as is the
1827 * case when ksmd was never running), free mm_slot immediately.
1828 * But if it's at the cursor or has rmap_items linked to it, use
1829 * mmap_sem to synchronize with any break_cows before pagetables
1830 * are freed, and leave the mm_slot on the list for ksmd to free.
1831 * Beware: ksm may already have noticed it exiting and freed the slot.
1832 */
1833
1834 spin_lock(&ksm_mmlist_lock);
1835 mm_slot = get_mm_slot(mm);
1836 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1837 if (!mm_slot->rmap_list) {
1838 hash_del(&mm_slot->link);
1839 list_del(&mm_slot->mm_list);
1840 easy_to_free = 1;
1841 } else {
1842 list_move(&mm_slot->mm_list,
1843 &ksm_scan.mm_slot->mm_list);
1844 }
1845 }
1846 spin_unlock(&ksm_mmlist_lock);
1847
1848 if (easy_to_free) {
1849 free_mm_slot(mm_slot);
1850 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1851 mmdrop(mm);
1852 } else if (mm_slot) {
1853 down_write(&mm->mmap_sem);
1854 up_write(&mm->mmap_sem);
1855 }
1856 }
1857
1858 struct page *ksm_might_need_to_copy(struct page *page,
1859 struct vm_area_struct *vma, unsigned long address)
1860 {
1861 struct anon_vma *anon_vma = page_anon_vma(page);
1862 struct page *new_page;
1863
1864 if (PageKsm(page)) {
1865 if (page_stable_node(page) &&
1866 !(ksm_run & KSM_RUN_UNMERGE))
1867 return page; /* no need to copy it */
1868 } else if (!anon_vma) {
1869 return page; /* no need to copy it */
1870 } else if (anon_vma->root == vma->anon_vma->root &&
1871 page->index == linear_page_index(vma, address)) {
1872 return page; /* still no need to copy it */
1873 }
1874 if (!PageUptodate(page))
1875 return page; /* let do_swap_page report the error */
1876
1877 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1878 if (new_page) {
1879 copy_user_highpage(new_page, page, address, vma);
1880
1881 SetPageDirty(new_page);
1882 __SetPageUptodate(new_page);
1883 __set_page_locked(new_page);
1884 }
1885
1886 return new_page;
1887 }
1888
1889 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1890 unsigned long *vm_flags)
1891 {
1892 struct stable_node *stable_node;
1893 struct rmap_item *rmap_item;
1894 struct hlist_node *hlist;
1895 unsigned int mapcount = page_mapcount(page);
1896 int referenced = 0;
1897 int search_new_forks = 0;
1898
1899 VM_BUG_ON(!PageKsm(page));
1900 VM_BUG_ON(!PageLocked(page));
1901
1902 stable_node = page_stable_node(page);
1903 if (!stable_node)
1904 return 0;
1905 again:
1906 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1907 struct anon_vma *anon_vma = rmap_item->anon_vma;
1908 struct anon_vma_chain *vmac;
1909 struct vm_area_struct *vma;
1910
1911 anon_vma_lock_read(anon_vma);
1912 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1913 0, ULONG_MAX) {
1914 vma = vmac->vma;
1915 if (rmap_item->address < vma->vm_start ||
1916 rmap_item->address >= vma->vm_end)
1917 continue;
1918 /*
1919 * Initially we examine only the vma which covers this
1920 * rmap_item; but later, if there is still work to do,
1921 * we examine covering vmas in other mms: in case they
1922 * were forked from the original since ksmd passed.
