Merge tag 'iommu-fixes-v4.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Whether the swap controller is active */
82 #ifdef CONFIG_MEMCG_SWAP
83 int do_swap_account __read_mostly;
84 #else
85 #define do_swap_account 0
86 #endif
87
88 static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
91 "rss_huge",
92 "mapped_file",
93 "writeback",
94 "swap",
95 };
96
97 static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102 };
103
104 static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110 };
111
112 /*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118 enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
120 MEM_CGROUP_TARGET_SOFTLIMIT,
121 MEM_CGROUP_TARGET_NUMAINFO,
122 MEM_CGROUP_NTARGETS,
123 };
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 struct mem_cgroup_stat_cpu {
129 long count[MEM_CGROUP_STAT_NSTATS];
130 unsigned long events[MEMCG_NR_EVENTS];
131 unsigned long nr_page_events;
132 unsigned long targets[MEM_CGROUP_NTARGETS];
133 };
134
135 struct reclaim_iter {
136 struct mem_cgroup *position;
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139 };
140
141 /*
142 * per-zone information in memory controller.
143 */
144 struct mem_cgroup_per_zone {
145 struct lruvec lruvec;
146 unsigned long lru_size[NR_LRU_LISTS];
147
148 struct reclaim_iter iter[DEF_PRIORITY + 1];
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160 };
161
162 /*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167 struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170 };
171
172 struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174 };
175
176 struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178 };
179
180 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
182 struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
184 unsigned long threshold;
185 };
186
187 /* For threshold */
188 struct mem_cgroup_threshold_ary {
189 /* An array index points to threshold just below or equal to usage. */
190 int current_threshold;
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195 };
196
197 struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206 };
207
208 /* for OOM */
209 struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212 };
213
214 /*
215 * cgroup_event represents events which userspace want to receive.
216 */
217 struct mem_cgroup_event {
218 /*
219 * memcg which the event belongs to.
220 */
221 struct mem_cgroup *memcg;
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
235 int (*register_event)(struct mem_cgroup *memcg,
236 struct eventfd_ctx *eventfd, const char *args);
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
242 void (*unregister_event)(struct mem_cgroup *memcg,
243 struct eventfd_ctx *eventfd);
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252 };
253
254 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256
257 /*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 */
263 struct mem_cgroup {
264 struct cgroup_subsys_state css;
265
266 /* Accounted resources */
267 struct page_counter memory;
268 struct page_counter memsw;
269 struct page_counter kmem;
270
271 /* Normal memory consumption range */
272 unsigned long low;
273 unsigned long high;
274
275 unsigned long soft_limit;
276
277 /* vmpressure notifications */
278 struct vmpressure vmpressure;
279
280 /* css_online() has been completed */
281 int initialized;
282
283 /*
284 * Should the accounting and control be hierarchical, per subtree?
285 */
286 bool use_hierarchy;
287
288 bool oom_lock;
289 atomic_t under_oom;
290 atomic_t oom_wakeups;
291
292 int swappiness;
293 /* OOM-Killer disable */
294 int oom_kill_disable;
295
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
301
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
304
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
307
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
319 struct task_struct *move_lock_task;
320 unsigned long move_lock_flags;
321 /*
322 * percpu counter.
323 */
324 struct mem_cgroup_stat_cpu __percpu *stat;
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
331
332 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333 struct cg_proto tcp_mem;
334 #endif
335 #if defined(CONFIG_MEMCG_KMEM)
336 /* Index in the kmem_cache->memcg_params.memcg_caches array */
337 int kmemcg_id;
338 bool kmem_acct_activated;
339 bool kmem_acct_active;
340 #endif
341
342 int last_scanned_node;
343 #if MAX_NUMNODES > 1
344 nodemask_t scan_nodes;
345 atomic_t numainfo_events;
346 atomic_t numainfo_updating;
347 #endif
348
349 /* List of events which userspace want to receive */
350 struct list_head event_list;
351 spinlock_t event_list_lock;
352
353 struct mem_cgroup_per_node *nodeinfo[0];
354 /* WARNING: nodeinfo must be the last member here */
355 };
356
357 #ifdef CONFIG_MEMCG_KMEM
358 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359 {
360 return memcg->kmem_acct_active;
361 }
362 #endif
363
364 /* Stuffs for move charges at task migration. */
365 /*
366 * Types of charges to be moved.
367 */
368 #define MOVE_ANON 0x1U
369 #define MOVE_FILE 0x2U
370 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
371
372 /* "mc" and its members are protected by cgroup_mutex */
373 static struct move_charge_struct {
374 spinlock_t lock; /* for from, to */
375 struct mem_cgroup *from;
376 struct mem_cgroup *to;
377 unsigned long flags;
378 unsigned long precharge;
379 unsigned long moved_charge;
380 unsigned long moved_swap;
381 struct task_struct *moving_task; /* a task moving charges */
382 wait_queue_head_t waitq; /* a waitq for other context */
383 } mc = {
384 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
386 };
387
388 /*
389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
390 * limit reclaim to prevent infinite loops, if they ever occur.
391 */
392 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
393 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
394
395 enum charge_type {
396 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397 MEM_CGROUP_CHARGE_TYPE_ANON,
398 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
399 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
400 NR_CHARGE_TYPE,
401 };
402
403 /* for encoding cft->private value on file */
404 enum res_type {
405 _MEM,
406 _MEMSWAP,
407 _OOM_TYPE,
408 _KMEM,
409 };
410
411 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
412 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
413 #define MEMFILE_ATTR(val) ((val) & 0xffff)
414 /* Used for OOM nofiier */
415 #define OOM_CONTROL (0)
416
417 /*
418 * The memcg_create_mutex will be held whenever a new cgroup is created.
419 * As a consequence, any change that needs to protect against new child cgroups
420 * appearing has to hold it as well.
421 */
422 static DEFINE_MUTEX(memcg_create_mutex);
423
424 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
425 {
426 return s ? container_of(s, struct mem_cgroup, css) : NULL;
427 }
428
429 /* Some nice accessors for the vmpressure. */
430 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
431 {
432 if (!memcg)
433 memcg = root_mem_cgroup;
434 return &memcg->vmpressure;
435 }
436
437 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
438 {
439 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
440 }
441
442 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
443 {
444 return (memcg == root_mem_cgroup);
445 }
446
447 /*
448 * We restrict the id in the range of [1, 65535], so it can fit into
449 * an unsigned short.
450 */
451 #define MEM_CGROUP_ID_MAX USHRT_MAX
452
453 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
454 {
455 return memcg->css.id;
456 }
457
458 /*
459 * A helper function to get mem_cgroup from ID. must be called under
460 * rcu_read_lock(). The caller is responsible for calling
461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
462 * refcnt from swap can be called against removed memcg.)
463 */
464 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465 {
466 struct cgroup_subsys_state *css;
467
468 css = css_from_id(id, &memory_cgrp_subsys);
469 return mem_cgroup_from_css(css);
470 }
471
472 /* Writing them here to avoid exposing memcg's inner layout */
473 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
474
475 void sock_update_memcg(struct sock *sk)
476 {
477 if (mem_cgroup_sockets_enabled) {
478 struct mem_cgroup *memcg;
479 struct cg_proto *cg_proto;
480
481 BUG_ON(!sk->sk_prot->proto_cgroup);
482
483 /* Socket cloning can throw us here with sk_cgrp already
484 * filled. It won't however, necessarily happen from
485 * process context. So the test for root memcg given
486 * the current task's memcg won't help us in this case.
487 *
488 * Respecting the original socket's memcg is a better
489 * decision in this case.
490 */
491 if (sk->sk_cgrp) {
492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493 css_get(&sk->sk_cgrp->memcg->css);
494 return;
495 }
496
497 rcu_read_lock();
498 memcg = mem_cgroup_from_task(current);
499 cg_proto = sk->sk_prot->proto_cgroup(memcg);
500 if (!mem_cgroup_is_root(memcg) &&
501 memcg_proto_active(cg_proto) &&
502 css_tryget_online(&memcg->css)) {
503 sk->sk_cgrp = cg_proto;
504 }
505 rcu_read_unlock();
506 }
507 }
508 EXPORT_SYMBOL(sock_update_memcg);
509
510 void sock_release_memcg(struct sock *sk)
511 {
512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
513 struct mem_cgroup *memcg;
514 WARN_ON(!sk->sk_cgrp->memcg);
515 memcg = sk->sk_cgrp->memcg;
516 css_put(&sk->sk_cgrp->memcg->css);
517 }
518 }
519
520 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521 {
522 if (!memcg || mem_cgroup_is_root(memcg))
523 return NULL;
524
525 return &memcg->tcp_mem;
526 }
527 EXPORT_SYMBOL(tcp_proto_cgroup);
528
529 #endif
530
531 #ifdef CONFIG_MEMCG_KMEM
532 /*
533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
534 * The main reason for not using cgroup id for this:
535 * this works better in sparse environments, where we have a lot of memcgs,
536 * but only a few kmem-limited. Or also, if we have, for instance, 200
537 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
538 * 200 entry array for that.
539 *
540 * The current size of the caches array is stored in memcg_nr_cache_ids. It
541 * will double each time we have to increase it.
542 */
543 static DEFINE_IDA(memcg_cache_ida);
544 int memcg_nr_cache_ids;
545
546 /* Protects memcg_nr_cache_ids */
547 static DECLARE_RWSEM(memcg_cache_ids_sem);
548
549 void memcg_get_cache_ids(void)
550 {
551 down_read(&memcg_cache_ids_sem);
552 }
553
554 void memcg_put_cache_ids(void)
555 {
556 up_read(&memcg_cache_ids_sem);
557 }
558
559 /*
560 * MIN_SIZE is different than 1, because we would like to avoid going through
561 * the alloc/free process all the time. In a small machine, 4 kmem-limited
562 * cgroups is a reasonable guess. In the future, it could be a parameter or
563 * tunable, but that is strictly not necessary.
564 *
565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 * this constant directly from cgroup, but it is understandable that this is
567 * better kept as an internal representation in cgroup.c. In any case, the
568 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 * increase ours as well if it increases.
570 */
571 #define MEMCG_CACHES_MIN_SIZE 4
572 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573
574 /*
575 * A lot of the calls to the cache allocation functions are expected to be
576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
577 * conditional to this static branch, we'll have to allow modules that does
578 * kmem_cache_alloc and the such to see this symbol as well
579 */
580 struct static_key memcg_kmem_enabled_key;
581 EXPORT_SYMBOL(memcg_kmem_enabled_key);
582
583 #endif /* CONFIG_MEMCG_KMEM */
584
585 static struct mem_cgroup_per_zone *
586 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587 {
588 int nid = zone_to_nid(zone);
589 int zid = zone_idx(zone);
590
591 return &memcg->nodeinfo[nid]->zoneinfo[zid];
592 }
593
594 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595 {
596 return &memcg->css;
597 }
598
599 static struct mem_cgroup_per_zone *
600 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601 {
602 int nid = page_to_nid(page);
603 int zid = page_zonenum(page);
604
605 return &memcg->nodeinfo[nid]->zoneinfo[zid];
606 }
607
608 static struct mem_cgroup_tree_per_zone *
609 soft_limit_tree_node_zone(int nid, int zid)
610 {
611 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
612 }
613
614 static struct mem_cgroup_tree_per_zone *
615 soft_limit_tree_from_page(struct page *page)
616 {
617 int nid = page_to_nid(page);
618 int zid = page_zonenum(page);
619
620 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
621 }
622
623 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
624 struct mem_cgroup_tree_per_zone *mctz,
625 unsigned long new_usage_in_excess)
626 {
627 struct rb_node **p = &mctz->rb_root.rb_node;
628 struct rb_node *parent = NULL;
629 struct mem_cgroup_per_zone *mz_node;
630
631 if (mz->on_tree)
632 return;
633
634 mz->usage_in_excess = new_usage_in_excess;
635 if (!mz->usage_in_excess)
636 return;
637 while (*p) {
638 parent = *p;
639 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
640 tree_node);
641 if (mz->usage_in_excess < mz_node->usage_in_excess)
642 p = &(*p)->rb_left;
643 /*
644 * We can't avoid mem cgroups that are over their soft
645 * limit by the same amount
646 */
647 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
648 p = &(*p)->rb_right;
649 }
650 rb_link_node(&mz->tree_node, parent, p);
651 rb_insert_color(&mz->tree_node, &mctz->rb_root);
652 mz->on_tree = true;
653 }
654
655 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
656 struct mem_cgroup_tree_per_zone *mctz)
657 {
658 if (!mz->on_tree)
659 return;
660 rb_erase(&mz->tree_node, &mctz->rb_root);
661 mz->on_tree = false;
662 }
663
664 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
665 struct mem_cgroup_tree_per_zone *mctz)
666 {
667 unsigned long flags;
668
669 spin_lock_irqsave(&mctz->lock, flags);
670 __mem_cgroup_remove_exceeded(mz, mctz);
671 spin_unlock_irqrestore(&mctz->lock, flags);
672 }
673
674 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675 {
676 unsigned long nr_pages = page_counter_read(&memcg->memory);
677 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678 unsigned long excess = 0;
679
680 if (nr_pages > soft_limit)
681 excess = nr_pages - soft_limit;
682
683 return excess;
684 }
685
686 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687 {
688 unsigned long excess;
689 struct mem_cgroup_per_zone *mz;
690 struct mem_cgroup_tree_per_zone *mctz;
691
692 mctz = soft_limit_tree_from_page(page);
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_zoneinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723 struct mem_cgroup_tree_per_zone *mctz;
724 struct mem_cgroup_per_zone *mz;
725 int nid, zid;
726
727 for_each_node(nid) {
728 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
729 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
730 mctz = soft_limit_tree_node_zone(nid, zid);
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733 }
734 }
735
736 static struct mem_cgroup_per_zone *
737 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
738 {
739 struct rb_node *rightmost = NULL;
740 struct mem_cgroup_per_zone *mz;
741
742 retry:
743 mz = NULL;
744 rightmost = rb_last(&mctz->rb_root);
745 if (!rightmost)
746 goto done; /* Nothing to reclaim from */
747
748 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
749 /*
750 * Remove the node now but someone else can add it back,
751 * we will to add it back at the end of reclaim to its correct
752 * position in the tree.
753 */
754 __mem_cgroup_remove_exceeded(mz, mctz);
755 if (!soft_limit_excess(mz->memcg) ||
756 !css_tryget_online(&mz->memcg->css))
757 goto retry;
758 done:
759 return mz;
760 }
761
762 static struct mem_cgroup_per_zone *
763 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
764 {
765 struct mem_cgroup_per_zone *mz;
766
767 spin_lock_irq(&mctz->lock);
768 mz = __mem_cgroup_largest_soft_limit_node(mctz);
769 spin_unlock_irq(&mctz->lock);
770 return mz;
771 }
772
773 /*
774 * Implementation Note: reading percpu statistics for memcg.
775 *
776 * Both of vmstat[] and percpu_counter has threshold and do periodic
777 * synchronization to implement "quick" read. There are trade-off between
778 * reading cost and precision of value. Then, we may have a chance to implement
779 * a periodic synchronizion of counter in memcg's counter.
780 *
781 * But this _read() function is used for user interface now. The user accounts
782 * memory usage by memory cgroup and he _always_ requires exact value because
783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
784 * have to visit all online cpus and make sum. So, for now, unnecessary
785 * synchronization is not implemented. (just implemented for cpu hotplug)
786 *
787 * If there are kernel internal actions which can make use of some not-exact
788 * value, and reading all cpu value can be performance bottleneck in some
789 * common workload, threashold and synchonization as vmstat[] should be
790 * implemented.
791 */
792 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793 enum mem_cgroup_stat_index idx)
794 {
795 long val = 0;
796 int cpu;
797
798 get_online_cpus();
799 for_each_online_cpu(cpu)
800 val += per_cpu(memcg->stat->count[idx], cpu);
801 #ifdef CONFIG_HOTPLUG_CPU
802 spin_lock(&memcg->pcp_counter_lock);
803 val += memcg->nocpu_base.count[idx];
804 spin_unlock(&memcg->pcp_counter_lock);
805 #endif
806 put_online_cpus();
807 return val;
808 }
809
810 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_index idx)
812 {
813 unsigned long val = 0;
814 int cpu;
815
816 get_online_cpus();
817 for_each_online_cpu(cpu)
818 val += per_cpu(memcg->stat->events[idx], cpu);
819 #ifdef CONFIG_HOTPLUG_CPU
820 spin_lock(&memcg->pcp_counter_lock);
821 val += memcg->nocpu_base.events[idx];
822 spin_unlock(&memcg->pcp_counter_lock);
823 #endif
824 put_online_cpus();
825 return val;
826 }
827
828 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829 struct page *page,
830 int nr_pages)
831 {
832 /*
833 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
834 * counted as CACHE even if it's on ANON LRU.
835 */
836 if (PageAnon(page))
837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838 nr_pages);
839 else
840 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841 nr_pages);
842
843 if (PageTransHuge(page))
844 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
845 nr_pages);
846
847 /* pagein of a big page is an event. So, ignore page size */
848 if (nr_pages > 0)
849 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850 else {
851 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852 nr_pages = -nr_pages; /* for event */
853 }
854
855 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856 }
857
858 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859 {
860 struct mem_cgroup_per_zone *mz;
861
862 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
863 return mz->lru_size[lru];
864 }
865
866 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
867 int nid,
868 unsigned int lru_mask)
869 {
870 unsigned long nr = 0;
871 int zid;
872
873 VM_BUG_ON((unsigned)nid >= nr_node_ids);
874
875 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
876 struct mem_cgroup_per_zone *mz;
877 enum lru_list lru;
878
879 for_each_lru(lru) {
880 if (!(BIT(lru) & lru_mask))
881 continue;
882 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
883 nr += mz->lru_size[lru];
884 }
885 }
886 return nr;
887 }
888
889 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890 unsigned int lru_mask)
891 {
892 unsigned long nr = 0;
893 int nid;
894
895 for_each_node_state(nid, N_MEMORY)
896 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
897 return nr;
898 }
899
900 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
901 enum mem_cgroup_events_target target)
902 {
903 unsigned long val, next;
904
905 val = __this_cpu_read(memcg->stat->nr_page_events);
906 next = __this_cpu_read(memcg->stat->targets[target]);
907 /* from time_after() in jiffies.h */
908 if ((long)next - (long)val < 0) {
909 switch (target) {
910 case MEM_CGROUP_TARGET_THRESH:
911 next = val + THRESHOLDS_EVENTS_TARGET;
912 break;
913 case MEM_CGROUP_TARGET_SOFTLIMIT:
914 next = val + SOFTLIMIT_EVENTS_TARGET;
915 break;
916 case MEM_CGROUP_TARGET_NUMAINFO:
917 next = val + NUMAINFO_EVENTS_TARGET;
918 break;
919 default:
920 break;
921 }
922 __this_cpu_write(memcg->stat->targets[target], next);
923 return true;
924 }
925 return false;
926 }
927
928 /*
929 * Check events in order.
930 *
931 */
932 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933 {
934 /* threshold event is triggered in finer grain than soft limit */
935 if (unlikely(mem_cgroup_event_ratelimit(memcg,
936 MEM_CGROUP_TARGET_THRESH))) {
937 bool do_softlimit;
938 bool do_numainfo __maybe_unused;
939
940 do_softlimit = mem_cgroup_event_ratelimit(memcg,
941 MEM_CGROUP_TARGET_SOFTLIMIT);
942 #if MAX_NUMNODES > 1
943 do_numainfo = mem_cgroup_event_ratelimit(memcg,
944 MEM_CGROUP_TARGET_NUMAINFO);
945 #endif
946 mem_cgroup_threshold(memcg);
947 if (unlikely(do_softlimit))
948 mem_cgroup_update_tree(memcg, page);
949 #if MAX_NUMNODES > 1
950 if (unlikely(do_numainfo))
951 atomic_inc(&memcg->numainfo_events);
952 #endif
953 }
954 }
955
956 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957 {
958 /*
959 * mm_update_next_owner() may clear mm->owner to NULL
960 * if it races with swapoff, page migration, etc.
961 * So this can be called with p == NULL.
