Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86 * Address comparison utilities
87 */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
90 {
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
94 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
96 {
97 unsigned long i;
98
99 for (i = 0; i < type->cnt; i++) {
100 phys_addr_t rgnbase = type->regions[i].base;
101 phys_addr_t rgnsize = type->regions[i].size;
102 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
103 break;
104 }
105
106 return (i < type->cnt) ? i : -1;
107 }
108
109 /*
110 * __memblock_find_range_bottom_up - find free area utility in bottom-up
111 * @start: start of candidate range
112 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
113 * @size: size of free area to find
114 * @align: alignment of free area to find
115 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
116 * @flags: pick from blocks based on memory attributes
117 *
118 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
119 *
120 * RETURNS:
121 * Found address on success, 0 on failure.
122 */
123 static phys_addr_t __init_memblock
124 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
125 phys_addr_t size, phys_addr_t align, int nid,
126 ulong flags)
127 {
128 phys_addr_t this_start, this_end, cand;
129 u64 i;
130
131 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
132 this_start = clamp(this_start, start, end);
133 this_end = clamp(this_end, start, end);
134
135 cand = round_up(this_start, align);
136 if (cand < this_end && this_end - cand >= size)
137 return cand;
138 }
139
140 return 0;
141 }
142
143 /**
144 * __memblock_find_range_top_down - find free area utility, in top-down
145 * @start: start of candidate range
146 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
147 * @size: size of free area to find
148 * @align: alignment of free area to find
149 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
150 * @flags: pick from blocks based on memory attributes
151 *
152 * Utility called from memblock_find_in_range_node(), find free area top-down.
153 *
154 * RETURNS:
155 * Found address on success, 0 on failure.
156 */
157 static phys_addr_t __init_memblock
158 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
159 phys_addr_t size, phys_addr_t align, int nid,
160 ulong flags)
161 {
162 phys_addr_t this_start, this_end, cand;
163 u64 i;
164
165 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
166 NULL) {
167 this_start = clamp(this_start, start, end);
168 this_end = clamp(this_end, start, end);
169
170 if (this_end < size)
171 continue;
172
173 cand = round_down(this_end - size, align);
174 if (cand >= this_start)
175 return cand;
176 }
177
178 return 0;
179 }
180
181 /**
182 * memblock_find_in_range_node - find free area in given range and node
183 * @size: size of free area to find
184 * @align: alignment of free area to find
185 * @start: start of candidate range
186 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
187 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
188 * @flags: pick from blocks based on memory attributes
189 *
190 * Find @size free area aligned to @align in the specified range and node.
191 *
192 * When allocation direction is bottom-up, the @start should be greater
193 * than the end of the kernel image. Otherwise, it will be trimmed. The
194 * reason is that we want the bottom-up allocation just near the kernel
195 * image so it is highly likely that the allocated memory and the kernel
196 * will reside in the same node.
197 *
198 * If bottom-up allocation failed, will try to allocate memory top-down.
199 *
200 * RETURNS:
201 * Found address on success, 0 on failure.
202 */
203 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
204 phys_addr_t align, phys_addr_t start,
205 phys_addr_t end, int nid, ulong flags)
206 {
207 phys_addr_t kernel_end, ret;
208
209 /* pump up @end */
210 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
211 end = memblock.current_limit;
212
213 /* avoid allocating the first page */
214 start = max_t(phys_addr_t, start, PAGE_SIZE);
215 end = max(start, end);
216 kernel_end = __pa_symbol(_end);
217
218 /*
219 * try bottom-up allocation only when bottom-up mode
220 * is set and @end is above the kernel image.
221 */
222 if (memblock_bottom_up() && end > kernel_end) {
223 phys_addr_t bottom_up_start;
224
225 /* make sure we will allocate above the kernel */
226 bottom_up_start = max(start, kernel_end);
227
228 /* ok, try bottom-up allocation first */
229 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
230 size, align, nid, flags);
231 if (ret)
232 return ret;
233
234 /*
235 * we always limit bottom-up allocation above the kernel,
236 * but top-down allocation doesn't have the limit, so
237 * retrying top-down allocation may succeed when bottom-up
238 * allocation failed.
239 *
240 * bottom-up allocation is expected to be fail very rarely,
241 * so we use WARN_ONCE() here to see the stack trace if
242 * fail happens.
243 */
244 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
245 "memory hotunplug may be affected\n");
246 }
247
248 return __memblock_find_range_top_down(start, end, size, align, nid,
249 flags);
250 }
251
252 /**
253 * memblock_find_in_range - find free area in given range
254 * @start: start of candidate range
255 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
256 * @size: size of free area to find
257 * @align: alignment of free area to find
258 *
259 * Find @size free area aligned to @align in the specified range.
260 *
261 * RETURNS:
262 * Found address on success, 0 on failure.
