mm/highmem: simplify is_highmem()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356 }
357
358 /**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558 }
559
560 /*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601 {
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613 {
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031 {
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068 }
1069
1070 /**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096 }
1097
1098 /*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200 }
1201
1202 /*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 {
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214 }
1215
1216 /*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220 {
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234 }
1235
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238 {
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312 unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315 }
1316
1317 #if MAX_NUMNODES > 1
1318
1319 /**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331 {
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340 }
1341
1342 /*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349 {
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371 }
1372
1373 /*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386 {
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node_in(node, memcg->scan_nodes);
1393 /*
1394 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1395 * last time it really checked all the LRUs due to rate limiting.
1396 * Fallback to the current node in that case for simplicity.
1397 */
1398 if (unlikely(node == MAX_NUMNODES))
1399 node = numa_node_id();
1400
1401 memcg->last_scanned_node = node;
1402 return node;
1403 }
1404 #else
1405 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1406 {
1407 return 0;
1408 }
1409 #endif
1410
1411 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1412 struct zone *zone,
1413 gfp_t gfp_mask,
1414 unsigned long *total_scanned)
1415 {
1416 struct mem_cgroup *victim = NULL;
1417 int total = 0;
1418 int loop = 0;
1419 unsigned long excess;
1420 unsigned long nr_scanned;
1421 struct mem_cgroup_reclaim_cookie reclaim = {
1422 .zone = zone,
1423 .priority = 0,
1424 };
1425
1426 excess = soft_limit_excess(root_memcg);
1427
1428 while (1) {
1429 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1430 if (!victim) {
1431 loop++;
1432 if (loop >= 2) {
1433 /*
1434 * If we have not been able to reclaim
1435 * anything, it might because there are
1436 * no reclaimable pages under this hierarchy
1437 */
1438 if (!total)
1439 break;
1440 /*
1441 * We want to do more targeted reclaim.
1442 * excess >> 2 is not to excessive so as to
1443 * reclaim too much, nor too less that we keep
1444 * coming back to reclaim from this cgroup
1445 */
1446 if (total >= (excess >> 2) ||
1447 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1448 break;
1449 }
1450 continue;
1451 }
1452 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1453 zone, &nr_scanned);
1454 *total_scanned += nr_scanned;
1455 if (!soft_limit_excess(root_memcg))
1456 break;
1457 }
1458 mem_cgroup_iter_break(root_memcg, victim);
1459 return total;
1460 }
1461
1462 #ifdef CONFIG_LOCKDEP
1463 static struct lockdep_map memcg_oom_lock_dep_map = {
1464 .name = "memcg_oom_lock",
1465 };
1466 #endif
1467
1468 static DEFINE_SPINLOCK(memcg_oom_lock);
1469
1470 /*
1471 * Check OOM-Killer is already running under our hierarchy.
1472 * If someone is running, return false.
1473 */
1474 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1475 {
1476 struct mem_cgroup *iter, *failed = NULL;
1477
1478 spin_lock(&memcg_oom_lock);
1479
1480 for_each_mem_cgroup_tree(iter, memcg) {
1481 if (iter->oom_lock) {
1482 /*
1483 * this subtree of our hierarchy is already locked
1484 * so we cannot give a lock.
1485 */
1486 failed = iter;
1487 mem_cgroup_iter_break(memcg, iter);
1488 break;
1489 } else
1490 iter->oom_lock = true;
1491 }
1492
1493 if (failed) {
1494 /*
1495 * OK, we failed to lock the whole subtree so we have
1496 * to clean up what we set up to the failing subtree
1497 */
1498 for_each_mem_cgroup_tree(iter, memcg) {
1499 if (iter == failed) {
1500 mem_cgroup_iter_break(memcg, iter);
1501 break;
1502 }
1503 iter->oom_lock = false;
1504 }
1505 } else
1506 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1507
1508 spin_unlock(&memcg_oom_lock);
1509
1510 return !failed;
1511 }
1512
1513 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1514 {
1515 struct mem_cgroup *iter;
1516
1517 spin_lock(&memcg_oom_lock);
1518 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1519 for_each_mem_cgroup_tree(iter, memcg)
1520 iter->oom_lock = false;
1521 spin_unlock(&memcg_oom_lock);
1522 }
1523
1524 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1525 {
1526 struct mem_cgroup *iter;
1527
1528 spin_lock(&memcg_oom_lock);
1529 for_each_mem_cgroup_tree(iter, memcg)
1530 iter->under_oom++;
1531 spin_unlock(&memcg_oom_lock);
1532 }
1533
1534 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1535 {
1536 struct mem_cgroup *iter;
1537
1538 /*
1539 * When a new child is created while the hierarchy is under oom,
1540 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1541 */
1542 spin_lock(&memcg_oom_lock);
1543 for_each_mem_cgroup_tree(iter, memcg)
1544 if (iter->under_oom > 0)
1545 iter->under_oom--;
1546 spin_unlock(&memcg_oom_lock);
1547 }
1548
1549 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1550
1551 struct oom_wait_info {
1552 struct mem_cgroup *memcg;
1553 wait_queue_t wait;
1554 };
1555
1556 static int memcg_oom_wake_function(wait_queue_t *wait,
1557 unsigned mode, int sync, void *arg)
1558 {
1559 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1560 struct mem_cgroup *oom_wait_memcg;
1561 struct oom_wait_info *oom_wait_info;
1562
1563 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1564 oom_wait_memcg = oom_wait_info->memcg;
1565
1566 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1567 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1568 return 0;
1569 return autoremove_wake_function(wait, mode, sync, arg);
1570 }
1571
1572 static void memcg_oom_recover(struct mem_cgroup *memcg)
1573 {
1574 /*
1575 * For the following lockless ->under_oom test, the only required
1576 * guarantee is that it must see the state asserted by an OOM when
1577 * this function is called as a result of userland actions
1578 * triggered by the notification of the OOM. This is trivially
1579 * achieved by invoking mem_cgroup_mark_under_oom() before
1580 * triggering notification.
1581 */
1582 if (memcg && memcg->under_oom)
1583 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1584 }
1585
1586 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1587 {
1588 if (!current->memcg_may_oom)
1589 return;
1590 /*
1591 * We are in the middle of the charge context here, so we
1592 * don't want to block when potentially sitting on a callstack
1593 * that holds all kinds of filesystem and mm locks.
1594 *
1595 * Also, the caller may handle a failed allocation gracefully
1596 * (like optional page cache readahead) and so an OOM killer
1597 * invocation might not even be necessary.
1598 *
1599 * That's why we don't do anything here except remember the
1600 * OOM context and then deal with it at the end of the page
1601 * fault when the stack is unwound, the locks are released,
1602 * and when we know whether the fault was overall successful.
1603 */
1604 css_get(&memcg->css);
1605 current->memcg_in_oom = memcg;
1606 current->memcg_oom_gfp_mask = mask;
1607 current->memcg_oom_order = order;
1608 }
1609
1610 /**
1611 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1612 * @handle: actually kill/wait or just clean up the OOM state
1613 *
1614 * This has to be called at the end of a page fault if the memcg OOM
1615 * handler was enabled.
1616 *
1617 * Memcg supports userspace OOM handling where failed allocations must
1618 * sleep on a waitqueue until the userspace task resolves the
1619 * situation. Sleeping directly in the charge context with all kinds
1620 * of locks held is not a good idea, instead we remember an OOM state
1621 * in the task and mem_cgroup_oom_synchronize() has to be called at
1622 * the end of the page fault to complete the OOM handling.
1623 *
1624 * Returns %true if an ongoing memcg OOM situation was detected and
1625 * completed, %false otherwise.
1626 */
1627 bool mem_cgroup_oom_synchronize(bool handle)
1628 {
1629 struct mem_cgroup *memcg = current->memcg_in_oom;
1630 struct oom_wait_info owait;
1631 bool locked;
1632
1633 /* OOM is global, do not handle */
1634 if (!memcg)
1635 return false;
1636
1637 if (!handle || oom_killer_disabled)
1638 goto cleanup;
1639
1640 owait.memcg = memcg;
1641 owait.wait.flags = 0;
1642 owait.wait.func = memcg_oom_wake_function;
1643 owait.wait.private = current;
1644 INIT_LIST_HEAD(&owait.wait.task_list);
1645
1646 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1647 mem_cgroup_mark_under_oom(memcg);
1648
1649 locked = mem_cgroup_oom_trylock(memcg);
1650
1651 if (locked)
1652 mem_cgroup_oom_notify(memcg);
1653
1654 if (locked && !memcg->oom_kill_disable) {
1655 mem_cgroup_unmark_under_oom(memcg);
1656 finish_wait(&memcg_oom_waitq, &owait.wait);
1657 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1658 current->memcg_oom_order);
1659 } else {
1660 schedule();
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
1663 }
1664
1665 if (locked) {
1666 mem_cgroup_oom_unlock(memcg);
1667 /*
1668 * There is no guarantee that an OOM-lock contender
1669 * sees the wakeups triggered by the OOM kill
1670 * uncharges. Wake any sleepers explicitely.
1671 */
1672 memcg_oom_recover(memcg);
1673 }
1674 cleanup:
1675 current->memcg_in_oom = NULL;
1676 css_put(&memcg->css);
1677 return true;
1678 }
1679
1680 /**
1681 * lock_page_memcg - lock a page->mem_cgroup binding
1682 * @page: the page
1683 *
1684 * This function protects unlocked LRU pages from being moved to
1685 * another cgroup and stabilizes their page->mem_cgroup binding.
1686 */
1687 void lock_page_memcg(struct page *page)
1688 {
1689 struct mem_cgroup *memcg;
1690 unsigned long flags;
1691
1692 /*
1693 * The RCU lock is held throughout the transaction. The fast
1694 * path can get away without acquiring the memcg->move_lock
1695 * because page moving starts with an RCU grace period.
1696 */
1697 rcu_read_lock();
1698
1699 if (mem_cgroup_disabled())
1700 return;
1701 again:
1702 memcg = page->mem_cgroup;
1703 if (unlikely(!memcg))
1704 return;
1705
1706 if (atomic_read(&memcg->moving_account) <= 0)
1707 return;
1708
1709 spin_lock_irqsave(&memcg->move_lock, flags);
1710 if (memcg != page->mem_cgroup) {
1711 spin_unlock_irqrestore(&memcg->move_lock, flags);
1712 goto again;
1713 }
1714
1715 /*
1716 * When charge migration first begins, we can have locked and
1717 * unlocked page stat updates happening concurrently. Track
1718 * the task who has the lock for unlock_page_memcg().
1719 */
1720 memcg->move_lock_task = current;
1721 memcg->move_lock_flags = flags;
1722
1723 return;
1724 }
1725 EXPORT_SYMBOL(lock_page_memcg);
1726
1727 /**
1728 * unlock_page_memcg - unlock a page->mem_cgroup binding
1729 * @page: the page
1730 */
1731 void unlock_page_memcg(struct page *page)
1732 {
1733 struct mem_cgroup *memcg = page->mem_cgroup;
1734
1735 if (memcg && memcg->move_lock_task == current) {
1736 unsigned long flags = memcg->move_lock_flags;
1737
1738 memcg->move_lock_task = NULL;
1739 memcg->move_lock_flags = 0;
1740
1741 spin_unlock_irqrestore(&memcg->move_lock, flags);
1742 }
1743
1744 rcu_read_unlock();
1745 }
1746 EXPORT_SYMBOL(unlock_page_memcg);
1747
1748 /*
1749 * size of first charge trial. "32" comes from vmscan.c's magic value.
1750 * TODO: maybe necessary to use big numbers in big irons.
1751 */
1752 #define CHARGE_BATCH 32U
1753 struct memcg_stock_pcp {
1754 struct mem_cgroup *cached; /* this never be root cgroup */
1755 unsigned int nr_pages;
1756 struct work_struct work;
1757 unsigned long flags;
1758 #define FLUSHING_CACHED_CHARGE 0
1759 };
1760 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1761 static DEFINE_MUTEX(percpu_charge_mutex);
1762
1763 /**
1764 * consume_stock: Try to consume stocked charge on this cpu.
1765 * @memcg: memcg to consume from.
1766 * @nr_pages: how many pages to charge.
1767 *
1768 * The charges will only happen if @memcg matches the current cpu's memcg
1769 * stock, and at least @nr_pages are available in that stock. Failure to
1770 * service an allocation will refill the stock.
1771 *
1772 * returns true if successful, false otherwise.
1773 */
1774 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1775 {
1776 struct memcg_stock_pcp *stock;
1777 bool ret = false;
1778
1779 if (nr_pages > CHARGE_BATCH)
1780 return ret;
1781
1782 stock = &get_cpu_var(memcg_stock);
1783 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1784 stock->nr_pages -= nr_pages;
1785 ret = true;
1786 }
1787 put_cpu_var(memcg_stock);
1788 return ret;
1789 }
1790
1791 /*
1792 * Returns stocks cached in percpu and reset cached information.
1793 */
1794 static void drain_stock(struct memcg_stock_pcp *stock)
1795 {
1796 struct mem_cgroup *old = stock->cached;
1797
1798 if (stock->nr_pages) {
1799 page_counter_uncharge(&old->memory, stock->nr_pages);
1800 if (do_memsw_account())
1801 page_counter_uncharge(&old->memsw, stock->nr_pages);
1802 css_put_many(&old->css, stock->nr_pages);
1803 stock->nr_pages = 0;
1804 }
1805 stock->cached = NULL;
1806 }
1807
1808 /*
1809 * This must be called under preempt disabled or must be called by
1810 * a thread which is pinned to local cpu.
1811 */
1812 static void drain_local_stock(struct work_struct *dummy)
1813 {
1814 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1815 drain_stock(stock);
1816 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1817 }
1818
1819 /*
1820 * Cache charges(val) to local per_cpu area.
1821 * This will be consumed by consume_stock() function, later.
1822 */
1823 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1824 {
1825 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1826
1827 if (stock->cached != memcg) { /* reset if necessary */
1828 drain_stock(stock);
1829 stock->cached = memcg;
1830 }
1831 stock->nr_pages += nr_pages;
1832 put_cpu_var(memcg_stock);
1833 }
1834
1835 /*
1836 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1837 * of the hierarchy under it.
1838 */
1839 static void drain_all_stock(struct mem_cgroup *root_memcg)
1840 {
1841 int cpu, curcpu;
1842
1843 /* If someone's already draining, avoid adding running more workers. */
1844 if (!mutex_trylock(&percpu_charge_mutex))
1845 return;
1846 /* Notify other cpus that system-wide "drain" is running */
1847 get_online_cpus();
1848 curcpu = get_cpu();
1849 for_each_online_cpu(cpu) {
1850 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1851 struct mem_cgroup *memcg;
1852
1853 memcg = stock->cached;
1854 if (!memcg || !stock->nr_pages)
1855 continue;
1856 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1857 continue;
1858 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1859 if (cpu == curcpu)
1860 drain_local_stock(&stock->work);
1861 else
1862 schedule_work_on(cpu, &stock->work);
1863 }
1864 }
1865 put_cpu();
1866 put_online_cpus();
1867 mutex_unlock(&percpu_charge_mutex);
1868 }
1869
1870 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1871 unsigned long action,
1872 void *hcpu)
1873 {
1874 int cpu = (unsigned long)hcpu;
1875 struct memcg_stock_pcp *stock;
1876
1877 if (action == CPU_ONLINE)
1878 return NOTIFY_OK;
1879
1880 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1881 return NOTIFY_OK;
1882
1883 stock = &per_cpu(memcg_stock, cpu);
1884 drain_stock(stock);
1885 return NOTIFY_OK;
1886 }
1887
1888 static void reclaim_high(struct mem_cgroup *memcg,
1889 unsigned int nr_pages,
1890 gfp_t gfp_mask)
1891 {
1892 do {
1893 if (page_counter_read(&memcg->memory) <= memcg->high)
1894 continue;
1895 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1896 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1897 } while ((memcg = parent_mem_cgroup(memcg)));
1898 }
1899
1900 static void high_work_func(struct work_struct *work)
1901 {
1902 struct mem_cgroup *memcg;
1903
1904 memcg = container_of(work, struct mem_cgroup, high_work);
1905 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1906 }
1907
1908 /*
1909 * Scheduled by try_charge() to be executed from the userland return path
1910 * and reclaims memory over the high limit.
