cgroup: make hierarchy iterators deal with cgroup_subsys_state instead of cgroup
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 /*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198 };
199
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213 };
214
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223 };
224
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234 };
235
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240 };
241
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244
245 /*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
255 */
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
270
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280
281 bool oom_lock;
282 atomic_t under_oom;
283
284 int swappiness;
285 /* OOM-Killer disable */
286 int oom_kill_disable;
287
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
295 struct mem_cgroup_thresholds thresholds;
296
297 /* thresholds for mem+swap usage. RCU-protected */
298 struct mem_cgroup_thresholds memsw_thresholds;
299
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
302
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
314 /*
315 * percpu counter.
316 */
317 struct mem_cgroup_stat_cpu __percpu *stat;
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
324
325 atomic_t dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336 #endif
337
338 int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343 #endif
344
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
347 };
348
349 static size_t memcg_size(void)
350 {
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353 }
354
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 };
361
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 {
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370 }
371
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 {
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375 }
376
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 {
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380 }
381
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 {
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385 }
386
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 {
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396 }
397
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399 {
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402 }
403 #endif
404
405 /* Stuffs for move charges at task migration. */
406 /*
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 */
410 enum move_type {
411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
413 NR_MOVE_TYPE,
414 };
415
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 spinlock_t lock; /* for from, to */
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
421 unsigned long immigrate_flags;
422 unsigned long precharge;
423 unsigned long moved_charge;
424 unsigned long moved_swap;
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427 } mc = {
428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430 };
431
432 static bool move_anon(void)
433 {
434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
435 }
436
437 static bool move_file(void)
438 {
439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 }
441
442 /*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
448
449 enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 MEM_CGROUP_CHARGE_TYPE_ANON,
452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
454 NR_CHARGE_TYPE,
455 };
456
457 /* for encoding cft->private value on file */
458 enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
462 _KMEM,
463 };
464
465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val) ((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL (0)
470
471 /*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
479 /*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484 static DEFINE_MUTEX(memcg_create_mutex);
485
486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487 {
488 return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 }
490
491 /* Some nice accessors for the vmpressure. */
492 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493 {
494 if (!memcg)
495 memcg = root_mem_cgroup;
496 return &memcg->vmpressure;
497 }
498
499 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500 {
501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502 }
503
504 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505 {
506 return &mem_cgroup_from_css(css)->vmpressure;
507 }
508
509 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510 {
511 return (memcg == root_mem_cgroup);
512 }
513
514 /* Writing them here to avoid exposing memcg's inner layout */
515 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
516
517 void sock_update_memcg(struct sock *sk)
518 {
519 if (mem_cgroup_sockets_enabled) {
520 struct mem_cgroup *memcg;
521 struct cg_proto *cg_proto;
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535 css_get(&sk->sk_cgrp->memcg->css);
536 return;
537 }
538
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544 sk->sk_cgrp = cg_proto;
545 }
546 rcu_read_unlock();
547 }
548 }
549 EXPORT_SYMBOL(sock_update_memcg);
550
551 void sock_release_memcg(struct sock *sk)
552 {
553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
557 css_put(&sk->sk_cgrp->memcg->css);
558 }
559 }
560
561 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562 {
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567 }
568 EXPORT_SYMBOL(tcp_proto_cgroup);
569
570 static void disarm_sock_keys(struct mem_cgroup *memcg)
571 {
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575 }
576 #else
577 static void disarm_sock_keys(struct mem_cgroup *memcg)
578 {
579 }
580 #endif
581
582 #ifdef CONFIG_MEMCG_KMEM
583 /*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600 static DEFINE_IDA(kmem_limited_groups);
601 int memcg_limited_groups_array_size;
602
603 /*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615 #define MEMCG_CACHES_MIN_SIZE 4
616 #define MEMCG_CACHES_MAX_SIZE 65535
617
618 /*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
624 struct static_key memcg_kmem_enabled_key;
625 EXPORT_SYMBOL(memcg_kmem_enabled_key);
626
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
628 {
629 if (memcg_kmem_is_active(memcg)) {
630 static_key_slow_dec(&memcg_kmem_enabled_key);
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 }
639 #else
640 static void disarm_kmem_keys(struct mem_cgroup *memcg)
641 {
642 }
643 #endif /* CONFIG_MEMCG_KMEM */
644
645 static void disarm_static_keys(struct mem_cgroup *memcg)
646 {
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649 }
650
651 static void drain_all_stock_async(struct mem_cgroup *memcg);
652
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655 {
656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661 {
662 return &memcg->css;
663 }
664
665 static struct mem_cgroup_per_zone *
666 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667 {
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
670
671 return mem_cgroup_zoneinfo(memcg, nid, zid);
672 }
673
674 static struct mem_cgroup_tree_per_zone *
675 soft_limit_tree_node_zone(int nid, int zid)
676 {
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 }
679
680 static struct mem_cgroup_tree_per_zone *
681 soft_limit_tree_from_page(struct page *page)
682 {
683 int nid = page_to_nid(page);
684 int zid = page_zonenum(page);
685
686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687 }
688
689 static void
690 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691 struct mem_cgroup_per_zone *mz,
692 struct mem_cgroup_tree_per_zone *mctz,
693 unsigned long long new_usage_in_excess)
694 {
695 struct rb_node **p = &mctz->rb_root.rb_node;
696 struct rb_node *parent = NULL;
697 struct mem_cgroup_per_zone *mz_node;
698
699 if (mz->on_tree)
700 return;
701
702 mz->usage_in_excess = new_usage_in_excess;
703 if (!mz->usage_in_excess)
704 return;
705 while (*p) {
706 parent = *p;
707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 tree_node);
709 if (mz->usage_in_excess < mz_node->usage_in_excess)
710 p = &(*p)->rb_left;
711 /*
712 * We can't avoid mem cgroups that are over their soft
713 * limit by the same amount
714 */
715 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&mz->tree_node, parent, p);
719 rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = true;
721 }
722
723 static void
724 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
727 {
728 if (!mz->on_tree)
729 return;
730 rb_erase(&mz->tree_node, &mctz->rb_root);
731 mz->on_tree = false;
732 }
733
734 static void
735 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz)
738 {
739 spin_lock(&mctz->lock);
740 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 spin_unlock(&mctz->lock);
742 }
743
744
745 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746 {
747 unsigned long long excess;
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
750 int nid = page_to_nid(page);
751 int zid = page_zonenum(page);
752 mctz = soft_limit_tree_from_page(page);
753
754 /*
755 * Necessary to update all ancestors when hierarchy is used.
756 * because their event counter is not touched.
757 */
758 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 excess = res_counter_soft_limit_excess(&memcg->res);
761 /*
762 * We have to update the tree if mz is on RB-tree or
763 * mem is over its softlimit.
764 */
765 if (excess || mz->on_tree) {
766 spin_lock(&mctz->lock);
767 /* if on-tree, remove it */
768 if (mz->on_tree)
769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 /*
771 * Insert again. mz->usage_in_excess will be updated.
772 * If excess is 0, no tree ops.
773 */
774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 spin_unlock(&mctz->lock);
776 }
777 }
778 }
779
780 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 {
782 int node, zone;
783 struct mem_cgroup_per_zone *mz;
784 struct mem_cgroup_tree_per_zone *mctz;
785
786 for_each_node(node) {
787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788 mz = mem_cgroup_zoneinfo(memcg, node, zone);
789 mctz = soft_limit_tree_node_zone(node, zone);
790 mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 }
792 }
793 }
794
795 static struct mem_cgroup_per_zone *
796 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797 {
798 struct rb_node *rightmost = NULL;
799 struct mem_cgroup_per_zone *mz;
800
801 retry:
802 mz = NULL;
803 rightmost = rb_last(&mctz->rb_root);
804 if (!rightmost)
805 goto done; /* Nothing to reclaim from */
806
807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 /*
809 * Remove the node now but someone else can add it back,
810 * we will to add it back at the end of reclaim to its correct
811 * position in the tree.
812 */
813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 !css_tryget(&mz->memcg->css))
816 goto retry;
817 done:
818 return mz;
819 }
820
821 static struct mem_cgroup_per_zone *
822 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct mem_cgroup_per_zone *mz;
825
826 spin_lock(&mctz->lock);
827 mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 spin_unlock(&mctz->lock);
829 return mz;
830 }
831
832 /*
833 * Implementation Note: reading percpu statistics for memcg.
834 *
835 * Both of vmstat[] and percpu_counter has threshold and do periodic
836 * synchronization to implement "quick" read. There are trade-off between
837 * reading cost and precision of value. Then, we may have a chance to implement
838 * a periodic synchronizion of counter in memcg's counter.
839 *
840 * But this _read() function is used for user interface now. The user accounts
841 * memory usage by memory cgroup and he _always_ requires exact value because
842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843 * have to visit all online cpus and make sum. So, for now, unnecessary
844 * synchronization is not implemented. (just implemented for cpu hotplug)
845 *
846 * If there are kernel internal actions which can make use of some not-exact
847 * value, and reading all cpu value can be performance bottleneck in some
848 * common workload, threashold and synchonization as vmstat[] should be
849 * implemented.
