memblock: Remove unused memblock.debug struct member
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/bitops.h>
16 #include <linux/memblock.h>
17
18 struct memblock memblock;
19
20 static int memblock_debug;
21
22 static int __init early_memblock(char *p)
23 {
24 if (p && strstr(p, "debug"))
25 memblock_debug = 1;
26 return 0;
27 }
28 early_param("memblock", early_memblock);
29
30 static void memblock_dump(struct memblock_type *region, char *name)
31 {
32 unsigned long long base, size;
33 int i;
34
35 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
36
37 for (i = 0; i < region->cnt; i++) {
38 base = region->regions[i].base;
39 size = region->regions[i].size;
40
41 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
42 name, i, base, base + size - 1, size);
43 }
44 }
45
46 void memblock_dump_all(void)
47 {
48 if (!memblock_debug)
49 return;
50
51 pr_info("MEMBLOCK configuration:\n");
52 pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);
53
54 memblock_dump(&memblock.memory, "memory");
55 memblock_dump(&memblock.reserved, "reserved");
56 }
57
58 static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
59 phys_addr_t base2, phys_addr_t size2)
60 {
61 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
62 }
63
64 static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
65 phys_addr_t base2, phys_addr_t size2)
66 {
67 if (base2 == base1 + size1)
68 return 1;
69 else if (base1 == base2 + size2)
70 return -1;
71
72 return 0;
73 }
74
75 static long memblock_regions_adjacent(struct memblock_type *type,
76 unsigned long r1, unsigned long r2)
77 {
78 phys_addr_t base1 = type->regions[r1].base;
79 phys_addr_t size1 = type->regions[r1].size;
80 phys_addr_t base2 = type->regions[r2].base;
81 phys_addr_t size2 = type->regions[r2].size;
82
83 return memblock_addrs_adjacent(base1, size1, base2, size2);
84 }
85
86 static void memblock_remove_region(struct memblock_type *type, unsigned long r)
87 {
88 unsigned long i;
89
90 for (i = r; i < type->cnt - 1; i++) {
91 type->regions[i].base = type->regions[i + 1].base;
92 type->regions[i].size = type->regions[i + 1].size;
93 }
94 type->cnt--;
95 }
96
97 /* Assumption: base addr of region 1 < base addr of region 2 */
98 static void memblock_coalesce_regions(struct memblock_type *type,
99 unsigned long r1, unsigned long r2)
100 {
101 type->regions[r1].size += type->regions[r2].size;
102 memblock_remove_region(type, r2);
103 }
104
105 void __init memblock_init(void)
106 {
107 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
108 * This simplifies the memblock_add() code below...
109 */
110 memblock.memory.regions[0].base = 0;
111 memblock.memory.regions[0].size = 0;
112 memblock.memory.cnt = 1;
113
114 /* Ditto. */
115 memblock.reserved.regions[0].base = 0;
116 memblock.reserved.regions[0].size = 0;
117 memblock.reserved.cnt = 1;
118
119 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
120 }
121
122 void __init memblock_analyze(void)
123 {
124 int i;
125
126 memblock.memory.size = 0;
127
128 for (i = 0; i < memblock.memory.cnt; i++)
129 memblock.memory.size += memblock.memory.regions[i].size;
130 }
131
132 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
133 {
134 unsigned long coalesced = 0;
135 long adjacent, i;
136
137 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
138 type->regions[0].base = base;
139 type->regions[0].size = size;
140 return 0;
141 }
142
143 /* First try and coalesce this MEMBLOCK with another. */
144 for (i = 0; i < type->cnt; i++) {
145 phys_addr_t rgnbase = type->regions[i].base;
146 phys_addr_t rgnsize = type->regions[i].size;
147
148 if ((rgnbase == base) && (rgnsize == size))
149 /* Already have this region, so we're done */
150 return 0;
151
152 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
153 if (adjacent > 0) {
154 type->regions[i].base -= size;
155 type->regions[i].size += size;
156 coalesced++;
157 break;
158 } else if (adjacent < 0) {
159 type->regions[i].size += size;
160 coalesced++;
161 break;
162 }
163 }
164
165 if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
166 memblock_coalesce_regions(type, i, i+1);
167 coalesced++;
168 }
169
170 if (coalesced)
171 return coalesced;
172 if (type->cnt >= MAX_MEMBLOCK_REGIONS)
173 return -1;
174
175 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
176 for (i = type->cnt - 1; i >= 0; i--) {
177 if (base < type->regions[i].base) {
178 type->regions[i+1].base = type->regions[i].base;