1911 */
1912 void mem_cgroup_handle_over_high(void)
1913 {
1914 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1915 struct mem_cgroup *memcg;
1916
1917 if (likely(!nr_pages))
1918 return;
1919
1920 memcg = get_mem_cgroup_from_mm(current->mm);
1921 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1922 css_put(&memcg->css);
1923 current->memcg_nr_pages_over_high = 0;
1924 }
1925
1926 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1927 unsigned int nr_pages)
1928 {
1929 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1930 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1931 struct mem_cgroup *mem_over_limit;
1932 struct page_counter *counter;
1933 unsigned long nr_reclaimed;
1934 bool may_swap = true;
1935 bool drained = false;
1936
1937 if (mem_cgroup_is_root(memcg))
1938 return 0;
1939 retry:
1940 if (consume_stock(memcg, nr_pages))
1941 return 0;
1942
1943 if (!do_memsw_account() ||
1944 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1945 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1946 goto done_restock;
1947 if (do_memsw_account())
1948 page_counter_uncharge(&memcg->memsw, batch);
1949 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1950 } else {
1951 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1952 may_swap = false;
1953 }
1954
1955 if (batch > nr_pages) {
1956 batch = nr_pages;
1957 goto retry;
1958 }
1959
1960 /*
1961 * Unlike in global OOM situations, memcg is not in a physical
1962 * memory shortage. Allow dying and OOM-killed tasks to
1963 * bypass the last charges so that they can exit quickly and
1964 * free their memory.
1965 */
1966 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1967 fatal_signal_pending(current) ||
1968 current->flags & PF_EXITING))
1969 goto force;
1970
1971 if (unlikely(task_in_memcg_oom(current)))
1972 goto nomem;
1973
1974 if (!gfpflags_allow_blocking(gfp_mask))
1975 goto nomem;
1976
1977 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1978
1979 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1980 gfp_mask, may_swap);
1981
1982 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1983 goto retry;
1984
1985 if (!drained) {
1986 drain_all_stock(mem_over_limit);
1987 drained = true;
1988 goto retry;
1989 }
1990
1991 if (gfp_mask & __GFP_NORETRY)
1992 goto nomem;
1993 /*
1994 * Even though the limit is exceeded at this point, reclaim
1995 * may have been able to free some pages. Retry the charge
1996 * before killing the task.
1997 *
1998 * Only for regular pages, though: huge pages are rather
1999 * unlikely to succeed so close to the limit, and we fall back
2000 * to regular pages anyway in case of failure.
2001 */
2002 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2003 goto retry;
2004 /*
2005 * At task move, charge accounts can be doubly counted. So, it's
2006 * better to wait until the end of task_move if something is going on.
2007 */
2008 if (mem_cgroup_wait_acct_move(mem_over_limit))
2009 goto retry;
2010
2011 if (nr_retries--)
2012 goto retry;
2013
2014 if (gfp_mask & __GFP_NOFAIL)
2015 goto force;
2016
2017 if (fatal_signal_pending(current))
2018 goto force;
2019
2020 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2021
2022 mem_cgroup_oom(mem_over_limit, gfp_mask,
2023 get_order(nr_pages * PAGE_SIZE));
2024 nomem:
2025 if (!(gfp_mask & __GFP_NOFAIL))
2026 return -ENOMEM;
2027 force:
2028 /*
2029 * The allocation either can't fail or will lead to more memory
2030 * being freed very soon. Allow memory usage go over the limit
2031 * temporarily by force charging it.
2032 */
2033 page_counter_charge(&memcg->memory, nr_pages);
2034 if (do_memsw_account())
2035 page_counter_charge(&memcg->memsw, nr_pages);
2036 css_get_many(&memcg->css, nr_pages);
2037
2038 return 0;
2039
2040 done_restock:
2041 css_get_many(&memcg->css, batch);
2042 if (batch > nr_pages)
2043 refill_stock(memcg, batch - nr_pages);
2044
2045 /*
2046 * If the hierarchy is above the normal consumption range, schedule
2047 * reclaim on returning to userland. We can perform reclaim here
2048 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2049 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2050 * not recorded as it most likely matches current's and won't
2051 * change in the meantime. As high limit is checked again before
2052 * reclaim, the cost of mismatch is negligible.
2053 */
2054 do {
2055 if (page_counter_read(&memcg->memory) > memcg->high) {
2056 /* Don't bother a random interrupted task */
2057 if (in_interrupt()) {
2058 schedule_work(&memcg->high_work);
2059 break;
2060 }
2061 current->memcg_nr_pages_over_high += batch;
2062 set_notify_resume(current);
2063 break;
2064 }
2065 } while ((memcg = parent_mem_cgroup(memcg)));
2066
2067 return 0;
2068 }
2069
2070 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2071 {
2072 if (mem_cgroup_is_root(memcg))
2073 return;
2074
2075 page_counter_uncharge(&memcg->memory, nr_pages);
2076 if (do_memsw_account())
2077 page_counter_uncharge(&memcg->memsw, nr_pages);
2078
2079 css_put_many(&memcg->css, nr_pages);
2080 }
2081
2082 static void lock_page_lru(struct page *page, int *isolated)
2083 {
2084 struct zone *zone = page_zone(page);
2085
2086 spin_lock_irq(&zone->lru_lock);
2087 if (PageLRU(page)) {
2088 struct lruvec *lruvec;
2089
2090 lruvec = mem_cgroup_page_lruvec(page, zone);
2091 ClearPageLRU(page);
2092 del_page_from_lru_list(page, lruvec, page_lru(page));
2093 *isolated = 1;
2094 } else
2095 *isolated = 0;
2096 }
2097
2098 static void unlock_page_lru(struct page *page, int isolated)
2099 {
2100 struct zone *zone = page_zone(page);
2101
2102 if (isolated) {
2103 struct lruvec *lruvec;
2104
2105 lruvec = mem_cgroup_page_lruvec(page, zone);
2106 VM_BUG_ON_PAGE(PageLRU(page), page);
2107 SetPageLRU(page);
2108 add_page_to_lru_list(page, lruvec, page_lru(page));
2109 }
2110 spin_unlock_irq(&zone->lru_lock);
2111 }
2112
2113 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2114 bool lrucare)
2115 {
2116 int isolated;
2117
2118 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2119
2120 /*
2121 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2122 * may already be on some other mem_cgroup's LRU. Take care of it.
2123 */
2124 if (lrucare)
2125 lock_page_lru(page, &isolated);
2126
2127 /*
2128 * Nobody should be changing or seriously looking at
2129 * page->mem_cgroup at this point:
2130 *
2131 * - the page is uncharged
2132 *
2133 * - the page is off-LRU
2134 *
2135 * - an anonymous fault has exclusive page access, except for
2136 * a locked page table
2137 *
2138 * - a page cache insertion, a swapin fault, or a migration
2139 * have the page locked
2140 */
2141 page->mem_cgroup = memcg;
2142
2143 if (lrucare)
2144 unlock_page_lru(page, isolated);
2145 }
2146
2147 #ifndef CONFIG_SLOB
2148 static int memcg_alloc_cache_id(void)
2149 {
2150 int id, size;
2151 int err;
2152
2153 id = ida_simple_get(&memcg_cache_ida,
2154 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2155 if (id < 0)
2156 return id;
2157
2158 if (id < memcg_nr_cache_ids)
2159 return id;
2160
2161 /*
2162 * There's no space for the new id in memcg_caches arrays,
2163 * so we have to grow them.
2164 */
2165 down_write(&memcg_cache_ids_sem);
2166
2167 size = 2 * (id + 1);
2168 if (size < MEMCG_CACHES_MIN_SIZE)
2169 size = MEMCG_CACHES_MIN_SIZE;
2170 else if (size > MEMCG_CACHES_MAX_SIZE)
2171 size = MEMCG_CACHES_MAX_SIZE;
2172
2173 err = memcg_update_all_caches(size);
2174 if (!err)
2175 err = memcg_update_all_list_lrus(size);
2176 if (!err)
2177 memcg_nr_cache_ids = size;
2178
2179 up_write(&memcg_cache_ids_sem);
2180
2181 if (err) {
2182 ida_simple_remove(&memcg_cache_ida, id);
2183 return err;
2184 }
2185 return id;
2186 }
2187
2188 static void memcg_free_cache_id(int id)
2189 {
2190 ida_simple_remove(&memcg_cache_ida, id);
2191 }
2192
2193 struct memcg_kmem_cache_create_work {
2194 struct mem_cgroup *memcg;
2195 struct kmem_cache *cachep;
2196 struct work_struct work;
2197 };
2198
2199 static void memcg_kmem_cache_create_func(struct work_struct *w)
2200 {
2201 struct memcg_kmem_cache_create_work *cw =
2202 container_of(w, struct memcg_kmem_cache_create_work, work);
2203 struct mem_cgroup *memcg = cw->memcg;
2204 struct kmem_cache *cachep = cw->cachep;
2205
2206 memcg_create_kmem_cache(memcg, cachep);
2207
2208 css_put(&memcg->css);
2209 kfree(cw);
2210 }
2211
2212 /*
2213 * Enqueue the creation of a per-memcg kmem_cache.
2214 */
2215 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2216 struct kmem_cache *cachep)
2217 {
2218 struct memcg_kmem_cache_create_work *cw;
2219
2220 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2221 if (!cw)
2222 return;
2223
2224 css_get(&memcg->css);
2225
2226 cw->memcg = memcg;
2227 cw->cachep = cachep;
2228 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2229
2230 schedule_work(&cw->work);
2231 }
2232
2233 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2234 struct kmem_cache *cachep)
2235 {
2236 /*
2237 * We need to stop accounting when we kmalloc, because if the
2238 * corresponding kmalloc cache is not yet created, the first allocation
2239 * in __memcg_schedule_kmem_cache_create will recurse.
2240 *
2241 * However, it is better to enclose the whole function. Depending on
2242 * the debugging options enabled, INIT_WORK(), for instance, can
2243 * trigger an allocation. This too, will make us recurse. Because at
2244 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2245 * the safest choice is to do it like this, wrapping the whole function.
2246 */
2247 current->memcg_kmem_skip_account = 1;
2248 __memcg_schedule_kmem_cache_create(memcg, cachep);
2249 current->memcg_kmem_skip_account = 0;
2250 }
2251
2252 /*
2253 * Return the kmem_cache we're supposed to use for a slab allocation.
2254 * We try to use the current memcg's version of the cache.
2255 *
2256 * If the cache does not exist yet, if we are the first user of it,
2257 * we either create it immediately, if possible, or create it asynchronously
2258 * in a workqueue.
2259 * In the latter case, we will let the current allocation go through with
2260 * the original cache.
2261 *
2262 * Can't be called in interrupt context or from kernel threads.
2263 * This function needs to be called with rcu_read_lock() held.
2264 */
2265 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2266 {
2267 struct mem_cgroup *memcg;
2268 struct kmem_cache *memcg_cachep;
2269 int kmemcg_id;
2270
2271 VM_BUG_ON(!is_root_cache(cachep));
2272
2273 if (cachep->flags & SLAB_ACCOUNT)
2274 gfp |= __GFP_ACCOUNT;
2275
2276 if (!(gfp & __GFP_ACCOUNT))
2277 return cachep;
2278
2279 if (current->memcg_kmem_skip_account)
2280 return cachep;
2281
2282 memcg = get_mem_cgroup_from_mm(current->mm);
2283 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2284 if (kmemcg_id < 0)
2285 goto out;
2286
2287 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2288 if (likely(memcg_cachep))
2289 return memcg_cachep;
2290
2291 /*
2292 * If we are in a safe context (can wait, and not in interrupt
2293 * context), we could be be predictable and return right away.
2294 * This would guarantee that the allocation being performed
2295 * already belongs in the new cache.
2296 *
2297 * However, there are some clashes that can arrive from locking.
2298 * For instance, because we acquire the slab_mutex while doing
2299 * memcg_create_kmem_cache, this means no further allocation
2300 * could happen with the slab_mutex held. So it's better to
2301 * defer everything.
2302 */
2303 memcg_schedule_kmem_cache_create(memcg, cachep);
2304 out:
2305 css_put(&memcg->css);
2306 return cachep;
2307 }
2308
2309 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2310 {
2311 if (!is_root_cache(cachep))
2312 css_put(&cachep->memcg_params.memcg->css);
2313 }
2314
2315 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2316 struct mem_cgroup *memcg)
2317 {
2318 unsigned int nr_pages = 1 << order;
2319 struct page_counter *counter;
2320 int ret;
2321
2322 ret = try_charge(memcg, gfp, nr_pages);
2323 if (ret)
2324 return ret;
2325
2326 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2327 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2328 cancel_charge(memcg, nr_pages);
2329 return -ENOMEM;
2330 }
2331
2332 page->mem_cgroup = memcg;
2333
2334 return 0;
2335 }
2336
2337 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2338 {
2339 struct mem_cgroup *memcg;
2340 int ret = 0;
2341
2342 memcg = get_mem_cgroup_from_mm(current->mm);
2343 if (!mem_cgroup_is_root(memcg))
2344 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2345 css_put(&memcg->css);
2346 return ret;
2347 }
2348
2349 void __memcg_kmem_uncharge(struct page *page, int order)
2350 {
2351 struct mem_cgroup *memcg = page->mem_cgroup;
2352 unsigned int nr_pages = 1 << order;
2353
2354 if (!memcg)
2355 return;
2356
2357 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2358
2359 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2360 page_counter_uncharge(&memcg->kmem, nr_pages);
2361
2362 page_counter_uncharge(&memcg->memory, nr_pages);
2363 if (do_memsw_account())
2364 page_counter_uncharge(&memcg->memsw, nr_pages);
2365
2366 page->mem_cgroup = NULL;
2367 css_put_many(&memcg->css, nr_pages);
2368 }
2369 #endif /* !CONFIG_SLOB */
2370
2371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2372
2373 /*
2374 * Because tail pages are not marked as "used", set it. We're under
2375 * zone->lru_lock and migration entries setup in all page mappings.
2376 */
2377 void mem_cgroup_split_huge_fixup(struct page *head)
2378 {
2379 int i;
2380
2381 if (mem_cgroup_disabled())
2382 return;
2383
2384 for (i = 1; i < HPAGE_PMD_NR; i++)
2385 head[i].mem_cgroup = head->mem_cgroup;
2386
2387 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2388 HPAGE_PMD_NR);
2389 }
2390 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2391
2392 #ifdef CONFIG_MEMCG_SWAP
2393 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2394 bool charge)
2395 {
2396 int val = (charge) ? 1 : -1;
2397 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2398 }
2399
2400 /**
2401 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2402 * @entry: swap entry to be moved
2403 * @from: mem_cgroup which the entry is moved from
2404 * @to: mem_cgroup which the entry is moved to
2405 *
2406 * It succeeds only when the swap_cgroup's record for this entry is the same
2407 * as the mem_cgroup's id of @from.
2408 *
2409 * Returns 0 on success, -EINVAL on failure.
2410 *
2411 * The caller must have charged to @to, IOW, called page_counter_charge() about
2412 * both res and memsw, and called css_get().
2413 */
2414 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2415 struct mem_cgroup *from, struct mem_cgroup *to)
2416 {
2417 unsigned short old_id, new_id;
2418
2419 old_id = mem_cgroup_id(from);
2420 new_id = mem_cgroup_id(to);
2421
2422 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2423 mem_cgroup_swap_statistics(from, false);
2424 mem_cgroup_swap_statistics(to, true);
2425 return 0;
2426 }
2427 return -EINVAL;
2428 }
2429 #else
2430 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2431 struct mem_cgroup *from, struct mem_cgroup *to)
2432 {
2433 return -EINVAL;
2434 }
2435 #endif
2436
2437 static DEFINE_MUTEX(memcg_limit_mutex);
2438
2439 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2440 unsigned long limit)
2441 {
2442 unsigned long curusage;
2443 unsigned long oldusage;
2444 bool enlarge = false;
2445 int retry_count;
2446 int ret;
2447
2448 /*
2449 * For keeping hierarchical_reclaim simple, how long we should retry
2450 * is depends on callers. We set our retry-count to be function
2451 * of # of children which we should visit in this loop.