850 */
851 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852 enum mem_cgroup_stat_index idx)
853 {
854 long val = 0;
855 int cpu;
856
857 get_online_cpus();
858 for_each_online_cpu(cpu)
859 val += per_cpu(memcg->stat->count[idx], cpu);
860 #ifdef CONFIG_HOTPLUG_CPU
861 spin_lock(&memcg->pcp_counter_lock);
862 val += memcg->nocpu_base.count[idx];
863 spin_unlock(&memcg->pcp_counter_lock);
864 #endif
865 put_online_cpus();
866 return val;
867 }
868
869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 bool charge)
871 {
872 int val = (charge) ? 1 : -1;
873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 }
875
876 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 enum mem_cgroup_events_index idx)
878 {
879 unsigned long val = 0;
880 int cpu;
881
882 for_each_online_cpu(cpu)
883 val += per_cpu(memcg->stat->events[idx], cpu);
884 #ifdef CONFIG_HOTPLUG_CPU
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.events[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
888 #endif
889 return val;
890 }
891
892 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893 struct page *page,
894 bool anon, int nr_pages)
895 {
896 preempt_disable();
897
898 /*
899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 * counted as CACHE even if it's on ANON LRU.
901 */
902 if (anon)
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904 nr_pages);
905 else
906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907 nr_pages);
908
909 if (PageTransHuge(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 nr_pages);
912
913 /* pagein of a big page is an event. So, ignore page size */
914 if (nr_pages > 0)
915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916 else {
917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 nr_pages = -nr_pages; /* for event */
919 }
920
921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922
923 preempt_enable();
924 }
925
926 unsigned long
927 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 {
929 struct mem_cgroup_per_zone *mz;
930
931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 return mz->lru_size[lru];
933 }
934
935 static unsigned long
936 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937 unsigned int lru_mask)
938 {
939 struct mem_cgroup_per_zone *mz;
940 enum lru_list lru;
941 unsigned long ret = 0;
942
943 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944
945 for_each_lru(lru) {
946 if (BIT(lru) & lru_mask)
947 ret += mz->lru_size[lru];
948 }
949 return ret;
950 }
951
952 static unsigned long
953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 int nid, unsigned int lru_mask)
955 {
956 u64 total = 0;
957 int zid;
958
959 for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 total += mem_cgroup_zone_nr_lru_pages(memcg,
961 nid, zid, lru_mask);
962
963 return total;
964 }
965
966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967 unsigned int lru_mask)
968 {
969 int nid;
970 u64 total = 0;
971
972 for_each_node_state(nid, N_MEMORY)
973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974 return total;
975 }
976
977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
979 {
980 unsigned long val, next;
981
982 val = __this_cpu_read(memcg->stat->nr_page_events);
983 next = __this_cpu_read(memcg->stat->targets[target]);
984 /* from time_after() in jiffies.h */
985 if ((long)next - (long)val < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 case MEM_CGROUP_TARGET_NUMAINFO:
994 next = val + NUMAINFO_EVENTS_TARGET;
995 break;
996 default:
997 break;
998 }
999 __this_cpu_write(memcg->stat->targets[target], next);
1000 return true;
1001 }
1002 return false;
1003 }
1004
1005 /*
1006 * Check events in order.
1007 *
1008 */
1009 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010 {
1011 preempt_disable();
1012 /* threshold event is triggered in finer grain than soft limit */
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
1015 bool do_softlimit;
1016 bool do_numainfo __maybe_unused;
1017
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
1020 #if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023 #endif
1024 preempt_enable();
1025
1026 mem_cgroup_threshold(memcg);
1027 if (unlikely(do_softlimit))
1028 mem_cgroup_update_tree(memcg, page);
1029 #if MAX_NUMNODES > 1
1030 if (unlikely(do_numainfo))
1031 atomic_inc(&memcg->numainfo_events);
1032 #endif
1033 } else
1034 preempt_enable();
1035 }
1036
1037 static inline struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1038 {
1039 return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1053 }
1054
1055 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 if (!mm)
1060 return NULL;
1061 /*
1062 * Because we have no locks, mm->owner's may be being moved to other
1063 * cgroup. We use css_tryget() here even if this looks
1064 * pessimistic (rather than adding locks here).
1065 */
1066 rcu_read_lock();
1067 do {
1068 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1069 if (unlikely(!memcg))
1070 break;
1071 } while (!css_tryget(&memcg->css));
1072 rcu_read_unlock();
1073 return memcg;
1074 }
1075
1076 /*
1077 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1078 * ref. count) or NULL if the whole root's subtree has been visited.
1079 *
1080 * helper function to be used by mem_cgroup_iter
1081 */
1082 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1083 struct mem_cgroup *last_visited)
1084 {
1085 struct cgroup_subsys_state *prev_css, *next_css;
1086
1087 /*
1088 * Root is not visited by cgroup iterators so it needs an
1089 * explicit visit.
1090 */
1091 if (!last_visited)
1092 return root;
1093
1094 prev_css = (last_visited == root) ? NULL : &last_visited->css;
1095 skip_node:
1096 next_css = css_next_descendant_pre(prev_css, &root->css);
1097
1098 /*
1099 * Even if we found a group we have to make sure it is
1100 * alive. css && !memcg means that the groups should be
1101 * skipped and we should continue the tree walk.
1102 * last_visited css is safe to use because it is
1103 * protected by css_get and the tree walk is rcu safe.
1104 */
1105 if (next_css) {
1106 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1107
1108 if (css_tryget(&mem->css))
1109 return mem;
1110 else {
1111 prev_css = next_css;
1112 goto skip_node;
1113 }
1114 }
1115
1116 return NULL;
1117 }
1118
1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120 {
1121 /*
1122 * When a group in the hierarchy below root is destroyed, the
1123 * hierarchy iterator can no longer be trusted since it might
1124 * have pointed to the destroyed group. Invalidate it.
1125 */
1126 atomic_inc(&root->dead_count);
1127 }
1128
1129 static struct mem_cgroup *
1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 struct mem_cgroup *root,
1132 int *sequence)
1133 {
1134 struct mem_cgroup *position = NULL;
1135 /*
1136 * A cgroup destruction happens in two stages: offlining and
1137 * release. They are separated by a RCU grace period.
1138 *
1139 * If the iterator is valid, we may still race with an
1140 * offlining. The RCU lock ensures the object won't be
1141 * released, tryget will fail if we lost the race.
1142 */
1143 *sequence = atomic_read(&root->dead_count);
1144 if (iter->last_dead_count == *sequence) {
1145 smp_rmb();
1146 position = iter->last_visited;
1147 if (position && !css_tryget(&position->css))
1148 position = NULL;
1149 }
1150 return position;
1151 }
1152
1153 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1154 struct mem_cgroup *last_visited,
1155 struct mem_cgroup *new_position,
1156 int sequence)
1157 {
1158 if (last_visited)
1159 css_put(&last_visited->css);
1160 /*
1161 * We store the sequence count from the time @last_visited was
1162 * loaded successfully instead of rereading it here so that we
1163 * don't lose destruction events in between. We could have
1164 * raced with the destruction of @new_position after all.
1165 */
1166 iter->last_visited = new_position;
1167 smp_wmb();
1168 iter->last_dead_count = sequence;
1169 }
1170
1171 /**
1172 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1173 * @root: hierarchy root
1174 * @prev: previously returned memcg, NULL on first invocation
1175 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1176 *
1177 * Returns references to children of the hierarchy below @root, or
1178 * @root itself, or %NULL after a full round-trip.
1179 *
1180 * Caller must pass the return value in @prev on subsequent
1181 * invocations for reference counting, or use mem_cgroup_iter_break()
1182 * to cancel a hierarchy walk before the round-trip is complete.
1183 *
1184 * Reclaimers can specify a zone and a priority level in @reclaim to
1185 * divide up the memcgs in the hierarchy among all concurrent
1186 * reclaimers operating on the same zone and priority.
1187 */
1188 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1189 struct mem_cgroup *prev,
1190 struct mem_cgroup_reclaim_cookie *reclaim)
1191 {
1192 struct mem_cgroup *memcg = NULL;
1193 struct mem_cgroup *last_visited = NULL;
1194
1195 if (mem_cgroup_disabled())
1196 return NULL;
1197
1198 if (!root)
1199 root = root_mem_cgroup;
1200
1201 if (prev && !reclaim)
1202 last_visited = prev;
1203
1204 if (!root->use_hierarchy && root != root_mem_cgroup) {
1205 if (prev)
1206 goto out_css_put;
1207 return root;
1208 }
1209
1210 rcu_read_lock();
1211 while (!memcg) {
1212 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1213 int uninitialized_var(seq);
1214
1215 if (reclaim) {
1216 int nid = zone_to_nid(reclaim->zone);
1217 int zid = zone_idx(reclaim->zone);
1218 struct mem_cgroup_per_zone *mz;
1219
1220 mz = mem_cgroup_zoneinfo(root, nid, zid);
1221 iter = &mz->reclaim_iter[reclaim->priority];
1222 if (prev && reclaim->generation != iter->generation) {
1223 iter->last_visited = NULL;
1224 goto out_unlock;
1225 }
1226
1227 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1228 }
1229
1230 memcg = __mem_cgroup_iter_next(root, last_visited);
1231
1232 if (reclaim) {
1233 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1234
1235 if (!memcg)
1236 iter->generation++;
1237 else if (!prev && memcg)
1238 reclaim->generation = iter->generation;
1239 }
1240
1241 if (prev && !memcg)
1242 goto out_unlock;
1243 }
1244 out_unlock:
1245 rcu_read_unlock();
1246 out_css_put:
1247 if (prev && prev != root)
1248 css_put(&prev->css);
1249
1250 return memcg;
1251 }
1252
1253 /**
1254 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1255 * @root: hierarchy root
1256 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1257 */
1258 void mem_cgroup_iter_break(struct mem_cgroup *root,
1259 struct mem_cgroup *prev)
1260 {
1261 if (!root)
1262 root = root_mem_cgroup;
1263 if (prev && prev != root)
1264 css_put(&prev->css);
1265 }
1266
1267 /*
1268 * Iteration constructs for visiting all cgroups (under a tree). If
1269 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1270 * be used for reference counting.
