memblock: Don't allow archs to override memblock_nid_range()
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 struct memblock memblock __initdata_memblock;
24
25 int memblock_debug __initdata_memblock;
26 int memblock_can_resize __initdata_memblock;
27 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
29
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type *type)
32 {
33 if (type == &memblock.memory)
34 return "memory";
35 else if (type == &memblock.reserved)
36 return "reserved";
37 else
38 return "unknown";
39 }
40
41 /*
42 * Address comparison utilities
43 */
44 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
45 phys_addr_t base2, phys_addr_t size2)
46 {
47 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
48 }
49
50 long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
51 {
52 unsigned long i;
53
54 for (i = 0; i < type->cnt; i++) {
55 phys_addr_t rgnbase = type->regions[i].base;
56 phys_addr_t rgnsize = type->regions[i].size;
57 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
58 break;
59 }
60
61 return (i < type->cnt) ? i : -1;
62 }
63
64 /*
65 * Find, allocate, deallocate or reserve unreserved regions. All allocations
66 * are top-down.
67 */
68
69 static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
70 phys_addr_t size, phys_addr_t align)
71 {
72 phys_addr_t base, res_base;
73 long j;
74
75 /* In case, huge size is requested */
76 if (end < size)
77 return 0;
78
79 base = round_down(end - size, align);
80
81 /* Prevent allocations returning 0 as it's also used to
82 * indicate an allocation failure
83 */
84 if (start == 0)
85 start = PAGE_SIZE;
86
87 while (start <= base) {
88 j = memblock_overlaps_region(&memblock.reserved, base, size);
89 if (j < 0)
90 return base;
91 res_base = memblock.reserved.regions[j].base;
92 if (res_base < size)
93 break;
94 base = round_down(res_base - size, align);
95 }
96
97 return 0;
98 }
99
100 /*
101 * Find a free area with specified alignment in a specific range.
102 */
103 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end,
104 phys_addr_t size, phys_addr_t align)
105 {
106 long i;
107
108 BUG_ON(0 == size);
109
110 /* Pump up max_addr */
111 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
112 end = memblock.current_limit;
113
114 /* We do a top-down search, this tends to limit memory
115 * fragmentation by keeping early boot allocs near the
116 * top of memory
117 */
118 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
119 phys_addr_t memblockbase = memblock.memory.regions[i].base;
120 phys_addr_t memblocksize = memblock.memory.regions[i].size;
121 phys_addr_t bottom, top, found;
122
123 if (memblocksize < size)
124 continue;
125 if ((memblockbase + memblocksize) <= start)
126 break;
127 bottom = max(memblockbase, start);
128 top = min(memblockbase + memblocksize, end);
129 if (bottom >= top)
130 continue;
131 found = memblock_find_region(bottom, top, size, align);
132 if (found)
133 return found;
134 }
135 return 0;
136 }
137
138 /*
139 * Free memblock.reserved.regions
140 */
141 int __init_memblock memblock_free_reserved_regions(void)
142 {
143 if (memblock.reserved.regions == memblock_reserved_init_regions)
144 return 0;
145
146 return memblock_free(__pa(memblock.reserved.regions),
147 sizeof(struct memblock_region) * memblock.reserved.max);
148 }
149
150 /*
151 * Reserve memblock.reserved.regions
152 */
153 int __init_memblock memblock_reserve_reserved_regions(void)
154 {
155 if (memblock.reserved.regions == memblock_reserved_init_regions)
156 return 0;
157
158 return memblock_reserve(__pa(memblock.reserved.regions),
159 sizeof(struct memblock_region) * memblock.reserved.max);
160 }
161
162 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
163 {
164 unsigned long i;
165
166 for (i = r; i < type->cnt - 1; i++) {
167 type->regions[i].base = type->regions[i + 1].base;
168 type->regions[i].size = type->regions[i + 1].size;
169 }
170 type->cnt--;
171
172 /* Special case for empty arrays */
173 if (type->cnt == 0) {
174 type->cnt = 1;
175 type->regions[0].base = 0;
176 type->regions[0].size = 0;
177 }
178 }
179
180 /* Defined below but needed now */
181 static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
182
183 static int __init_memblock memblock_double_array(struct memblock_type *type)
184 {
185 struct memblock_region *new_array, *old_array;
186 phys_addr_t old_size, new_size, addr;
187 int use_slab = slab_is_available();
188
189 /* We don't allow resizing until we know about the reserved regions
190 * of memory that aren't suitable for allocation
191 */
192 if (!memblock_can_resize)
193 return -1;
194
195 /* Calculate new doubled size */
196 old_size = type->max * sizeof(struct memblock_region);
197 new_size = old_size << 1;
198
199 /* Try to find some space for it.