2452 */
2453 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2454 mem_cgroup_count_children(memcg);
2455
2456 oldusage = page_counter_read(&memcg->memory);
2457
2458 do {
2459 if (signal_pending(current)) {
2460 ret = -EINTR;
2461 break;
2462 }
2463
2464 mutex_lock(&memcg_limit_mutex);
2465 if (limit > memcg->memsw.limit) {
2466 mutex_unlock(&memcg_limit_mutex);
2467 ret = -EINVAL;
2468 break;
2469 }
2470 if (limit > memcg->memory.limit)
2471 enlarge = true;
2472 ret = page_counter_limit(&memcg->memory, limit);
2473 mutex_unlock(&memcg_limit_mutex);
2474
2475 if (!ret)
2476 break;
2477
2478 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2479
2480 curusage = page_counter_read(&memcg->memory);
2481 /* Usage is reduced ? */
2482 if (curusage >= oldusage)
2483 retry_count--;
2484 else
2485 oldusage = curusage;
2486 } while (retry_count);
2487
2488 if (!ret && enlarge)
2489 memcg_oom_recover(memcg);
2490
2491 return ret;
2492 }
2493
2494 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2495 unsigned long limit)
2496 {
2497 unsigned long curusage;
2498 unsigned long oldusage;
2499 bool enlarge = false;
2500 int retry_count;
2501 int ret;
2502
2503 /* see mem_cgroup_resize_res_limit */
2504 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2505 mem_cgroup_count_children(memcg);
2506
2507 oldusage = page_counter_read(&memcg->memsw);
2508
2509 do {
2510 if (signal_pending(current)) {
2511 ret = -EINTR;
2512 break;
2513 }
2514
2515 mutex_lock(&memcg_limit_mutex);
2516 if (limit < memcg->memory.limit) {
2517 mutex_unlock(&memcg_limit_mutex);
2518 ret = -EINVAL;
2519 break;
2520 }
2521 if (limit > memcg->memsw.limit)
2522 enlarge = true;
2523 ret = page_counter_limit(&memcg->memsw, limit);
2524 mutex_unlock(&memcg_limit_mutex);
2525
2526 if (!ret)
2527 break;
2528
2529 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2530
2531 curusage = page_counter_read(&memcg->memsw);
2532 /* Usage is reduced ? */
2533 if (curusage >= oldusage)
2534 retry_count--;
2535 else
2536 oldusage = curusage;
2537 } while (retry_count);
2538
2539 if (!ret && enlarge)
2540 memcg_oom_recover(memcg);
2541
2542 return ret;
2543 }
2544
2545 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2546 gfp_t gfp_mask,
2547 unsigned long *total_scanned)
2548 {
2549 unsigned long nr_reclaimed = 0;
2550 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2551 unsigned long reclaimed;
2552 int loop = 0;
2553 struct mem_cgroup_tree_per_zone *mctz;
2554 unsigned long excess;
2555 unsigned long nr_scanned;
2556
2557 if (order > 0)
2558 return 0;
2559
2560 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2561 /*
2562 * This loop can run a while, specially if mem_cgroup's continuously
2563 * keep exceeding their soft limit and putting the system under
2564 * pressure
2565 */
2566 do {
2567 if (next_mz)
2568 mz = next_mz;
2569 else
2570 mz = mem_cgroup_largest_soft_limit_node(mctz);
2571 if (!mz)
2572 break;
2573
2574 nr_scanned = 0;
2575 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2576 gfp_mask, &nr_scanned);
2577 nr_reclaimed += reclaimed;
2578 *total_scanned += nr_scanned;
2579 spin_lock_irq(&mctz->lock);
2580 __mem_cgroup_remove_exceeded(mz, mctz);
2581
2582 /*
2583 * If we failed to reclaim anything from this memory cgroup
2584 * it is time to move on to the next cgroup
2585 */
2586 next_mz = NULL;
2587 if (!reclaimed)
2588 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2589
2590 excess = soft_limit_excess(mz->memcg);
2591 /*
2592 * One school of thought says that we should not add
2593 * back the node to the tree if reclaim returns 0.
2594 * But our reclaim could return 0, simply because due
2595 * to priority we are exposing a smaller subset of
2596 * memory to reclaim from. Consider this as a longer
2597 * term TODO.
2598 */
2599 /* If excess == 0, no tree ops */
2600 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2601 spin_unlock_irq(&mctz->lock);
2602 css_put(&mz->memcg->css);
2603 loop++;
2604 /*
2605 * Could not reclaim anything and there are no more
2606 * mem cgroups to try or we seem to be looping without
2607 * reclaiming anything.
2608 */
2609 if (!nr_reclaimed &&
2610 (next_mz == NULL ||
2611 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2612 break;
2613 } while (!nr_reclaimed);
2614 if (next_mz)
2615 css_put(&next_mz->memcg->css);
2616 return nr_reclaimed;
2617 }
2618
2619 /*
2620 * Test whether @memcg has children, dead or alive. Note that this
2621 * function doesn't care whether @memcg has use_hierarchy enabled and
2622 * returns %true if there are child csses according to the cgroup
2623 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2624 */
2625 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2626 {
2627 bool ret;
2628
2629 rcu_read_lock();
2630 ret = css_next_child(NULL, &memcg->css);
2631 rcu_read_unlock();
2632 return ret;
2633 }
2634
2635 /*
2636 * Reclaims as many pages from the given memcg as possible and moves
2637 * the rest to the parent.
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642 {
2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
2647 /* try to free all pages in this cgroup */
2648 while (nr_retries && page_counter_read(&memcg->memory)) {
2649 int progress;
2650
2651 if (signal_pending(current))
2652 return -EINTR;
2653
2654 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 GFP_KERNEL, true);
2656 if (!progress) {
2657 nr_retries--;
2658 /* maybe some writeback is necessary */
2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
2660 }
2661
2662 }
2663
2664 return 0;
2665 }
2666
2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 char *buf, size_t nbytes,
2669 loff_t off)
2670 {
2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672
2673 if (mem_cgroup_is_root(memcg))
2674 return -EINVAL;
2675 return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 }
2677
2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 struct cftype *cft)
2680 {
2681 return mem_cgroup_from_css(css)->use_hierarchy;
2682 }
2683
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 struct cftype *cft, u64 val)
2686 {
2687 int retval = 0;
2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690
2691 if (memcg->use_hierarchy == val)
2692 return 0;
2693
2694 /*
2695 * If parent's use_hierarchy is set, we can't make any modifications
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2698 *
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2701 */
2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703 (val == 1 || val == 0)) {
2704 if (!memcg_has_children(memcg))
2705 memcg->use_hierarchy = val;
2706 else
2707 retval = -EBUSY;
2708 } else
2709 retval = -EINVAL;
2710
2711 return retval;
2712 }
2713
2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 {
2716 struct mem_cgroup *iter;
2717 int i;
2718
2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_STAT; i++)
2723 stat[i] += mem_cgroup_read_stat(iter, i);
2724 }
2725 }
2726
2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 {
2729 struct mem_cgroup *iter;
2730 int i;
2731
2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 events[i] += mem_cgroup_read_events(iter, i);
2737 }
2738 }
2739
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741 {
2742 unsigned long val = 0;
2743
2744 if (mem_cgroup_is_root(memcg)) {
2745 struct mem_cgroup *iter;
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 val += mem_cgroup_read_stat(iter,
2749 MEM_CGROUP_STAT_CACHE);
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_RSS);
2752 if (swap)
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_SWAP);
2755 }
2756 } else {
2757 if (!swap)
2758 val = page_counter_read(&memcg->memory);
2759 else
2760 val = page_counter_read(&memcg->memsw);
2761 }
2762 return val;
2763 }
2764
2765 enum {
2766 RES_USAGE,
2767 RES_LIMIT,
2768 RES_MAX_USAGE,
2769 RES_FAILCNT,
2770 RES_SOFT_LIMIT,
2771 };
2772
2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774 struct cftype *cft)
2775 {
2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777 struct page_counter *counter;
2778
2779 switch (MEMFILE_TYPE(cft->private)) {
2780 case _MEM:
2781 counter = &memcg->memory;
2782 break;
2783 case _MEMSWAP:
2784 counter = &memcg->memsw;
2785 break;
2786 case _KMEM:
2787 counter = &memcg->kmem;
2788 break;
2789 case _TCP:
2790 counter = &memcg->tcpmem;
2791 break;
2792 default:
2793 BUG();
2794 }
2795
2796 switch (MEMFILE_ATTR(cft->private)) {
2797 case RES_USAGE:
2798 if (counter == &memcg->memory)
2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800 if (counter == &memcg->memsw)
2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 case RES_LIMIT:
2804 return (u64)counter->limit * PAGE_SIZE;
2805 case RES_MAX_USAGE:
2806 return (u64)counter->watermark * PAGE_SIZE;
2807 case RES_FAILCNT:
2808 return counter->failcnt;
2809 case RES_SOFT_LIMIT:
2810 return (u64)memcg->soft_limit * PAGE_SIZE;
2811 default:
2812 BUG();
2813 }
2814 }
2815
2816 #ifndef CONFIG_SLOB
2817 static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 {
2819 int memcg_id;
2820
2821 if (cgroup_memory_nokmem)
2822 return 0;
2823
2824 BUG_ON(memcg->kmemcg_id >= 0);
2825 BUG_ON(memcg->kmem_state);
2826
2827 memcg_id = memcg_alloc_cache_id();
2828 if (memcg_id < 0)
2829 return memcg_id;
2830
2831 static_branch_inc(&memcg_kmem_enabled_key);
2832 /*
2833 * A memory cgroup is considered kmem-online as soon as it gets
2834 * kmemcg_id. Setting the id after enabling static branching will
2835 * guarantee no one starts accounting before all call sites are
2836 * patched.
2837 */
2838 memcg->kmemcg_id = memcg_id;
2839 memcg->kmem_state = KMEM_ONLINE;
2840
2841 return 0;
2842 }
2843
2844 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845 {
2846 struct cgroup_subsys_state *css;
2847 struct mem_cgroup *parent, *child;
2848 int kmemcg_id;
2849
2850 if (memcg->kmem_state != KMEM_ONLINE)
2851 return;
2852 /*
2853 * Clear the online state before clearing memcg_caches array
2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 * guarantees that no cache will be created for this cgroup
2856 * after we are done (see memcg_create_kmem_cache()).
2857 */
2858 memcg->kmem_state = KMEM_ALLOCATED;
2859
2860 memcg_deactivate_kmem_caches(memcg);
2861
2862 kmemcg_id = memcg->kmemcg_id;
2863 BUG_ON(kmemcg_id < 0);
2864
2865 parent = parent_mem_cgroup(memcg);
2866 if (!parent)
2867 parent = root_mem_cgroup;
2868
2869 /*
2870 * Change kmemcg_id of this cgroup and all its descendants to the
2871 * parent's id, and then move all entries from this cgroup's list_lrus
2872 * to ones of the parent. After we have finished, all list_lrus
2873 * corresponding to this cgroup are guaranteed to remain empty. The
2874 * ordering is imposed by list_lru_node->lock taken by
2875 * memcg_drain_all_list_lrus().
2876 */
2877 css_for_each_descendant_pre(css, &memcg->css) {
2878 child = mem_cgroup_from_css(css);
2879 BUG_ON(child->kmemcg_id != kmemcg_id);
2880 child->kmemcg_id = parent->kmemcg_id;
2881 if (!memcg->use_hierarchy)
2882 break;
2883 }
2884 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2885
2886 memcg_free_cache_id(kmemcg_id);
2887 }
2888
2889 static void memcg_free_kmem(struct mem_cgroup *memcg)
2890 {
2891 /* css_alloc() failed, offlining didn't happen */
2892 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2893 memcg_offline_kmem(memcg);
2894
2895 if (memcg->kmem_state == KMEM_ALLOCATED) {
2896 memcg_destroy_kmem_caches(memcg);
2897 static_branch_dec(&memcg_kmem_enabled_key);
2898 WARN_ON(page_counter_read(&memcg->kmem));
2899 }
2900 }
2901 #else
2902 static int memcg_online_kmem(struct mem_cgroup *memcg)
2903 {
2904 return 0;
2905 }
2906 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2907 {
2908 }
2909 static void memcg_free_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 #endif /* !CONFIG_SLOB */
2913
2914 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2915 unsigned long limit)
2916 {
2917 int ret;
2918
2919 mutex_lock(&memcg_limit_mutex);
2920 ret = page_counter_limit(&memcg->kmem, limit);
2921 mutex_unlock(&memcg_limit_mutex);
2922 return ret;
2923 }
2924
2925 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2926 {
2927 int ret;
2928
2929 mutex_lock(&memcg_limit_mutex);
2930
2931 ret = page_counter_limit(&memcg->tcpmem, limit);
2932 if (ret)
2933 goto out;
2934
2935 if (!memcg->tcpmem_active) {
2936 /*
2937 * The active flag needs to be written after the static_key
2938 * update. This is what guarantees that the socket activation
2939 * function is the last one to run. See sock_update_memcg() for
2940 * details, and note that we don't mark any socket as belonging
2941 * to this memcg until that flag is up.
2942 *
2943 * We need to do this, because static_keys will span multiple
2944 * sites, but we can't control their order. If we mark a socket
2945 * as accounted, but the accounting functions are not patched in
2946 * yet, we'll lose accounting.
2947 *
2948 * We never race with the readers in sock_update_memcg(),
2949 * because when this value change, the code to process it is not
2950 * patched in yet.
2951 */
2952 static_branch_inc(&memcg_sockets_enabled_key);
2953 memcg->tcpmem_active = true;
2954 }
2955 out:
2956 mutex_unlock(&memcg_limit_mutex);
2957 return ret;
2958 }
2959
2960 /*
2961 * The user of this function is...
2962 * RES_LIMIT.
2963 */
2964 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2965 char *buf, size_t nbytes, loff_t off)
2966 {
2967 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2968 unsigned long nr_pages;
2969 int ret;
2970
2971 buf = strstrip(buf);
2972 ret = page_counter_memparse(buf, "-1", &nr_pages);
2973 if (ret)
2974 return ret;
2975
2976 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2977 case RES_LIMIT:
2978 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2979 ret = -EINVAL;
2980 break;
2981 }
2982 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2983 case _MEM:
2984 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2985 break;
2986 case _MEMSWAP:
2987 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2988 break;
2989 case _KMEM:
2990 ret = memcg_update_kmem_limit(memcg, nr_pages);
2991 break;
2992 case _TCP:
2993 ret = memcg_update_tcp_limit(memcg, nr_pages);
2994 break;
2995 }
2996 break;
2997 case RES_SOFT_LIMIT:
2998 memcg->soft_limit = nr_pages;
2999 ret = 0;
3000 break;
3001 }
3002 return ret ?: nbytes;
3003 }
3004
3005 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3006 size_t nbytes, loff_t off)
3007 {
3008 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3009 struct page_counter *counter;
3010
3011 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3012 case _MEM:
3013 counter = &memcg->memory;
3014 break;
3015 case _MEMSWAP:
3016 counter = &memcg->memsw;
3017 break;
3018 case _KMEM:
3019 counter = &memcg->kmem;
3020 break;
3021 case _TCP:
3022 counter = &memcg->tcpmem;
3023 break;
3024 default:
3025 BUG();
3026 }
3027
3028 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3029 case RES_MAX_USAGE:
3030 page_counter_reset_watermark(counter);
3031 break;
3032 case RES_FAILCNT:
3033 counter->failcnt = 0;
3034 break;
3035 default:
3036 BUG();
3037 }
3038
3039 return nbytes;
3040 }
3041
3042 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3043 struct cftype *cft)
3044 {
3045 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3046 }
3047
3048 #ifdef CONFIG_MMU
3049 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3050 struct cftype *cft, u64 val)
3051 {
3052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3053
3054 if (val & ~MOVE_MASK)
3055 return -EINVAL;
3056
3057 /*
3058 * No kind of locking is needed in here, because ->can_attach() will
3059 * check this value once in the beginning of the process, and then carry
3060 * on with stale data. This means that changes to this value will only
3061 * affect task migrations starting after the change.
