memblock: Expose some memblock bits for use by x86
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 struct memblock memblock;
24
25 int memblock_debug;
26 int memblock_can_resize;
27 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
28 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
29
30 #define MEMBLOCK_ERROR (~(phys_addr_t)0)
31
32 /* inline so we don't get a warning when pr_debug is compiled out */
33 static inline const char *memblock_type_name(struct memblock_type *type)
34 {
35 if (type == &memblock.memory)
36 return "memory";
37 else if (type == &memblock.reserved)
38 return "reserved";
39 else
40 return "unknown";
41 }
42
43 /*
44 * Address comparison utilities
45 */
46
47 static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
48 {
49 return addr & ~(size - 1);
50 }
51
52 static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
53 {
54 return (addr + (size - 1)) & ~(size - 1);
55 }
56
57 static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
58 phys_addr_t base2, phys_addr_t size2)
59 {
60 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
61 }
62
63 static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
64 phys_addr_t base2, phys_addr_t size2)
65 {
66 if (base2 == base1 + size1)
67 return 1;
68 else if (base1 == base2 + size2)
69 return -1;
70
71 return 0;
72 }
73
74 static long memblock_regions_adjacent(struct memblock_type *type,
75 unsigned long r1, unsigned long r2)
76 {
77 phys_addr_t base1 = type->regions[r1].base;
78 phys_addr_t size1 = type->regions[r1].size;
79 phys_addr_t base2 = type->regions[r2].base;
80 phys_addr_t size2 = type->regions[r2].size;
81
82 return memblock_addrs_adjacent(base1, size1, base2, size2);
83 }
84
85 long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
86 {
87 unsigned long i;
88
89 for (i = 0; i < type->cnt; i++) {
90 phys_addr_t rgnbase = type->regions[i].base;
91 phys_addr_t rgnsize = type->regions[i].size;
92 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
93 break;
94 }
95
96 return (i < type->cnt) ? i : -1;
97 }
98
99 /*
100 * Find, allocate, deallocate or reserve unreserved regions. All allocations
101 * are top-down.
102 */
103
104 static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
105 phys_addr_t size, phys_addr_t align)
106 {
107 phys_addr_t base, res_base;
108 long j;
109
110 base = memblock_align_down((end - size), align);
111 while (start <= base) {
112 j = memblock_overlaps_region(&memblock.reserved, base, size);
113 if (j < 0)
114 return base;
115 res_base = memblock.reserved.regions[j].base;
116 if (res_base < size)
117 break;
118 base = memblock_align_down(res_base - size, align);
119 }
120
121 return MEMBLOCK_ERROR;
122 }
123
124 static phys_addr_t __init memblock_find_base(phys_addr_t size, phys_addr_t align,
125 phys_addr_t start, phys_addr_t end)
126 {
127 long i;
128
129 BUG_ON(0 == size);
130
131 size = memblock_align_up(size, align);
132
133 /* Pump up max_addr */
134 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
135 end = memblock.current_limit;
136
137 /* We do a top-down search, this tends to limit memory
138 * fragmentation by keeping early boot allocs near the
139 * top of memory
140 */
141 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
142 phys_addr_t memblockbase = memblock.memory.regions[i].base;
143 phys_addr_t memblocksize = memblock.memory.regions[i].size;
144 phys_addr_t bottom, top, found;
145
146 if (memblocksize < size)
147 continue;
148 if ((memblockbase + memblocksize) <= start)
149 break;
150 bottom = max(memblockbase, start);
151 top = min(memblockbase + memblocksize, end);
152 if (bottom >= top)
153 continue;
154 found = memblock_find_region(bottom, top, size, align);
155 if (found != MEMBLOCK_ERROR)
156 return found;
157 }
158 return MEMBLOCK_ERROR;
159 }
160
161 static void memblock_remove_region(struct memblock_type *type, unsigned long r)
162 {
163 unsigned long i;
164
165 for (i = r; i < type->cnt - 1; i++) {
166 type->regions[i].base = type->regions[i + 1].base;
167 type->regions[i].size = type->regions[i + 1].size;
168 }
169 type->cnt--;
170 }
171
172 /* Assumption: base addr of region 1 < base addr of region 2 */
173 static void memblock_coalesce_regions(struct memblock_type *type,
174 unsigned long r1, unsigned long r2)
175 {
176 type->regions[r1].size += type->regions[r2].size;
177 memblock_remove_region(type, r2);
178 }
179
180 /* Defined below but needed now */
181 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
182
183 static int memblock_double_array(struct memblock_type *type)
184 {
185 struct memblock_region *new_array, *old_array;
186 phys_addr_t old_size, new_size, addr;
187 int use_slab = slab_is_available();
188
189 /* We don't allow resizing until we know about the reserved regions
190 * of memory that aren't suitable for allocation
191 */
192 if (!memblock_can_resize)
193 return -1;
194
195 pr_debug("memblock: %s array full, doubling...", memblock_type_name(type));
196
197 /* Calculate new doubled size */
198 old_size = type->max * sizeof(struct memblock_region);
199 new_size = old_size << 1;
200
201 /* Try to find some space for it.