962 */
963 if (unlikely(!p))
964 return NULL;
965
966 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967 }
968
969 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970 {
971 struct mem_cgroup *memcg = NULL;
972
973 rcu_read_lock();
974 do {
975 /*
976 * Page cache insertions can happen withou an
977 * actual mm context, e.g. during disk probing
978 * on boot, loopback IO, acct() writes etc.
979 */
980 if (unlikely(!mm))
981 memcg = root_mem_cgroup;
982 else {
983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 if (unlikely(!memcg))
985 memcg = root_mem_cgroup;
986 }
987 } while (!css_tryget_online(&memcg->css));
988 rcu_read_unlock();
989 return memcg;
990 }
991
992 /**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a zone and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same zone and priority.
1008 */
1009 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010 struct mem_cgroup *prev,
1011 struct mem_cgroup_reclaim_cookie *reclaim)
1012 {
1013 struct reclaim_iter *uninitialized_var(iter);
1014 struct cgroup_subsys_state *css = NULL;
1015 struct mem_cgroup *memcg = NULL;
1016 struct mem_cgroup *pos = NULL;
1017
1018 if (mem_cgroup_disabled())
1019 return NULL;
1020
1021 if (!root)
1022 root = root_mem_cgroup;
1023
1024 if (prev && !reclaim)
1025 pos = prev;
1026
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
1029 goto out;
1030 return root;
1031 }
1032
1033 rcu_read_lock();
1034
1035 if (reclaim) {
1036 struct mem_cgroup_per_zone *mz;
1037
1038 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
1044 do {
1045 pos = READ_ONCE(iter->position);
1046 /*
1047 * A racing update may change the position and
1048 * put the last reference, hence css_tryget(),
1049 * or retry to see the updated position.
1050 */
1051 } while (pos && !css_tryget(&pos->css));
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
1069 }
1070
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
1077
1078 if (css == &root->css)
1079 break;
1080
1081 if (css_tryget(css)) {
1082 /*
1083 * Make sure the memcg is initialized:
1084 * mem_cgroup_css_online() orders the the
1085 * initialization against setting the flag.
1086 */
1087 if (smp_load_acquire(&memcg->initialized))
1088 break;
1089
1090 css_put(css);
1091 }
1092
1093 memcg = NULL;
1094 }
1095
1096 if (reclaim) {
1097 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1098 if (memcg)
1099 css_get(&memcg->css);
1100 if (pos)
1101 css_put(&pos->css);
1102 }
1103
1104 /*
1105 * pairs with css_tryget when dereferencing iter->position
1106 * above.
1107 */
1108 if (pos)
1109 css_put(&pos->css);
1110
1111 if (!memcg)
1112 iter->generation++;
1113 else if (!prev)
1114 reclaim->generation = iter->generation;
1115 }
1116
1117 out_unlock:
1118 rcu_read_unlock();
1119 out:
1120 if (prev && prev != root)
1121 css_put(&prev->css);
1122
1123 return memcg;
1124 }
1125
1126 /**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131 void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
1133 {
1134 if (!root)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1138 }
1139
1140 /*
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145 #define for_each_mem_cgroup_tree(iter, root) \
1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1147 iter != NULL; \
1148 iter = mem_cgroup_iter(root, iter, NULL))
1149
1150 #define for_each_mem_cgroup(iter) \
1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1152 iter != NULL; \
1153 iter = mem_cgroup_iter(NULL, iter, NULL))
1154
1155 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156 {
1157 struct mem_cgroup *memcg;
1158
1159 rcu_read_lock();
1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 if (unlikely(!memcg))
1162 goto out;
1163
1164 switch (idx) {
1165 case PGFAULT:
1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167 break;
1168 case PGMAJFAULT:
1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 break;
1171 default:
1172 BUG();
1173 }
1174 out:
1175 rcu_read_unlock();
1176 }
1177 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178
1179 /**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
1182 * @memcg: memcg of the wanted lruvec
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 struct mem_cgroup *memcg)
1190 {
1191 struct mem_cgroup_per_zone *mz;
1192 struct lruvec *lruvec;
1193
1194 if (mem_cgroup_disabled()) {
1195 lruvec = &zone->lruvec;
1196 goto out;
1197 }
1198
1199 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200 lruvec = &mz->lruvec;
1201 out:
1202 /*
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1206 */
1207 if (unlikely(lruvec->zone != zone))
1208 lruvec->zone = zone;
1209 return lruvec;
1210 }
1211
1212 /**
1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214 * @page: the page
1215 * @zone: zone of the page
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
1220 */
1221 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1222 {
1223 struct mem_cgroup_per_zone *mz;
1224 struct mem_cgroup *memcg;
1225 struct lruvec *lruvec;
1226
1227 if (mem_cgroup_disabled()) {
1228 lruvec = &zone->lruvec;
1229 goto out;
1230 }
1231
1232 memcg = page->mem_cgroup;
1233 /*
1234 * Swapcache readahead pages are added to the LRU - and
1235 * possibly migrated - before they are charged.
1236 */
1237 if (!memcg)
1238 memcg = root_mem_cgroup;
1239
1240 mz = mem_cgroup_page_zoneinfo(memcg, page);
1241 lruvec = &mz->lruvec;
1242 out:
1243 /*
1244 * Since a node can be onlined after the mem_cgroup was created,
1245 * we have to be prepared to initialize lruvec->zone here;
1246 * and if offlined then reonlined, we need to reinitialize it.
1247 */
1248 if (unlikely(lruvec->zone != zone))
1249 lruvec->zone = zone;
1250 return lruvec;
1251 }
1252
1253 /**
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @nr_pages: positive when adding or negative when removing
1258 *
1259 * This function must be called when a page is added to or removed from an
1260 * lru list.
1261 */
1262 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1263 int nr_pages)
1264 {
1265 struct mem_cgroup_per_zone *mz;
1266 unsigned long *lru_size;
1267
1268 if (mem_cgroup_disabled())
1269 return;
1270
1271 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1272 lru_size = mz->lru_size + lru;
1273 *lru_size += nr_pages;
1274 VM_BUG_ON((long)(*lru_size) < 0);
1275 }
1276
1277 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278 {
1279 if (root == memcg)
1280 return true;
1281 if (!root->use_hierarchy)
1282 return false;
1283 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284 }
1285
1286 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287 {
1288 struct mem_cgroup *task_memcg;
1289 struct task_struct *p;
1290 bool ret;
1291
1292 p = find_lock_task_mm(task);
1293 if (p) {
1294 task_memcg = get_mem_cgroup_from_mm(p->mm);
1295 task_unlock(p);
1296 } else {
1297 /*
1298 * All threads may have already detached their mm's, but the oom
1299 * killer still needs to detect if they have already been oom
1300 * killed to prevent needlessly killing additional tasks.
1301 */
1302 rcu_read_lock();
1303 task_memcg = mem_cgroup_from_task(task);
1304 css_get(&task_memcg->css);
1305 rcu_read_unlock();
1306 }
1307 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1308 css_put(&task_memcg->css);
1309 return ret;
1310 }
1311
1312 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313 {
1314 unsigned long inactive_ratio;
1315 unsigned long inactive;
1316 unsigned long active;
1317 unsigned long gb;
1318
1319 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1320 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321
1322 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1323 if (gb)
1324 inactive_ratio = int_sqrt(10 * gb);
1325 else
1326 inactive_ratio = 1;
1327
1328 return inactive * inactive_ratio < active;
1329 }
1330
1331 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1332 {
1333 struct mem_cgroup_per_zone *mz;
1334 struct mem_cgroup *memcg;
1335
1336 if (mem_cgroup_disabled())
1337 return true;
1338
1339 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1340 memcg = mz->memcg;
1341
1342 return !!(memcg->css.flags & CSS_ONLINE);
1343 }
1344
1345 #define mem_cgroup_from_counter(counter, member) \
1346 container_of(counter, struct mem_cgroup, member)
1347
1348 /**
1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1350 * @memcg: the memory cgroup
1351 *
1352 * Returns the maximum amount of memory @mem can be charged with, in
1353 * pages.
1354 */
1355 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356 {
1357 unsigned long margin = 0;
1358 unsigned long count;
1359 unsigned long limit;
1360
1361 count = page_counter_read(&memcg->memory);
1362 limit = READ_ONCE(memcg->memory.limit);
1363 if (count < limit)
1364 margin = limit - count;
1365
1366 if (do_swap_account) {
1367 count = page_counter_read(&memcg->memsw);
1368 limit = READ_ONCE(memcg->memsw.limit);
1369 if (count <= limit)
1370 margin = min(margin, limit - count);
1371 }
1372
1373 return margin;
1374 }
1375
1376 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1377 {
1378 /* root ? */
1379 if (mem_cgroup_disabled() || !memcg->css.parent)
1380 return vm_swappiness;
1381
1382 return memcg->swappiness;
1383 }
1384
1385 /*
1386 * A routine for checking "mem" is under move_account() or not.
1387 *
1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1389 * moving cgroups. This is for waiting at high-memory pressure
1390 * caused by "move".
1391 */
1392 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393 {
1394 struct mem_cgroup *from;
1395 struct mem_cgroup *to;
1396 bool ret = false;
1397 /*
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400 */
1401 spin_lock(&mc.lock);
1402 from = mc.from;
1403 to = mc.to;
1404 if (!from)
1405 goto unlock;
1406
1407 ret = mem_cgroup_is_descendant(from, memcg) ||
1408 mem_cgroup_is_descendant(to, memcg);
1409 unlock:
1410 spin_unlock(&mc.lock);
1411 return ret;
1412 }
1413
1414 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 {
1416 if (mc.moving_task && current != mc.moving_task) {
1417 if (mem_cgroup_under_move(memcg)) {
1418 DEFINE_WAIT(wait);
1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420 /* moving charge context might have finished. */
1421 if (mc.moving_task)
1422 schedule();
1423 finish_wait(&mc.waitq, &wait);
1424 return true;
1425 }
1426 }
1427 return false;
1428 }
1429
1430 #define K(x) ((x) << (PAGE_SHIFT-10))
1431 /**
1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 * @memcg: The memory cgroup that went over limit
1434 * @p: Task that is going to be killed
1435 *
1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 * enabled
1438 */
1439 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1440 {
1441 /* oom_info_lock ensures that parallel ooms do not interleave */
1442 static DEFINE_MUTEX(oom_info_lock);
1443 struct mem_cgroup *iter;
1444 unsigned int i;
1445
1446 mutex_lock(&oom_info_lock);
1447 rcu_read_lock();
1448
1449 if (p) {
1450 pr_info("Task in ");
1451 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1452 pr_cont(" killed as a result of limit of ");
1453 } else {
1454 pr_info("Memory limit reached of cgroup ");
1455 }
1456
1457 pr_cont_cgroup_path(memcg->css.cgroup);
1458 pr_cont("\n");
1459
1460 rcu_read_unlock();
1461
1462 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1463 K((u64)page_counter_read(&memcg->memory)),
1464 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1465 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1466 K((u64)page_counter_read(&memcg->memsw)),
1467 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1468 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1469 K((u64)page_counter_read(&memcg->kmem)),
1470 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471
1472 for_each_mem_cgroup_tree(iter, memcg) {
1473 pr_info("Memory cgroup stats for ");
1474 pr_cont_cgroup_path(iter->css.cgroup);
1475 pr_cont(":");
1476
1477 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1478 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1479 continue;
1480 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1481 K(mem_cgroup_read_stat(iter, i)));
1482 }
1483
1484 for (i = 0; i < NR_LRU_LISTS; i++)
1485 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1486 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1487
1488 pr_cont("\n");
1489 }
1490 mutex_unlock(&oom_info_lock);
1491 }
1492
1493 /*
1494 * This function returns the number of memcg under hierarchy tree. Returns
1495 * 1(self count) if no children.
1496 */
1497 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498 {
1499 int num = 0;
1500 struct mem_cgroup *iter;
1501
1502 for_each_mem_cgroup_tree(iter, memcg)
1503 num++;
1504 return num;
1505 }
1506
1507 /*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
1510 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1511 {
1512 unsigned long limit;
1513
1514 limit = memcg->memory.limit;
1515 if (mem_cgroup_swappiness(memcg)) {
1516 unsigned long memsw_limit;
1517
1518 memsw_limit = memcg->memsw.limit;
1519 limit = min(limit + total_swap_pages, memsw_limit);
1520 }
1521 return limit;
1522 }
1523
1524 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1525 int order)
1526 {
1527 struct mem_cgroup *iter;
1528 unsigned long chosen_points = 0;
1529 unsigned long totalpages;
1530 unsigned int points = 0;
1531 struct task_struct *chosen = NULL;
1532
1533 /*
1534 * If current has a pending SIGKILL or is exiting, then automatically
1535 * select it. The goal is to allow it to allocate so that it may
1536 * quickly exit and free its memory.
1537 */
1538 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1539 mark_tsk_oom_victim(current);
1540 return;
1541 }
1542
1543 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1544 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1545 for_each_mem_cgroup_tree(iter, memcg) {
1546 struct css_task_iter it;
1547 struct task_struct *task;
1548
1549 css_task_iter_start(&iter->css, &it);
1550 while ((task = css_task_iter_next(&it))) {
1551 switch (oom_scan_process_thread(task, totalpages, NULL,
1552 false)) {
1553 case OOM_SCAN_SELECT:
1554 if (chosen)
1555 put_task_struct(chosen);
1556 chosen = task;
1557 chosen_points = ULONG_MAX;
1558 get_task_struct(chosen);
1559 /* fall through */
1560 case OOM_SCAN_CONTINUE:
1561 continue;
1562 case OOM_SCAN_ABORT:
1563 css_task_iter_end(&it);
1564 mem_cgroup_iter_break(memcg, iter);
1565 if (chosen)
1566 put_task_struct(chosen);
1567 return;
1568 case OOM_SCAN_OK:
1569 break;
1570 };
1571 points = oom_badness(task, memcg, NULL, totalpages);
1572 if (!points || points < chosen_points)
1573 continue;
1574 /* Prefer thread group leaders for display purposes */
1575 if (points == chosen_points &&
1576 thread_group_leader(chosen))
1577 continue;
1578
1579 if (chosen)
1580 put_task_struct(chosen);
1581 chosen = task;
1582 chosen_points = points;
1583 get_task_struct(chosen);
1584 }
1585 css_task_iter_end(&it);
1586 }
1587
1588 if (!chosen)
1589 return;
1590 points = chosen_points * 1000 / totalpages;
1591 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1592 NULL, "Memory cgroup out of memory");
1593 }
1594
1595 #if MAX_NUMNODES > 1
1596
1597 /**
1598 * test_mem_cgroup_node_reclaimable
1599 * @memcg: the target memcg
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
1607 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608 int nid, bool noswap)
1609 {
1610 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1611 return true;
1612 if (noswap || !total_swap_pages)
1613 return false;
1614 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1615 return true;
1616 return false;
1617
1618 }
1619
1620 /*
1621 * Always updating the nodemask is not very good - even if we have an empty
1622 * list or the wrong list here, we can start from some node and traverse all
1623 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1624 *
1625 */
1626 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1627 {
1628 int nid;
1629 /*
1630 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1631 * pagein/pageout changes since the last update.
1632 */
1633 if (!atomic_read(&memcg->numainfo_events))
1634 return;
1635 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1636 return;
1637
1638 /* make a nodemask where this memcg uses memory from */
1639 memcg->scan_nodes = node_states[N_MEMORY];
1640
1641 for_each_node_mask(nid, node_states[N_MEMORY]) {
1642
1643 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1644 node_clear(nid, memcg->scan_nodes);
1645 }
1646
1647 atomic_set(&memcg->numainfo_events, 0);
1648 atomic_set(&memcg->numainfo_updating, 0);
1649 }
1650
1651 /*
1652 * Selecting a node where we start reclaim from. Because what we need is just
1653 * reducing usage counter, start from anywhere is O,K. Considering
1654 * memory reclaim from current node, there are pros. and cons.
1655 *
1656 * Freeing memory from current node means freeing memory from a node which
1657 * we'll use or we've used. So, it may make LRU bad. And if several threads
1658 * hit limits, it will see a contention on a node. But freeing from remote
1659 * node means more costs for memory reclaim because of memory latency.
1660 *
1661 * Now, we use round-robin. Better algorithm is welcomed.
1662 */
1663 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1664 {
1665 int node;
1666
1667 mem_cgroup_may_update_nodemask(memcg);
1668 node = memcg->last_scanned_node;
1669
1670 node = next_node(node, memcg->scan_nodes);
1671 if (node == MAX_NUMNODES)
1672 node = first_node(memcg->scan_nodes);
1673 /*
1674 * We call this when we hit limit, not when pages are added to LRU.
1675 * No LRU may hold pages because all pages are UNEVICTABLE or
1676 * memcg is too small and all pages are not on LRU. In that case,
1677 * we use curret node.
1678 */
1679 if (unlikely(node == MAX_NUMNODES))
1680 node = numa_node_id();
1681
1682 memcg->last_scanned_node = node;
1683 return node;
1684 }
1685 #else
1686 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 {
1688 return 0;
1689 }
1690 #endif
1691
1692 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1693 struct zone *zone,
1694 gfp_t gfp_mask,
1695 unsigned long *total_scanned)
1696 {
1697 struct mem_cgroup *victim = NULL;
1698 int total = 0;
1699 int loop = 0;
1700 unsigned long excess;
1701 unsigned long nr_scanned;
1702 struct mem_cgroup_reclaim_cookie reclaim = {
1703 .zone = zone,
1704 .priority = 0,
1705 };
1706
1707 excess = soft_limit_excess(root_memcg);
1708
1709 while (1) {
1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711 if (!victim) {
1712 loop++;
1713 if (loop >= 2) {
1714 /*
1715 * If we have not been able to reclaim
1716 * anything, it might because there are
1717 * no reclaimable pages under this hierarchy
1718 */
1719 if (!total)
1720 break;
1721 /*
1722 * We want to do more targeted reclaim.
1723 * excess >> 2 is not to excessive so as to
1724 * reclaim too much, nor too less that we keep
1725 * coming back to reclaim from this cgroup
1726 */
1727 if (total >= (excess >> 2) ||
1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729 break;
1730 }
1731 continue;
1732 }
1733 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1734 zone, &nr_scanned);
1735 *total_scanned += nr_scanned;
1736 if (!soft_limit_excess(root_memcg))
1737 break;
1738 }
1739 mem_cgroup_iter_break(root_memcg, victim);
1740 return total;
1741 }
1742
1743 #ifdef CONFIG_LOCKDEP
1744 static struct lockdep_map memcg_oom_lock_dep_map = {
1745 .name = "memcg_oom_lock",
1746 };
1747 #endif
1748
1749 static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751 /*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756 {
1757 struct mem_cgroup *iter, *failed = NULL;
1758
1759 spin_lock(&memcg_oom_lock);
1760
1761 for_each_mem_cgroup_tree(iter, memcg) {
1762 if (iter->oom_lock) {
1763 /*
1764 * this subtree of our hierarchy is already locked
1765 * so we cannot give a lock.
1766 */
1767 failed = iter;
1768 mem_cgroup_iter_break(memcg, iter);
1769 break;
1770 } else
1771 iter->oom_lock = true;
1772 }
1773
1774 if (failed) {
1775 /*
1776 * OK, we failed to lock the whole subtree so we have
1777 * to clean up what we set up to the failing subtree
1778 */
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 if (iter == failed) {
1781 mem_cgroup_iter_break(memcg, iter);
1782 break;
1783 }
1784 iter->oom_lock = false;
1785 }
1786 } else
1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789 spin_unlock(&memcg_oom_lock);
1790
1791 return !failed;
1792 }
1793
1794 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795 {
1796 struct mem_cgroup *iter;
1797
1798 spin_lock(&memcg_oom_lock);
1799 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1800 for_each_mem_cgroup_tree(iter, memcg)
1801 iter->oom_lock = false;
1802 spin_unlock(&memcg_oom_lock);
1803 }
1804
1805 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 {
1807 struct mem_cgroup *iter;
1808
1809 for_each_mem_cgroup_tree(iter, memcg)
1810 atomic_inc(&iter->under_oom);
1811 }
1812
1813 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814 {
1815 struct mem_cgroup *iter;
1816
1817 /*
1818 * When a new child is created while the hierarchy is under oom,
1819 * mem_cgroup_oom_lock() may not be called. We have to use
1820 * atomic_add_unless() here.