3062 */
3063 memcg->move_charge_at_immigrate = val;
3064 return 0;
3065 }
3066 #else
3067 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3068 struct cftype *cft, u64 val)
3069 {
3070 return -ENOSYS;
3071 }
3072 #endif
3073
3074 #ifdef CONFIG_NUMA
3075 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3076 {
3077 struct numa_stat {
3078 const char *name;
3079 unsigned int lru_mask;
3080 };
3081
3082 static const struct numa_stat stats[] = {
3083 { "total", LRU_ALL },
3084 { "file", LRU_ALL_FILE },
3085 { "anon", LRU_ALL_ANON },
3086 { "unevictable", BIT(LRU_UNEVICTABLE) },
3087 };
3088 const struct numa_stat *stat;
3089 int nid;
3090 unsigned long nr;
3091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3092
3093 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3094 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3095 seq_printf(m, "%s=%lu", stat->name, nr);
3096 for_each_node_state(nid, N_MEMORY) {
3097 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3098 stat->lru_mask);
3099 seq_printf(m, " N%d=%lu", nid, nr);
3100 }
3101 seq_putc(m, '\n');
3102 }
3103
3104 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3105 struct mem_cgroup *iter;
3106
3107 nr = 0;
3108 for_each_mem_cgroup_tree(iter, memcg)
3109 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3110 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3111 for_each_node_state(nid, N_MEMORY) {
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_node_nr_lru_pages(
3115 iter, nid, stat->lru_mask);
3116 seq_printf(m, " N%d=%lu", nid, nr);
3117 }
3118 seq_putc(m, '\n');
3119 }
3120
3121 return 0;
3122 }
3123 #endif /* CONFIG_NUMA */
3124
3125 static int memcg_stat_show(struct seq_file *m, void *v)
3126 {
3127 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3128 unsigned long memory, memsw;
3129 struct mem_cgroup *mi;
3130 unsigned int i;
3131
3132 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3133 MEM_CGROUP_STAT_NSTATS);
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3135 MEM_CGROUP_EVENTS_NSTATS);
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3137
3138 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3139 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3140 continue;
3141 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3142 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3143 }
3144
3145 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3146 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3147 mem_cgroup_read_events(memcg, i));
3148
3149 for (i = 0; i < NR_LRU_LISTS; i++)
3150 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3151 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3152
3153 /* Hierarchical information */
3154 memory = memsw = PAGE_COUNTER_MAX;
3155 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3156 memory = min(memory, mi->memory.limit);
3157 memsw = min(memsw, mi->memsw.limit);
3158 }
3159 seq_printf(m, "hierarchical_memory_limit %llu\n",
3160 (u64)memory * PAGE_SIZE);
3161 if (do_memsw_account())
3162 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3163 (u64)memsw * PAGE_SIZE);
3164
3165 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3166 unsigned long long val = 0;
3167
3168 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3169 continue;
3170 for_each_mem_cgroup_tree(mi, memcg)
3171 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3173 }
3174
3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3176 unsigned long long val = 0;
3177
3178 for_each_mem_cgroup_tree(mi, memcg)
3179 val += mem_cgroup_read_events(mi, i);
3180 seq_printf(m, "total_%s %llu\n",
3181 mem_cgroup_events_names[i], val);
3182 }
3183
3184 for (i = 0; i < NR_LRU_LISTS; i++) {
3185 unsigned long long val = 0;
3186
3187 for_each_mem_cgroup_tree(mi, memcg)
3188 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3189 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3190 }
3191
3192 #ifdef CONFIG_DEBUG_VM
3193 {
3194 int nid, zid;
3195 struct mem_cgroup_per_zone *mz;
3196 struct zone_reclaim_stat *rstat;
3197 unsigned long recent_rotated[2] = {0, 0};
3198 unsigned long recent_scanned[2] = {0, 0};
3199
3200 for_each_online_node(nid)
3201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3202 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3203 rstat = &mz->lruvec.reclaim_stat;
3204
3205 recent_rotated[0] += rstat->recent_rotated[0];
3206 recent_rotated[1] += rstat->recent_rotated[1];
3207 recent_scanned[0] += rstat->recent_scanned[0];
3208 recent_scanned[1] += rstat->recent_scanned[1];
3209 }
3210 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3211 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3212 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3213 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3214 }
3215 #endif
3216
3217 return 0;
3218 }
3219
3220 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3221 struct cftype *cft)
3222 {
3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224
3225 return mem_cgroup_swappiness(memcg);
3226 }
3227
3228 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3229 struct cftype *cft, u64 val)
3230 {
3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3232
3233 if (val > 100)
3234 return -EINVAL;
3235
3236 if (css->parent)
3237 memcg->swappiness = val;
3238 else
3239 vm_swappiness = val;
3240
3241 return 0;
3242 }
3243
3244 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3245 {
3246 struct mem_cgroup_threshold_ary *t;
3247 unsigned long usage;
3248 int i;
3249
3250 rcu_read_lock();
3251 if (!swap)
3252 t = rcu_dereference(memcg->thresholds.primary);
3253 else
3254 t = rcu_dereference(memcg->memsw_thresholds.primary);
3255
3256 if (!t)
3257 goto unlock;
3258
3259 usage = mem_cgroup_usage(memcg, swap);
3260
3261 /*
3262 * current_threshold points to threshold just below or equal to usage.
3263 * If it's not true, a threshold was crossed after last
3264 * call of __mem_cgroup_threshold().
3265 */
3266 i = t->current_threshold;
3267
3268 /*
3269 * Iterate backward over array of thresholds starting from
3270 * current_threshold and check if a threshold is crossed.
3271 * If none of thresholds below usage is crossed, we read
3272 * only one element of the array here.
3273 */
3274 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3275 eventfd_signal(t->entries[i].eventfd, 1);
3276
3277 /* i = current_threshold + 1 */
3278 i++;
3279
3280 /*
3281 * Iterate forward over array of thresholds starting from
3282 * current_threshold+1 and check if a threshold is crossed.
3283 * If none of thresholds above usage is crossed, we read
3284 * only one element of the array here.
3285 */
3286 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3287 eventfd_signal(t->entries[i].eventfd, 1);
3288
3289 /* Update current_threshold */
3290 t->current_threshold = i - 1;
3291 unlock:
3292 rcu_read_unlock();
3293 }
3294
3295 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3296 {
3297 while (memcg) {
3298 __mem_cgroup_threshold(memcg, false);
3299 if (do_memsw_account())
3300 __mem_cgroup_threshold(memcg, true);
3301
3302 memcg = parent_mem_cgroup(memcg);
3303 }
3304 }
3305
3306 static int compare_thresholds(const void *a, const void *b)
3307 {
3308 const struct mem_cgroup_threshold *_a = a;
3309 const struct mem_cgroup_threshold *_b = b;
3310
3311 if (_a->threshold > _b->threshold)
3312 return 1;
3313
3314 if (_a->threshold < _b->threshold)
3315 return -1;
3316
3317 return 0;
3318 }
3319
3320 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3321 {
3322 struct mem_cgroup_eventfd_list *ev;
3323
3324 spin_lock(&memcg_oom_lock);
3325
3326 list_for_each_entry(ev, &memcg->oom_notify, list)
3327 eventfd_signal(ev->eventfd, 1);
3328
3329 spin_unlock(&memcg_oom_lock);
3330 return 0;
3331 }
3332
3333 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3334 {
3335 struct mem_cgroup *iter;
3336
3337 for_each_mem_cgroup_tree(iter, memcg)
3338 mem_cgroup_oom_notify_cb(iter);
3339 }
3340
3341 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3342 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3343 {
3344 struct mem_cgroup_thresholds *thresholds;
3345 struct mem_cgroup_threshold_ary *new;
3346 unsigned long threshold;
3347 unsigned long usage;
3348 int i, size, ret;
3349
3350 ret = page_counter_memparse(args, "-1", &threshold);
3351 if (ret)
3352 return ret;
3353
3354 mutex_lock(&memcg->thresholds_lock);
3355
3356 if (type == _MEM) {
3357 thresholds = &memcg->thresholds;
3358 usage = mem_cgroup_usage(memcg, false);
3359 } else if (type == _MEMSWAP) {
3360 thresholds = &memcg->memsw_thresholds;
3361 usage = mem_cgroup_usage(memcg, true);
3362 } else
3363 BUG();
3364
3365 /* Check if a threshold crossed before adding a new one */
3366 if (thresholds->primary)
3367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3368
3369 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3370
3371 /* Allocate memory for new array of thresholds */
3372 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3373 GFP_KERNEL);
3374 if (!new) {
3375 ret = -ENOMEM;
3376 goto unlock;
3377 }
3378 new->size = size;
3379
3380 /* Copy thresholds (if any) to new array */
3381 if (thresholds->primary) {
3382 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3383 sizeof(struct mem_cgroup_threshold));
3384 }
3385
3386 /* Add new threshold */
3387 new->entries[size - 1].eventfd = eventfd;
3388 new->entries[size - 1].threshold = threshold;
3389
3390 /* Sort thresholds. Registering of new threshold isn't time-critical */
3391 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3392 compare_thresholds, NULL);
3393
3394 /* Find current threshold */
3395 new->current_threshold = -1;
3396 for (i = 0; i < size; i++) {
3397 if (new->entries[i].threshold <= usage) {
3398 /*
3399 * new->current_threshold will not be used until
3400 * rcu_assign_pointer(), so it's safe to increment
3401 * it here.
3402 */
3403 ++new->current_threshold;
3404 } else
3405 break;
3406 }
3407
3408 /* Free old spare buffer and save old primary buffer as spare */
3409 kfree(thresholds->spare);
3410 thresholds->spare = thresholds->primary;
3411
3412 rcu_assign_pointer(thresholds->primary, new);
3413
3414 /* To be sure that nobody uses thresholds */
3415 synchronize_rcu();
3416
3417 unlock:
3418 mutex_unlock(&memcg->thresholds_lock);
3419
3420 return ret;
3421 }
3422
3423 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3424 struct eventfd_ctx *eventfd, const char *args)
3425 {
3426 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3427 }
3428
3429 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3430 struct eventfd_ctx *eventfd, const char *args)
3431 {
3432 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3433 }
3434
3435 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3436 struct eventfd_ctx *eventfd, enum res_type type)
3437 {
3438 struct mem_cgroup_thresholds *thresholds;
3439 struct mem_cgroup_threshold_ary *new;
3440 unsigned long usage;
3441 int i, j, size;
3442
3443 mutex_lock(&memcg->thresholds_lock);
3444
3445 if (type == _MEM) {
3446 thresholds = &memcg->thresholds;
3447 usage = mem_cgroup_usage(memcg, false);
3448 } else if (type == _MEMSWAP) {
3449 thresholds = &memcg->memsw_thresholds;
3450 usage = mem_cgroup_usage(memcg, true);
3451 } else
3452 BUG();
3453
3454 if (!thresholds->primary)
3455 goto unlock;
3456
3457 /* Check if a threshold crossed before removing */
3458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3459
3460 /* Calculate new number of threshold */
3461 size = 0;
3462 for (i = 0; i < thresholds->primary->size; i++) {
3463 if (thresholds->primary->entries[i].eventfd != eventfd)
3464 size++;
3465 }
3466
3467 new = thresholds->spare;
3468
3469 /* Set thresholds array to NULL if we don't have thresholds */
3470 if (!size) {
3471 kfree(new);
3472 new = NULL;
3473 goto swap_buffers;
3474 }
3475
3476 new->size = size;
3477
3478 /* Copy thresholds and find current threshold */
3479 new->current_threshold = -1;
3480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3481 if (thresholds->primary->entries[i].eventfd == eventfd)
3482 continue;
3483
3484 new->entries[j] = thresholds->primary->entries[i];
3485 if (new->entries[j].threshold <= usage) {
3486 /*
3487 * new->current_threshold will not be used
3488 * until rcu_assign_pointer(), so it's safe to increment
3489 * it here.
3490 */
3491 ++new->current_threshold;
3492 }
3493 j++;
3494 }
3495
3496 swap_buffers:
3497 /* Swap primary and spare array */
3498 thresholds->spare = thresholds->primary;
3499
3500 rcu_assign_pointer(thresholds->primary, new);
3501
3502 /* To be sure that nobody uses thresholds */
3503 synchronize_rcu();
3504
3505 /* If all events are unregistered, free the spare array */
3506 if (!new) {
3507 kfree(thresholds->spare);
3508 thresholds->spare = NULL;
3509 }
3510 unlock:
3511 mutex_unlock(&memcg->thresholds_lock);
3512 }
3513
3514 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3515 struct eventfd_ctx *eventfd)
3516 {
3517 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3518 }
3519
3520 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522 {
3523 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3524 }
3525
3526 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3527 struct eventfd_ctx *eventfd, const char *args)
3528 {
3529 struct mem_cgroup_eventfd_list *event;
3530
3531 event = kmalloc(sizeof(*event), GFP_KERNEL);
3532 if (!event)
3533 return -ENOMEM;
3534
3535 spin_lock(&memcg_oom_lock);
3536
3537 event->eventfd = eventfd;
3538 list_add(&event->list, &memcg->oom_notify);
3539
3540 /* already in OOM ? */
3541 if (memcg->under_oom)
3542 eventfd_signal(eventfd, 1);
3543 spin_unlock(&memcg_oom_lock);
3544
3545 return 0;
3546 }
3547
3548 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3549 struct eventfd_ctx *eventfd)
3550 {
3551 struct mem_cgroup_eventfd_list *ev, *tmp;
3552
3553 spin_lock(&memcg_oom_lock);
3554
3555 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3556 if (ev->eventfd == eventfd) {
3557 list_del(&ev->list);
3558 kfree(ev);
3559 }
3560 }
3561
3562 spin_unlock(&memcg_oom_lock);
3563 }
3564
3565 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3566 {
3567 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3568
3569 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3570 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3571 return 0;
3572 }
3573
3574 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3575 struct cftype *cft, u64 val)
3576 {
3577 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3578
3579 /* cannot set to root cgroup and only 0 and 1 are allowed */
3580 if (!css->parent || !((val == 0) || (val == 1)))
3581 return -EINVAL;
3582
3583 memcg->oom_kill_disable = val;
3584 if (!val)
3585 memcg_oom_recover(memcg);
3586
3587 return 0;
3588 }
3589
3590 #ifdef CONFIG_CGROUP_WRITEBACK
3591
3592 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3593 {
3594 return &memcg->cgwb_list;
3595 }
3596
3597 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3598 {
3599 return wb_domain_init(&memcg->cgwb_domain, gfp);
3600 }
3601
3602 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3603 {
3604 wb_domain_exit(&memcg->cgwb_domain);
3605 }
3606
3607 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3608 {
3609 wb_domain_size_changed(&memcg->cgwb_domain);
3610 }
3611
3612 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3613 {
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3615
3616 if (!memcg->css.parent)
3617 return NULL;
3618
3619 return &memcg->cgwb_domain;
3620 }
3621
3622 /**
3623 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3624 * @wb: bdi_writeback in question
3625 * @pfilepages: out parameter for number of file pages
3626 * @pheadroom: out parameter for number of allocatable pages according to memcg
3627 * @pdirty: out parameter for number of dirty pages
3628 * @pwriteback: out parameter for number of pages under writeback
3629 *
3630 * Determine the numbers of file, headroom, dirty, and writeback pages in
3631 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3632 * is a bit more involved.
3633 *
3634 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3635 * headroom is calculated as the lowest headroom of itself and the
3636 * ancestors. Note that this doesn't consider the actual amount of
3637 * available memory in the system. The caller should further cap
3638 * *@pheadroom accordingly.
3639 */
3640 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3641 unsigned long *pheadroom, unsigned long *pdirty,
3642 unsigned long *pwriteback)
3643 {
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645 struct mem_cgroup *parent;
3646
3647 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3648
3649 /* this should eventually include NR_UNSTABLE_NFS */
3650 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3651 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3652 (1 << LRU_ACTIVE_FILE));
3653 *pheadroom = PAGE_COUNTER_MAX;
3654
3655 while ((parent = parent_mem_cgroup(memcg))) {
3656 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3657 unsigned long used = page_counter_read(&memcg->memory);
3658
3659 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3660 memcg = parent;
3661 }
3662 }
3663
3664 #else /* CONFIG_CGROUP_WRITEBACK */
3665
3666 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3667 {
3668 return 0;
3669 }
3670
3671 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3672 {
3673 }
3674
3675 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3676 {
3677 }
3678
3679 #endif /* CONFIG_CGROUP_WRITEBACK */
3680
3681 /*
3682 * DO NOT USE IN NEW FILES.