1271 */
1272 #define for_each_mem_cgroup_tree(iter, root) \
1273 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1274 iter != NULL; \
1275 iter = mem_cgroup_iter(root, iter, NULL))
1276
1277 #define for_each_mem_cgroup(iter) \
1278 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1279 iter != NULL; \
1280 iter = mem_cgroup_iter(NULL, iter, NULL))
1281
1282 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1283 {
1284 struct mem_cgroup *memcg;
1285
1286 rcu_read_lock();
1287 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1288 if (unlikely(!memcg))
1289 goto out;
1290
1291 switch (idx) {
1292 case PGFAULT:
1293 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1294 break;
1295 case PGMAJFAULT:
1296 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1297 break;
1298 default:
1299 BUG();
1300 }
1301 out:
1302 rcu_read_unlock();
1303 }
1304 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1305
1306 /**
1307 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1308 * @zone: zone of the wanted lruvec
1309 * @memcg: memcg of the wanted lruvec
1310 *
1311 * Returns the lru list vector holding pages for the given @zone and
1312 * @mem. This can be the global zone lruvec, if the memory controller
1313 * is disabled.
1314 */
1315 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1316 struct mem_cgroup *memcg)
1317 {
1318 struct mem_cgroup_per_zone *mz;
1319 struct lruvec *lruvec;
1320
1321 if (mem_cgroup_disabled()) {
1322 lruvec = &zone->lruvec;
1323 goto out;
1324 }
1325
1326 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1327 lruvec = &mz->lruvec;
1328 out:
1329 /*
1330 * Since a node can be onlined after the mem_cgroup was created,
1331 * we have to be prepared to initialize lruvec->zone here;
1332 * and if offlined then reonlined, we need to reinitialize it.
1333 */
1334 if (unlikely(lruvec->zone != zone))
1335 lruvec->zone = zone;
1336 return lruvec;
1337 }
1338
1339 /*
1340 * Following LRU functions are allowed to be used without PCG_LOCK.
1341 * Operations are called by routine of global LRU independently from memcg.
1342 * What we have to take care of here is validness of pc->mem_cgroup.
1343 *
1344 * Changes to pc->mem_cgroup happens when
1345 * 1. charge
1346 * 2. moving account
1347 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1348 * It is added to LRU before charge.
1349 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1350 * When moving account, the page is not on LRU. It's isolated.
1351 */
1352
1353 /**
1354 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1355 * @page: the page
1356 * @zone: zone of the page
1357 */
1358 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1359 {
1360 struct mem_cgroup_per_zone *mz;
1361 struct mem_cgroup *memcg;
1362 struct page_cgroup *pc;
1363 struct lruvec *lruvec;
1364
1365 if (mem_cgroup_disabled()) {
1366 lruvec = &zone->lruvec;
1367 goto out;
1368 }
1369
1370 pc = lookup_page_cgroup(page);
1371 memcg = pc->mem_cgroup;
1372
1373 /*
1374 * Surreptitiously switch any uncharged offlist page to root:
1375 * an uncharged page off lru does nothing to secure
1376 * its former mem_cgroup from sudden removal.
1377 *
1378 * Our caller holds lru_lock, and PageCgroupUsed is updated
1379 * under page_cgroup lock: between them, they make all uses
1380 * of pc->mem_cgroup safe.
1381 */
1382 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1383 pc->mem_cgroup = memcg = root_mem_cgroup;
1384
1385 mz = page_cgroup_zoneinfo(memcg, page);
1386 lruvec = &mz->lruvec;
1387 out:
1388 /*
1389 * Since a node can be onlined after the mem_cgroup was created,
1390 * we have to be prepared to initialize lruvec->zone here;
1391 * and if offlined then reonlined, we need to reinitialize it.
1392 */
1393 if (unlikely(lruvec->zone != zone))
1394 lruvec->zone = zone;
1395 return lruvec;
1396 }
1397
1398 /**
1399 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1400 * @lruvec: mem_cgroup per zone lru vector
1401 * @lru: index of lru list the page is sitting on
1402 * @nr_pages: positive when adding or negative when removing
1403 *
1404 * This function must be called when a page is added to or removed from an
1405 * lru list.
1406 */
1407 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1408 int nr_pages)
1409 {
1410 struct mem_cgroup_per_zone *mz;
1411 unsigned long *lru_size;
1412
1413 if (mem_cgroup_disabled())
1414 return;
1415
1416 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1417 lru_size = mz->lru_size + lru;
1418 *lru_size += nr_pages;
1419 VM_BUG_ON((long)(*lru_size) < 0);
1420 }
1421
1422 /*
1423 * Checks whether given mem is same or in the root_mem_cgroup's
1424 * hierarchy subtree
1425 */
1426 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 struct mem_cgroup *memcg)
1428 {
1429 if (root_memcg == memcg)
1430 return true;
1431 if (!root_memcg->use_hierarchy || !memcg)
1432 return false;
1433 return css_is_ancestor(&memcg->css, &root_memcg->css);
1434 }
1435
1436 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1437 struct mem_cgroup *memcg)
1438 {
1439 bool ret;
1440
1441 rcu_read_lock();
1442 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1443 rcu_read_unlock();
1444 return ret;
1445 }
1446
1447 bool task_in_mem_cgroup(struct task_struct *task,
1448 const struct mem_cgroup *memcg)
1449 {
1450 struct mem_cgroup *curr = NULL;
1451 struct task_struct *p;
1452 bool ret;
1453
1454 p = find_lock_task_mm(task);
1455 if (p) {
1456 curr = try_get_mem_cgroup_from_mm(p->mm);
1457 task_unlock(p);
1458 } else {
1459 /*
1460 * All threads may have already detached their mm's, but the oom
1461 * killer still needs to detect if they have already been oom
1462 * killed to prevent needlessly killing additional tasks.
1463 */
1464 rcu_read_lock();
1465 curr = mem_cgroup_from_task(task);
1466 if (curr)
1467 css_get(&curr->css);
1468 rcu_read_unlock();
1469 }
1470 if (!curr)
1471 return false;
1472 /*
1473 * We should check use_hierarchy of "memcg" not "curr". Because checking
1474 * use_hierarchy of "curr" here make this function true if hierarchy is
1475 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1476 * hierarchy(even if use_hierarchy is disabled in "memcg").
1477 */
1478 ret = mem_cgroup_same_or_subtree(memcg, curr);
1479 css_put(&curr->css);
1480 return ret;
1481 }
1482
1483 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1484 {
1485 unsigned long inactive_ratio;
1486 unsigned long inactive;
1487 unsigned long active;
1488 unsigned long gb;
1489
1490 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1491 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1492
1493 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1494 if (gb)
1495 inactive_ratio = int_sqrt(10 * gb);
1496 else
1497 inactive_ratio = 1;
1498
1499 return inactive * inactive_ratio < active;
1500 }
1501
1502 #define mem_cgroup_from_res_counter(counter, member) \
1503 container_of(counter, struct mem_cgroup, member)
1504
1505 /**
1506 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1507 * @memcg: the memory cgroup
1508 *
1509 * Returns the maximum amount of memory @mem can be charged with, in
1510 * pages.
1511 */
1512 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1513 {
1514 unsigned long long margin;
1515
1516 margin = res_counter_margin(&memcg->res);
1517 if (do_swap_account)
1518 margin = min(margin, res_counter_margin(&memcg->memsw));
1519 return margin >> PAGE_SHIFT;
1520 }
1521
1522 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1523 {
1524 /* root ? */
1525 if (!css_parent(&memcg->css))
1526 return vm_swappiness;
1527
1528 return memcg->swappiness;
1529 }
1530
1531 /*
1532 * memcg->moving_account is used for checking possibility that some thread is
1533 * calling move_account(). When a thread on CPU-A starts moving pages under
1534 * a memcg, other threads should check memcg->moving_account under
1535 * rcu_read_lock(), like this:
1536 *
1537 * CPU-A CPU-B
1538 * rcu_read_lock()
1539 * memcg->moving_account+1 if (memcg->mocing_account)
1540 * take heavy locks.
1541 * synchronize_rcu() update something.
1542 * rcu_read_unlock()
1543 * start move here.
1544 */
1545
1546 /* for quick checking without looking up memcg */
1547 atomic_t memcg_moving __read_mostly;
1548
1549 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1550 {
1551 atomic_inc(&memcg_moving);
1552 atomic_inc(&memcg->moving_account);
1553 synchronize_rcu();
1554 }
1555
1556 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1557 {
1558 /*
1559 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1560 * We check NULL in callee rather than caller.
1561 */
1562 if (memcg) {
1563 atomic_dec(&memcg_moving);
1564 atomic_dec(&memcg->moving_account);
1565 }
1566 }
1567
1568 /*
1569 * 2 routines for checking "mem" is under move_account() or not.
1570 *
1571 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1572 * is used for avoiding races in accounting. If true,
1573 * pc->mem_cgroup may be overwritten.
