mm/memblock: add extra "flags" to memblock to allow selection of memory based on...
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static int memblock_can_resize __initdata_memblock;
58 static int memblock_memory_in_slab __initdata_memblock = 0;
59 static int memblock_reserved_in_slab __initdata_memblock = 0;
60
61 /* inline so we don't get a warning when pr_debug is compiled out */
62 static __init_memblock const char *
63 memblock_type_name(struct memblock_type *type)
64 {
65 if (type == &memblock.memory)
66 return "memory";
67 else if (type == &memblock.reserved)
68 return "reserved";
69 else
70 return "unknown";
71 }
72
73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
75 {
76 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
77 }
78
79 /*
80 * Address comparison utilities
81 */
82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
83 phys_addr_t base2, phys_addr_t size2)
84 {
85 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
86 }
87
88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
89 phys_addr_t base, phys_addr_t size)
90 {
91 unsigned long i;
92
93 for (i = 0; i < type->cnt; i++) {
94 phys_addr_t rgnbase = type->regions[i].base;
95 phys_addr_t rgnsize = type->regions[i].size;
96 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
97 break;
98 }
99
100 return (i < type->cnt) ? i : -1;
101 }
102
103 /*
104 * __memblock_find_range_bottom_up - find free area utility in bottom-up
105 * @start: start of candidate range
106 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
107 * @size: size of free area to find
108 * @align: alignment of free area to find
109 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
110 * @flags: pick from blocks based on memory attributes
111 *
112 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
113 *
114 * RETURNS:
115 * Found address on success, 0 on failure.
116 */
117 static phys_addr_t __init_memblock
118 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
119 phys_addr_t size, phys_addr_t align, int nid,
120 ulong flags)
121 {
122 phys_addr_t this_start, this_end, cand;
123 u64 i;
124
125 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
126 this_start = clamp(this_start, start, end);
127 this_end = clamp(this_end, start, end);
128
129 cand = round_up(this_start, align);
130 if (cand < this_end && this_end - cand >= size)
131 return cand;
132 }
133
134 return 0;
135 }
136
137 /**
138 * __memblock_find_range_top_down - find free area utility, in top-down
139 * @start: start of candidate range
140 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
141 * @size: size of free area to find
142 * @align: alignment of free area to find
143 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
144 * @flags: pick from blocks based on memory attributes
145 *
146 * Utility called from memblock_find_in_range_node(), find free area top-down.
147 *
148 * RETURNS:
149 * Found address on success, 0 on failure.
150 */
151 static phys_addr_t __init_memblock
152 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
153 phys_addr_t size, phys_addr_t align, int nid,
154 ulong flags)
155 {
156 phys_addr_t this_start, this_end, cand;
157 u64 i;
158
159 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
160 NULL) {
161 this_start = clamp(this_start, start, end);
162 this_end = clamp(this_end, start, end);
163
164 if (this_end < size)
165 continue;
166
167 cand = round_down(this_end - size, align);
168 if (cand >= this_start)
169 return cand;
170 }
171
172 return 0;
173 }
174
175 /**
176 * memblock_find_in_range_node - find free area in given range and node
177 * @size: size of free area to find
178 * @align: alignment of free area to find
179 * @start: start of candidate range
180 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
182 * @flags: pick from blocks based on memory attributes
183 *
184 * Find @size free area aligned to @align in the specified range and node.
185 *
186 * When allocation direction is bottom-up, the @start should be greater
187 * than the end of the kernel image. Otherwise, it will be trimmed. The
188 * reason is that we want the bottom-up allocation just near the kernel
189 * image so it is highly likely that the allocated memory and the kernel
190 * will reside in the same node.
191 *
192 * If bottom-up allocation failed, will try to allocate memory top-down.
193 *
194 * RETURNS:
195 * Found address on success, 0 on failure.
196 */
197 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
198 phys_addr_t align, phys_addr_t start,
199 phys_addr_t end, int nid, ulong flags)
200 {
201 phys_addr_t kernel_end, ret;
202
203 /* pump up @end */
204 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
205 end = memblock.current_limit;
206
207 /* avoid allocating the first page */
208 start = max_t(phys_addr_t, start, PAGE_SIZE);
209 end = max(start, end);
210 kernel_end = __pa_symbol(_end);
211
212 /*
213 * try bottom-up allocation only when bottom-up mode
214 * is set and @end is above the kernel image.
215 */
216 if (memblock_bottom_up() && end > kernel_end) {
217 phys_addr_t bottom_up_start;
218
219 /* make sure we will allocate above the kernel */
220 bottom_up_start = max(start, kernel_end);
221
222 /* ok, try bottom-up allocation first */
223 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
224 size, align, nid, flags);
225 if (ret)
226 return ret;
227
228 /*
229 * we always limit bottom-up allocation above the kernel,
230 * but top-down allocation doesn't have the limit, so
231 * retrying top-down allocation may succeed when bottom-up
232 * allocation failed.