3683 *
3684 * "cgroup.event_control" implementation.
3685 *
3686 * This is way over-engineered. It tries to support fully configurable
3687 * events for each user. Such level of flexibility is completely
3688 * unnecessary especially in the light of the planned unified hierarchy.
3689 *
3690 * Please deprecate this and replace with something simpler if at all
3691 * possible.
3692 */
3693
3694 /*
3695 * Unregister event and free resources.
3696 *
3697 * Gets called from workqueue.
3698 */
3699 static void memcg_event_remove(struct work_struct *work)
3700 {
3701 struct mem_cgroup_event *event =
3702 container_of(work, struct mem_cgroup_event, remove);
3703 struct mem_cgroup *memcg = event->memcg;
3704
3705 remove_wait_queue(event->wqh, &event->wait);
3706
3707 event->unregister_event(memcg, event->eventfd);
3708
3709 /* Notify userspace the event is going away. */
3710 eventfd_signal(event->eventfd, 1);
3711
3712 eventfd_ctx_put(event->eventfd);
3713 kfree(event);
3714 css_put(&memcg->css);
3715 }
3716
3717 /*
3718 * Gets called on POLLHUP on eventfd when user closes it.
3719 *
3720 * Called with wqh->lock held and interrupts disabled.
3721 */
3722 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3723 int sync, void *key)
3724 {
3725 struct mem_cgroup_event *event =
3726 container_of(wait, struct mem_cgroup_event, wait);
3727 struct mem_cgroup *memcg = event->memcg;
3728 unsigned long flags = (unsigned long)key;
3729
3730 if (flags & POLLHUP) {
3731 /*
3732 * If the event has been detached at cgroup removal, we
3733 * can simply return knowing the other side will cleanup
3734 * for us.
3735 *
3736 * We can't race against event freeing since the other
3737 * side will require wqh->lock via remove_wait_queue(),
3738 * which we hold.
3739 */
3740 spin_lock(&memcg->event_list_lock);
3741 if (!list_empty(&event->list)) {
3742 list_del_init(&event->list);
3743 /*
3744 * We are in atomic context, but cgroup_event_remove()
3745 * may sleep, so we have to call it in workqueue.
3746 */
3747 schedule_work(&event->remove);
3748 }
3749 spin_unlock(&memcg->event_list_lock);
3750 }
3751
3752 return 0;
3753 }
3754
3755 static void memcg_event_ptable_queue_proc(struct file *file,
3756 wait_queue_head_t *wqh, poll_table *pt)
3757 {
3758 struct mem_cgroup_event *event =
3759 container_of(pt, struct mem_cgroup_event, pt);
3760
3761 event->wqh = wqh;
3762 add_wait_queue(wqh, &event->wait);
3763 }
3764
3765 /*
3766 * DO NOT USE IN NEW FILES.
3767 *
3768 * Parse input and register new cgroup event handler.
3769 *
3770 * Input must be in format '<event_fd> <control_fd> <args>'.
3771 * Interpretation of args is defined by control file implementation.
3772 */
3773 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3774 char *buf, size_t nbytes, loff_t off)
3775 {
3776 struct cgroup_subsys_state *css = of_css(of);
3777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3778 struct mem_cgroup_event *event;
3779 struct cgroup_subsys_state *cfile_css;
3780 unsigned int efd, cfd;
3781 struct fd efile;
3782 struct fd cfile;
3783 const char *name;
3784 char *endp;
3785 int ret;
3786
3787 buf = strstrip(buf);
3788
3789 efd = simple_strtoul(buf, &endp, 10);
3790 if (*endp != ' ')
3791 return -EINVAL;
3792 buf = endp + 1;
3793
3794 cfd = simple_strtoul(buf, &endp, 10);
3795 if ((*endp != ' ') && (*endp != '\0'))
3796 return -EINVAL;
3797 buf = endp + 1;
3798
3799 event = kzalloc(sizeof(*event), GFP_KERNEL);
3800 if (!event)
3801 return -ENOMEM;
3802
3803 event->memcg = memcg;
3804 INIT_LIST_HEAD(&event->list);
3805 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3806 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3807 INIT_WORK(&event->remove, memcg_event_remove);
3808
3809 efile = fdget(efd);
3810 if (!efile.file) {
3811 ret = -EBADF;
3812 goto out_kfree;
3813 }
3814
3815 event->eventfd = eventfd_ctx_fileget(efile.file);
3816 if (IS_ERR(event->eventfd)) {
3817 ret = PTR_ERR(event->eventfd);
3818 goto out_put_efile;
3819 }
3820
3821 cfile = fdget(cfd);
3822 if (!cfile.file) {
3823 ret = -EBADF;
3824 goto out_put_eventfd;
3825 }
3826
3827 /* the process need read permission on control file */
3828 /* AV: shouldn't we check that it's been opened for read instead? */
3829 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3830 if (ret < 0)
3831 goto out_put_cfile;
3832
3833 /*
3834 * Determine the event callbacks and set them in @event. This used
3835 * to be done via struct cftype but cgroup core no longer knows
3836 * about these events. The following is crude but the whole thing
3837 * is for compatibility anyway.
3838 *
3839 * DO NOT ADD NEW FILES.
3840 */
3841 name = cfile.file->f_path.dentry->d_name.name;
3842
3843 if (!strcmp(name, "memory.usage_in_bytes")) {
3844 event->register_event = mem_cgroup_usage_register_event;
3845 event->unregister_event = mem_cgroup_usage_unregister_event;
3846 } else if (!strcmp(name, "memory.oom_control")) {
3847 event->register_event = mem_cgroup_oom_register_event;
3848 event->unregister_event = mem_cgroup_oom_unregister_event;
3849 } else if (!strcmp(name, "memory.pressure_level")) {
3850 event->register_event = vmpressure_register_event;
3851 event->unregister_event = vmpressure_unregister_event;
3852 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3853 event->register_event = memsw_cgroup_usage_register_event;
3854 event->unregister_event = memsw_cgroup_usage_unregister_event;
3855 } else {
3856 ret = -EINVAL;
3857 goto out_put_cfile;
3858 }
3859
3860 /*
3861 * Verify @cfile should belong to @css. Also, remaining events are
3862 * automatically removed on cgroup destruction but the removal is
3863 * asynchronous, so take an extra ref on @css.
3864 */
3865 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3866 &memory_cgrp_subsys);
3867 ret = -EINVAL;
3868 if (IS_ERR(cfile_css))
3869 goto out_put_cfile;
3870 if (cfile_css != css) {
3871 css_put(cfile_css);
3872 goto out_put_cfile;
3873 }
3874
3875 ret = event->register_event(memcg, event->eventfd, buf);
3876 if (ret)
3877 goto out_put_css;
3878
3879 efile.file->f_op->poll(efile.file, &event->pt);
3880
3881 spin_lock(&memcg->event_list_lock);
3882 list_add(&event->list, &memcg->event_list);
3883 spin_unlock(&memcg->event_list_lock);
3884
3885 fdput(cfile);
3886 fdput(efile);
3887
3888 return nbytes;
3889
3890 out_put_css:
3891 css_put(css);
3892 out_put_cfile:
3893 fdput(cfile);
3894 out_put_eventfd:
3895 eventfd_ctx_put(event->eventfd);
3896 out_put_efile:
3897 fdput(efile);
3898 out_kfree:
3899 kfree(event);
3900
3901 return ret;
3902 }
3903
3904 static struct cftype mem_cgroup_legacy_files[] = {
3905 {
3906 .name = "usage_in_bytes",
3907 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3908 .read_u64 = mem_cgroup_read_u64,
3909 },
3910 {
3911 .name = "max_usage_in_bytes",
3912 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3913 .write = mem_cgroup_reset,
3914 .read_u64 = mem_cgroup_read_u64,
3915 },
3916 {
3917 .name = "limit_in_bytes",
3918 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3919 .write = mem_cgroup_write,
3920 .read_u64 = mem_cgroup_read_u64,
3921 },
3922 {
3923 .name = "soft_limit_in_bytes",
3924 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3925 .write = mem_cgroup_write,
3926 .read_u64 = mem_cgroup_read_u64,
3927 },
3928 {
3929 .name = "failcnt",
3930 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3931 .write = mem_cgroup_reset,
3932 .read_u64 = mem_cgroup_read_u64,
3933 },
3934 {
3935 .name = "stat",
3936 .seq_show = memcg_stat_show,
3937 },
3938 {
3939 .name = "force_empty",
3940 .write = mem_cgroup_force_empty_write,
3941 },
3942 {
3943 .name = "use_hierarchy",
3944 .write_u64 = mem_cgroup_hierarchy_write,
3945 .read_u64 = mem_cgroup_hierarchy_read,
3946 },
3947 {
3948 .name = "cgroup.event_control", /* XXX: for compat */
3949 .write = memcg_write_event_control,
3950 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3951 },
3952 {
3953 .name = "swappiness",
3954 .read_u64 = mem_cgroup_swappiness_read,
3955 .write_u64 = mem_cgroup_swappiness_write,
3956 },
3957 {
3958 .name = "move_charge_at_immigrate",
3959 .read_u64 = mem_cgroup_move_charge_read,
3960 .write_u64 = mem_cgroup_move_charge_write,
3961 },
3962 {
3963 .name = "oom_control",
3964 .seq_show = mem_cgroup_oom_control_read,
3965 .write_u64 = mem_cgroup_oom_control_write,
3966 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3967 },
3968 {
3969 .name = "pressure_level",
3970 },
3971 #ifdef CONFIG_NUMA
3972 {
3973 .name = "numa_stat",
3974 .seq_show = memcg_numa_stat_show,
3975 },
3976 #endif
3977 {
3978 .name = "kmem.limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3980 .write = mem_cgroup_write,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "kmem.usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.failcnt",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3991 .write = mem_cgroup_reset,
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.max_usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3997 .write = mem_cgroup_reset,
3998 .read_u64 = mem_cgroup_read_u64,
3999 },
4000 #ifdef CONFIG_SLABINFO
4001 {
4002 .name = "kmem.slabinfo",
4003 .seq_start = slab_start,
4004 .seq_next = slab_next,
4005 .seq_stop = slab_stop,
4006 .seq_show = memcg_slab_show,
4007 },
4008 #endif
4009 {
4010 .name = "kmem.tcp.limit_in_bytes",
4011 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4012 .write = mem_cgroup_write,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "kmem.tcp.usage_in_bytes",
4017 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.failcnt",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4023 .write = mem_cgroup_reset,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.max_usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4029 .write = mem_cgroup_reset,
4030 .read_u64 = mem_cgroup_read_u64,
4031 },
4032 { }, /* terminate */
4033 };
4034
4035 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4036 {
4037 struct mem_cgroup_per_node *pn;
4038 struct mem_cgroup_per_zone *mz;
4039 int zone, tmp = node;
4040 /*
4041 * This routine is called against possible nodes.
4042 * But it's BUG to call kmalloc() against offline node.
4043 *
4044 * TODO: this routine can waste much memory for nodes which will
4045 * never be onlined. It's better to use memory hotplug callback
4046 * function.
4047 */
4048 if (!node_state(node, N_NORMAL_MEMORY))
4049 tmp = -1;
4050 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4051 if (!pn)
4052 return 1;
4053
4054 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4055 mz = &pn->zoneinfo[zone];
4056 lruvec_init(&mz->lruvec);
4057 mz->usage_in_excess = 0;
4058 mz->on_tree = false;
4059 mz->memcg = memcg;
4060 }
4061 memcg->nodeinfo[node] = pn;
4062 return 0;
4063 }
4064
4065 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4066 {
4067 kfree(memcg->nodeinfo[node]);
4068 }
4069
4070 static void mem_cgroup_free(struct mem_cgroup *memcg)
4071 {
4072 int node;
4073
4074 memcg_wb_domain_exit(memcg);
4075 for_each_node(node)
4076 free_mem_cgroup_per_zone_info(memcg, node);
4077 free_percpu(memcg->stat);
4078 kfree(memcg);
4079 }
4080
4081 static struct mem_cgroup *mem_cgroup_alloc(void)
4082 {
4083 struct mem_cgroup *memcg;
4084 size_t size;
4085 int node;
4086
4087 size = sizeof(struct mem_cgroup);
4088 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4089
4090 memcg = kzalloc(size, GFP_KERNEL);
4091 if (!memcg)
4092 return NULL;
4093
4094 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4095 if (!memcg->stat)
4096 goto fail;
4097
4098 for_each_node(node)
4099 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4100 goto fail;
4101
4102 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4103 goto fail;
4104
4105 INIT_WORK(&memcg->high_work, high_work_func);
4106 memcg->last_scanned_node = MAX_NUMNODES;
4107 INIT_LIST_HEAD(&memcg->oom_notify);
4108 mutex_init(&memcg->thresholds_lock);
4109 spin_lock_init(&memcg->move_lock);
4110 vmpressure_init(&memcg->vmpressure);
4111 INIT_LIST_HEAD(&memcg->event_list);
4112 spin_lock_init(&memcg->event_list_lock);
4113 memcg->socket_pressure = jiffies;
4114 #ifndef CONFIG_SLOB
4115 memcg->kmemcg_id = -1;
4116 #endif
4117 #ifdef CONFIG_CGROUP_WRITEBACK
4118 INIT_LIST_HEAD(&memcg->cgwb_list);
4119 #endif
4120 return memcg;
4121 fail:
4122 mem_cgroup_free(memcg);
4123 return NULL;
4124 }
4125
4126 static struct cgroup_subsys_state * __ref
4127 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4128 {
4129 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4130 struct mem_cgroup *memcg;
4131 long error = -ENOMEM;
4132
4133 memcg = mem_cgroup_alloc();
4134 if (!memcg)
4135 return ERR_PTR(error);
4136
4137 memcg->high = PAGE_COUNTER_MAX;
4138 memcg->soft_limit = PAGE_COUNTER_MAX;
4139 if (parent) {
4140 memcg->swappiness = mem_cgroup_swappiness(parent);
4141 memcg->oom_kill_disable = parent->oom_kill_disable;
4142 }
4143 if (parent && parent->use_hierarchy) {
4144 memcg->use_hierarchy = true;
4145 page_counter_init(&memcg->memory, &parent->memory);
4146 page_counter_init(&memcg->swap, &parent->swap);
4147 page_counter_init(&memcg->memsw, &parent->memsw);
4148 page_counter_init(&memcg->kmem, &parent->kmem);
4149 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4150 } else {
4151 page_counter_init(&memcg->memory, NULL);
4152 page_counter_init(&memcg->swap, NULL);
4153 page_counter_init(&memcg->memsw, NULL);
4154 page_counter_init(&memcg->kmem, NULL);
4155 page_counter_init(&memcg->tcpmem, NULL);
4156 /*
4157 * Deeper hierachy with use_hierarchy == false doesn't make
4158 * much sense so let cgroup subsystem know about this
4159 * unfortunate state in our controller.
4160 */
4161 if (parent != root_mem_cgroup)
4162 memory_cgrp_subsys.broken_hierarchy = true;
4163 }
4164
4165 /* The following stuff does not apply to the root */
4166 if (!parent) {
4167 root_mem_cgroup = memcg;
4168 return &memcg->css;
4169 }
4170
4171 error = memcg_online_kmem(memcg);
4172 if (error)
4173 goto fail;
4174
4175 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4176 static_branch_inc(&memcg_sockets_enabled_key);
4177
4178 return &memcg->css;
4179 fail:
4180 mem_cgroup_free(memcg);
4181 return NULL;
4182 }
4183
4184 static int
4185 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4186 {
4187 if (css->id > MEM_CGROUP_ID_MAX)
4188 return -ENOSPC;
4189
4190 return 0;
4191 }
4192
4193 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4194 {
4195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4196 struct mem_cgroup_event *event, *tmp;
4197
4198 /*
4199 * Unregister events and notify userspace.
4200 * Notify userspace about cgroup removing only after rmdir of cgroup
4201 * directory to avoid race between userspace and kernelspace.