1923 */
1924 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1925 continue;
1926
1927 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1928 continue;
1929
1930 referenced += page_referenced_one(page, vma,
1931 rmap_item->address, &mapcount, vm_flags);
1932 if (!search_new_forks || !mapcount)
1933 break;
1934 }
1935 anon_vma_unlock_read(anon_vma);
1936 if (!mapcount)
1937 goto out;
1938 }
1939 if (!search_new_forks++)
1940 goto again;
1941 out:
1942 return referenced;
1943 }
1944
1945 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1946 {
1947 struct stable_node *stable_node;
1948 struct hlist_node *hlist;
1949 struct rmap_item *rmap_item;
1950 int ret = SWAP_AGAIN;
1951 int search_new_forks = 0;
1952
1953 VM_BUG_ON(!PageKsm(page));
1954 VM_BUG_ON(!PageLocked(page));
1955
1956 stable_node = page_stable_node(page);
1957 if (!stable_node)
1958 return SWAP_FAIL;
1959 again:
1960 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1961 struct anon_vma *anon_vma = rmap_item->anon_vma;
1962 struct anon_vma_chain *vmac;
1963 struct vm_area_struct *vma;
1964
1965 anon_vma_lock_read(anon_vma);
1966 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1967 0, ULONG_MAX) {
1968 vma = vmac->vma;
1969 if (rmap_item->address < vma->vm_start ||
1970 rmap_item->address >= vma->vm_end)
1971 continue;
1972 /*
1973 * Initially we examine only the vma which covers this
1974 * rmap_item; but later, if there is still work to do,
1975 * we examine covering vmas in other mms: in case they
1976 * were forked from the original since ksmd passed.
1977 */
1978 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1979 continue;
1980
1981 ret = try_to_unmap_one(page, vma,
1982 rmap_item->address, flags);
1983 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1984 anon_vma_unlock_read(anon_vma);
1985 goto out;
1986 }
1987 }
1988 anon_vma_unlock_read(anon_vma);
1989 }
1990 if (!search_new_forks++)
1991 goto again;
1992 out:
1993 return ret;
1994 }
1995
1996 #ifdef CONFIG_MIGRATION
1997 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1998 struct vm_area_struct *, unsigned long, void *), void *arg)
1999 {
2000 struct stable_node *stable_node;
2001 struct hlist_node *hlist;
2002 struct rmap_item *rmap_item;
2003 int ret = SWAP_AGAIN;
2004 int search_new_forks = 0;
2005
2006 VM_BUG_ON(!PageKsm(page));
2007 VM_BUG_ON(!PageLocked(page));
2008
2009 stable_node = page_stable_node(page);
2010 if (!stable_node)
2011 return ret;
2012 again:
2013 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2014 struct anon_vma *anon_vma = rmap_item->anon_vma;
2015 struct anon_vma_chain *vmac;
2016 struct vm_area_struct *vma;
2017
2018 anon_vma_lock_read(anon_vma);
2019 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2020 0, ULONG_MAX) {
2021 vma = vmac->vma;
2022 if (rmap_item->address < vma->vm_start ||
2023 rmap_item->address >= vma->vm_end)
2024 continue;
2025 /*
2026 * Initially we examine only the vma which covers this
2027 * rmap_item; but later, if there is still work to do,
2028 * we examine covering vmas in other mms: in case they
2029 * were forked from the original since ksmd passed.
2030 */
2031 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2032 continue;
2033
2034 ret = rmap_one(page, vma, rmap_item->address, arg);
2035 if (ret != SWAP_AGAIN) {
2036 anon_vma_unlock_read(anon_vma);
2037 goto out;
2038 }
2039 }
2040 anon_vma_unlock_read(anon_vma);
2041 }
2042 if (!search_new_forks++)
2043 goto again;
2044 out:
2045 return ret;
2046 }
2047
2048 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2049 {
2050 struct stable_node *stable_node;
2051
2052 VM_BUG_ON(!PageLocked(oldpage));
2053 VM_BUG_ON(!PageLocked(newpage));
2054 VM_BUG_ON(newpage->mapping != oldpage->mapping);
2055
2056 stable_node = page_stable_node(newpage);
2057 if (stable_node) {
2058 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2059 stable_node->kpfn = page_to_pfn(newpage);
2060 /*
2061 * newpage->mapping was set in advance; now we need smp_wmb()
2062 * to make sure that the new stable_node->kpfn is visible
2063 * to get_ksm_page() before it can see that oldpage->mapping
2064 * has gone stale (or that PageSwapCache has been cleared).