1574 *
1575 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1576 * under hierarchy of moving cgroups. This is for
1577 * waiting at hith-memory prressure caused by "move".
1578 */
1579
1580 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1581 {
1582 VM_BUG_ON(!rcu_read_lock_held());
1583 return atomic_read(&memcg->moving_account) > 0;
1584 }
1585
1586 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587 {
1588 struct mem_cgroup *from;
1589 struct mem_cgroup *to;
1590 bool ret = false;
1591 /*
1592 * Unlike task_move routines, we access mc.to, mc.from not under
1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 */
1595 spin_lock(&mc.lock);
1596 from = mc.from;
1597 to = mc.to;
1598 if (!from)
1599 goto unlock;
1600
1601 ret = mem_cgroup_same_or_subtree(memcg, from)
1602 || mem_cgroup_same_or_subtree(memcg, to);
1603 unlock:
1604 spin_unlock(&mc.lock);
1605 return ret;
1606 }
1607
1608 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 {
1610 if (mc.moving_task && current != mc.moving_task) {
1611 if (mem_cgroup_under_move(memcg)) {
1612 DEFINE_WAIT(wait);
1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 /* moving charge context might have finished. */
1615 if (mc.moving_task)
1616 schedule();
1617 finish_wait(&mc.waitq, &wait);
1618 return true;
1619 }
1620 }
1621 return false;
1622 }
1623
1624 /*
1625 * Take this lock when
1626 * - a code tries to modify page's memcg while it's USED.
1627 * - a code tries to modify page state accounting in a memcg.
1628 * see mem_cgroup_stolen(), too.
1629 */
1630 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1631 unsigned long *flags)
1632 {
1633 spin_lock_irqsave(&memcg->move_lock, *flags);
1634 }
1635
1636 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638 {
1639 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1640 }
1641
1642 #define K(x) ((x) << (PAGE_SHIFT-10))
1643 /**
1644 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1645 * @memcg: The memory cgroup that went over limit
1646 * @p: Task that is going to be killed
1647 *
1648 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1649 * enabled
1650 */
1651 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1652 {
1653 struct cgroup *task_cgrp;
1654 struct cgroup *mem_cgrp;
1655 /*
1656 * Need a buffer in BSS, can't rely on allocations. The code relies
1657 * on the assumption that OOM is serialized for memory controller.
1658 * If this assumption is broken, revisit this code.
1659 */
1660 static char memcg_name[PATH_MAX];
1661 int ret;
1662 struct mem_cgroup *iter;
1663 unsigned int i;
1664
1665 if (!p)
1666 return;
1667
1668 rcu_read_lock();
1669
1670 mem_cgrp = memcg->css.cgroup;
1671 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1672
1673 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1674 if (ret < 0) {
1675 /*
1676 * Unfortunately, we are unable to convert to a useful name
1677 * But we'll still print out the usage information
1678 */
1679 rcu_read_unlock();
1680 goto done;
1681 }
1682 rcu_read_unlock();
1683
1684 pr_info("Task in %s killed", memcg_name);
1685
1686 rcu_read_lock();
1687 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1688 if (ret < 0) {
1689 rcu_read_unlock();
1690 goto done;
1691 }
1692 rcu_read_unlock();
1693
1694 /*
1695 * Continues from above, so we don't need an KERN_ level
1696 */
1697 pr_cont(" as a result of limit of %s\n", memcg_name);
1698 done:
1699
1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1712
1713 for_each_mem_cgroup_tree(iter, memcg) {
1714 pr_info("Memory cgroup stats");
1715
1716 rcu_read_lock();
1717 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1718 if (!ret)
1719 pr_cont(" for %s", memcg_name);
1720 rcu_read_unlock();
1721 pr_cont(":");
1722
1723 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1724 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1725 continue;
1726 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1727 K(mem_cgroup_read_stat(iter, i)));
1728 }
1729
1730 for (i = 0; i < NR_LRU_LISTS; i++)
1731 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1732 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1733
1734 pr_cont("\n");
1735 }
1736 }
1737
1738 /*
1739 * This function returns the number of memcg under hierarchy tree. Returns
1740 * 1(self count) if no children.
1741 */
1742 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1743 {
1744 int num = 0;
1745 struct mem_cgroup *iter;
1746
1747 for_each_mem_cgroup_tree(iter, memcg)
1748 num++;
1749 return num;
1750 }
1751
1752 /*
1753 * Return the memory (and swap, if configured) limit for a memcg.
1754 */
1755 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1756 {
1757 u64 limit;
1758
1759 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1760
1761 /*
1762 * Do not consider swap space if we cannot swap due to swappiness
1763 */
1764 if (mem_cgroup_swappiness(memcg)) {
1765 u64 memsw;
1766
1767 limit += total_swap_pages << PAGE_SHIFT;
1768 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1769
1770 /*
1771 * If memsw is finite and limits the amount of swap space
1772 * available to this memcg, return that limit.
1773 */
1774 limit = min(limit, memsw);
1775 }
1776
1777 return limit;
1778 }
1779
1780 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 int order)
1782 {
1783 struct mem_cgroup *iter;
1784 unsigned long chosen_points = 0;
1785 unsigned long totalpages;
1786 unsigned int points = 0;
1787 struct task_struct *chosen = NULL;
1788
1789 /*
1790 * If current has a pending SIGKILL or is exiting, then automatically
1791 * select it. The goal is to allow it to allocate so that it may
1792 * quickly exit and free its memory.
1793 */
1794 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1795 set_thread_flag(TIF_MEMDIE);
1796 return;
1797 }
1798
1799 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1800 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 struct cgroup *cgroup = iter->css.cgroup;
1803 struct cgroup_iter it;
1804 struct task_struct *task;
1805
1806 cgroup_iter_start(cgroup, &it);
1807 while ((task = cgroup_iter_next(cgroup, &it))) {
1808 switch (oom_scan_process_thread(task, totalpages, NULL,
1809 false)) {
1810 case OOM_SCAN_SELECT:
1811 if (chosen)
1812 put_task_struct(chosen);
1813 chosen = task;
1814 chosen_points = ULONG_MAX;
1815 get_task_struct(chosen);
1816 /* fall through */
1817 case OOM_SCAN_CONTINUE:
1818 continue;
1819 case OOM_SCAN_ABORT:
1820 cgroup_iter_end(cgroup, &it);
1821 mem_cgroup_iter_break(memcg, iter);
1822 if (chosen)
1823 put_task_struct(chosen);
1824 return;
1825 case OOM_SCAN_OK:
1826 break;
1827 };
1828 points = oom_badness(task, memcg, NULL, totalpages);
1829 if (points > chosen_points) {
1830 if (chosen)
1831 put_task_struct(chosen);
1832 chosen = task;
1833 chosen_points = points;
1834 get_task_struct(chosen);
1835 }
1836 }
1837 cgroup_iter_end(cgroup, &it);
1838 }
1839
1840 if (!chosen)
1841 return;
1842 points = chosen_points * 1000 / totalpages;
1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 NULL, "Memory cgroup out of memory");
1845 }
1846
1847 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 gfp_t gfp_mask,
1849 unsigned long flags)
1850 {
1851 unsigned long total = 0;
1852 bool noswap = false;
1853 int loop;
1854
1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 noswap = true;
1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 noswap = true;
1859
1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 if (loop)
1862 drain_all_stock_async(memcg);
1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 /*
1865 * Allow limit shrinkers, which are triggered directly
1866 * by userspace, to catch signals and stop reclaim
1867 * after minimal progress, regardless of the margin.
1868 */
1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 break;
1871 if (mem_cgroup_margin(memcg))
1872 break;
1873 /*
1874 * If nothing was reclaimed after two attempts, there
1875 * may be no reclaimable pages in this hierarchy.
1876 */
1877 if (loop && !total)
1878 break;
1879 }
1880 return total;
1881 }
1882
1883 /**
1884 * test_mem_cgroup_node_reclaimable
1885 * @memcg: the target memcg
1886 * @nid: the node ID to be checked.
1887 * @noswap : specify true here if the user wants flle only information.
1888 *
1889 * This function returns whether the specified memcg contains any
1890 * reclaimable pages on a node. Returns true if there are any reclaimable
1891 * pages in the node.
1892 */
1893 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1894 int nid, bool noswap)
1895 {
1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1897 return true;
1898 if (noswap || !total_swap_pages)
1899 return false;
1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1901 return true;
1902 return false;
1903
1904 }
1905 #if MAX_NUMNODES > 1
1906
1907 /*
1908 * Always updating the nodemask is not very good - even if we have an empty
1909 * list or the wrong list here, we can start from some node and traverse all
1910 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911 *
1912 */
1913 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1914 {
1915 int nid;
1916 /*
1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 * pagein/pageout changes since the last update.
1919 */
1920 if (!atomic_read(&memcg->numainfo_events))
1921 return;
1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1923 return;
1924
1925 /* make a nodemask where this memcg uses memory from */
1926 memcg->scan_nodes = node_states[N_MEMORY];
1927
1928 for_each_node_mask(nid, node_states[N_MEMORY]) {
1929
1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 node_clear(nid, memcg->scan_nodes);
1932 }
1933
1934 atomic_set(&memcg->numainfo_events, 0);
1935 atomic_set(&memcg->numainfo_updating, 0);
1936 }
1937
1938 /*
1939 * Selecting a node where we start reclaim from. Because what we need is just
1940 * reducing usage counter, start from anywhere is O,K. Considering
1941 * memory reclaim from current node, there are pros. and cons.
