memblock: Define MEMBLOCK_ERROR internally instead of using ~(phys_addr_t)0
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/bitops.h>
16 #include <linux/poison.h>
17 #include <linux/memblock.h>
18
19 struct memblock memblock;
20
21 static int memblock_debug;
22 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
23 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
24
25 #define MEMBLOCK_ERROR (~(phys_addr_t)0)
26
27 static int __init early_memblock(char *p)
28 {
29 if (p && strstr(p, "debug"))
30 memblock_debug = 1;
31 return 0;
32 }
33 early_param("memblock", early_memblock);
34
35 static void memblock_dump(struct memblock_type *region, char *name)
36 {
37 unsigned long long base, size;
38 int i;
39
40 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
41
42 for (i = 0; i < region->cnt; i++) {
43 base = region->regions[i].base;
44 size = region->regions[i].size;
45
46 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
47 name, i, base, base + size - 1, size);
48 }
49 }
50
51 void memblock_dump_all(void)
52 {
53 if (!memblock_debug)
54 return;
55
56 pr_info("MEMBLOCK configuration:\n");
57 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
58
59 memblock_dump(&memblock.memory, "memory");
60 memblock_dump(&memblock.reserved, "reserved");
61 }
62
63 static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64 phys_addr_t base2, phys_addr_t size2)
65 {
66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67 }
68
69 static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
70 phys_addr_t base2, phys_addr_t size2)
71 {
72 if (base2 == base1 + size1)
73 return 1;
74 else if (base1 == base2 + size2)
75 return -1;
76
77 return 0;
78 }
79
80 static long memblock_regions_adjacent(struct memblock_type *type,
81 unsigned long r1, unsigned long r2)
82 {
83 phys_addr_t base1 = type->regions[r1].base;
84 phys_addr_t size1 = type->regions[r1].size;
85 phys_addr_t base2 = type->regions[r2].base;
86 phys_addr_t size2 = type->regions[r2].size;
87
88 return memblock_addrs_adjacent(base1, size1, base2, size2);
89 }
90
91 static void memblock_remove_region(struct memblock_type *type, unsigned long r)
92 {
93 unsigned long i;
94
95 for (i = r; i < type->cnt - 1; i++) {
96 type->regions[i].base = type->regions[i + 1].base;
97 type->regions[i].size = type->regions[i + 1].size;
98 }
99 type->cnt--;
100 }
101
102 /* Assumption: base addr of region 1 < base addr of region 2 */
103 static void memblock_coalesce_regions(struct memblock_type *type,
104 unsigned long r1, unsigned long r2)
105 {
106 type->regions[r1].size += type->regions[r2].size;
107 memblock_remove_region(type, r2);
108 }
109
110 void __init memblock_init(void)
111 {
112 /* Hookup the initial arrays */
113 memblock.memory.regions = memblock_memory_init_regions;
114 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
115 memblock.reserved.regions = memblock_reserved_init_regions;
116 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
117
118 /* Write a marker in the unused last array entry */
119 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
120 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
121
122 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
123 * This simplifies the memblock_add() code below...
124 */
125 memblock.memory.regions[0].base = 0;
126 memblock.memory.regions[0].size = 0;
127 memblock.memory.cnt = 1;
128
129 /* Ditto. */
130 memblock.reserved.regions[0].base = 0;
131 memblock.reserved.regions[0].size = 0;
132 memblock.reserved.cnt = 1;
133
134 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
135 }
136
137 void __init memblock_analyze(void)
138 {
139 int i;
140
141 /* Check marker in the unused last array entry */
142 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
143 != (phys_addr_t)RED_INACTIVE);
144 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
145 != (phys_addr_t)RED_INACTIVE);
146
147 memblock.memory_size = 0;
148
149 for (i = 0; i < memblock.memory.cnt; i++)
150 memblock.memory_size += memblock.memory.regions[i].size;
151 }
152
153 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
154 {
155 unsigned long coalesced = 0;
156 long adjacent, i;
157
158 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
159 type->regions[0].base = base;
160 type->regions[0].size = size;
161 return 0;
162 }
163
164 /* First try and coalesce this MEMBLOCK with another. */
165 for (i = 0; i < type->cnt; i++) {
166 phys_addr_t rgnbase = type->regions[i].base;
167 phys_addr_t rgnsize = type->regions[i].size;
168
169 if ((rgnbase == base) && (rgnsize == size))
170 /* Already have this region, so we're done */
171 return 0;
172
173 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
174 if (adjacent > 0) {
175 type->regions[i].base -= size;
