shmem: get_unmapped_area align huge page
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356 }
357
358 /**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558 }
559
560 /*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601 {
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613 {
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029 */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034 unsigned long *lru_size;
1035 long size;
1036 bool empty;
1037
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
1040 if (mem_cgroup_disabled())
1041 return;
1042
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 struct mem_cgroup *task_memcg;
1065 struct task_struct *p;
1066 bool ret;
1067
1068 p = find_lock_task_mm(task);
1069 if (p) {
1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
1078 rcu_read_lock();
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
1081 rcu_read_unlock();
1082 }
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
1085 return ret;
1086 }
1087
1088 /**
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1091 *
1092 * Returns the maximum amount of memory @mem can be charged with, in
1093 * pages.
1094 */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
1100
1101 count = page_counter_read(&memcg->memory);
1102 limit = READ_ONCE(memcg->memory.limit);
1103 if (count < limit)
1104 margin = limit - count;
1105
1106 if (do_memsw_account()) {
1107 count = page_counter_read(&memcg->memsw);
1108 limit = READ_ONCE(memcg->memsw.limit);
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 else
1112 margin = 0;
1113 }
1114
1115 return margin;
1116 }
1117
1118 /*
1119 * A routine for checking "mem" is under move_account() or not.
1120 *
1121 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1122 * moving cgroups. This is for waiting at high-memory pressure
1123 * caused by "move".
1124 */
1125 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126 {
1127 struct mem_cgroup *from;
1128 struct mem_cgroup *to;
1129 bool ret = false;
1130 /*
1131 * Unlike task_move routines, we access mc.to, mc.from not under
1132 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1133 */
1134 spin_lock(&mc.lock);
1135 from = mc.from;
1136 to = mc.to;
1137 if (!from)
1138 goto unlock;
1139
1140 ret = mem_cgroup_is_descendant(from, memcg) ||
1141 mem_cgroup_is_descendant(to, memcg);
1142 unlock:
1143 spin_unlock(&mc.lock);
1144 return ret;
1145 }
1146
1147 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 {
1149 if (mc.moving_task && current != mc.moving_task) {
1150 if (mem_cgroup_under_move(memcg)) {
1151 DEFINE_WAIT(wait);
1152 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1153 /* moving charge context might have finished. */
1154 if (mc.moving_task)
1155 schedule();
1156 finish_wait(&mc.waitq, &wait);
1157 return true;
1158 }
1159 }
1160 return false;
1161 }
1162
1163 #define K(x) ((x) << (PAGE_SHIFT-10))
1164 /**
1165 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 * @memcg: The memory cgroup that went over limit
1167 * @p: Task that is going to be killed
1168 *
1169 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1170 * enabled
1171 */
1172 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1173 {
1174 struct mem_cgroup *iter;
1175 unsigned int i;
1176
1177 rcu_read_lock();
1178
1179 if (p) {
1180 pr_info("Task in ");
1181 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1182 pr_cont(" killed as a result of limit of ");
1183 } else {
1184 pr_info("Memory limit reached of cgroup ");
1185 }
1186
1187 pr_cont_cgroup_path(memcg->css.cgroup);
1188 pr_cont("\n");
1189
1190 rcu_read_unlock();
1191
1192 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1193 K((u64)page_counter_read(&memcg->memory)),
1194 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1195 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1196 K((u64)page_counter_read(&memcg->memsw)),
1197 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1198 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1199 K((u64)page_counter_read(&memcg->kmem)),
1200 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201
1202 for_each_mem_cgroup_tree(iter, memcg) {
1203 pr_info("Memory cgroup stats for ");
1204 pr_cont_cgroup_path(iter->css.cgroup);
1205 pr_cont(":");
1206
1207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209 continue;
1210 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 K(mem_cgroup_read_stat(iter, i)));
1212 }
1213
1214 for (i = 0; i < NR_LRU_LISTS; i++)
1215 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1216 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1217
1218 pr_cont("\n");
1219 }
1220 }
1221
1222 /*
1223 * This function returns the number of memcg under hierarchy tree. Returns
1224 * 1(self count) if no children.
1225 */
1226 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 {
1228 int num = 0;
1229 struct mem_cgroup *iter;
1230
1231 for_each_mem_cgroup_tree(iter, memcg)
1232 num++;
1233 return num;
1234 }
1235
1236 /*
1237 * Return the memory (and swap, if configured) limit for a memcg.
1238 */
1239 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1240 {
1241 unsigned long limit;
1242
1243 limit = memcg->memory.limit;
1244 if (mem_cgroup_swappiness(memcg)) {
1245 unsigned long memsw_limit;
1246 unsigned long swap_limit;
1247
1248 memsw_limit = memcg->memsw.limit;
1249 swap_limit = memcg->swap.limit;
1250 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1251 limit = min(limit + swap_limit, memsw_limit);
1252 }
1253 return limit;
1254 }
1255
1256 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257 int order)
1258 {
1259 struct oom_control oc = {
1260 .zonelist = NULL,
1261 .nodemask = NULL,
1262 .memcg = memcg,
1263 .gfp_mask = gfp_mask,
1264 .order = order,
1265 };
1266 struct mem_cgroup *iter;
1267 unsigned long chosen_points = 0;
1268 unsigned long totalpages;
1269 unsigned int points = 0;
1270 struct task_struct *chosen = NULL;
1271
1272 mutex_lock(&oom_lock);
1273
1274 /*
1275 * If current has a pending SIGKILL or is exiting, then automatically
1276 * select it. The goal is to allow it to allocate so that it may
1277 * quickly exit and free its memory.
1278 */
1279 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1280 mark_oom_victim(current);
1281 try_oom_reaper(current);
1282 goto unlock;
1283 }
1284
1285 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1286 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1287 for_each_mem_cgroup_tree(iter, memcg) {
1288 struct css_task_iter it;
1289 struct task_struct *task;
1290
1291 css_task_iter_start(&iter->css, &it);
1292 while ((task = css_task_iter_next(&it))) {
1293 switch (oom_scan_process_thread(&oc, task)) {
1294 case OOM_SCAN_SELECT:
1295 if (chosen)
1296 put_task_struct(chosen);
1297 chosen = task;
1298 chosen_points = ULONG_MAX;
1299 get_task_struct(chosen);
1300 /* fall through */
1301 case OOM_SCAN_CONTINUE:
1302 continue;
1303 case OOM_SCAN_ABORT:
1304 css_task_iter_end(&it);
1305 mem_cgroup_iter_break(memcg, iter);
1306 if (chosen)
1307 put_task_struct(chosen);
1308 /* Set a dummy value to return "true". */
1309 chosen = (void *) 1;
1310 goto unlock;
1311 case OOM_SCAN_OK:
1312 break;
1313 };
1314 points = oom_badness(task, memcg, NULL, totalpages);
1315 if (!points || points < chosen_points)
1316 continue;
1317 /* Prefer thread group leaders for display purposes */
1318 if (points == chosen_points &&
1319 thread_group_leader(chosen))
1320 continue;
1321
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = points;
1326 get_task_struct(chosen);
1327 }
1328 css_task_iter_end(&it);
1329 }
1330
1331 if (chosen) {
1332 points = chosen_points * 1000 / totalpages;
1333 oom_kill_process(&oc, chosen, points, totalpages,
1334 "Memory cgroup out of memory");
1335 }
1336 unlock:
1337 mutex_unlock(&oom_lock);
1338 return chosen;
1339 }
1340
1341 #if MAX_NUMNODES > 1
1342
1343 /**
1344 * test_mem_cgroup_node_reclaimable
1345 * @memcg: the target memcg
1346 * @nid: the node ID to be checked.
1347 * @noswap : specify true here if the user wants flle only information.
1348 *
1349 * This function returns whether the specified memcg contains any
1350 * reclaimable pages on a node. Returns true if there are any reclaimable
1351 * pages in the node.
1352 */
1353 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1354 int nid, bool noswap)
1355 {
1356 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1357 return true;
1358 if (noswap || !total_swap_pages)
1359 return false;
1360 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1361 return true;
1362 return false;
1363
1364 }
1365
1366 /*
1367 * Always updating the nodemask is not very good - even if we have an empty
1368 * list or the wrong list here, we can start from some node and traverse all
1369 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1370 *
1371 */
1372 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1373 {
1374 int nid;
1375 /*
1376 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1377 * pagein/pageout changes since the last update.
1378 */
1379 if (!atomic_read(&memcg->numainfo_events))
1380 return;
1381 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1382 return;
1383
1384 /* make a nodemask where this memcg uses memory from */
1385 memcg->scan_nodes = node_states[N_MEMORY];
1386
1387 for_each_node_mask(nid, node_states[N_MEMORY]) {
1388
1389 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1390 node_clear(nid, memcg->scan_nodes);
1391 }
1392
1393 atomic_set(&memcg->numainfo_events, 0);
1394 atomic_set(&memcg->numainfo_updating, 0);
1395 }
1396
1397 /*
1398 * Selecting a node where we start reclaim from. Because what we need is just
1399 * reducing usage counter, start from anywhere is O,K. Considering
1400 * memory reclaim from current node, there are pros. and cons.
1401 *
1402 * Freeing memory from current node means freeing memory from a node which
1403 * we'll use or we've used. So, it may make LRU bad. And if several threads
1404 * hit limits, it will see a contention on a node. But freeing from remote
1405 * node means more costs for memory reclaim because of memory latency.
1406 *
1407 * Now, we use round-robin. Better algorithm is welcomed.
1408 */
1409 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1410 {
1411 int node;
1412
1413 mem_cgroup_may_update_nodemask(memcg);
1414 node = memcg->last_scanned_node;
1415
1416 node = next_node_in(node, memcg->scan_nodes);
1417 /*
1418 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1419 * last time it really checked all the LRUs due to rate limiting.
1420 * Fallback to the current node in that case for simplicity.
1421 */
1422 if (unlikely(node == MAX_NUMNODES))
1423 node = numa_node_id();
1424
1425 memcg->last_scanned_node = node;
1426 return node;
1427 }
1428 #else
1429 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1430 {
1431 return 0;
1432 }
1433 #endif
1434
1435 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1436 struct zone *zone,
1437 gfp_t gfp_mask,
1438 unsigned long *total_scanned)
1439 {
1440 struct mem_cgroup *victim = NULL;
1441 int total = 0;
1442 int loop = 0;
1443 unsigned long excess;
1444 unsigned long nr_scanned;
1445 struct mem_cgroup_reclaim_cookie reclaim = {
1446 .zone = zone,
1447 .priority = 0,
1448 };
1449
1450 excess = soft_limit_excess(root_memcg);
1451
1452 while (1) {
1453 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1454 if (!victim) {
1455 loop++;
1456 if (loop >= 2) {
1457 /*
1458 * If we have not been able to reclaim
1459 * anything, it might because there are
1460 * no reclaimable pages under this hierarchy
1461 */
1462 if (!total)
1463 break;
1464 /*
1465 * We want to do more targeted reclaim.
1466 * excess >> 2 is not to excessive so as to
1467 * reclaim too much, nor too less that we keep
1468 * coming back to reclaim from this cgroup
1469 */
1470 if (total >= (excess >> 2) ||
1471 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1472 break;
1473 }
1474 continue;
1475 }
1476 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1477 zone, &nr_scanned);
1478 *total_scanned += nr_scanned;
1479 if (!soft_limit_excess(root_memcg))
1480 break;
1481 }
1482 mem_cgroup_iter_break(root_memcg, victim);
1483 return total;
1484 }
1485
1486 #ifdef CONFIG_LOCKDEP
1487 static struct lockdep_map memcg_oom_lock_dep_map = {
1488 .name = "memcg_oom_lock",
1489 };
1490 #endif
1491
1492 static DEFINE_SPINLOCK(memcg_oom_lock);
1493
1494 /*
1495 * Check OOM-Killer is already running under our hierarchy.
1496 * If someone is running, return false.
1497 */
1498 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1499 {
1500 struct mem_cgroup *iter, *failed = NULL;
1501
1502 spin_lock(&memcg_oom_lock);
1503
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter->oom_lock) {
1506 /*
1507 * this subtree of our hierarchy is already locked
1508 * so we cannot give a lock.
1509 */
1510 failed = iter;
1511 mem_cgroup_iter_break(memcg, iter);
1512 break;
1513 } else
1514 iter->oom_lock = true;
1515 }
1516
1517 if (failed) {
1518 /*
1519 * OK, we failed to lock the whole subtree so we have
1520 * to clean up what we set up to the failing subtree
1521 */
1522 for_each_mem_cgroup_tree(iter, memcg) {
1523 if (iter == failed) {
1524 mem_cgroup_iter_break(memcg, iter);
1525 break;
1526 }
1527 iter->oom_lock = false;
1528 }
1529 } else
1530 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1531
1532 spin_unlock(&memcg_oom_lock);
1533
1534 return !failed;
1535 }
1536
1537 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1538 {
1539 struct mem_cgroup *iter;
1540
1541 spin_lock(&memcg_oom_lock);
1542 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1543 for_each_mem_cgroup_tree(iter, memcg)
1544 iter->oom_lock = false;
1545 spin_unlock(&memcg_oom_lock);
1546 }
1547
1548 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1549 {
1550 struct mem_cgroup *iter;
1551
1552 spin_lock(&memcg_oom_lock);
1553 for_each_mem_cgroup_tree(iter, memcg)
1554 iter->under_oom++;
1555 spin_unlock(&memcg_oom_lock);
1556 }
1557
1558 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1559 {
1560 struct mem_cgroup *iter;
1561
1562 /*
1563 * When a new child is created while the hierarchy is under oom,
1564 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1565 */
1566 spin_lock(&memcg_oom_lock);
1567 for_each_mem_cgroup_tree(iter, memcg)
1568 if (iter->under_oom > 0)
1569 iter->under_oom--;
1570 spin_unlock(&memcg_oom_lock);
1571 }
1572
1573 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1574
1575 struct oom_wait_info {
1576 struct mem_cgroup *memcg;
1577 wait_queue_t wait;
1578 };
1579
1580 static int memcg_oom_wake_function(wait_queue_t *wait,
1581 unsigned mode, int sync, void *arg)
1582 {
1583 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1584 struct mem_cgroup *oom_wait_memcg;
1585 struct oom_wait_info *oom_wait_info;
1586
1587 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1588 oom_wait_memcg = oom_wait_info->memcg;
1589
1590 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1591 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1592 return 0;
1593 return autoremove_wake_function(wait, mode, sync, arg);
1594 }
1595
1596 static void memcg_oom_recover(struct mem_cgroup *memcg)
1597 {
1598 /*
1599 * For the following lockless ->under_oom test, the only required
1600 * guarantee is that it must see the state asserted by an OOM when
1601 * this function is called as a result of userland actions
1602 * triggered by the notification of the OOM. This is trivially
1603 * achieved by invoking mem_cgroup_mark_under_oom() before
1604 * triggering notification.
1605 */
1606 if (memcg && memcg->under_oom)
1607 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1608 }
1609
1610 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1611 {
1612 if (!current->memcg_may_oom)
1613 return;
1614 /*
1615 * We are in the middle of the charge context here, so we
1616 * don't want to block when potentially sitting on a callstack
1617 * that holds all kinds of filesystem and mm locks.
1618 *
1619 * Also, the caller may handle a failed allocation gracefully
1620 * (like optional page cache readahead) and so an OOM killer
1621 * invocation might not even be necessary.
1622 *
1623 * That's why we don't do anything here except remember the
1624 * OOM context and then deal with it at the end of the page
1625 * fault when the stack is unwound, the locks are released,
1626 * and when we know whether the fault was overall successful.
1627 */
1628 css_get(&memcg->css);
1629 current->memcg_in_oom = memcg;
1630 current->memcg_oom_gfp_mask = mask;
1631 current->memcg_oom_order = order;
1632 }
1633
1634 /**
1635 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1636 * @handle: actually kill/wait or just clean up the OOM state
1637 *
1638 * This has to be called at the end of a page fault if the memcg OOM
1639 * handler was enabled.
1640 *
1641 * Memcg supports userspace OOM handling where failed allocations must
1642 * sleep on a waitqueue until the userspace task resolves the
1643 * situation. Sleeping directly in the charge context with all kinds
1644 * of locks held is not a good idea, instead we remember an OOM state
1645 * in the task and mem_cgroup_oom_synchronize() has to be called at
1646 * the end of the page fault to complete the OOM handling.
1647 *
1648 * Returns %true if an ongoing memcg OOM situation was detected and
1649 * completed, %false otherwise.
1650 */
1651 bool mem_cgroup_oom_synchronize(bool handle)
1652 {
1653 struct mem_cgroup *memcg = current->memcg_in_oom;
1654 struct oom_wait_info owait;
1655 bool locked;
1656
1657 /* OOM is global, do not handle */
1658 if (!memcg)
1659 return false;
1660
1661 if (!handle || oom_killer_disabled)
1662 goto cleanup;
1663
1664 owait.memcg = memcg;
1665 owait.wait.flags = 0;
1666 owait.wait.func = memcg_oom_wake_function;
1667 owait.wait.private = current;
1668 INIT_LIST_HEAD(&owait.wait.task_list);
1669
1670 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1671 mem_cgroup_mark_under_oom(memcg);
1672
1673 locked = mem_cgroup_oom_trylock(memcg);
1674
1675 if (locked)
1676 mem_cgroup_oom_notify(memcg);
1677
1678 if (locked && !memcg->oom_kill_disable) {
1679 mem_cgroup_unmark_under_oom(memcg);
1680 finish_wait(&memcg_oom_waitq, &owait.wait);
1681 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1682 current->memcg_oom_order);
1683 } else {
1684 schedule();
1685 mem_cgroup_unmark_under_oom(memcg);
1686 finish_wait(&memcg_oom_waitq, &owait.wait);
1687 }
1688
1689 if (locked) {
1690 mem_cgroup_oom_unlock(memcg);
1691 /*
1692 * There is no guarantee that an OOM-lock contender
1693 * sees the wakeups triggered by the OOM kill
1694 * uncharges. Wake any sleepers explicitely.