1942 *
1943 * Freeing memory from current node means freeing memory from a node which
1944 * we'll use or we've used. So, it may make LRU bad. And if several threads
1945 * hit limits, it will see a contention on a node. But freeing from remote
1946 * node means more costs for memory reclaim because of memory latency.
1947 *
1948 * Now, we use round-robin. Better algorithm is welcomed.
1949 */
1950 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1951 {
1952 int node;
1953
1954 mem_cgroup_may_update_nodemask(memcg);
1955 node = memcg->last_scanned_node;
1956
1957 node = next_node(node, memcg->scan_nodes);
1958 if (node == MAX_NUMNODES)
1959 node = first_node(memcg->scan_nodes);
1960 /*
1961 * We call this when we hit limit, not when pages are added to LRU.
1962 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 * memcg is too small and all pages are not on LRU. In that case,
1964 * we use curret node.
1965 */
1966 if (unlikely(node == MAX_NUMNODES))
1967 node = numa_node_id();
1968
1969 memcg->last_scanned_node = node;
1970 return node;
1971 }
1972
1973 /*
1974 * Check all nodes whether it contains reclaimable pages or not.
1975 * For quick scan, we make use of scan_nodes. This will allow us to skip
1976 * unused nodes. But scan_nodes is lazily updated and may not cotain
1977 * enough new information. We need to do double check.
1978 */
1979 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1980 {
1981 int nid;
1982
1983 /*
1984 * quick check...making use of scan_node.
1985 * We can skip unused nodes.
1986 */
1987 if (!nodes_empty(memcg->scan_nodes)) {
1988 for (nid = first_node(memcg->scan_nodes);
1989 nid < MAX_NUMNODES;
1990 nid = next_node(nid, memcg->scan_nodes)) {
1991
1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1993 return true;
1994 }
1995 }
1996 /*
1997 * Check rest of nodes.
1998 */
1999 for_each_node_state(nid, N_MEMORY) {
2000 if (node_isset(nid, memcg->scan_nodes))
2001 continue;
2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2003 return true;
2004 }
2005 return false;
2006 }
2007
2008 #else
2009 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2010 {
2011 return 0;
2012 }
2013
2014 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015 {
2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2017 }
2018 #endif
2019
2020 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 struct zone *zone,
2022 gfp_t gfp_mask,
2023 unsigned long *total_scanned)
2024 {
2025 struct mem_cgroup *victim = NULL;
2026 int total = 0;
2027 int loop = 0;
2028 unsigned long excess;
2029 unsigned long nr_scanned;
2030 struct mem_cgroup_reclaim_cookie reclaim = {
2031 .zone = zone,
2032 .priority = 0,
2033 };
2034
2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2036
2037 while (1) {
2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2039 if (!victim) {
2040 loop++;
2041 if (loop >= 2) {
2042 /*
2043 * If we have not been able to reclaim
2044 * anything, it might because there are
2045 * no reclaimable pages under this hierarchy
2046 */
2047 if (!total)
2048 break;
2049 /*
2050 * We want to do more targeted reclaim.
2051 * excess >> 2 is not to excessive so as to
2052 * reclaim too much, nor too less that we keep
2053 * coming back to reclaim from this cgroup
2054 */
2055 if (total >= (excess >> 2) ||
2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2057 break;
2058 }
2059 continue;
2060 }
2061 if (!mem_cgroup_reclaimable(victim, false))
2062 continue;
2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 zone, &nr_scanned);
2065 *total_scanned += nr_scanned;
2066 if (!res_counter_soft_limit_excess(&root_memcg->res))
2067 break;
2068 }
2069 mem_cgroup_iter_break(root_memcg, victim);
2070 return total;
2071 }
2072
2073 /*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
2076 * Has to be called with memcg_oom_lock
2077 */
2078 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2079 {
2080 struct mem_cgroup *iter, *failed = NULL;
2081
2082 for_each_mem_cgroup_tree(iter, memcg) {
2083 if (iter->oom_lock) {
2084 /*
2085 * this subtree of our hierarchy is already locked
2086 * so we cannot give a lock.
2087 */
2088 failed = iter;
2089 mem_cgroup_iter_break(memcg, iter);
2090 break;
2091 } else
2092 iter->oom_lock = true;
2093 }
2094
2095 if (!failed)
2096 return true;
2097
2098 /*
2099 * OK, we failed to lock the whole subtree so we have to clean up
2100 * what we set up to the failing subtree
2101 */
2102 for_each_mem_cgroup_tree(iter, memcg) {
2103 if (iter == failed) {
2104 mem_cgroup_iter_break(memcg, iter);
2105 break;
2106 }
2107 iter->oom_lock = false;
2108 }
2109 return false;
2110 }
2111
2112 /*
2113 * Has to be called with memcg_oom_lock
2114 */
2115 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2116 {
2117 struct mem_cgroup *iter;
2118
2119 for_each_mem_cgroup_tree(iter, memcg)
2120 iter->oom_lock = false;
2121 return 0;
2122 }
2123
2124 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2125 {
2126 struct mem_cgroup *iter;
2127
2128 for_each_mem_cgroup_tree(iter, memcg)
2129 atomic_inc(&iter->under_oom);
2130 }
2131
2132 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2133 {
2134 struct mem_cgroup *iter;
2135
2136 /*
2137 * When a new child is created while the hierarchy is under oom,
2138 * mem_cgroup_oom_lock() may not be called. We have to use
2139 * atomic_add_unless() here.
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg)
2142 atomic_add_unless(&iter->under_oom, -1, 0);
2143 }
2144
2145 static DEFINE_SPINLOCK(memcg_oom_lock);
2146 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147
2148 struct oom_wait_info {
2149 struct mem_cgroup *memcg;
2150 wait_queue_t wait;
2151 };
2152
2153 static int memcg_oom_wake_function(wait_queue_t *wait,
2154 unsigned mode, int sync, void *arg)
2155 {
2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 struct mem_cgroup *oom_wait_memcg;
2158 struct oom_wait_info *oom_wait_info;
2159
2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2161 oom_wait_memcg = oom_wait_info->memcg;
2162
2163 /*
2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2165 * Then we can use css_is_ancestor without taking care of RCU.
2166 */
2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2169 return 0;
2170 return autoremove_wake_function(wait, mode, sync, arg);
2171 }
2172
2173 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2174 {
2175 /* for filtering, pass "memcg" as argument. */
2176 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2177 }
2178
2179 static void memcg_oom_recover(struct mem_cgroup *memcg)
2180 {
2181 if (memcg && atomic_read(&memcg->under_oom))
2182 memcg_wakeup_oom(memcg);
2183 }
2184
2185 /*
2186 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2187 */
2188 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2189 int order)
2190 {
2191 struct oom_wait_info owait;
2192 bool locked, need_to_kill;
2193
2194 owait.memcg = memcg;
2195 owait.wait.flags = 0;
2196 owait.wait.func = memcg_oom_wake_function;
2197 owait.wait.private = current;
2198 INIT_LIST_HEAD(&owait.wait.task_list);
2199 need_to_kill = true;
2200 mem_cgroup_mark_under_oom(memcg);
2201
2202 /* At first, try to OOM lock hierarchy under memcg.*/
2203 spin_lock(&memcg_oom_lock);
2204 locked = mem_cgroup_oom_lock(memcg);
2205 /*
2206 * Even if signal_pending(), we can't quit charge() loop without
2207 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2208 * under OOM is always welcomed, use TASK_KILLABLE here.
2209 */
2210 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2211 if (!locked || memcg->oom_kill_disable)
2212 need_to_kill = false;
2213 if (locked)
2214 mem_cgroup_oom_notify(memcg);
2215 spin_unlock(&memcg_oom_lock);
2216
2217 if (need_to_kill) {
2218 finish_wait(&memcg_oom_waitq, &owait.wait);
2219 mem_cgroup_out_of_memory(memcg, mask, order);
2220 } else {
2221 schedule();
2222 finish_wait(&memcg_oom_waitq, &owait.wait);
2223 }
2224 spin_lock(&memcg_oom_lock);
2225 if (locked)
2226 mem_cgroup_oom_unlock(memcg);
2227 memcg_wakeup_oom(memcg);
2228 spin_unlock(&memcg_oom_lock);
2229
2230 mem_cgroup_unmark_under_oom(memcg);
2231
2232 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2233 return false;
2234 /* Give chance to dying process */
2235 schedule_timeout_uninterruptible(1);
2236 return true;
2237 }
2238
2239 /*
2240 * Currently used to update mapped file statistics, but the routine can be
2241 * generalized to update other statistics as well.
2242 *
2243 * Notes: Race condition
2244 *
2245 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2246 * it tends to be costly. But considering some conditions, we doesn't need
2247 * to do so _always_.
2248 *
2249 * Considering "charge", lock_page_cgroup() is not required because all
2250 * file-stat operations happen after a page is attached to radix-tree. There
2251 * are no race with "charge".
2252 *
2253 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2254 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2255 * if there are race with "uncharge". Statistics itself is properly handled
2256 * by flags.
2257 *
2258 * Considering "move", this is an only case we see a race. To make the race
2259 * small, we check mm->moving_account and detect there are possibility of race
2260 * If there is, we take a lock.