1821 */
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 atomic_add_unless(&iter->under_oom, -1, 0);
1824 }
1825
1826 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1827
1828 struct oom_wait_info {
1829 struct mem_cgroup *memcg;
1830 wait_queue_t wait;
1831 };
1832
1833 static int memcg_oom_wake_function(wait_queue_t *wait,
1834 unsigned mode, int sync, void *arg)
1835 {
1836 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1837 struct mem_cgroup *oom_wait_memcg;
1838 struct oom_wait_info *oom_wait_info;
1839
1840 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1841 oom_wait_memcg = oom_wait_info->memcg;
1842
1843 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1844 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1845 return 0;
1846 return autoremove_wake_function(wait, mode, sync, arg);
1847 }
1848
1849 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1850 {
1851 atomic_inc(&memcg->oom_wakeups);
1852 /* for filtering, pass "memcg" as argument. */
1853 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1854 }
1855
1856 static void memcg_oom_recover(struct mem_cgroup *memcg)
1857 {
1858 if (memcg && atomic_read(&memcg->under_oom))
1859 memcg_wakeup_oom(memcg);
1860 }
1861
1862 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863 {
1864 if (!current->memcg_oom.may_oom)
1865 return;
1866 /*
1867 * We are in the middle of the charge context here, so we
1868 * don't want to block when potentially sitting on a callstack
1869 * that holds all kinds of filesystem and mm locks.
1870 *
1871 * Also, the caller may handle a failed allocation gracefully
1872 * (like optional page cache readahead) and so an OOM killer
1873 * invocation might not even be necessary.
1874 *
1875 * That's why we don't do anything here except remember the
1876 * OOM context and then deal with it at the end of the page
1877 * fault when the stack is unwound, the locks are released,
1878 * and when we know whether the fault was overall successful.
1879 */
1880 css_get(&memcg->css);
1881 current->memcg_oom.memcg = memcg;
1882 current->memcg_oom.gfp_mask = mask;
1883 current->memcg_oom.order = order;
1884 }
1885
1886 /**
1887 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1888 * @handle: actually kill/wait or just clean up the OOM state
1889 *
1890 * This has to be called at the end of a page fault if the memcg OOM
1891 * handler was enabled.
1892 *
1893 * Memcg supports userspace OOM handling where failed allocations must
1894 * sleep on a waitqueue until the userspace task resolves the
1895 * situation. Sleeping directly in the charge context with all kinds
1896 * of locks held is not a good idea, instead we remember an OOM state
1897 * in the task and mem_cgroup_oom_synchronize() has to be called at
1898 * the end of the page fault to complete the OOM handling.
1899 *
1900 * Returns %true if an ongoing memcg OOM situation was detected and
1901 * completed, %false otherwise.
1902 */
1903 bool mem_cgroup_oom_synchronize(bool handle)
1904 {
1905 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1906 struct oom_wait_info owait;
1907 bool locked;
1908
1909 /* OOM is global, do not handle */
1910 if (!memcg)
1911 return false;
1912
1913 if (!handle || oom_killer_disabled)
1914 goto cleanup;
1915
1916 owait.memcg = memcg;
1917 owait.wait.flags = 0;
1918 owait.wait.func = memcg_oom_wake_function;
1919 owait.wait.private = current;
1920 INIT_LIST_HEAD(&owait.wait.task_list);
1921
1922 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1923 mem_cgroup_mark_under_oom(memcg);
1924
1925 locked = mem_cgroup_oom_trylock(memcg);
1926
1927 if (locked)
1928 mem_cgroup_oom_notify(memcg);
1929
1930 if (locked && !memcg->oom_kill_disable) {
1931 mem_cgroup_unmark_under_oom(memcg);
1932 finish_wait(&memcg_oom_waitq, &owait.wait);
1933 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1934 current->memcg_oom.order);
1935 } else {
1936 schedule();
1937 mem_cgroup_unmark_under_oom(memcg);
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
1939 }
1940
1941 if (locked) {
1942 mem_cgroup_oom_unlock(memcg);
1943 /*
1944 * There is no guarantee that an OOM-lock contender
1945 * sees the wakeups triggered by the OOM kill
1946 * uncharges. Wake any sleepers explicitely.
1947 */
1948 memcg_oom_recover(memcg);
1949 }
1950 cleanup:
1951 current->memcg_oom.memcg = NULL;
1952 css_put(&memcg->css);
1953 return true;
1954 }
1955
1956 /**
1957 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1958 * @page: page that is going to change accounted state
1959 *
1960 * This function must mark the beginning of an accounted page state
1961 * change to prevent double accounting when the page is concurrently
1962 * being moved to another memcg:
1963 *
1964 * memcg = mem_cgroup_begin_page_stat(page);
1965 * if (TestClearPageState(page))
1966 * mem_cgroup_update_page_stat(memcg, state, -1);
1967 * mem_cgroup_end_page_stat(memcg);
1968 */
1969 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1970 {
1971 struct mem_cgroup *memcg;
1972 unsigned long flags;
1973
1974 /*
1975 * The RCU lock is held throughout the transaction. The fast
1976 * path can get away without acquiring the memcg->move_lock
1977 * because page moving starts with an RCU grace period.
1978 *
1979 * The RCU lock also protects the memcg from being freed when
1980 * the page state that is going to change is the only thing
1981 * preventing the page from being uncharged.
1982 * E.g. end-writeback clearing PageWriteback(), which allows
1983 * migration to go ahead and uncharge the page before the
1984 * account transaction might be complete.
1985 */
1986 rcu_read_lock();
1987
1988 if (mem_cgroup_disabled())
1989 return NULL;
1990 again:
1991 memcg = page->mem_cgroup;
1992 if (unlikely(!memcg))
1993 return NULL;
1994
1995 if (atomic_read(&memcg->moving_account) <= 0)
1996 return memcg;
1997
1998 spin_lock_irqsave(&memcg->move_lock, flags);
1999 if (memcg != page->mem_cgroup) {
2000 spin_unlock_irqrestore(&memcg->move_lock, flags);
2001 goto again;
2002 }
2003
2004 /*
2005 * When charge migration first begins, we can have locked and
2006 * unlocked page stat updates happening concurrently. Track
2007 * the task who has the lock for mem_cgroup_end_page_stat().
2008 */
2009 memcg->move_lock_task = current;
2010 memcg->move_lock_flags = flags;
2011
2012 return memcg;
2013 }
2014
2015 /**
2016 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2017 * @memcg: the memcg that was accounted against
2018 */
2019 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2020 {
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
2029
2030 rcu_read_unlock();
2031 }
2032
2033 /**
2034 * mem_cgroup_update_page_stat - update page state statistics
2035 * @memcg: memcg to account against
2036 * @idx: page state item to account
2037 * @val: number of pages (positive or negative)
2038 *
2039 * See mem_cgroup_begin_page_stat() for locking requirements.
2040 */
2041 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2042 enum mem_cgroup_stat_index idx, int val)
2043 {
2044 VM_BUG_ON(!rcu_read_lock_held());
2045
2046 if (memcg)
2047 this_cpu_add(memcg->stat->count[idx], val);
2048 }
2049
2050 /*
2051 * size of first charge trial. "32" comes from vmscan.c's magic value.
2052 * TODO: maybe necessary to use big numbers in big irons.
2053 */
2054 #define CHARGE_BATCH 32U
2055 struct memcg_stock_pcp {
2056 struct mem_cgroup *cached; /* this never be root cgroup */
2057 unsigned int nr_pages;
2058 struct work_struct work;
2059 unsigned long flags;
2060 #define FLUSHING_CACHED_CHARGE 0
2061 };
2062 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063 static DEFINE_MUTEX(percpu_charge_mutex);
2064
2065 /**
2066 * consume_stock: Try to consume stocked charge on this cpu.
2067 * @memcg: memcg to consume from.
2068 * @nr_pages: how many pages to charge.
2069 *
2070 * The charges will only happen if @memcg matches the current cpu's memcg
2071 * stock, and at least @nr_pages are available in that stock. Failure to
2072 * service an allocation will refill the stock.
2073 *
2074 * returns true if successful, false otherwise.
2075 */
2076 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 {
2078 struct memcg_stock_pcp *stock;
2079 bool ret = false;
2080
2081 if (nr_pages > CHARGE_BATCH)
2082 return ret;
2083
2084 stock = &get_cpu_var(memcg_stock);
2085 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2086 stock->nr_pages -= nr_pages;
2087 ret = true;
2088 }
2089 put_cpu_var(memcg_stock);
2090 return ret;
2091 }
2092
2093 /*
2094 * Returns stocks cached in percpu and reset cached information.
2095 */
2096 static void drain_stock(struct memcg_stock_pcp *stock)
2097 {
2098 struct mem_cgroup *old = stock->cached;
2099
2100 if (stock->nr_pages) {
2101 page_counter_uncharge(&old->memory, stock->nr_pages);
2102 if (do_swap_account)
2103 page_counter_uncharge(&old->memsw, stock->nr_pages);
2104 css_put_many(&old->css, stock->nr_pages);
2105 stock->nr_pages = 0;
2106 }
2107 stock->cached = NULL;
2108 }
2109
2110 /*
2111 * This must be called under preempt disabled or must be called by
2112 * a thread which is pinned to local cpu.
2113 */
2114 static void drain_local_stock(struct work_struct *dummy)
2115 {
2116 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2117 drain_stock(stock);
2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119 }
2120
2121 /*
2122 * Cache charges(val) to local per_cpu area.
2123 * This will be consumed by consume_stock() function, later.
2124 */
2125 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 {
2127 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2128
2129 if (stock->cached != memcg) { /* reset if necessary */
2130 drain_stock(stock);
2131 stock->cached = memcg;
2132 }
2133 stock->nr_pages += nr_pages;
2134 put_cpu_var(memcg_stock);
2135 }
2136
2137 /*
2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139 * of the hierarchy under it.
2140 */
2141 static void drain_all_stock(struct mem_cgroup *root_memcg)
2142 {
2143 int cpu, curcpu;
2144
2145 /* If someone's already draining, avoid adding running more workers. */
2146 if (!mutex_trylock(&percpu_charge_mutex))
2147 return;
2148 /* Notify other cpus that system-wide "drain" is running */
2149 get_online_cpus();
2150 curcpu = get_cpu();
2151 for_each_online_cpu(cpu) {
2152 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153 struct mem_cgroup *memcg;
2154
2155 memcg = stock->cached;
2156 if (!memcg || !stock->nr_pages)
2157 continue;
2158 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2159 continue;
2160 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2161 if (cpu == curcpu)
2162 drain_local_stock(&stock->work);
2163 else
2164 schedule_work_on(cpu, &stock->work);
2165 }
2166 }
2167 put_cpu();
2168 put_online_cpus();
2169 mutex_unlock(&percpu_charge_mutex);
2170 }
2171
2172 /*
2173 * This function drains percpu counter value from DEAD cpu and
2174 * move it to local cpu. Note that this function can be preempted.
2175 */
2176 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2177 {
2178 int i;
2179
2180 spin_lock(&memcg->pcp_counter_lock);
2181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2182 long x = per_cpu(memcg->stat->count[i], cpu);
2183
2184 per_cpu(memcg->stat->count[i], cpu) = 0;
2185 memcg->nocpu_base.count[i] += x;
2186 }
2187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2188 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2189
2190 per_cpu(memcg->stat->events[i], cpu) = 0;
2191 memcg->nocpu_base.events[i] += x;
2192 }
2193 spin_unlock(&memcg->pcp_counter_lock);
2194 }
2195
2196 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197 unsigned long action,
2198 void *hcpu)
2199 {
2200 int cpu = (unsigned long)hcpu;
2201 struct memcg_stock_pcp *stock;
2202 struct mem_cgroup *iter;
2203
2204 if (action == CPU_ONLINE)
2205 return NOTIFY_OK;
2206
2207 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208 return NOTIFY_OK;
2209
2210 for_each_mem_cgroup(iter)
2211 mem_cgroup_drain_pcp_counter(iter, cpu);
2212
2213 stock = &per_cpu(memcg_stock, cpu);
2214 drain_stock(stock);
2215 return NOTIFY_OK;
2216 }
2217
2218 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2219 unsigned int nr_pages)
2220 {
2221 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223 struct mem_cgroup *mem_over_limit;
2224 struct page_counter *counter;
2225 unsigned long nr_reclaimed;
2226 bool may_swap = true;
2227 bool drained = false;
2228 int ret = 0;
2229
2230 if (mem_cgroup_is_root(memcg))
2231 goto done;
2232 retry:
2233 if (consume_stock(memcg, nr_pages))
2234 goto done;
2235
2236 if (!do_swap_account ||
2237 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2238 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2239 goto done_restock;
2240 if (do_swap_account)
2241 page_counter_uncharge(&memcg->memsw, batch);
2242 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2243 } else {
2244 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2245 may_swap = false;
2246 }
2247
2248 if (batch > nr_pages) {
2249 batch = nr_pages;
2250 goto retry;
2251 }
2252
2253 /*
2254 * Unlike in global OOM situations, memcg is not in a physical
2255 * memory shortage. Allow dying and OOM-killed tasks to
2256 * bypass the last charges so that they can exit quickly and
2257 * free their memory.
2258 */
2259 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2260 fatal_signal_pending(current) ||
2261 current->flags & PF_EXITING))
2262 goto bypass;
2263
2264 if (unlikely(task_in_memcg_oom(current)))
2265 goto nomem;
2266
2267 if (!(gfp_mask & __GFP_WAIT))
2268 goto nomem;
2269
2270 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2271
2272 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2273 gfp_mask, may_swap);
2274
2275 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2276 goto retry;
2277
2278 if (!drained) {
2279 drain_all_stock(mem_over_limit);
2280 drained = true;
2281 goto retry;
2282 }
2283
2284 if (gfp_mask & __GFP_NORETRY)
2285 goto nomem;
2286 /*
2287 * Even though the limit is exceeded at this point, reclaim
2288 * may have been able to free some pages. Retry the charge
2289 * before killing the task.
2290 *
2291 * Only for regular pages, though: huge pages are rather
2292 * unlikely to succeed so close to the limit, and we fall back
2293 * to regular pages anyway in case of failure.
2294 */
2295 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2296 goto retry;
2297 /*
2298 * At task move, charge accounts can be doubly counted. So, it's
2299 * better to wait until the end of task_move if something is going on.
2300 */
2301 if (mem_cgroup_wait_acct_move(mem_over_limit))
2302 goto retry;
2303
2304 if (nr_retries--)
2305 goto retry;
2306
2307 if (gfp_mask & __GFP_NOFAIL)
2308 goto bypass;
2309
2310 if (fatal_signal_pending(current))
2311 goto bypass;
2312
2313 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2314
2315 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2316 nomem:
2317 if (!(gfp_mask & __GFP_NOFAIL))
2318 return -ENOMEM;
2319 bypass:
2320 return -EINTR;
2321
2322 done_restock:
2323 css_get_many(&memcg->css, batch);
2324 if (batch > nr_pages)
2325 refill_stock(memcg, batch - nr_pages);
2326 /*
2327 * If the hierarchy is above the normal consumption range,
2328 * make the charging task trim their excess contribution.
2329 */
2330 do {
2331 if (page_counter_read(&memcg->memory) <= memcg->high)
2332 continue;
2333 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2334 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2335 } while ((memcg = parent_mem_cgroup(memcg)));
2336 done:
2337 return ret;
2338 }
2339
2340 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2341 {
2342 if (mem_cgroup_is_root(memcg))
2343 return;
2344
2345 page_counter_uncharge(&memcg->memory, nr_pages);
2346 if (do_swap_account)
2347 page_counter_uncharge(&memcg->memsw, nr_pages);
2348
2349 css_put_many(&memcg->css, nr_pages);
2350 }
2351
2352 /*
2353 * try_get_mem_cgroup_from_page - look up page's memcg association
2354 * @page: the page
2355 *
2356 * Look up, get a css reference, and return the memcg that owns @page.
2357 *
2358 * The page must be locked to prevent racing with swap-in and page
2359 * cache charges. If coming from an unlocked page table, the caller
2360 * must ensure the page is on the LRU or this can race with charging.
2361 */
2362 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2363 {
2364 struct mem_cgroup *memcg;
2365 unsigned short id;
2366 swp_entry_t ent;
2367
2368 VM_BUG_ON_PAGE(!PageLocked(page), page);
2369
2370 memcg = page->mem_cgroup;
2371 if (memcg) {
2372 if (!css_tryget_online(&memcg->css))
2373 memcg = NULL;
2374 } else if (PageSwapCache(page)) {
2375 ent.val = page_private(page);
2376 id = lookup_swap_cgroup_id(ent);
2377 rcu_read_lock();
2378 memcg = mem_cgroup_from_id(id);
2379 if (memcg && !css_tryget_online(&memcg->css))
2380 memcg = NULL;
2381 rcu_read_unlock();
2382 }
2383 return memcg;
2384 }
2385
2386 static void lock_page_lru(struct page *page, int *isolated)
2387 {
2388 struct zone *zone = page_zone(page);
2389
2390 spin_lock_irq(&zone->lru_lock);
2391 if (PageLRU(page)) {
2392 struct lruvec *lruvec;
2393
2394 lruvec = mem_cgroup_page_lruvec(page, zone);
2395 ClearPageLRU(page);
2396 del_page_from_lru_list(page, lruvec, page_lru(page));
2397 *isolated = 1;
2398 } else
2399 *isolated = 0;
2400 }
2401
2402 static void unlock_page_lru(struct page *page, int isolated)
2403 {
2404 struct zone *zone = page_zone(page);
2405
2406 if (isolated) {
2407 struct lruvec *lruvec;
2408
2409 lruvec = mem_cgroup_page_lruvec(page, zone);
2410 VM_BUG_ON_PAGE(PageLRU(page), page);
2411 SetPageLRU(page);
2412 add_page_to_lru_list(page, lruvec, page_lru(page));
2413 }
2414 spin_unlock_irq(&zone->lru_lock);
2415 }
2416
2417 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2418 bool lrucare)
2419 {
2420 int isolated;
2421
2422 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2423
2424 /*
2425 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2426 * may already be on some other mem_cgroup's LRU. Take care of it.
2427 */
2428 if (lrucare)
2429 lock_page_lru(page, &isolated);
2430
2431 /*
2432 * Nobody should be changing or seriously looking at
2433 * page->mem_cgroup at this point:
2434 *
2435 * - the page is uncharged
2436 *
2437 * - the page is off-LRU
2438 *
2439 * - an anonymous fault has exclusive page access, except for
2440 * a locked page table
2441 *
2442 * - a page cache insertion, a swapin fault, or a migration
2443 * have the page locked
2444 */
2445 page->mem_cgroup = memcg;
2446
2447 if (lrucare)
2448 unlock_page_lru(page, isolated);
2449 }
2450
2451 #ifdef CONFIG_MEMCG_KMEM
2452 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2453 unsigned long nr_pages)
2454 {
2455 struct page_counter *counter;
2456 int ret = 0;
2457
2458 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2459 if (ret < 0)
2460 return ret;
2461
2462 ret = try_charge(memcg, gfp, nr_pages);
2463 if (ret == -EINTR) {
2464 /*
2465 * try_charge() chose to bypass to root due to OOM kill or
2466 * fatal signal. Since our only options are to either fail
2467 * the allocation or charge it to this cgroup, do it as a
2468 * temporary condition. But we can't fail. From a kmem/slab
2469 * perspective, the cache has already been selected, by
2470 * mem_cgroup_kmem_get_cache(), so it is too late to change
2471 * our minds.