202 *
203 * WARNING: We assume that either slab_is_available() and we use it or
204 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 * when bootmem is currently active (unless bootmem itself is implemented
206 * on top of MEMBLOCK which isn't the case yet)
207 *
208 * This should however not be an issue for now, as we currently only
209 * call into MEMBLOCK while it's still active, or much later when slab is
210 * active for memory hotplug operations
211 */
212 if (use_slab) {
213 new_array = kmalloc(new_size, GFP_KERNEL);
214 addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
215 } else
216 addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
217 if (addr == MEMBLOCK_ERROR) {
218 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 memblock_type_name(type), type->max, type->max * 2);
220 return -1;
221 }
222 new_array = __va(addr);
223
224 /* Found space, we now need to move the array over before
225 * we add the reserved region since it may be our reserved
226 * array itself that is full.
227 */
228 memcpy(new_array, type->regions, old_size);
229 memset(new_array + type->max, 0, old_size);
230 old_array = type->regions;
231 type->regions = new_array;
232 type->max <<= 1;
233
234 /* If we use SLAB that's it, we are done */
235 if (use_slab)
236 return 0;
237
238 /* Add the new reserved region now. Should not fail ! */
239 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0);
240
241 /* If the array wasn't our static init one, then free it. We only do
242 * that before SLAB is available as later on, we don't know whether
243 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
244 * anyways
245 */
246 if (old_array != memblock_memory_init_regions &&
247 old_array != memblock_reserved_init_regions)
248 memblock_free(__pa(old_array), old_size);
249
250 return 0;
251 }
252
253 extern int __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
254 phys_addr_t addr2, phys_addr_t size2)
255 {
256 return 1;
257 }
258
259 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
260 {
261 unsigned long coalesced = 0;
262 long adjacent, i;
263
264 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
265 type->regions[0].base = base;
266 type->regions[0].size = size;
267 return 0;
268 }
269
270 /* First try and coalesce this MEMBLOCK with another. */
271 for (i = 0; i < type->cnt; i++) {
272 phys_addr_t rgnbase = type->regions[i].base;
273 phys_addr_t rgnsize = type->regions[i].size;
274
275 if ((rgnbase == base) && (rgnsize == size))
276 /* Already have this region, so we're done */
277 return 0;
278
279 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
280 /* Check if arch allows coalescing */
281 if (adjacent != 0 && type == &memblock.memory &&
282 !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize))
283 break;
284 if (adjacent > 0) {
285 type->regions[i].base -= size;
286 type->regions[i].size += size;
287 coalesced++;
288 break;
289 } else if (adjacent < 0) {
290 type->regions[i].size += size;
291 coalesced++;
292 break;
293 }
294 }
295
296 /* If we plugged a hole, we may want to also coalesce with the
297 * next region
298 */
299 if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) &&
300 ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base,
301 type->regions[i].size,
302 type->regions[i+1].base,
303 type->regions[i+1].size)))) {
304 memblock_coalesce_regions(type, i, i+1);
305 coalesced++;
306 }
307
308 if (coalesced)
309 return coalesced;
310
311 /* If we are out of space, we fail. It's too late to resize the array
312 * but then this shouldn't have happened in the first place.