179 type->regions[i+1].size = type->regions[i].size;
180 } else {
181 type->regions[i+1].base = base;
182 type->regions[i+1].size = size;
183 break;
184 }
185 }
186
187 if (base < type->regions[0].base) {
188 type->regions[0].base = base;
189 type->regions[0].size = size;
190 }
191 type->cnt++;
192
193 return 0;
194 }
195
196 long memblock_add(phys_addr_t base, phys_addr_t size)
197 {
198 return memblock_add_region(&memblock.memory, base, size);
199
200 }
201
202 static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
203 {
204 phys_addr_t rgnbegin, rgnend;
205 phys_addr_t end = base + size;
206 int i;
207
208 rgnbegin = rgnend = 0; /* supress gcc warnings */
209
210 /* Find the region where (base, size) belongs to */
211 for (i=0; i < type->cnt; i++) {
212 rgnbegin = type->regions[i].base;
213 rgnend = rgnbegin + type->regions[i].size;
214
215 if ((rgnbegin <= base) && (end <= rgnend))
216 break;
217 }
218
219 /* Didn't find the region */
220 if (i == type->cnt)
221 return -1;
222
223 /* Check to see if we are removing entire region */
224 if ((rgnbegin == base) && (rgnend == end)) {
225 memblock_remove_region(type, i);
226 return 0;
227 }
228
229 /* Check to see if region is matching at the front */
230 if (rgnbegin == base) {
231 type->regions[i].base = end;
232 type->regions[i].size -= size;
233 return 0;
234 }
235
236 /* Check to see if the region is matching at the end */
237 if (rgnend == end) {
238 type->regions[i].size -= size;
239 return 0;
240 }
241
242 /*
243 * We need to split the entry - adjust the current one to the
244 * beginging of the hole and add the region after hole.
245 */
246 type->regions[i].size = base - type->regions[i].base;
247 return memblock_add_region(type, end, rgnend - end);
248 }
249
250 long memblock_remove(phys_addr_t base, phys_addr_t size)
251 {
252 return __memblock_remove(&memblock.memory, base, size);
253 }
254
255 long __init memblock_free(phys_addr_t base, phys_addr_t size)
256 {
257 return __memblock_remove(&memblock.reserved, base, size);
258 }
259
260 long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
261 {
262 struct memblock_type *_rgn = &memblock.reserved;
263
264 BUG_ON(0 == size);
265
266 return memblock_add_region(_rgn, base, size);
267 }
268
269 long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
270 {
271 unsigned long i;
272
273 for (i = 0; i < type->cnt; i++) {
274 phys_addr_t rgnbase = type->regions[i].base;
275 phys_addr_t rgnsize = type->regions[i].size;
276 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
277 break;
278 }
279
280 return (i < type->cnt) ? i : -1;
281 }
282
283 static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
284 {
285 return addr & ~(size - 1);
286 }
287
288 static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
289 {
290 return (addr + (size - 1)) & ~(size - 1);
291 }
292
293 static phys_addr_t __init memblock_alloc_region(phys_addr_t start, phys_addr_t end,
294 phys_addr_t size, phys_addr_t align)
295 {
296 phys_addr_t base, res_base;
297 long j;
298
299 base = memblock_align_down((end - size), align);
300 while (start <= base) {
301 j = memblock_overlaps_region(&memblock.reserved, base, size);
302 if (j < 0) {
303 /* this area isn't reserved, take it */
304 if (memblock_add_region(&memblock.reserved, base, size) < 0)
305 base = ~(phys_addr_t)0;
306 return base;
307 }
308 res_base = memblock.reserved.regions[j].base;
309 if (res_base < size)
310 break;
311 base = memblock_align_down(res_base - size, align);
312 }
313
314 return ~(phys_addr_t)0;
315 }
316
317 phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
318 {
319 *nid = 0;
320
321 return end;
322 }
323
324 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
325 phys_addr_t size,
326 phys_addr_t align, int nid)
327 {
328 phys_addr_t start, end;
329
330 start = mp->base;
331 end = start + mp->size;
332
333 start = memblock_align_up(start, align);
334 while (start < end) {
335 phys_addr_t this_end;
336 int this_nid;
337
338 this_end = memblock_nid_range(start, end, &this_nid);
339 if (this_nid == nid) {
340 phys_addr_t ret = memblock_alloc_region(start, this_end, size, align);
341 if (ret != ~(phys_addr_t)0)
342 return ret;
343 }
344 start = this_end;
345 }
346
347 return ~(phys_addr_t)0;
348 }
349
350 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
351 {
352 struct memblock_type *mem = &memblock.memory;
353 int i;
354
355 BUG_ON(0 == size);
356
357 /* We do a bottom-up search for a region with the right