2472 *
2473 * This condition will only trigger if the task entered
2474 * memcg_charge_kmem in a sane state, but was OOM-killed
2475 * during try_charge() above. Tasks that were already dying
2476 * when the allocation triggers should have been already
2477 * directed to the root cgroup in memcontrol.h
2478 */
2479 page_counter_charge(&memcg->memory, nr_pages);
2480 if (do_swap_account)
2481 page_counter_charge(&memcg->memsw, nr_pages);
2482 css_get_many(&memcg->css, nr_pages);
2483 ret = 0;
2484 } else if (ret)
2485 page_counter_uncharge(&memcg->kmem, nr_pages);
2486
2487 return ret;
2488 }
2489
2490 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2491 {
2492 page_counter_uncharge(&memcg->memory, nr_pages);
2493 if (do_swap_account)
2494 page_counter_uncharge(&memcg->memsw, nr_pages);
2495
2496 page_counter_uncharge(&memcg->kmem, nr_pages);
2497
2498 css_put_many(&memcg->css, nr_pages);
2499 }
2500
2501 /*
2502 * helper for acessing a memcg's index. It will be used as an index in the
2503 * child cache array in kmem_cache, and also to derive its name. This function
2504 * will return -1 when this is not a kmem-limited memcg.
2505 */
2506 int memcg_cache_id(struct mem_cgroup *memcg)
2507 {
2508 return memcg ? memcg->kmemcg_id : -1;
2509 }
2510
2511 static int memcg_alloc_cache_id(void)
2512 {
2513 int id, size;
2514 int err;
2515
2516 id = ida_simple_get(&memcg_cache_ida,
2517 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2518 if (id < 0)
2519 return id;
2520
2521 if (id < memcg_nr_cache_ids)
2522 return id;
2523
2524 /*
2525 * There's no space for the new id in memcg_caches arrays,
2526 * so we have to grow them.
2527 */
2528 down_write(&memcg_cache_ids_sem);
2529
2530 size = 2 * (id + 1);
2531 if (size < MEMCG_CACHES_MIN_SIZE)
2532 size = MEMCG_CACHES_MIN_SIZE;
2533 else if (size > MEMCG_CACHES_MAX_SIZE)
2534 size = MEMCG_CACHES_MAX_SIZE;
2535
2536 err = memcg_update_all_caches(size);
2537 if (!err)
2538 err = memcg_update_all_list_lrus(size);
2539 if (!err)
2540 memcg_nr_cache_ids = size;
2541
2542 up_write(&memcg_cache_ids_sem);
2543
2544 if (err) {
2545 ida_simple_remove(&memcg_cache_ida, id);
2546 return err;
2547 }
2548 return id;
2549 }
2550
2551 static void memcg_free_cache_id(int id)
2552 {
2553 ida_simple_remove(&memcg_cache_ida, id);
2554 }
2555
2556 struct memcg_kmem_cache_create_work {
2557 struct mem_cgroup *memcg;
2558 struct kmem_cache *cachep;
2559 struct work_struct work;
2560 };
2561
2562 static void memcg_kmem_cache_create_func(struct work_struct *w)
2563 {
2564 struct memcg_kmem_cache_create_work *cw =
2565 container_of(w, struct memcg_kmem_cache_create_work, work);
2566 struct mem_cgroup *memcg = cw->memcg;
2567 struct kmem_cache *cachep = cw->cachep;
2568
2569 memcg_create_kmem_cache(memcg, cachep);
2570
2571 css_put(&memcg->css);
2572 kfree(cw);
2573 }
2574
2575 /*
2576 * Enqueue the creation of a per-memcg kmem_cache.
2577 */
2578 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2579 struct kmem_cache *cachep)
2580 {
2581 struct memcg_kmem_cache_create_work *cw;
2582
2583 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2584 if (!cw)
2585 return;
2586
2587 css_get(&memcg->css);
2588
2589 cw->memcg = memcg;
2590 cw->cachep = cachep;
2591 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2592
2593 schedule_work(&cw->work);
2594 }
2595
2596 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2597 struct kmem_cache *cachep)
2598 {
2599 /*
2600 * We need to stop accounting when we kmalloc, because if the
2601 * corresponding kmalloc cache is not yet created, the first allocation
2602 * in __memcg_schedule_kmem_cache_create will recurse.
2603 *
2604 * However, it is better to enclose the whole function. Depending on
2605 * the debugging options enabled, INIT_WORK(), for instance, can
2606 * trigger an allocation. This too, will make us recurse. Because at
2607 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2608 * the safest choice is to do it like this, wrapping the whole function.
2609 */
2610 current->memcg_kmem_skip_account = 1;
2611 __memcg_schedule_kmem_cache_create(memcg, cachep);
2612 current->memcg_kmem_skip_account = 0;
2613 }
2614
2615 /*
2616 * Return the kmem_cache we're supposed to use for a slab allocation.
2617 * We try to use the current memcg's version of the cache.
2618 *
2619 * If the cache does not exist yet, if we are the first user of it,
2620 * we either create it immediately, if possible, or create it asynchronously
2621 * in a workqueue.
2622 * In the latter case, we will let the current allocation go through with
2623 * the original cache.
2624 *
2625 * Can't be called in interrupt context or from kernel threads.
2626 * This function needs to be called with rcu_read_lock() held.
2627 */
2628 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2629 {
2630 struct mem_cgroup *memcg;
2631 struct kmem_cache *memcg_cachep;
2632 int kmemcg_id;
2633
2634 VM_BUG_ON(!is_root_cache(cachep));
2635
2636 if (current->memcg_kmem_skip_account)
2637 return cachep;
2638
2639 memcg = get_mem_cgroup_from_mm(current->mm);
2640 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2641 if (kmemcg_id < 0)
2642 goto out;
2643
2644 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2645 if (likely(memcg_cachep))
2646 return memcg_cachep;
2647
2648 /*
2649 * If we are in a safe context (can wait, and not in interrupt
2650 * context), we could be be predictable and return right away.
2651 * This would guarantee that the allocation being performed
2652 * already belongs in the new cache.
2653 *
2654 * However, there are some clashes that can arrive from locking.
2655 * For instance, because we acquire the slab_mutex while doing
2656 * memcg_create_kmem_cache, this means no further allocation
2657 * could happen with the slab_mutex held. So it's better to
2658 * defer everything.
2659 */
2660 memcg_schedule_kmem_cache_create(memcg, cachep);
2661 out:
2662 css_put(&memcg->css);
2663 return cachep;
2664 }
2665
2666 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2667 {
2668 if (!is_root_cache(cachep))
2669 css_put(&cachep->memcg_params.memcg->css);
2670 }
2671
2672 /*
2673 * We need to verify if the allocation against current->mm->owner's memcg is
2674 * possible for the given order. But the page is not allocated yet, so we'll
2675 * need a further commit step to do the final arrangements.
2676 *
2677 * It is possible for the task to switch cgroups in this mean time, so at
2678 * commit time, we can't rely on task conversion any longer. We'll then use
2679 * the handle argument to return to the caller which cgroup we should commit
2680 * against. We could also return the memcg directly and avoid the pointer
2681 * passing, but a boolean return value gives better semantics considering
2682 * the compiled-out case as well.
2683 *
2684 * Returning true means the allocation is possible.
2685 */
2686 bool
2687 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2688 {
2689 struct mem_cgroup *memcg;
2690 int ret;
2691
2692 *_memcg = NULL;
2693
2694 memcg = get_mem_cgroup_from_mm(current->mm);
2695
2696 if (!memcg_kmem_is_active(memcg)) {
2697 css_put(&memcg->css);
2698 return true;
2699 }
2700
2701 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2702 if (!ret)
2703 *_memcg = memcg;
2704
2705 css_put(&memcg->css);
2706 return (ret == 0);
2707 }
2708
2709 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2710 int order)
2711 {
2712 VM_BUG_ON(mem_cgroup_is_root(memcg));
2713
2714 /* The page allocation failed. Revert */
2715 if (!page) {
2716 memcg_uncharge_kmem(memcg, 1 << order);
2717 return;
2718 }
2719 page->mem_cgroup = memcg;
2720 }
2721
2722 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2723 {
2724 struct mem_cgroup *memcg = page->mem_cgroup;
2725
2726 if (!memcg)
2727 return;
2728
2729 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2730
2731 memcg_uncharge_kmem(memcg, 1 << order);
2732 page->mem_cgroup = NULL;
2733 }
2734
2735 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2736 {
2737 struct mem_cgroup *memcg = NULL;
2738 struct kmem_cache *cachep;
2739 struct page *page;
2740
2741 page = virt_to_head_page(ptr);
2742 if (PageSlab(page)) {
2743 cachep = page->slab_cache;
2744 if (!is_root_cache(cachep))
2745 memcg = cachep->memcg_params.memcg;
2746 } else
2747 /* page allocated by alloc_kmem_pages */
2748 memcg = page->mem_cgroup;
2749
2750 return memcg;
2751 }
2752 #endif /* CONFIG_MEMCG_KMEM */
2753
2754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2755
2756 /*
2757 * Because tail pages are not marked as "used", set it. We're under
2758 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2759 * charge/uncharge will be never happen and move_account() is done under
2760 * compound_lock(), so we don't have to take care of races.
2761 */
2762 void mem_cgroup_split_huge_fixup(struct page *head)
2763 {
2764 int i;
2765
2766 if (mem_cgroup_disabled())
2767 return;
2768
2769 for (i = 1; i < HPAGE_PMD_NR; i++)
2770 head[i].mem_cgroup = head->mem_cgroup;
2771
2772 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2773 HPAGE_PMD_NR);
2774 }
2775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2776
2777 #ifdef CONFIG_MEMCG_SWAP
2778 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2779 bool charge)
2780 {
2781 int val = (charge) ? 1 : -1;
2782 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2783 }
2784
2785 /**
2786 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2787 * @entry: swap entry to be moved
2788 * @from: mem_cgroup which the entry is moved from
2789 * @to: mem_cgroup which the entry is moved to
2790 *
2791 * It succeeds only when the swap_cgroup's record for this entry is the same
2792 * as the mem_cgroup's id of @from.
2793 *
2794 * Returns 0 on success, -EINVAL on failure.
2795 *
2796 * The caller must have charged to @to, IOW, called page_counter_charge() about
2797 * both res and memsw, and called css_get().
2798 */
2799 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2800 struct mem_cgroup *from, struct mem_cgroup *to)
2801 {
2802 unsigned short old_id, new_id;
2803
2804 old_id = mem_cgroup_id(from);
2805 new_id = mem_cgroup_id(to);
2806
2807 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2808 mem_cgroup_swap_statistics(from, false);
2809 mem_cgroup_swap_statistics(to, true);
2810 return 0;
2811 }
2812 return -EINVAL;
2813 }
2814 #else
2815 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2816 struct mem_cgroup *from, struct mem_cgroup *to)
2817 {
2818 return -EINVAL;
2819 }
2820 #endif
2821
2822 static DEFINE_MUTEX(memcg_limit_mutex);
2823
2824 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2825 unsigned long limit)
2826 {
2827 unsigned long curusage;
2828 unsigned long oldusage;
2829 bool enlarge = false;
2830 int retry_count;
2831 int ret;
2832
2833 /*
2834 * For keeping hierarchical_reclaim simple, how long we should retry
2835 * is depends on callers. We set our retry-count to be function
2836 * of # of children which we should visit in this loop.
2837 */
2838 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2839 mem_cgroup_count_children(memcg);
2840
2841 oldusage = page_counter_read(&memcg->memory);
2842
2843 do {
2844 if (signal_pending(current)) {
2845 ret = -EINTR;
2846 break;
2847 }
2848
2849 mutex_lock(&memcg_limit_mutex);
2850 if (limit > memcg->memsw.limit) {
2851 mutex_unlock(&memcg_limit_mutex);
2852 ret = -EINVAL;
2853 break;
2854 }
2855 if (limit > memcg->memory.limit)
2856 enlarge = true;
2857 ret = page_counter_limit(&memcg->memory, limit);
2858 mutex_unlock(&memcg_limit_mutex);
2859
2860 if (!ret)
2861 break;
2862
2863 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2864
2865 curusage = page_counter_read(&memcg->memory);
2866 /* Usage is reduced ? */
2867 if (curusage >= oldusage)
2868 retry_count--;
2869 else
2870 oldusage = curusage;
2871 } while (retry_count);
2872
2873 if (!ret && enlarge)
2874 memcg_oom_recover(memcg);
2875
2876 return ret;
2877 }
2878
2879 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2880 unsigned long limit)
2881 {
2882 unsigned long curusage;
2883 unsigned long oldusage;
2884 bool enlarge = false;
2885 int retry_count;
2886 int ret;
2887
2888 /* see mem_cgroup_resize_res_limit */
2889 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2890 mem_cgroup_count_children(memcg);
2891
2892 oldusage = page_counter_read(&memcg->memsw);
2893
2894 do {
2895 if (signal_pending(current)) {
2896 ret = -EINTR;
2897 break;
2898 }
2899
2900 mutex_lock(&memcg_limit_mutex);
2901 if (limit < memcg->memory.limit) {
2902 mutex_unlock(&memcg_limit_mutex);
2903 ret = -EINVAL;
2904 break;
2905 }
2906 if (limit > memcg->memsw.limit)
2907 enlarge = true;
2908 ret = page_counter_limit(&memcg->memsw, limit);
2909 mutex_unlock(&memcg_limit_mutex);
2910
2911 if (!ret)
2912 break;
2913
2914 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2915
2916 curusage = page_counter_read(&memcg->memsw);
2917 /* Usage is reduced ? */
2918 if (curusage >= oldusage)
2919 retry_count--;
2920 else
2921 oldusage = curusage;
2922 } while (retry_count);
2923
2924 if (!ret && enlarge)
2925 memcg_oom_recover(memcg);
2926
2927 return ret;
2928 }
2929
2930 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2931 gfp_t gfp_mask,
2932 unsigned long *total_scanned)
2933 {
2934 unsigned long nr_reclaimed = 0;
2935 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2936 unsigned long reclaimed;
2937 int loop = 0;
2938 struct mem_cgroup_tree_per_zone *mctz;
2939 unsigned long excess;
2940 unsigned long nr_scanned;
2941
2942 if (order > 0)
2943 return 0;
2944
2945 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2946 /*
2947 * This loop can run a while, specially if mem_cgroup's continuously
2948 * keep exceeding their soft limit and putting the system under
2949 * pressure
2950 */
2951 do {
2952 if (next_mz)
2953 mz = next_mz;
2954 else
2955 mz = mem_cgroup_largest_soft_limit_node(mctz);
2956 if (!mz)
2957 break;
2958
2959 nr_scanned = 0;
2960 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2961 gfp_mask, &nr_scanned);
2962 nr_reclaimed += reclaimed;
2963 *total_scanned += nr_scanned;
2964 spin_lock_irq(&mctz->lock);
2965 __mem_cgroup_remove_exceeded(mz, mctz);
2966
2967 /*
2968 * If we failed to reclaim anything from this memory cgroup
2969 * it is time to move on to the next cgroup
2970 */
2971 next_mz = NULL;
2972 if (!reclaimed)
2973 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2974
2975 excess = soft_limit_excess(mz->memcg);
2976 /*
2977 * One school of thought says that we should not add
2978 * back the node to the tree if reclaim returns 0.
2979 * But our reclaim could return 0, simply because due
2980 * to priority we are exposing a smaller subset of
2981 * memory to reclaim from. Consider this as a longer
2982 * term TODO.
2983 */
2984 /* If excess == 0, no tree ops */
2985 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2986 spin_unlock_irq(&mctz->lock);
2987 css_put(&mz->memcg->css);
2988 loop++;
2989 /*
2990 * Could not reclaim anything and there are no more
2991 * mem cgroups to try or we seem to be looping without
2992 * reclaiming anything.
2993 */
2994 if (!nr_reclaimed &&
2995 (next_mz == NULL ||
2996 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2997 break;
2998 } while (!nr_reclaimed);
2999 if (next_mz)
3000 css_put(&next_mz->memcg->css);
3001 return nr_reclaimed;
3002 }
3003
3004 /*
3005 * Test whether @memcg has children, dead or alive. Note that this
3006 * function doesn't care whether @memcg has use_hierarchy enabled and
3007 * returns %true if there are child csses according to the cgroup
3008 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3009 */
3010 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3011 {
3012 bool ret;
3013
3014 /*
3015 * The lock does not prevent addition or deletion of children, but
3016 * it prevents a new child from being initialized based on this
3017 * parent in css_online(), so it's enough to decide whether
3018 * hierarchically inherited attributes can still be changed or not.
3019 */
3020 lockdep_assert_held(&memcg_create_mutex);
3021
3022 rcu_read_lock();
3023 ret = css_next_child(NULL, &memcg->css);
3024 rcu_read_unlock();
3025 return ret;
3026 }
3027
3028 /*
3029 * Reclaims as many pages from the given memcg as possible and moves
3030 * the rest to the parent.
3031 *
3032 * Caller is responsible for holding css reference for memcg.
3033 */
3034 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3035 {
3036 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3037
3038 /* we call try-to-free pages for make this cgroup empty */
3039 lru_add_drain_all();
3040 /* try to free all pages in this cgroup */
3041 while (nr_retries && page_counter_read(&memcg->memory)) {
3042 int progress;
3043
3044 if (signal_pending(current))
3045 return -EINTR;
3046
3047 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3048 GFP_KERNEL, true);
3049 if (!progress) {
3050 nr_retries--;
3051 /* maybe some writeback is necessary */
3052 congestion_wait(BLK_RW_ASYNC, HZ/10);
3053 }
3054
3055 }
3056
3057 return 0;
3058 }
3059
3060 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3061 char *buf, size_t nbytes,
3062 loff_t off)
3063 {
3064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3065
3066 if (mem_cgroup_is_root(memcg))
3067 return -EINVAL;
3068 return mem_cgroup_force_empty(memcg) ?: nbytes;
3069 }
3070
3071 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3072 struct cftype *cft)
3073 {
3074 return mem_cgroup_from_css(css)->use_hierarchy;
3075 }
3076
3077 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3078 struct cftype *cft, u64 val)
3079 {
3080 int retval = 0;
3081 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3082 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3083
3084 mutex_lock(&memcg_create_mutex);
3085
3086 if (memcg->use_hierarchy == val)
3087 goto out;
3088
3089 /*
3090 * If parent's use_hierarchy is set, we can't make any modifications
3091 * in the child subtrees. If it is unset, then the change can
3092 * occur, provided the current cgroup has no children.
3093 *
3094 * For the root cgroup, parent_mem is NULL, we allow value to be
3095 * set if there are no children.
3096 */
3097 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3098 (val == 1 || val == 0)) {
3099 if (!memcg_has_children(memcg))
3100 memcg->use_hierarchy = val;
3101 else
3102 retval = -EBUSY;
3103 } else
3104 retval = -EINVAL;
3105
3106 out:
3107 mutex_unlock(&memcg_create_mutex);
3108
3109 return retval;
3110 }
3111
3112 static unsigned long tree_stat(struct mem_cgroup *memcg,
3113 enum mem_cgroup_stat_index idx)
3114 {
3115 struct mem_cgroup *iter;
3116 long val = 0;
3117
3118 /* Per-cpu values can be negative, use a signed accumulator */
3119 for_each_mem_cgroup_tree(iter, memcg)
3120 val += mem_cgroup_read_stat(iter, idx);
3121
3122 if (val < 0) /* race ? */
3123 val = 0;
3124 return val;
3125 }
3126
3127 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3128 {
3129 u64 val;
3130
3131 if (mem_cgroup_is_root(memcg)) {
3132 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3133 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3134 if (swap)
3135 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3136 } else {
3137 if (!swap)
3138 val = page_counter_read(&memcg->memory);
3139 else
3140 val = page_counter_read(&memcg->memsw);
3141 }
3142 return val << PAGE_SHIFT;
3143 }
3144
3145 enum {
3146 RES_USAGE,
3147 RES_LIMIT,
3148 RES_MAX_USAGE,
3149 RES_FAILCNT,
3150 RES_SOFT_LIMIT,
3151 };
3152
3153 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3154 struct cftype *cft)
3155 {
3156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3157 struct page_counter *counter;
3158
3159 switch (MEMFILE_TYPE(cft->private)) {
3160 case _MEM:
3161 counter = &memcg->memory;
3162 break;
3163 case _MEMSWAP:
3164 counter = &memcg->memsw;
3165 break;
3166 case _KMEM:
3167 counter = &memcg->kmem;
3168 break;
3169 default:
3170 BUG();
3171 }
3172
3173 switch (MEMFILE_ATTR(cft->private)) {
3174 case RES_USAGE:
3175 if (counter == &memcg->memory)
3176 return mem_cgroup_usage(memcg, false);
3177 if (counter == &memcg->memsw)
3178 return mem_cgroup_usage(memcg, true);
3179 return (u64)page_counter_read(counter) * PAGE_SIZE;
3180 case RES_LIMIT:
3181 return (u64)counter->limit * PAGE_SIZE;
3182 case RES_MAX_USAGE:
3183 return (u64)counter->watermark * PAGE_SIZE;
3184 case RES_FAILCNT:
3185 return counter->failcnt;
3186 case RES_SOFT_LIMIT:
3187 return (u64)memcg->soft_limit * PAGE_SIZE;
3188 default:
3189 BUG();
3190 }
3191 }
3192
3193 #ifdef CONFIG_MEMCG_KMEM
3194 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3195 unsigned long nr_pages)
3196 {
3197 int err = 0;
3198 int memcg_id;
3199
3200 BUG_ON(memcg->kmemcg_id >= 0);
3201 BUG_ON(memcg->kmem_acct_activated);
3202 BUG_ON(memcg->kmem_acct_active);
3203
3204 /*
3205 * For simplicity, we won't allow this to be disabled. It also can't
3206 * be changed if the cgroup has children already, or if tasks had
3207 * already joined.