1695 */
1696 memcg_oom_recover(memcg);
1697 }
1698 cleanup:
1699 current->memcg_in_oom = NULL;
1700 css_put(&memcg->css);
1701 return true;
1702 }
1703
1704 /**
1705 * lock_page_memcg - lock a page->mem_cgroup binding
1706 * @page: the page
1707 *
1708 * This function protects unlocked LRU pages from being moved to
1709 * another cgroup and stabilizes their page->mem_cgroup binding.
1710 */
1711 void lock_page_memcg(struct page *page)
1712 {
1713 struct mem_cgroup *memcg;
1714 unsigned long flags;
1715
1716 /*
1717 * The RCU lock is held throughout the transaction. The fast
1718 * path can get away without acquiring the memcg->move_lock
1719 * because page moving starts with an RCU grace period.
1720 */
1721 rcu_read_lock();
1722
1723 if (mem_cgroup_disabled())
1724 return;
1725 again:
1726 memcg = page->mem_cgroup;
1727 if (unlikely(!memcg))
1728 return;
1729
1730 if (atomic_read(&memcg->moving_account) <= 0)
1731 return;
1732
1733 spin_lock_irqsave(&memcg->move_lock, flags);
1734 if (memcg != page->mem_cgroup) {
1735 spin_unlock_irqrestore(&memcg->move_lock, flags);
1736 goto again;
1737 }
1738
1739 /*
1740 * When charge migration first begins, we can have locked and
1741 * unlocked page stat updates happening concurrently. Track
1742 * the task who has the lock for unlock_page_memcg().
1743 */
1744 memcg->move_lock_task = current;
1745 memcg->move_lock_flags = flags;
1746
1747 return;
1748 }
1749 EXPORT_SYMBOL(lock_page_memcg);
1750
1751 /**
1752 * unlock_page_memcg - unlock a page->mem_cgroup binding
1753 * @page: the page
1754 */
1755 void unlock_page_memcg(struct page *page)
1756 {
1757 struct mem_cgroup *memcg = page->mem_cgroup;
1758
1759 if (memcg && memcg->move_lock_task == current) {
1760 unsigned long flags = memcg->move_lock_flags;
1761
1762 memcg->move_lock_task = NULL;
1763 memcg->move_lock_flags = 0;
1764
1765 spin_unlock_irqrestore(&memcg->move_lock, flags);
1766 }
1767
1768 rcu_read_unlock();
1769 }
1770 EXPORT_SYMBOL(unlock_page_memcg);
1771
1772 /*
1773 * size of first charge trial. "32" comes from vmscan.c's magic value.
1774 * TODO: maybe necessary to use big numbers in big irons.
1775 */
1776 #define CHARGE_BATCH 32U
1777 struct memcg_stock_pcp {
1778 struct mem_cgroup *cached; /* this never be root cgroup */
1779 unsigned int nr_pages;
1780 struct work_struct work;
1781 unsigned long flags;
1782 #define FLUSHING_CACHED_CHARGE 0
1783 };
1784 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1785 static DEFINE_MUTEX(percpu_charge_mutex);
1786
1787 /**
1788 * consume_stock: Try to consume stocked charge on this cpu.
1789 * @memcg: memcg to consume from.
1790 * @nr_pages: how many pages to charge.
1791 *
1792 * The charges will only happen if @memcg matches the current cpu's memcg
1793 * stock, and at least @nr_pages are available in that stock. Failure to
1794 * service an allocation will refill the stock.
1795 *
1796 * returns true if successful, false otherwise.
1797 */
1798 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 {
1800 struct memcg_stock_pcp *stock;
1801 bool ret = false;
1802
1803 if (nr_pages > CHARGE_BATCH)
1804 return ret;
1805
1806 stock = &get_cpu_var(memcg_stock);
1807 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1808 stock->nr_pages -= nr_pages;
1809 ret = true;
1810 }
1811 put_cpu_var(memcg_stock);
1812 return ret;
1813 }
1814
1815 /*
1816 * Returns stocks cached in percpu and reset cached information.
1817 */
1818 static void drain_stock(struct memcg_stock_pcp *stock)
1819 {
1820 struct mem_cgroup *old = stock->cached;
1821
1822 if (stock->nr_pages) {
1823 page_counter_uncharge(&old->memory, stock->nr_pages);
1824 if (do_memsw_account())
1825 page_counter_uncharge(&old->memsw, stock->nr_pages);
1826 css_put_many(&old->css, stock->nr_pages);
1827 stock->nr_pages = 0;
1828 }
1829 stock->cached = NULL;
1830 }
1831
1832 /*
1833 * This must be called under preempt disabled or must be called by
1834 * a thread which is pinned to local cpu.
1835 */
1836 static void drain_local_stock(struct work_struct *dummy)
1837 {
1838 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1839 drain_stock(stock);
1840 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1841 }
1842
1843 /*
1844 * Cache charges(val) to local per_cpu area.
1845 * This will be consumed by consume_stock() function, later.
1846 */
1847 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1848 {
1849 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1850
1851 if (stock->cached != memcg) { /* reset if necessary */
1852 drain_stock(stock);
1853 stock->cached = memcg;
1854 }
1855 stock->nr_pages += nr_pages;
1856 put_cpu_var(memcg_stock);
1857 }
1858
1859 /*
1860 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1861 * of the hierarchy under it.
1862 */
1863 static void drain_all_stock(struct mem_cgroup *root_memcg)
1864 {
1865 int cpu, curcpu;
1866
1867 /* If someone's already draining, avoid adding running more workers. */
1868 if (!mutex_trylock(&percpu_charge_mutex))
1869 return;
1870 /* Notify other cpus that system-wide "drain" is running */
1871 get_online_cpus();
1872 curcpu = get_cpu();
1873 for_each_online_cpu(cpu) {
1874 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1875 struct mem_cgroup *memcg;
1876
1877 memcg = stock->cached;
1878 if (!memcg || !stock->nr_pages)
1879 continue;
1880 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1881 continue;
1882 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1883 if (cpu == curcpu)
1884 drain_local_stock(&stock->work);
1885 else
1886 schedule_work_on(cpu, &stock->work);
1887 }
1888 }
1889 put_cpu();
1890 put_online_cpus();
1891 mutex_unlock(&percpu_charge_mutex);
1892 }
1893
1894 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1895 unsigned long action,
1896 void *hcpu)
1897 {
1898 int cpu = (unsigned long)hcpu;
1899 struct memcg_stock_pcp *stock;
1900
1901 if (action == CPU_ONLINE)
1902 return NOTIFY_OK;
1903
1904 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1905 return NOTIFY_OK;
1906
1907 stock = &per_cpu(memcg_stock, cpu);
1908 drain_stock(stock);
1909 return NOTIFY_OK;
1910 }
1911
1912 static void reclaim_high(struct mem_cgroup *memcg,
1913 unsigned int nr_pages,
1914 gfp_t gfp_mask)
1915 {
1916 do {
1917 if (page_counter_read(&memcg->memory) <= memcg->high)
1918 continue;
1919 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1920 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1921 } while ((memcg = parent_mem_cgroup(memcg)));
1922 }
1923
1924 static void high_work_func(struct work_struct *work)
1925 {
1926 struct mem_cgroup *memcg;
1927
1928 memcg = container_of(work, struct mem_cgroup, high_work);
1929 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1930 }
1931
1932 /*
1933 * Scheduled by try_charge() to be executed from the userland return path
1934 * and reclaims memory over the high limit.
1935 */
1936 void mem_cgroup_handle_over_high(void)
1937 {
1938 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1939 struct mem_cgroup *memcg;
1940
1941 if (likely(!nr_pages))
1942 return;
1943
1944 memcg = get_mem_cgroup_from_mm(current->mm);
1945 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1946 css_put(&memcg->css);
1947 current->memcg_nr_pages_over_high = 0;
1948 }
1949
1950 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1951 unsigned int nr_pages)
1952 {
1953 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1954 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1955 struct mem_cgroup *mem_over_limit;
1956 struct page_counter *counter;
1957 unsigned long nr_reclaimed;
1958 bool may_swap = true;
1959 bool drained = false;
1960
1961 if (mem_cgroup_is_root(memcg))
1962 return 0;
1963 retry:
1964 if (consume_stock(memcg, nr_pages))
1965 return 0;
1966
1967 if (!do_memsw_account() ||
1968 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1969 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1970 goto done_restock;
1971 if (do_memsw_account())
1972 page_counter_uncharge(&memcg->memsw, batch);
1973 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1974 } else {
1975 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1976 may_swap = false;
1977 }
1978
1979 if (batch > nr_pages) {
1980 batch = nr_pages;
1981 goto retry;
1982 }
1983
1984 /*
1985 * Unlike in global OOM situations, memcg is not in a physical
1986 * memory shortage. Allow dying and OOM-killed tasks to
1987 * bypass the last charges so that they can exit quickly and
1988 * free their memory.
1989 */
1990 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1991 fatal_signal_pending(current) ||
1992 current->flags & PF_EXITING))
1993 goto force;
1994
1995 if (unlikely(task_in_memcg_oom(current)))
1996 goto nomem;
1997
1998 if (!gfpflags_allow_blocking(gfp_mask))
1999 goto nomem;
2000
2001 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2002
2003 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2004 gfp_mask, may_swap);
2005
2006 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2007 goto retry;
2008
2009 if (!drained) {
2010 drain_all_stock(mem_over_limit);
2011 drained = true;
2012 goto retry;
2013 }
2014
2015 if (gfp_mask & __GFP_NORETRY)
2016 goto nomem;
2017 /*
2018 * Even though the limit is exceeded at this point, reclaim
2019 * may have been able to free some pages. Retry the charge
2020 * before killing the task.
2021 *
2022 * Only for regular pages, though: huge pages are rather
2023 * unlikely to succeed so close to the limit, and we fall back
2024 * to regular pages anyway in case of failure.
2025 */
2026 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2027 goto retry;
2028 /*
2029 * At task move, charge accounts can be doubly counted. So, it's
2030 * better to wait until the end of task_move if something is going on.
2031 */
2032 if (mem_cgroup_wait_acct_move(mem_over_limit))
2033 goto retry;
2034
2035 if (nr_retries--)
2036 goto retry;
2037
2038 if (gfp_mask & __GFP_NOFAIL)
2039 goto force;
2040
2041 if (fatal_signal_pending(current))
2042 goto force;
2043
2044 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2045
2046 mem_cgroup_oom(mem_over_limit, gfp_mask,
2047 get_order(nr_pages * PAGE_SIZE));
2048 nomem:
2049 if (!(gfp_mask & __GFP_NOFAIL))
2050 return -ENOMEM;
2051 force:
2052 /*
2053 * The allocation either can't fail or will lead to more memory
2054 * being freed very soon. Allow memory usage go over the limit
2055 * temporarily by force charging it.
2056 */
2057 page_counter_charge(&memcg->memory, nr_pages);
2058 if (do_memsw_account())
2059 page_counter_charge(&memcg->memsw, nr_pages);
2060 css_get_many(&memcg->css, nr_pages);
2061
2062 return 0;
2063
2064 done_restock:
2065 css_get_many(&memcg->css, batch);
2066 if (batch > nr_pages)
2067 refill_stock(memcg, batch - nr_pages);
2068
2069 /*
2070 * If the hierarchy is above the normal consumption range, schedule
2071 * reclaim on returning to userland. We can perform reclaim here
2072 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2073 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2074 * not recorded as it most likely matches current's and won't
2075 * change in the meantime. As high limit is checked again before
2076 * reclaim, the cost of mismatch is negligible.
2077 */
2078 do {
2079 if (page_counter_read(&memcg->memory) > memcg->high) {
2080 /* Don't bother a random interrupted task */
2081 if (in_interrupt()) {
2082 schedule_work(&memcg->high_work);
2083 break;
2084 }
2085 current->memcg_nr_pages_over_high += batch;
2086 set_notify_resume(current);
2087 break;
2088 }
2089 } while ((memcg = parent_mem_cgroup(memcg)));
2090
2091 return 0;
2092 }
2093
2094 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2095 {
2096 if (mem_cgroup_is_root(memcg))
2097 return;
2098
2099 page_counter_uncharge(&memcg->memory, nr_pages);
2100 if (do_memsw_account())
2101 page_counter_uncharge(&memcg->memsw, nr_pages);
2102
2103 css_put_many(&memcg->css, nr_pages);
2104 }
2105
2106 static void lock_page_lru(struct page *page, int *isolated)
2107 {
2108 struct zone *zone = page_zone(page);
2109
2110 spin_lock_irq(&zone->lru_lock);
2111 if (PageLRU(page)) {
2112 struct lruvec *lruvec;
2113
2114 lruvec = mem_cgroup_page_lruvec(page, zone);
2115 ClearPageLRU(page);
2116 del_page_from_lru_list(page, lruvec, page_lru(page));
2117 *isolated = 1;
2118 } else
2119 *isolated = 0;
2120 }
2121
2122 static void unlock_page_lru(struct page *page, int isolated)
2123 {
2124 struct zone *zone = page_zone(page);
2125
2126 if (isolated) {
2127 struct lruvec *lruvec;
2128
2129 lruvec = mem_cgroup_page_lruvec(page, zone);
2130 VM_BUG_ON_PAGE(PageLRU(page), page);
2131 SetPageLRU(page);
2132 add_page_to_lru_list(page, lruvec, page_lru(page));
2133 }
2134 spin_unlock_irq(&zone->lru_lock);
2135 }
2136
2137 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2138 bool lrucare)
2139 {
2140 int isolated;
2141
2142 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2143
2144 /*
2145 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2146 * may already be on some other mem_cgroup's LRU. Take care of it.
2147 */
2148 if (lrucare)
2149 lock_page_lru(page, &isolated);
2150
2151 /*
2152 * Nobody should be changing or seriously looking at
2153 * page->mem_cgroup at this point:
2154 *
2155 * - the page is uncharged
2156 *
2157 * - the page is off-LRU
2158 *
2159 * - an anonymous fault has exclusive page access, except for
2160 * a locked page table
2161 *
2162 * - a page cache insertion, a swapin fault, or a migration
2163 * have the page locked
2164 */
2165 page->mem_cgroup = memcg;
2166
2167 if (lrucare)
2168 unlock_page_lru(page, isolated);
2169 }
2170
2171 #ifndef CONFIG_SLOB
2172 static int memcg_alloc_cache_id(void)
2173 {
2174 int id, size;
2175 int err;
2176
2177 id = ida_simple_get(&memcg_cache_ida,
2178 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2179 if (id < 0)
2180 return id;
2181
2182 if (id < memcg_nr_cache_ids)
2183 return id;
2184
2185 /*
2186 * There's no space for the new id in memcg_caches arrays,
2187 * so we have to grow them.
2188 */
2189 down_write(&memcg_cache_ids_sem);
2190
2191 size = 2 * (id + 1);
2192 if (size < MEMCG_CACHES_MIN_SIZE)
2193 size = MEMCG_CACHES_MIN_SIZE;
2194 else if (size > MEMCG_CACHES_MAX_SIZE)
2195 size = MEMCG_CACHES_MAX_SIZE;
2196
2197 err = memcg_update_all_caches(size);
2198 if (!err)
2199 err = memcg_update_all_list_lrus(size);
2200 if (!err)
2201 memcg_nr_cache_ids = size;
2202
2203 up_write(&memcg_cache_ids_sem);
2204
2205 if (err) {
2206 ida_simple_remove(&memcg_cache_ida, id);
2207 return err;
2208 }
2209 return id;
2210 }
2211
2212 static void memcg_free_cache_id(int id)
2213 {
2214 ida_simple_remove(&memcg_cache_ida, id);
2215 }
2216
2217 struct memcg_kmem_cache_create_work {
2218 struct mem_cgroup *memcg;
2219 struct kmem_cache *cachep;
2220 struct work_struct work;
2221 };
2222
2223 static void memcg_kmem_cache_create_func(struct work_struct *w)
2224 {
2225 struct memcg_kmem_cache_create_work *cw =
2226 container_of(w, struct memcg_kmem_cache_create_work, work);
2227 struct mem_cgroup *memcg = cw->memcg;
2228 struct kmem_cache *cachep = cw->cachep;
2229
2230 memcg_create_kmem_cache(memcg, cachep);
2231
2232 css_put(&memcg->css);
2233 kfree(cw);
2234 }
2235
2236 /*
2237 * Enqueue the creation of a per-memcg kmem_cache.
2238 */
2239 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
2241 {
2242 struct memcg_kmem_cache_create_work *cw;
2243
2244 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2245 if (!cw)
2246 return;
2247
2248 css_get(&memcg->css);
2249
2250 cw->memcg = memcg;
2251 cw->cachep = cachep;
2252 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2253
2254 schedule_work(&cw->work);
2255 }
2256
2257 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2258 struct kmem_cache *cachep)
2259 {
2260 /*
2261 * We need to stop accounting when we kmalloc, because if the
2262 * corresponding kmalloc cache is not yet created, the first allocation
2263 * in __memcg_schedule_kmem_cache_create will recurse.
2264 *
2265 * However, it is better to enclose the whole function. Depending on
2266 * the debugging options enabled, INIT_WORK(), for instance, can
2267 * trigger an allocation. This too, will make us recurse. Because at
2268 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2269 * the safest choice is to do it like this, wrapping the whole function.
2270 */
2271 current->memcg_kmem_skip_account = 1;
2272 __memcg_schedule_kmem_cache_create(memcg, cachep);
2273 current->memcg_kmem_skip_account = 0;
2274 }
2275
2276 static inline bool memcg_kmem_bypass(void)
2277 {
2278 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2279 return true;
2280 return false;
2281 }
2282
2283 /**
2284 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2285 * @cachep: the original global kmem cache
2286 *
2287 * Return the kmem_cache we're supposed to use for a slab allocation.
2288 * We try to use the current memcg's version of the cache.
2289 *
2290 * If the cache does not exist yet, if we are the first user of it, we
2291 * create it asynchronously in a workqueue and let the current allocation
2292 * go through with the original cache.
2293 *
2294 * This function takes a reference to the cache it returns to assure it
2295 * won't get destroyed while we are working with it. Once the caller is
2296 * done with it, memcg_kmem_put_cache() must be called to release the
2297 * reference.