4202 */
4203 spin_lock(&memcg->event_list_lock);
4204 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4205 list_del_init(&event->list);
4206 schedule_work(&event->remove);
4207 }
4208 spin_unlock(&memcg->event_list_lock);
4209
4210 memcg_offline_kmem(memcg);
4211 wb_memcg_offline(memcg);
4212 }
4213
4214 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4215 {
4216 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4217
4218 invalidate_reclaim_iterators(memcg);
4219 }
4220
4221 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4222 {
4223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4224
4225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4226 static_branch_dec(&memcg_sockets_enabled_key);
4227
4228 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 vmpressure_cleanup(&memcg->vmpressure);
4232 cancel_work_sync(&memcg->high_work);
4233 mem_cgroup_remove_from_trees(memcg);
4234 memcg_free_kmem(memcg);
4235 mem_cgroup_free(memcg);
4236 }
4237
4238 /**
4239 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4240 * @css: the target css
4241 *
4242 * Reset the states of the mem_cgroup associated with @css. This is
4243 * invoked when the userland requests disabling on the default hierarchy
4244 * but the memcg is pinned through dependency. The memcg should stop
4245 * applying policies and should revert to the vanilla state as it may be
4246 * made visible again.
4247 *
4248 * The current implementation only resets the essential configurations.
4249 * This needs to be expanded to cover all the visible parts.
4250 */
4251 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4252 {
4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254
4255 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4256 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4257 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4258 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4260 memcg->low = 0;
4261 memcg->high = PAGE_COUNTER_MAX;
4262 memcg->soft_limit = PAGE_COUNTER_MAX;
4263 memcg_wb_domain_size_changed(memcg);
4264 }
4265
4266 #ifdef CONFIG_MMU
4267 /* Handlers for move charge at task migration. */
4268 static int mem_cgroup_do_precharge(unsigned long count)
4269 {
4270 int ret;
4271
4272 /* Try a single bulk charge without reclaim first, kswapd may wake */
4273 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4274 if (!ret) {
4275 mc.precharge += count;
4276 return ret;
4277 }
4278
4279 /* Try charges one by one with reclaim */
4280 while (count--) {
4281 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4282 if (ret)
4283 return ret;
4284 mc.precharge++;
4285 cond_resched();
4286 }
4287 return 0;
4288 }
4289
4290 /**
4291 * get_mctgt_type - get target type of moving charge
4292 * @vma: the vma the pte to be checked belongs
4293 * @addr: the address corresponding to the pte to be checked
4294 * @ptent: the pte to be checked
4295 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4296 *
4297 * Returns
4298 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4299 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4300 * move charge. if @target is not NULL, the page is stored in target->page
4301 * with extra refcnt got(Callers should handle it).
4302 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4303 * target for charge migration. if @target is not NULL, the entry is stored
4304 * in target->ent.
4305 *
4306 * Called with pte lock held.
4307 */
4308 union mc_target {
4309 struct page *page;
4310 swp_entry_t ent;
4311 };
4312
4313 enum mc_target_type {
4314 MC_TARGET_NONE = 0,
4315 MC_TARGET_PAGE,
4316 MC_TARGET_SWAP,
4317 };
4318
4319 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4320 unsigned long addr, pte_t ptent)
4321 {
4322 struct page *page = vm_normal_page(vma, addr, ptent);
4323
4324 if (!page || !page_mapped(page))
4325 return NULL;
4326 if (PageAnon(page)) {
4327 if (!(mc.flags & MOVE_ANON))
4328 return NULL;
4329 } else {
4330 if (!(mc.flags & MOVE_FILE))
4331 return NULL;
4332 }
4333 if (!get_page_unless_zero(page))
4334 return NULL;
4335
4336 return page;
4337 }
4338
4339 #ifdef CONFIG_SWAP
4340 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4341 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4342 {
4343 struct page *page = NULL;
4344 swp_entry_t ent = pte_to_swp_entry(ptent);
4345
4346 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4347 return NULL;
4348 /*
4349 * Because lookup_swap_cache() updates some statistics counter,
4350 * we call find_get_page() with swapper_space directly.
4351 */
4352 page = find_get_page(swap_address_space(ent), ent.val);
4353 if (do_memsw_account())
4354 entry->val = ent.val;
4355
4356 return page;
4357 }
4358 #else
4359 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4360 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4361 {
4362 return NULL;
4363 }
4364 #endif
4365
4366 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4367 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4368 {
4369 struct page *page = NULL;
4370 struct address_space *mapping;
4371 pgoff_t pgoff;
4372
4373 if (!vma->vm_file) /* anonymous vma */
4374 return NULL;
4375 if (!(mc.flags & MOVE_FILE))
4376 return NULL;
4377
4378 mapping = vma->vm_file->f_mapping;
4379 pgoff = linear_page_index(vma, addr);
4380
4381 /* page is moved even if it's not RSS of this task(page-faulted). */
4382 #ifdef CONFIG_SWAP
4383 /* shmem/tmpfs may report page out on swap: account for that too. */
4384 if (shmem_mapping(mapping)) {
4385 page = find_get_entry(mapping, pgoff);
4386 if (radix_tree_exceptional_entry(page)) {
4387 swp_entry_t swp = radix_to_swp_entry(page);
4388 if (do_memsw_account())
4389 *entry = swp;
4390 page = find_get_page(swap_address_space(swp), swp.val);
4391 }
4392 } else
4393 page = find_get_page(mapping, pgoff);
4394 #else
4395 page = find_get_page(mapping, pgoff);
4396 #endif
4397 return page;
4398 }
4399
4400 /**
4401 * mem_cgroup_move_account - move account of the page
4402 * @page: the page
4403 * @nr_pages: number of regular pages (>1 for huge pages)
4404 * @from: mem_cgroup which the page is moved from.
4405 * @to: mem_cgroup which the page is moved to. @from != @to.
4406 *
4407 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4408 *
4409 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4410 * from old cgroup.
4411 */
4412 static int mem_cgroup_move_account(struct page *page,
4413 bool compound,
4414 struct mem_cgroup *from,
4415 struct mem_cgroup *to)
4416 {
4417 unsigned long flags;
4418 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4419 int ret;
4420 bool anon;
4421
4422 VM_BUG_ON(from == to);
4423 VM_BUG_ON_PAGE(PageLRU(page), page);
4424 VM_BUG_ON(compound && !PageTransHuge(page));
4425
4426 /*
4427 * Prevent mem_cgroup_migrate() from looking at
4428 * page->mem_cgroup of its source page while we change it.
4429 */
4430 ret = -EBUSY;
4431 if (!trylock_page(page))
4432 goto out;
4433
4434 ret = -EINVAL;
4435 if (page->mem_cgroup != from)
4436 goto out_unlock;
4437
4438 anon = PageAnon(page);
4439
4440 spin_lock_irqsave(&from->move_lock, flags);
4441
4442 if (!anon && page_mapped(page)) {
4443 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4444 nr_pages);
4445 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4446 nr_pages);
4447 }
4448
4449 /*
4450 * move_lock grabbed above and caller set from->moving_account, so
4451 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4452 * So mapping should be stable for dirty pages.
4453 */
4454 if (!anon && PageDirty(page)) {
4455 struct address_space *mapping = page_mapping(page);
4456
4457 if (mapping_cap_account_dirty(mapping)) {
4458 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4459 nr_pages);
4460 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4461 nr_pages);
4462 }
4463 }
4464
4465 if (PageWriteback(page)) {
4466 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4467 nr_pages);
4468 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4469 nr_pages);
4470 }
4471
4472 /*
4473 * It is safe to change page->mem_cgroup here because the page
4474 * is referenced, charged, and isolated - we can't race with
4475 * uncharging, charging, migration, or LRU putback.
4476 */
4477
4478 /* caller should have done css_get */
4479 page->mem_cgroup = to;
4480 spin_unlock_irqrestore(&from->move_lock, flags);
4481
4482 ret = 0;
4483
4484 local_irq_disable();
4485 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4486 memcg_check_events(to, page);
4487 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4488 memcg_check_events(from, page);
4489 local_irq_enable();
4490 out_unlock:
4491 unlock_page(page);
4492 out:
4493 return ret;
4494 }
4495
4496 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4497 unsigned long addr, pte_t ptent, union mc_target *target)
4498 {
4499 struct page *page = NULL;
4500 enum mc_target_type ret = MC_TARGET_NONE;
4501 swp_entry_t ent = { .val = 0 };
4502
4503 if (pte_present(ptent))
4504 page = mc_handle_present_pte(vma, addr, ptent);
4505 else if (is_swap_pte(ptent))
4506 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4507 else if (pte_none(ptent))
4508 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4509
4510 if (!page && !ent.val)
4511 return ret;
4512 if (page) {
4513 /*
4514 * Do only loose check w/o serialization.
4515 * mem_cgroup_move_account() checks the page is valid or
4516 * not under LRU exclusion.
4517 */
4518 if (page->mem_cgroup == mc.from) {
4519 ret = MC_TARGET_PAGE;
4520 if (target)
4521 target->page = page;
4522 }
4523 if (!ret || !target)
4524 put_page(page);
4525 }
4526 /* There is a swap entry and a page doesn't exist or isn't charged */
4527 if (ent.val && !ret &&
4528 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4529 ret = MC_TARGET_SWAP;
4530 if (target)
4531 target->ent = ent;
4532 }
4533 return ret;
4534 }
4535
4536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4537 /*
4538 * We don't consider swapping or file mapped pages because THP does not
4539 * support them for now.
4540 * Caller should make sure that pmd_trans_huge(pmd) is true.
4541 */
4542 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4543 unsigned long addr, pmd_t pmd, union mc_target *target)
4544 {
4545 struct page *page = NULL;
4546 enum mc_target_type ret = MC_TARGET_NONE;
4547
4548 page = pmd_page(pmd);
4549 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4550 if (!(mc.flags & MOVE_ANON))
4551 return ret;
4552 if (page->mem_cgroup == mc.from) {
4553 ret = MC_TARGET_PAGE;
4554 if (target) {
4555 get_page(page);
4556 target->page = page;
4557 }
4558 }
4559 return ret;
4560 }
4561 #else
4562 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4563 unsigned long addr, pmd_t pmd, union mc_target *target)
4564 {
4565 return MC_TARGET_NONE;
4566 }
4567 #endif
4568
4569 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4570 unsigned long addr, unsigned long end,
4571 struct mm_walk *walk)
4572 {
4573 struct vm_area_struct *vma = walk->vma;
4574 pte_t *pte;
4575 spinlock_t *ptl;
4576
4577 ptl = pmd_trans_huge_lock(pmd, vma);
4578 if (ptl) {
4579 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4580 mc.precharge += HPAGE_PMD_NR;
4581 spin_unlock(ptl);
4582 return 0;
4583 }
4584
4585 if (pmd_trans_unstable(pmd))
4586 return 0;
4587 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4588 for (; addr != end; pte++, addr += PAGE_SIZE)
4589 if (get_mctgt_type(vma, addr, *pte, NULL))
4590 mc.precharge++; /* increment precharge temporarily */
4591 pte_unmap_unlock(pte - 1, ptl);
4592 cond_resched();
4593
4594 return 0;
4595 }
4596
4597 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4598 {
4599 unsigned long precharge;
4600
4601 struct mm_walk mem_cgroup_count_precharge_walk = {
4602 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4603 .mm = mm,
4604 };
4605 down_read(&mm->mmap_sem);
4606 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4607 up_read(&mm->mmap_sem);
4608
4609 precharge = mc.precharge;
4610 mc.precharge = 0;
4611
4612 return precharge;
4613 }
4614
4615 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4616 {
4617 unsigned long precharge = mem_cgroup_count_precharge(mm);
4618
4619 VM_BUG_ON(mc.moving_task);
4620 mc.moving_task = current;
4621 return mem_cgroup_do_precharge(precharge);
4622 }
4623
4624 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4625 static void __mem_cgroup_clear_mc(void)
4626 {
4627 struct mem_cgroup *from = mc.from;
4628 struct mem_cgroup *to = mc.to;
4629
4630 /* we must uncharge all the leftover precharges from mc.to */
4631 if (mc.precharge) {
4632 cancel_charge(mc.to, mc.precharge);
4633 mc.precharge = 0;
4634 }
4635 /*
4636 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4637 * we must uncharge here.
4638 */
4639 if (mc.moved_charge) {
4640 cancel_charge(mc.from, mc.moved_charge);
4641 mc.moved_charge = 0;
4642 }
4643 /* we must fixup refcnts and charges */
4644 if (mc.moved_swap) {
4645 /* uncharge swap account from the old cgroup */
4646 if (!mem_cgroup_is_root(mc.from))
4647 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4648
4649 /*
4650 * we charged both to->memory and to->memsw, so we
4651 * should uncharge to->memory.
4652 */
4653 if (!mem_cgroup_is_root(mc.to))
4654 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4655
4656 css_put_many(&mc.from->css, mc.moved_swap);
4657
4658 /* we've already done css_get(mc.to) */
4659 mc.moved_swap = 0;
4660 }
4661 memcg_oom_recover(from);
4662 memcg_oom_recover(to);
4663 wake_up_all(&mc.waitq);
4664 }
4665
4666 static void mem_cgroup_clear_mc(void)
4667 {
4668 struct mm_struct *mm = mc.mm;
4669
4670 /*
4671 * we must clear moving_task before waking up waiters at the end of
4672 * task migration.
4673 */
4674 mc.moving_task = NULL;
4675 __mem_cgroup_clear_mc();
4676 spin_lock(&mc.lock);
4677 mc.from = NULL;
4678 mc.to = NULL;
4679 mc.mm = NULL;
4680 spin_unlock(&mc.lock);
4681
4682 mmput(mm);
4683 }
4684
4685 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4686 {
4687 struct cgroup_subsys_state *css;
4688 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4689 struct mem_cgroup *from;
4690 struct task_struct *leader, *p;
4691 struct mm_struct *mm;
4692 unsigned long move_flags;
4693 int ret = 0;
4694
4695 /* charge immigration isn't supported on the default hierarchy */
4696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4697 return 0;
4698
4699 /*
4700 * Multi-process migrations only happen on the default hierarchy
4701 * where charge immigration is not used. Perform charge
4702 * immigration if @tset contains a leader and whine if there are
4703 * multiple.
4704 */
4705 p = NULL;
4706 cgroup_taskset_for_each_leader(leader, css, tset) {
4707 WARN_ON_ONCE(p);
4708 p = leader;
4709 memcg = mem_cgroup_from_css(css);
4710 }
4711 if (!p)
4712 return 0;
4713
4714 /*
4715 * We are now commited to this value whatever it is. Changes in this
4716 * tunable will only affect upcoming migrations, not the current one.
4717 * So we need to save it, and keep it going.
4718 */
4719 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4720 if (!move_flags)
4721 return 0;
4722
4723 from = mem_cgroup_from_task(p);
4724
4725 VM_BUG_ON(from == memcg);
4726
4727 mm = get_task_mm(p);
4728 if (!mm)
4729 return 0;
4730 /* We move charges only when we move a owner of the mm */
4731 if (mm->owner == p) {
4732 VM_BUG_ON(mc.from);
4733 VM_BUG_ON(mc.to);
4734 VM_BUG_ON(mc.precharge);
4735 VM_BUG_ON(mc.moved_charge);
4736 VM_BUG_ON(mc.moved_swap);
4737
4738 spin_lock(&mc.lock);
4739 mc.mm = mm;
4740 mc.from = from;
4741 mc.to = memcg;
4742 mc.flags = move_flags;
4743 spin_unlock(&mc.lock);
4744 /* We set mc.moving_task later */
4745
4746 ret = mem_cgroup_precharge_mc(mm);
4747 if (ret)
4748 mem_cgroup_clear_mc();
4749 } else {
4750 mmput(mm);
4751 }
4752 return ret;
4753 }
4754
4755 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4756 {
4757 if (mc.to)
4758 mem_cgroup_clear_mc();
4759 }
4760
4761 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4762 unsigned long addr, unsigned long end,
4763 struct mm_walk *walk)
4764 {
4765 int ret = 0;
4766 struct vm_area_struct *vma = walk->vma;
4767 pte_t *pte;
4768 spinlock_t *ptl;
4769 enum mc_target_type target_type;
4770 union mc_target target;
4771 struct page *page;
4772
4773 ptl = pmd_trans_huge_lock(pmd, vma);
4774 if (ptl) {
4775 if (mc.precharge < HPAGE_PMD_NR) {
4776 spin_unlock(ptl);
4777 return 0;
4778 }
4779 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4780 if (target_type == MC_TARGET_PAGE) {
4781 page = target.page;
4782 if (!isolate_lru_page(page)) {
4783 if (!mem_cgroup_move_account(page, true,
4784 mc.from, mc.to)) {
4785 mc.precharge -= HPAGE_PMD_NR;
4786 mc.moved_charge += HPAGE_PMD_NR;
4787 }
4788 putback_lru_page(page);
4789 }
4790 put_page(page);
4791 }
4792 spin_unlock(ptl);
4793 return 0;
4794 }
4795
4796 if (pmd_trans_unstable(pmd))
4797 return 0;
4798 retry:
4799 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4800 for (; addr != end; addr += PAGE_SIZE) {
4801 pte_t ptent = *(pte++);
4802 swp_entry_t ent;
4803
4804 if (!mc.precharge)
4805 break;
4806
4807 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4808 case MC_TARGET_PAGE:
4809 page = target.page;
4810 /*
4811 * We can have a part of the split pmd here. Moving it
4812 * can be done but it would be too convoluted so simply
4813 * ignore such a partial THP and keep it in original
4814 * memcg. There should be somebody mapping the head.