3208 *
3209 * If tasks join before we set the limit, a person looking at
3210 * kmem.usage_in_bytes will have no way to determine when it took
3211 * place, which makes the value quite meaningless.
3212 *
3213 * After it first became limited, changes in the value of the limit are
3214 * of course permitted.
3215 */
3216 mutex_lock(&memcg_create_mutex);
3217 if (cgroup_has_tasks(memcg->css.cgroup) ||
3218 (memcg->use_hierarchy && memcg_has_children(memcg)))
3219 err = -EBUSY;
3220 mutex_unlock(&memcg_create_mutex);
3221 if (err)
3222 goto out;
3223
3224 memcg_id = memcg_alloc_cache_id();
3225 if (memcg_id < 0) {
3226 err = memcg_id;
3227 goto out;
3228 }
3229
3230 /*
3231 * We couldn't have accounted to this cgroup, because it hasn't got
3232 * activated yet, so this should succeed.
3233 */
3234 err = page_counter_limit(&memcg->kmem, nr_pages);
3235 VM_BUG_ON(err);
3236
3237 static_key_slow_inc(&memcg_kmem_enabled_key);
3238 /*
3239 * A memory cgroup is considered kmem-active as soon as it gets
3240 * kmemcg_id. Setting the id after enabling static branching will
3241 * guarantee no one starts accounting before all call sites are
3242 * patched.
3243 */
3244 memcg->kmemcg_id = memcg_id;
3245 memcg->kmem_acct_activated = true;
3246 memcg->kmem_acct_active = true;
3247 out:
3248 return err;
3249 }
3250
3251 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3252 unsigned long limit)
3253 {
3254 int ret;
3255
3256 mutex_lock(&memcg_limit_mutex);
3257 if (!memcg_kmem_is_active(memcg))
3258 ret = memcg_activate_kmem(memcg, limit);
3259 else
3260 ret = page_counter_limit(&memcg->kmem, limit);
3261 mutex_unlock(&memcg_limit_mutex);
3262 return ret;
3263 }
3264
3265 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3266 {
3267 int ret = 0;
3268 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3269
3270 if (!parent)
3271 return 0;
3272
3273 mutex_lock(&memcg_limit_mutex);
3274 /*
3275 * If the parent cgroup is not kmem-active now, it cannot be activated
3276 * after this point, because it has at least one child already.
3277 */
3278 if (memcg_kmem_is_active(parent))
3279 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3280 mutex_unlock(&memcg_limit_mutex);
3281 return ret;
3282 }
3283 #else
3284 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3285 unsigned long limit)
3286 {
3287 return -EINVAL;
3288 }
3289 #endif /* CONFIG_MEMCG_KMEM */
3290
3291 /*
3292 * The user of this function is...
3293 * RES_LIMIT.
3294 */
3295 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3296 char *buf, size_t nbytes, loff_t off)
3297 {
3298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3299 unsigned long nr_pages;
3300 int ret;
3301
3302 buf = strstrip(buf);
3303 ret = page_counter_memparse(buf, "-1", &nr_pages);
3304 if (ret)
3305 return ret;
3306
3307 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3308 case RES_LIMIT:
3309 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3310 ret = -EINVAL;
3311 break;
3312 }
3313 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3314 case _MEM:
3315 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3316 break;
3317 case _MEMSWAP:
3318 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3319 break;
3320 case _KMEM:
3321 ret = memcg_update_kmem_limit(memcg, nr_pages);
3322 break;
3323 }
3324 break;
3325 case RES_SOFT_LIMIT:
3326 memcg->soft_limit = nr_pages;
3327 ret = 0;
3328 break;
3329 }
3330 return ret ?: nbytes;
3331 }
3332
3333 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3334 size_t nbytes, loff_t off)
3335 {
3336 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3337 struct page_counter *counter;
3338
3339 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3340 case _MEM:
3341 counter = &memcg->memory;
3342 break;
3343 case _MEMSWAP:
3344 counter = &memcg->memsw;
3345 break;
3346 case _KMEM:
3347 counter = &memcg->kmem;
3348 break;
3349 default:
3350 BUG();
3351 }
3352
3353 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3354 case RES_MAX_USAGE:
3355 page_counter_reset_watermark(counter);
3356 break;
3357 case RES_FAILCNT:
3358 counter->failcnt = 0;
3359 break;
3360 default:
3361 BUG();
3362 }
3363
3364 return nbytes;
3365 }
3366
3367 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3368 struct cftype *cft)
3369 {
3370 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3371 }
3372
3373 #ifdef CONFIG_MMU
3374 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3375 struct cftype *cft, u64 val)
3376 {
3377 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3378
3379 if (val & ~MOVE_MASK)
3380 return -EINVAL;
3381
3382 /*
3383 * No kind of locking is needed in here, because ->can_attach() will
3384 * check this value once in the beginning of the process, and then carry
3385 * on with stale data. This means that changes to this value will only
3386 * affect task migrations starting after the change.
3387 */
3388 memcg->move_charge_at_immigrate = val;
3389 return 0;
3390 }
3391 #else
3392 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3393 struct cftype *cft, u64 val)
3394 {
3395 return -ENOSYS;
3396 }
3397 #endif
3398
3399 #ifdef CONFIG_NUMA
3400 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3401 {
3402 struct numa_stat {
3403 const char *name;
3404 unsigned int lru_mask;
3405 };
3406
3407 static const struct numa_stat stats[] = {
3408 { "total", LRU_ALL },
3409 { "file", LRU_ALL_FILE },
3410 { "anon", LRU_ALL_ANON },
3411 { "unevictable", BIT(LRU_UNEVICTABLE) },
3412 };
3413 const struct numa_stat *stat;
3414 int nid;
3415 unsigned long nr;
3416 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3417
3418 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3419 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3420 seq_printf(m, "%s=%lu", stat->name, nr);
3421 for_each_node_state(nid, N_MEMORY) {
3422 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3423 stat->lru_mask);
3424 seq_printf(m, " N%d=%lu", nid, nr);
3425 }
3426 seq_putc(m, '\n');
3427 }
3428
3429 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3430 struct mem_cgroup *iter;
3431
3432 nr = 0;
3433 for_each_mem_cgroup_tree(iter, memcg)
3434 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3435 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3436 for_each_node_state(nid, N_MEMORY) {
3437 nr = 0;
3438 for_each_mem_cgroup_tree(iter, memcg)
3439 nr += mem_cgroup_node_nr_lru_pages(
3440 iter, nid, stat->lru_mask);
3441 seq_printf(m, " N%d=%lu", nid, nr);
3442 }
3443 seq_putc(m, '\n');
3444 }
3445
3446 return 0;
3447 }
3448 #endif /* CONFIG_NUMA */
3449
3450 static int memcg_stat_show(struct seq_file *m, void *v)
3451 {
3452 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3453 unsigned long memory, memsw;
3454 struct mem_cgroup *mi;
3455 unsigned int i;
3456
3457 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3458 MEM_CGROUP_STAT_NSTATS);
3459 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3460 MEM_CGROUP_EVENTS_NSTATS);
3461 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3462
3463 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3464 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3465 continue;
3466 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3467 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3468 }
3469
3470 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3471 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3472 mem_cgroup_read_events(memcg, i));
3473
3474 for (i = 0; i < NR_LRU_LISTS; i++)
3475 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3476 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3477
3478 /* Hierarchical information */
3479 memory = memsw = PAGE_COUNTER_MAX;
3480 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3481 memory = min(memory, mi->memory.limit);
3482 memsw = min(memsw, mi->memsw.limit);
3483 }
3484 seq_printf(m, "hierarchical_memory_limit %llu\n",
3485 (u64)memory * PAGE_SIZE);
3486 if (do_swap_account)
3487 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3488 (u64)memsw * PAGE_SIZE);
3489
3490 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3491 long long val = 0;
3492
3493 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3494 continue;
3495 for_each_mem_cgroup_tree(mi, memcg)
3496 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3497 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3498 }
3499
3500 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3501 unsigned long long val = 0;
3502
3503 for_each_mem_cgroup_tree(mi, memcg)
3504 val += mem_cgroup_read_events(mi, i);
3505 seq_printf(m, "total_%s %llu\n",
3506 mem_cgroup_events_names[i], val);
3507 }
3508
3509 for (i = 0; i < NR_LRU_LISTS; i++) {
3510 unsigned long long val = 0;
3511
3512 for_each_mem_cgroup_tree(mi, memcg)
3513 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3514 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3515 }
3516
3517 #ifdef CONFIG_DEBUG_VM
3518 {
3519 int nid, zid;
3520 struct mem_cgroup_per_zone *mz;
3521 struct zone_reclaim_stat *rstat;
3522 unsigned long recent_rotated[2] = {0, 0};
3523 unsigned long recent_scanned[2] = {0, 0};
3524
3525 for_each_online_node(nid)
3526 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3527 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3528 rstat = &mz->lruvec.reclaim_stat;
3529
3530 recent_rotated[0] += rstat->recent_rotated[0];
3531 recent_rotated[1] += rstat->recent_rotated[1];
3532 recent_scanned[0] += rstat->recent_scanned[0];
3533 recent_scanned[1] += rstat->recent_scanned[1];
3534 }
3535 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3536 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3537 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3538 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3539 }
3540 #endif
3541
3542 return 0;
3543 }
3544
3545 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3546 struct cftype *cft)
3547 {
3548 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3549
3550 return mem_cgroup_swappiness(memcg);
3551 }
3552
3553 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3554 struct cftype *cft, u64 val)
3555 {
3556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3557
3558 if (val > 100)
3559 return -EINVAL;
3560
3561 if (css->parent)
3562 memcg->swappiness = val;
3563 else
3564 vm_swappiness = val;
3565
3566 return 0;
3567 }
3568
3569 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3570 {
3571 struct mem_cgroup_threshold_ary *t;
3572 unsigned long usage;
3573 int i;
3574
3575 rcu_read_lock();
3576 if (!swap)
3577 t = rcu_dereference(memcg->thresholds.primary);
3578 else
3579 t = rcu_dereference(memcg->memsw_thresholds.primary);
3580
3581 if (!t)
3582 goto unlock;
3583
3584 usage = mem_cgroup_usage(memcg, swap);
3585
3586 /*
3587 * current_threshold points to threshold just below or equal to usage.
3588 * If it's not true, a threshold was crossed after last
3589 * call of __mem_cgroup_threshold().
3590 */
3591 i = t->current_threshold;
3592
3593 /*
3594 * Iterate backward over array of thresholds starting from
3595 * current_threshold and check if a threshold is crossed.
3596 * If none of thresholds below usage is crossed, we read
3597 * only one element of the array here.
3598 */
3599 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3600 eventfd_signal(t->entries[i].eventfd, 1);
3601
3602 /* i = current_threshold + 1 */
3603 i++;
3604
3605 /*
3606 * Iterate forward over array of thresholds starting from
3607 * current_threshold+1 and check if a threshold is crossed.
3608 * If none of thresholds above usage is crossed, we read
3609 * only one element of the array here.
3610 */
3611 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3612 eventfd_signal(t->entries[i].eventfd, 1);
3613
3614 /* Update current_threshold */
3615 t->current_threshold = i - 1;
3616 unlock:
3617 rcu_read_unlock();
3618 }
3619
3620 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3621 {
3622 while (memcg) {
3623 __mem_cgroup_threshold(memcg, false);
3624 if (do_swap_account)
3625 __mem_cgroup_threshold(memcg, true);
3626
3627 memcg = parent_mem_cgroup(memcg);
3628 }
3629 }
3630
3631 static int compare_thresholds(const void *a, const void *b)
3632 {
3633 const struct mem_cgroup_threshold *_a = a;
3634 const struct mem_cgroup_threshold *_b = b;
3635
3636 if (_a->threshold > _b->threshold)
3637 return 1;
3638
3639 if (_a->threshold < _b->threshold)
3640 return -1;
3641
3642 return 0;
3643 }
3644
3645 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3646 {
3647 struct mem_cgroup_eventfd_list *ev;
3648
3649 spin_lock(&memcg_oom_lock);
3650
3651 list_for_each_entry(ev, &memcg->oom_notify, list)
3652 eventfd_signal(ev->eventfd, 1);
3653
3654 spin_unlock(&memcg_oom_lock);
3655 return 0;
3656 }
3657
3658 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3659 {
3660 struct mem_cgroup *iter;
3661
3662 for_each_mem_cgroup_tree(iter, memcg)
3663 mem_cgroup_oom_notify_cb(iter);
3664 }
3665
3666 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3667 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3668 {
3669 struct mem_cgroup_thresholds *thresholds;
3670 struct mem_cgroup_threshold_ary *new;
3671 unsigned long threshold;
3672 unsigned long usage;
3673 int i, size, ret;
3674
3675 ret = page_counter_memparse(args, "-1", &threshold);
3676 if (ret)
3677 return ret;
3678
3679 mutex_lock(&memcg->thresholds_lock);
3680
3681 if (type == _MEM) {
3682 thresholds = &memcg->thresholds;
3683 usage = mem_cgroup_usage(memcg, false);
3684 } else if (type == _MEMSWAP) {
3685 thresholds = &memcg->memsw_thresholds;
3686 usage = mem_cgroup_usage(memcg, true);
3687 } else
3688 BUG();
3689
3690 /* Check if a threshold crossed before adding a new one */
3691 if (thresholds->primary)
3692 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3693
3694 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3695
3696 /* Allocate memory for new array of thresholds */
3697 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3698 GFP_KERNEL);
3699 if (!new) {
3700 ret = -ENOMEM;
3701 goto unlock;
3702 }
3703 new->size = size;
3704
3705 /* Copy thresholds (if any) to new array */
3706 if (thresholds->primary) {
3707 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3708 sizeof(struct mem_cgroup_threshold));
3709 }
3710
3711 /* Add new threshold */
3712 new->entries[size - 1].eventfd = eventfd;
3713 new->entries[size - 1].threshold = threshold;
3714
3715 /* Sort thresholds. Registering of new threshold isn't time-critical */
3716 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3717 compare_thresholds, NULL);
3718
3719 /* Find current threshold */
3720 new->current_threshold = -1;
3721 for (i = 0; i < size; i++) {
3722 if (new->entries[i].threshold <= usage) {
3723 /*
3724 * new->current_threshold will not be used until
3725 * rcu_assign_pointer(), so it's safe to increment
3726 * it here.
3727 */
3728 ++new->current_threshold;
3729 } else
3730 break;
3731 }
3732
3733 /* Free old spare buffer and save old primary buffer as spare */
3734 kfree(thresholds->spare);
3735 thresholds->spare = thresholds->primary;
3736
3737 rcu_assign_pointer(thresholds->primary, new);
3738
3739 /* To be sure that nobody uses thresholds */
3740 synchronize_rcu();
3741
3742 unlock:
3743 mutex_unlock(&memcg->thresholds_lock);
3744
3745 return ret;
3746 }
3747
3748 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3749 struct eventfd_ctx *eventfd, const char *args)
3750 {
3751 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3752 }
3753
3754 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3755 struct eventfd_ctx *eventfd, const char *args)
3756 {
3757 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3758 }
3759
3760 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3761 struct eventfd_ctx *eventfd, enum res_type type)
3762 {
3763 struct mem_cgroup_thresholds *thresholds;
3764 struct mem_cgroup_threshold_ary *new;
3765 unsigned long usage;
3766 int i, j, size;
3767
3768 mutex_lock(&memcg->thresholds_lock);
3769
3770 if (type == _MEM) {
3771 thresholds = &memcg->thresholds;
3772 usage = mem_cgroup_usage(memcg, false);
3773 } else if (type == _MEMSWAP) {
3774 thresholds = &memcg->memsw_thresholds;
3775 usage = mem_cgroup_usage(memcg, true);
3776 } else
3777 BUG();
3778
3779 if (!thresholds->primary)
3780 goto unlock;
3781
3782 /* Check if a threshold crossed before removing */
3783 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3784
3785 /* Calculate new number of threshold */
3786 size = 0;
3787 for (i = 0; i < thresholds->primary->size; i++) {
3788 if (thresholds->primary->entries[i].eventfd != eventfd)
3789 size++;
3790 }
3791
3792 new = thresholds->spare;
3793
3794 /* Set thresholds array to NULL if we don't have thresholds */
3795 if (!size) {
3796 kfree(new);
3797 new = NULL;
3798 goto swap_buffers;
3799 }
3800
3801 new->size = size;
3802
3803 /* Copy thresholds and find current threshold */
3804 new->current_threshold = -1;
3805 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3806 if (thresholds->primary->entries[i].eventfd == eventfd)
3807 continue;
3808
3809 new->entries[j] = thresholds->primary->entries[i];
3810 if (new->entries[j].threshold <= usage) {
3811 /*
3812 * new->current_threshold will not be used
3813 * until rcu_assign_pointer(), so it's safe to increment
3814 * it here.
3815 */
3816 ++new->current_threshold;
3817 }
3818 j++;
3819 }
3820
3821 swap_buffers:
3822 /* Swap primary and spare array */
3823 thresholds->spare = thresholds->primary;
3824 /* If all events are unregistered, free the spare array */
3825 if (!new) {
3826 kfree(thresholds->spare);
3827 thresholds->spare = NULL;
3828 }
3829
3830 rcu_assign_pointer(thresholds->primary, new);
3831
3832 /* To be sure that nobody uses thresholds */
3833 synchronize_rcu();
3834 unlock:
3835 mutex_unlock(&memcg->thresholds_lock);
3836 }
3837
3838 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3839 struct eventfd_ctx *eventfd)
3840 {
3841 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3842 }
3843
3844 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3845 struct eventfd_ctx *eventfd)
3846 {
3847 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3848 }
3849
3850 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3851 struct eventfd_ctx *eventfd, const char *args)
3852 {
3853 struct mem_cgroup_eventfd_list *event;
3854
3855 event = kmalloc(sizeof(*event), GFP_KERNEL);
3856 if (!event)
3857 return -ENOMEM;
3858
3859 spin_lock(&memcg_oom_lock);
3860
3861 event->eventfd = eventfd;
3862 list_add(&event->list, &memcg->oom_notify);
3863
3864 /* already in OOM ? */
3865 if (atomic_read(&memcg->under_oom))
3866 eventfd_signal(eventfd, 1);
3867 spin_unlock(&memcg_oom_lock);
3868
3869 return 0;
3870 }
3871
3872 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3873 struct eventfd_ctx *eventfd)
3874 {
3875 struct mem_cgroup_eventfd_list *ev, *tmp;
3876
3877 spin_lock(&memcg_oom_lock);
3878
3879 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3880 if (ev->eventfd == eventfd) {
3881 list_del(&ev->list);
3882 kfree(ev);
3883 }
3884 }
3885
3886 spin_unlock(&memcg_oom_lock);
3887 }
3888
3889 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3890 {
3891 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3892
3893 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3894 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3895 return 0;
3896 }
3897
3898 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3899 struct cftype *cft, u64 val)
3900 {
3901 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3902
3903 /* cannot set to root cgroup and only 0 and 1 are allowed */
3904 if (!css->parent || !((val == 0) || (val == 1)))
3905 return -EINVAL;
3906
3907 memcg->oom_kill_disable = val;
3908 if (!val)
3909 memcg_oom_recover(memcg);
3910
3911 return 0;
3912 }
3913
3914 #ifdef CONFIG_MEMCG_KMEM
3915 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3916 {
3917 int ret;
3918
3919 ret = memcg_propagate_kmem(memcg);
3920 if (ret)
3921 return ret;
3922
3923 return mem_cgroup_sockets_init(memcg, ss);
3924 }
3925
3926 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3927 {
3928 struct cgroup_subsys_state *css;
3929 struct mem_cgroup *parent, *child;
3930 int kmemcg_id;
3931
3932 if (!memcg->kmem_acct_active)
3933 return;
3934
3935 /*
3936 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3937 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3938 * guarantees no cache will be created for this cgroup after we are
3939 * done (see memcg_create_kmem_cache()).