2261 */
2262
2263 void __mem_cgroup_begin_update_page_stat(struct page *page,
2264 bool *locked, unsigned long *flags)
2265 {
2266 struct mem_cgroup *memcg;
2267 struct page_cgroup *pc;
2268
2269 pc = lookup_page_cgroup(page);
2270 again:
2271 memcg = pc->mem_cgroup;
2272 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273 return;
2274 /*
2275 * If this memory cgroup is not under account moving, we don't
2276 * need to take move_lock_mem_cgroup(). Because we already hold
2277 * rcu_read_lock(), any calls to move_account will be delayed until
2278 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2279 */
2280 if (!mem_cgroup_stolen(memcg))
2281 return;
2282
2283 move_lock_mem_cgroup(memcg, flags);
2284 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2285 move_unlock_mem_cgroup(memcg, flags);
2286 goto again;
2287 }
2288 *locked = true;
2289 }
2290
2291 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2292 {
2293 struct page_cgroup *pc = lookup_page_cgroup(page);
2294
2295 /*
2296 * It's guaranteed that pc->mem_cgroup never changes while
2297 * lock is held because a routine modifies pc->mem_cgroup
2298 * should take move_lock_mem_cgroup().
2299 */
2300 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2301 }
2302
2303 void mem_cgroup_update_page_stat(struct page *page,
2304 enum mem_cgroup_page_stat_item idx, int val)
2305 {
2306 struct mem_cgroup *memcg;
2307 struct page_cgroup *pc = lookup_page_cgroup(page);
2308 unsigned long uninitialized_var(flags);
2309
2310 if (mem_cgroup_disabled())
2311 return;
2312
2313 memcg = pc->mem_cgroup;
2314 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2315 return;
2316
2317 switch (idx) {
2318 case MEMCG_NR_FILE_MAPPED:
2319 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2320 break;
2321 default:
2322 BUG();
2323 }
2324
2325 this_cpu_add(memcg->stat->count[idx], val);
2326 }
2327
2328 /*
2329 * size of first charge trial. "32" comes from vmscan.c's magic value.
2330 * TODO: maybe necessary to use big numbers in big irons.
2331 */
2332 #define CHARGE_BATCH 32U
2333 struct memcg_stock_pcp {
2334 struct mem_cgroup *cached; /* this never be root cgroup */
2335 unsigned int nr_pages;
2336 struct work_struct work;
2337 unsigned long flags;
2338 #define FLUSHING_CACHED_CHARGE 0
2339 };
2340 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2341 static DEFINE_MUTEX(percpu_charge_mutex);
2342
2343 /**
2344 * consume_stock: Try to consume stocked charge on this cpu.
2345 * @memcg: memcg to consume from.
2346 * @nr_pages: how many pages to charge.
2347 *
2348 * The charges will only happen if @memcg matches the current cpu's memcg
2349 * stock, and at least @nr_pages are available in that stock. Failure to
2350 * service an allocation will refill the stock.
2351 *
2352 * returns true if successful, false otherwise.
2353 */
2354 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 {
2356 struct memcg_stock_pcp *stock;
2357 bool ret = true;
2358
2359 if (nr_pages > CHARGE_BATCH)
2360 return false;
2361
2362 stock = &get_cpu_var(memcg_stock);
2363 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2364 stock->nr_pages -= nr_pages;
2365 else /* need to call res_counter_charge */
2366 ret = false;
2367 put_cpu_var(memcg_stock);
2368 return ret;
2369 }
2370
2371 /*
2372 * Returns stocks cached in percpu to res_counter and reset cached information.
2373 */
2374 static void drain_stock(struct memcg_stock_pcp *stock)
2375 {
2376 struct mem_cgroup *old = stock->cached;
2377
2378 if (stock->nr_pages) {
2379 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2380
2381 res_counter_uncharge(&old->res, bytes);
2382 if (do_swap_account)
2383 res_counter_uncharge(&old->memsw, bytes);
2384 stock->nr_pages = 0;
2385 }
2386 stock->cached = NULL;
2387 }
2388
2389 /*
2390 * This must be called under preempt disabled or must be called by
2391 * a thread which is pinned to local cpu.
2392 */
2393 static void drain_local_stock(struct work_struct *dummy)
2394 {
2395 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2396 drain_stock(stock);
2397 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2398 }
2399
2400 static void __init memcg_stock_init(void)
2401 {
2402 int cpu;
2403
2404 for_each_possible_cpu(cpu) {
2405 struct memcg_stock_pcp *stock =
2406 &per_cpu(memcg_stock, cpu);
2407 INIT_WORK(&stock->work, drain_local_stock);
2408 }
2409 }
2410
2411 /*
2412 * Cache charges(val) which is from res_counter, to local per_cpu area.
2413 * This will be consumed by consume_stock() function, later.
2414 */
2415 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 {
2417 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2418
2419 if (stock->cached != memcg) { /* reset if necessary */
2420 drain_stock(stock);
2421 stock->cached = memcg;
2422 }
2423 stock->nr_pages += nr_pages;
2424 put_cpu_var(memcg_stock);
2425 }
2426
2427 /*
2428 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2429 * of the hierarchy under it. sync flag says whether we should block
2430 * until the work is done.
2431 */
2432 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2433 {
2434 int cpu, curcpu;
2435
2436 /* Notify other cpus that system-wide "drain" is running */
2437 get_online_cpus();
2438 curcpu = get_cpu();
2439 for_each_online_cpu(cpu) {
2440 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2441 struct mem_cgroup *memcg;
2442
2443 memcg = stock->cached;
2444 if (!memcg || !stock->nr_pages)
2445 continue;
2446 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2447 continue;
2448 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2449 if (cpu == curcpu)
2450 drain_local_stock(&stock->work);
2451 else
2452 schedule_work_on(cpu, &stock->work);
2453 }
2454 }
2455 put_cpu();
2456
2457 if (!sync)
2458 goto out;
2459
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2463 flush_work(&stock->work);
2464 }
2465 out:
2466 put_online_cpus();
2467 }
2468
2469 /*
2470 * Tries to drain stocked charges in other cpus. This function is asynchronous
2471 * and just put a work per cpu for draining localy on each cpu. Caller can
2472 * expects some charges will be back to res_counter later but cannot wait for
2473 * it.
2474 */
2475 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2476 {
2477 /*
2478 * If someone calls draining, avoid adding more kworker runs.
2479 */
2480 if (!mutex_trylock(&percpu_charge_mutex))
2481 return;
2482 drain_all_stock(root_memcg, false);
2483 mutex_unlock(&percpu_charge_mutex);
2484 }
2485
2486 /* This is a synchronous drain interface. */
2487 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2488 {
2489 /* called when force_empty is called */
2490 mutex_lock(&percpu_charge_mutex);
2491 drain_all_stock(root_memcg, true);
2492 mutex_unlock(&percpu_charge_mutex);
2493 }
2494
2495 /*
2496 * This function drains percpu counter value from DEAD cpu and
2497 * move it to local cpu. Note that this function can be preempted.
2498 */
2499 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2500 {
2501 int i;
2502
2503 spin_lock(&memcg->pcp_counter_lock);
2504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2505 long x = per_cpu(memcg->stat->count[i], cpu);
2506
2507 per_cpu(memcg->stat->count[i], cpu) = 0;
2508 memcg->nocpu_base.count[i] += x;
2509 }
2510 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2511 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2512
2513 per_cpu(memcg->stat->events[i], cpu) = 0;
2514 memcg->nocpu_base.events[i] += x;
2515 }
2516 spin_unlock(&memcg->pcp_counter_lock);
2517 }
2518
2519 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2520 unsigned long action,
2521 void *hcpu)
2522 {
2523 int cpu = (unsigned long)hcpu;
2524 struct memcg_stock_pcp *stock;
2525 struct mem_cgroup *iter;
2526
2527 if (action == CPU_ONLINE)
2528 return NOTIFY_OK;
2529
2530 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2531 return NOTIFY_OK;
2532
2533 for_each_mem_cgroup(iter)
2534 mem_cgroup_drain_pcp_counter(iter, cpu);
2535
2536 stock = &per_cpu(memcg_stock, cpu);
2537 drain_stock(stock);
2538 return NOTIFY_OK;
2539 }
2540
2541
2542 /* See __mem_cgroup_try_charge() for details */
2543 enum {
2544 CHARGE_OK, /* success */
2545 CHARGE_RETRY, /* need to retry but retry is not bad */
2546 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2547 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2548 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2549 };
2550
2551 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2552 unsigned int nr_pages, unsigned int min_pages,
2553 bool oom_check)
2554 {
2555 unsigned long csize = nr_pages * PAGE_SIZE;
2556 struct mem_cgroup *mem_over_limit;
2557 struct res_counter *fail_res;
2558 unsigned long flags = 0;
2559 int ret;
2560
2561 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2562
2563 if (likely(!ret)) {
2564 if (!do_swap_account)
2565 return CHARGE_OK;
2566 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2567 if (likely(!ret))
2568 return CHARGE_OK;
2569
2570 res_counter_uncharge(&memcg->res, csize);
2571 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2572 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2573 } else
2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2575 /*
2576 * Never reclaim on behalf of optional batching, retry with a
2577 * single page instead.
2578 */
2579 if (nr_pages > min_pages)
2580 return CHARGE_RETRY;
2581
2582 if (!(gfp_mask & __GFP_WAIT))
2583 return CHARGE_WOULDBLOCK;
2584
2585 if (gfp_mask & __GFP_NORETRY)
2586 return CHARGE_NOMEM;
2587
2588 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2589 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2590 return CHARGE_RETRY;
2591 /*
2592 * Even though the limit is exceeded at this point, reclaim
2593 * may have been able to free some pages. Retry the charge
2594 * before killing the task.