2298 */
2299 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2300 {
2301 struct mem_cgroup *memcg;
2302 struct kmem_cache *memcg_cachep;
2303 int kmemcg_id;
2304
2305 VM_BUG_ON(!is_root_cache(cachep));
2306
2307 if (memcg_kmem_bypass())
2308 return cachep;
2309
2310 if (current->memcg_kmem_skip_account)
2311 return cachep;
2312
2313 memcg = get_mem_cgroup_from_mm(current->mm);
2314 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2315 if (kmemcg_id < 0)
2316 goto out;
2317
2318 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2319 if (likely(memcg_cachep))
2320 return memcg_cachep;
2321
2322 /*
2323 * If we are in a safe context (can wait, and not in interrupt
2324 * context), we could be be predictable and return right away.
2325 * This would guarantee that the allocation being performed
2326 * already belongs in the new cache.
2327 *
2328 * However, there are some clashes that can arrive from locking.
2329 * For instance, because we acquire the slab_mutex while doing
2330 * memcg_create_kmem_cache, this means no further allocation
2331 * could happen with the slab_mutex held. So it's better to
2332 * defer everything.
2333 */
2334 memcg_schedule_kmem_cache_create(memcg, cachep);
2335 out:
2336 css_put(&memcg->css);
2337 return cachep;
2338 }
2339
2340 /**
2341 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2342 * @cachep: the cache returned by memcg_kmem_get_cache
2343 */
2344 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2345 {
2346 if (!is_root_cache(cachep))
2347 css_put(&cachep->memcg_params.memcg->css);
2348 }
2349
2350 /**
2351 * memcg_kmem_charge: charge a kmem page
2352 * @page: page to charge
2353 * @gfp: reclaim mode
2354 * @order: allocation order
2355 * @memcg: memory cgroup to charge
2356 *
2357 * Returns 0 on success, an error code on failure.
2358 */
2359 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2360 struct mem_cgroup *memcg)
2361 {
2362 unsigned int nr_pages = 1 << order;
2363 struct page_counter *counter;
2364 int ret;
2365
2366 ret = try_charge(memcg, gfp, nr_pages);
2367 if (ret)
2368 return ret;
2369
2370 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2371 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2372 cancel_charge(memcg, nr_pages);
2373 return -ENOMEM;
2374 }
2375
2376 page->mem_cgroup = memcg;
2377
2378 return 0;
2379 }
2380
2381 /**
2382 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2383 * @page: page to charge
2384 * @gfp: reclaim mode
2385 * @order: allocation order
2386 *
2387 * Returns 0 on success, an error code on failure.
2388 */
2389 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2390 {
2391 struct mem_cgroup *memcg;
2392 int ret = 0;
2393
2394 if (memcg_kmem_bypass())
2395 return 0;
2396
2397 memcg = get_mem_cgroup_from_mm(current->mm);
2398 if (!mem_cgroup_is_root(memcg))
2399 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2400 css_put(&memcg->css);
2401 return ret;
2402 }
2403 /**
2404 * memcg_kmem_uncharge: uncharge a kmem page
2405 * @page: page to uncharge
2406 * @order: allocation order
2407 */
2408 void memcg_kmem_uncharge(struct page *page, int order)
2409 {
2410 struct mem_cgroup *memcg = page->mem_cgroup;
2411 unsigned int nr_pages = 1 << order;
2412
2413 if (!memcg)
2414 return;
2415
2416 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2417
2418 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420
2421 page_counter_uncharge(&memcg->memory, nr_pages);
2422 if (do_memsw_account())
2423 page_counter_uncharge(&memcg->memsw, nr_pages);
2424
2425 page->mem_cgroup = NULL;
2426 css_put_many(&memcg->css, nr_pages);
2427 }
2428 #endif /* !CONFIG_SLOB */
2429
2430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2431
2432 /*
2433 * Because tail pages are not marked as "used", set it. We're under
2434 * zone->lru_lock and migration entries setup in all page mappings.
2435 */
2436 void mem_cgroup_split_huge_fixup(struct page *head)
2437 {
2438 int i;
2439
2440 if (mem_cgroup_disabled())
2441 return;
2442
2443 for (i = 1; i < HPAGE_PMD_NR; i++)
2444 head[i].mem_cgroup = head->mem_cgroup;
2445
2446 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2447 HPAGE_PMD_NR);
2448 }
2449 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2450
2451 #ifdef CONFIG_MEMCG_SWAP
2452 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2453 bool charge)
2454 {
2455 int val = (charge) ? 1 : -1;
2456 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2457 }
2458
2459 /**
2460 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2461 * @entry: swap entry to be moved
2462 * @from: mem_cgroup which the entry is moved from
2463 * @to: mem_cgroup which the entry is moved to
2464 *
2465 * It succeeds only when the swap_cgroup's record for this entry is the same
2466 * as the mem_cgroup's id of @from.
2467 *
2468 * Returns 0 on success, -EINVAL on failure.
2469 *
2470 * The caller must have charged to @to, IOW, called page_counter_charge() about
2471 * both res and memsw, and called css_get().
2472 */
2473 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2474 struct mem_cgroup *from, struct mem_cgroup *to)
2475 {
2476 unsigned short old_id, new_id;
2477
2478 old_id = mem_cgroup_id(from);
2479 new_id = mem_cgroup_id(to);
2480
2481 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2482 mem_cgroup_swap_statistics(from, false);
2483 mem_cgroup_swap_statistics(to, true);
2484 return 0;
2485 }
2486 return -EINVAL;
2487 }
2488 #else
2489 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2490 struct mem_cgroup *from, struct mem_cgroup *to)
2491 {
2492 return -EINVAL;
2493 }
2494 #endif
2495
2496 static DEFINE_MUTEX(memcg_limit_mutex);
2497
2498 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2499 unsigned long limit)
2500 {
2501 unsigned long curusage;
2502 unsigned long oldusage;
2503 bool enlarge = false;
2504 int retry_count;
2505 int ret;
2506
2507 /*
2508 * For keeping hierarchical_reclaim simple, how long we should retry
2509 * is depends on callers. We set our retry-count to be function
2510 * of # of children which we should visit in this loop.
2511 */
2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 mem_cgroup_count_children(memcg);
2514
2515 oldusage = page_counter_read(&memcg->memory);
2516
2517 do {
2518 if (signal_pending(current)) {
2519 ret = -EINTR;
2520 break;
2521 }
2522
2523 mutex_lock(&memcg_limit_mutex);
2524 if (limit > memcg->memsw.limit) {
2525 mutex_unlock(&memcg_limit_mutex);
2526 ret = -EINVAL;
2527 break;
2528 }
2529 if (limit > memcg->memory.limit)
2530 enlarge = true;
2531 ret = page_counter_limit(&memcg->memory, limit);
2532 mutex_unlock(&memcg_limit_mutex);
2533
2534 if (!ret)
2535 break;
2536
2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2538
2539 curusage = page_counter_read(&memcg->memory);
2540 /* Usage is reduced ? */
2541 if (curusage >= oldusage)
2542 retry_count--;
2543 else
2544 oldusage = curusage;
2545 } while (retry_count);
2546
2547 if (!ret && enlarge)
2548 memcg_oom_recover(memcg);
2549
2550 return ret;
2551 }
2552
2553 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2554 unsigned long limit)
2555 {
2556 unsigned long curusage;
2557 unsigned long oldusage;
2558 bool enlarge = false;
2559 int retry_count;
2560 int ret;
2561
2562 /* see mem_cgroup_resize_res_limit */
2563 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2564 mem_cgroup_count_children(memcg);
2565
2566 oldusage = page_counter_read(&memcg->memsw);
2567
2568 do {
2569 if (signal_pending(current)) {
2570 ret = -EINTR;
2571 break;
2572 }
2573
2574 mutex_lock(&memcg_limit_mutex);
2575 if (limit < memcg->memory.limit) {
2576 mutex_unlock(&memcg_limit_mutex);
2577 ret = -EINVAL;
2578 break;
2579 }
2580 if (limit > memcg->memsw.limit)
2581 enlarge = true;
2582 ret = page_counter_limit(&memcg->memsw, limit);
2583 mutex_unlock(&memcg_limit_mutex);
2584
2585 if (!ret)
2586 break;
2587
2588 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2589
2590 curusage = page_counter_read(&memcg->memsw);
2591 /* Usage is reduced ? */
2592 if (curusage >= oldusage)
2593 retry_count--;
2594 else
2595 oldusage = curusage;
2596 } while (retry_count);
2597
2598 if (!ret && enlarge)
2599 memcg_oom_recover(memcg);
2600
2601 return ret;
2602 }
2603
2604 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2605 gfp_t gfp_mask,
2606 unsigned long *total_scanned)
2607 {
2608 unsigned long nr_reclaimed = 0;
2609 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2610 unsigned long reclaimed;
2611 int loop = 0;
2612 struct mem_cgroup_tree_per_zone *mctz;
2613 unsigned long excess;
2614 unsigned long nr_scanned;
2615
2616 if (order > 0)
2617 return 0;
2618
2619 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2620 /*
2621 * This loop can run a while, specially if mem_cgroup's continuously
2622 * keep exceeding their soft limit and putting the system under
2623 * pressure
2624 */
2625 do {
2626 if (next_mz)
2627 mz = next_mz;
2628 else
2629 mz = mem_cgroup_largest_soft_limit_node(mctz);
2630 if (!mz)
2631 break;
2632
2633 nr_scanned = 0;
2634 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2635 gfp_mask, &nr_scanned);
2636 nr_reclaimed += reclaimed;
2637 *total_scanned += nr_scanned;
2638 spin_lock_irq(&mctz->lock);
2639 __mem_cgroup_remove_exceeded(mz, mctz);
2640
2641 /*
2642 * If we failed to reclaim anything from this memory cgroup
2643 * it is time to move on to the next cgroup
2644 */
2645 next_mz = NULL;
2646 if (!reclaimed)
2647 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2648
2649 excess = soft_limit_excess(mz->memcg);
2650 /*
2651 * One school of thought says that we should not add
2652 * back the node to the tree if reclaim returns 0.
2653 * But our reclaim could return 0, simply because due
2654 * to priority we are exposing a smaller subset of
2655 * memory to reclaim from. Consider this as a longer
2656 * term TODO.
2657 */
2658 /* If excess == 0, no tree ops */
2659 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2660 spin_unlock_irq(&mctz->lock);
2661 css_put(&mz->memcg->css);
2662 loop++;
2663 /*
2664 * Could not reclaim anything and there are no more
2665 * mem cgroups to try or we seem to be looping without
2666 * reclaiming anything.
2667 */
2668 if (!nr_reclaimed &&
2669 (next_mz == NULL ||
2670 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2671 break;
2672 } while (!nr_reclaimed);
2673 if (next_mz)
2674 css_put(&next_mz->memcg->css);
2675 return nr_reclaimed;
2676 }
2677
2678 /*
2679 * Test whether @memcg has children, dead or alive. Note that this
2680 * function doesn't care whether @memcg has use_hierarchy enabled and
2681 * returns %true if there are child csses according to the cgroup
2682 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2683 */
2684 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2685 {
2686 bool ret;
2687
2688 rcu_read_lock();
2689 ret = css_next_child(NULL, &memcg->css);
2690 rcu_read_unlock();
2691 return ret;
2692 }
2693
2694 /*
2695 * Reclaims as many pages from the given memcg as possible.
2696 *
2697 * Caller is responsible for holding css reference for memcg.
2698 */
2699 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2700 {
2701 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2702
2703 /* we call try-to-free pages for make this cgroup empty */
2704 lru_add_drain_all();
2705 /* try to free all pages in this cgroup */
2706 while (nr_retries && page_counter_read(&memcg->memory)) {
2707 int progress;
2708
2709 if (signal_pending(current))
2710 return -EINTR;
2711
2712 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2713 GFP_KERNEL, true);
2714 if (!progress) {
2715 nr_retries--;
2716 /* maybe some writeback is necessary */
2717 congestion_wait(BLK_RW_ASYNC, HZ/10);
2718 }
2719
2720 }
2721
2722 return 0;
2723 }
2724
2725 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2726 char *buf, size_t nbytes,
2727 loff_t off)
2728 {
2729 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2730
2731 if (mem_cgroup_is_root(memcg))
2732 return -EINVAL;
2733 return mem_cgroup_force_empty(memcg) ?: nbytes;
2734 }
2735
2736 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2737 struct cftype *cft)
2738 {
2739 return mem_cgroup_from_css(css)->use_hierarchy;
2740 }
2741
2742 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2743 struct cftype *cft, u64 val)
2744 {
2745 int retval = 0;
2746 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2747 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2748
2749 if (memcg->use_hierarchy == val)
2750 return 0;
2751
2752 /*
2753 * If parent's use_hierarchy is set, we can't make any modifications
2754 * in the child subtrees. If it is unset, then the change can
2755 * occur, provided the current cgroup has no children.
2756 *
2757 * For the root cgroup, parent_mem is NULL, we allow value to be
2758 * set if there are no children.
2759 */
2760 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2761 (val == 1 || val == 0)) {
2762 if (!memcg_has_children(memcg))
2763 memcg->use_hierarchy = val;
2764 else
2765 retval = -EBUSY;
2766 } else
2767 retval = -EINVAL;
2768
2769 return retval;
2770 }
2771
2772 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2773 {
2774 struct mem_cgroup *iter;
2775 int i;
2776
2777 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2778
2779 for_each_mem_cgroup_tree(iter, memcg) {
2780 for (i = 0; i < MEMCG_NR_STAT; i++)
2781 stat[i] += mem_cgroup_read_stat(iter, i);
2782 }
2783 }
2784
2785 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2786 {
2787 struct mem_cgroup *iter;
2788 int i;
2789
2790 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2791
2792 for_each_mem_cgroup_tree(iter, memcg) {
2793 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2794 events[i] += mem_cgroup_read_events(iter, i);
2795 }
2796 }
2797
2798 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2799 {
2800 unsigned long val = 0;
2801
2802 if (mem_cgroup_is_root(memcg)) {
2803 struct mem_cgroup *iter;
2804
2805 for_each_mem_cgroup_tree(iter, memcg) {
2806 val += mem_cgroup_read_stat(iter,
2807 MEM_CGROUP_STAT_CACHE);
2808 val += mem_cgroup_read_stat(iter,
2809 MEM_CGROUP_STAT_RSS);
2810 if (swap)
2811 val += mem_cgroup_read_stat(iter,
2812 MEM_CGROUP_STAT_SWAP);
2813 }
2814 } else {
2815 if (!swap)
2816 val = page_counter_read(&memcg->memory);
2817 else
2818 val = page_counter_read(&memcg->memsw);
2819 }
2820 return val;
2821 }
2822
2823 enum {
2824 RES_USAGE,
2825 RES_LIMIT,
2826 RES_MAX_USAGE,
2827 RES_FAILCNT,
2828 RES_SOFT_LIMIT,
2829 };
2830
2831 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2832 struct cftype *cft)
2833 {
2834 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2835 struct page_counter *counter;
2836
2837 switch (MEMFILE_TYPE(cft->private)) {
2838 case _MEM:
2839 counter = &memcg->memory;
2840 break;
2841 case _MEMSWAP:
2842 counter = &memcg->memsw;
2843 break;
2844 case _KMEM:
2845 counter = &memcg->kmem;
2846 break;
2847 case _TCP:
2848 counter = &memcg->tcpmem;
2849 break;
2850 default:
2851 BUG();
2852 }
2853
2854 switch (MEMFILE_ATTR(cft->private)) {
2855 case RES_USAGE:
2856 if (counter == &memcg->memory)
2857 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2858 if (counter == &memcg->memsw)
2859 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2860 return (u64)page_counter_read(counter) * PAGE_SIZE;
2861 case RES_LIMIT:
2862 return (u64)counter->limit * PAGE_SIZE;
2863 case RES_MAX_USAGE:
2864 return (u64)counter->watermark * PAGE_SIZE;
2865 case RES_FAILCNT:
2866 return counter->failcnt;
2867 case RES_SOFT_LIMIT:
2868 return (u64)memcg->soft_limit * PAGE_SIZE;
2869 default:
2870 BUG();
2871 }
2872 }
2873
2874 #ifndef CONFIG_SLOB
2875 static int memcg_online_kmem(struct mem_cgroup *memcg)
2876 {
2877 int memcg_id;
2878
2879 if (cgroup_memory_nokmem)
2880 return 0;
2881
2882 BUG_ON(memcg->kmemcg_id >= 0);
2883 BUG_ON(memcg->kmem_state);
2884
2885 memcg_id = memcg_alloc_cache_id();
2886 if (memcg_id < 0)
2887 return memcg_id;
2888
2889 static_branch_inc(&memcg_kmem_enabled_key);
2890 /*
2891 * A memory cgroup is considered kmem-online as soon as it gets
2892 * kmemcg_id. Setting the id after enabling static branching will
2893 * guarantee no one starts accounting before all call sites are
2894 * patched.
2895 */
2896 memcg->kmemcg_id = memcg_id;
2897 memcg->kmem_state = KMEM_ONLINE;
2898
2899 return 0;
2900 }
2901
2902 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2903 {
2904 struct cgroup_subsys_state *css;
2905 struct mem_cgroup *parent, *child;
2906 int kmemcg_id;
2907
2908 if (memcg->kmem_state != KMEM_ONLINE)
2909 return;
2910 /*
2911 * Clear the online state before clearing memcg_caches array
2912 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2913 * guarantees that no cache will be created for this cgroup
2914 * after we are done (see memcg_create_kmem_cache()).
2915 */
2916 memcg->kmem_state = KMEM_ALLOCATED;
2917
2918 memcg_deactivate_kmem_caches(memcg);
2919
2920 kmemcg_id = memcg->kmemcg_id;
2921 BUG_ON(kmemcg_id < 0);
2922
2923 parent = parent_mem_cgroup(memcg);
2924 if (!parent)
2925 parent = root_mem_cgroup;
2926
2927 /*
2928 * Change kmemcg_id of this cgroup and all its descendants to the
2929 * parent's id, and then move all entries from this cgroup's list_lrus
2930 * to ones of the parent. After we have finished, all list_lrus
2931 * corresponding to this cgroup are guaranteed to remain empty. The
2932 * ordering is imposed by list_lru_node->lock taken by
2933 * memcg_drain_all_list_lrus().