176 type->regions[i].size += size;
177 coalesced++;
178 break;
179 } else if (adjacent < 0) {
180 type->regions[i].size += size;
181 coalesced++;
182 break;
183 }
184 }
185
186 if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
187 memblock_coalesce_regions(type, i, i+1);
188 coalesced++;
189 }
190
191 if (coalesced)
192 return coalesced;
193 if (type->cnt >= type->max)
194 return -1;
195
196 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
197 for (i = type->cnt - 1; i >= 0; i--) {
198 if (base < type->regions[i].base) {
199 type->regions[i+1].base = type->regions[i].base;
200 type->regions[i+1].size = type->regions[i].size;
201 } else {
202 type->regions[i+1].base = base;
203 type->regions[i+1].size = size;
204 break;
205 }
206 }
207
208 if (base < type->regions[0].base) {
209 type->regions[0].base = base;
210 type->regions[0].size = size;
211 }
212 type->cnt++;
213
214 return 0;
215 }
216
217 long memblock_add(phys_addr_t base, phys_addr_t size)
218 {
219 return memblock_add_region(&memblock.memory, base, size);
220
221 }
222
223 static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
224 {
225 phys_addr_t rgnbegin, rgnend;
226 phys_addr_t end = base + size;
227 int i;
228
229 rgnbegin = rgnend = 0; /* supress gcc warnings */
230
231 /* Find the region where (base, size) belongs to */
232 for (i=0; i < type->cnt; i++) {
233 rgnbegin = type->regions[i].base;
234 rgnend = rgnbegin + type->regions[i].size;
235
236 if ((rgnbegin <= base) && (end <= rgnend))
237 break;
238 }
239
240 /* Didn't find the region */
241 if (i == type->cnt)
242 return -1;
243
244 /* Check to see if we are removing entire region */
245 if ((rgnbegin == base) && (rgnend == end)) {
246 memblock_remove_region(type, i);
247 return 0;
248 }
249
250 /* Check to see if region is matching at the front */
251 if (rgnbegin == base) {
252 type->regions[i].base = end;
253 type->regions[i].size -= size;
254 return 0;
255 }
256
257 /* Check to see if the region is matching at the end */
258 if (rgnend == end) {
259 type->regions[i].size -= size;
260 return 0;
261 }
262
263 /*
264 * We need to split the entry - adjust the current one to the
265 * beginging of the hole and add the region after hole.
266 */
267 type->regions[i].size = base - type->regions[i].base;
268 return memblock_add_region(type, end, rgnend - end);
269 }
270
271 long memblock_remove(phys_addr_t base, phys_addr_t size)
272 {
273 return __memblock_remove(&memblock.memory, base, size);
274 }
275
276 long __init memblock_free(phys_addr_t base, phys_addr_t size)
277 {
278 return __memblock_remove(&memblock.reserved, base, size);
279 }
280
281 long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
282 {
283 struct memblock_type *_rgn = &memblock.reserved;
284
285 BUG_ON(0 == size);
286
287 return memblock_add_region(_rgn, base, size);
288 }
289
290 long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
291 {
292 unsigned long i;
293
294 for (i = 0; i < type->cnt; i++) {
295 phys_addr_t rgnbase = type->regions[i].base;
296 phys_addr_t rgnsize = type->regions[i].size;
297 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
298 break;
299 }
300
301 return (i < type->cnt) ? i : -1;
302 }
303
304 static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
305 {
306 return addr & ~(size - 1);
307 }
308
309 static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
310 {
311 return (addr + (size - 1)) & ~(size - 1);
312 }
313
314 static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
315 phys_addr_t size, phys_addr_t align)
316 {
317 phys_addr_t base, res_base;
318 long j;
319
320 base = memblock_align_down((end - size), align);
321 while (start <= base) {
322 j = memblock_overlaps_region(&memblock.reserved, base, size);
323 if (j < 0)
324 return base;
325 res_base = memblock.reserved.regions[j].base;
326 if (res_base < size)
327 break;
328 base = memblock_align_down(res_base - size, align);
329 }
330
331 return MEMBLOCK_ERROR;
332 }
333
334 phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
335 {
336 *nid = 0;
337
338 return end;
339 }
340
341 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
342 phys_addr_t size,
343 phys_addr_t align, int nid)
344 {
345 phys_addr_t start, end;
346
347 start = mp->base;
348 end = start + mp->size;
349
350 start = memblock_align_up(start, align);
351 while (start < end) {
352 phys_addr_t this_end;
353 int this_nid;
354
355 this_end = memblock_nid_range(start, end, &this_nid);
356 if (this_nid == nid) {
357 phys_addr_t ret = memblock_find_region(start, this_end, size, align);
358 if (ret != MEMBLOCK_ERROR &&
359 memblock_add_region(&memblock.reserved, ret, size) >= 0)
360 return ret;
361 }
362 start = this_end;
363 }
364
365 return MEMBLOCK_ERROR;