2065 */
2066 smp_wmb();
2067 set_page_stable_node(oldpage, NULL);
2068 }
2069 }
2070 #endif /* CONFIG_MIGRATION */
2071
2072 #ifdef CONFIG_MEMORY_HOTREMOVE
2073 static int just_wait(void *word)
2074 {
2075 schedule();
2076 return 0;
2077 }
2078
2079 static void wait_while_offlining(void)
2080 {
2081 while (ksm_run & KSM_RUN_OFFLINE) {
2082 mutex_unlock(&ksm_thread_mutex);
2083 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2084 just_wait, TASK_UNINTERRUPTIBLE);
2085 mutex_lock(&ksm_thread_mutex);
2086 }
2087 }
2088
2089 static void ksm_check_stable_tree(unsigned long start_pfn,
2090 unsigned long end_pfn)
2091 {
2092 struct stable_node *stable_node;
2093 struct list_head *this, *next;
2094 struct rb_node *node;
2095 int nid;
2096
2097 for (nid = 0; nid < nr_node_ids; nid++) {
2098 node = rb_first(&root_stable_tree[nid]);
2099 while (node) {
2100 stable_node = rb_entry(node, struct stable_node, node);
2101 if (stable_node->kpfn >= start_pfn &&
2102 stable_node->kpfn < end_pfn) {
2103 /*
2104 * Don't get_ksm_page, page has already gone:
2105 * which is why we keep kpfn instead of page*
2106 */
2107 remove_node_from_stable_tree(stable_node);
2108 node = rb_first(&root_stable_tree[nid]);
2109 } else
2110 node = rb_next(node);
2111 cond_resched();
2112 }
2113 }
2114 list_for_each_safe(this, next, &migrate_nodes) {
2115 stable_node = list_entry(this, struct stable_node, list);
2116 if (stable_node->kpfn >= start_pfn &&
2117 stable_node->kpfn < end_pfn)
2118 remove_node_from_stable_tree(stable_node);
2119 cond_resched();
2120 }
2121 }
2122
2123 static int ksm_memory_callback(struct notifier_block *self,
2124 unsigned long action, void *arg)
2125 {
2126 struct memory_notify *mn = arg;
2127
2128 switch (action) {
2129 case MEM_GOING_OFFLINE:
2130 /*
2131 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2132 * and remove_all_stable_nodes() while memory is going offline:
2133 * it is unsafe for them to touch the stable tree at this time.
2134 * But unmerge_ksm_pages(), rmap lookups and other entry points
2135 * which do not need the ksm_thread_mutex are all safe.
2136 */
2137 mutex_lock(&ksm_thread_mutex);
2138 ksm_run |= KSM_RUN_OFFLINE;
2139 mutex_unlock(&ksm_thread_mutex);
2140 break;
2141
2142 case MEM_OFFLINE:
2143 /*
2144 * Most of the work is done by page migration; but there might
2145 * be a few stable_nodes left over, still pointing to struct
2146 * pages which have been offlined: prune those from the tree,
2147 * otherwise get_ksm_page() might later try to access a
2148 * non-existent struct page.