233 *
234 * bottom-up allocation is expected to be fail very rarely,
235 * so we use WARN_ONCE() here to see the stack trace if
236 * fail happens.
237 */
238 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
239 "memory hotunplug may be affected\n");
240 }
241
242 return __memblock_find_range_top_down(start, end, size, align, nid,
243 flags);
244 }
245
246 /**
247 * memblock_find_in_range - find free area in given range
248 * @start: start of candidate range
249 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
250 * @size: size of free area to find
251 * @align: alignment of free area to find
252 *
253 * Find @size free area aligned to @align in the specified range.
254 *
255 * RETURNS:
256 * Found address on success, 0 on failure.
257 */
258 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
259 phys_addr_t end, phys_addr_t size,
260 phys_addr_t align)
261 {
262 return memblock_find_in_range_node(size, align, start, end,
263 NUMA_NO_NODE, MEMBLOCK_NONE);
264 }
265
266 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
267 {
268 type->total_size -= type->regions[r].size;
269 memmove(&type->regions[r], &type->regions[r + 1],
270 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
271 type->cnt--;
272
273 /* Special case for empty arrays */
274 if (type->cnt == 0) {
275 WARN_ON(type->total_size != 0);
276 type->cnt = 1;
277 type->regions[0].base = 0;
278 type->regions[0].size = 0;
279 type->regions[0].flags = 0;
280 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
281 }
282 }
283
284 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
285
286 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
287 phys_addr_t *addr)
288 {
289 if (memblock.reserved.regions == memblock_reserved_init_regions)
290 return 0;
291
292 *addr = __pa(memblock.reserved.regions);
293
294 return PAGE_ALIGN(sizeof(struct memblock_region) *
295 memblock.reserved.max);
296 }
297
298 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
299 phys_addr_t *addr)
300 {
301 if (memblock.memory.regions == memblock_memory_init_regions)
302 return 0;
303
304 *addr = __pa(memblock.memory.regions);
305
306 return PAGE_ALIGN(sizeof(struct memblock_region) *
307 memblock.memory.max);
308 }
309
310 #endif
311
312 /**
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
317 *
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
323 *
324 * RETURNS:
325 * 0 on success, -1 on failure.
326 */
327 static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
330 {
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
336
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
339 */
340 if (!memblock_can_resize)
341 return -1;
342
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
346 /*
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
349 */
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
352
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
358
359 /* Try to find some space for it.
360 *
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
365 *
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
369 */
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
377
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
385
386 new_array = addr ? __va(addr) : NULL;
387 }
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 memblock_type_name(type), type->max, type->max * 2);
391 return -1;
392 }
393
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 memblock_type_name(type), type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
397
398 /*
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
402 */
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
408
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
415
416 /*
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
419 */
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
422
423 /* Update slab flag */
424 *in_slab = use_slab;
425
426 return 0;
427 }
428
429 /**
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
432 *
433 * Scan @type and merge neighboring compatible regions.
434 */
435 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436 {
437 int i = 0;
438
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
443
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
451 }
452
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
457 }
458 }
459
460 /**
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
468 *
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accomodate the new region.
471 */
472 static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
476 {
477 struct memblock_region *rgn = &type->regions[idx];
478
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
487 }
488
489 /**
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
496 *
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
501 *
502 * RETURNS:
503 * 0 on success, -errno on failure.
504 */
505 int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
508 {
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int i, nr_new;
513
514 if (!size)
515 return 0;
516
517 /* special case for empty array */
518 if (type->regions[0].size == 0) {
519 WARN_ON(type->cnt != 1 || type->total_size);
520 type->regions[0].base = base;
521 type->regions[0].size = size;
522 type->regions[0].flags = flags;
523 memblock_set_region_node(&type->regions[0], nid);
524 type->total_size = size;
525 return 0;
526 }
527 repeat:
528 /*
529 * The following is executed twice. Once with %false @insert and
530 * then with %true. The first counts the number of regions needed
531 * to accomodate the new area. The second actually inserts them.
532 */
533 base = obase;
534 nr_new = 0;
535
536 for (i = 0; i < type->cnt; i++) {
537 struct memblock_region *rgn = &type->regions[i];
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
540
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
545 /*
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
548 */
549 if (rbase > base) {
550 nr_new++;
551 if (insert)
552 memblock_insert_region(type, i++, base,
553 rbase - base, nid,
554 flags);
555 }
556 /* area below @rend is dealt with, forget about it */
557 base = min(rend, end);
558 }
559
560 /* insert the remaining portion */
561 if (base < end) {
562 nr_new++;
563 if (insert)
564 memblock_insert_region(type, i, base, end - base,
565 nid, flags);
566 }
567
568 /*
569 * If this was the first round, resize array and repeat for actual
570 * insertions; otherwise, merge and return.