2595 *
2596 * Only for regular pages, though: huge pages are rather
2597 * unlikely to succeed so close to the limit, and we fall back
2598 * to regular pages anyway in case of failure.
2599 */
2600 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2601 return CHARGE_RETRY;
2602
2603 /*
2604 * At task move, charge accounts can be doubly counted. So, it's
2605 * better to wait until the end of task_move if something is going on.
2606 */
2607 if (mem_cgroup_wait_acct_move(mem_over_limit))
2608 return CHARGE_RETRY;
2609
2610 /* If we don't need to call oom-killer at el, return immediately */
2611 if (!oom_check)
2612 return CHARGE_NOMEM;
2613 /* check OOM */
2614 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2615 return CHARGE_OOM_DIE;
2616
2617 return CHARGE_RETRY;
2618 }
2619
2620 /*
2621 * __mem_cgroup_try_charge() does
2622 * 1. detect memcg to be charged against from passed *mm and *ptr,
2623 * 2. update res_counter
2624 * 3. call memory reclaim if necessary.
2625 *
2626 * In some special case, if the task is fatal, fatal_signal_pending() or
2627 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2628 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2629 * as possible without any hazards. 2: all pages should have a valid
2630 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2631 * pointer, that is treated as a charge to root_mem_cgroup.
2632 *
2633 * So __mem_cgroup_try_charge() will return
2634 * 0 ... on success, filling *ptr with a valid memcg pointer.
2635 * -ENOMEM ... charge failure because of resource limits.
2636 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2637 *
2638 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2639 * the oom-killer can be invoked.
2640 */
2641 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2642 gfp_t gfp_mask,
2643 unsigned int nr_pages,
2644 struct mem_cgroup **ptr,
2645 bool oom)
2646 {
2647 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2648 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649 struct mem_cgroup *memcg = NULL;
2650 int ret;
2651
2652 /*
2653 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2654 * in system level. So, allow to go ahead dying process in addition to
2655 * MEMDIE process.
2656 */
2657 if (unlikely(test_thread_flag(TIF_MEMDIE)
2658 || fatal_signal_pending(current)))
2659 goto bypass;
2660
2661 /*
2662 * We always charge the cgroup the mm_struct belongs to.
2663 * The mm_struct's mem_cgroup changes on task migration if the
2664 * thread group leader migrates. It's possible that mm is not
2665 * set, if so charge the root memcg (happens for pagecache usage).
2666 */
2667 if (!*ptr && !mm)
2668 *ptr = root_mem_cgroup;
2669 again:
2670 if (*ptr) { /* css should be a valid one */
2671 memcg = *ptr;
2672 if (mem_cgroup_is_root(memcg))
2673 goto done;
2674 if (consume_stock(memcg, nr_pages))
2675 goto done;
2676 css_get(&memcg->css);
2677 } else {
2678 struct task_struct *p;
2679
2680 rcu_read_lock();
2681 p = rcu_dereference(mm->owner);
2682 /*
2683 * Because we don't have task_lock(), "p" can exit.
2684 * In that case, "memcg" can point to root or p can be NULL with
2685 * race with swapoff. Then, we have small risk of mis-accouning.
2686 * But such kind of mis-account by race always happens because
2687 * we don't have cgroup_mutex(). It's overkill and we allo that
2688 * small race, here.
2689 * (*) swapoff at el will charge against mm-struct not against
2690 * task-struct. So, mm->owner can be NULL.
2691 */
2692 memcg = mem_cgroup_from_task(p);
2693 if (!memcg)
2694 memcg = root_mem_cgroup;
2695 if (mem_cgroup_is_root(memcg)) {
2696 rcu_read_unlock();
2697 goto done;
2698 }
2699 if (consume_stock(memcg, nr_pages)) {
2700 /*
2701 * It seems dagerous to access memcg without css_get().
2702 * But considering how consume_stok works, it's not
2703 * necessary. If consume_stock success, some charges
2704 * from this memcg are cached on this cpu. So, we
2705 * don't need to call css_get()/css_tryget() before
2706 * calling consume_stock().
2707 */
2708 rcu_read_unlock();
2709 goto done;
2710 }
2711 /* after here, we may be blocked. we need to get refcnt */
2712 if (!css_tryget(&memcg->css)) {
2713 rcu_read_unlock();
2714 goto again;
2715 }
2716 rcu_read_unlock();
2717 }
2718
2719 do {
2720 bool oom_check;
2721
2722 /* If killed, bypass charge */
2723 if (fatal_signal_pending(current)) {
2724 css_put(&memcg->css);
2725 goto bypass;
2726 }
2727
2728 oom_check = false;
2729 if (oom && !nr_oom_retries) {
2730 oom_check = true;
2731 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2732 }
2733
2734 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2735 oom_check);
2736 switch (ret) {
2737 case CHARGE_OK:
2738 break;
2739 case CHARGE_RETRY: /* not in OOM situation but retry */
2740 batch = nr_pages;
2741 css_put(&memcg->css);
2742 memcg = NULL;
2743 goto again;
2744 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2745 css_put(&memcg->css);
2746 goto nomem;
2747 case CHARGE_NOMEM: /* OOM routine works */
2748 if (!oom) {
2749 css_put(&memcg->css);
2750 goto nomem;
2751 }
2752 /* If oom, we never return -ENOMEM */
2753 nr_oom_retries--;
2754 break;
2755 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2756 css_put(&memcg->css);
2757 goto bypass;
2758 }
2759 } while (ret != CHARGE_OK);
2760
2761 if (batch > nr_pages)
2762 refill_stock(memcg, batch - nr_pages);
2763 css_put(&memcg->css);
2764 done:
2765 *ptr = memcg;
2766 return 0;
2767 nomem:
2768 *ptr = NULL;
2769 return -ENOMEM;
2770 bypass:
2771 *ptr = root_mem_cgroup;
2772 return -EINTR;
2773 }
2774
2775 /*
2776 * Somemtimes we have to undo a charge we got by try_charge().
2777 * This function is for that and do uncharge, put css's refcnt.
2778 * gotten by try_charge().
2779 */
2780 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2781 unsigned int nr_pages)
2782 {
2783 if (!mem_cgroup_is_root(memcg)) {
2784 unsigned long bytes = nr_pages * PAGE_SIZE;
2785
2786 res_counter_uncharge(&memcg->res, bytes);
2787 if (do_swap_account)
2788 res_counter_uncharge(&memcg->memsw, bytes);
2789 }
2790 }
2791
2792 /*
2793 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2794 * This is useful when moving usage to parent cgroup.
2795 */
2796 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2797 unsigned int nr_pages)
2798 {
2799 unsigned long bytes = nr_pages * PAGE_SIZE;
2800
2801 if (mem_cgroup_is_root(memcg))
2802 return;
2803
2804 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2805 if (do_swap_account)
2806 res_counter_uncharge_until(&memcg->memsw,
2807 memcg->memsw.parent, bytes);
2808 }
2809
2810 /*
2811 * A helper function to get mem_cgroup from ID. must be called under
2812 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2813 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2814 * called against removed memcg.)
2815 */
2816 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2817 {
2818 struct cgroup_subsys_state *css;
2819
2820 /* ID 0 is unused ID */
2821 if (!id)
2822 return NULL;
2823 css = css_lookup(&mem_cgroup_subsys, id);
2824 if (!css)
2825 return NULL;
2826 return mem_cgroup_from_css(css);
2827 }
2828
2829 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2830 {
2831 struct mem_cgroup *memcg = NULL;
2832 struct page_cgroup *pc;
2833 unsigned short id;
2834 swp_entry_t ent;
2835
2836 VM_BUG_ON(!PageLocked(page));
2837
2838 pc = lookup_page_cgroup(page);
2839 lock_page_cgroup(pc);
2840 if (PageCgroupUsed(pc)) {
2841 memcg = pc->mem_cgroup;
2842 if (memcg && !css_tryget(&memcg->css))
2843 memcg = NULL;
2844 } else if (PageSwapCache(page)) {
2845 ent.val = page_private(page);
2846 id = lookup_swap_cgroup_id(ent);
2847 rcu_read_lock();
2848 memcg = mem_cgroup_lookup(id);
2849 if (memcg && !css_tryget(&memcg->css))
2850 memcg = NULL;
2851 rcu_read_unlock();
2852 }
2853 unlock_page_cgroup(pc);
2854 return memcg;
2855 }
2856
2857 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2858 struct page *page,
2859 unsigned int nr_pages,
2860 enum charge_type ctype,
2861 bool lrucare)
2862 {
2863 struct page_cgroup *pc = lookup_page_cgroup(page);
2864 struct zone *uninitialized_var(zone);
2865 struct lruvec *lruvec;
2866 bool was_on_lru = false;
2867 bool anon;
2868
2869 lock_page_cgroup(pc);
2870 VM_BUG_ON(PageCgroupUsed(pc));
2871 /*
2872 * we don't need page_cgroup_lock about tail pages, becase they are not
2873 * accessed by any other context at this point.
2874 */
2875
2876 /*
2877 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2878 * may already be on some other mem_cgroup's LRU. Take care of it.