2149 */
2150 ksm_check_stable_tree(mn->start_pfn,
2151 mn->start_pfn + mn->nr_pages);
2152 /* fallthrough */
2153
2154 case MEM_CANCEL_OFFLINE:
2155 mutex_lock(&ksm_thread_mutex);
2156 ksm_run &= ~KSM_RUN_OFFLINE;
2157 mutex_unlock(&ksm_thread_mutex);
2158
2159 smp_mb(); /* wake_up_bit advises this */
2160 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2161 break;
2162 }
2163 return NOTIFY_OK;
2164 }
2165 #else
2166 static void wait_while_offlining(void)
2167 {
2168 }
2169 #endif /* CONFIG_MEMORY_HOTREMOVE */
2170
2171 #ifdef CONFIG_SYSFS
2172 /*
2173 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2174 */
2175
2176 #define KSM_ATTR_RO(_name) \
2177 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2178 #define KSM_ATTR(_name) \
2179 static struct kobj_attribute _name##_attr = \
2180 __ATTR(_name, 0644, _name##_show, _name##_store)
2181
2182 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2183 struct kobj_attribute *attr, char *buf)
2184 {
2185 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2186 }
2187
2188 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2189 struct kobj_attribute *attr,
2190 const char *buf, size_t count)
2191 {
2192 unsigned long msecs;
2193 int err;
2194
2195 err = strict_strtoul(buf, 10, &msecs);
2196 if (err || msecs > UINT_MAX)
2197 return -EINVAL;
2198
2199 ksm_thread_sleep_millisecs = msecs;
2200
2201 return count;
2202 }
2203 KSM_ATTR(sleep_millisecs);
2204
2205 static ssize_t pages_to_scan_show(struct kobject *kobj,
2206 struct kobj_attribute *attr, char *buf)
2207 {
2208 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2209 }
2210
2211 static ssize_t pages_to_scan_store(struct kobject *kobj,
2212 struct kobj_attribute *attr,
2213 const char *buf, size_t count)
2214 {
2215 int err;
2216 unsigned long nr_pages;
2217
2218 err = strict_strtoul(buf, 10, &nr_pages);
2219 if (err || nr_pages > UINT_MAX)
2220 return -EINVAL;
2221
2222 ksm_thread_pages_to_scan = nr_pages;
2223
2224 return count;
2225 }
2226 KSM_ATTR(pages_to_scan);
2227
2228 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2229 char *buf)
2230 {
2231 return sprintf(buf, "%lu\n", ksm_run);
2232 }
2233
2234 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2235 const char *buf, size_t count)
2236 {
2237 int err;
2238 unsigned long flags;
2239
2240 err = strict_strtoul(buf, 10, &flags);
2241 if (err || flags > UINT_MAX)
2242 return -EINVAL;
2243 if (flags > KSM_RUN_UNMERGE)
2244 return -EINVAL;
2245
2246 /*
2247 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2248 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2249 * breaking COW to free the pages_shared (but leaves mm_slots
2250 * on the list for when ksmd may be set running again).
2251 */
2252
2253 mutex_lock(&ksm_thread_mutex);
2254 wait_while_offlining();
2255 if (ksm_run != flags) {
2256 ksm_run = flags;
2257 if (flags & KSM_RUN_UNMERGE) {
2258 set_current_oom_origin();
2259 err = unmerge_and_remove_all_rmap_items();
2260 clear_current_oom_origin();
2261 if (err) {
2262 ksm_run = KSM_RUN_STOP;
2263 count = err;
2264 }
2265 }
2266 }
2267 mutex_unlock(&ksm_thread_mutex);
2268
2269 if (flags & KSM_RUN_MERGE)
2270 wake_up_interruptible(&ksm_thread_wait);
2271
2272 return count;
2273 }
2274 KSM_ATTR(run);
2275
2276 #ifdef CONFIG_NUMA
2277 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2278 struct kobj_attribute *attr, char *buf)
2279 {
2280 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2281 }
2282
2283 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2284 struct kobj_attribute *attr,
2285 const char *buf, size_t count)
2286 {