571 */
572 if (!insert) {
573 while (type->cnt + nr_new > type->max)
574 if (memblock_double_array(type, obase, size) < 0)
575 return -ENOMEM;
576 insert = true;
577 goto repeat;
578 } else {
579 memblock_merge_regions(type);
580 return 0;
581 }
582 }
583
584 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
585 int nid)
586 {
587 return memblock_add_range(&memblock.memory, base, size, nid, 0);
588 }
589
590 static int __init_memblock memblock_add_region(phys_addr_t base,
591 phys_addr_t size,
592 int nid,
593 unsigned long flags)
594 {
595 struct memblock_type *_rgn = &memblock.memory;
596
597 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
598 (unsigned long long)base,
599 (unsigned long long)base + size - 1,
600 flags, (void *)_RET_IP_);
601
602 return memblock_add_range(_rgn, base, size, nid, flags);
603 }
604
605 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
606 {
607 return memblock_add_region(base, size, MAX_NUMNODES, 0);
608 }
609
610 /**
611 * memblock_isolate_range - isolate given range into disjoint memblocks
612 * @type: memblock type to isolate range for
613 * @base: base of range to isolate
614 * @size: size of range to isolate
615 * @start_rgn: out parameter for the start of isolated region
616 * @end_rgn: out parameter for the end of isolated region
617 *
618 * Walk @type and ensure that regions don't cross the boundaries defined by
619 * [@base,@base+@size). Crossing regions are split at the boundaries,
620 * which may create at most two more regions. The index of the first
621 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
622 *
623 * RETURNS:
624 * 0 on success, -errno on failure.
625 */
626 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
627 phys_addr_t base, phys_addr_t size,
628 int *start_rgn, int *end_rgn)
629 {
630 phys_addr_t end = base + memblock_cap_size(base, &size);
631 int i;
632
633 *start_rgn = *end_rgn = 0;
634
635 if (!size)
636 return 0;
637
638 /* we'll create at most two more regions */
639 while (type->cnt + 2 > type->max)
640 if (memblock_double_array(type, base, size) < 0)
641 return -ENOMEM;
642
643 for (i = 0; i < type->cnt; i++) {
644 struct memblock_region *rgn = &type->regions[i];
645 phys_addr_t rbase = rgn->base;
646 phys_addr_t rend = rbase + rgn->size;
647
648 if (rbase >= end)
649 break;
650 if (rend <= base)
651 continue;
652
653 if (rbase < base) {
654 /*
655 * @rgn intersects from below. Split and continue
656 * to process the next region - the new top half.
657 */
658 rgn->base = base;
659 rgn->size -= base - rbase;
660 type->total_size -= base - rbase;
661 memblock_insert_region(type, i, rbase, base - rbase,
662 memblock_get_region_node(rgn),
663 rgn->flags);
664 } else if (rend > end) {
665 /*
666 * @rgn intersects from above. Split and redo the
667 * current region - the new bottom half.
668 */
669 rgn->base = end;
670 rgn->size -= end - rbase;
671 type->total_size -= end - rbase;
672 memblock_insert_region(type, i--, rbase, end - rbase,
673 memblock_get_region_node(rgn),
674 rgn->flags);
675 } else {
676 /* @rgn is fully contained, record it */
677 if (!*end_rgn)
678 *start_rgn = i;
679 *end_rgn = i + 1;
680 }
681 }
682
683 return 0;
684 }
685
686 int __init_memblock memblock_remove_range(struct memblock_type *type,
687 phys_addr_t base, phys_addr_t size)
688 {
689 int start_rgn, end_rgn;
690 int i, ret;
691
692 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
693 if (ret)
694 return ret;
695
696 for (i = end_rgn - 1; i >= start_rgn; i--)
697 memblock_remove_region(type, i);
698 return 0;
699 }
700
701 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
702 {
703 return memblock_remove_range(&memblock.memory, base, size);
704 }
705
706
707 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
708 {
709 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
710 (unsigned long long)base,
711 (unsigned long long)base + size - 1,
712 (void *)_RET_IP_);
713
714 kmemleak_free_part(__va(base), size);
715 return memblock_remove_range(&memblock.reserved, base, size);
716 }
717
718 static int __init_memblock memblock_reserve_region(phys_addr_t base,
719 phys_addr_t size,
720 int nid,
721 unsigned long flags)
722 {
723 struct memblock_type *type = &memblock.reserved;
724
725 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
726 (unsigned long long)base,
727 (unsigned long long)base + size - 1,
728 flags, (void *)_RET_IP_);
729
730 return memblock_add_range(type, base, size, nid, flags);
731 }
732
733 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
734 {
735 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
736 }
737
738 /**
739 *
740 * This function isolates region [@base, @base + @size), and sets/clears flag
741 *
742 * Return 0 on succees, -errno on failure.
743 */
744 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
745 phys_addr_t size, int set, int flag)
746 {
747 struct memblock_type *type = &memblock.memory;
748 int i, ret, start_rgn, end_rgn;
749
750 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
751 if (ret)
752 return ret;
753
754 for (i = start_rgn; i < end_rgn; i++)
755 if (set)
756 memblock_set_region_flags(&type->regions[i], flag);
757 else
758 memblock_clear_region_flags(&type->regions[i], flag);
759
760 memblock_merge_regions(type);
761 return 0;
762 }
763
764 /**
765 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
766 * @base: the base phys addr of the region
767 * @size: the size of the region
768 *
769 * Return 0 on succees, -errno on failure.