313 */
314 if (WARN_ON(type->cnt >= type->max))
315 return -1;
316
317 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
318 for (i = type->cnt - 1; i >= 0; i--) {
319 if (base < type->regions[i].base) {
320 type->regions[i+1].base = type->regions[i].base;
321 type->regions[i+1].size = type->regions[i].size;
322 } else {
323 type->regions[i+1].base = base;
324 type->regions[i+1].size = size;
325 break;
326 }
327 }
328
329 if (base < type->regions[0].base) {
330 type->regions[0].base = base;
331 type->regions[0].size = size;
332 }
333 type->cnt++;
334
335 /* The array is full ? Try to resize it. If that fails, we undo
336 * our allocation and return an error
337 */
338 if (type->cnt == type->max && memblock_double_array(type)) {
339 type->cnt--;
340 return -1;
341 }
342
343 return 0;
344 }
345
346 long memblock_add(phys_addr_t base, phys_addr_t size)
347 {
348 return memblock_add_region(&memblock.memory, base, size);
349
350 }
351
352 static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
353 {
354 phys_addr_t rgnbegin, rgnend;
355 phys_addr_t end = base + size;
356 int i;
357
358 rgnbegin = rgnend = 0; /* supress gcc warnings */
359
360 /* Find the region where (base, size) belongs to */
361 for (i=0; i < type->cnt; i++) {
362 rgnbegin = type->regions[i].base;
363 rgnend = rgnbegin + type->regions[i].size;
364
365 if ((rgnbegin <= base) && (end <= rgnend))
366 break;
367 }
368
369 /* Didn't find the region */
370 if (i == type->cnt)
371 return -1;
372
373 /* Check to see if we are removing entire region */
374 if ((rgnbegin == base) && (rgnend == end)) {
375 memblock_remove_region(type, i);
376 return 0;
377 }
378
379 /* Check to see if region is matching at the front */
380 if (rgnbegin == base) {
381 type->regions[i].base = end;
382 type->regions[i].size -= size;
383 return 0;
384 }
385
386 /* Check to see if the region is matching at the end */
387 if (rgnend == end) {
388 type->regions[i].size -= size;
389 return 0;
390 }
391
392 /*
393 * We need to split the entry - adjust the current one to the
394 * beginging of the hole and add the region after hole.
395 */
396 type->regions[i].size = base - type->regions[i].base;
397 return memblock_add_region(type, end, rgnend - end);
398 }
399
400 long memblock_remove(phys_addr_t base, phys_addr_t size)
401 {
402 return __memblock_remove(&memblock.memory, base, size);
403 }
404
405 long __init memblock_free(phys_addr_t base, phys_addr_t size)
406 {
407 return __memblock_remove(&memblock.reserved, base, size);
408 }
409
410 long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
411 {
412 struct memblock_type *_rgn = &memblock.reserved;
413
414 BUG_ON(0 == size);
415
416 return memblock_add_region(_rgn, base, size);
417 }
418
419 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
420 {
421 phys_addr_t found;
422
423 /* We align the size to limit fragmentation. Without this, a lot of
424 * small allocs quickly eat up the whole reserve array on sparc
425 */
426 size = memblock_align_up(size, align);
427
428 found = memblock_find_base(size, align, 0, max_addr);
429 if (found != MEMBLOCK_ERROR &&
430 memblock_add_region(&memblock.reserved, found, size) >= 0)
431 return found;
432
433 return 0;
434 }
435
436 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
437 {
438 phys_addr_t alloc;
439
440 alloc = __memblock_alloc_base(size, align, max_addr);
441
442 if (alloc == 0)
443 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
444 (unsigned long long) size, (unsigned long long) max_addr);
445
446 return alloc;
447 }
448
449 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
450 {
451 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
452 }
453
454
455 /*
456 * Additional node-local allocators. Search for node memory is bottom up
457 * and walks memblock regions within that node bottom-up as well, but allocation
458 * within an memblock region is top-down. XXX I plan to fix that at some stage
459 *
460 * WARNING: Only available after early_node_map[] has been populated,
461 * on some architectures, that is after all the calls to add_active_range()
462 * have been done to populate it.
463 */
464
465 phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
466 {
467 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
468 /*
469 * This code originates from sparc which really wants use to walk by addresses
470 * and returns the nid. This is not very convenient for early_pfn_map[] users
471 * as the map isn't sorted yet, and it really wants to be walked by nid.
472 *
473 * For now, I implement the inefficient method below which walks the early
474 * map multiple times. Eventually we may want to use an ARCH config option
475 * to implement a completely different method for both case.