2934 */
2935 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2936 css_for_each_descendant_pre(css, &memcg->css) {
2937 child = mem_cgroup_from_css(css);
2938 BUG_ON(child->kmemcg_id != kmemcg_id);
2939 child->kmemcg_id = parent->kmemcg_id;
2940 if (!memcg->use_hierarchy)
2941 break;
2942 }
2943 rcu_read_unlock();
2944
2945 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2946
2947 memcg_free_cache_id(kmemcg_id);
2948 }
2949
2950 static void memcg_free_kmem(struct mem_cgroup *memcg)
2951 {
2952 /* css_alloc() failed, offlining didn't happen */
2953 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2954 memcg_offline_kmem(memcg);
2955
2956 if (memcg->kmem_state == KMEM_ALLOCATED) {
2957 memcg_destroy_kmem_caches(memcg);
2958 static_branch_dec(&memcg_kmem_enabled_key);
2959 WARN_ON(page_counter_read(&memcg->kmem));
2960 }
2961 }
2962 #else
2963 static int memcg_online_kmem(struct mem_cgroup *memcg)
2964 {
2965 return 0;
2966 }
2967 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2968 {
2969 }
2970 static void memcg_free_kmem(struct mem_cgroup *memcg)
2971 {
2972 }
2973 #endif /* !CONFIG_SLOB */
2974
2975 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2976 unsigned long limit)
2977 {
2978 int ret;
2979
2980 mutex_lock(&memcg_limit_mutex);
2981 ret = page_counter_limit(&memcg->kmem, limit);
2982 mutex_unlock(&memcg_limit_mutex);
2983 return ret;
2984 }
2985
2986 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2987 {
2988 int ret;
2989
2990 mutex_lock(&memcg_limit_mutex);
2991
2992 ret = page_counter_limit(&memcg->tcpmem, limit);
2993 if (ret)
2994 goto out;
2995
2996 if (!memcg->tcpmem_active) {
2997 /*
2998 * The active flag needs to be written after the static_key
2999 * update. This is what guarantees that the socket activation
3000 * function is the last one to run. See sock_update_memcg() for
3001 * details, and note that we don't mark any socket as belonging
3002 * to this memcg until that flag is up.
3003 *
3004 * We need to do this, because static_keys will span multiple
3005 * sites, but we can't control their order. If we mark a socket
3006 * as accounted, but the accounting functions are not patched in
3007 * yet, we'll lose accounting.
3008 *
3009 * We never race with the readers in sock_update_memcg(),
3010 * because when this value change, the code to process it is not
3011 * patched in yet.
3012 */
3013 static_branch_inc(&memcg_sockets_enabled_key);
3014 memcg->tcpmem_active = true;
3015 }
3016 out:
3017 mutex_unlock(&memcg_limit_mutex);
3018 return ret;
3019 }
3020
3021 /*
3022 * The user of this function is...
3023 * RES_LIMIT.
3024 */
3025 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3026 char *buf, size_t nbytes, loff_t off)
3027 {
3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029 unsigned long nr_pages;
3030 int ret;
3031
3032 buf = strstrip(buf);
3033 ret = page_counter_memparse(buf, "-1", &nr_pages);
3034 if (ret)
3035 return ret;
3036
3037 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038 case RES_LIMIT:
3039 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3040 ret = -EINVAL;
3041 break;
3042 }
3043 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3044 case _MEM:
3045 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3046 break;
3047 case _MEMSWAP:
3048 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3049 break;
3050 case _KMEM:
3051 ret = memcg_update_kmem_limit(memcg, nr_pages);
3052 break;
3053 case _TCP:
3054 ret = memcg_update_tcp_limit(memcg, nr_pages);
3055 break;
3056 }
3057 break;
3058 case RES_SOFT_LIMIT:
3059 memcg->soft_limit = nr_pages;
3060 ret = 0;
3061 break;
3062 }
3063 return ret ?: nbytes;
3064 }
3065
3066 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3067 size_t nbytes, loff_t off)
3068 {
3069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3070 struct page_counter *counter;
3071
3072 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3073 case _MEM:
3074 counter = &memcg->memory;
3075 break;
3076 case _MEMSWAP:
3077 counter = &memcg->memsw;
3078 break;
3079 case _KMEM:
3080 counter = &memcg->kmem;
3081 break;
3082 case _TCP:
3083 counter = &memcg->tcpmem;
3084 break;
3085 default:
3086 BUG();
3087 }
3088
3089 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3090 case RES_MAX_USAGE:
3091 page_counter_reset_watermark(counter);
3092 break;
3093 case RES_FAILCNT:
3094 counter->failcnt = 0;
3095 break;
3096 default:
3097 BUG();
3098 }
3099
3100 return nbytes;
3101 }
3102
3103 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3104 struct cftype *cft)
3105 {
3106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3107 }
3108
3109 #ifdef CONFIG_MMU
3110 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3111 struct cftype *cft, u64 val)
3112 {
3113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3114
3115 if (val & ~MOVE_MASK)
3116 return -EINVAL;
3117
3118 /*
3119 * No kind of locking is needed in here, because ->can_attach() will
3120 * check this value once in the beginning of the process, and then carry
3121 * on with stale data. This means that changes to this value will only
3122 * affect task migrations starting after the change.
3123 */
3124 memcg->move_charge_at_immigrate = val;
3125 return 0;
3126 }
3127 #else
3128 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3129 struct cftype *cft, u64 val)
3130 {
3131 return -ENOSYS;
3132 }
3133 #endif
3134
3135 #ifdef CONFIG_NUMA
3136 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3137 {
3138 struct numa_stat {
3139 const char *name;
3140 unsigned int lru_mask;
3141 };
3142
3143 static const struct numa_stat stats[] = {
3144 { "total", LRU_ALL },
3145 { "file", LRU_ALL_FILE },
3146 { "anon", LRU_ALL_ANON },
3147 { "unevictable", BIT(LRU_UNEVICTABLE) },
3148 };
3149 const struct numa_stat *stat;
3150 int nid;
3151 unsigned long nr;
3152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3153
3154 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3155 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3156 seq_printf(m, "%s=%lu", stat->name, nr);
3157 for_each_node_state(nid, N_MEMORY) {
3158 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3159 stat->lru_mask);
3160 seq_printf(m, " N%d=%lu", nid, nr);
3161 }
3162 seq_putc(m, '\n');
3163 }
3164
3165 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3166 struct mem_cgroup *iter;
3167
3168 nr = 0;
3169 for_each_mem_cgroup_tree(iter, memcg)
3170 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3171 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3172 for_each_node_state(nid, N_MEMORY) {
3173 nr = 0;
3174 for_each_mem_cgroup_tree(iter, memcg)
3175 nr += mem_cgroup_node_nr_lru_pages(
3176 iter, nid, stat->lru_mask);
3177 seq_printf(m, " N%d=%lu", nid, nr);
3178 }
3179 seq_putc(m, '\n');
3180 }
3181
3182 return 0;
3183 }
3184 #endif /* CONFIG_NUMA */
3185
3186 static int memcg_stat_show(struct seq_file *m, void *v)
3187 {
3188 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3189 unsigned long memory, memsw;
3190 struct mem_cgroup *mi;
3191 unsigned int i;
3192
3193 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3194 MEM_CGROUP_STAT_NSTATS);
3195 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3196 MEM_CGROUP_EVENTS_NSTATS);
3197 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3198
3199 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3200 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3201 continue;
3202 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3203 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3204 }
3205
3206 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3207 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3208 mem_cgroup_read_events(memcg, i));
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3212 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3213
3214 /* Hierarchical information */
3215 memory = memsw = PAGE_COUNTER_MAX;
3216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3217 memory = min(memory, mi->memory.limit);
3218 memsw = min(memsw, mi->memsw.limit);
3219 }
3220 seq_printf(m, "hierarchical_memory_limit %llu\n",
3221 (u64)memory * PAGE_SIZE);
3222 if (do_memsw_account())
3223 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3224 (u64)memsw * PAGE_SIZE);
3225
3226 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3227 unsigned long long val = 0;
3228
3229 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3230 continue;
3231 for_each_mem_cgroup_tree(mi, memcg)
3232 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3233 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3234 }
3235
3236 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3237 unsigned long long val = 0;
3238
3239 for_each_mem_cgroup_tree(mi, memcg)
3240 val += mem_cgroup_read_events(mi, i);
3241 seq_printf(m, "total_%s %llu\n",
3242 mem_cgroup_events_names[i], val);
3243 }
3244
3245 for (i = 0; i < NR_LRU_LISTS; i++) {
3246 unsigned long long val = 0;
3247
3248 for_each_mem_cgroup_tree(mi, memcg)
3249 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3250 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3251 }
3252
3253 #ifdef CONFIG_DEBUG_VM
3254 {
3255 int nid, zid;
3256 struct mem_cgroup_per_zone *mz;
3257 struct zone_reclaim_stat *rstat;
3258 unsigned long recent_rotated[2] = {0, 0};
3259 unsigned long recent_scanned[2] = {0, 0};
3260
3261 for_each_online_node(nid)
3262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3263 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3264 rstat = &mz->lruvec.reclaim_stat;
3265
3266 recent_rotated[0] += rstat->recent_rotated[0];
3267 recent_rotated[1] += rstat->recent_rotated[1];
3268 recent_scanned[0] += rstat->recent_scanned[0];
3269 recent_scanned[1] += rstat->recent_scanned[1];
3270 }
3271 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3272 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3273 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3274 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3275 }
3276 #endif
3277
3278 return 0;
3279 }
3280
3281 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3282 struct cftype *cft)
3283 {
3284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3285
3286 return mem_cgroup_swappiness(memcg);
3287 }
3288
3289 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3290 struct cftype *cft, u64 val)
3291 {
3292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3293
3294 if (val > 100)
3295 return -EINVAL;
3296
3297 if (css->parent)
3298 memcg->swappiness = val;
3299 else
3300 vm_swappiness = val;
3301
3302 return 0;
3303 }
3304
3305 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3306 {
3307 struct mem_cgroup_threshold_ary *t;
3308 unsigned long usage;
3309 int i;
3310
3311 rcu_read_lock();
3312 if (!swap)
3313 t = rcu_dereference(memcg->thresholds.primary);
3314 else
3315 t = rcu_dereference(memcg->memsw_thresholds.primary);
3316
3317 if (!t)
3318 goto unlock;
3319
3320 usage = mem_cgroup_usage(memcg, swap);
3321
3322 /*
3323 * current_threshold points to threshold just below or equal to usage.
3324 * If it's not true, a threshold was crossed after last
3325 * call of __mem_cgroup_threshold().
3326 */
3327 i = t->current_threshold;
3328
3329 /*
3330 * Iterate backward over array of thresholds starting from
3331 * current_threshold and check if a threshold is crossed.
3332 * If none of thresholds below usage is crossed, we read
3333 * only one element of the array here.
3334 */
3335 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3336 eventfd_signal(t->entries[i].eventfd, 1);
3337
3338 /* i = current_threshold + 1 */
3339 i++;
3340
3341 /*
3342 * Iterate forward over array of thresholds starting from
3343 * current_threshold+1 and check if a threshold is crossed.
3344 * If none of thresholds above usage is crossed, we read
3345 * only one element of the array here.
3346 */
3347 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3348 eventfd_signal(t->entries[i].eventfd, 1);
3349
3350 /* Update current_threshold */
3351 t->current_threshold = i - 1;
3352 unlock:
3353 rcu_read_unlock();
3354 }
3355
3356 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3357 {
3358 while (memcg) {
3359 __mem_cgroup_threshold(memcg, false);
3360 if (do_memsw_account())
3361 __mem_cgroup_threshold(memcg, true);
3362
3363 memcg = parent_mem_cgroup(memcg);
3364 }
3365 }
3366
3367 static int compare_thresholds(const void *a, const void *b)
3368 {
3369 const struct mem_cgroup_threshold *_a = a;
3370 const struct mem_cgroup_threshold *_b = b;
3371
3372 if (_a->threshold > _b->threshold)
3373 return 1;
3374
3375 if (_a->threshold < _b->threshold)
3376 return -1;
3377
3378 return 0;
3379 }
3380
3381 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3382 {
3383 struct mem_cgroup_eventfd_list *ev;
3384
3385 spin_lock(&memcg_oom_lock);
3386
3387 list_for_each_entry(ev, &memcg->oom_notify, list)
3388 eventfd_signal(ev->eventfd, 1);
3389
3390 spin_unlock(&memcg_oom_lock);
3391 return 0;
3392 }
3393
3394 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3395 {
3396 struct mem_cgroup *iter;
3397
3398 for_each_mem_cgroup_tree(iter, memcg)
3399 mem_cgroup_oom_notify_cb(iter);
3400 }
3401
3402 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3403 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3404 {
3405 struct mem_cgroup_thresholds *thresholds;
3406 struct mem_cgroup_threshold_ary *new;
3407 unsigned long threshold;
3408 unsigned long usage;
3409 int i, size, ret;
3410
3411 ret = page_counter_memparse(args, "-1", &threshold);
3412 if (ret)
3413 return ret;
3414
3415 mutex_lock(&memcg->thresholds_lock);
3416
3417 if (type == _MEM) {
3418 thresholds = &memcg->thresholds;
3419 usage = mem_cgroup_usage(memcg, false);
3420 } else if (type == _MEMSWAP) {
3421 thresholds = &memcg->memsw_thresholds;
3422 usage = mem_cgroup_usage(memcg, true);
3423 } else
3424 BUG();
3425
3426 /* Check if a threshold crossed before adding a new one */
3427 if (thresholds->primary)
3428 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3429
3430 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3431
3432 /* Allocate memory for new array of thresholds */
3433 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3434 GFP_KERNEL);
3435 if (!new) {
3436 ret = -ENOMEM;
3437 goto unlock;
3438 }
3439 new->size = size;
3440
3441 /* Copy thresholds (if any) to new array */
3442 if (thresholds->primary) {
3443 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3444 sizeof(struct mem_cgroup_threshold));
3445 }
3446
3447 /* Add new threshold */
3448 new->entries[size - 1].eventfd = eventfd;
3449 new->entries[size - 1].threshold = threshold;
3450
3451 /* Sort thresholds. Registering of new threshold isn't time-critical */
3452 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3453 compare_thresholds, NULL);
3454
3455 /* Find current threshold */
3456 new->current_threshold = -1;
3457 for (i = 0; i < size; i++) {
3458 if (new->entries[i].threshold <= usage) {
3459 /*
3460 * new->current_threshold will not be used until
3461 * rcu_assign_pointer(), so it's safe to increment
3462 * it here.
3463 */
3464 ++new->current_threshold;
3465 } else
3466 break;
3467 }
3468
3469 /* Free old spare buffer and save old primary buffer as spare */
3470 kfree(thresholds->spare);
3471 thresholds->spare = thresholds->primary;
3472
3473 rcu_assign_pointer(thresholds->primary, new);
3474
3475 /* To be sure that nobody uses thresholds */
3476 synchronize_rcu();
3477
3478 unlock:
3479 mutex_unlock(&memcg->thresholds_lock);
3480
3481 return ret;
3482 }
3483
3484 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3485 struct eventfd_ctx *eventfd, const char *args)
3486 {
3487 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3488 }
3489
3490 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3491 struct eventfd_ctx *eventfd, const char *args)
3492 {
3493 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3494 }
3495
3496 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3497 struct eventfd_ctx *eventfd, enum res_type type)
3498 {
3499 struct mem_cgroup_thresholds *thresholds;
3500 struct mem_cgroup_threshold_ary *new;
3501 unsigned long usage;
3502 int i, j, size;
3503
3504 mutex_lock(&memcg->thresholds_lock);
3505
3506 if (type == _MEM) {
3507 thresholds = &memcg->thresholds;
3508 usage = mem_cgroup_usage(memcg, false);
3509 } else if (type == _MEMSWAP) {
3510 thresholds = &memcg->memsw_thresholds;
3511 usage = mem_cgroup_usage(memcg, true);
3512 } else
3513 BUG();
3514
3515 if (!thresholds->primary)
3516 goto unlock;
3517
3518 /* Check if a threshold crossed before removing */
3519 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3520
3521 /* Calculate new number of threshold */
3522 size = 0;
3523 for (i = 0; i < thresholds->primary->size; i++) {
3524 if (thresholds->primary->entries[i].eventfd != eventfd)
3525 size++;
3526 }
3527
3528 new = thresholds->spare;
3529
3530 /* Set thresholds array to NULL if we don't have thresholds */
3531 if (!size) {
3532 kfree(new);
3533 new = NULL;
3534 goto swap_buffers;
3535 }
3536
3537 new->size = size;
3538
3539 /* Copy thresholds and find current threshold */
3540 new->current_threshold = -1;
3541 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3542 if (thresholds->primary->entries[i].eventfd == eventfd)
3543 continue;
3544
3545 new->entries[j] = thresholds->primary->entries[i];
3546 if (new->entries[j].threshold <= usage) {
3547 /*
3548 * new->current_threshold will not be used
3549 * until rcu_assign_pointer(), so it's safe to increment
3550 * it here.