770 */
771 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
772 {
773 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
774 }
775
776 /**
777 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
778 * @base: the base phys addr of the region
779 * @size: the size of the region
780 *
781 * Return 0 on succees, -errno on failure.
782 */
783 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
784 {
785 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
786 }
787
788 /**
789 * __next__mem_range - next function for for_each_free_mem_range() etc.
790 * @idx: pointer to u64 loop variable
791 * @nid: node selector, %NUMA_NO_NODE for all nodes
792 * @flags: pick from blocks based on memory attributes
793 * @type_a: pointer to memblock_type from where the range is taken
794 * @type_b: pointer to memblock_type which excludes memory from being taken
795 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
796 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
797 * @out_nid: ptr to int for nid of the range, can be %NULL
798 *
799 * Find the first area from *@idx which matches @nid, fill the out
800 * parameters, and update *@idx for the next iteration. The lower 32bit of
801 * *@idx contains index into type_a and the upper 32bit indexes the
802 * areas before each region in type_b. For example, if type_b regions
803 * look like the following,
804 *
805 * 0:[0-16), 1:[32-48), 2:[128-130)
806 *
807 * The upper 32bit indexes the following regions.
808 *
809 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
810 *
811 * As both region arrays are sorted, the function advances the two indices
812 * in lockstep and returns each intersection.
813 */
814 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
815 struct memblock_type *type_a,
816 struct memblock_type *type_b,
817 phys_addr_t *out_start,
818 phys_addr_t *out_end, int *out_nid)
819 {
820 int idx_a = *idx & 0xffffffff;
821 int idx_b = *idx >> 32;
822
823 if (WARN_ONCE(nid == MAX_NUMNODES,
824 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
825 nid = NUMA_NO_NODE;
826
827 for (; idx_a < type_a->cnt; idx_a++) {
828 struct memblock_region *m = &type_a->regions[idx_a];
829
830 phys_addr_t m_start = m->base;
831 phys_addr_t m_end = m->base + m->size;
832 int m_nid = memblock_get_region_node(m);
833
834 /* only memory regions are associated with nodes, check it */
835 if (nid != NUMA_NO_NODE && nid != m_nid)
836 continue;
837
838 /* skip hotpluggable memory regions if needed */
839 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
840 continue;
841
842 if (!type_b) {
843 if (out_start)
844 *out_start = m_start;
845 if (out_end)
846 *out_end = m_end;
847 if (out_nid)
848 *out_nid = m_nid;
849 idx_a++;
850 *idx = (u32)idx_a | (u64)idx_b << 32;
851 return;
852 }
853
854 /* scan areas before each reservation */
855 for (; idx_b < type_b->cnt + 1; idx_b++) {
856 struct memblock_region *r;
857 phys_addr_t r_start;
858 phys_addr_t r_end;
859
860 r = &type_b->regions[idx_b];
861 r_start = idx_b ? r[-1].base + r[-1].size : 0;
862 r_end = idx_b < type_b->cnt ?
863 r->base : ULLONG_MAX;
864
865 /*
866 * if idx_b advanced past idx_a,
867 * break out to advance idx_a
868 */
869 if (r_start >= m_end)
870 break;
871 /* if the two regions intersect, we're done */
872 if (m_start < r_end) {
873 if (out_start)
874 *out_start =
875 max(m_start, r_start);
876 if (out_end)
877 *out_end = min(m_end, r_end);
878 if (out_nid)
879 *out_nid = m_nid;
880 /*
881 * The region which ends first is
882 * advanced for the next iteration.
883 */
884 if (m_end <= r_end)
885 idx_a++;
886 else
887 idx_b++;
888 *idx = (u32)idx_a | (u64)idx_b << 32;
889 return;
890 }
891 }
892 }
893
894 /* signal end of iteration */
895 *idx = ULLONG_MAX;
896 }
897
898 /**
899 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
900 *
901 * Finds the next range from type_a which is not marked as unsuitable
902 * in type_b.
903 *
904 * @idx: pointer to u64 loop variable
905 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
906 * @flags: pick from blocks based on memory attributes
907 * @type_a: pointer to memblock_type from where the range is taken
908 * @type_b: pointer to memblock_type which excludes memory from being taken
909 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
910 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
911 * @out_nid: ptr to int for nid of the range, can be %NULL
912 *
913 * Reverse of __next_mem_range().