200 *
201 * WARNING: We assume that either slab_is_available() and we use it or
202 * we use MEMBLOCK for allocations. That means that this is unsafe to use
203 * when bootmem is currently active (unless bootmem itself is implemented
204 * on top of MEMBLOCK which isn't the case yet)
205 *
206 * This should however not be an issue for now, as we currently only
207 * call into MEMBLOCK while it's still active, or much later when slab is
208 * active for memory hotplug operations
209 */
210 if (use_slab) {
211 new_array = kmalloc(new_size, GFP_KERNEL);
212 addr = new_array ? __pa(new_array) : 0;
213 } else
214 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
215 if (!addr) {
216 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
217 memblock_type_name(type), type->max, type->max * 2);
218 return -1;
219 }
220 new_array = __va(addr);
221
222 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
223 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
224
225 /* Found space, we now need to move the array over before
226 * we add the reserved region since it may be our reserved
227 * array itself that is full.
228 */
229 memcpy(new_array, type->regions, old_size);
230 memset(new_array + type->max, 0, old_size);
231 old_array = type->regions;
232 type->regions = new_array;
233 type->max <<= 1;
234
235 /* If we use SLAB that's it, we are done */
236 if (use_slab)
237 return 0;
238
239 /* Add the new reserved region now. Should not fail ! */
240 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
241
242 /* If the array wasn't our static init one, then free it. We only do
243 * that before SLAB is available as later on, we don't know whether
244 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
245 * anyways
246 */
247 if (old_array != memblock_memory_init_regions &&
248 old_array != memblock_reserved_init_regions)
249 memblock_free(__pa(old_array), old_size);
250
251 return 0;
252 }
253
254 extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
255 phys_addr_t addr2, phys_addr_t size2)
256 {
257 return 1;
258 }
259
260 static long __init_memblock memblock_add_region(struct memblock_type *type,
261 phys_addr_t base, phys_addr_t size)
262 {
263 phys_addr_t end = base + size;
264 int i, slot = -1;
265
266 /* First try and coalesce this MEMBLOCK with others */
267 for (i = 0; i < type->cnt; i++) {
268 struct memblock_region *rgn = &type->regions[i];
269 phys_addr_t rend = rgn->base + rgn->size;
270
271 /* Exit if there's no possible hits */
272 if (rgn->base > end || rgn->size == 0)
273 break;
274
275 /* Check if we are fully enclosed within an existing
276 * block
277 */
278 if (rgn->base <= base && rend >= end)
279 return 0;
280
281 /* Check if we overlap or are adjacent with the bottom
282 * of a block.
283 */
284 if (base < rgn->base && end >= rgn->base) {
285 /* If we can't coalesce, create a new block */
286 if (!memblock_memory_can_coalesce(base, size,
287 rgn->base,
288 rgn->size)) {
289 /* Overlap & can't coalesce are mutually
290 * exclusive, if you do that, be prepared
291 * for trouble
292 */
293 WARN_ON(end != rgn->base);
294 goto new_block;
295 }
296 /* We extend the bottom of the block down to our
297 * base
298 */
299 rgn->base = base;
300 rgn->size = rend - base;
301
302 /* Return if we have nothing else to allocate
303 * (fully coalesced)
304 */
305 if (rend >= end)
306 return 0;
307
308 /* We continue processing from the end of the
309 * coalesced block.
310 */
311 base = rend;
312 size = end - base;
313 }
314
315 /* Now check if we overlap or are adjacent with the
316 * top of a block
317 */
318 if (base <= rend && end >= rend) {
319 /* If we can't coalesce, create a new block */
320 if (!memblock_memory_can_coalesce(rgn->base,
321 rgn->size,
322 base, size)) {
323 /* Overlap & can't coalesce are mutually
324 * exclusive, if you do that, be prepared
325 * for trouble
326 */
327 WARN_ON(rend != base);
328 goto new_block;
329 }
330 /* We adjust our base down to enclose the
331 * original block and destroy it. It will be
332 * part of our new allocation. Since we've
333 * freed an entry, we know we won't fail
334 * to allocate one later, so we won't risk
335 * losing the original block allocation.