2287 int err;
2288 unsigned long knob;
2289
2290 err = kstrtoul(buf, 10, &knob);
2291 if (err)
2292 return err;
2293 if (knob > 1)
2294 return -EINVAL;
2295
2296 mutex_lock(&ksm_thread_mutex);
2297 wait_while_offlining();
2298 if (ksm_merge_across_nodes != knob) {
2299 if (ksm_pages_shared || remove_all_stable_nodes())
2300 err = -EBUSY;
2301 else
2302 ksm_merge_across_nodes = knob;
2303 }
2304 mutex_unlock(&ksm_thread_mutex);
2305
2306 return err ? err : count;
2307 }
2308 KSM_ATTR(merge_across_nodes);
2309 #endif
2310
2311 static ssize_t pages_shared_show(struct kobject *kobj,
2312 struct kobj_attribute *attr, char *buf)
2313 {
2314 return sprintf(buf, "%lu\n", ksm_pages_shared);
2315 }
2316 KSM_ATTR_RO(pages_shared);
2317
2318 static ssize_t pages_sharing_show(struct kobject *kobj,
2319 struct kobj_attribute *attr, char *buf)
2320 {
2321 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2322 }
2323 KSM_ATTR_RO(pages_sharing);
2324
2325 static ssize_t pages_unshared_show(struct kobject *kobj,
2326 struct kobj_attribute *attr, char *buf)
2327 {
2328 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2329 }
2330 KSM_ATTR_RO(pages_unshared);
2331
2332 static ssize_t pages_volatile_show(struct kobject *kobj,
2333 struct kobj_attribute *attr, char *buf)
2334 {
2335 long ksm_pages_volatile;
2336
2337 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2338 - ksm_pages_sharing - ksm_pages_unshared;
2339 /*
2340 * It was not worth any locking to calculate that statistic,
2341 * but it might therefore sometimes be negative: conceal that.
2342 */
2343 if (ksm_pages_volatile < 0)
2344 ksm_pages_volatile = 0;
2345 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2346 }
2347 KSM_ATTR_RO(pages_volatile);
2348
2349 static ssize_t full_scans_show(struct kobject *kobj,
2350 struct kobj_attribute *attr, char *buf)
2351 {
2352 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2353 }
2354 KSM_ATTR_RO(full_scans);
2355
2356 static struct attribute *ksm_attrs[] = {
2357 &sleep_millisecs_attr.attr,
2358 &pages_to_scan_attr.attr,
2359 &run_attr.attr,
2360 &pages_shared_attr.attr,
2361 &pages_sharing_attr.attr,
2362 &pages_unshared_attr.attr,
2363 &pages_volatile_attr.attr,
2364 &full_scans_attr.attr,
2365 #ifdef CONFIG_NUMA
2366 &merge_across_nodes_attr.attr,
2367 #endif
2368 NULL,
2369 };
2370
2371 static struct attribute_group ksm_attr_group = {
2372 .attrs = ksm_attrs,
2373 .name = "ksm",
2374 };
2375 #endif /* CONFIG_SYSFS */
2376
2377 static int __init ksm_init(void)
2378 {
2379 struct task_struct *ksm_thread;
2380 int err;
2381 int nid;
2382
2383 err = ksm_slab_init();
2384 if (err)
2385 goto out;
2386
2387 for (nid = 0; nid < nr_node_ids; nid++)
2388 root_stable_tree[nid] = RB_ROOT;
2389
2390 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2391 if (IS_ERR(ksm_thread)) {
2392 printk(KERN_ERR "ksm: creating kthread failed\n");
2393 err = PTR_ERR(ksm_thread);
2394 goto out_free;
2395 }
2396
2397 #ifdef CONFIG_SYSFS
2398 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2399 if (err) {
2400 printk(KERN_ERR "ksm: register sysfs failed\n");
2401 kthread_stop(ksm_thread);
2402 goto out_free;
2403 }
2404 #else
2405 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2406
2407 #endif /* CONFIG_SYSFS */
2408
2409 #ifdef CONFIG_MEMORY_HOTREMOVE
2410 /* There is no significance to this priority 100 */
2411 hotplug_memory_notifier(ksm_memory_callback, 100);
2412 #endif
2413 return 0;
2414
2415 out_free:
2416 ksm_slab_free();
2417 out:
2418 return err;
2419 }
2420 module_init(ksm_init)
This page took 0.120092 seconds and 6 git commands to generate.