914 */
915 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
916 struct memblock_type *type_a,
917 struct memblock_type *type_b,
918 phys_addr_t *out_start,
919 phys_addr_t *out_end, int *out_nid)
920 {
921 int idx_a = *idx & 0xffffffff;
922 int idx_b = *idx >> 32;
923
924 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
925 nid = NUMA_NO_NODE;
926
927 if (*idx == (u64)ULLONG_MAX) {
928 idx_a = type_a->cnt - 1;
929 idx_b = type_b->cnt;
930 }
931
932 for (; idx_a >= 0; idx_a--) {
933 struct memblock_region *m = &type_a->regions[idx_a];
934
935 phys_addr_t m_start = m->base;
936 phys_addr_t m_end = m->base + m->size;
937 int m_nid = memblock_get_region_node(m);
938
939 /* only memory regions are associated with nodes, check it */
940 if (nid != NUMA_NO_NODE && nid != m_nid)
941 continue;
942
943 /* skip hotpluggable memory regions if needed */
944 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
945 continue;
946
947 if (!type_b) {
948 if (out_start)
949 *out_start = m_start;
950 if (out_end)
951 *out_end = m_end;
952 if (out_nid)
953 *out_nid = m_nid;
954 idx_a++;
955 *idx = (u32)idx_a | (u64)idx_b << 32;
956 return;
957 }
958
959 /* scan areas before each reservation */
960 for (; idx_b >= 0; idx_b--) {
961 struct memblock_region *r;
962 phys_addr_t r_start;
963 phys_addr_t r_end;
964
965 r = &type_b->regions[idx_b];
966 r_start = idx_b ? r[-1].base + r[-1].size : 0;
967 r_end = idx_b < type_b->cnt ?
968 r->base : ULLONG_MAX;
969 /*
970 * if idx_b advanced past idx_a,
971 * break out to advance idx_a
972 */
973
974 if (r_end <= m_start)
975 break;
976 /* if the two regions intersect, we're done */
977 if (m_end > r_start) {
978 if (out_start)
979 *out_start = max(m_start, r_start);
980 if (out_end)
981 *out_end = min(m_end, r_end);
982 if (out_nid)
983 *out_nid = m_nid;
984 if (m_start >= r_start)
985 idx_a--;
986 else
987 idx_b--;
988 *idx = (u32)idx_a | (u64)idx_b << 32;
989 return;
990 }
991 }
992 }
993 /* signal end of iteration */
994 *idx = ULLONG_MAX;
995 }
996
997 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
998 /*
999 * Common iterator interface used to define for_each_mem_range().
1000 */
1001 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1002 unsigned long *out_start_pfn,
1003 unsigned long *out_end_pfn, int *out_nid)
1004 {
1005 struct memblock_type *type = &memblock.memory;
1006 struct memblock_region *r;
1007
1008 while (++*idx < type->cnt) {
1009 r = &type->regions[*idx];
1010
1011 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1012 continue;
1013 if (nid == MAX_NUMNODES || nid == r->nid)
1014 break;
1015 }
1016 if (*idx >= type->cnt) {
1017 *idx = -1;
1018 return;
1019 }
1020
1021 if (out_start_pfn)
1022 *out_start_pfn = PFN_UP(r->base);
1023 if (out_end_pfn)
1024 *out_end_pfn = PFN_DOWN(r->base + r->size);
1025 if (out_nid)
1026 *out_nid = r->nid;
1027 }
1028
1029 /**
1030 * memblock_set_node - set node ID on memblock regions
1031 * @base: base of area to set node ID for
1032 * @size: size of area to set node ID for
1033 * @type: memblock type to set node ID for
1034 * @nid: node ID to set
1035 *
1036 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1037 * Regions which cross the area boundaries are split as necessary.
1038 *
1039 * RETURNS:
1040 * 0 on success, -errno on failure.
1041 */
1042 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1043 struct memblock_type *type, int nid)
1044 {
1045 int start_rgn, end_rgn;
1046 int i, ret;
1047
1048 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1049 if (ret)
1050 return ret;
1051
1052 for (i = start_rgn; i < end_rgn; i++)
1053 memblock_set_region_node(&type->regions[i], nid);
1054
1055 memblock_merge_regions(type);
1056 return 0;
1057 }
1058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1059
1060 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1061 phys_addr_t align, phys_addr_t start,
1062 phys_addr_t end, int nid, ulong flags)
1063 {
1064 phys_addr_t found;
1065
1066 if (!align)
1067 align = SMP_CACHE_BYTES;
1068
1069 found = memblock_find_in_range_node(size, align, start, end, nid,
1070 flags);
1071 if (found && !memblock_reserve(found, size)) {
1072 /*
1073 * The min_count is set to 0 so that memblock allocations are
1074 * never reported as leaks.