263 */
264 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
265 phys_addr_t end, phys_addr_t size,
266 phys_addr_t align)
267 {
268 phys_addr_t ret;
269 ulong flags = choose_memblock_flags();
270
271 again:
272 ret = memblock_find_in_range_node(size, align, start, end,
273 NUMA_NO_NODE, flags);
274
275 if (!ret && (flags & MEMBLOCK_MIRROR)) {
276 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
277 &size);
278 flags &= ~MEMBLOCK_MIRROR;
279 goto again;
280 }
281
282 return ret;
283 }
284
285 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
286 {
287 type->total_size -= type->regions[r].size;
288 memmove(&type->regions[r], &type->regions[r + 1],
289 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
290 type->cnt--;
291
292 /* Special case for empty arrays */
293 if (type->cnt == 0) {
294 WARN_ON(type->total_size != 0);
295 type->cnt = 1;
296 type->regions[0].base = 0;
297 type->regions[0].size = 0;
298 type->regions[0].flags = 0;
299 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
300 }
301 }
302
303 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
304
305 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
306 phys_addr_t *addr)
307 {
308 if (memblock.reserved.regions == memblock_reserved_init_regions)
309 return 0;
310
311 *addr = __pa(memblock.reserved.regions);
312
313 return PAGE_ALIGN(sizeof(struct memblock_region) *
314 memblock.reserved.max);
315 }
316
317 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
318 phys_addr_t *addr)
319 {
320 if (memblock.memory.regions == memblock_memory_init_regions)
321 return 0;
322
323 *addr = __pa(memblock.memory.regions);
324
325 return PAGE_ALIGN(sizeof(struct memblock_region) *
326 memblock.memory.max);
327 }
328
329 #endif
330
331 /**
332 * memblock_double_array - double the size of the memblock regions array
333 * @type: memblock type of the regions array being doubled
334 * @new_area_start: starting address of memory range to avoid overlap with
335 * @new_area_size: size of memory range to avoid overlap with
336 *
337 * Double the size of the @type regions array. If memblock is being used to
338 * allocate memory for a new reserved regions array and there is a previously
339 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
340 * waiting to be reserved, ensure the memory used by the new array does
341 * not overlap.
342 *
343 * RETURNS:
344 * 0 on success, -1 on failure.
345 */
346 static int __init_memblock memblock_double_array(struct memblock_type *type,
347 phys_addr_t new_area_start,
348 phys_addr_t new_area_size)
349 {
350 struct memblock_region *new_array, *old_array;
351 phys_addr_t old_alloc_size, new_alloc_size;
352 phys_addr_t old_size, new_size, addr;
353 int use_slab = slab_is_available();
354 int *in_slab;
355
356 /* We don't allow resizing until we know about the reserved regions
357 * of memory that aren't suitable for allocation
358 */
359 if (!memblock_can_resize)
360 return -1;
361
362 /* Calculate new doubled size */
363 old_size = type->max * sizeof(struct memblock_region);
364 new_size = old_size << 1;
365 /*
366 * We need to allocated new one align to PAGE_SIZE,
367 * so we can free them completely later.
368 */
369 old_alloc_size = PAGE_ALIGN(old_size);
370 new_alloc_size = PAGE_ALIGN(new_size);
371
372 /* Retrieve the slab flag */
373 if (type == &memblock.memory)
374 in_slab = &memblock_memory_in_slab;
375 else
376 in_slab = &memblock_reserved_in_slab;
377
378 /* Try to find some space for it.
379 *
380 * WARNING: We assume that either slab_is_available() and we use it or
381 * we use MEMBLOCK for allocations. That means that this is unsafe to
382 * use when bootmem is currently active (unless bootmem itself is
383 * implemented on top of MEMBLOCK which isn't the case yet)
384 *
385 * This should however not be an issue for now, as we currently only
386 * call into MEMBLOCK while it's still active, or much later when slab
387 * is active for memory hotplug operations
388 */
389 if (use_slab) {
390 new_array = kmalloc(new_size, GFP_KERNEL);
391 addr = new_array ? __pa(new_array) : 0;
392 } else {
393 /* only exclude range when trying to double reserved.regions */
394 if (type != &memblock.reserved)
395 new_area_start = new_area_size = 0;
396
397 addr = memblock_find_in_range(new_area_start + new_area_size,
398 memblock.current_limit,
399 new_alloc_size, PAGE_SIZE);
400 if (!addr && new_area_size)
401 addr = memblock_find_in_range(0,
402 min(new_area_start, memblock.current_limit),
403 new_alloc_size, PAGE_SIZE);
404
405 new_array = addr ? __va(addr) : NULL;
406 }
407 if (!addr) {
408 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
409 memblock_type_name(type), type->max, type->max * 2);
410 return -1;
411 }
412
413 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
414 memblock_type_name(type), type->max * 2, (u64)addr,
415 (u64)addr + new_size - 1);
416
417 /*
418 * Found space, we now need to move the array over before we add the
419 * reserved region since it may be our reserved array itself that is
420 * full.
421 */
422 memcpy(new_array, type->regions, old_size);
423 memset(new_array + type->max, 0, old_size);
424 old_array = type->regions;
425 type->regions = new_array;
426 type->max <<= 1;
427
428 /* Free old array. We needn't free it if the array is the static one */
429 if (*in_slab)
430 kfree(old_array);
431 else if (old_array != memblock_memory_init_regions &&
432 old_array != memblock_reserved_init_regions)
433 memblock_free(__pa(old_array), old_alloc_size);
434
435 /*
436 * Reserve the new array if that comes from the memblock. Otherwise, we
437 * needn't do it
438 */
439 if (!use_slab)
440 BUG_ON(memblock_reserve(addr, new_alloc_size));
441
442 /* Update slab flag */
443 *in_slab = use_slab;
444
445 return 0;
446 }
447
448 /**
449 * memblock_merge_regions - merge neighboring compatible regions
450 * @type: memblock type to scan
451 *
452 * Scan @type and merge neighboring compatible regions.
453 */
454 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
455 {
456 int i = 0;
457
458 /* cnt never goes below 1 */
459 while (i < type->cnt - 1) {
460 struct memblock_region *this = &type->regions[i];
461 struct memblock_region *next = &type->regions[i + 1];
462
463 if (this->base + this->size != next->base ||
464 memblock_get_region_node(this) !=
465 memblock_get_region_node(next) ||
466 this->flags != next->flags) {
467 BUG_ON(this->base + this->size > next->base);
468 i++;
469 continue;
470 }
471
472 this->size += next->size;
473 /* move forward from next + 1, index of which is i + 2 */
474 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
475 type->cnt--;
476 }
477 }
478
479 /**
480 * memblock_insert_region - insert new memblock region
481 * @type: memblock type to insert into
482 * @idx: index for the insertion point
483 * @base: base address of the new region
484 * @size: size of the new region
485 * @nid: node id of the new region
486 * @flags: flags of the new region
487 *
488 * Insert new memblock region [@base,@base+@size) into @type at @idx.