4815 */
4816 if (PageTransCompound(page))
4817 goto put;
4818 if (isolate_lru_page(page))
4819 goto put;
4820 if (!mem_cgroup_move_account(page, false,
4821 mc.from, mc.to)) {
4822 mc.precharge--;
4823 /* we uncharge from mc.from later. */
4824 mc.moved_charge++;
4825 }
4826 putback_lru_page(page);
4827 put: /* get_mctgt_type() gets the page */
4828 put_page(page);
4829 break;
4830 case MC_TARGET_SWAP:
4831 ent = target.ent;
4832 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4833 mc.precharge--;
4834 /* we fixup refcnts and charges later. */
4835 mc.moved_swap++;
4836 }
4837 break;
4838 default:
4839 break;
4840 }
4841 }
4842 pte_unmap_unlock(pte - 1, ptl);
4843 cond_resched();
4844
4845 if (addr != end) {
4846 /*
4847 * We have consumed all precharges we got in can_attach().
4848 * We try charge one by one, but don't do any additional
4849 * charges to mc.to if we have failed in charge once in attach()
4850 * phase.
4851 */
4852 ret = mem_cgroup_do_precharge(1);
4853 if (!ret)
4854 goto retry;
4855 }
4856
4857 return ret;
4858 }
4859
4860 static void mem_cgroup_move_charge(void)
4861 {
4862 struct mm_walk mem_cgroup_move_charge_walk = {
4863 .pmd_entry = mem_cgroup_move_charge_pte_range,
4864 .mm = mc.mm,
4865 };
4866
4867 lru_add_drain_all();
4868 /*
4869 * Signal lock_page_memcg() to take the memcg's move_lock
4870 * while we're moving its pages to another memcg. Then wait
4871 * for already started RCU-only updates to finish.
4872 */
4873 atomic_inc(&mc.from->moving_account);
4874 synchronize_rcu();
4875 retry:
4876 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4877 /*
4878 * Someone who are holding the mmap_sem might be waiting in
4879 * waitq. So we cancel all extra charges, wake up all waiters,
4880 * and retry. Because we cancel precharges, we might not be able
4881 * to move enough charges, but moving charge is a best-effort
4882 * feature anyway, so it wouldn't be a big problem.
4883 */
4884 __mem_cgroup_clear_mc();
4885 cond_resched();
4886 goto retry;
4887 }
4888 /*
4889 * When we have consumed all precharges and failed in doing
4890 * additional charge, the page walk just aborts.
4891 */
4892 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4893 up_read(&mc.mm->mmap_sem);
4894 atomic_dec(&mc.from->moving_account);
4895 }
4896
4897 static void mem_cgroup_move_task(void)
4898 {
4899 if (mc.to) {
4900 mem_cgroup_move_charge();
4901 mem_cgroup_clear_mc();
4902 }
4903 }
4904 #else /* !CONFIG_MMU */
4905 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4906 {
4907 return 0;
4908 }
4909 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4910 {
4911 }
4912 static void mem_cgroup_move_task(void)
4913 {
4914 }
4915 #endif
4916
4917 /*
4918 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4919 * to verify whether we're attached to the default hierarchy on each mount
4920 * attempt.
4921 */
4922 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4923 {
4924 /*
4925 * use_hierarchy is forced on the default hierarchy. cgroup core
4926 * guarantees that @root doesn't have any children, so turning it
4927 * on for the root memcg is enough.
4928 */
4929 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4930 root_mem_cgroup->use_hierarchy = true;
4931 else
4932 root_mem_cgroup->use_hierarchy = false;
4933 }
4934
4935 static u64 memory_current_read(struct cgroup_subsys_state *css,
4936 struct cftype *cft)
4937 {
4938 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4939
4940 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4941 }
4942
4943 static int memory_low_show(struct seq_file *m, void *v)
4944 {
4945 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4946 unsigned long low = READ_ONCE(memcg->low);
4947
4948 if (low == PAGE_COUNTER_MAX)
4949 seq_puts(m, "max\n");
4950 else
4951 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4952
4953 return 0;
4954 }
4955
4956 static ssize_t memory_low_write(struct kernfs_open_file *of,
4957 char *buf, size_t nbytes, loff_t off)
4958 {
4959 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4960 unsigned long low;
4961 int err;
4962
4963 buf = strstrip(buf);
4964 err = page_counter_memparse(buf, "max", &low);
4965 if (err)
4966 return err;
4967
4968 memcg->low = low;
4969
4970 return nbytes;
4971 }
4972
4973 static int memory_high_show(struct seq_file *m, void *v)
4974 {
4975 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4976 unsigned long high = READ_ONCE(memcg->high);
4977
4978 if (high == PAGE_COUNTER_MAX)
4979 seq_puts(m, "max\n");
4980 else
4981 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4982
4983 return 0;
4984 }
4985
4986 static ssize_t memory_high_write(struct kernfs_open_file *of,
4987 char *buf, size_t nbytes, loff_t off)
4988 {
4989 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4990 unsigned long nr_pages;
4991 unsigned long high;
4992 int err;
4993
4994 buf = strstrip(buf);
4995 err = page_counter_memparse(buf, "max", &high);
4996 if (err)
4997 return err;
4998
4999 memcg->high = high;
5000
5001 nr_pages = page_counter_read(&memcg->memory);
5002 if (nr_pages > high)
5003 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5004 GFP_KERNEL, true);
5005
5006 memcg_wb_domain_size_changed(memcg);
5007 return nbytes;
5008 }
5009
5010 static int memory_max_show(struct seq_file *m, void *v)
5011 {
5012 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5013 unsigned long max = READ_ONCE(memcg->memory.limit);
5014
5015 if (max == PAGE_COUNTER_MAX)
5016 seq_puts(m, "max\n");
5017 else
5018 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5019
5020 return 0;
5021 }
5022
5023 static ssize_t memory_max_write(struct kernfs_open_file *of,
5024 char *buf, size_t nbytes, loff_t off)
5025 {
5026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5027 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5028 bool drained = false;
5029 unsigned long max;
5030 int err;
5031
5032 buf = strstrip(buf);
5033 err = page_counter_memparse(buf, "max", &max);
5034 if (err)
5035 return err;
5036
5037 xchg(&memcg->memory.limit, max);
5038
5039 for (;;) {
5040 unsigned long nr_pages = page_counter_read(&memcg->memory);
5041
5042 if (nr_pages <= max)
5043 break;
5044
5045 if (signal_pending(current)) {
5046 err = -EINTR;
5047 break;
5048 }
5049
5050 if (!drained) {
5051 drain_all_stock(memcg);
5052 drained = true;
5053 continue;
5054 }
5055
5056 if (nr_reclaims) {
5057 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5058 GFP_KERNEL, true))
5059 nr_reclaims--;
5060 continue;
5061 }
5062
5063 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5064 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5065 break;
5066 }
5067
5068 memcg_wb_domain_size_changed(memcg);
5069 return nbytes;
5070 }
5071
5072 static int memory_events_show(struct seq_file *m, void *v)
5073 {
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5075
5076 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5077 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5078 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5079 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5080
5081 return 0;
5082 }
5083
5084 static int memory_stat_show(struct seq_file *m, void *v)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5087 unsigned long stat[MEMCG_NR_STAT];
5088 unsigned long events[MEMCG_NR_EVENTS];
5089 int i;
5090
5091 /*
5092 * Provide statistics on the state of the memory subsystem as
5093 * well as cumulative event counters that show past behavior.
5094 *
5095 * This list is ordered following a combination of these gradients:
5096 * 1) generic big picture -> specifics and details
5097 * 2) reflecting userspace activity -> reflecting kernel heuristics
5098 *
5099 * Current memory state:
5100 */
5101
5102 tree_stat(memcg, stat);
5103 tree_events(memcg, events);
5104
5105 seq_printf(m, "anon %llu\n",
5106 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5107 seq_printf(m, "file %llu\n",
5108 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5109 seq_printf(m, "kernel_stack %llu\n",
5110 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5111 seq_printf(m, "slab %llu\n",
5112 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5113 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5114 seq_printf(m, "sock %llu\n",
5115 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5116
5117 seq_printf(m, "file_mapped %llu\n",
5118 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5119 seq_printf(m, "file_dirty %llu\n",
5120 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5121 seq_printf(m, "file_writeback %llu\n",
5122 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5123
5124 for (i = 0; i < NR_LRU_LISTS; i++) {
5125 struct mem_cgroup *mi;
5126 unsigned long val = 0;
5127
5128 for_each_mem_cgroup_tree(mi, memcg)
5129 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5130 seq_printf(m, "%s %llu\n",
5131 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5132 }
5133
5134 seq_printf(m, "slab_reclaimable %llu\n",
5135 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5136 seq_printf(m, "slab_unreclaimable %llu\n",
5137 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5138
5139 /* Accumulated memory events */
5140
5141 seq_printf(m, "pgfault %lu\n",
5142 events[MEM_CGROUP_EVENTS_PGFAULT]);
5143 seq_printf(m, "pgmajfault %lu\n",
5144 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5145
5146 return 0;
5147 }
5148
5149 static struct cftype memory_files[] = {
5150 {
5151 .name = "current",
5152 .flags = CFTYPE_NOT_ON_ROOT,
5153 .read_u64 = memory_current_read,
5154 },
5155 {
5156 .name = "low",
5157 .flags = CFTYPE_NOT_ON_ROOT,
5158 .seq_show = memory_low_show,
5159 .write = memory_low_write,
5160 },
5161 {
5162 .name = "high",
5163 .flags = CFTYPE_NOT_ON_ROOT,
5164 .seq_show = memory_high_show,
5165 .write = memory_high_write,
5166 },
5167 {
5168 .name = "max",
5169 .flags = CFTYPE_NOT_ON_ROOT,
5170 .seq_show = memory_max_show,
5171 .write = memory_max_write,
5172 },
5173 {
5174 .name = "events",
5175 .flags = CFTYPE_NOT_ON_ROOT,
5176 .file_offset = offsetof(struct mem_cgroup, events_file),
5177 .seq_show = memory_events_show,
5178 },
5179 {
5180 .name = "stat",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_stat_show,
5183 },
5184 { } /* terminate */
5185 };
5186
5187 struct cgroup_subsys memory_cgrp_subsys = {
5188 .css_alloc = mem_cgroup_css_alloc,
5189 .css_online = mem_cgroup_css_online,
5190 .css_offline = mem_cgroup_css_offline,
5191 .css_released = mem_cgroup_css_released,
5192 .css_free = mem_cgroup_css_free,
5193 .css_reset = mem_cgroup_css_reset,
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
5196 .post_attach = mem_cgroup_move_task,
5197 .bind = mem_cgroup_bind,
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
5200 .early_init = 0,
5201 };
5202
5203 /**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212 {
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
5225 if (page_counter_read(&memcg->memory) >= memcg->low)
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
5234 if (page_counter_read(&memcg->memory) >= memcg->low)
5235 return false;
5236 }
5237 return true;
5238 }
5239
5240 /**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5259 bool compound)
5260 {
5261 struct mem_cgroup *memcg = NULL;
5262 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5263 int ret = 0;
5264
5265 if (mem_cgroup_disabled())
5266 goto out;
5267
5268 if (PageSwapCache(page)) {
5269 /*
5270 * Every swap fault against a single page tries to charge the
5271 * page, bail as early as possible. shmem_unuse() encounters
5272 * already charged pages, too. The USED bit is protected by
5273 * the page lock, which serializes swap cache removal, which
5274 * in turn serializes uncharging.
5275 */
5276 VM_BUG_ON_PAGE(!PageLocked(page), page);
5277 if (page->mem_cgroup)
5278 goto out;
5279
5280 if (do_swap_account) {
5281 swp_entry_t ent = { .val = page_private(page), };
5282 unsigned short id = lookup_swap_cgroup_id(ent);
5283
5284 rcu_read_lock();
5285 memcg = mem_cgroup_from_id(id);
5286 if (memcg && !css_tryget_online(&memcg->css))
5287 memcg = NULL;
5288 rcu_read_unlock();
5289 }
5290 }
5291
5292 if (!memcg)
5293 memcg = get_mem_cgroup_from_mm(mm);
5294
5295 ret = try_charge(memcg, gfp_mask, nr_pages);
5296
5297 css_put(&memcg->css);
5298 out:
5299 *memcgp = memcg;
5300 return ret;
5301 }
5302
5303 /**
5304 * mem_cgroup_commit_charge - commit a page charge
5305 * @page: page to charge
5306 * @memcg: memcg to charge the page to
5307 * @lrucare: page might be on LRU already
5308 *
5309 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5310 * after page->mapping has been set up. This must happen atomically
5311 * as part of the page instantiation, i.e. under the page table lock
5312 * for anonymous pages, under the page lock for page and swap cache.
5313 *
5314 * In addition, the page must not be on the LRU during the commit, to
5315 * prevent racing with task migration. If it might be, use @lrucare.
5316 *
5317 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5318 */
5319 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5320 bool lrucare, bool compound)
5321 {
5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5323
5324 VM_BUG_ON_PAGE(!page->mapping, page);
5325 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5326
5327 if (mem_cgroup_disabled())
5328 return;
5329 /*
5330 * Swap faults will attempt to charge the same page multiple
5331 * times. But reuse_swap_page() might have removed the page
5332 * from swapcache already, so we can't check PageSwapCache().
5333 */
5334 if (!memcg)
5335 return;
5336
5337 commit_charge(page, memcg, lrucare);
5338
5339 local_irq_disable();
5340 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5341 memcg_check_events(memcg, page);
5342 local_irq_enable();
5343
5344 if (do_memsw_account() && PageSwapCache(page)) {
5345 swp_entry_t entry = { .val = page_private(page) };
5346 /*
5347 * The swap entry might not get freed for a long time,
5348 * let's not wait for it. The page already received a
5349 * memory+swap charge, drop the swap entry duplicate.
5350 */
5351 mem_cgroup_uncharge_swap(entry);
5352 }
5353 }
5354
5355 /**
5356 * mem_cgroup_cancel_charge - cancel a page charge
5357 * @page: page to charge
5358 * @memcg: memcg to charge the page to
5359 *
5360 * Cancel a charge transaction started by mem_cgroup_try_charge().
5361 */
5362 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5363 bool compound)
5364 {
5365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5366
5367 if (mem_cgroup_disabled())
5368 return;
5369 /*
5370 * Swap faults will attempt to charge the same page multiple
5371 * times. But reuse_swap_page() might have removed the page
5372 * from swapcache already, so we can't check PageSwapCache().