336 */
337 size += (base - rgn->base);
338 base = rgn->base;
339 memblock_remove_region(type, i--);
340 }
341 }
342
343 /* If the array is empty, special case, replace the fake
344 * filler region and return
345 */
346 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
347 type->regions[0].base = base;
348 type->regions[0].size = size;
349 return 0;
350 }
351
352 new_block:
353 /* If we are out of space, we fail. It's too late to resize the array
354 * but then this shouldn't have happened in the first place.
355 */
356 if (WARN_ON(type->cnt >= type->max))
357 return -1;
358
359 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
360 for (i = type->cnt - 1; i >= 0; i--) {
361 if (base < type->regions[i].base) {
362 type->regions[i+1].base = type->regions[i].base;
363 type->regions[i+1].size = type->regions[i].size;
364 } else {
365 type->regions[i+1].base = base;
366 type->regions[i+1].size = size;
367 slot = i + 1;
368 break;
369 }
370 }
371 if (base < type->regions[0].base) {
372 type->regions[0].base = base;
373 type->regions[0].size = size;
374 slot = 0;
375 }
376 type->cnt++;
377
378 /* The array is full ? Try to resize it. If that fails, we undo
379 * our allocation and return an error
380 */
381 if (type->cnt == type->max && memblock_double_array(type)) {
382 BUG_ON(slot < 0);
383 memblock_remove_region(type, slot);
384 return -1;
385 }
386
387 return 0;
388 }
389
390 long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
391 {
392 return memblock_add_region(&memblock.memory, base, size);
393
394 }
395
396 static long __init_memblock __memblock_remove(struct memblock_type *type,
397 phys_addr_t base, phys_addr_t size)
398 {
399 phys_addr_t end = base + size;
400 int i;
401
402 /* Walk through the array for collisions */
403 for (i = 0; i < type->cnt; i++) {
404 struct memblock_region *rgn = &type->regions[i];
405 phys_addr_t rend = rgn->base + rgn->size;
406
407 /* Nothing more to do, exit */
408 if (rgn->base > end || rgn->size == 0)
409 break;
410
411 /* If we fully enclose the block, drop it */
412 if (base <= rgn->base && end >= rend) {
413 memblock_remove_region(type, i--);
414 continue;
415 }
416
417 /* If we are fully enclosed within a block
418 * then we need to split it and we are done
419 */
420 if (base > rgn->base && end < rend) {
421 rgn->size = base - rgn->base;
422 if (!memblock_add_region(type, end, rend - end))
423 return 0;
424 /* Failure to split is bad, we at least
425 * restore the block before erroring
426 */
427 rgn->size = rend - rgn->base;
428 WARN_ON(1);
429 return -1;
430 }
431
432 /* Check if we need to trim the bottom of a block */
433 if (rgn->base < end && rend > end) {
434 rgn->size -= end - rgn->base;
435 rgn->base = end;
436 break;
437 }
438
439 /* And check if we need to trim the top of a block */
440 if (base < rend)
441 rgn->size -= rend - base;
442
443 }
444 return 0;
445 }
446
447 long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
448 {
449 return __memblock_remove(&memblock.memory, base, size);
450 }
451
452 long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
453 {
454 return __memblock_remove(&memblock.reserved, base, size);
455 }
456
457 long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
458 {
459 struct memblock_type *_rgn = &memblock.reserved;
460
461 BUG_ON(0 == size);
462
463 return memblock_add_region(_rgn, base, size);
464 }
465
466 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
467 {
468 phys_addr_t found;
469
470 /* We align the size to limit fragmentation. Without this, a lot of
471 * small allocs quickly eat up the whole reserve array on sparc
472 */
473 size = round_up(size, align);
474
475 found = memblock_find_in_range(0, max_addr, size, align);
476 if (found && !memblock_add_region(&memblock.reserved, found, size))
477 return found;
478
479 return 0;
480 }
481
482 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
483 {
484 phys_addr_t alloc;
485
486 alloc = __memblock_alloc_base(size, align, max_addr);
487
488 if (alloc == 0)
489 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
490 (unsigned long long) size, (unsigned long long) max_addr);
491
492 return alloc;
493 }
494
495 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
496 {
497 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
498 }
499
500
501 /*
502 * Additional node-local allocators. Search for node memory is bottom up
503 * and walks memblock regions within that node bottom-up as well, but allocation
504 * within an memblock region is top-down. XXX I plan to fix that at some stage
505 *
506 * WARNING: Only available after early_node_map[] has been populated,
507 * on some architectures, that is after all the calls to add_active_range()
508 * have been done to populate it.