489 * @type must already have extra room to accomodate the new region.
490 */
491 static void __init_memblock memblock_insert_region(struct memblock_type *type,
492 int idx, phys_addr_t base,
493 phys_addr_t size,
494 int nid, unsigned long flags)
495 {
496 struct memblock_region *rgn = &type->regions[idx];
497
498 BUG_ON(type->cnt >= type->max);
499 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
500 rgn->base = base;
501 rgn->size = size;
502 rgn->flags = flags;
503 memblock_set_region_node(rgn, nid);
504 type->cnt++;
505 type->total_size += size;
506 }
507
508 /**
509 * memblock_add_range - add new memblock region
510 * @type: memblock type to add new region into
511 * @base: base address of the new region
512 * @size: size of the new region
513 * @nid: nid of the new region
514 * @flags: flags of the new region
515 *
516 * Add new memblock region [@base,@base+@size) into @type. The new region
517 * is allowed to overlap with existing ones - overlaps don't affect already
518 * existing regions. @type is guaranteed to be minimal (all neighbouring
519 * compatible regions are merged) after the addition.
520 *
521 * RETURNS:
522 * 0 on success, -errno on failure.
523 */
524 int __init_memblock memblock_add_range(struct memblock_type *type,
525 phys_addr_t base, phys_addr_t size,
526 int nid, unsigned long flags)
527 {
528 bool insert = false;
529 phys_addr_t obase = base;
530 phys_addr_t end = base + memblock_cap_size(base, &size);
531 int i, nr_new;
532
533 if (!size)
534 return 0;
535
536 /* special case for empty array */
537 if (type->regions[0].size == 0) {
538 WARN_ON(type->cnt != 1 || type->total_size);
539 type->regions[0].base = base;
540 type->regions[0].size = size;
541 type->regions[0].flags = flags;
542 memblock_set_region_node(&type->regions[0], nid);
543 type->total_size = size;
544 return 0;
545 }
546 repeat:
547 /*
548 * The following is executed twice. Once with %false @insert and
549 * then with %true. The first counts the number of regions needed
550 * to accomodate the new area. The second actually inserts them.
551 */
552 base = obase;
553 nr_new = 0;
554
555 for (i = 0; i < type->cnt; i++) {
556 struct memblock_region *rgn = &type->regions[i];
557 phys_addr_t rbase = rgn->base;
558 phys_addr_t rend = rbase + rgn->size;
559
560 if (rbase >= end)
561 break;
562 if (rend <= base)
563 continue;
564 /*
565 * @rgn overlaps. If it separates the lower part of new
566 * area, insert that portion.
567 */
568 if (rbase > base) {
569 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
570 WARN_ON(nid != memblock_get_region_node(rgn));
571 #endif
572 nr_new++;
573 if (insert)
574 memblock_insert_region(type, i++, base,
575 rbase - base, nid,
576 flags);
577 }
578 /* area below @rend is dealt with, forget about it */
579 base = min(rend, end);
580 }
581
582 /* insert the remaining portion */
583 if (base < end) {
584 nr_new++;
585 if (insert)
586 memblock_insert_region(type, i, base, end - base,
587 nid, flags);
588 }
589
590 /*
591 * If this was the first round, resize array and repeat for actual
592 * insertions; otherwise, merge and return.
593 */
594 if (!insert) {
595 while (type->cnt + nr_new > type->max)
596 if (memblock_double_array(type, obase, size) < 0)
597 return -ENOMEM;
598 insert = true;
599 goto repeat;
600 } else {
601 memblock_merge_regions(type);
602 return 0;
603 }
604 }
605
606 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
607 int nid)
608 {
609 return memblock_add_range(&memblock.memory, base, size, nid, 0);
610 }
611
612 static int __init_memblock memblock_add_region(phys_addr_t base,
613 phys_addr_t size,
614 int nid,
615 unsigned long flags)
616 {
617 struct memblock_type *_rgn = &memblock.memory;
618
619 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
620 (unsigned long long)base,
621 (unsigned long long)base + size - 1,
622 flags, (void *)_RET_IP_);
623
624 return memblock_add_range(_rgn, base, size, nid, flags);
625 }
626
627 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
628 {
629 return memblock_add_region(base, size, MAX_NUMNODES, 0);
630 }
631
632 /**
633 * memblock_isolate_range - isolate given range into disjoint memblocks
634 * @type: memblock type to isolate range for
635 * @base: base of range to isolate
636 * @size: size of range to isolate
637 * @start_rgn: out parameter for the start of isolated region
638 * @end_rgn: out parameter for the end of isolated region
639 *
640 * Walk @type and ensure that regions don't cross the boundaries defined by
641 * [@base,@base+@size). Crossing regions are split at the boundaries,
642 * which may create at most two more regions. The index of the first
643 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
644 *
645 * RETURNS:
646 * 0 on success, -errno on failure.
647 */
648 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
649 phys_addr_t base, phys_addr_t size,
650 int *start_rgn, int *end_rgn)
651 {
652 phys_addr_t end = base + memblock_cap_size(base, &size);
653 int i;
654
655 *start_rgn = *end_rgn = 0;
656
657 if (!size)
658 return 0;
659
660 /* we'll create at most two more regions */
661 while (type->cnt + 2 > type->max)
662 if (memblock_double_array(type, base, size) < 0)
663 return -ENOMEM;
664
665 for (i = 0; i < type->cnt; i++) {
666 struct memblock_region *rgn = &type->regions[i];
667 phys_addr_t rbase = rgn->base;
668 phys_addr_t rend = rbase + rgn->size;
669
670 if (rbase >= end)
671 break;
672 if (rend <= base)
673 continue;
674
675 if (rbase < base) {
676 /*
677 * @rgn intersects from below. Split and continue
678 * to process the next region - the new top half.