1075 */
1076 kmemleak_alloc(__va(found), size, 0, 0);
1077 return found;
1078 }
1079 return 0;
1080 }
1081
1082 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1083 phys_addr_t start, phys_addr_t end,
1084 ulong flags)
1085 {
1086 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1087 flags);
1088 }
1089
1090 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1091 phys_addr_t align, phys_addr_t max_addr,
1092 int nid, ulong flags)
1093 {
1094 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1095 }
1096
1097 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1098 {
1099 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1100 nid, MEMBLOCK_NONE);
1101 }
1102
1103 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1104 {
1105 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1106 MEMBLOCK_NONE);
1107 }
1108
1109 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1110 {
1111 phys_addr_t alloc;
1112
1113 alloc = __memblock_alloc_base(size, align, max_addr);
1114
1115 if (alloc == 0)
1116 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1117 (unsigned long long) size, (unsigned long long) max_addr);
1118
1119 return alloc;
1120 }
1121
1122 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1123 {
1124 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1125 }
1126
1127 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1128 {
1129 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1130
1131 if (res)
1132 return res;
1133 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1134 }
1135
1136 /**
1137 * memblock_virt_alloc_internal - allocate boot memory block
1138 * @size: size of memory block to be allocated in bytes
1139 * @align: alignment of the region and block's size
1140 * @min_addr: the lower bound of the memory region to allocate (phys address)
1141 * @max_addr: the upper bound of the memory region to allocate (phys address)
1142 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1143 *
1144 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1145 * will fall back to memory below @min_addr. Also, allocation may fall back
1146 * to any node in the system if the specified node can not
1147 * hold the requested memory.
1148 *
1149 * The allocation is performed from memory region limited by
1150 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1151 *
1152 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1153 *
1154 * The phys address of allocated boot memory block is converted to virtual and
1155 * allocated memory is reset to 0.
1156 *
1157 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1158 * allocated boot memory block, so that it is never reported as leaks.
1159 *
1160 * RETURNS:
1161 * Virtual address of allocated memory block on success, NULL on failure.
1162 */
1163 static void * __init memblock_virt_alloc_internal(
1164 phys_addr_t size, phys_addr_t align,
1165 phys_addr_t min_addr, phys_addr_t max_addr,
1166 int nid)
1167 {
1168 phys_addr_t alloc;
1169 void *ptr;
1170
1171 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1172 nid = NUMA_NO_NODE;
1173
1174 /*
1175 * Detect any accidental use of these APIs after slab is ready, as at
1176 * this moment memblock may be deinitialized already and its
1177 * internal data may be destroyed (after execution of free_all_bootmem)
1178 */
1179 if (WARN_ON_ONCE(slab_is_available()))
1180 return kzalloc_node(size, GFP_NOWAIT, nid);
1181
1182 if (!align)
1183 align = SMP_CACHE_BYTES;
1184
1185 if (max_addr > memblock.current_limit)
1186 max_addr = memblock.current_limit;
1187
1188 again:
1189 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1190 nid, MEMBLOCK_NONE);
1191 if (alloc)
1192 goto done;
1193
1194 if (nid != NUMA_NO_NODE) {
1195 alloc = memblock_find_in_range_node(size, align, min_addr,
1196 max_addr, NUMA_NO_NODE,
1197 MEMBLOCK_NONE);
1198 if (alloc)
1199 goto done;
1200 }
1201
1202 if (min_addr) {
1203 min_addr = 0;
1204 goto again;
1205 } else {
1206 goto error;
1207 }
1208
1209 done:
1210 memblock_reserve(alloc, size);
1211 ptr = phys_to_virt(alloc);
1212 memset(ptr, 0, size);
1213
1214 /*
1215 * The min_count is set to 0 so that bootmem allocated blocks
1216 * are never reported as leaks. This is because many of these blocks
1217 * are only referred via the physical address which is not
1218 * looked up by kmemleak.
1219 */
1220 kmemleak_alloc(ptr, size, 0, 0);
1221
1222 return ptr;
1223
1224 error:
1225 return NULL;
1226 }
1227
1228 /**
1229 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1230 * @size: size of memory block to be allocated in bytes
1231 * @align: alignment of the region and block's size
1232 * @min_addr: the lower bound of the memory region from where the allocation
1233 * is preferred (phys address)
1234 * @max_addr: the upper bound of the memory region from where the allocation
1235 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1236 * allocate only from memory limited by memblock.current_limit value
1237 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1238 *
1239 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1240 * additional debug information (including caller info), if enabled.
1241 *
1242 * RETURNS:
1243 * Virtual address of allocated memory block on success, NULL on failure.
1244 */
1245 void * __init memblock_virt_alloc_try_nid_nopanic(
1246 phys_addr_t size, phys_addr_t align,
1247 phys_addr_t min_addr, phys_addr_t max_addr,
1248 int nid)
1249 {
1250 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1251 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1252 (u64)max_addr, (void *)_RET_IP_);
1253 return memblock_virt_alloc_internal(size, align, min_addr,
1254 max_addr, nid);
1255 }
1256
1257 /**
1258 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1259 * @size: size of memory block to be allocated in bytes
1260 * @align: alignment of the region and block's size
1261 * @min_addr: the lower bound of the memory region from where the allocation
1262 * is preferred (phys address)
1263 * @max_addr: the upper bound of the memory region from where the allocation
1264 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1265 * allocate only from memory limited by memblock.current_limit value
1266 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1267 *
1268 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1269 * which provides debug information (including caller info), if enabled,
1270 * and panics if the request can not be satisfied.
1271 *
1272 * RETURNS:
1273 * Virtual address of allocated memory block on success, NULL on failure.