3551 */
3552 ++new->current_threshold;
3553 }
3554 j++;
3555 }
3556
3557 swap_buffers:
3558 /* Swap primary and spare array */
3559 thresholds->spare = thresholds->primary;
3560
3561 rcu_assign_pointer(thresholds->primary, new);
3562
3563 /* To be sure that nobody uses thresholds */
3564 synchronize_rcu();
3565
3566 /* If all events are unregistered, free the spare array */
3567 if (!new) {
3568 kfree(thresholds->spare);
3569 thresholds->spare = NULL;
3570 }
3571 unlock:
3572 mutex_unlock(&memcg->thresholds_lock);
3573 }
3574
3575 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3576 struct eventfd_ctx *eventfd)
3577 {
3578 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3579 }
3580
3581 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3582 struct eventfd_ctx *eventfd)
3583 {
3584 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3585 }
3586
3587 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3588 struct eventfd_ctx *eventfd, const char *args)
3589 {
3590 struct mem_cgroup_eventfd_list *event;
3591
3592 event = kmalloc(sizeof(*event), GFP_KERNEL);
3593 if (!event)
3594 return -ENOMEM;
3595
3596 spin_lock(&memcg_oom_lock);
3597
3598 event->eventfd = eventfd;
3599 list_add(&event->list, &memcg->oom_notify);
3600
3601 /* already in OOM ? */
3602 if (memcg->under_oom)
3603 eventfd_signal(eventfd, 1);
3604 spin_unlock(&memcg_oom_lock);
3605
3606 return 0;
3607 }
3608
3609 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3610 struct eventfd_ctx *eventfd)
3611 {
3612 struct mem_cgroup_eventfd_list *ev, *tmp;
3613
3614 spin_lock(&memcg_oom_lock);
3615
3616 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3617 if (ev->eventfd == eventfd) {
3618 list_del(&ev->list);
3619 kfree(ev);
3620 }
3621 }
3622
3623 spin_unlock(&memcg_oom_lock);
3624 }
3625
3626 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3627 {
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3629
3630 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3631 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3632 return 0;
3633 }
3634
3635 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3636 struct cftype *cft, u64 val)
3637 {
3638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3639
3640 /* cannot set to root cgroup and only 0 and 1 are allowed */
3641 if (!css->parent || !((val == 0) || (val == 1)))
3642 return -EINVAL;
3643
3644 memcg->oom_kill_disable = val;
3645 if (!val)
3646 memcg_oom_recover(memcg);
3647
3648 return 0;
3649 }
3650
3651 #ifdef CONFIG_CGROUP_WRITEBACK
3652
3653 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3654 {
3655 return &memcg->cgwb_list;
3656 }
3657
3658 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3659 {
3660 return wb_domain_init(&memcg->cgwb_domain, gfp);
3661 }
3662
3663 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3664 {
3665 wb_domain_exit(&memcg->cgwb_domain);
3666 }
3667
3668 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3669 {
3670 wb_domain_size_changed(&memcg->cgwb_domain);
3671 }
3672
3673 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3674 {
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3676
3677 if (!memcg->css.parent)
3678 return NULL;
3679
3680 return &memcg->cgwb_domain;
3681 }
3682
3683 /**
3684 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3685 * @wb: bdi_writeback in question
3686 * @pfilepages: out parameter for number of file pages
3687 * @pheadroom: out parameter for number of allocatable pages according to memcg
3688 * @pdirty: out parameter for number of dirty pages
3689 * @pwriteback: out parameter for number of pages under writeback
3690 *
3691 * Determine the numbers of file, headroom, dirty, and writeback pages in
3692 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3693 * is a bit more involved.
3694 *
3695 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3696 * headroom is calculated as the lowest headroom of itself and the
3697 * ancestors. Note that this doesn't consider the actual amount of
3698 * available memory in the system. The caller should further cap
3699 * *@pheadroom accordingly.
3700 */
3701 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3702 unsigned long *pheadroom, unsigned long *pdirty,
3703 unsigned long *pwriteback)
3704 {
3705 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3706 struct mem_cgroup *parent;
3707
3708 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3709
3710 /* this should eventually include NR_UNSTABLE_NFS */
3711 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3712 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3713 (1 << LRU_ACTIVE_FILE));
3714 *pheadroom = PAGE_COUNTER_MAX;
3715
3716 while ((parent = parent_mem_cgroup(memcg))) {
3717 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3718 unsigned long used = page_counter_read(&memcg->memory);
3719
3720 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3721 memcg = parent;
3722 }
3723 }
3724
3725 #else /* CONFIG_CGROUP_WRITEBACK */
3726
3727 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3728 {
3729 return 0;
3730 }
3731
3732 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3733 {
3734 }
3735
3736 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737 {
3738 }
3739
3740 #endif /* CONFIG_CGROUP_WRITEBACK */
3741
3742 /*
3743 * DO NOT USE IN NEW FILES.
3744 *
3745 * "cgroup.event_control" implementation.
3746 *
3747 * This is way over-engineered. It tries to support fully configurable
3748 * events for each user. Such level of flexibility is completely
3749 * unnecessary especially in the light of the planned unified hierarchy.
3750 *
3751 * Please deprecate this and replace with something simpler if at all
3752 * possible.
3753 */
3754
3755 /*
3756 * Unregister event and free resources.
3757 *
3758 * Gets called from workqueue.
3759 */
3760 static void memcg_event_remove(struct work_struct *work)
3761 {
3762 struct mem_cgroup_event *event =
3763 container_of(work, struct mem_cgroup_event, remove);
3764 struct mem_cgroup *memcg = event->memcg;
3765
3766 remove_wait_queue(event->wqh, &event->wait);
3767
3768 event->unregister_event(memcg, event->eventfd);
3769
3770 /* Notify userspace the event is going away. */
3771 eventfd_signal(event->eventfd, 1);
3772
3773 eventfd_ctx_put(event->eventfd);
3774 kfree(event);
3775 css_put(&memcg->css);
3776 }
3777
3778 /*
3779 * Gets called on POLLHUP on eventfd when user closes it.
3780 *
3781 * Called with wqh->lock held and interrupts disabled.
3782 */
3783 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3784 int sync, void *key)
3785 {
3786 struct mem_cgroup_event *event =
3787 container_of(wait, struct mem_cgroup_event, wait);
3788 struct mem_cgroup *memcg = event->memcg;
3789 unsigned long flags = (unsigned long)key;
3790
3791 if (flags & POLLHUP) {
3792 /*
3793 * If the event has been detached at cgroup removal, we
3794 * can simply return knowing the other side will cleanup
3795 * for us.
3796 *
3797 * We can't race against event freeing since the other
3798 * side will require wqh->lock via remove_wait_queue(),
3799 * which we hold.
3800 */
3801 spin_lock(&memcg->event_list_lock);
3802 if (!list_empty(&event->list)) {
3803 list_del_init(&event->list);
3804 /*
3805 * We are in atomic context, but cgroup_event_remove()
3806 * may sleep, so we have to call it in workqueue.
3807 */
3808 schedule_work(&event->remove);
3809 }
3810 spin_unlock(&memcg->event_list_lock);
3811 }
3812
3813 return 0;
3814 }
3815
3816 static void memcg_event_ptable_queue_proc(struct file *file,
3817 wait_queue_head_t *wqh, poll_table *pt)
3818 {
3819 struct mem_cgroup_event *event =
3820 container_of(pt, struct mem_cgroup_event, pt);
3821
3822 event->wqh = wqh;
3823 add_wait_queue(wqh, &event->wait);
3824 }
3825
3826 /*
3827 * DO NOT USE IN NEW FILES.
3828 *
3829 * Parse input and register new cgroup event handler.
3830 *
3831 * Input must be in format '<event_fd> <control_fd> <args>'.
3832 * Interpretation of args is defined by control file implementation.
3833 */
3834 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
3836 {
3837 struct cgroup_subsys_state *css = of_css(of);
3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839 struct mem_cgroup_event *event;
3840 struct cgroup_subsys_state *cfile_css;
3841 unsigned int efd, cfd;
3842 struct fd efile;
3843 struct fd cfile;
3844 const char *name;
3845 char *endp;
3846 int ret;
3847
3848 buf = strstrip(buf);
3849
3850 efd = simple_strtoul(buf, &endp, 10);
3851 if (*endp != ' ')
3852 return -EINVAL;
3853 buf = endp + 1;
3854
3855 cfd = simple_strtoul(buf, &endp, 10);
3856 if ((*endp != ' ') && (*endp != '\0'))
3857 return -EINVAL;
3858 buf = endp + 1;
3859
3860 event = kzalloc(sizeof(*event), GFP_KERNEL);
3861 if (!event)
3862 return -ENOMEM;
3863
3864 event->memcg = memcg;
3865 INIT_LIST_HEAD(&event->list);
3866 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3868 INIT_WORK(&event->remove, memcg_event_remove);
3869
3870 efile = fdget(efd);
3871 if (!efile.file) {
3872 ret = -EBADF;
3873 goto out_kfree;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile.file);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto out_put_efile;
3880 }
3881
3882 cfile = fdget(cfd);
3883 if (!cfile.file) {
3884 ret = -EBADF;
3885 goto out_put_eventfd;
3886 }
3887
3888 /* the process need read permission on control file */
3889 /* AV: shouldn't we check that it's been opened for read instead? */
3890 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3891 if (ret < 0)
3892 goto out_put_cfile;
3893
3894 /*
3895 * Determine the event callbacks and set them in @event. This used
3896 * to be done via struct cftype but cgroup core no longer knows
3897 * about these events. The following is crude but the whole thing
3898 * is for compatibility anyway.
3899 *
3900 * DO NOT ADD NEW FILES.
3901 */
3902 name = cfile.file->f_path.dentry->d_name.name;
3903
3904 if (!strcmp(name, "memory.usage_in_bytes")) {
3905 event->register_event = mem_cgroup_usage_register_event;
3906 event->unregister_event = mem_cgroup_usage_unregister_event;
3907 } else if (!strcmp(name, "memory.oom_control")) {
3908 event->register_event = mem_cgroup_oom_register_event;
3909 event->unregister_event = mem_cgroup_oom_unregister_event;
3910 } else if (!strcmp(name, "memory.pressure_level")) {
3911 event->register_event = vmpressure_register_event;
3912 event->unregister_event = vmpressure_unregister_event;
3913 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3914 event->register_event = memsw_cgroup_usage_register_event;
3915 event->unregister_event = memsw_cgroup_usage_unregister_event;
3916 } else {
3917 ret = -EINVAL;
3918 goto out_put_cfile;
3919 }
3920
3921 /*
3922 * Verify @cfile should belong to @css. Also, remaining events are
3923 * automatically removed on cgroup destruction but the removal is
3924 * asynchronous, so take an extra ref on @css.
3925 */
3926 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3927 &memory_cgrp_subsys);
3928 ret = -EINVAL;
3929 if (IS_ERR(cfile_css))
3930 goto out_put_cfile;
3931 if (cfile_css != css) {
3932 css_put(cfile_css);
3933 goto out_put_cfile;
3934 }
3935
3936 ret = event->register_event(memcg, event->eventfd, buf);
3937 if (ret)
3938 goto out_put_css;
3939
3940 efile.file->f_op->poll(efile.file, &event->pt);
3941
3942 spin_lock(&memcg->event_list_lock);
3943 list_add(&event->list, &memcg->event_list);
3944 spin_unlock(&memcg->event_list_lock);
3945
3946 fdput(cfile);
3947 fdput(efile);
3948
3949 return nbytes;
3950
3951 out_put_css:
3952 css_put(css);
3953 out_put_cfile:
3954 fdput(cfile);
3955 out_put_eventfd:
3956 eventfd_ctx_put(event->eventfd);
3957 out_put_efile:
3958 fdput(efile);
3959 out_kfree:
3960 kfree(event);
3961
3962 return ret;
3963 }
3964
3965 static struct cftype mem_cgroup_legacy_files[] = {
3966 {
3967 .name = "usage_in_bytes",
3968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3969 .read_u64 = mem_cgroup_read_u64,
3970 },
3971 {
3972 .name = "max_usage_in_bytes",
3973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3974 .write = mem_cgroup_reset,
3975 .read_u64 = mem_cgroup_read_u64,
3976 },
3977 {
3978 .name = "limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3980 .write = mem_cgroup_write,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "soft_limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3986 .write = mem_cgroup_write,
3987 .read_u64 = mem_cgroup_read_u64,
3988 },
3989 {
3990 .name = "failcnt",
3991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3992 .write = mem_cgroup_reset,
3993 .read_u64 = mem_cgroup_read_u64,
3994 },
3995 {
3996 .name = "stat",
3997 .seq_show = memcg_stat_show,
3998 },
3999 {
4000 .name = "force_empty",
4001 .write = mem_cgroup_force_empty_write,
4002 },
4003 {
4004 .name = "use_hierarchy",
4005 .write_u64 = mem_cgroup_hierarchy_write,
4006 .read_u64 = mem_cgroup_hierarchy_read,
4007 },
4008 {
4009 .name = "cgroup.event_control", /* XXX: for compat */
4010 .write = memcg_write_event_control,
4011 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4012 },
4013 {
4014 .name = "swappiness",
4015 .read_u64 = mem_cgroup_swappiness_read,
4016 .write_u64 = mem_cgroup_swappiness_write,
4017 },
4018 {
4019 .name = "move_charge_at_immigrate",
4020 .read_u64 = mem_cgroup_move_charge_read,
4021 .write_u64 = mem_cgroup_move_charge_write,
4022 },
4023 {
4024 .name = "oom_control",
4025 .seq_show = mem_cgroup_oom_control_read,
4026 .write_u64 = mem_cgroup_oom_control_write,
4027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4028 },
4029 {
4030 .name = "pressure_level",
4031 },
4032 #ifdef CONFIG_NUMA
4033 {
4034 .name = "numa_stat",
4035 .seq_show = memcg_numa_stat_show,
4036 },
4037 #endif
4038 {
4039 .name = "kmem.limit_in_bytes",
4040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4041 .write = mem_cgroup_write,
4042 .read_u64 = mem_cgroup_read_u64,
4043 },
4044 {
4045 .name = "kmem.usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4047 .read_u64 = mem_cgroup_read_u64,
4048 },
4049 {
4050 .name = "kmem.failcnt",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4052 .write = mem_cgroup_reset,
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "kmem.max_usage_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4058 .write = mem_cgroup_reset,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 #ifdef CONFIG_SLABINFO
4062 {
4063 .name = "kmem.slabinfo",
4064 .seq_start = slab_start,
4065 .seq_next = slab_next,
4066 .seq_stop = slab_stop,
4067 .seq_show = memcg_slab_show,
4068 },
4069 #endif
4070 {
4071 .name = "kmem.tcp.limit_in_bytes",
4072 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4073 .write = mem_cgroup_write,
4074 .read_u64 = mem_cgroup_read_u64,
4075 },
4076 {
4077 .name = "kmem.tcp.usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4079 .read_u64 = mem_cgroup_read_u64,
4080 },
4081 {
4082 .name = "kmem.tcp.failcnt",
4083 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4084 .write = mem_cgroup_reset,
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087 {
4088 .name = "kmem.tcp.max_usage_in_bytes",
4089 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4090 .write = mem_cgroup_reset,
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
4093 { }, /* terminate */
4094 };
4095
4096 /*
4097 * Private memory cgroup IDR
4098 *
4099 * Swap-out records and page cache shadow entries need to store memcg
4100 * references in constrained space, so we maintain an ID space that is
4101 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4102 * memory-controlled cgroups to 64k.
4103 *
4104 * However, there usually are many references to the oflline CSS after
4105 * the cgroup has been destroyed, such as page cache or reclaimable
4106 * slab objects, that don't need to hang on to the ID. We want to keep
4107 * those dead CSS from occupying IDs, or we might quickly exhaust the
4108 * relatively small ID space and prevent the creation of new cgroups
4109 * even when there are much fewer than 64k cgroups - possibly none.
4110 *
4111 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4112 * be freed and recycled when it's no longer needed, which is usually
4113 * when the CSS is offlined.
4114 *
4115 * The only exception to that are records of swapped out tmpfs/shmem
4116 * pages that need to be attributed to live ancestors on swapin. But
4117 * those references are manageable from userspace.
4118 */
4119
4120 static DEFINE_IDR(mem_cgroup_idr);
4121
4122 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4123 {
4124 atomic_inc(&memcg->id.ref);
4125 }
4126
4127 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4128 {
4129 if (atomic_dec_and_test(&memcg->id.ref)) {
4130 idr_remove(&mem_cgroup_idr, memcg->id.id);
4131 memcg->id.id = 0;
4132
4133 /* Memcg ID pins CSS */
4134 css_put(&memcg->css);
4135 }
4136 }
4137
4138 /**
4139 * mem_cgroup_from_id - look up a memcg from a memcg id
4140 * @id: the memcg id to look up
4141 *
4142 * Caller must hold rcu_read_lock().
4143 */
4144 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4145 {
4146 WARN_ON_ONCE(!rcu_read_lock_held());
4147 return idr_find(&mem_cgroup_idr, id);
4148 }
4149
4150 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4151 {
4152 struct mem_cgroup_per_node *pn;
4153 struct mem_cgroup_per_zone *mz;
4154 int zone, tmp = node;
4155 /*
4156 * This routine is called against possible nodes.
4157 * But it's BUG to call kmalloc() against offline node.
4158 *
4159 * TODO: this routine can waste much memory for nodes which will
4160 * never be onlined. It's better to use memory hotplug callback
4161 * function.