679 */
680 rgn->base = base;
681 rgn->size -= base - rbase;
682 type->total_size -= base - rbase;
683 memblock_insert_region(type, i, rbase, base - rbase,
684 memblock_get_region_node(rgn),
685 rgn->flags);
686 } else if (rend > end) {
687 /*
688 * @rgn intersects from above. Split and redo the
689 * current region - the new bottom half.
690 */
691 rgn->base = end;
692 rgn->size -= end - rbase;
693 type->total_size -= end - rbase;
694 memblock_insert_region(type, i--, rbase, end - rbase,
695 memblock_get_region_node(rgn),
696 rgn->flags);
697 } else {
698 /* @rgn is fully contained, record it */
699 if (!*end_rgn)
700 *start_rgn = i;
701 *end_rgn = i + 1;
702 }
703 }
704
705 return 0;
706 }
707
708 int __init_memblock memblock_remove_range(struct memblock_type *type,
709 phys_addr_t base, phys_addr_t size)
710 {
711 int start_rgn, end_rgn;
712 int i, ret;
713
714 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
715 if (ret)
716 return ret;
717
718 for (i = end_rgn - 1; i >= start_rgn; i--)
719 memblock_remove_region(type, i);
720 return 0;
721 }
722
723 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
724 {
725 return memblock_remove_range(&memblock.memory, base, size);
726 }
727
728
729 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
730 {
731 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
732 (unsigned long long)base,
733 (unsigned long long)base + size - 1,
734 (void *)_RET_IP_);
735
736 kmemleak_free_part(__va(base), size);
737 return memblock_remove_range(&memblock.reserved, base, size);
738 }
739
740 static int __init_memblock memblock_reserve_region(phys_addr_t base,
741 phys_addr_t size,
742 int nid,
743 unsigned long flags)
744 {
745 struct memblock_type *type = &memblock.reserved;
746
747 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
748 (unsigned long long)base,
749 (unsigned long long)base + size - 1,
750 flags, (void *)_RET_IP_);
751
752 return memblock_add_range(type, base, size, nid, flags);
753 }
754
755 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
756 {
757 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
758 }
759
760 /**
761 *
762 * This function isolates region [@base, @base + @size), and sets/clears flag
763 *
764 * Return 0 on succees, -errno on failure.
765 */
766 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
767 phys_addr_t size, int set, int flag)
768 {
769 struct memblock_type *type = &memblock.memory;
770 int i, ret, start_rgn, end_rgn;
771
772 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
773 if (ret)
774 return ret;
775
776 for (i = start_rgn; i < end_rgn; i++)
777 if (set)
778 memblock_set_region_flags(&type->regions[i], flag);
779 else
780 memblock_clear_region_flags(&type->regions[i], flag);
781
782 memblock_merge_regions(type);
783 return 0;
784 }
785
786 /**
787 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
788 * @base: the base phys addr of the region
789 * @size: the size of the region
790 *
791 * Return 0 on succees, -errno on failure.
792 */
793 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
794 {
795 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
796 }
797
798 /**
799 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
800 * @base: the base phys addr of the region
801 * @size: the size of the region
802 *
803 * Return 0 on succees, -errno on failure.
804 */
805 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
806 {
807 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
808 }
809
810 /**
811 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
812 * @base: the base phys addr of the region
813 * @size: the size of the region
814 *
815 * Return 0 on succees, -errno on failure.
816 */
817 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
818 {
819 system_has_some_mirror = true;
820
821 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
822 }
823
824
825 /**
826 * __next_reserved_mem_region - next function for for_each_reserved_region()
827 * @idx: pointer to u64 loop variable
828 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
829 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
830 *
831 * Iterate over all reserved memory regions.
832 */
833 void __init_memblock __next_reserved_mem_region(u64 *idx,
834 phys_addr_t *out_start,
835 phys_addr_t *out_end)
836 {
837 struct memblock_type *rsv = &memblock.reserved;
838
839 if (*idx >= 0 && *idx < rsv->cnt) {
840 struct memblock_region *r = &rsv->regions[*idx];
841 phys_addr_t base = r->base;
842 phys_addr_t size = r->size;
843
844 if (out_start)
845 *out_start = base;
846 if (out_end)
847 *out_end = base + size - 1;
848
849 *idx += 1;
850 return;
851 }
852
853 /* signal end of iteration */
854 *idx = ULLONG_MAX;
855 }
856
857 /**
858 * __next__mem_range - next function for for_each_free_mem_range() etc.
859 * @idx: pointer to u64 loop variable
860 * @nid: node selector, %NUMA_NO_NODE for all nodes
861 * @flags: pick from blocks based on memory attributes
862 * @type_a: pointer to memblock_type from where the range is taken
863 * @type_b: pointer to memblock_type which excludes memory from being taken
864 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
865 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
866 * @out_nid: ptr to int for nid of the range, can be %NULL
867 *
868 * Find the first area from *@idx which matches @nid, fill the out
869 * parameters, and update *@idx for the next iteration. The lower 32bit of
870 * *@idx contains index into type_a and the upper 32bit indexes the
871 * areas before each region in type_b. For example, if type_b regions
872 * look like the following,
873 *
874 * 0:[0-16), 1:[32-48), 2:[128-130)
875 *
876 * The upper 32bit indexes the following regions.
877 *
878 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
879 *
880 * As both region arrays are sorted, the function advances the two indices
881 * in lockstep and returns each intersection.