3940 */
3941 memcg->kmem_acct_active = false;
3942
3943 memcg_deactivate_kmem_caches(memcg);
3944
3945 kmemcg_id = memcg->kmemcg_id;
3946 BUG_ON(kmemcg_id < 0);
3947
3948 parent = parent_mem_cgroup(memcg);
3949 if (!parent)
3950 parent = root_mem_cgroup;
3951
3952 /*
3953 * Change kmemcg_id of this cgroup and all its descendants to the
3954 * parent's id, and then move all entries from this cgroup's list_lrus
3955 * to ones of the parent. After we have finished, all list_lrus
3956 * corresponding to this cgroup are guaranteed to remain empty. The
3957 * ordering is imposed by list_lru_node->lock taken by
3958 * memcg_drain_all_list_lrus().
3959 */
3960 css_for_each_descendant_pre(css, &memcg->css) {
3961 child = mem_cgroup_from_css(css);
3962 BUG_ON(child->kmemcg_id != kmemcg_id);
3963 child->kmemcg_id = parent->kmemcg_id;
3964 if (!memcg->use_hierarchy)
3965 break;
3966 }
3967 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3968
3969 memcg_free_cache_id(kmemcg_id);
3970 }
3971
3972 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3973 {
3974 if (memcg->kmem_acct_activated) {
3975 memcg_destroy_kmem_caches(memcg);
3976 static_key_slow_dec(&memcg_kmem_enabled_key);
3977 WARN_ON(page_counter_read(&memcg->kmem));
3978 }
3979 mem_cgroup_sockets_destroy(memcg);
3980 }
3981 #else
3982 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3983 {
3984 return 0;
3985 }
3986
3987 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3988 {
3989 }
3990
3991 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3992 {
3993 }
3994 #endif
3995
3996 /*
3997 * DO NOT USE IN NEW FILES.
3998 *
3999 * "cgroup.event_control" implementation.
4000 *
4001 * This is way over-engineered. It tries to support fully configurable
4002 * events for each user. Such level of flexibility is completely
4003 * unnecessary especially in the light of the planned unified hierarchy.
4004 *
4005 * Please deprecate this and replace with something simpler if at all
4006 * possible.
4007 */
4008
4009 /*
4010 * Unregister event and free resources.
4011 *
4012 * Gets called from workqueue.
4013 */
4014 static void memcg_event_remove(struct work_struct *work)
4015 {
4016 struct mem_cgroup_event *event =
4017 container_of(work, struct mem_cgroup_event, remove);
4018 struct mem_cgroup *memcg = event->memcg;
4019
4020 remove_wait_queue(event->wqh, &event->wait);
4021
4022 event->unregister_event(memcg, event->eventfd);
4023
4024 /* Notify userspace the event is going away. */
4025 eventfd_signal(event->eventfd, 1);
4026
4027 eventfd_ctx_put(event->eventfd);
4028 kfree(event);
4029 css_put(&memcg->css);
4030 }
4031
4032 /*
4033 * Gets called on POLLHUP on eventfd when user closes it.
4034 *
4035 * Called with wqh->lock held and interrupts disabled.
4036 */
4037 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4038 int sync, void *key)
4039 {
4040 struct mem_cgroup_event *event =
4041 container_of(wait, struct mem_cgroup_event, wait);
4042 struct mem_cgroup *memcg = event->memcg;
4043 unsigned long flags = (unsigned long)key;
4044
4045 if (flags & POLLHUP) {
4046 /*
4047 * If the event has been detached at cgroup removal, we
4048 * can simply return knowing the other side will cleanup
4049 * for us.
4050 *
4051 * We can't race against event freeing since the other
4052 * side will require wqh->lock via remove_wait_queue(),
4053 * which we hold.
4054 */
4055 spin_lock(&memcg->event_list_lock);
4056 if (!list_empty(&event->list)) {
4057 list_del_init(&event->list);
4058 /*
4059 * We are in atomic context, but cgroup_event_remove()
4060 * may sleep, so we have to call it in workqueue.
4061 */
4062 schedule_work(&event->remove);
4063 }
4064 spin_unlock(&memcg->event_list_lock);
4065 }
4066
4067 return 0;
4068 }
4069
4070 static void memcg_event_ptable_queue_proc(struct file *file,
4071 wait_queue_head_t *wqh, poll_table *pt)
4072 {
4073 struct mem_cgroup_event *event =
4074 container_of(pt, struct mem_cgroup_event, pt);
4075
4076 event->wqh = wqh;
4077 add_wait_queue(wqh, &event->wait);
4078 }
4079
4080 /*
4081 * DO NOT USE IN NEW FILES.
4082 *
4083 * Parse input and register new cgroup event handler.
4084 *
4085 * Input must be in format '<event_fd> <control_fd> <args>'.
4086 * Interpretation of args is defined by control file implementation.
4087 */
4088 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4089 char *buf, size_t nbytes, loff_t off)
4090 {
4091 struct cgroup_subsys_state *css = of_css(of);
4092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4093 struct mem_cgroup_event *event;
4094 struct cgroup_subsys_state *cfile_css;
4095 unsigned int efd, cfd;
4096 struct fd efile;
4097 struct fd cfile;
4098 const char *name;
4099 char *endp;
4100 int ret;
4101
4102 buf = strstrip(buf);
4103
4104 efd = simple_strtoul(buf, &endp, 10);
4105 if (*endp != ' ')
4106 return -EINVAL;
4107 buf = endp + 1;
4108
4109 cfd = simple_strtoul(buf, &endp, 10);
4110 if ((*endp != ' ') && (*endp != '\0'))
4111 return -EINVAL;
4112 buf = endp + 1;
4113
4114 event = kzalloc(sizeof(*event), GFP_KERNEL);
4115 if (!event)
4116 return -ENOMEM;
4117
4118 event->memcg = memcg;
4119 INIT_LIST_HEAD(&event->list);
4120 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4121 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4122 INIT_WORK(&event->remove, memcg_event_remove);
4123
4124 efile = fdget(efd);
4125 if (!efile.file) {
4126 ret = -EBADF;
4127 goto out_kfree;
4128 }
4129
4130 event->eventfd = eventfd_ctx_fileget(efile.file);
4131 if (IS_ERR(event->eventfd)) {
4132 ret = PTR_ERR(event->eventfd);
4133 goto out_put_efile;
4134 }
4135
4136 cfile = fdget(cfd);
4137 if (!cfile.file) {
4138 ret = -EBADF;
4139 goto out_put_eventfd;
4140 }
4141
4142 /* the process need read permission on control file */
4143 /* AV: shouldn't we check that it's been opened for read instead? */
4144 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4145 if (ret < 0)
4146 goto out_put_cfile;
4147
4148 /*
4149 * Determine the event callbacks and set them in @event. This used
4150 * to be done via struct cftype but cgroup core no longer knows
4151 * about these events. The following is crude but the whole thing
4152 * is for compatibility anyway.
4153 *
4154 * DO NOT ADD NEW FILES.
4155 */
4156 name = cfile.file->f_path.dentry->d_name.name;
4157
4158 if (!strcmp(name, "memory.usage_in_bytes")) {
4159 event->register_event = mem_cgroup_usage_register_event;
4160 event->unregister_event = mem_cgroup_usage_unregister_event;
4161 } else if (!strcmp(name, "memory.oom_control")) {
4162 event->register_event = mem_cgroup_oom_register_event;
4163 event->unregister_event = mem_cgroup_oom_unregister_event;
4164 } else if (!strcmp(name, "memory.pressure_level")) {
4165 event->register_event = vmpressure_register_event;
4166 event->unregister_event = vmpressure_unregister_event;
4167 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4168 event->register_event = memsw_cgroup_usage_register_event;
4169 event->unregister_event = memsw_cgroup_usage_unregister_event;
4170 } else {
4171 ret = -EINVAL;
4172 goto out_put_cfile;
4173 }
4174
4175 /*
4176 * Verify @cfile should belong to @css. Also, remaining events are
4177 * automatically removed on cgroup destruction but the removal is
4178 * asynchronous, so take an extra ref on @css.
4179 */
4180 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4181 &memory_cgrp_subsys);
4182 ret = -EINVAL;
4183 if (IS_ERR(cfile_css))
4184 goto out_put_cfile;
4185 if (cfile_css != css) {
4186 css_put(cfile_css);
4187 goto out_put_cfile;
4188 }
4189
4190 ret = event->register_event(memcg, event->eventfd, buf);
4191 if (ret)
4192 goto out_put_css;
4193
4194 efile.file->f_op->poll(efile.file, &event->pt);
4195
4196 spin_lock(&memcg->event_list_lock);
4197 list_add(&event->list, &memcg->event_list);
4198 spin_unlock(&memcg->event_list_lock);
4199
4200 fdput(cfile);
4201 fdput(efile);
4202
4203 return nbytes;
4204
4205 out_put_css:
4206 css_put(css);
4207 out_put_cfile:
4208 fdput(cfile);
4209 out_put_eventfd:
4210 eventfd_ctx_put(event->eventfd);
4211 out_put_efile:
4212 fdput(efile);
4213 out_kfree:
4214 kfree(event);
4215
4216 return ret;
4217 }
4218
4219 static struct cftype mem_cgroup_legacy_files[] = {
4220 {
4221 .name = "usage_in_bytes",
4222 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4223 .read_u64 = mem_cgroup_read_u64,
4224 },
4225 {
4226 .name = "max_usage_in_bytes",
4227 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4228 .write = mem_cgroup_reset,
4229 .read_u64 = mem_cgroup_read_u64,
4230 },
4231 {
4232 .name = "limit_in_bytes",
4233 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4234 .write = mem_cgroup_write,
4235 .read_u64 = mem_cgroup_read_u64,
4236 },
4237 {
4238 .name = "soft_limit_in_bytes",
4239 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4240 .write = mem_cgroup_write,
4241 .read_u64 = mem_cgroup_read_u64,
4242 },
4243 {
4244 .name = "failcnt",
4245 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4246 .write = mem_cgroup_reset,
4247 .read_u64 = mem_cgroup_read_u64,
4248 },
4249 {
4250 .name = "stat",
4251 .seq_show = memcg_stat_show,
4252 },
4253 {
4254 .name = "force_empty",
4255 .write = mem_cgroup_force_empty_write,
4256 },
4257 {
4258 .name = "use_hierarchy",
4259 .write_u64 = mem_cgroup_hierarchy_write,
4260 .read_u64 = mem_cgroup_hierarchy_read,
4261 },
4262 {
4263 .name = "cgroup.event_control", /* XXX: for compat */
4264 .write = memcg_write_event_control,
4265 .flags = CFTYPE_NO_PREFIX,
4266 .mode = S_IWUGO,
4267 },
4268 {
4269 .name = "swappiness",
4270 .read_u64 = mem_cgroup_swappiness_read,
4271 .write_u64 = mem_cgroup_swappiness_write,
4272 },
4273 {
4274 .name = "move_charge_at_immigrate",
4275 .read_u64 = mem_cgroup_move_charge_read,
4276 .write_u64 = mem_cgroup_move_charge_write,
4277 },
4278 {
4279 .name = "oom_control",
4280 .seq_show = mem_cgroup_oom_control_read,
4281 .write_u64 = mem_cgroup_oom_control_write,
4282 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4283 },
4284 {
4285 .name = "pressure_level",
4286 },
4287 #ifdef CONFIG_NUMA
4288 {
4289 .name = "numa_stat",
4290 .seq_show = memcg_numa_stat_show,
4291 },
4292 #endif
4293 #ifdef CONFIG_MEMCG_KMEM
4294 {
4295 .name = "kmem.limit_in_bytes",
4296 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4297 .write = mem_cgroup_write,
4298 .read_u64 = mem_cgroup_read_u64,
4299 },
4300 {
4301 .name = "kmem.usage_in_bytes",
4302 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4303 .read_u64 = mem_cgroup_read_u64,
4304 },
4305 {
4306 .name = "kmem.failcnt",
4307 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4308 .write = mem_cgroup_reset,
4309 .read_u64 = mem_cgroup_read_u64,
4310 },
4311 {
4312 .name = "kmem.max_usage_in_bytes",
4313 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4314 .write = mem_cgroup_reset,
4315 .read_u64 = mem_cgroup_read_u64,
4316 },
4317 #ifdef CONFIG_SLABINFO
4318 {
4319 .name = "kmem.slabinfo",
4320 .seq_start = slab_start,
4321 .seq_next = slab_next,
4322 .seq_stop = slab_stop,
4323 .seq_show = memcg_slab_show,
4324 },
4325 #endif
4326 #endif
4327 { }, /* terminate */
4328 };
4329
4330 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4331 {
4332 struct mem_cgroup_per_node *pn;
4333 struct mem_cgroup_per_zone *mz;
4334 int zone, tmp = node;
4335 /*
4336 * This routine is called against possible nodes.
4337 * But it's BUG to call kmalloc() against offline node.
4338 *
4339 * TODO: this routine can waste much memory for nodes which will
4340 * never be onlined. It's better to use memory hotplug callback
4341 * function.
4342 */
4343 if (!node_state(node, N_NORMAL_MEMORY))
4344 tmp = -1;
4345 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4346 if (!pn)
4347 return 1;
4348
4349 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4350 mz = &pn->zoneinfo[zone];
4351 lruvec_init(&mz->lruvec);
4352 mz->usage_in_excess = 0;
4353 mz->on_tree = false;
4354 mz->memcg = memcg;
4355 }
4356 memcg->nodeinfo[node] = pn;
4357 return 0;
4358 }
4359
4360 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4361 {
4362 kfree(memcg->nodeinfo[node]);
4363 }
4364
4365 static struct mem_cgroup *mem_cgroup_alloc(void)
4366 {
4367 struct mem_cgroup *memcg;
4368 size_t size;
4369
4370 size = sizeof(struct mem_cgroup);
4371 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4372
4373 memcg = kzalloc(size, GFP_KERNEL);
4374 if (!memcg)
4375 return NULL;
4376
4377 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4378 if (!memcg->stat)
4379 goto out_free;
4380 spin_lock_init(&memcg->pcp_counter_lock);
4381 return memcg;
4382
4383 out_free:
4384 kfree(memcg);
4385 return NULL;
4386 }
4387
4388 /*
4389 * At destroying mem_cgroup, references from swap_cgroup can remain.
4390 * (scanning all at force_empty is too costly...)
4391 *
4392 * Instead of clearing all references at force_empty, we remember
4393 * the number of reference from swap_cgroup and free mem_cgroup when
4394 * it goes down to 0.
4395 *
4396 * Removal of cgroup itself succeeds regardless of refs from swap.
4397 */
4398
4399 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4400 {
4401 int node;
4402
4403 mem_cgroup_remove_from_trees(memcg);
4404
4405 for_each_node(node)
4406 free_mem_cgroup_per_zone_info(memcg, node);
4407
4408 free_percpu(memcg->stat);
4409 kfree(memcg);
4410 }
4411
4412 /*
4413 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4414 */
4415 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4416 {
4417 if (!memcg->memory.parent)
4418 return NULL;
4419 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4420 }
4421 EXPORT_SYMBOL(parent_mem_cgroup);
4422
4423 static struct cgroup_subsys_state * __ref
4424 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4425 {
4426 struct mem_cgroup *memcg;
4427 long error = -ENOMEM;
4428 int node;
4429
4430 memcg = mem_cgroup_alloc();
4431 if (!memcg)
4432 return ERR_PTR(error);
4433
4434 for_each_node(node)
4435 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4436 goto free_out;
4437
4438 /* root ? */
4439 if (parent_css == NULL) {
4440 root_mem_cgroup = memcg;
4441 page_counter_init(&memcg->memory, NULL);
4442 memcg->high = PAGE_COUNTER_MAX;
4443 memcg->soft_limit = PAGE_COUNTER_MAX;
4444 page_counter_init(&memcg->memsw, NULL);
4445 page_counter_init(&memcg->kmem, NULL);
4446 }
4447
4448 memcg->last_scanned_node = MAX_NUMNODES;
4449 INIT_LIST_HEAD(&memcg->oom_notify);
4450 memcg->move_charge_at_immigrate = 0;
4451 mutex_init(&memcg->thresholds_lock);
4452 spin_lock_init(&memcg->move_lock);
4453 vmpressure_init(&memcg->vmpressure);
4454 INIT_LIST_HEAD(&memcg->event_list);
4455 spin_lock_init(&memcg->event_list_lock);
4456 #ifdef CONFIG_MEMCG_KMEM
4457 memcg->kmemcg_id = -1;
4458 #endif
4459
4460 return &memcg->css;
4461
4462 free_out:
4463 __mem_cgroup_free(memcg);
4464 return ERR_PTR(error);
4465 }
4466
4467 static int
4468 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4469 {
4470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4471 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4472 int ret;
4473
4474 if (css->id > MEM_CGROUP_ID_MAX)
4475 return -ENOSPC;
4476
4477 if (!parent)
4478 return 0;
4479
4480 mutex_lock(&memcg_create_mutex);
4481
4482 memcg->use_hierarchy = parent->use_hierarchy;
4483 memcg->oom_kill_disable = parent->oom_kill_disable;
4484 memcg->swappiness = mem_cgroup_swappiness(parent);
4485
4486 if (parent->use_hierarchy) {
4487 page_counter_init(&memcg->memory, &parent->memory);
4488 memcg->high = PAGE_COUNTER_MAX;
4489 memcg->soft_limit = PAGE_COUNTER_MAX;
4490 page_counter_init(&memcg->memsw, &parent->memsw);
4491 page_counter_init(&memcg->kmem, &parent->kmem);
4492
4493 /*
4494 * No need to take a reference to the parent because cgroup
4495 * core guarantees its existence.
4496 */
4497 } else {
4498 page_counter_init(&memcg->memory, NULL);
4499 memcg->high = PAGE_COUNTER_MAX;
4500 memcg->soft_limit = PAGE_COUNTER_MAX;
4501 page_counter_init(&memcg->memsw, NULL);
4502 page_counter_init(&memcg->kmem, NULL);
4503 /*
4504 * Deeper hierachy with use_hierarchy == false doesn't make
4505 * much sense so let cgroup subsystem know about this
4506 * unfortunate state in our controller.
4507 */
4508 if (parent != root_mem_cgroup)
4509 memory_cgrp_subsys.broken_hierarchy = true;
4510 }
4511 mutex_unlock(&memcg_create_mutex);
4512
4513 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4514 if (ret)
4515 return ret;
4516
4517 /*
4518 * Make sure the memcg is initialized: mem_cgroup_iter()
4519 * orders reading memcg->initialized against its callers
4520 * reading the memcg members.
4521 */
4522 smp_store_release(&memcg->initialized, 1);
4523
4524 return 0;
4525 }
4526
4527 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4528 {
4529 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4530 struct mem_cgroup_event *event, *tmp;
4531
4532 /*
4533 * Unregister events and notify userspace.
4534 * Notify userspace about cgroup removing only after rmdir of cgroup
4535 * directory to avoid race between userspace and kernelspace.