476 */
477 unsigned long start_pfn, end_pfn;
478 int i;
479
480 for (i = 0; i < MAX_NUMNODES; i++) {
481 get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
482 if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
483 continue;
484 *nid = i;
485 return min(end, PFN_PHYS(end_pfn));
486 }
487 #endif
488 *nid = 0;
489
490 return end;
491 }
492
493 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
494 phys_addr_t size,
495 phys_addr_t align, int nid)
496 {
497 phys_addr_t start, end;
498
499 start = mp->base;
500 end = start + mp->size;
501
502 start = memblock_align_up(start, align);
503 while (start < end) {
504 phys_addr_t this_end;
505 int this_nid;
506
507 this_end = memblock_nid_range(start, end, &this_nid);
508 if (this_nid == nid) {
509 phys_addr_t ret = memblock_find_region(start, this_end, size, align);
510 if (ret != MEMBLOCK_ERROR &&
511 memblock_add_region(&memblock.reserved, ret, size) >= 0)
512 return ret;
513 }
514 start = this_end;
515 }
516
517 return MEMBLOCK_ERROR;
518 }
519
520 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
521 {
522 struct memblock_type *mem = &memblock.memory;
523 int i;
524
525 BUG_ON(0 == size);
526
527 /* We align the size to limit fragmentation. Without this, a lot of
528 * small allocs quickly eat up the whole reserve array on sparc
529 */
530 size = memblock_align_up(size, align);
531
532 /* We do a bottom-up search for a region with the right
533 * nid since that's easier considering how memblock_nid_range()
534 * works
535 */
536 for (i = 0; i < mem->cnt; i++) {
537 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
538 size, align, nid);
539 if (ret != MEMBLOCK_ERROR)
540 return ret;
541 }
542
543 return 0;
544 }
545
546 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
547 {
548 phys_addr_t res = memblock_alloc_nid(size, align, nid);
549
550 if (res)
551 return res;
552 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
553 }
554
555
556 /*
557 * Remaining API functions
558 */
559
560 /* You must call memblock_analyze() before this. */
561 phys_addr_t __init memblock_phys_mem_size(void)
562 {
563 return memblock.memory_size;
564 }
565
566 phys_addr_t memblock_end_of_DRAM(void)
567 {
568 int idx = memblock.memory.cnt - 1;
569
570 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
571 }
572
573 /* You must call memblock_analyze() after this. */
574 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
575 {
576 unsigned long i;
577 phys_addr_t limit;
578 struct memblock_region *p;
579
580 if (!memory_limit)
581 return;
582
583 /* Truncate the memblock regions to satisfy the memory limit. */
584 limit = memory_limit;
585 for (i = 0; i < memblock.memory.cnt; i++) {
586 if (limit > memblock.memory.regions[i].size) {
587 limit -= memblock.memory.regions[i].size;
588 continue;
589 }
590
591 memblock.memory.regions[i].size = limit;
592 memblock.memory.cnt = i + 1;
593 break;
594 }
595
596 memory_limit = memblock_end_of_DRAM();
597
598 /* And truncate any reserves above the limit also. */
599 for (i = 0; i < memblock.reserved.cnt; i++) {
600 p = &memblock.reserved.regions[i];
601
602 if (p->base > memory_limit)
603 p->size = 0;
604 else if ((p->base + p->size) > memory_limit)
605 p->size = memory_limit - p->base;
606
607 if (p->size == 0) {
608 memblock_remove_region(&memblock.reserved, i);
609 i--;
610 }
611 }
612 }
613
614 static int memblock_search(struct memblock_type *type, phys_addr_t addr)
615 {
616 unsigned int left = 0, right = type->cnt;
617
618 do {
619 unsigned int mid = (right + left) / 2;
620
621 if (addr < type->regions[mid].base)
622 right = mid;
623 else if (addr >= (type->regions[mid].base +
624 type->regions[mid].size))
625 left = mid + 1;
626 else
627 return mid;
628 } while (left < right);
629 return -1;
630 }
631
632 int __init memblock_is_reserved(phys_addr_t addr)
633 {
634 return memblock_search(&memblock.reserved, addr) != -1;
635 }
636
637 int memblock_is_memory(phys_addr_t addr)
638 {
639 return memblock_search(&memblock.memory, addr) != -1;
640 }
641
642 int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
643 {
644 int idx = memblock_search(&memblock.reserved, base);
645
646 if (idx == -1)
647 return 0;