4162 */
4163 if (!node_state(node, N_NORMAL_MEMORY))
4164 tmp = -1;
4165 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4166 if (!pn)
4167 return 1;
4168
4169 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4170 mz = &pn->zoneinfo[zone];
4171 lruvec_init(&mz->lruvec);
4172 mz->usage_in_excess = 0;
4173 mz->on_tree = false;
4174 mz->memcg = memcg;
4175 }
4176 memcg->nodeinfo[node] = pn;
4177 return 0;
4178 }
4179
4180 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4181 {
4182 kfree(memcg->nodeinfo[node]);
4183 }
4184
4185 static void mem_cgroup_free(struct mem_cgroup *memcg)
4186 {
4187 int node;
4188
4189 memcg_wb_domain_exit(memcg);
4190 for_each_node(node)
4191 free_mem_cgroup_per_zone_info(memcg, node);
4192 free_percpu(memcg->stat);
4193 kfree(memcg);
4194 }
4195
4196 static struct mem_cgroup *mem_cgroup_alloc(void)
4197 {
4198 struct mem_cgroup *memcg;
4199 size_t size;
4200 int node;
4201
4202 size = sizeof(struct mem_cgroup);
4203 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4204
4205 memcg = kzalloc(size, GFP_KERNEL);
4206 if (!memcg)
4207 return NULL;
4208
4209 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4210 1, MEM_CGROUP_ID_MAX,
4211 GFP_KERNEL);
4212 if (memcg->id.id < 0)
4213 goto fail;
4214
4215 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4216 if (!memcg->stat)
4217 goto fail;
4218
4219 for_each_node(node)
4220 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4221 goto fail;
4222
4223 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4224 goto fail;
4225
4226 INIT_WORK(&memcg->high_work, high_work_func);
4227 memcg->last_scanned_node = MAX_NUMNODES;
4228 INIT_LIST_HEAD(&memcg->oom_notify);
4229 mutex_init(&memcg->thresholds_lock);
4230 spin_lock_init(&memcg->move_lock);
4231 vmpressure_init(&memcg->vmpressure);
4232 INIT_LIST_HEAD(&memcg->event_list);
4233 spin_lock_init(&memcg->event_list_lock);
4234 memcg->socket_pressure = jiffies;
4235 #ifndef CONFIG_SLOB
4236 memcg->kmemcg_id = -1;
4237 #endif
4238 #ifdef CONFIG_CGROUP_WRITEBACK
4239 INIT_LIST_HEAD(&memcg->cgwb_list);
4240 #endif
4241 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4242 return memcg;
4243 fail:
4244 if (memcg->id.id > 0)
4245 idr_remove(&mem_cgroup_idr, memcg->id.id);
4246 mem_cgroup_free(memcg);
4247 return NULL;
4248 }
4249
4250 static struct cgroup_subsys_state * __ref
4251 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4252 {
4253 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4254 struct mem_cgroup *memcg;
4255 long error = -ENOMEM;
4256
4257 memcg = mem_cgroup_alloc();
4258 if (!memcg)
4259 return ERR_PTR(error);
4260
4261 memcg->high = PAGE_COUNTER_MAX;
4262 memcg->soft_limit = PAGE_COUNTER_MAX;
4263 if (parent) {
4264 memcg->swappiness = mem_cgroup_swappiness(parent);
4265 memcg->oom_kill_disable = parent->oom_kill_disable;
4266 }
4267 if (parent && parent->use_hierarchy) {
4268 memcg->use_hierarchy = true;
4269 page_counter_init(&memcg->memory, &parent->memory);
4270 page_counter_init(&memcg->swap, &parent->swap);
4271 page_counter_init(&memcg->memsw, &parent->memsw);
4272 page_counter_init(&memcg->kmem, &parent->kmem);
4273 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4274 } else {
4275 page_counter_init(&memcg->memory, NULL);
4276 page_counter_init(&memcg->swap, NULL);
4277 page_counter_init(&memcg->memsw, NULL);
4278 page_counter_init(&memcg->kmem, NULL);
4279 page_counter_init(&memcg->tcpmem, NULL);
4280 /*
4281 * Deeper hierachy with use_hierarchy == false doesn't make
4282 * much sense so let cgroup subsystem know about this
4283 * unfortunate state in our controller.
4284 */
4285 if (parent != root_mem_cgroup)
4286 memory_cgrp_subsys.broken_hierarchy = true;
4287 }
4288
4289 /* The following stuff does not apply to the root */
4290 if (!parent) {
4291 root_mem_cgroup = memcg;
4292 return &memcg->css;
4293 }
4294
4295 error = memcg_online_kmem(memcg);
4296 if (error)
4297 goto fail;
4298
4299 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4300 static_branch_inc(&memcg_sockets_enabled_key);
4301
4302 return &memcg->css;
4303 fail:
4304 mem_cgroup_free(memcg);
4305 return ERR_PTR(-ENOMEM);
4306 }
4307
4308 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4309 {
4310 /* Online state pins memcg ID, memcg ID pins CSS */
4311 mem_cgroup_id_get(mem_cgroup_from_css(css));
4312 css_get(css);
4313 return 0;
4314 }
4315
4316 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4317 {
4318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4319 struct mem_cgroup_event *event, *tmp;
4320
4321 /*
4322 * Unregister events and notify userspace.
4323 * Notify userspace about cgroup removing only after rmdir of cgroup
4324 * directory to avoid race between userspace and kernelspace.
4325 */
4326 spin_lock(&memcg->event_list_lock);
4327 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4328 list_del_init(&event->list);
4329 schedule_work(&event->remove);
4330 }
4331 spin_unlock(&memcg->event_list_lock);
4332
4333 memcg_offline_kmem(memcg);
4334 wb_memcg_offline(memcg);
4335
4336 mem_cgroup_id_put(memcg);
4337 }
4338
4339 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4340 {
4341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342
4343 invalidate_reclaim_iterators(memcg);
4344 }
4345
4346 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4347 {
4348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4349
4350 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4351 static_branch_dec(&memcg_sockets_enabled_key);
4352
4353 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4354 static_branch_dec(&memcg_sockets_enabled_key);
4355
4356 vmpressure_cleanup(&memcg->vmpressure);
4357 cancel_work_sync(&memcg->high_work);
4358 mem_cgroup_remove_from_trees(memcg);
4359 memcg_free_kmem(memcg);
4360 mem_cgroup_free(memcg);
4361 }
4362
4363 /**
4364 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4365 * @css: the target css
4366 *
4367 * Reset the states of the mem_cgroup associated with @css. This is
4368 * invoked when the userland requests disabling on the default hierarchy
4369 * but the memcg is pinned through dependency. The memcg should stop
4370 * applying policies and should revert to the vanilla state as it may be
4371 * made visible again.
4372 *
4373 * The current implementation only resets the essential configurations.
4374 * This needs to be expanded to cover all the visible parts.
4375 */
4376 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4377 {
4378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4379
4380 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4381 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4382 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4383 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4384 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4385 memcg->low = 0;
4386 memcg->high = PAGE_COUNTER_MAX;
4387 memcg->soft_limit = PAGE_COUNTER_MAX;
4388 memcg_wb_domain_size_changed(memcg);
4389 }
4390
4391 #ifdef CONFIG_MMU
4392 /* Handlers for move charge at task migration. */
4393 static int mem_cgroup_do_precharge(unsigned long count)
4394 {
4395 int ret;
4396
4397 /* Try a single bulk charge without reclaim first, kswapd may wake */
4398 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4399 if (!ret) {
4400 mc.precharge += count;
4401 return ret;
4402 }
4403
4404 /* Try charges one by one with reclaim */
4405 while (count--) {
4406 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4407 if (ret)
4408 return ret;
4409 mc.precharge++;
4410 cond_resched();
4411 }
4412 return 0;
4413 }
4414
4415 union mc_target {
4416 struct page *page;
4417 swp_entry_t ent;
4418 };
4419
4420 enum mc_target_type {
4421 MC_TARGET_NONE = 0,
4422 MC_TARGET_PAGE,
4423 MC_TARGET_SWAP,
4424 };
4425
4426 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4427 unsigned long addr, pte_t ptent)
4428 {
4429 struct page *page = vm_normal_page(vma, addr, ptent);
4430
4431 if (!page || !page_mapped(page))
4432 return NULL;
4433 if (PageAnon(page)) {
4434 if (!(mc.flags & MOVE_ANON))
4435 return NULL;
4436 } else {
4437 if (!(mc.flags & MOVE_FILE))
4438 return NULL;
4439 }
4440 if (!get_page_unless_zero(page))
4441 return NULL;
4442
4443 return page;
4444 }
4445
4446 #ifdef CONFIG_SWAP
4447 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4448 pte_t ptent, swp_entry_t *entry)
4449 {
4450 struct page *page = NULL;
4451 swp_entry_t ent = pte_to_swp_entry(ptent);
4452
4453 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4454 return NULL;
4455 /*
4456 * Because lookup_swap_cache() updates some statistics counter,
4457 * we call find_get_page() with swapper_space directly.
4458 */
4459 page = find_get_page(swap_address_space(ent), ent.val);
4460 if (do_memsw_account())
4461 entry->val = ent.val;
4462
4463 return page;
4464 }
4465 #else
4466 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4467 pte_t ptent, swp_entry_t *entry)
4468 {
4469 return NULL;
4470 }
4471 #endif
4472
4473 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4474 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4475 {
4476 struct page *page = NULL;
4477 struct address_space *mapping;
4478 pgoff_t pgoff;
4479
4480 if (!vma->vm_file) /* anonymous vma */
4481 return NULL;
4482 if (!(mc.flags & MOVE_FILE))
4483 return NULL;
4484
4485 mapping = vma->vm_file->f_mapping;
4486 pgoff = linear_page_index(vma, addr);
4487
4488 /* page is moved even if it's not RSS of this task(page-faulted). */
4489 #ifdef CONFIG_SWAP
4490 /* shmem/tmpfs may report page out on swap: account for that too. */
4491 if (shmem_mapping(mapping)) {
4492 page = find_get_entry(mapping, pgoff);
4493 if (radix_tree_exceptional_entry(page)) {
4494 swp_entry_t swp = radix_to_swp_entry(page);
4495 if (do_memsw_account())
4496 *entry = swp;
4497 page = find_get_page(swap_address_space(swp), swp.val);
4498 }
4499 } else
4500 page = find_get_page(mapping, pgoff);
4501 #else
4502 page = find_get_page(mapping, pgoff);
4503 #endif
4504 return page;
4505 }
4506
4507 /**
4508 * mem_cgroup_move_account - move account of the page
4509 * @page: the page
4510 * @nr_pages: number of regular pages (>1 for huge pages)
4511 * @from: mem_cgroup which the page is moved from.
4512 * @to: mem_cgroup which the page is moved to. @from != @to.
4513 *
4514 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4515 *
4516 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4517 * from old cgroup.
4518 */
4519 static int mem_cgroup_move_account(struct page *page,
4520 bool compound,
4521 struct mem_cgroup *from,
4522 struct mem_cgroup *to)
4523 {
4524 unsigned long flags;
4525 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4526 int ret;
4527 bool anon;
4528
4529 VM_BUG_ON(from == to);
4530 VM_BUG_ON_PAGE(PageLRU(page), page);
4531 VM_BUG_ON(compound && !PageTransHuge(page));
4532
4533 /*
4534 * Prevent mem_cgroup_migrate() from looking at
4535 * page->mem_cgroup of its source page while we change it.
4536 */
4537 ret = -EBUSY;
4538 if (!trylock_page(page))
4539 goto out;
4540
4541 ret = -EINVAL;
4542 if (page->mem_cgroup != from)
4543 goto out_unlock;
4544
4545 anon = PageAnon(page);
4546
4547 spin_lock_irqsave(&from->move_lock, flags);
4548
4549 if (!anon && page_mapped(page)) {
4550 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4551 nr_pages);
4552 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4553 nr_pages);
4554 }
4555
4556 /*
4557 * move_lock grabbed above and caller set from->moving_account, so
4558 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4559 * So mapping should be stable for dirty pages.
4560 */
4561 if (!anon && PageDirty(page)) {
4562 struct address_space *mapping = page_mapping(page);
4563
4564 if (mapping_cap_account_dirty(mapping)) {
4565 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4566 nr_pages);
4567 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4568 nr_pages);
4569 }
4570 }
4571
4572 if (PageWriteback(page)) {
4573 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4574 nr_pages);
4575 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4576 nr_pages);
4577 }
4578
4579 /*
4580 * It is safe to change page->mem_cgroup here because the page
4581 * is referenced, charged, and isolated - we can't race with
4582 * uncharging, charging, migration, or LRU putback.
4583 */
4584
4585 /* caller should have done css_get */
4586 page->mem_cgroup = to;
4587 spin_unlock_irqrestore(&from->move_lock, flags);
4588
4589 ret = 0;
4590
4591 local_irq_disable();
4592 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4593 memcg_check_events(to, page);
4594 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4595 memcg_check_events(from, page);
4596 local_irq_enable();
4597 out_unlock:
4598 unlock_page(page);
4599 out:
4600 return ret;
4601 }
4602
4603 /**
4604 * get_mctgt_type - get target type of moving charge
4605 * @vma: the vma the pte to be checked belongs
4606 * @addr: the address corresponding to the pte to be checked
4607 * @ptent: the pte to be checked
4608 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4609 *
4610 * Returns
4611 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4612 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4613 * move charge. if @target is not NULL, the page is stored in target->page
4614 * with extra refcnt got(Callers should handle it).
4615 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4616 * target for charge migration. if @target is not NULL, the entry is stored
4617 * in target->ent.
4618 *
4619 * Called with pte lock held.
4620 */
4621
4622 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4623 unsigned long addr, pte_t ptent, union mc_target *target)
4624 {
4625 struct page *page = NULL;
4626 enum mc_target_type ret = MC_TARGET_NONE;
4627 swp_entry_t ent = { .val = 0 };
4628
4629 if (pte_present(ptent))
4630 page = mc_handle_present_pte(vma, addr, ptent);
4631 else if (is_swap_pte(ptent))
4632 page = mc_handle_swap_pte(vma, ptent, &ent);
4633 else if (pte_none(ptent))
4634 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4635
4636 if (!page && !ent.val)
4637 return ret;
4638 if (page) {
4639 /*
4640 * Do only loose check w/o serialization.
4641 * mem_cgroup_move_account() checks the page is valid or
4642 * not under LRU exclusion.
4643 */
4644 if (page->mem_cgroup == mc.from) {
4645 ret = MC_TARGET_PAGE;
4646 if (target)
4647 target->page = page;
4648 }
4649 if (!ret || !target)
4650 put_page(page);
4651 }
4652 /* There is a swap entry and a page doesn't exist or isn't charged */
4653 if (ent.val && !ret &&
4654 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4655 ret = MC_TARGET_SWAP;
4656 if (target)
4657 target->ent = ent;
4658 }
4659 return ret;
4660 }
4661
4662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4663 /*
4664 * We don't consider swapping or file mapped pages because THP does not
4665 * support them for now.
4666 * Caller should make sure that pmd_trans_huge(pmd) is true.
4667 */
4668 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4669 unsigned long addr, pmd_t pmd, union mc_target *target)
4670 {
4671 struct page *page = NULL;
4672 enum mc_target_type ret = MC_TARGET_NONE;
4673
4674 page = pmd_page(pmd);
4675 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4676 if (!(mc.flags & MOVE_ANON))
4677 return ret;
4678 if (page->mem_cgroup == mc.from) {
4679 ret = MC_TARGET_PAGE;
4680 if (target) {
4681 get_page(page);
4682 target->page = page;
4683 }
4684 }
4685 return ret;
4686 }
4687 #else
4688 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4689 unsigned long addr, pmd_t pmd, union mc_target *target)
4690 {
4691 return MC_TARGET_NONE;
4692 }
4693 #endif
4694
4695 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4696 unsigned long addr, unsigned long end,
4697 struct mm_walk *walk)
4698 {
4699 struct vm_area_struct *vma = walk->vma;
4700 pte_t *pte;
4701 spinlock_t *ptl;
4702
4703 ptl = pmd_trans_huge_lock(pmd, vma);
4704 if (ptl) {
4705 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4706 mc.precharge += HPAGE_PMD_NR;
4707 spin_unlock(ptl);
4708 return 0;
4709 }
4710
4711 if (pmd_trans_unstable(pmd))
4712 return 0;
4713 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4714 for (; addr != end; pte++, addr += PAGE_SIZE)
4715 if (get_mctgt_type(vma, addr, *pte, NULL))
4716 mc.precharge++; /* increment precharge temporarily */
4717 pte_unmap_unlock(pte - 1, ptl);
4718 cond_resched();
4719
4720 return 0;
4721 }
4722
4723 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4724 {
4725 unsigned long precharge;
4726
4727 struct mm_walk mem_cgroup_count_precharge_walk = {
4728 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4729 .mm = mm,
4730 };
4731 down_read(&mm->mmap_sem);
4732 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4733 up_read(&mm->mmap_sem);
4734
4735 precharge = mc.precharge;
4736 mc.precharge = 0;
4737
4738 return precharge;
4739 }
4740
4741 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4742 {
4743 unsigned long precharge = mem_cgroup_count_precharge(mm);
4744
4745 VM_BUG_ON(mc.moving_task);
4746 mc.moving_task = current;
4747 return mem_cgroup_do_precharge(precharge);
4748 }
4749
4750 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4751 static void __mem_cgroup_clear_mc(void)
4752 {
4753 struct mem_cgroup *from = mc.from;
4754 struct mem_cgroup *to = mc.to;
4755
4756 /* we must uncharge all the leftover precharges from mc.to */
4757 if (mc.precharge) {
4758 cancel_charge(mc.to, mc.precharge);
4759 mc.precharge = 0;
4760 }
4761 /*
4762 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4763 * we must uncharge here.
4764 */
4765 if (mc.moved_charge) {
4766 cancel_charge(mc.from, mc.moved_charge);
4767 mc.moved_charge = 0;
4768 }
4769 /* we must fixup refcnts and charges */
4770 if (mc.moved_swap) {
4771 /* uncharge swap account from the old cgroup */
4772 if (!mem_cgroup_is_root(mc.from))
4773 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4774
4775 /*
4776 * we charged both to->memory and to->memsw, so we
4777 * should uncharge to->memory.
4778 */
4779 if (!mem_cgroup_is_root(mc.to))
4780 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4781
4782 css_put_many(&mc.from->css, mc.moved_swap);
4783
4784 /* we've already done css_get(mc.to) */
4785 mc.moved_swap = 0;
4786 }
4787 memcg_oom_recover(from);
4788 memcg_oom_recover(to);
4789 wake_up_all(&mc.waitq);
4790 }
4791
4792 static void mem_cgroup_clear_mc(void)
4793 {
4794 struct mm_struct *mm = mc.mm;
4795
4796 /*
4797 * we must clear moving_task before waking up waiters at the end of
4798 * task migration.
4799 */
4800 mc.moving_task = NULL;
4801 __mem_cgroup_clear_mc();
4802 spin_lock(&mc.lock);
4803 mc.from = NULL;
4804 mc.to = NULL;
4805 mc.mm = NULL;
4806 spin_unlock(&mc.lock);
4807
4808 mmput(mm);
4809 }
4810
4811 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4812 {
4813 struct cgroup_subsys_state *css;
4814 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4815 struct mem_cgroup *from;
4816 struct task_struct *leader, *p;
4817 struct mm_struct *mm;
4818 unsigned long move_flags;
4819 int ret = 0;
4820
4821 /* charge immigration isn't supported on the default hierarchy */
4822 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4823 return 0;
4824
4825 /*
4826 * Multi-process migrations only happen on the default hierarchy
4827 * where charge immigration is not used. Perform charge
4828 * immigration if @tset contains a leader and whine if there are
4829 * multiple.
4830 */
4831 p = NULL;
4832 cgroup_taskset_for_each_leader(leader, css, tset) {
4833 WARN_ON_ONCE(p);
4834 p = leader;
4835 memcg = mem_cgroup_from_css(css);
4836 }
4837 if (!p)
4838 return 0;
4839
4840 /*
4841 * We are now commited to this value whatever it is. Changes in this
4842 * tunable will only affect upcoming migrations, not the current one.