882 */
883 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
884 struct memblock_type *type_a,
885 struct memblock_type *type_b,
886 phys_addr_t *out_start,
887 phys_addr_t *out_end, int *out_nid)
888 {
889 int idx_a = *idx & 0xffffffff;
890 int idx_b = *idx >> 32;
891
892 if (WARN_ONCE(nid == MAX_NUMNODES,
893 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
894 nid = NUMA_NO_NODE;
895
896 for (; idx_a < type_a->cnt; idx_a++) {
897 struct memblock_region *m = &type_a->regions[idx_a];
898
899 phys_addr_t m_start = m->base;
900 phys_addr_t m_end = m->base + m->size;
901 int m_nid = memblock_get_region_node(m);
902
903 /* only memory regions are associated with nodes, check it */
904 if (nid != NUMA_NO_NODE && nid != m_nid)
905 continue;
906
907 /* skip hotpluggable memory regions if needed */
908 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
909 continue;
910
911 /* if we want mirror memory skip non-mirror memory regions */
912 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
913 continue;
914
915 if (!type_b) {
916 if (out_start)
917 *out_start = m_start;
918 if (out_end)
919 *out_end = m_end;
920 if (out_nid)
921 *out_nid = m_nid;
922 idx_a++;
923 *idx = (u32)idx_a | (u64)idx_b << 32;
924 return;
925 }
926
927 /* scan areas before each reservation */
928 for (; idx_b < type_b->cnt + 1; idx_b++) {
929 struct memblock_region *r;
930 phys_addr_t r_start;
931 phys_addr_t r_end;
932
933 r = &type_b->regions[idx_b];
934 r_start = idx_b ? r[-1].base + r[-1].size : 0;
935 r_end = idx_b < type_b->cnt ?
936 r->base : ULLONG_MAX;
937
938 /*
939 * if idx_b advanced past idx_a,
940 * break out to advance idx_a
941 */
942 if (r_start >= m_end)
943 break;
944 /* if the two regions intersect, we're done */
945 if (m_start < r_end) {
946 if (out_start)
947 *out_start =
948 max(m_start, r_start);
949 if (out_end)
950 *out_end = min(m_end, r_end);
951 if (out_nid)
952 *out_nid = m_nid;
953 /*
954 * The region which ends first is
955 * advanced for the next iteration.
956 */
957 if (m_end <= r_end)
958 idx_a++;
959 else
960 idx_b++;
961 *idx = (u32)idx_a | (u64)idx_b << 32;
962 return;
963 }
964 }
965 }
966
967 /* signal end of iteration */
968 *idx = ULLONG_MAX;
969 }
970
971 /**
972 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
973 *
974 * Finds the next range from type_a which is not marked as unsuitable
975 * in type_b.
976 *
977 * @idx: pointer to u64 loop variable
978 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
979 * @flags: pick from blocks based on memory attributes
980 * @type_a: pointer to memblock_type from where the range is taken
981 * @type_b: pointer to memblock_type which excludes memory from being taken
982 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
983 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
984 * @out_nid: ptr to int for nid of the range, can be %NULL
985 *
986 * Reverse of __next_mem_range().
987 */
988 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
989 struct memblock_type *type_a,
990 struct memblock_type *type_b,
991 phys_addr_t *out_start,
992 phys_addr_t *out_end, int *out_nid)
993 {
994 int idx_a = *idx & 0xffffffff;
995 int idx_b = *idx >> 32;
996
997 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
998 nid = NUMA_NO_NODE;
999
1000 if (*idx == (u64)ULLONG_MAX) {
1001 idx_a = type_a->cnt - 1;
1002 idx_b = type_b->cnt;
1003 }
1004
1005 for (; idx_a >= 0; idx_a--) {
1006 struct memblock_region *m = &type_a->regions[idx_a];
1007
1008 phys_addr_t m_start = m->base;
1009 phys_addr_t m_end = m->base + m->size;
1010 int m_nid = memblock_get_region_node(m);
1011
1012 /* only memory regions are associated with nodes, check it */
1013 if (nid != NUMA_NO_NODE && nid != m_nid)
1014 continue;
1015
1016 /* skip hotpluggable memory regions if needed */
1017 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1018 continue;
1019
1020 /* if we want mirror memory skip non-mirror memory regions */
1021 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022 continue;
1023
1024 if (!type_b) {
1025 if (out_start)
1026 *out_start = m_start;
1027 if (out_end)
1028 *out_end = m_end;
1029 if (out_nid)
1030 *out_nid = m_nid;
1031 idx_a++;
1032 *idx = (u32)idx_a | (u64)idx_b << 32;
1033 return;
1034 }
1035
1036 /* scan areas before each reservation */
1037 for (; idx_b >= 0; idx_b--) {
1038 struct memblock_region *r;
1039 phys_addr_t r_start;
1040 phys_addr_t r_end;
1041
1042 r = &type_b->regions[idx_b];
1043 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1044 r_end = idx_b < type_b->cnt ?
1045 r->base : ULLONG_MAX;
1046 /*
1047 * if idx_b advanced past idx_a,
1048 * break out to advance idx_a
1049 */
1050
1051 if (r_end <= m_start)
1052 break;
1053 /* if the two regions intersect, we're done */
1054 if (m_end > r_start) {
1055 if (out_start)
1056 *out_start = max(m_start, r_start);
1057 if (out_end)
1058 *out_end = min(m_end, r_end);
1059 if (out_nid)
1060 *out_nid = m_nid;
1061 if (m_start >= r_start)
1062 idx_a--;
1063 else
1064 idx_b--;
1065 *idx = (u32)idx_a | (u64)idx_b << 32;
1066 return;
1067 }
1068 }
1069 }
1070 /* signal end of iteration */
1071 *idx = ULLONG_MAX;
1072 }
1073
1074 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1075 /*
1076 * Common iterator interface used to define for_each_mem_range().