509 */
510
511 static phys_addr_t __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
512 {
513 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
514 unsigned long start_pfn, end_pfn;
515 int i;
516
517 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, nid)
518 if (start >= PFN_PHYS(start_pfn) && start < PFN_PHYS(end_pfn))
519 return min(end, PFN_PHYS(end_pfn));
520 #endif
521 *nid = 0;
522 return end;
523 }
524
525 static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
526 phys_addr_t size,
527 phys_addr_t align, int nid)
528 {
529 phys_addr_t start, end;
530
531 start = mp->base;
532 end = start + mp->size;
533
534 start = round_up(start, align);
535 while (start < end) {
536 phys_addr_t this_end;
537 int this_nid;
538
539 this_end = memblock_nid_range(start, end, &this_nid);
540 if (this_nid == nid) {
541 phys_addr_t ret = memblock_find_region(start, this_end, size, align);
542 if (ret &&
543 !memblock_add_region(&memblock.reserved, ret, size))
544 return ret;
545 }
546 start = this_end;
547 }
548
549 return 0;
550 }
551
552 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
553 {
554 struct memblock_type *mem = &memblock.memory;
555 int i;
556
557 BUG_ON(0 == size);
558
559 /* We align the size to limit fragmentation. Without this, a lot of
560 * small allocs quickly eat up the whole reserve array on sparc
561 */
562 size = round_up(size, align);
563
564 /* We do a bottom-up search for a region with the right
565 * nid since that's easier considering how memblock_nid_range()
566 * works
567 */
568 for (i = 0; i < mem->cnt; i++) {
569 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
570 size, align, nid);
571 if (ret)
572 return ret;
573 }
574
575 return 0;
576 }
577
578 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
579 {
580 phys_addr_t res = memblock_alloc_nid(size, align, nid);
581
582 if (res)
583 return res;
584 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
585 }
586
587
588 /*
589 * Remaining API functions
590 */
591
592 /* You must call memblock_analyze() before this. */
593 phys_addr_t __init memblock_phys_mem_size(void)
594 {
595 return memblock.memory_size;
596 }
597
598 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
599 {
600 int idx = memblock.memory.cnt - 1;
601
602 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
603 }
604
605 /* You must call memblock_analyze() after this. */
606 void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
607 {
608 unsigned long i;
609 phys_addr_t limit;
610 struct memblock_region *p;
611
612 if (!memory_limit)
613 return;
614
615 /* Truncate the memblock regions to satisfy the memory limit. */
616 limit = memory_limit;
617 for (i = 0; i < memblock.memory.cnt; i++) {
618 if (limit > memblock.memory.regions[i].size) {
619 limit -= memblock.memory.regions[i].size;
620 continue;
621 }
622
623 memblock.memory.regions[i].size = limit;
624 memblock.memory.cnt = i + 1;
625 break;
626 }
627
628 memory_limit = memblock_end_of_DRAM();
629
630 /* And truncate any reserves above the limit also. */
631 for (i = 0; i < memblock.reserved.cnt; i++) {
632 p = &memblock.reserved.regions[i];
633
634 if (p->base > memory_limit)
635 p->size = 0;
636 else if ((p->base + p->size) > memory_limit)
637 p->size = memory_limit - p->base;
638
639 if (p->size == 0) {
640 memblock_remove_region(&memblock.reserved, i);
641 i--;
642 }
643 }
644 }
645
646 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
647 {
648 unsigned int left = 0, right = type->cnt;
649
650 do {
651 unsigned int mid = (right + left) / 2;
652
653 if (addr < type->regions[mid].base)
654 right = mid;
655 else if (addr >= (type->regions[mid].base +
656 type->regions[mid].size))
657 left = mid + 1;
658 else
659 return mid;
660 } while (left < right);
661 return -1;
662 }
663
664 int __init memblock_is_reserved(phys_addr_t addr)
665 {
666 return memblock_search(&memblock.reserved, addr) != -1;
667 }
668
669 int __init_memblock memblock_is_memory(phys_addr_t addr)
670 {
671 return memblock_search(&memblock.memory, addr) != -1;
672 }
673
674 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
675 {
676 int idx = memblock_search(&memblock.memory, base);
677
678 if (idx == -1)
679 return 0;
680 return memblock.memory.regions[idx].base <= base &&