366 }
367
368 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
369 {
370 struct memblock_type *mem = &memblock.memory;
371 int i;
372
373 BUG_ON(0 == size);
374
375 /* We do a bottom-up search for a region with the right
376 * nid since that's easier considering how memblock_nid_range()
377 * works
378 */
379 size = memblock_align_up(size, align);
380
381 for (i = 0; i < mem->cnt; i++) {
382 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
383 size, align, nid);
384 if (ret != MEMBLOCK_ERROR)
385 return ret;
386 }
387
388 return memblock_alloc(size, align);
389 }
390
391 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
392 {
393 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
394 }
395
396 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
397 {
398 phys_addr_t alloc;
399
400 alloc = __memblock_alloc_base(size, align, max_addr);
401
402 if (alloc == 0)
403 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
404 (unsigned long long) size, (unsigned long long) max_addr);
405
406 return alloc;
407 }
408
409 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
410 {
411 long i;
412 phys_addr_t base = 0;
413 phys_addr_t res_base;
414
415 BUG_ON(0 == size);
416
417 size = memblock_align_up(size, align);
418
419 /* Pump up max_addr */
420 if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
421 max_addr = memblock.current_limit;
422
423 /* We do a top-down search, this tends to limit memory
424 * fragmentation by keeping early boot allocs near the
425 * top of memory
426 */
427 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
428 phys_addr_t memblockbase = memblock.memory.regions[i].base;
429 phys_addr_t memblocksize = memblock.memory.regions[i].size;
430
431 if (memblocksize < size)
432 continue;
433 base = min(memblockbase + memblocksize, max_addr);
434 res_base = memblock_find_region(memblockbase, base, size, align);
435 if (res_base != MEMBLOCK_ERROR &&
436 memblock_add_region(&memblock.reserved, res_base, size) >= 0)
437 return res_base;
438 }
439 return 0;
440 }
441
442 /* You must call memblock_analyze() before this. */
443 phys_addr_t __init memblock_phys_mem_size(void)
444 {
445 return memblock.memory_size;
446 }
447
448 phys_addr_t memblock_end_of_DRAM(void)
449 {
450 int idx = memblock.memory.cnt - 1;
451
452 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
453 }
454
455 /* You must call memblock_analyze() after this. */
456 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
457 {
458 unsigned long i;
459 phys_addr_t limit;
460 struct memblock_region *p;
461
462 if (!memory_limit)
463 return;
464
465 /* Truncate the memblock regions to satisfy the memory limit. */
466 limit = memory_limit;
467 for (i = 0; i < memblock.memory.cnt; i++) {
468 if (limit > memblock.memory.regions[i].size) {
469 limit -= memblock.memory.regions[i].size;
470 continue;
471 }
472
473 memblock.memory.regions[i].size = limit;
474 memblock.memory.cnt = i + 1;
475 break;
476 }
477
478 memory_limit = memblock_end_of_DRAM();
479
480 /* And truncate any reserves above the limit also. */
481 for (i = 0; i < memblock.reserved.cnt; i++) {
482 p = &memblock.reserved.regions[i];
483
484 if (p->base > memory_limit)
485 p->size = 0;
486 else if ((p->base + p->size) > memory_limit)
487 p->size = memory_limit - p->base;
488
489 if (p->size == 0) {
490 memblock_remove_region(&memblock.reserved, i);
491 i--;
492 }
493 }
494 }
495
496 static int memblock_search(struct memblock_type *type, phys_addr_t addr)
497 {
498 unsigned int left = 0, right = type->cnt;
499
500 do {
501 unsigned int mid = (right + left) / 2;
502
503 if (addr < type->regions[mid].base)
504 right = mid;
505 else if (addr >= (type->regions[mid].base +
506 type->regions[mid].size))
507 left = mid + 1;
508 else
509 return mid;
510 } while (left < right);
511 return -1;
512 }
513
514 int __init memblock_is_reserved(phys_addr_t addr)
515 {
516 return memblock_search(&memblock.reserved, addr) != -1;
517 }
518
519 int memblock_is_memory(phys_addr_t addr)
520 {
521 return memblock_search(&memblock.memory, addr) != -1;
522 }
523
524 int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
525 {
526 int idx = memblock_search(&memblock.reserved, base);
527
528 if (idx == -1)
529 return 0;
530 return memblock.reserved.regions[idx].base <= base &&
531 (memblock.reserved.regions[idx].base +
532 memblock.reserved.regions[idx].size) >= (base + size);
533 }
534
535 int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
536 {
537 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
538 }
539
540
541 void __init memblock_set_current_limit(phys_addr_t limit)
542 {
543 memblock.current_limit = limit;
544 }
545
This page took 0.050698 seconds and 6 git commands to generate.