1077 */
1078 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1079 unsigned long *out_start_pfn,
1080 unsigned long *out_end_pfn, int *out_nid)
1081 {
1082 struct memblock_type *type = &memblock.memory;
1083 struct memblock_region *r;
1084
1085 while (++*idx < type->cnt) {
1086 r = &type->regions[*idx];
1087
1088 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1089 continue;
1090 if (nid == MAX_NUMNODES || nid == r->nid)
1091 break;
1092 }
1093 if (*idx >= type->cnt) {
1094 *idx = -1;
1095 return;
1096 }
1097
1098 if (out_start_pfn)
1099 *out_start_pfn = PFN_UP(r->base);
1100 if (out_end_pfn)
1101 *out_end_pfn = PFN_DOWN(r->base + r->size);
1102 if (out_nid)
1103 *out_nid = r->nid;
1104 }
1105
1106 /**
1107 * memblock_set_node - set node ID on memblock regions
1108 * @base: base of area to set node ID for
1109 * @size: size of area to set node ID for
1110 * @type: memblock type to set node ID for
1111 * @nid: node ID to set
1112 *
1113 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1114 * Regions which cross the area boundaries are split as necessary.
1115 *
1116 * RETURNS:
1117 * 0 on success, -errno on failure.
1118 */
1119 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1120 struct memblock_type *type, int nid)
1121 {
1122 int start_rgn, end_rgn;
1123 int i, ret;
1124
1125 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1126 if (ret)
1127 return ret;
1128
1129 for (i = start_rgn; i < end_rgn; i++)
1130 memblock_set_region_node(&type->regions[i], nid);
1131
1132 memblock_merge_regions(type);
1133 return 0;
1134 }
1135 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1136
1137 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1138 phys_addr_t align, phys_addr_t start,
1139 phys_addr_t end, int nid, ulong flags)
1140 {
1141 phys_addr_t found;
1142
1143 if (!align)
1144 align = SMP_CACHE_BYTES;
1145
1146 found = memblock_find_in_range_node(size, align, start, end, nid,
1147 flags);
1148 if (found && !memblock_reserve(found, size)) {
1149 /*
1150 * The min_count is set to 0 so that memblock allocations are
1151 * never reported as leaks.
1152 */
1153 kmemleak_alloc(__va(found), size, 0, 0);
1154 return found;
1155 }
1156 return 0;
1157 }
1158
1159 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1160 phys_addr_t start, phys_addr_t end,
1161 ulong flags)
1162 {
1163 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1164 flags);
1165 }
1166
1167 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1168 phys_addr_t align, phys_addr_t max_addr,
1169 int nid, ulong flags)
1170 {
1171 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1172 }
1173
1174 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1175 {
1176 ulong flags = choose_memblock_flags();
1177 phys_addr_t ret;
1178
1179 again:
1180 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1181 nid, flags);
1182
1183 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1184 flags &= ~MEMBLOCK_MIRROR;
1185 goto again;
1186 }
1187 return ret;
1188 }
1189
1190 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1191 {
1192 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1193 MEMBLOCK_NONE);
1194 }
1195
1196 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1197 {
1198 phys_addr_t alloc;
1199
1200 alloc = __memblock_alloc_base(size, align, max_addr);
1201
1202 if (alloc == 0)
1203 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1204 (unsigned long long) size, (unsigned long long) max_addr);
1205
1206 return alloc;
1207 }
1208
1209 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1210 {
1211 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1212 }
1213
1214 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1215 {
1216 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1217
1218 if (res)
1219 return res;
1220 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1221 }
1222
1223 /**
1224 * memblock_virt_alloc_internal - allocate boot memory block
1225 * @size: size of memory block to be allocated in bytes
1226 * @align: alignment of the region and block's size
1227 * @min_addr: the lower bound of the memory region to allocate (phys address)
1228 * @max_addr: the upper bound of the memory region to allocate (phys address)
1229 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1230 *
1231 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1232 * will fall back to memory below @min_addr. Also, allocation may fall back
1233 * to any node in the system if the specified node can not
1234 * hold the requested memory.
1235 *
1236 * The allocation is performed from memory region limited by
1237 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1238 *
1239 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1240 *
1241 * The phys address of allocated boot memory block is converted to virtual and
1242 * allocated memory is reset to 0.
1243 *
1244 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1245 * allocated boot memory block, so that it is never reported as leaks.
1246 *
1247 * RETURNS:
1248 * Virtual address of allocated memory block on success, NULL on failure.
1249 */
1250 static void * __init memblock_virt_alloc_internal(
1251 phys_addr_t size, phys_addr_t align,
1252 phys_addr_t min_addr, phys_addr_t max_addr,
1253 int nid)
1254 {
1255 phys_addr_t alloc;
1256 void *ptr;
1257 ulong flags = choose_memblock_flags();
1258
1259 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1260 nid = NUMA_NO_NODE;
1261
1262 /*
1263 * Detect any accidental use of these APIs after slab is ready, as at
1264 * this moment memblock may be deinitialized already and its
1265 * internal data may be destroyed (after execution of free_all_bootmem)
1266 */
1267 if (WARN_ON_ONCE(slab_is_available()))
1268 return kzalloc_node(size, GFP_NOWAIT, nid);
1269
1270 if (!align)
1271 align = SMP_CACHE_BYTES;
1272
1273 if (max_addr > memblock.current_limit)
1274 max_addr = memblock.current_limit;
1275
1276 again:
1277 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1278 nid, flags);
1279 if (alloc)
1280 goto done;
1281
1282 if (nid != NUMA_NO_NODE) {
1283 alloc = memblock_find_in_range_node(size, align, min_addr,
1284 max_addr, NUMA_NO_NODE,
1285 flags);
1286 if (alloc)
1287 goto done;
1288 }
1289
1290 if (min_addr) {
1291 min_addr = 0;
1292 goto again;
1293 }
1294
1295 if (flags & MEMBLOCK_MIRROR) {
1296 flags &= ~MEMBLOCK_MIRROR;
1297 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1298 &size);
1299 goto again;
1300 }
1301
1302 return NULL;
1303 done:
1304 memblock_reserve(alloc, size);
1305 ptr = phys_to_virt(alloc);
1306 memset(ptr, 0, size);
1307
1308 /*
1309 * The min_count is set to 0 so that bootmem allocated blocks
1310 * are never reported as leaks. This is because many of these blocks
1311 * are only referred via the physical address which is not
1312 * looked up by kmemleak.