4843 * So we need to save it, and keep it going.
4844 */
4845 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4846 if (!move_flags)
4847 return 0;
4848
4849 from = mem_cgroup_from_task(p);
4850
4851 VM_BUG_ON(from == memcg);
4852
4853 mm = get_task_mm(p);
4854 if (!mm)
4855 return 0;
4856 /* We move charges only when we move a owner of the mm */
4857 if (mm->owner == p) {
4858 VM_BUG_ON(mc.from);
4859 VM_BUG_ON(mc.to);
4860 VM_BUG_ON(mc.precharge);
4861 VM_BUG_ON(mc.moved_charge);
4862 VM_BUG_ON(mc.moved_swap);
4863
4864 spin_lock(&mc.lock);
4865 mc.mm = mm;
4866 mc.from = from;
4867 mc.to = memcg;
4868 mc.flags = move_flags;
4869 spin_unlock(&mc.lock);
4870 /* We set mc.moving_task later */
4871
4872 ret = mem_cgroup_precharge_mc(mm);
4873 if (ret)
4874 mem_cgroup_clear_mc();
4875 } else {
4876 mmput(mm);
4877 }
4878 return ret;
4879 }
4880
4881 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4882 {
4883 if (mc.to)
4884 mem_cgroup_clear_mc();
4885 }
4886
4887 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4888 unsigned long addr, unsigned long end,
4889 struct mm_walk *walk)
4890 {
4891 int ret = 0;
4892 struct vm_area_struct *vma = walk->vma;
4893 pte_t *pte;
4894 spinlock_t *ptl;
4895 enum mc_target_type target_type;
4896 union mc_target target;
4897 struct page *page;
4898
4899 ptl = pmd_trans_huge_lock(pmd, vma);
4900 if (ptl) {
4901 if (mc.precharge < HPAGE_PMD_NR) {
4902 spin_unlock(ptl);
4903 return 0;
4904 }
4905 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4906 if (target_type == MC_TARGET_PAGE) {
4907 page = target.page;
4908 if (!isolate_lru_page(page)) {
4909 if (!mem_cgroup_move_account(page, true,
4910 mc.from, mc.to)) {
4911 mc.precharge -= HPAGE_PMD_NR;
4912 mc.moved_charge += HPAGE_PMD_NR;
4913 }
4914 putback_lru_page(page);
4915 }
4916 put_page(page);
4917 }
4918 spin_unlock(ptl);
4919 return 0;
4920 }
4921
4922 if (pmd_trans_unstable(pmd))
4923 return 0;
4924 retry:
4925 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4926 for (; addr != end; addr += PAGE_SIZE) {
4927 pte_t ptent = *(pte++);
4928 swp_entry_t ent;
4929
4930 if (!mc.precharge)
4931 break;
4932
4933 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4934 case MC_TARGET_PAGE:
4935 page = target.page;
4936 /*
4937 * We can have a part of the split pmd here. Moving it
4938 * can be done but it would be too convoluted so simply
4939 * ignore such a partial THP and keep it in original
4940 * memcg. There should be somebody mapping the head.
4941 */
4942 if (PageTransCompound(page))
4943 goto put;
4944 if (isolate_lru_page(page))
4945 goto put;
4946 if (!mem_cgroup_move_account(page, false,
4947 mc.from, mc.to)) {
4948 mc.precharge--;
4949 /* we uncharge from mc.from later. */
4950 mc.moved_charge++;
4951 }
4952 putback_lru_page(page);
4953 put: /* get_mctgt_type() gets the page */
4954 put_page(page);
4955 break;
4956 case MC_TARGET_SWAP:
4957 ent = target.ent;
4958 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4959 mc.precharge--;
4960 /* we fixup refcnts and charges later. */
4961 mc.moved_swap++;
4962 }
4963 break;
4964 default:
4965 break;
4966 }
4967 }
4968 pte_unmap_unlock(pte - 1, ptl);
4969 cond_resched();
4970
4971 if (addr != end) {
4972 /*
4973 * We have consumed all precharges we got in can_attach().
4974 * We try charge one by one, but don't do any additional
4975 * charges to mc.to if we have failed in charge once in attach()
4976 * phase.
4977 */
4978 ret = mem_cgroup_do_precharge(1);
4979 if (!ret)
4980 goto retry;
4981 }
4982
4983 return ret;
4984 }
4985
4986 static void mem_cgroup_move_charge(void)
4987 {
4988 struct mm_walk mem_cgroup_move_charge_walk = {
4989 .pmd_entry = mem_cgroup_move_charge_pte_range,
4990 .mm = mc.mm,
4991 };
4992
4993 lru_add_drain_all();
4994 /*
4995 * Signal lock_page_memcg() to take the memcg's move_lock
4996 * while we're moving its pages to another memcg. Then wait
4997 * for already started RCU-only updates to finish.
4998 */
4999 atomic_inc(&mc.from->moving_account);
5000 synchronize_rcu();
5001 retry:
5002 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5003 /*
5004 * Someone who are holding the mmap_sem might be waiting in
5005 * waitq. So we cancel all extra charges, wake up all waiters,
5006 * and retry. Because we cancel precharges, we might not be able
5007 * to move enough charges, but moving charge is a best-effort
5008 * feature anyway, so it wouldn't be a big problem.
5009 */
5010 __mem_cgroup_clear_mc();
5011 cond_resched();
5012 goto retry;
5013 }
5014 /*
5015 * When we have consumed all precharges and failed in doing
5016 * additional charge, the page walk just aborts.
5017 */
5018 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5019 up_read(&mc.mm->mmap_sem);
5020 atomic_dec(&mc.from->moving_account);
5021 }
5022
5023 static void mem_cgroup_move_task(void)
5024 {
5025 if (mc.to) {
5026 mem_cgroup_move_charge();
5027 mem_cgroup_clear_mc();
5028 }
5029 }
5030 #else /* !CONFIG_MMU */
5031 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5032 {
5033 return 0;
5034 }
5035 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5036 {
5037 }
5038 static void mem_cgroup_move_task(void)
5039 {
5040 }
5041 #endif
5042
5043 /*
5044 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5045 * to verify whether we're attached to the default hierarchy on each mount
5046 * attempt.
5047 */
5048 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5049 {
5050 /*
5051 * use_hierarchy is forced on the default hierarchy. cgroup core
5052 * guarantees that @root doesn't have any children, so turning it
5053 * on for the root memcg is enough.
5054 */
5055 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5056 root_mem_cgroup->use_hierarchy = true;
5057 else
5058 root_mem_cgroup->use_hierarchy = false;
5059 }
5060
5061 static u64 memory_current_read(struct cgroup_subsys_state *css,
5062 struct cftype *cft)
5063 {
5064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5065
5066 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5067 }
5068
5069 static int memory_low_show(struct seq_file *m, void *v)
5070 {
5071 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5072 unsigned long low = READ_ONCE(memcg->low);
5073
5074 if (low == PAGE_COUNTER_MAX)
5075 seq_puts(m, "max\n");
5076 else
5077 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5078
5079 return 0;
5080 }
5081
5082 static ssize_t memory_low_write(struct kernfs_open_file *of,
5083 char *buf, size_t nbytes, loff_t off)
5084 {
5085 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5086 unsigned long low;
5087 int err;
5088
5089 buf = strstrip(buf);
5090 err = page_counter_memparse(buf, "max", &low);
5091 if (err)
5092 return err;
5093
5094 memcg->low = low;
5095
5096 return nbytes;
5097 }
5098
5099 static int memory_high_show(struct seq_file *m, void *v)
5100 {
5101 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5102 unsigned long high = READ_ONCE(memcg->high);
5103
5104 if (high == PAGE_COUNTER_MAX)
5105 seq_puts(m, "max\n");
5106 else
5107 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5108
5109 return 0;
5110 }
5111
5112 static ssize_t memory_high_write(struct kernfs_open_file *of,
5113 char *buf, size_t nbytes, loff_t off)
5114 {
5115 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5116 unsigned long nr_pages;
5117 unsigned long high;
5118 int err;
5119
5120 buf = strstrip(buf);
5121 err = page_counter_memparse(buf, "max", &high);
5122 if (err)
5123 return err;
5124
5125 memcg->high = high;
5126
5127 nr_pages = page_counter_read(&memcg->memory);
5128 if (nr_pages > high)
5129 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5130 GFP_KERNEL, true);
5131
5132 memcg_wb_domain_size_changed(memcg);
5133 return nbytes;
5134 }
5135
5136 static int memory_max_show(struct seq_file *m, void *v)
5137 {
5138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5139 unsigned long max = READ_ONCE(memcg->memory.limit);
5140
5141 if (max == PAGE_COUNTER_MAX)
5142 seq_puts(m, "max\n");
5143 else
5144 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5145
5146 return 0;
5147 }
5148
5149 static ssize_t memory_max_write(struct kernfs_open_file *of,
5150 char *buf, size_t nbytes, loff_t off)
5151 {
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5153 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5154 bool drained = false;
5155 unsigned long max;
5156 int err;
5157
5158 buf = strstrip(buf);
5159 err = page_counter_memparse(buf, "max", &max);
5160 if (err)
5161 return err;
5162
5163 xchg(&memcg->memory.limit, max);
5164
5165 for (;;) {
5166 unsigned long nr_pages = page_counter_read(&memcg->memory);
5167
5168 if (nr_pages <= max)
5169 break;
5170
5171 if (signal_pending(current)) {
5172 err = -EINTR;
5173 break;
5174 }
5175
5176 if (!drained) {
5177 drain_all_stock(memcg);
5178 drained = true;
5179 continue;
5180 }
5181
5182 if (nr_reclaims) {
5183 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5184 GFP_KERNEL, true))
5185 nr_reclaims--;
5186 continue;
5187 }
5188
5189 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5190 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5191 break;
5192 }
5193
5194 memcg_wb_domain_size_changed(memcg);
5195 return nbytes;
5196 }
5197
5198 static int memory_events_show(struct seq_file *m, void *v)
5199 {
5200 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5201
5202 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5203 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5204 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5205 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5206
5207 return 0;
5208 }
5209
5210 static int memory_stat_show(struct seq_file *m, void *v)
5211 {
5212 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213 unsigned long stat[MEMCG_NR_STAT];
5214 unsigned long events[MEMCG_NR_EVENTS];
5215 int i;
5216
5217 /*
5218 * Provide statistics on the state of the memory subsystem as
5219 * well as cumulative event counters that show past behavior.
5220 *
5221 * This list is ordered following a combination of these gradients:
5222 * 1) generic big picture -> specifics and details
5223 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224 *
5225 * Current memory state:
5226 */
5227
5228 tree_stat(memcg, stat);
5229 tree_events(memcg, events);
5230
5231 seq_printf(m, "anon %llu\n",
5232 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5233 seq_printf(m, "file %llu\n",
5234 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5235 seq_printf(m, "kernel_stack %llu\n",
5236 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5237 seq_printf(m, "slab %llu\n",
5238 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5239 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240 seq_printf(m, "sock %llu\n",
5241 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243 seq_printf(m, "file_mapped %llu\n",
5244 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5245 seq_printf(m, "file_dirty %llu\n",
5246 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5247 seq_printf(m, "file_writeback %llu\n",
5248 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5249
5250 for (i = 0; i < NR_LRU_LISTS; i++) {
5251 struct mem_cgroup *mi;
5252 unsigned long val = 0;
5253
5254 for_each_mem_cgroup_tree(mi, memcg)
5255 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5256 seq_printf(m, "%s %llu\n",
5257 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5258 }
5259
5260 seq_printf(m, "slab_reclaimable %llu\n",
5261 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5262 seq_printf(m, "slab_unreclaimable %llu\n",
5263 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5264
5265 /* Accumulated memory events */
5266
5267 seq_printf(m, "pgfault %lu\n",
5268 events[MEM_CGROUP_EVENTS_PGFAULT]);
5269 seq_printf(m, "pgmajfault %lu\n",
5270 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5271
5272 return 0;
5273 }
5274
5275 static struct cftype memory_files[] = {
5276 {
5277 .name = "current",
5278 .flags = CFTYPE_NOT_ON_ROOT,
5279 .read_u64 = memory_current_read,
5280 },
5281 {
5282 .name = "low",
5283 .flags = CFTYPE_NOT_ON_ROOT,
5284 .seq_show = memory_low_show,
5285 .write = memory_low_write,
5286 },
5287 {
5288 .name = "high",
5289 .flags = CFTYPE_NOT_ON_ROOT,
5290 .seq_show = memory_high_show,
5291 .write = memory_high_write,
5292 },
5293 {
5294 .name = "max",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .seq_show = memory_max_show,
5297 .write = memory_max_write,
5298 },
5299 {
5300 .name = "events",
5301 .flags = CFTYPE_NOT_ON_ROOT,
5302 .file_offset = offsetof(struct mem_cgroup, events_file),
5303 .seq_show = memory_events_show,
5304 },
5305 {
5306 .name = "stat",
5307 .flags = CFTYPE_NOT_ON_ROOT,
5308 .seq_show = memory_stat_show,
5309 },
5310 { } /* terminate */
5311 };
5312
5313 struct cgroup_subsys memory_cgrp_subsys = {
5314 .css_alloc = mem_cgroup_css_alloc,
5315 .css_online = mem_cgroup_css_online,
5316 .css_offline = mem_cgroup_css_offline,
5317 .css_released = mem_cgroup_css_released,
5318 .css_free = mem_cgroup_css_free,
5319 .css_reset = mem_cgroup_css_reset,
5320 .can_attach = mem_cgroup_can_attach,
5321 .cancel_attach = mem_cgroup_cancel_attach,
5322 .post_attach = mem_cgroup_move_task,
5323 .bind = mem_cgroup_bind,
5324 .dfl_cftypes = memory_files,
5325 .legacy_cftypes = mem_cgroup_legacy_files,
5326 .early_init = 0,
5327 };
5328
5329 /**
5330 * mem_cgroup_low - check if memory consumption is below the normal range
5331 * @root: the highest ancestor to consider
5332 * @memcg: the memory cgroup to check
5333 *
5334 * Returns %true if memory consumption of @memcg, and that of all
5335 * configurable ancestors up to @root, is below the normal range.
5336 */
5337 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5338 {
5339 if (mem_cgroup_disabled())
5340 return false;
5341
5342 /*
5343 * The toplevel group doesn't have a configurable range, so
5344 * it's never low when looked at directly, and it is not
5345 * considered an ancestor when assessing the hierarchy.
5346 */
5347
5348 if (memcg == root_mem_cgroup)
5349 return false;
5350
5351 if (page_counter_read(&memcg->memory) >= memcg->low)
5352 return false;
5353
5354 while (memcg != root) {
5355 memcg = parent_mem_cgroup(memcg);
5356
5357 if (memcg == root_mem_cgroup)
5358 break;
5359
5360 if (page_counter_read(&memcg->memory) >= memcg->low)
5361 return false;
5362 }
5363 return true;
5364 }
5365
5366 /**
5367 * mem_cgroup_try_charge - try charging a page
5368 * @page: page to charge
5369 * @mm: mm context of the victim
5370 * @gfp_mask: reclaim mode
5371 * @memcgp: charged memcg return
5372 *
5373 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5374 * pages according to @gfp_mask if necessary.
5375 *
5376 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5377 * Otherwise, an error code is returned.
5378 *
5379 * After page->mapping has been set up, the caller must finalize the
5380 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5381 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5382 */
5383 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5384 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5385 bool compound)
5386 {
5387 struct mem_cgroup *memcg = NULL;
5388 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5389 int ret = 0;
5390
5391 if (mem_cgroup_disabled())
5392 goto out;
5393
5394 if (PageSwapCache(page)) {
5395 /*
5396 * Every swap fault against a single page tries to charge the
5397 * page, bail as early as possible. shmem_unuse() encounters
5398 * already charged pages, too. The USED bit is protected by
5399 * the page lock, which serializes swap cache removal, which
5400 * in turn serializes uncharging.
5401 */
5402 VM_BUG_ON_PAGE(!PageLocked(page), page);
5403 if (page->mem_cgroup)
5404 goto out;
5405
5406 if (do_swap_account) {
5407 swp_entry_t ent = { .val = page_private(page), };
5408 unsigned short id = lookup_swap_cgroup_id(ent);
5409
5410 rcu_read_lock();
5411 memcg = mem_cgroup_from_id(id);
5412 if (memcg && !css_tryget_online(&memcg->css))
5413 memcg = NULL;
5414 rcu_read_unlock();
5415 }
5416 }
5417
5418 if (!memcg)
5419 memcg = get_mem_cgroup_from_mm(mm);
5420
5421 ret = try_charge(memcg, gfp_mask, nr_pages);
5422
5423 css_put(&memcg->css);
5424 out:
5425 *memcgp = memcg;
5426 return ret;
5427 }
5428
5429 /**
5430 * mem_cgroup_commit_charge - commit a page charge
5431 * @page: page to charge
5432 * @memcg: memcg to charge the page to
5433 * @lrucare: page might be on LRU already
5434 *
5435 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5436 * after page->mapping has been set up. This must happen atomically
5437 * as part of the page instantiation, i.e. under the page table lock
5438 * for anonymous pages, under the page lock for page and swap cache.
5439 *
5440 * In addition, the page must not be on the LRU during the commit, to
5441 * prevent racing with task migration. If it might be, use @lrucare.
5442 *
5443 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5444 */
5445 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5446 bool lrucare, bool compound)
5447 {
5448 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5449
5450 VM_BUG_ON_PAGE(!page->mapping, page);
5451 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5452
5453 if (mem_cgroup_disabled())
5454 return;
5455 /*
5456 * Swap faults will attempt to charge the same page multiple
5457 * times. But reuse_swap_page() might have removed the page
5458 * from swapcache already, so we can't check PageSwapCache().
5459 */
5460 if (!memcg)
5461 return;
5462
5463 commit_charge(page, memcg, lrucare);
5464
5465 local_irq_disable();
5466 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5467 memcg_check_events(memcg, page);
5468 local_irq_enable();
5469
5470 if (do_memsw_account() && PageSwapCache(page)) {
5471 swp_entry_t entry = { .val = page_private(page) };
5472 /*
5473 * The swap entry might not get freed for a long time,
5474 * let's not wait for it. The page already received a
5475 * memory+swap charge, drop the swap entry duplicate.