1274 */
1275 void * __init memblock_virt_alloc_try_nid(
1276 phys_addr_t size, phys_addr_t align,
1277 phys_addr_t min_addr, phys_addr_t max_addr,
1278 int nid)
1279 {
1280 void *ptr;
1281
1282 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1283 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1284 (u64)max_addr, (void *)_RET_IP_);
1285 ptr = memblock_virt_alloc_internal(size, align,
1286 min_addr, max_addr, nid);
1287 if (ptr)
1288 return ptr;
1289
1290 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1291 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1292 (u64)max_addr);
1293 return NULL;
1294 }
1295
1296 /**
1297 * __memblock_free_early - free boot memory block
1298 * @base: phys starting address of the boot memory block
1299 * @size: size of the boot memory block in bytes
1300 *
1301 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1302 * The freeing memory will not be released to the buddy allocator.
1303 */
1304 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1305 {
1306 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1307 __func__, (u64)base, (u64)base + size - 1,
1308 (void *)_RET_IP_);
1309 kmemleak_free_part(__va(base), size);
1310 memblock_remove_range(&memblock.reserved, base, size);
1311 }
1312
1313 /*
1314 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1315 * @addr: phys starting address of the boot memory block
1316 * @size: size of the boot memory block in bytes
1317 *
1318 * This is only useful when the bootmem allocator has already been torn
1319 * down, but we are still initializing the system. Pages are released directly
1320 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1321 */
1322 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1323 {
1324 u64 cursor, end;
1325
1326 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1327 __func__, (u64)base, (u64)base + size - 1,
1328 (void *)_RET_IP_);
1329 kmemleak_free_part(__va(base), size);
1330 cursor = PFN_UP(base);
1331 end = PFN_DOWN(base + size);
1332
1333 for (; cursor < end; cursor++) {
1334 __free_pages_bootmem(pfn_to_page(cursor), 0);
1335 totalram_pages++;
1336 }
1337 }
1338
1339 /*
1340 * Remaining API functions
1341 */
1342
1343 phys_addr_t __init memblock_phys_mem_size(void)
1344 {
1345 return memblock.memory.total_size;
1346 }
1347
1348 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1349 {
1350 unsigned long pages = 0;
1351 struct memblock_region *r;
1352 unsigned long start_pfn, end_pfn;
1353
1354 for_each_memblock(memory, r) {
1355 start_pfn = memblock_region_memory_base_pfn(r);
1356 end_pfn = memblock_region_memory_end_pfn(r);
1357 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1358 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1359 pages += end_pfn - start_pfn;
1360 }
1361
1362 return PFN_PHYS(pages);
1363 }
1364
1365 /* lowest address */
1366 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1367 {
1368 return memblock.memory.regions[0].base;
1369 }
1370
1371 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1372 {
1373 int idx = memblock.memory.cnt - 1;
1374
1375 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1376 }
1377
1378 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1379 {
1380 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1381 struct memblock_region *r;
1382
1383 if (!limit)
1384 return;
1385
1386 /* find out max address */
1387 for_each_memblock(memory, r) {
1388 if (limit <= r->size) {
1389 max_addr = r->base + limit;
1390 break;
1391 }
1392 limit -= r->size;
1393 }
1394
1395 /* truncate both memory and reserved regions */
1396 memblock_remove_range(&memblock.memory, max_addr,
1397 (phys_addr_t)ULLONG_MAX);
1398 memblock_remove_range(&memblock.reserved, max_addr,
1399 (phys_addr_t)ULLONG_MAX);
1400 }
1401
1402 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1403 {
1404 unsigned int left = 0, right = type->cnt;
1405
1406 do {
1407 unsigned int mid = (right + left) / 2;
1408
1409 if (addr < type->regions[mid].base)
1410 right = mid;
1411 else if (addr >= (type->regions[mid].base +
1412 type->regions[mid].size))
1413 left = mid + 1;
1414 else
1415 return mid;
1416 } while (left < right);
1417 return -1;
1418 }
1419
1420 int __init memblock_is_reserved(phys_addr_t addr)
1421 {
1422 return memblock_search(&memblock.reserved, addr) != -1;
1423 }
1424
1425 int __init_memblock memblock_is_memory(phys_addr_t addr)
1426 {
1427 return memblock_search(&memblock.memory, addr) != -1;
1428 }
1429
1430 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1431 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1432 unsigned long *start_pfn, unsigned long *end_pfn)
1433 {
1434 struct memblock_type *type = &memblock.memory;
1435 int mid = memblock_search(type, PFN_PHYS(pfn));
1436
1437 if (mid == -1)
1438 return -1;
1439
1440 *start_pfn = PFN_DOWN(type->regions[mid].base);
1441 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1442
1443 return type->regions[mid].nid;
1444 }
1445 #endif
1446
1447 /**
1448 * memblock_is_region_memory - check if a region is a subset of memory
1449 * @base: base of region to check
1450 * @size: size of region to check
1451 *
1452 * Check if the region [@base, @base+@size) is a subset of a memory block.