1313 */
1314 kmemleak_alloc(ptr, size, 0, 0);
1315
1316 return ptr;
1317 }
1318
1319 /**
1320 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @min_addr: the lower bound of the memory region from where the allocation
1324 * is preferred (phys address)
1325 * @max_addr: the upper bound of the memory region from where the allocation
1326 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1327 * allocate only from memory limited by memblock.current_limit value
1328 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1329 *
1330 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1331 * additional debug information (including caller info), if enabled.
1332 *
1333 * RETURNS:
1334 * Virtual address of allocated memory block on success, NULL on failure.
1335 */
1336 void * __init memblock_virt_alloc_try_nid_nopanic(
1337 phys_addr_t size, phys_addr_t align,
1338 phys_addr_t min_addr, phys_addr_t max_addr,
1339 int nid)
1340 {
1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343 (u64)max_addr, (void *)_RET_IP_);
1344 return memblock_virt_alloc_internal(size, align, min_addr,
1345 max_addr, nid);
1346 }
1347
1348 /**
1349 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1350 * @size: size of memory block to be allocated in bytes
1351 * @align: alignment of the region and block's size
1352 * @min_addr: the lower bound of the memory region from where the allocation
1353 * is preferred (phys address)
1354 * @max_addr: the upper bound of the memory region from where the allocation
1355 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1356 * allocate only from memory limited by memblock.current_limit value
1357 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1358 *
1359 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1360 * which provides debug information (including caller info), if enabled,
1361 * and panics if the request can not be satisfied.
1362 *
1363 * RETURNS:
1364 * Virtual address of allocated memory block on success, NULL on failure.
1365 */
1366 void * __init memblock_virt_alloc_try_nid(
1367 phys_addr_t size, phys_addr_t align,
1368 phys_addr_t min_addr, phys_addr_t max_addr,
1369 int nid)
1370 {
1371 void *ptr;
1372
1373 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1374 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1375 (u64)max_addr, (void *)_RET_IP_);
1376 ptr = memblock_virt_alloc_internal(size, align,
1377 min_addr, max_addr, nid);
1378 if (ptr)
1379 return ptr;
1380
1381 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1382 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1383 (u64)max_addr);
1384 return NULL;
1385 }
1386
1387 /**
1388 * __memblock_free_early - free boot memory block
1389 * @base: phys starting address of the boot memory block
1390 * @size: size of the boot memory block in bytes
1391 *
1392 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1393 * The freeing memory will not be released to the buddy allocator.
1394 */
1395 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1396 {
1397 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1398 __func__, (u64)base, (u64)base + size - 1,
1399 (void *)_RET_IP_);
1400 kmemleak_free_part(__va(base), size);
1401 memblock_remove_range(&memblock.reserved, base, size);
1402 }
1403
1404 /*
1405 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1406 * @addr: phys starting address of the boot memory block
1407 * @size: size of the boot memory block in bytes
1408 *
1409 * This is only useful when the bootmem allocator has already been torn
1410 * down, but we are still initializing the system. Pages are released directly
1411 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1412 */
1413 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1414 {
1415 u64 cursor, end;
1416
1417 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1418 __func__, (u64)base, (u64)base + size - 1,
1419 (void *)_RET_IP_);
1420 kmemleak_free_part(__va(base), size);
1421 cursor = PFN_UP(base);
1422 end = PFN_DOWN(base + size);
1423
1424 for (; cursor < end; cursor++) {
1425 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1426 totalram_pages++;
1427 }
1428 }
1429
1430 /*
1431 * Remaining API functions
1432 */
1433
1434 phys_addr_t __init memblock_phys_mem_size(void)
1435 {
1436 return memblock.memory.total_size;
1437 }
1438
1439 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1440 {
1441 unsigned long pages = 0;
1442 struct memblock_region *r;
1443 unsigned long start_pfn, end_pfn;
1444
1445 for_each_memblock(memory, r) {
1446 start_pfn = memblock_region_memory_base_pfn(r);
1447 end_pfn = memblock_region_memory_end_pfn(r);
1448 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1449 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1450 pages += end_pfn - start_pfn;
1451 }
1452
1453 return PFN_PHYS(pages);
1454 }
1455
1456 /* lowest address */
1457 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1458 {
1459 return memblock.memory.regions[0].base;
1460 }
1461
1462 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1463 {
1464 int idx = memblock.memory.cnt - 1;
1465
1466 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1467 }
1468
1469 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1470 {
1471 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1472 struct memblock_region *r;
1473
1474 if (!limit)
1475 return;
1476
1477 /* find out max address */
1478 for_each_memblock(memory, r) {
1479 if (limit <= r->size) {
1480 max_addr = r->base + limit;
1481 break;
1482 }
1483 limit -= r->size;
1484 }
1485
1486 /* truncate both memory and reserved regions */
1487 memblock_remove_range(&memblock.memory, max_addr,
1488 (phys_addr_t)ULLONG_MAX);
1489 memblock_remove_range(&memblock.reserved, max_addr,
1490 (phys_addr_t)ULLONG_MAX);
1491 }
1492
1493 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1494 {
1495 unsigned int left = 0, right = type->cnt;
1496
1497 do {
1498 unsigned int mid = (right + left) / 2;
1499
1500 if (addr < type->regions[mid].base)
1501 right = mid;
1502 else if (addr >= (type->regions[mid].base +
1503 type->regions[mid].size))
1504 left = mid + 1;
1505 else
1506 return mid;
1507 } while (left < right);
1508 return -1;
1509 }
1510
1511 int __init memblock_is_reserved(phys_addr_t addr)
1512 {
1513 return memblock_search(&memblock.reserved, addr) != -1;
1514 }
1515
1516 int __init_memblock memblock_is_memory(phys_addr_t addr)
1517 {
1518 return memblock_search(&memblock.memory, addr) != -1;
1519 }
1520
1521 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1522 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1523 unsigned long *start_pfn, unsigned long *end_pfn)
1524 {
1525 struct memblock_type *type = &memblock.memory;
1526 int mid = memblock_search(type, PFN_PHYS(pfn));
1527
1528 if (mid == -1)
1529 return -1;
1530
1531 *start_pfn = PFN_DOWN(type->regions[mid].base);
1532 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1533
1534 return type->regions[mid].nid;
1535 }
1536 #endif
1537
1538 /**
1539 * memblock_is_region_memory - check if a region is a subset of memory
1540 * @base: base of region to check
1541 * @size: size of region to check
1542 *
1543 * Check if the region [@base, @base+@size) is a subset of a memory block.