648 return memblock.reserved.regions[idx].base <= base &&
649 (memblock.reserved.regions[idx].base +
650 memblock.reserved.regions[idx].size) >= (base + size);
651 }
652
653 int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
654 {
655 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
656 }
657
658
659 void __init memblock_set_current_limit(phys_addr_t limit)
660 {
661 memblock.current_limit = limit;
662 }
663
664 static void memblock_dump(struct memblock_type *region, char *name)
665 {
666 unsigned long long base, size;
667 int i;
668
669 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
670
671 for (i = 0; i < region->cnt; i++) {
672 base = region->regions[i].base;
673 size = region->regions[i].size;
674
675 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
676 name, i, base, base + size - 1, size);
677 }
678 }
679
680 void memblock_dump_all(void)
681 {
682 if (!memblock_debug)
683 return;
684
685 pr_info("MEMBLOCK configuration:\n");
686 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
687
688 memblock_dump(&memblock.memory, "memory");
689 memblock_dump(&memblock.reserved, "reserved");
690 }
691
692 void __init memblock_analyze(void)
693 {
694 int i;
695
696 /* Check marker in the unused last array entry */
697 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
698 != (phys_addr_t)RED_INACTIVE);
699 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
700 != (phys_addr_t)RED_INACTIVE);
701
702 memblock.memory_size = 0;
703
704 for (i = 0; i < memblock.memory.cnt; i++)
705 memblock.memory_size += memblock.memory.regions[i].size;
706
707 /* We allow resizing from there */
708 memblock_can_resize = 1;
709 }
710
711 void __init memblock_init(void)
712 {
713 /* Hookup the initial arrays */
714 memblock.memory.regions = memblock_memory_init_regions;
715 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
716 memblock.reserved.regions = memblock_reserved_init_regions;
717 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
718
719 /* Write a marker in the unused last array entry */
720 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
721 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
722
723 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
724 * This simplifies the memblock_add() code below...
725 */
726 memblock.memory.regions[0].base = 0;
727 memblock.memory.regions[0].size = 0;
728 memblock.memory.cnt = 1;
729
730 /* Ditto. */
731 memblock.reserved.regions[0].base = 0;
732 memblock.reserved.regions[0].size = 0;
733 memblock.reserved.cnt = 1;
734
735 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
736 }
737
738 static int __init early_memblock(char *p)
739 {
740 if (p && strstr(p, "debug"))
741 memblock_debug = 1;
742 return 0;
743 }
744 early_param("memblock", early_memblock);
745
746 #ifdef CONFIG_DEBUG_FS
747
748 static int memblock_debug_show(struct seq_file *m, void *private)
749 {
750 struct memblock_type *type = m->private;
751 struct memblock_region *reg;
752 int i;
753
754 for (i = 0; i < type->cnt; i++) {
755 reg = &type->regions[i];
756 seq_printf(m, "%4d: ", i);
757 if (sizeof(phys_addr_t) == 4)
758 seq_printf(m, "0x%08lx..0x%08lx\n",
759 (unsigned long)reg->base,
760 (unsigned long)(reg->base + reg->size - 1));
761 else
762 seq_printf(m, "0x%016llx..0x%016llx\n",
763 (unsigned long long)reg->base,
764 (unsigned long long)(reg->base + reg->size - 1));
765
766 }
767 return 0;
768 }
769
770 static int memblock_debug_open(struct inode *inode, struct file *file)
771 {
772 return single_open(file, memblock_debug_show, inode->i_private);
773 }
774
775 static const struct file_operations memblock_debug_fops = {
776 .open = memblock_debug_open,
777 .read = seq_read,
778 .llseek = seq_lseek,
779 .release = single_release,
780 };
781
782 static int __init memblock_init_debugfs(void)
783 {
784 struct dentry *root = debugfs_create_dir("memblock", NULL);
785 if (!root)
786 return -ENXIO;
787 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
788 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
789
790 return 0;
791 }
792 __initcall(memblock_init_debugfs);
793
794 #endif /* CONFIG_DEBUG_FS */
This page took 0.066191 seconds and 5 git commands to generate.