4536 */
4537 spin_lock(&memcg->event_list_lock);
4538 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4539 list_del_init(&event->list);
4540 schedule_work(&event->remove);
4541 }
4542 spin_unlock(&memcg->event_list_lock);
4543
4544 vmpressure_cleanup(&memcg->vmpressure);
4545
4546 memcg_deactivate_kmem(memcg);
4547 }
4548
4549 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4550 {
4551 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4552
4553 memcg_destroy_kmem(memcg);
4554 __mem_cgroup_free(memcg);
4555 }
4556
4557 /**
4558 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4559 * @css: the target css
4560 *
4561 * Reset the states of the mem_cgroup associated with @css. This is
4562 * invoked when the userland requests disabling on the default hierarchy
4563 * but the memcg is pinned through dependency. The memcg should stop
4564 * applying policies and should revert to the vanilla state as it may be
4565 * made visible again.
4566 *
4567 * The current implementation only resets the essential configurations.
4568 * This needs to be expanded to cover all the visible parts.
4569 */
4570 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4571 {
4572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4573
4574 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4575 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4576 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4577 memcg->low = 0;
4578 memcg->high = PAGE_COUNTER_MAX;
4579 memcg->soft_limit = PAGE_COUNTER_MAX;
4580 }
4581
4582 #ifdef CONFIG_MMU
4583 /* Handlers for move charge at task migration. */
4584 static int mem_cgroup_do_precharge(unsigned long count)
4585 {
4586 int ret;
4587
4588 /* Try a single bulk charge without reclaim first */
4589 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4590 if (!ret) {
4591 mc.precharge += count;
4592 return ret;
4593 }
4594 if (ret == -EINTR) {
4595 cancel_charge(root_mem_cgroup, count);
4596 return ret;
4597 }
4598
4599 /* Try charges one by one with reclaim */
4600 while (count--) {
4601 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4602 /*
4603 * In case of failure, any residual charges against
4604 * mc.to will be dropped by mem_cgroup_clear_mc()
4605 * later on. However, cancel any charges that are
4606 * bypassed to root right away or they'll be lost.
4607 */
4608 if (ret == -EINTR)
4609 cancel_charge(root_mem_cgroup, 1);
4610 if (ret)
4611 return ret;
4612 mc.precharge++;
4613 cond_resched();
4614 }
4615 return 0;
4616 }
4617
4618 /**
4619 * get_mctgt_type - get target type of moving charge
4620 * @vma: the vma the pte to be checked belongs
4621 * @addr: the address corresponding to the pte to be checked
4622 * @ptent: the pte to be checked
4623 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4624 *
4625 * Returns
4626 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4627 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4628 * move charge. if @target is not NULL, the page is stored in target->page
4629 * with extra refcnt got(Callers should handle it).
4630 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4631 * target for charge migration. if @target is not NULL, the entry is stored
4632 * in target->ent.
4633 *
4634 * Called with pte lock held.
4635 */
4636 union mc_target {
4637 struct page *page;
4638 swp_entry_t ent;
4639 };
4640
4641 enum mc_target_type {
4642 MC_TARGET_NONE = 0,
4643 MC_TARGET_PAGE,
4644 MC_TARGET_SWAP,
4645 };
4646
4647 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4648 unsigned long addr, pte_t ptent)
4649 {
4650 struct page *page = vm_normal_page(vma, addr, ptent);
4651
4652 if (!page || !page_mapped(page))
4653 return NULL;
4654 if (PageAnon(page)) {
4655 if (!(mc.flags & MOVE_ANON))
4656 return NULL;
4657 } else {
4658 if (!(mc.flags & MOVE_FILE))
4659 return NULL;
4660 }
4661 if (!get_page_unless_zero(page))
4662 return NULL;
4663
4664 return page;
4665 }
4666
4667 #ifdef CONFIG_SWAP
4668 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4669 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4670 {
4671 struct page *page = NULL;
4672 swp_entry_t ent = pte_to_swp_entry(ptent);
4673
4674 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4675 return NULL;
4676 /*
4677 * Because lookup_swap_cache() updates some statistics counter,
4678 * we call find_get_page() with swapper_space directly.
4679 */
4680 page = find_get_page(swap_address_space(ent), ent.val);
4681 if (do_swap_account)
4682 entry->val = ent.val;
4683
4684 return page;
4685 }
4686 #else
4687 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4688 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4689 {
4690 return NULL;
4691 }
4692 #endif
4693
4694 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4695 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4696 {
4697 struct page *page = NULL;
4698 struct address_space *mapping;
4699 pgoff_t pgoff;
4700
4701 if (!vma->vm_file) /* anonymous vma */
4702 return NULL;
4703 if (!(mc.flags & MOVE_FILE))
4704 return NULL;
4705
4706 mapping = vma->vm_file->f_mapping;
4707 pgoff = linear_page_index(vma, addr);
4708
4709 /* page is moved even if it's not RSS of this task(page-faulted). */
4710 #ifdef CONFIG_SWAP
4711 /* shmem/tmpfs may report page out on swap: account for that too. */
4712 if (shmem_mapping(mapping)) {
4713 page = find_get_entry(mapping, pgoff);
4714 if (radix_tree_exceptional_entry(page)) {
4715 swp_entry_t swp = radix_to_swp_entry(page);
4716 if (do_swap_account)
4717 *entry = swp;
4718 page = find_get_page(swap_address_space(swp), swp.val);
4719 }
4720 } else
4721 page = find_get_page(mapping, pgoff);
4722 #else
4723 page = find_get_page(mapping, pgoff);
4724 #endif
4725 return page;
4726 }
4727
4728 /**
4729 * mem_cgroup_move_account - move account of the page
4730 * @page: the page
4731 * @nr_pages: number of regular pages (>1 for huge pages)
4732 * @from: mem_cgroup which the page is moved from.
4733 * @to: mem_cgroup which the page is moved to. @from != @to.
4734 *
4735 * The caller must confirm following.
4736 * - page is not on LRU (isolate_page() is useful.)
4737 * - compound_lock is held when nr_pages > 1
4738 *
4739 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4740 * from old cgroup.
4741 */
4742 static int mem_cgroup_move_account(struct page *page,
4743 unsigned int nr_pages,
4744 struct mem_cgroup *from,
4745 struct mem_cgroup *to)
4746 {
4747 unsigned long flags;
4748 int ret;
4749
4750 VM_BUG_ON(from == to);
4751 VM_BUG_ON_PAGE(PageLRU(page), page);
4752 /*
4753 * The page is isolated from LRU. So, collapse function
4754 * will not handle this page. But page splitting can happen.
4755 * Do this check under compound_page_lock(). The caller should
4756 * hold it.
4757 */
4758 ret = -EBUSY;
4759 if (nr_pages > 1 && !PageTransHuge(page))
4760 goto out;
4761
4762 /*
4763 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4764 * of its source page while we change it: page migration takes
4765 * both pages off the LRU, but page cache replacement doesn't.
4766 */
4767 if (!trylock_page(page))
4768 goto out;
4769
4770 ret = -EINVAL;
4771 if (page->mem_cgroup != from)
4772 goto out_unlock;
4773
4774 spin_lock_irqsave(&from->move_lock, flags);
4775
4776 if (!PageAnon(page) && page_mapped(page)) {
4777 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4778 nr_pages);
4779 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4780 nr_pages);
4781 }
4782
4783 if (PageWriteback(page)) {
4784 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4785 nr_pages);
4786 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4787 nr_pages);
4788 }
4789
4790 /*
4791 * It is safe to change page->mem_cgroup here because the page
4792 * is referenced, charged, and isolated - we can't race with
4793 * uncharging, charging, migration, or LRU putback.
4794 */
4795
4796 /* caller should have done css_get */
4797 page->mem_cgroup = to;
4798 spin_unlock_irqrestore(&from->move_lock, flags);
4799
4800 ret = 0;
4801
4802 local_irq_disable();
4803 mem_cgroup_charge_statistics(to, page, nr_pages);
4804 memcg_check_events(to, page);
4805 mem_cgroup_charge_statistics(from, page, -nr_pages);
4806 memcg_check_events(from, page);
4807 local_irq_enable();
4808 out_unlock:
4809 unlock_page(page);
4810 out:
4811 return ret;
4812 }
4813
4814 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4815 unsigned long addr, pte_t ptent, union mc_target *target)
4816 {
4817 struct page *page = NULL;
4818 enum mc_target_type ret = MC_TARGET_NONE;
4819 swp_entry_t ent = { .val = 0 };
4820
4821 if (pte_present(ptent))
4822 page = mc_handle_present_pte(vma, addr, ptent);
4823 else if (is_swap_pte(ptent))
4824 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4825 else if (pte_none(ptent))
4826 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4827
4828 if (!page && !ent.val)
4829 return ret;
4830 if (page) {
4831 /*
4832 * Do only loose check w/o serialization.
4833 * mem_cgroup_move_account() checks the page is valid or
4834 * not under LRU exclusion.
4835 */
4836 if (page->mem_cgroup == mc.from) {
4837 ret = MC_TARGET_PAGE;
4838 if (target)
4839 target->page = page;
4840 }
4841 if (!ret || !target)
4842 put_page(page);
4843 }
4844 /* There is a swap entry and a page doesn't exist or isn't charged */
4845 if (ent.val && !ret &&
4846 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4847 ret = MC_TARGET_SWAP;
4848 if (target)
4849 target->ent = ent;
4850 }
4851 return ret;
4852 }
4853
4854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4855 /*
4856 * We don't consider swapping or file mapped pages because THP does not
4857 * support them for now.
4858 * Caller should make sure that pmd_trans_huge(pmd) is true.
4859 */
4860 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4861 unsigned long addr, pmd_t pmd, union mc_target *target)
4862 {
4863 struct page *page = NULL;
4864 enum mc_target_type ret = MC_TARGET_NONE;
4865
4866 page = pmd_page(pmd);
4867 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4868 if (!(mc.flags & MOVE_ANON))
4869 return ret;
4870 if (page->mem_cgroup == mc.from) {
4871 ret = MC_TARGET_PAGE;
4872 if (target) {
4873 get_page(page);
4874 target->page = page;
4875 }
4876 }
4877 return ret;
4878 }
4879 #else
4880 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4881 unsigned long addr, pmd_t pmd, union mc_target *target)
4882 {
4883 return MC_TARGET_NONE;
4884 }
4885 #endif
4886
4887 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4888 unsigned long addr, unsigned long end,
4889 struct mm_walk *walk)
4890 {
4891 struct vm_area_struct *vma = walk->vma;
4892 pte_t *pte;
4893 spinlock_t *ptl;
4894
4895 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4896 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4897 mc.precharge += HPAGE_PMD_NR;
4898 spin_unlock(ptl);
4899 return 0;
4900 }
4901
4902 if (pmd_trans_unstable(pmd))
4903 return 0;
4904 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4905 for (; addr != end; pte++, addr += PAGE_SIZE)
4906 if (get_mctgt_type(vma, addr, *pte, NULL))
4907 mc.precharge++; /* increment precharge temporarily */
4908 pte_unmap_unlock(pte - 1, ptl);
4909 cond_resched();
4910
4911 return 0;
4912 }
4913
4914 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4915 {
4916 unsigned long precharge;
4917
4918 struct mm_walk mem_cgroup_count_precharge_walk = {
4919 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4920 .mm = mm,
4921 };
4922 down_read(&mm->mmap_sem);
4923 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4924 up_read(&mm->mmap_sem);
4925
4926 precharge = mc.precharge;
4927 mc.precharge = 0;
4928
4929 return precharge;
4930 }
4931
4932 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4933 {
4934 unsigned long precharge = mem_cgroup_count_precharge(mm);
4935
4936 VM_BUG_ON(mc.moving_task);
4937 mc.moving_task = current;
4938 return mem_cgroup_do_precharge(precharge);
4939 }
4940
4941 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4942 static void __mem_cgroup_clear_mc(void)
4943 {
4944 struct mem_cgroup *from = mc.from;
4945 struct mem_cgroup *to = mc.to;
4946
4947 /* we must uncharge all the leftover precharges from mc.to */
4948 if (mc.precharge) {
4949 cancel_charge(mc.to, mc.precharge);
4950 mc.precharge = 0;
4951 }
4952 /*
4953 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4954 * we must uncharge here.
4955 */
4956 if (mc.moved_charge) {
4957 cancel_charge(mc.from, mc.moved_charge);
4958 mc.moved_charge = 0;
4959 }
4960 /* we must fixup refcnts and charges */
4961 if (mc.moved_swap) {
4962 /* uncharge swap account from the old cgroup */
4963 if (!mem_cgroup_is_root(mc.from))
4964 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4965
4966 /*
4967 * we charged both to->memory and to->memsw, so we
4968 * should uncharge to->memory.
4969 */
4970 if (!mem_cgroup_is_root(mc.to))
4971 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4972
4973 css_put_many(&mc.from->css, mc.moved_swap);
4974
4975 /* we've already done css_get(mc.to) */
4976 mc.moved_swap = 0;
4977 }
4978 memcg_oom_recover(from);
4979 memcg_oom_recover(to);
4980 wake_up_all(&mc.waitq);
4981 }
4982
4983 static void mem_cgroup_clear_mc(void)
4984 {
4985 /*
4986 * we must clear moving_task before waking up waiters at the end of
4987 * task migration.
4988 */
4989 mc.moving_task = NULL;
4990 __mem_cgroup_clear_mc();
4991 spin_lock(&mc.lock);
4992 mc.from = NULL;
4993 mc.to = NULL;
4994 spin_unlock(&mc.lock);
4995 }
4996
4997 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4998 struct cgroup_taskset *tset)
4999 {
5000 struct task_struct *p = cgroup_taskset_first(tset);
5001 int ret = 0;
5002 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5003 unsigned long move_flags;
5004
5005 /*
5006 * We are now commited to this value whatever it is. Changes in this
5007 * tunable will only affect upcoming migrations, not the current one.
5008 * So we need to save it, and keep it going.
5009 */
5010 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5011 if (move_flags) {
5012 struct mm_struct *mm;
5013 struct mem_cgroup *from = mem_cgroup_from_task(p);
5014
5015 VM_BUG_ON(from == memcg);
5016
5017 mm = get_task_mm(p);
5018 if (!mm)
5019 return 0;
5020 /* We move charges only when we move a owner of the mm */
5021 if (mm->owner == p) {
5022 VM_BUG_ON(mc.from);
5023 VM_BUG_ON(mc.to);
5024 VM_BUG_ON(mc.precharge);
5025 VM_BUG_ON(mc.moved_charge);
5026 VM_BUG_ON(mc.moved_swap);
5027
5028 spin_lock(&mc.lock);
5029 mc.from = from;
5030 mc.to = memcg;
5031 mc.flags = move_flags;
5032 spin_unlock(&mc.lock);
5033 /* We set mc.moving_task later */
5034
5035 ret = mem_cgroup_precharge_mc(mm);
5036 if (ret)
5037 mem_cgroup_clear_mc();
5038 }
5039 mmput(mm);
5040 }
5041 return ret;
5042 }
5043
5044 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5045 struct cgroup_taskset *tset)
5046 {
5047 if (mc.to)
5048 mem_cgroup_clear_mc();
5049 }
5050
5051 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5052 unsigned long addr, unsigned long end,
5053 struct mm_walk *walk)
5054 {
5055 int ret = 0;
5056 struct vm_area_struct *vma = walk->vma;
5057 pte_t *pte;
5058 spinlock_t *ptl;
5059 enum mc_target_type target_type;
5060 union mc_target target;
5061 struct page *page;
5062
5063 /*
5064 * We don't take compound_lock() here but no race with splitting thp
5065 * happens because:
5066 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5067 * under splitting, which means there's no concurrent thp split,
5068 * - if another thread runs into split_huge_page() just after we
5069 * entered this if-block, the thread must wait for page table lock
5070 * to be unlocked in __split_huge_page_splitting(), where the main
5071 * part of thp split is not executed yet.
5072 */
5073 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5074 if (mc.precharge < HPAGE_PMD_NR) {
5075 spin_unlock(ptl);
5076 return 0;
5077 }
5078 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5079 if (target_type == MC_TARGET_PAGE) {
5080 page = target.page;
5081 if (!isolate_lru_page(page)) {
5082 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5083 mc.from, mc.to)) {
5084 mc.precharge -= HPAGE_PMD_NR;
5085 mc.moved_charge += HPAGE_PMD_NR;
5086 }
5087 putback_lru_page(page);
5088 }
5089 put_page(page);
5090 }
5091 spin_unlock(ptl);
5092 return 0;
5093 }
5094
5095 if (pmd_trans_unstable(pmd))
5096 return 0;
5097 retry:
5098 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5099 for (; addr != end; addr += PAGE_SIZE) {
5100 pte_t ptent = *(pte++);
5101 swp_entry_t ent;
5102
5103 if (!mc.precharge)
5104 break;
5105
5106 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5107 case MC_TARGET_PAGE:
5108 page = target.page;
5109 if (isolate_lru_page(page))
5110 goto put;
5111 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5112 mc.precharge--;
5113 /* we uncharge from mc.from later. */
5114 mc.moved_charge++;
5115 }
5116 putback_lru_page(page);
5117 put: /* get_mctgt_type() gets the page */
5118 put_page(page);
5119 break;
5120 case MC_TARGET_SWAP:
5121 ent = target.ent;
5122 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5123 mc.precharge--;
5124 /* we fixup refcnts and charges later. */
5125 mc.moved_swap++;
5126 }
5127 break;
5128 default:
5129 break;
5130 }
5131 }
5132 pte_unmap_unlock(pte - 1, ptl);
5133 cond_resched();
5134
5135 if (addr != end) {
5136 /*
5137 * We have consumed all precharges we got in can_attach().
5138 * We try charge one by one, but don't do any additional
5139 * charges to mc.to if we have failed in charge once in attach()
5140 * phase.
5141 */
5142 ret = mem_cgroup_do_precharge(1);
5143 if (!ret)
5144 goto retry;
5145 }
5146
5147 return ret;
5148 }
5149
5150 static void mem_cgroup_move_charge(struct mm_struct *mm)
5151 {
5152 struct mm_walk mem_cgroup_move_charge_walk = {
5153 .pmd_entry = mem_cgroup_move_charge_pte_range,
5154 .mm = mm,
5155 };
5156
5157 lru_add_drain_all();
5158 /*
5159 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5160 * move_lock while we're moving its pages to another memcg.
5161 * Then wait for already started RCU-only updates to finish.
5162 */
5163 atomic_inc(&mc.from->moving_account);
5164 synchronize_rcu();
5165 retry:
5166 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5167 /*
5168 * Someone who are holding the mmap_sem might be waiting in
5169 * waitq. So we cancel all extra charges, wake up all waiters,
5170 * and retry. Because we cancel precharges, we might not be able
5171 * to move enough charges, but moving charge is a best-effort
5172 * feature anyway, so it wouldn't be a big problem.
5173 */
5174 __mem_cgroup_clear_mc();
5175 cond_resched();
5176 goto retry;
5177 }
5178 /*
5179 * When we have consumed all precharges and failed in doing
5180 * additional charge, the page walk just aborts.
5181 */
5182 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5183 up_read(&mm->mmap_sem);
5184 atomic_dec(&mc.from->moving_account);
5185 }
5186
5187 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5188 struct cgroup_taskset *tset)
5189 {
5190 struct task_struct *p = cgroup_taskset_first(tset);
5191 struct mm_struct *mm = get_task_mm(p);
5192
5193 if (mm) {
5194 if (mc.to)
5195 mem_cgroup_move_charge(mm);
5196 mmput(mm);
5197 }
5198 if (mc.to)
5199 mem_cgroup_clear_mc();
5200 }
5201 #else /* !CONFIG_MMU */
5202 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5203 struct cgroup_taskset *tset)
5204 {
5205 return 0;
5206 }
5207 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5208 struct cgroup_taskset *tset)
5209 {
5210 }
5211 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5212 struct cgroup_taskset *tset)
5213 {
5214 }
5215 #endif
5216
5217 /*
5218 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5219 * to verify whether we're attached to the default hierarchy on each mount
5220 * attempt.
5221 */
5222 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5223 {
5224 /*
5225 * use_hierarchy is forced on the default hierarchy. cgroup core
5226 * guarantees that @root doesn't have any children, so turning it
5227 * on for the root memcg is enough.