1544 *
1545 * RETURNS:
1546 * 0 if false, non-zero if true
1547 */
1548 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1549 {
1550 int idx = memblock_search(&memblock.memory, base);
1551 phys_addr_t end = base + memblock_cap_size(base, &size);
1552
1553 if (idx == -1)
1554 return 0;
1555 return memblock.memory.regions[idx].base <= base &&
1556 (memblock.memory.regions[idx].base +
1557 memblock.memory.regions[idx].size) >= end;
1558 }
1559
1560 /**
1561 * memblock_is_region_reserved - check if a region intersects reserved memory
1562 * @base: base of region to check
1563 * @size: size of region to check
1564 *
1565 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1566 *
1567 * RETURNS:
1568 * 0 if false, non-zero if true
1569 */
1570 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1571 {
1572 memblock_cap_size(base, &size);
1573 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1574 }
1575
1576 void __init_memblock memblock_trim_memory(phys_addr_t align)
1577 {
1578 phys_addr_t start, end, orig_start, orig_end;
1579 struct memblock_region *r;
1580
1581 for_each_memblock(memory, r) {
1582 orig_start = r->base;
1583 orig_end = r->base + r->size;
1584 start = round_up(orig_start, align);
1585 end = round_down(orig_end, align);
1586
1587 if (start == orig_start && end == orig_end)
1588 continue;
1589
1590 if (start < end) {
1591 r->base = start;
1592 r->size = end - start;
1593 } else {
1594 memblock_remove_region(&memblock.memory,
1595 r - memblock.memory.regions);
1596 r--;
1597 }
1598 }
1599 }
1600
1601 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1602 {
1603 memblock.current_limit = limit;
1604 }
1605
1606 phys_addr_t __init_memblock memblock_get_current_limit(void)
1607 {
1608 return memblock.current_limit;
1609 }
1610
1611 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1612 {
1613 unsigned long long base, size;
1614 unsigned long flags;
1615 int i;
1616
1617 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1618
1619 for (i = 0; i < type->cnt; i++) {
1620 struct memblock_region *rgn = &type->regions[i];
1621 char nid_buf[32] = "";
1622
1623 base = rgn->base;
1624 size = rgn->size;
1625 flags = rgn->flags;
1626 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1627 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1628 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1629 memblock_get_region_node(rgn));
1630 #endif
1631 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1632 name, i, base, base + size - 1, size, nid_buf, flags);
1633 }
1634 }
1635
1636 void __init_memblock __memblock_dump_all(void)
1637 {
1638 pr_info("MEMBLOCK configuration:\n");
1639 pr_info(" memory size = %#llx reserved size = %#llx\n",
1640 (unsigned long long)memblock.memory.total_size,
1641 (unsigned long long)memblock.reserved.total_size);
1642
1643 memblock_dump(&memblock.memory, "memory");
1644 memblock_dump(&memblock.reserved, "reserved");
1645 }
1646
1647 void __init memblock_allow_resize(void)
1648 {
1649 memblock_can_resize = 1;
1650 }
1651
1652 static int __init early_memblock(char *p)
1653 {
1654 if (p && strstr(p, "debug"))
1655 memblock_debug = 1;
1656 return 0;
1657 }
1658 early_param("memblock", early_memblock);
1659
1660 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1661
1662 static int memblock_debug_show(struct seq_file *m, void *private)
1663 {
1664 struct memblock_type *type = m->private;
1665 struct memblock_region *reg;
1666 int i;
1667
1668 for (i = 0; i < type->cnt; i++) {
1669 reg = &type->regions[i];
1670 seq_printf(m, "%4d: ", i);
1671 if (sizeof(phys_addr_t) == 4)
1672 seq_printf(m, "0x%08lx..0x%08lx\n",
1673 (unsigned long)reg->base,
1674 (unsigned long)(reg->base + reg->size - 1));
1675 else
1676 seq_printf(m, "0x%016llx..0x%016llx\n",
1677 (unsigned long long)reg->base,
1678 (unsigned long long)(reg->base + reg->size - 1));
1679
1680 }
1681 return 0;
1682 }
1683
1684 static int memblock_debug_open(struct inode *inode, struct file *file)
1685 {
1686 return single_open(file, memblock_debug_show, inode->i_private);
1687 }
1688
1689 static const struct file_operations memblock_debug_fops = {
1690 .open = memblock_debug_open,
1691 .read = seq_read,
1692 .llseek = seq_lseek,
1693 .release = single_release,
1694 };
1695
1696 static int __init memblock_init_debugfs(void)
1697 {
1698 struct dentry *root = debugfs_create_dir("memblock", NULL);
1699 if (!root)
1700 return -ENXIO;
1701 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1702 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1703 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1704 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1705 #endif
1706
1707 return 0;
1708 }
1709 __initcall(memblock_init_debugfs);
1710
1711 #endif /* CONFIG_DEBUG_FS */
This page took 0.090391 seconds and 6 git commands to generate.