5373 */
5374 if (!memcg)
5375 return;
5376
5377 cancel_charge(memcg, nr_pages);
5378 }
5379
5380 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5381 unsigned long nr_anon, unsigned long nr_file,
5382 unsigned long nr_huge, struct page *dummy_page)
5383 {
5384 unsigned long nr_pages = nr_anon + nr_file;
5385 unsigned long flags;
5386
5387 if (!mem_cgroup_is_root(memcg)) {
5388 page_counter_uncharge(&memcg->memory, nr_pages);
5389 if (do_memsw_account())
5390 page_counter_uncharge(&memcg->memsw, nr_pages);
5391 memcg_oom_recover(memcg);
5392 }
5393
5394 local_irq_save(flags);
5395 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5398 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5399 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5400 memcg_check_events(memcg, dummy_page);
5401 local_irq_restore(flags);
5402
5403 if (!mem_cgroup_is_root(memcg))
5404 css_put_many(&memcg->css, nr_pages);
5405 }
5406
5407 static void uncharge_list(struct list_head *page_list)
5408 {
5409 struct mem_cgroup *memcg = NULL;
5410 unsigned long nr_anon = 0;
5411 unsigned long nr_file = 0;
5412 unsigned long nr_huge = 0;
5413 unsigned long pgpgout = 0;
5414 struct list_head *next;
5415 struct page *page;
5416
5417 /*
5418 * Note that the list can be a single page->lru; hence the
5419 * do-while loop instead of a simple list_for_each_entry().
5420 */
5421 next = page_list->next;
5422 do {
5423 unsigned int nr_pages = 1;
5424
5425 page = list_entry(next, struct page, lru);
5426 next = page->lru.next;
5427
5428 VM_BUG_ON_PAGE(PageLRU(page), page);
5429 VM_BUG_ON_PAGE(page_count(page), page);
5430
5431 if (!page->mem_cgroup)
5432 continue;
5433
5434 /*
5435 * Nobody should be changing or seriously looking at
5436 * page->mem_cgroup at this point, we have fully
5437 * exclusive access to the page.
5438 */
5439
5440 if (memcg != page->mem_cgroup) {
5441 if (memcg) {
5442 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5443 nr_huge, page);
5444 pgpgout = nr_anon = nr_file = nr_huge = 0;
5445 }
5446 memcg = page->mem_cgroup;
5447 }
5448
5449 if (PageTransHuge(page)) {
5450 nr_pages <<= compound_order(page);
5451 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5452 nr_huge += nr_pages;
5453 }
5454
5455 if (PageAnon(page))
5456 nr_anon += nr_pages;
5457 else
5458 nr_file += nr_pages;
5459
5460 page->mem_cgroup = NULL;
5461
5462 pgpgout++;
5463 } while (next != page_list);
5464
5465 if (memcg)
5466 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5467 nr_huge, page);
5468 }
5469
5470 /**
5471 * mem_cgroup_uncharge - uncharge a page
5472 * @page: page to uncharge
5473 *
5474 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5475 * mem_cgroup_commit_charge().
5476 */
5477 void mem_cgroup_uncharge(struct page *page)
5478 {
5479 if (mem_cgroup_disabled())
5480 return;
5481
5482 /* Don't touch page->lru of any random page, pre-check: */
5483 if (!page->mem_cgroup)
5484 return;
5485
5486 INIT_LIST_HEAD(&page->lru);
5487 uncharge_list(&page->lru);
5488 }
5489
5490 /**
5491 * mem_cgroup_uncharge_list - uncharge a list of page
5492 * @page_list: list of pages to uncharge
5493 *
5494 * Uncharge a list of pages previously charged with
5495 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5496 */
5497 void mem_cgroup_uncharge_list(struct list_head *page_list)
5498 {
5499 if (mem_cgroup_disabled())
5500 return;
5501
5502 if (!list_empty(page_list))
5503 uncharge_list(page_list);
5504 }
5505
5506 /**
5507 * mem_cgroup_migrate - charge a page's replacement
5508 * @oldpage: currently circulating page
5509 * @newpage: replacement page
5510 *
5511 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5512 * be uncharged upon free.
5513 *
5514 * Both pages must be locked, @newpage->mapping must be set up.
5515 */
5516 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5517 {
5518 struct mem_cgroup *memcg;
5519 unsigned int nr_pages;
5520 bool compound;
5521
5522 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5523 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5524 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5525 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5526 newpage);
5527
5528 if (mem_cgroup_disabled())
5529 return;
5530
5531 /* Page cache replacement: new page already charged? */
5532 if (newpage->mem_cgroup)
5533 return;
5534
5535 /* Swapcache readahead pages can get replaced before being charged */
5536 memcg = oldpage->mem_cgroup;
5537 if (!memcg)
5538 return;
5539
5540 /* Force-charge the new page. The old one will be freed soon */
5541 compound = PageTransHuge(newpage);
5542 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5543
5544 page_counter_charge(&memcg->memory, nr_pages);
5545 if (do_memsw_account())
5546 page_counter_charge(&memcg->memsw, nr_pages);
5547 css_get_many(&memcg->css, nr_pages);
5548
5549 commit_charge(newpage, memcg, false);
5550
5551 local_irq_disable();
5552 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5553 memcg_check_events(memcg, newpage);
5554 local_irq_enable();
5555 }
5556
5557 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5558 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5559
5560 void sock_update_memcg(struct sock *sk)
5561 {
5562 struct mem_cgroup *memcg;
5563
5564 /* Socket cloning can throw us here with sk_cgrp already
5565 * filled. It won't however, necessarily happen from
5566 * process context. So the test for root memcg given
5567 * the current task's memcg won't help us in this case.
5568 *
5569 * Respecting the original socket's memcg is a better
5570 * decision in this case.
5571 */
5572 if (sk->sk_memcg) {
5573 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5574 css_get(&sk->sk_memcg->css);
5575 return;
5576 }
5577
5578 rcu_read_lock();
5579 memcg = mem_cgroup_from_task(current);
5580 if (memcg == root_mem_cgroup)
5581 goto out;
5582 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5583 goto out;
5584 if (css_tryget_online(&memcg->css))
5585 sk->sk_memcg = memcg;
5586 out:
5587 rcu_read_unlock();
5588 }
5589 EXPORT_SYMBOL(sock_update_memcg);
5590
5591 void sock_release_memcg(struct sock *sk)
5592 {
5593 WARN_ON(!sk->sk_memcg);
5594 css_put(&sk->sk_memcg->css);
5595 }
5596
5597 /**
5598 * mem_cgroup_charge_skmem - charge socket memory
5599 * @memcg: memcg to charge
5600 * @nr_pages: number of pages to charge
5601 *
5602 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5603 * @memcg's configured limit, %false if the charge had to be forced.
5604 */
5605 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5606 {
5607 gfp_t gfp_mask = GFP_KERNEL;
5608
5609 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5610 struct page_counter *fail;
5611
5612 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5613 memcg->tcpmem_pressure = 0;
5614 return true;
5615 }
5616 page_counter_charge(&memcg->tcpmem, nr_pages);
5617 memcg->tcpmem_pressure = 1;
5618 return false;
5619 }
5620
5621 /* Don't block in the packet receive path */
5622 if (in_softirq())
5623 gfp_mask = GFP_NOWAIT;
5624
5625 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5626
5627 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5628 return true;
5629
5630 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5631 return false;
5632 }
5633
5634 /**
5635 * mem_cgroup_uncharge_skmem - uncharge socket memory
5636 * @memcg - memcg to uncharge
5637 * @nr_pages - number of pages to uncharge
5638 */
5639 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5640 {
5641 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5642 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5643 return;
5644 }
5645
5646 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5647
5648 page_counter_uncharge(&memcg->memory, nr_pages);
5649 css_put_many(&memcg->css, nr_pages);
5650 }
5651
5652 static int __init cgroup_memory(char *s)
5653 {
5654 char *token;
5655
5656 while ((token = strsep(&s, ",")) != NULL) {
5657 if (!*token)
5658 continue;
5659 if (!strcmp(token, "nosocket"))
5660 cgroup_memory_nosocket = true;
5661 if (!strcmp(token, "nokmem"))
5662 cgroup_memory_nokmem = true;
5663 }
5664 return 0;
5665 }
5666 __setup("cgroup.memory=", cgroup_memory);
5667
5668 /*
5669 * subsys_initcall() for memory controller.
5670 *
5671 * Some parts like hotcpu_notifier() have to be initialized from this context
5672 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5673 * everything that doesn't depend on a specific mem_cgroup structure should
5674 * be initialized from here.
5675 */
5676 static int __init mem_cgroup_init(void)
5677 {
5678 int cpu, node;
5679
5680 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5681
5682 for_each_possible_cpu(cpu)
5683 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5684 drain_local_stock);
5685
5686 for_each_node(node) {
5687 struct mem_cgroup_tree_per_node *rtpn;
5688 int zone;
5689
5690 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5691 node_online(node) ? node : NUMA_NO_NODE);
5692
5693 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5694 struct mem_cgroup_tree_per_zone *rtpz;
5695
5696 rtpz = &rtpn->rb_tree_per_zone[zone];
5697 rtpz->rb_root = RB_ROOT;
5698 spin_lock_init(&rtpz->lock);
5699 }
5700 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5701 }
5702
5703 return 0;
5704 }
5705 subsys_initcall(mem_cgroup_init);
5706
5707 #ifdef CONFIG_MEMCG_SWAP
5708 /**
5709 * mem_cgroup_swapout - transfer a memsw charge to swap
5710 * @page: page whose memsw charge to transfer
5711 * @entry: swap entry to move the charge to
5712 *
5713 * Transfer the memsw charge of @page to @entry.
5714 */
5715 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5716 {
5717 struct mem_cgroup *memcg;
5718 unsigned short oldid;
5719
5720 VM_BUG_ON_PAGE(PageLRU(page), page);
5721 VM_BUG_ON_PAGE(page_count(page), page);
5722
5723 if (!do_memsw_account())
5724 return;
5725
5726 memcg = page->mem_cgroup;
5727
5728 /* Readahead page, never charged */
5729 if (!memcg)
5730 return;
5731
5732 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5733 VM_BUG_ON_PAGE(oldid, page);
5734 mem_cgroup_swap_statistics(memcg, true);
5735
5736 page->mem_cgroup = NULL;
5737
5738 if (!mem_cgroup_is_root(memcg))
5739 page_counter_uncharge(&memcg->memory, 1);
5740
5741 /*
5742 * Interrupts should be disabled here because the caller holds the
5743 * mapping->tree_lock lock which is taken with interrupts-off. It is
5744 * important here to have the interrupts disabled because it is the
5745 * only synchronisation we have for udpating the per-CPU variables.
5746 */
5747 VM_BUG_ON(!irqs_disabled());
5748 mem_cgroup_charge_statistics(memcg, page, false, -1);
5749 memcg_check_events(memcg, page);
5750 }
5751
5752 /*
5753 * mem_cgroup_try_charge_swap - try charging a swap entry
5754 * @page: page being added to swap
5755 * @entry: swap entry to charge
5756 *
5757 * Try to charge @entry to the memcg that @page belongs to.
5758 *
5759 * Returns 0 on success, -ENOMEM on failure.
5760 */
5761 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5762 {
5763 struct mem_cgroup *memcg;
5764 struct page_counter *counter;
5765 unsigned short oldid;
5766
5767 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5768 return 0;
5769
5770 memcg = page->mem_cgroup;
5771
5772 /* Readahead page, never charged */
5773 if (!memcg)
5774 return 0;
5775
5776 if (!mem_cgroup_is_root(memcg) &&
5777 !page_counter_try_charge(&memcg->swap, 1, &counter))
5778 return -ENOMEM;
5779
5780 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5781 VM_BUG_ON_PAGE(oldid, page);
5782 mem_cgroup_swap_statistics(memcg, true);
5783
5784 css_get(&memcg->css);
5785 return 0;
5786 }
5787
5788 /**
5789 * mem_cgroup_uncharge_swap - uncharge a swap entry
5790 * @entry: swap entry to uncharge
5791 *
5792 * Drop the swap charge associated with @entry.
5793 */
5794 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5795 {
5796 struct mem_cgroup *memcg;
5797 unsigned short id;
5798
5799 if (!do_swap_account)
5800 return;
5801
5802 id = swap_cgroup_record(entry, 0);
5803 rcu_read_lock();
5804 memcg = mem_cgroup_from_id(id);
5805 if (memcg) {
5806 if (!mem_cgroup_is_root(memcg)) {
5807 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5808 page_counter_uncharge(&memcg->swap, 1);
5809 else
5810 page_counter_uncharge(&memcg->memsw, 1);
5811 }
5812 mem_cgroup_swap_statistics(memcg, false);
5813 css_put(&memcg->css);
5814 }
5815 rcu_read_unlock();
5816 }
5817
5818 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5819 {
5820 long nr_swap_pages = get_nr_swap_pages();
5821
5822 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5823 return nr_swap_pages;
5824 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5825 nr_swap_pages = min_t(long, nr_swap_pages,
5826 READ_ONCE(memcg->swap.limit) -
5827 page_counter_read(&memcg->swap));
5828 return nr_swap_pages;
5829 }
5830
5831 bool mem_cgroup_swap_full(struct page *page)
5832 {
5833 struct mem_cgroup *memcg;
5834
5835 VM_BUG_ON_PAGE(!PageLocked(page), page);
5836
5837 if (vm_swap_full())
5838 return true;
5839 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5840 return false;
5841
5842 memcg = page->mem_cgroup;
5843 if (!memcg)
5844 return false;
5845
5846 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5847 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5848 return true;
5849
5850 return false;
5851 }
5852
5853 /* for remember boot option*/
5854 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5855 static int really_do_swap_account __initdata = 1;
5856 #else
5857 static int really_do_swap_account __initdata;
5858 #endif
5859
5860 static int __init enable_swap_account(char *s)
5861 {
5862 if (!strcmp(s, "1"))
5863 really_do_swap_account = 1;
5864 else if (!strcmp(s, "0"))
5865 really_do_swap_account = 0;
5866 return 1;
5867 }
5868 __setup("swapaccount=", enable_swap_account);
5869
5870 static u64 swap_current_read(struct cgroup_subsys_state *css,
5871 struct cftype *cft)
5872 {
5873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5874
5875 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5876 }
5877
5878 static int swap_max_show(struct seq_file *m, void *v)
5879 {
5880 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5881 unsigned long max = READ_ONCE(memcg->swap.limit);
5882
5883 if (max == PAGE_COUNTER_MAX)
5884 seq_puts(m, "max\n");
5885 else
5886 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5887
5888 return 0;
5889 }
5890
5891 static ssize_t swap_max_write(struct kernfs_open_file *of,
5892 char *buf, size_t nbytes, loff_t off)
5893 {
5894 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5895 unsigned long max;
5896 int err;
5897
5898 buf = strstrip(buf);
5899 err = page_counter_memparse(buf, "max", &max);
5900 if (err)
5901 return err;
5902
5903 mutex_lock(&memcg_limit_mutex);
5904 err = page_counter_limit(&memcg->swap, max);
5905 mutex_unlock(&memcg_limit_mutex);
5906 if (err)
5907 return err;
5908
5909 return nbytes;
5910 }
5911
5912 static struct cftype swap_files[] = {
5913 {
5914 .name = "swap.current",
5915 .flags = CFTYPE_NOT_ON_ROOT,
5916 .read_u64 = swap_current_read,
5917 },
5918 {
5919 .name = "swap.max",
5920 .flags = CFTYPE_NOT_ON_ROOT,
5921 .seq_show = swap_max_show,
5922 .write = swap_max_write,
5923 },
5924 { } /* terminate */
5925 };
5926
5927 static struct cftype memsw_cgroup_files[] = {
5928 {
5929 .name = "memsw.usage_in_bytes",
5930 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5931 .read_u64 = mem_cgroup_read_u64,
5932 },
5933 {
5934 .name = "memsw.max_usage_in_bytes",
5935 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5936 .write = mem_cgroup_reset,
5937 .read_u64 = mem_cgroup_read_u64,
5938 },
5939 {
5940 .name = "memsw.limit_in_bytes",
5941 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5942 .write = mem_cgroup_write,
5943 .read_u64 = mem_cgroup_read_u64,
5944 },
5945 {
5946 .name = "memsw.failcnt",
5947 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5948 .write = mem_cgroup_reset,
5949 .read_u64 = mem_cgroup_read_u64,
5950 },
5951 { }, /* terminate */
5952 };
5953
5954 static int __init mem_cgroup_swap_init(void)
5955 {
5956 if (!mem_cgroup_disabled() && really_do_swap_account) {
5957 do_swap_account = 1;
5958 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5959 swap_files));
5960 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5961 memsw_cgroup_files));
5962 }
5963 return 0;
5964 }
5965 subsys_initcall(mem_cgroup_swap_init);
5966
5967 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.154087 seconds and 5 git commands to generate.