1453 *
1454 * RETURNS:
1455 * 0 if false, non-zero if true
1456 */
1457 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1458 {
1459 int idx = memblock_search(&memblock.memory, base);
1460 phys_addr_t end = base + memblock_cap_size(base, &size);
1461
1462 if (idx == -1)
1463 return 0;
1464 return memblock.memory.regions[idx].base <= base &&
1465 (memblock.memory.regions[idx].base +
1466 memblock.memory.regions[idx].size) >= end;
1467 }
1468
1469 /**
1470 * memblock_is_region_reserved - check if a region intersects reserved memory
1471 * @base: base of region to check
1472 * @size: size of region to check
1473 *
1474 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1475 *
1476 * RETURNS:
1477 * 0 if false, non-zero if true
1478 */
1479 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1480 {
1481 memblock_cap_size(base, &size);
1482 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1483 }
1484
1485 void __init_memblock memblock_trim_memory(phys_addr_t align)
1486 {
1487 phys_addr_t start, end, orig_start, orig_end;
1488 struct memblock_region *r;
1489
1490 for_each_memblock(memory, r) {
1491 orig_start = r->base;
1492 orig_end = r->base + r->size;
1493 start = round_up(orig_start, align);
1494 end = round_down(orig_end, align);
1495
1496 if (start == orig_start && end == orig_end)
1497 continue;
1498
1499 if (start < end) {
1500 r->base = start;
1501 r->size = end - start;
1502 } else {
1503 memblock_remove_region(&memblock.memory,
1504 r - memblock.memory.regions);
1505 r--;
1506 }
1507 }
1508 }
1509
1510 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1511 {
1512 memblock.current_limit = limit;
1513 }
1514
1515 phys_addr_t __init_memblock memblock_get_current_limit(void)
1516 {
1517 return memblock.current_limit;
1518 }
1519
1520 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1521 {
1522 unsigned long long base, size;
1523 unsigned long flags;
1524 int i;
1525
1526 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1527
1528 for (i = 0; i < type->cnt; i++) {
1529 struct memblock_region *rgn = &type->regions[i];
1530 char nid_buf[32] = "";
1531
1532 base = rgn->base;
1533 size = rgn->size;
1534 flags = rgn->flags;
1535 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1536 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1537 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1538 memblock_get_region_node(rgn));
1539 #endif
1540 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1541 name, i, base, base + size - 1, size, nid_buf, flags);
1542 }
1543 }
1544
1545 void __init_memblock __memblock_dump_all(void)
1546 {
1547 pr_info("MEMBLOCK configuration:\n");
1548 pr_info(" memory size = %#llx reserved size = %#llx\n",
1549 (unsigned long long)memblock.memory.total_size,
1550 (unsigned long long)memblock.reserved.total_size);
1551
1552 memblock_dump(&memblock.memory, "memory");
1553 memblock_dump(&memblock.reserved, "reserved");
1554 }
1555
1556 void __init memblock_allow_resize(void)
1557 {
1558 memblock_can_resize = 1;
1559 }
1560
1561 static int __init early_memblock(char *p)
1562 {
1563 if (p && strstr(p, "debug"))
1564 memblock_debug = 1;
1565 return 0;
1566 }
1567 early_param("memblock", early_memblock);
1568
1569 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1570
1571 static int memblock_debug_show(struct seq_file *m, void *private)
1572 {
1573 struct memblock_type *type = m->private;
1574 struct memblock_region *reg;
1575 int i;
1576
1577 for (i = 0; i < type->cnt; i++) {
1578 reg = &type->regions[i];
1579 seq_printf(m, "%4d: ", i);
1580 if (sizeof(phys_addr_t) == 4)
1581 seq_printf(m, "0x%08lx..0x%08lx\n",
1582 (unsigned long)reg->base,
1583 (unsigned long)(reg->base + reg->size - 1));
1584 else
1585 seq_printf(m, "0x%016llx..0x%016llx\n",
1586 (unsigned long long)reg->base,
1587 (unsigned long long)(reg->base + reg->size - 1));
1588
1589 }
1590 return 0;
1591 }
1592
1593 static int memblock_debug_open(struct inode *inode, struct file *file)
1594 {
1595 return single_open(file, memblock_debug_show, inode->i_private);
1596 }
1597
1598 static const struct file_operations memblock_debug_fops = {
1599 .open = memblock_debug_open,
1600 .read = seq_read,
1601 .llseek = seq_lseek,
1602 .release = single_release,
1603 };
1604
1605 static int __init memblock_init_debugfs(void)
1606 {
1607 struct dentry *root = debugfs_create_dir("memblock", NULL);
1608 if (!root)
1609 return -ENXIO;
1610 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1611 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1612 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1613 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1614 #endif
1615
1616 return 0;
1617 }
1618 __initcall(memblock_init_debugfs);
1619
1620 #endif /* CONFIG_DEBUG_FS */
This page took 0.062462 seconds and 6 git commands to generate.