681 (memblock.memory.regions[idx].base +
682 memblock.memory.regions[idx].size) >= (base + size);
683 }
684
685 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
686 {
687 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
688 }
689
690
691 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
692 {
693 memblock.current_limit = limit;
694 }
695
696 static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
697 {
698 unsigned long long base, size;
699 int i;
700
701 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
702
703 for (i = 0; i < region->cnt; i++) {
704 base = region->regions[i].base;
705 size = region->regions[i].size;
706
707 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
708 name, i, base, base + size - 1, size);
709 }
710 }
711
712 void __init_memblock memblock_dump_all(void)
713 {
714 if (!memblock_debug)
715 return;
716
717 pr_info("MEMBLOCK configuration:\n");
718 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
719
720 memblock_dump(&memblock.memory, "memory");
721 memblock_dump(&memblock.reserved, "reserved");
722 }
723
724 void __init memblock_analyze(void)
725 {
726 int i;
727
728 /* Check marker in the unused last array entry */
729 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
730 != (phys_addr_t)RED_INACTIVE);
731 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
732 != (phys_addr_t)RED_INACTIVE);
733
734 memblock.memory_size = 0;
735
736 for (i = 0; i < memblock.memory.cnt; i++)
737 memblock.memory_size += memblock.memory.regions[i].size;
738
739 /* We allow resizing from there */
740 memblock_can_resize = 1;
741 }
742
743 void __init memblock_init(void)
744 {
745 static int init_done __initdata = 0;
746
747 if (init_done)
748 return;
749 init_done = 1;
750
751 /* Hookup the initial arrays */
752 memblock.memory.regions = memblock_memory_init_regions;
753 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
754 memblock.reserved.regions = memblock_reserved_init_regions;
755 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
756
757 /* Write a marker in the unused last array entry */
758 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
759 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
760
761 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
762 * This simplifies the memblock_add() code below...
763 */
764 memblock.memory.regions[0].base = 0;
765 memblock.memory.regions[0].size = 0;
766 memblock.memory.cnt = 1;
767
768 /* Ditto. */
769 memblock.reserved.regions[0].base = 0;
770 memblock.reserved.regions[0].size = 0;
771 memblock.reserved.cnt = 1;
772
773 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
774 }
775
776 static int __init early_memblock(char *p)
777 {
778 if (p && strstr(p, "debug"))
779 memblock_debug = 1;
780 return 0;
781 }
782 early_param("memblock", early_memblock);
783
784 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
785
786 static int memblock_debug_show(struct seq_file *m, void *private)
787 {
788 struct memblock_type *type = m->private;
789 struct memblock_region *reg;
790 int i;
791
792 for (i = 0; i < type->cnt; i++) {
793 reg = &type->regions[i];
794 seq_printf(m, "%4d: ", i);
795 if (sizeof(phys_addr_t) == 4)
796 seq_printf(m, "0x%08lx..0x%08lx\n",
797 (unsigned long)reg->base,
798 (unsigned long)(reg->base + reg->size - 1));
799 else
800 seq_printf(m, "0x%016llx..0x%016llx\n",
801 (unsigned long long)reg->base,
802 (unsigned long long)(reg->base + reg->size - 1));
803
804 }
805 return 0;
806 }
807
808 static int memblock_debug_open(struct inode *inode, struct file *file)
809 {
810 return single_open(file, memblock_debug_show, inode->i_private);
811 }
812
813 static const struct file_operations memblock_debug_fops = {
814 .open = memblock_debug_open,
815 .read = seq_read,
816 .llseek = seq_lseek,
817 .release = single_release,
818 };
819
820 static int __init memblock_init_debugfs(void)
821 {
822 struct dentry *root = debugfs_create_dir("memblock", NULL);
823 if (!root)
824 return -ENXIO;
825 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
826 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
827
828 return 0;
829 }
830 __initcall(memblock_init_debugfs);
831
832 #endif /* CONFIG_DEBUG_FS */
This page took 0.093345 seconds and 6 git commands to generate.