5476 */
5477 mem_cgroup_uncharge_swap(entry);
5478 }
5479 }
5480
5481 /**
5482 * mem_cgroup_cancel_charge - cancel a page charge
5483 * @page: page to charge
5484 * @memcg: memcg to charge the page to
5485 *
5486 * Cancel a charge transaction started by mem_cgroup_try_charge().
5487 */
5488 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5489 bool compound)
5490 {
5491 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5492
5493 if (mem_cgroup_disabled())
5494 return;
5495 /*
5496 * Swap faults will attempt to charge the same page multiple
5497 * times. But reuse_swap_page() might have removed the page
5498 * from swapcache already, so we can't check PageSwapCache().
5499 */
5500 if (!memcg)
5501 return;
5502
5503 cancel_charge(memcg, nr_pages);
5504 }
5505
5506 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5507 unsigned long nr_anon, unsigned long nr_file,
5508 unsigned long nr_huge, unsigned long nr_kmem,
5509 struct page *dummy_page)
5510 {
5511 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5512 unsigned long flags;
5513
5514 if (!mem_cgroup_is_root(memcg)) {
5515 page_counter_uncharge(&memcg->memory, nr_pages);
5516 if (do_memsw_account())
5517 page_counter_uncharge(&memcg->memsw, nr_pages);
5518 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5519 page_counter_uncharge(&memcg->kmem, nr_kmem);
5520 memcg_oom_recover(memcg);
5521 }
5522
5523 local_irq_save(flags);
5524 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5525 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5526 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5527 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5528 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5529 memcg_check_events(memcg, dummy_page);
5530 local_irq_restore(flags);
5531
5532 if (!mem_cgroup_is_root(memcg))
5533 css_put_many(&memcg->css, nr_pages);
5534 }
5535
5536 static void uncharge_list(struct list_head *page_list)
5537 {
5538 struct mem_cgroup *memcg = NULL;
5539 unsigned long nr_anon = 0;
5540 unsigned long nr_file = 0;
5541 unsigned long nr_huge = 0;
5542 unsigned long nr_kmem = 0;
5543 unsigned long pgpgout = 0;
5544 struct list_head *next;
5545 struct page *page;
5546
5547 /*
5548 * Note that the list can be a single page->lru; hence the
5549 * do-while loop instead of a simple list_for_each_entry().
5550 */
5551 next = page_list->next;
5552 do {
5553 page = list_entry(next, struct page, lru);
5554 next = page->lru.next;
5555
5556 VM_BUG_ON_PAGE(PageLRU(page), page);
5557 VM_BUG_ON_PAGE(page_count(page), page);
5558
5559 if (!page->mem_cgroup)
5560 continue;
5561
5562 /*
5563 * Nobody should be changing or seriously looking at
5564 * page->mem_cgroup at this point, we have fully
5565 * exclusive access to the page.
5566 */
5567
5568 if (memcg != page->mem_cgroup) {
5569 if (memcg) {
5570 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5571 nr_huge, nr_kmem, page);
5572 pgpgout = nr_anon = nr_file =
5573 nr_huge = nr_kmem = 0;
5574 }
5575 memcg = page->mem_cgroup;
5576 }
5577
5578 if (!PageKmemcg(page)) {
5579 unsigned int nr_pages = 1;
5580
5581 if (PageTransHuge(page)) {
5582 nr_pages <<= compound_order(page);
5583 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5584 nr_huge += nr_pages;
5585 }
5586 if (PageAnon(page))
5587 nr_anon += nr_pages;
5588 else
5589 nr_file += nr_pages;
5590 pgpgout++;
5591 } else
5592 nr_kmem += 1 << compound_order(page);
5593
5594 page->mem_cgroup = NULL;
5595 } while (next != page_list);
5596
5597 if (memcg)
5598 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5599 nr_huge, nr_kmem, page);
5600 }
5601
5602 /**
5603 * mem_cgroup_uncharge - uncharge a page
5604 * @page: page to uncharge
5605 *
5606 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5607 * mem_cgroup_commit_charge().
5608 */
5609 void mem_cgroup_uncharge(struct page *page)
5610 {
5611 if (mem_cgroup_disabled())
5612 return;
5613
5614 /* Don't touch page->lru of any random page, pre-check: */
5615 if (!page->mem_cgroup)
5616 return;
5617
5618 INIT_LIST_HEAD(&page->lru);
5619 uncharge_list(&page->lru);
5620 }
5621
5622 /**
5623 * mem_cgroup_uncharge_list - uncharge a list of page
5624 * @page_list: list of pages to uncharge
5625 *
5626 * Uncharge a list of pages previously charged with
5627 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5628 */
5629 void mem_cgroup_uncharge_list(struct list_head *page_list)
5630 {
5631 if (mem_cgroup_disabled())
5632 return;
5633
5634 if (!list_empty(page_list))
5635 uncharge_list(page_list);
5636 }
5637
5638 /**
5639 * mem_cgroup_migrate - charge a page's replacement
5640 * @oldpage: currently circulating page
5641 * @newpage: replacement page
5642 *
5643 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5644 * be uncharged upon free.
5645 *
5646 * Both pages must be locked, @newpage->mapping must be set up.
5647 */
5648 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5649 {
5650 struct mem_cgroup *memcg;
5651 unsigned int nr_pages;
5652 bool compound;
5653 unsigned long flags;
5654
5655 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5656 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5657 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5658 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5659 newpage);
5660
5661 if (mem_cgroup_disabled())
5662 return;
5663
5664 /* Page cache replacement: new page already charged? */
5665 if (newpage->mem_cgroup)
5666 return;
5667
5668 /* Swapcache readahead pages can get replaced before being charged */
5669 memcg = oldpage->mem_cgroup;
5670 if (!memcg)
5671 return;
5672
5673 /* Force-charge the new page. The old one will be freed soon */
5674 compound = PageTransHuge(newpage);
5675 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5676
5677 page_counter_charge(&memcg->memory, nr_pages);
5678 if (do_memsw_account())
5679 page_counter_charge(&memcg->memsw, nr_pages);
5680 css_get_many(&memcg->css, nr_pages);
5681
5682 commit_charge(newpage, memcg, false);
5683
5684 local_irq_save(flags);
5685 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5686 memcg_check_events(memcg, newpage);
5687 local_irq_restore(flags);
5688 }
5689
5690 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5691 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5692
5693 void sock_update_memcg(struct sock *sk)
5694 {
5695 struct mem_cgroup *memcg;
5696
5697 /* Socket cloning can throw us here with sk_cgrp already
5698 * filled. It won't however, necessarily happen from
5699 * process context. So the test for root memcg given
5700 * the current task's memcg won't help us in this case.
5701 *
5702 * Respecting the original socket's memcg is a better
5703 * decision in this case.
5704 */
5705 if (sk->sk_memcg) {
5706 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5707 css_get(&sk->sk_memcg->css);
5708 return;
5709 }
5710
5711 rcu_read_lock();
5712 memcg = mem_cgroup_from_task(current);
5713 if (memcg == root_mem_cgroup)
5714 goto out;
5715 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5716 goto out;
5717 if (css_tryget_online(&memcg->css))
5718 sk->sk_memcg = memcg;
5719 out:
5720 rcu_read_unlock();
5721 }
5722 EXPORT_SYMBOL(sock_update_memcg);
5723
5724 void sock_release_memcg(struct sock *sk)
5725 {
5726 WARN_ON(!sk->sk_memcg);
5727 css_put(&sk->sk_memcg->css);
5728 }
5729
5730 /**
5731 * mem_cgroup_charge_skmem - charge socket memory
5732 * @memcg: memcg to charge
5733 * @nr_pages: number of pages to charge
5734 *
5735 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5736 * @memcg's configured limit, %false if the charge had to be forced.
5737 */
5738 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5739 {
5740 gfp_t gfp_mask = GFP_KERNEL;
5741
5742 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5743 struct page_counter *fail;
5744
5745 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5746 memcg->tcpmem_pressure = 0;
5747 return true;
5748 }
5749 page_counter_charge(&memcg->tcpmem, nr_pages);
5750 memcg->tcpmem_pressure = 1;
5751 return false;
5752 }
5753
5754 /* Don't block in the packet receive path */
5755 if (in_softirq())
5756 gfp_mask = GFP_NOWAIT;
5757
5758 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5759
5760 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5761 return true;
5762
5763 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5764 return false;
5765 }
5766
5767 /**
5768 * mem_cgroup_uncharge_skmem - uncharge socket memory
5769 * @memcg - memcg to uncharge
5770 * @nr_pages - number of pages to uncharge
5771 */
5772 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5773 {
5774 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5775 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5776 return;
5777 }
5778
5779 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5780
5781 page_counter_uncharge(&memcg->memory, nr_pages);
5782 css_put_many(&memcg->css, nr_pages);
5783 }
5784
5785 static int __init cgroup_memory(char *s)
5786 {
5787 char *token;
5788
5789 while ((token = strsep(&s, ",")) != NULL) {
5790 if (!*token)
5791 continue;
5792 if (!strcmp(token, "nosocket"))
5793 cgroup_memory_nosocket = true;
5794 if (!strcmp(token, "nokmem"))
5795 cgroup_memory_nokmem = true;
5796 }
5797 return 0;
5798 }
5799 __setup("cgroup.memory=", cgroup_memory);
5800
5801 /*
5802 * subsys_initcall() for memory controller.
5803 *
5804 * Some parts like hotcpu_notifier() have to be initialized from this context
5805 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5806 * everything that doesn't depend on a specific mem_cgroup structure should
5807 * be initialized from here.
5808 */
5809 static int __init mem_cgroup_init(void)
5810 {
5811 int cpu, node;
5812
5813 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5814
5815 for_each_possible_cpu(cpu)
5816 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5817 drain_local_stock);
5818
5819 for_each_node(node) {
5820 struct mem_cgroup_tree_per_node *rtpn;
5821 int zone;
5822
5823 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5824 node_online(node) ? node : NUMA_NO_NODE);
5825
5826 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5827 struct mem_cgroup_tree_per_zone *rtpz;
5828
5829 rtpz = &rtpn->rb_tree_per_zone[zone];
5830 rtpz->rb_root = RB_ROOT;
5831 spin_lock_init(&rtpz->lock);
5832 }
5833 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5834 }
5835
5836 return 0;
5837 }
5838 subsys_initcall(mem_cgroup_init);
5839
5840 #ifdef CONFIG_MEMCG_SWAP
5841 /**
5842 * mem_cgroup_swapout - transfer a memsw charge to swap
5843 * @page: page whose memsw charge to transfer
5844 * @entry: swap entry to move the charge to
5845 *
5846 * Transfer the memsw charge of @page to @entry.
5847 */
5848 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5849 {
5850 struct mem_cgroup *memcg;
5851 unsigned short oldid;
5852
5853 VM_BUG_ON_PAGE(PageLRU(page), page);
5854 VM_BUG_ON_PAGE(page_count(page), page);
5855
5856 if (!do_memsw_account())
5857 return;
5858
5859 memcg = page->mem_cgroup;
5860
5861 /* Readahead page, never charged */
5862 if (!memcg)
5863 return;
5864
5865 mem_cgroup_id_get(memcg);
5866 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5867 VM_BUG_ON_PAGE(oldid, page);
5868 mem_cgroup_swap_statistics(memcg, true);
5869
5870 page->mem_cgroup = NULL;
5871
5872 if (!mem_cgroup_is_root(memcg))
5873 page_counter_uncharge(&memcg->memory, 1);
5874
5875 /*
5876 * Interrupts should be disabled here because the caller holds the
5877 * mapping->tree_lock lock which is taken with interrupts-off. It is
5878 * important here to have the interrupts disabled because it is the
5879 * only synchronisation we have for udpating the per-CPU variables.
5880 */
5881 VM_BUG_ON(!irqs_disabled());
5882 mem_cgroup_charge_statistics(memcg, page, false, -1);
5883 memcg_check_events(memcg, page);
5884
5885 if (!mem_cgroup_is_root(memcg))
5886 css_put(&memcg->css);
5887 }
5888
5889 /*
5890 * mem_cgroup_try_charge_swap - try charging a swap entry
5891 * @page: page being added to swap
5892 * @entry: swap entry to charge
5893 *
5894 * Try to charge @entry to the memcg that @page belongs to.
5895 *
5896 * Returns 0 on success, -ENOMEM on failure.
5897 */
5898 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5899 {
5900 struct mem_cgroup *memcg;
5901 struct page_counter *counter;
5902 unsigned short oldid;
5903
5904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5905 return 0;
5906
5907 memcg = page->mem_cgroup;
5908
5909 /* Readahead page, never charged */
5910 if (!memcg)
5911 return 0;
5912
5913 if (!mem_cgroup_is_root(memcg) &&
5914 !page_counter_try_charge(&memcg->swap, 1, &counter))
5915 return -ENOMEM;
5916
5917 mem_cgroup_id_get(memcg);
5918 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5919 VM_BUG_ON_PAGE(oldid, page);
5920 mem_cgroup_swap_statistics(memcg, true);
5921
5922 return 0;
5923 }
5924
5925 /**
5926 * mem_cgroup_uncharge_swap - uncharge a swap entry
5927 * @entry: swap entry to uncharge
5928 *
5929 * Drop the swap charge associated with @entry.
5930 */
5931 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5932 {
5933 struct mem_cgroup *memcg;
5934 unsigned short id;
5935
5936 if (!do_swap_account)
5937 return;
5938
5939 id = swap_cgroup_record(entry, 0);
5940 rcu_read_lock();
5941 memcg = mem_cgroup_from_id(id);
5942 if (memcg) {
5943 if (!mem_cgroup_is_root(memcg)) {
5944 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5945 page_counter_uncharge(&memcg->swap, 1);
5946 else
5947 page_counter_uncharge(&memcg->memsw, 1);
5948 }
5949 mem_cgroup_swap_statistics(memcg, false);
5950 mem_cgroup_id_put(memcg);
5951 }
5952 rcu_read_unlock();
5953 }
5954
5955 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5956 {
5957 long nr_swap_pages = get_nr_swap_pages();
5958
5959 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5960 return nr_swap_pages;
5961 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5962 nr_swap_pages = min_t(long, nr_swap_pages,
5963 READ_ONCE(memcg->swap.limit) -
5964 page_counter_read(&memcg->swap));
5965 return nr_swap_pages;
5966 }
5967
5968 bool mem_cgroup_swap_full(struct page *page)
5969 {
5970 struct mem_cgroup *memcg;
5971
5972 VM_BUG_ON_PAGE(!PageLocked(page), page);
5973
5974 if (vm_swap_full())
5975 return true;
5976 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5977 return false;
5978
5979 memcg = page->mem_cgroup;
5980 if (!memcg)
5981 return false;
5982
5983 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5984 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5985 return true;
5986
5987 return false;
5988 }
5989
5990 /* for remember boot option*/
5991 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5992 static int really_do_swap_account __initdata = 1;
5993 #else
5994 static int really_do_swap_account __initdata;
5995 #endif
5996
5997 static int __init enable_swap_account(char *s)
5998 {
5999 if (!strcmp(s, "1"))
6000 really_do_swap_account = 1;
6001 else if (!strcmp(s, "0"))
6002 really_do_swap_account = 0;
6003 return 1;
6004 }
6005 __setup("swapaccount=", enable_swap_account);
6006
6007 static u64 swap_current_read(struct cgroup_subsys_state *css,
6008 struct cftype *cft)
6009 {
6010 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6011
6012 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6013 }
6014
6015 static int swap_max_show(struct seq_file *m, void *v)
6016 {
6017 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6018 unsigned long max = READ_ONCE(memcg->swap.limit);
6019
6020 if (max == PAGE_COUNTER_MAX)
6021 seq_puts(m, "max\n");
6022 else
6023 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6024
6025 return 0;
6026 }
6027
6028 static ssize_t swap_max_write(struct kernfs_open_file *of,
6029 char *buf, size_t nbytes, loff_t off)
6030 {
6031 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6032 unsigned long max;
6033 int err;
6034
6035 buf = strstrip(buf);
6036 err = page_counter_memparse(buf, "max", &max);
6037 if (err)
6038 return err;
6039
6040 mutex_lock(&memcg_limit_mutex);
6041 err = page_counter_limit(&memcg->swap, max);
6042 mutex_unlock(&memcg_limit_mutex);
6043 if (err)
6044 return err;
6045
6046 return nbytes;
6047 }
6048
6049 static struct cftype swap_files[] = {
6050 {
6051 .name = "swap.current",
6052 .flags = CFTYPE_NOT_ON_ROOT,
6053 .read_u64 = swap_current_read,
6054 },
6055 {
6056 .name = "swap.max",
6057 .flags = CFTYPE_NOT_ON_ROOT,
6058 .seq_show = swap_max_show,
6059 .write = swap_max_write,
6060 },
6061 { } /* terminate */
6062 };
6063
6064 static struct cftype memsw_cgroup_files[] = {
6065 {
6066 .name = "memsw.usage_in_bytes",
6067 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6068 .read_u64 = mem_cgroup_read_u64,
6069 },
6070 {
6071 .name = "memsw.max_usage_in_bytes",
6072 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6073 .write = mem_cgroup_reset,
6074 .read_u64 = mem_cgroup_read_u64,
6075 },
6076 {
6077 .name = "memsw.limit_in_bytes",
6078 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6079 .write = mem_cgroup_write,
6080 .read_u64 = mem_cgroup_read_u64,
6081 },
6082 {
6083 .name = "memsw.failcnt",
6084 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6085 .write = mem_cgroup_reset,
6086 .read_u64 = mem_cgroup_read_u64,
6087 },
6088 { }, /* terminate */
6089 };
6090
6091 static int __init mem_cgroup_swap_init(void)
6092 {
6093 if (!mem_cgroup_disabled() && really_do_swap_account) {
6094 do_swap_account = 1;
6095 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6096 swap_files));
6097 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6098 memsw_cgroup_files));
6099 }
6100 return 0;
6101 }
6102 subsys_initcall(mem_cgroup_swap_init);
6103
6104 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.49734 seconds and 5 git commands to generate.