358 * nid since that's easier considering how memblock_nid_range()
359 * works
360 */
361 size = memblock_align_up(size, align);
362
363 for (i = 0; i < mem->cnt; i++) {
364 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
365 size, align, nid);
366 if (ret != ~(phys_addr_t)0)
367 return ret;
368 }
369
370 return memblock_alloc(size, align);
371 }
372
373 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
374 {
375 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
376 }
377
378 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
379 {
380 phys_addr_t alloc;
381
382 alloc = __memblock_alloc_base(size, align, max_addr);
383
384 if (alloc == 0)
385 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
386 (unsigned long long) size, (unsigned long long) max_addr);
387
388 return alloc;
389 }
390
391 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
392 {
393 long i;
394 phys_addr_t base = 0;
395 phys_addr_t res_base;
396
397 BUG_ON(0 == size);
398
399 size = memblock_align_up(size, align);
400
401 /* Pump up max_addr */
402 if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
403 max_addr = memblock.current_limit;
404
405 /* We do a top-down search, this tends to limit memory
406 * fragmentation by keeping early boot allocs near the
407 * top of memory
408 */
409 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
410 phys_addr_t memblockbase = memblock.memory.regions[i].base;
411 phys_addr_t memblocksize = memblock.memory.regions[i].size;
412
413 if (memblocksize < size)
414 continue;
415 base = min(memblockbase + memblocksize, max_addr);
416 res_base = memblock_alloc_region(memblockbase, base, size, align);
417 if (res_base != ~(phys_addr_t)0)
418 return res_base;
419 }
420 return 0;
421 }
422
423 /* You must call memblock_analyze() before this. */
424 phys_addr_t __init memblock_phys_mem_size(void)
425 {
426 return memblock.memory.size;
427 }
428
429 phys_addr_t memblock_end_of_DRAM(void)
430 {
431 int idx = memblock.memory.cnt - 1;
432
433 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
434 }
435
436 /* You must call memblock_analyze() after this. */
437 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
438 {
439 unsigned long i;
440 phys_addr_t limit;
441 struct memblock_region *p;
442
443 if (!memory_limit)
444 return;
445
446 /* Truncate the memblock regions to satisfy the memory limit. */
447 limit = memory_limit;
448 for (i = 0; i < memblock.memory.cnt; i++) {
449 if (limit > memblock.memory.regions[i].size) {
450 limit -= memblock.memory.regions[i].size;
451 continue;
452 }
453
454 memblock.memory.regions[i].size = limit;
455 memblock.memory.cnt = i + 1;
456 break;
457 }
458
459 memory_limit = memblock_end_of_DRAM();
460
461 /* And truncate any reserves above the limit also. */
462 for (i = 0; i < memblock.reserved.cnt; i++) {
463 p = &memblock.reserved.regions[i];
464
465 if (p->base > memory_limit)
466 p->size = 0;
467 else if ((p->base + p->size) > memory_limit)
468 p->size = memory_limit - p->base;
469
470 if (p->size == 0) {
471 memblock_remove_region(&memblock.reserved, i);
472 i--;
473 }
474 }
475 }
476
477 static int memblock_search(struct memblock_type *type, phys_addr_t addr)
478 {
479 unsigned int left = 0, right = type->cnt;
480
481 do {
482 unsigned int mid = (right + left) / 2;
483
484 if (addr < type->regions[mid].base)
485 right = mid;
486 else if (addr >= (type->regions[mid].base +
487 type->regions[mid].size))
488 left = mid + 1;
489 else
490 return mid;
491 } while (left < right);
492 return -1;
493 }
494
495 int __init memblock_is_reserved(phys_addr_t addr)
496 {
497 return memblock_search(&memblock.reserved, addr) != -1;
498 }
499
500 int memblock_is_memory(phys_addr_t addr)
501 {
502 return memblock_search(&memblock.memory, addr) != -1;
503 }
504
505 int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
506 {
507 int idx = memblock_search(&memblock.reserved, base);
508
509 if (idx == -1)
510 return 0;
511 return memblock.reserved.regions[idx].base <= base &&
512 (memblock.reserved.regions[idx].base +
513 memblock.reserved.regions[idx].size) >= (base + size);
514 }
515
516 int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
517 {
518 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
519 }
520
521
522 void __init memblock_set_current_limit(phys_addr_t limit)
523 {
524 memblock.current_limit = limit;
525 }
526
This page took 0.057016 seconds and 6 git commands to generate.