5228 */
5229 if (cgroup_on_dfl(root_css->cgroup))
5230 root_mem_cgroup->use_hierarchy = true;
5231 else
5232 root_mem_cgroup->use_hierarchy = false;
5233 }
5234
5235 static u64 memory_current_read(struct cgroup_subsys_state *css,
5236 struct cftype *cft)
5237 {
5238 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5239 }
5240
5241 static int memory_low_show(struct seq_file *m, void *v)
5242 {
5243 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5244 unsigned long low = READ_ONCE(memcg->low);
5245
5246 if (low == PAGE_COUNTER_MAX)
5247 seq_puts(m, "max\n");
5248 else
5249 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5250
5251 return 0;
5252 }
5253
5254 static ssize_t memory_low_write(struct kernfs_open_file *of,
5255 char *buf, size_t nbytes, loff_t off)
5256 {
5257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5258 unsigned long low;
5259 int err;
5260
5261 buf = strstrip(buf);
5262 err = page_counter_memparse(buf, "max", &low);
5263 if (err)
5264 return err;
5265
5266 memcg->low = low;
5267
5268 return nbytes;
5269 }
5270
5271 static int memory_high_show(struct seq_file *m, void *v)
5272 {
5273 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5274 unsigned long high = READ_ONCE(memcg->high);
5275
5276 if (high == PAGE_COUNTER_MAX)
5277 seq_puts(m, "max\n");
5278 else
5279 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5280
5281 return 0;
5282 }
5283
5284 static ssize_t memory_high_write(struct kernfs_open_file *of,
5285 char *buf, size_t nbytes, loff_t off)
5286 {
5287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5288 unsigned long high;
5289 int err;
5290
5291 buf = strstrip(buf);
5292 err = page_counter_memparse(buf, "max", &high);
5293 if (err)
5294 return err;
5295
5296 memcg->high = high;
5297
5298 return nbytes;
5299 }
5300
5301 static int memory_max_show(struct seq_file *m, void *v)
5302 {
5303 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5304 unsigned long max = READ_ONCE(memcg->memory.limit);
5305
5306 if (max == PAGE_COUNTER_MAX)
5307 seq_puts(m, "max\n");
5308 else
5309 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5310
5311 return 0;
5312 }
5313
5314 static ssize_t memory_max_write(struct kernfs_open_file *of,
5315 char *buf, size_t nbytes, loff_t off)
5316 {
5317 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5318 unsigned long max;
5319 int err;
5320
5321 buf = strstrip(buf);
5322 err = page_counter_memparse(buf, "max", &max);
5323 if (err)
5324 return err;
5325
5326 err = mem_cgroup_resize_limit(memcg, max);
5327 if (err)
5328 return err;
5329
5330 return nbytes;
5331 }
5332
5333 static int memory_events_show(struct seq_file *m, void *v)
5334 {
5335 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5336
5337 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5338 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5339 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5340 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5341
5342 return 0;
5343 }
5344
5345 static struct cftype memory_files[] = {
5346 {
5347 .name = "current",
5348 .read_u64 = memory_current_read,
5349 },
5350 {
5351 .name = "low",
5352 .flags = CFTYPE_NOT_ON_ROOT,
5353 .seq_show = memory_low_show,
5354 .write = memory_low_write,
5355 },
5356 {
5357 .name = "high",
5358 .flags = CFTYPE_NOT_ON_ROOT,
5359 .seq_show = memory_high_show,
5360 .write = memory_high_write,
5361 },
5362 {
5363 .name = "max",
5364 .flags = CFTYPE_NOT_ON_ROOT,
5365 .seq_show = memory_max_show,
5366 .write = memory_max_write,
5367 },
5368 {
5369 .name = "events",
5370 .flags = CFTYPE_NOT_ON_ROOT,
5371 .seq_show = memory_events_show,
5372 },
5373 { } /* terminate */
5374 };
5375
5376 struct cgroup_subsys memory_cgrp_subsys = {
5377 .css_alloc = mem_cgroup_css_alloc,
5378 .css_online = mem_cgroup_css_online,
5379 .css_offline = mem_cgroup_css_offline,
5380 .css_free = mem_cgroup_css_free,
5381 .css_reset = mem_cgroup_css_reset,
5382 .can_attach = mem_cgroup_can_attach,
5383 .cancel_attach = mem_cgroup_cancel_attach,
5384 .attach = mem_cgroup_move_task,
5385 .bind = mem_cgroup_bind,
5386 .dfl_cftypes = memory_files,
5387 .legacy_cftypes = mem_cgroup_legacy_files,
5388 .early_init = 0,
5389 };
5390
5391 /**
5392 * mem_cgroup_events - count memory events against a cgroup
5393 * @memcg: the memory cgroup
5394 * @idx: the event index
5395 * @nr: the number of events to account for
5396 */
5397 void mem_cgroup_events(struct mem_cgroup *memcg,
5398 enum mem_cgroup_events_index idx,
5399 unsigned int nr)
5400 {
5401 this_cpu_add(memcg->stat->events[idx], nr);
5402 }
5403
5404 /**
5405 * mem_cgroup_low - check if memory consumption is below the normal range
5406 * @root: the highest ancestor to consider
5407 * @memcg: the memory cgroup to check
5408 *
5409 * Returns %true if memory consumption of @memcg, and that of all
5410 * configurable ancestors up to @root, is below the normal range.
5411 */
5412 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5413 {
5414 if (mem_cgroup_disabled())
5415 return false;
5416
5417 /*
5418 * The toplevel group doesn't have a configurable range, so
5419 * it's never low when looked at directly, and it is not
5420 * considered an ancestor when assessing the hierarchy.
5421 */
5422
5423 if (memcg == root_mem_cgroup)
5424 return false;
5425
5426 if (page_counter_read(&memcg->memory) >= memcg->low)
5427 return false;
5428
5429 while (memcg != root) {
5430 memcg = parent_mem_cgroup(memcg);
5431
5432 if (memcg == root_mem_cgroup)
5433 break;
5434
5435 if (page_counter_read(&memcg->memory) >= memcg->low)
5436 return false;
5437 }
5438 return true;
5439 }
5440
5441 /**
5442 * mem_cgroup_try_charge - try charging a page
5443 * @page: page to charge
5444 * @mm: mm context of the victim
5445 * @gfp_mask: reclaim mode
5446 * @memcgp: charged memcg return
5447 *
5448 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5449 * pages according to @gfp_mask if necessary.
5450 *
5451 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5452 * Otherwise, an error code is returned.
5453 *
5454 * After page->mapping has been set up, the caller must finalize the
5455 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5456 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5457 */
5458 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5459 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5460 {
5461 struct mem_cgroup *memcg = NULL;
5462 unsigned int nr_pages = 1;
5463 int ret = 0;
5464
5465 if (mem_cgroup_disabled())
5466 goto out;
5467
5468 if (PageSwapCache(page)) {
5469 /*
5470 * Every swap fault against a single page tries to charge the
5471 * page, bail as early as possible. shmem_unuse() encounters
5472 * already charged pages, too. The USED bit is protected by
5473 * the page lock, which serializes swap cache removal, which
5474 * in turn serializes uncharging.
5475 */
5476 if (page->mem_cgroup)
5477 goto out;
5478 }
5479
5480 if (PageTransHuge(page)) {
5481 nr_pages <<= compound_order(page);
5482 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5483 }
5484
5485 if (do_swap_account && PageSwapCache(page))
5486 memcg = try_get_mem_cgroup_from_page(page);
5487 if (!memcg)
5488 memcg = get_mem_cgroup_from_mm(mm);
5489
5490 ret = try_charge(memcg, gfp_mask, nr_pages);
5491
5492 css_put(&memcg->css);
5493
5494 if (ret == -EINTR) {
5495 memcg = root_mem_cgroup;
5496 ret = 0;
5497 }
5498 out:
5499 *memcgp = memcg;
5500 return ret;
5501 }
5502
5503 /**
5504 * mem_cgroup_commit_charge - commit a page charge
5505 * @page: page to charge
5506 * @memcg: memcg to charge the page to
5507 * @lrucare: page might be on LRU already
5508 *
5509 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5510 * after page->mapping has been set up. This must happen atomically
5511 * as part of the page instantiation, i.e. under the page table lock
5512 * for anonymous pages, under the page lock for page and swap cache.
5513 *
5514 * In addition, the page must not be on the LRU during the commit, to
5515 * prevent racing with task migration. If it might be, use @lrucare.
5516 *
5517 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5518 */
5519 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5520 bool lrucare)
5521 {
5522 unsigned int nr_pages = 1;
5523
5524 VM_BUG_ON_PAGE(!page->mapping, page);
5525 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5526
5527 if (mem_cgroup_disabled())
5528 return;
5529 /*
5530 * Swap faults will attempt to charge the same page multiple
5531 * times. But reuse_swap_page() might have removed the page
5532 * from swapcache already, so we can't check PageSwapCache().
5533 */
5534 if (!memcg)
5535 return;
5536
5537 commit_charge(page, memcg, lrucare);
5538
5539 if (PageTransHuge(page)) {
5540 nr_pages <<= compound_order(page);
5541 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5542 }
5543
5544 local_irq_disable();
5545 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5546 memcg_check_events(memcg, page);
5547 local_irq_enable();
5548
5549 if (do_swap_account && PageSwapCache(page)) {
5550 swp_entry_t entry = { .val = page_private(page) };
5551 /*
5552 * The swap entry might not get freed for a long time,
5553 * let's not wait for it. The page already received a
5554 * memory+swap charge, drop the swap entry duplicate.
5555 */
5556 mem_cgroup_uncharge_swap(entry);
5557 }
5558 }
5559
5560 /**
5561 * mem_cgroup_cancel_charge - cancel a page charge
5562 * @page: page to charge
5563 * @memcg: memcg to charge the page to
5564 *
5565 * Cancel a charge transaction started by mem_cgroup_try_charge().
5566 */
5567 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5568 {
5569 unsigned int nr_pages = 1;
5570
5571 if (mem_cgroup_disabled())
5572 return;
5573 /*
5574 * Swap faults will attempt to charge the same page multiple
5575 * times. But reuse_swap_page() might have removed the page
5576 * from swapcache already, so we can't check PageSwapCache().
5577 */
5578 if (!memcg)
5579 return;
5580
5581 if (PageTransHuge(page)) {
5582 nr_pages <<= compound_order(page);
5583 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5584 }
5585
5586 cancel_charge(memcg, nr_pages);
5587 }
5588
5589 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5590 unsigned long nr_anon, unsigned long nr_file,
5591 unsigned long nr_huge, struct page *dummy_page)
5592 {
5593 unsigned long nr_pages = nr_anon + nr_file;
5594 unsigned long flags;
5595
5596 if (!mem_cgroup_is_root(memcg)) {
5597 page_counter_uncharge(&memcg->memory, nr_pages);
5598 if (do_swap_account)
5599 page_counter_uncharge(&memcg->memsw, nr_pages);
5600 memcg_oom_recover(memcg);
5601 }
5602
5603 local_irq_save(flags);
5604 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5605 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5606 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5607 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5608 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5609 memcg_check_events(memcg, dummy_page);
5610 local_irq_restore(flags);
5611
5612 if (!mem_cgroup_is_root(memcg))
5613 css_put_many(&memcg->css, nr_pages);
5614 }
5615
5616 static void uncharge_list(struct list_head *page_list)
5617 {
5618 struct mem_cgroup *memcg = NULL;
5619 unsigned long nr_anon = 0;
5620 unsigned long nr_file = 0;
5621 unsigned long nr_huge = 0;
5622 unsigned long pgpgout = 0;
5623 struct list_head *next;
5624 struct page *page;
5625
5626 next = page_list->next;
5627 do {
5628 unsigned int nr_pages = 1;
5629
5630 page = list_entry(next, struct page, lru);
5631 next = page->lru.next;
5632
5633 VM_BUG_ON_PAGE(PageLRU(page), page);
5634 VM_BUG_ON_PAGE(page_count(page), page);
5635
5636 if (!page->mem_cgroup)
5637 continue;
5638
5639 /*
5640 * Nobody should be changing or seriously looking at
5641 * page->mem_cgroup at this point, we have fully
5642 * exclusive access to the page.
5643 */
5644
5645 if (memcg != page->mem_cgroup) {
5646 if (memcg) {
5647 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5648 nr_huge, page);
5649 pgpgout = nr_anon = nr_file = nr_huge = 0;
5650 }
5651 memcg = page->mem_cgroup;
5652 }
5653
5654 if (PageTransHuge(page)) {
5655 nr_pages <<= compound_order(page);
5656 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5657 nr_huge += nr_pages;
5658 }
5659
5660 if (PageAnon(page))
5661 nr_anon += nr_pages;
5662 else
5663 nr_file += nr_pages;
5664
5665 page->mem_cgroup = NULL;
5666
5667 pgpgout++;
5668 } while (next != page_list);
5669
5670 if (memcg)
5671 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5672 nr_huge, page);
5673 }
5674
5675 /**
5676 * mem_cgroup_uncharge - uncharge a page
5677 * @page: page to uncharge
5678 *
5679 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5680 * mem_cgroup_commit_charge().
5681 */
5682 void mem_cgroup_uncharge(struct page *page)
5683 {
5684 if (mem_cgroup_disabled())
5685 return;
5686
5687 /* Don't touch page->lru of any random page, pre-check: */
5688 if (!page->mem_cgroup)
5689 return;
5690
5691 INIT_LIST_HEAD(&page->lru);
5692 uncharge_list(&page->lru);
5693 }
5694
5695 /**
5696 * mem_cgroup_uncharge_list - uncharge a list of page
5697 * @page_list: list of pages to uncharge
5698 *
5699 * Uncharge a list of pages previously charged with
5700 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5701 */
5702 void mem_cgroup_uncharge_list(struct list_head *page_list)
5703 {
5704 if (mem_cgroup_disabled())
5705 return;
5706
5707 if (!list_empty(page_list))
5708 uncharge_list(page_list);
5709 }
5710
5711 /**
5712 * mem_cgroup_migrate - migrate a charge to another page
5713 * @oldpage: currently charged page
5714 * @newpage: page to transfer the charge to
5715 * @lrucare: either or both pages might be on the LRU already
5716 *
5717 * Migrate the charge from @oldpage to @newpage.
5718 *
5719 * Both pages must be locked, @newpage->mapping must be set up.
5720 */
5721 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5722 bool lrucare)
5723 {
5724 struct mem_cgroup *memcg;
5725 int isolated;
5726
5727 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5728 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5729 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5730 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5731 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5732 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5733 newpage);
5734
5735 if (mem_cgroup_disabled())
5736 return;
5737
5738 /* Page cache replacement: new page already charged? */
5739 if (newpage->mem_cgroup)
5740 return;
5741
5742 /*
5743 * Swapcache readahead pages can get migrated before being
5744 * charged, and migration from compaction can happen to an
5745 * uncharged page when the PFN walker finds a page that
5746 * reclaim just put back on the LRU but has not released yet.
5747 */
5748 memcg = oldpage->mem_cgroup;
5749 if (!memcg)
5750 return;
5751
5752 if (lrucare)
5753 lock_page_lru(oldpage, &isolated);
5754
5755 oldpage->mem_cgroup = NULL;
5756
5757 if (lrucare)
5758 unlock_page_lru(oldpage, isolated);
5759
5760 commit_charge(newpage, memcg, lrucare);
5761 }
5762
5763 /*
5764 * subsys_initcall() for memory controller.
5765 *
5766 * Some parts like hotcpu_notifier() have to be initialized from this context
5767 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5768 * everything that doesn't depend on a specific mem_cgroup structure should
5769 * be initialized from here.
5770 */
5771 static int __init mem_cgroup_init(void)
5772 {
5773 int cpu, node;
5774
5775 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5776
5777 for_each_possible_cpu(cpu)
5778 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5779 drain_local_stock);
5780
5781 for_each_node(node) {
5782 struct mem_cgroup_tree_per_node *rtpn;
5783 int zone;
5784
5785 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5786 node_online(node) ? node : NUMA_NO_NODE);
5787
5788 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5789 struct mem_cgroup_tree_per_zone *rtpz;
5790
5791 rtpz = &rtpn->rb_tree_per_zone[zone];
5792 rtpz->rb_root = RB_ROOT;
5793 spin_lock_init(&rtpz->lock);
5794 }
5795 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5796 }
5797
5798 return 0;
5799 }
5800 subsys_initcall(mem_cgroup_init);
5801
5802 #ifdef CONFIG_MEMCG_SWAP
5803 /**
5804 * mem_cgroup_swapout - transfer a memsw charge to swap
5805 * @page: page whose memsw charge to transfer
5806 * @entry: swap entry to move the charge to
5807 *
5808 * Transfer the memsw charge of @page to @entry.
5809 */
5810 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5811 {
5812 struct mem_cgroup *memcg;
5813 unsigned short oldid;
5814
5815 VM_BUG_ON_PAGE(PageLRU(page), page);
5816 VM_BUG_ON_PAGE(page_count(page), page);
5817
5818 if (!do_swap_account)
5819 return;
5820
5821 memcg = page->mem_cgroup;
5822
5823 /* Readahead page, never charged */
5824 if (!memcg)
5825 return;
5826
5827 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5828 VM_BUG_ON_PAGE(oldid, page);
5829 mem_cgroup_swap_statistics(memcg, true);
5830
5831 page->mem_cgroup = NULL;
5832
5833 if (!mem_cgroup_is_root(memcg))
5834 page_counter_uncharge(&memcg->memory, 1);
5835
5836 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5837 VM_BUG_ON(!irqs_disabled());
5838
5839 mem_cgroup_charge_statistics(memcg, page, -1);
5840 memcg_check_events(memcg, page);
5841 }
5842
5843 /**
5844 * mem_cgroup_uncharge_swap - uncharge a swap entry
5845 * @entry: swap entry to uncharge
5846 *
5847 * Drop the memsw charge associated with @entry.
5848 */
5849 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5850 {
5851 struct mem_cgroup *memcg;
5852 unsigned short id;
5853
5854 if (!do_swap_account)
5855 return;
5856
5857 id = swap_cgroup_record(entry, 0);
5858 rcu_read_lock();
5859 memcg = mem_cgroup_from_id(id);
5860 if (memcg) {
5861 if (!mem_cgroup_is_root(memcg))
5862 page_counter_uncharge(&memcg->memsw, 1);
5863 mem_cgroup_swap_statistics(memcg, false);
5864 css_put(&memcg->css);
5865 }
5866 rcu_read_unlock();
5867 }
5868
5869 /* for remember boot option*/
5870 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5871 static int really_do_swap_account __initdata = 1;
5872 #else
5873 static int really_do_swap_account __initdata;
5874 #endif
5875
5876 static int __init enable_swap_account(char *s)
5877 {
5878 if (!strcmp(s, "1"))
5879 really_do_swap_account = 1;
5880 else if (!strcmp(s, "0"))
5881 really_do_swap_account = 0;
5882 return 1;
5883 }
5884 __setup("swapaccount=", enable_swap_account);
5885
5886 static struct cftype memsw_cgroup_files[] = {
5887 {
5888 .name = "memsw.usage_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5890 .read_u64 = mem_cgroup_read_u64,
5891 },
5892 {
5893 .name = "memsw.max_usage_in_bytes",
5894 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5895 .write = mem_cgroup_reset,
5896 .read_u64 = mem_cgroup_read_u64,
5897 },
5898 {
5899 .name = "memsw.limit_in_bytes",
5900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5901 .write = mem_cgroup_write,
5902 .read_u64 = mem_cgroup_read_u64,
5903 },
5904 {
5905 .name = "memsw.failcnt",
5906 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5907 .write = mem_cgroup_reset,
5908 .read_u64 = mem_cgroup_read_u64,
5909 },
5910 { }, /* terminate */
5911 };
5912
5913 static int __init mem_cgroup_swap_init(void)
5914 {
5915 if (!mem_cgroup_disabled() && really_do_swap_account) {
5916 do_swap_account = 1;
5917 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5918 memsw_cgroup_files));
5919 }
5920 return 0;
5921 }
5922 subsys_initcall(mem_cgroup_swap_init);
5923
5924 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.326222 seconds and 5 git commands to generate.