2879 */
2880 if (lrucare) {
2881 zone = page_zone(page);
2882 spin_lock_irq(&zone->lru_lock);
2883 if (PageLRU(page)) {
2884 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2885 ClearPageLRU(page);
2886 del_page_from_lru_list(page, lruvec, page_lru(page));
2887 was_on_lru = true;
2888 }
2889 }
2890
2891 pc->mem_cgroup = memcg;
2892 /*
2893 * We access a page_cgroup asynchronously without lock_page_cgroup().
2894 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2895 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2896 * before USED bit, we need memory barrier here.
2897 * See mem_cgroup_add_lru_list(), etc.
2898 */
2899 smp_wmb();
2900 SetPageCgroupUsed(pc);
2901
2902 if (lrucare) {
2903 if (was_on_lru) {
2904 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2905 VM_BUG_ON(PageLRU(page));
2906 SetPageLRU(page);
2907 add_page_to_lru_list(page, lruvec, page_lru(page));
2908 }
2909 spin_unlock_irq(&zone->lru_lock);
2910 }
2911
2912 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2913 anon = true;
2914 else
2915 anon = false;
2916
2917 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2918 unlock_page_cgroup(pc);
2919
2920 /*
2921 * "charge_statistics" updated event counter. Then, check it.
2922 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2923 * if they exceeds softlimit.
2924 */
2925 memcg_check_events(memcg, page);
2926 }
2927
2928 static DEFINE_MUTEX(set_limit_mutex);
2929
2930 #ifdef CONFIG_MEMCG_KMEM
2931 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2932 {
2933 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2934 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2935 }
2936
2937 /*
2938 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2939 * in the memcg_cache_params struct.
2940 */
2941 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2942 {
2943 struct kmem_cache *cachep;
2944
2945 VM_BUG_ON(p->is_root_cache);
2946 cachep = p->root_cache;
2947 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2948 }
2949
2950 #ifdef CONFIG_SLABINFO
2951 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2952 struct cftype *cft, struct seq_file *m)
2953 {
2954 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2955 struct memcg_cache_params *params;
2956
2957 if (!memcg_can_account_kmem(memcg))
2958 return -EIO;
2959
2960 print_slabinfo_header(m);
2961
2962 mutex_lock(&memcg->slab_caches_mutex);
2963 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2964 cache_show(memcg_params_to_cache(params), m);
2965 mutex_unlock(&memcg->slab_caches_mutex);
2966
2967 return 0;
2968 }
2969 #endif
2970
2971 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2972 {
2973 struct res_counter *fail_res;
2974 struct mem_cgroup *_memcg;
2975 int ret = 0;
2976 bool may_oom;
2977
2978 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2979 if (ret)
2980 return ret;
2981
2982 /*
2983 * Conditions under which we can wait for the oom_killer. Those are
2984 * the same conditions tested by the core page allocator
2985 */
2986 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2987
2988 _memcg = memcg;
2989 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2990 &_memcg, may_oom);
2991
2992 if (ret == -EINTR) {
2993 /*
2994 * __mem_cgroup_try_charge() chosed to bypass to root due to
2995 * OOM kill or fatal signal. Since our only options are to
2996 * either fail the allocation or charge it to this cgroup, do
2997 * it as a temporary condition. But we can't fail. From a
2998 * kmem/slab perspective, the cache has already been selected,
2999 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3000 * our minds.
3001 *
3002 * This condition will only trigger if the task entered
3003 * memcg_charge_kmem in a sane state, but was OOM-killed during
3004 * __mem_cgroup_try_charge() above. Tasks that were already
3005 * dying when the allocation triggers should have been already
3006 * directed to the root cgroup in memcontrol.h
3007 */
3008 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3009 if (do_swap_account)
3010 res_counter_charge_nofail(&memcg->memsw, size,
3011 &fail_res);
3012 ret = 0;
3013 } else if (ret)
3014 res_counter_uncharge(&memcg->kmem, size);
3015
3016 return ret;
3017 }
3018
3019 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3020 {
3021 res_counter_uncharge(&memcg->res, size);
3022 if (do_swap_account)
3023 res_counter_uncharge(&memcg->memsw, size);
3024
3025 /* Not down to 0 */
3026 if (res_counter_uncharge(&memcg->kmem, size))
3027 return;
3028
3029 /*
3030 * Releases a reference taken in kmem_cgroup_css_offline in case
3031 * this last uncharge is racing with the offlining code or it is
3032 * outliving the memcg existence.
3033 *
3034 * The memory barrier imposed by test&clear is paired with the
3035 * explicit one in memcg_kmem_mark_dead().
3036 */
3037 if (memcg_kmem_test_and_clear_dead(memcg))
3038 css_put(&memcg->css);
3039 }
3040
3041 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3042 {
3043 if (!memcg)
3044 return;
3045
3046 mutex_lock(&memcg->slab_caches_mutex);
3047 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3048 mutex_unlock(&memcg->slab_caches_mutex);
3049 }
3050
3051 /*
3052 * helper for acessing a memcg's index. It will be used as an index in the
3053 * child cache array in kmem_cache, and also to derive its name. This function
3054 * will return -1 when this is not a kmem-limited memcg.
3055 */
3056 int memcg_cache_id(struct mem_cgroup *memcg)
3057 {
3058 return memcg ? memcg->kmemcg_id : -1;
3059 }
3060
3061 /*
3062 * This ends up being protected by the set_limit mutex, during normal
3063 * operation, because that is its main call site.
3064 *
3065 * But when we create a new cache, we can call this as well if its parent
3066 * is kmem-limited. That will have to hold set_limit_mutex as well.
3067 */
3068 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3069 {
3070 int num, ret;
3071
3072 num = ida_simple_get(&kmem_limited_groups,
3073 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3074 if (num < 0)
3075 return num;
3076 /*
3077 * After this point, kmem_accounted (that we test atomically in
3078 * the beginning of this conditional), is no longer 0. This
3079 * guarantees only one process will set the following boolean
3080 * to true. We don't need test_and_set because we're protected
3081 * by the set_limit_mutex anyway.
3082 */
3083 memcg_kmem_set_activated(memcg);
3084
3085 ret = memcg_update_all_caches(num+1);
3086 if (ret) {
3087 ida_simple_remove(&kmem_limited_groups, num);
3088 memcg_kmem_clear_activated(memcg);
3089 return ret;
3090 }
3091
3092 memcg->kmemcg_id = num;
3093 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3094 mutex_init(&memcg->slab_caches_mutex);
3095 return 0;
3096 }
3097
3098 static size_t memcg_caches_array_size(int num_groups)
3099 {
3100 ssize_t size;
3101 if (num_groups <= 0)
3102 return 0;
3103
3104 size = 2 * num_groups;
3105 if (size < MEMCG_CACHES_MIN_SIZE)
3106 size = MEMCG_CACHES_MIN_SIZE;
3107 else if (size > MEMCG_CACHES_MAX_SIZE)
3108 size = MEMCG_CACHES_MAX_SIZE;
3109
3110 return size;
3111 }
3112
3113 /*
3114 * We should update the current array size iff all caches updates succeed. This
3115 * can only be done from the slab side. The slab mutex needs to be held when
3116 * calling this.
3117 */
3118 void memcg_update_array_size(int num)
3119 {
3120 if (num > memcg_limited_groups_array_size)
3121 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3122 }
3123
3124 static void kmem_cache_destroy_work_func(struct work_struct *w);
3125
3126 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3127 {
3128 struct memcg_cache_params *cur_params = s->memcg_params;
3129
3130 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3131
3132 if (num_groups > memcg_limited_groups_array_size) {
3133 int i;
3134 ssize_t size = memcg_caches_array_size(num_groups);
3135
3136 size *= sizeof(void *);
3137 size += sizeof(struct memcg_cache_params);
3138
3139 s->memcg_params = kzalloc(size, GFP_KERNEL);
3140 if (!s->memcg_params) {
3141 s->memcg_params = cur_params;
3142 return -ENOMEM;
3143 }
3144
3145 s->memcg_params->is_root_cache = true;
3146
3147 /*
3148 * There is the chance it will be bigger than
3149 * memcg_limited_groups_array_size, if we failed an allocation
3150 * in a cache, in which case all caches updated before it, will
3151 * have a bigger array.
3152 *
3153 * But if that is the case, the data after
3154 * memcg_limited_groups_array_size is certainly unused
3155 */
3156 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3157 if (!cur_params->memcg_caches[i])
3158 continue;
3159 s->memcg_params->memcg_caches[i] =
3160 cur_params->memcg_caches[i];
3161 }
3162
3163 /*
3164 * Ideally, we would wait until all caches succeed, and only
3165 * then free the old one. But this is not worth the extra
3166 * pointer per-cache we'd have to have for this.
3167 *
3168 * It is not a big deal if some caches are left with a size
3169 * bigger than the others. And all updates will reset this
3170 * anyway.
3171 */
3172 kfree(cur_params);
3173 }
3174 return 0;
3175 }
3176
3177 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3178 struct kmem_cache *root_cache)
3179 {
3180 size_t size = sizeof(struct memcg_cache_params);
3181
3182 if (!memcg_kmem_enabled())
3183 return 0;
3184
3185 if (!memcg)
3186 size += memcg_limited_groups_array_size * sizeof(void *);
3187
3188 s->memcg_params = kzalloc(size, GFP_KERNEL);
3189 if (!s->memcg_params)
3190 return -ENOMEM;
3191
3192 INIT_WORK(&s->memcg_params->destroy,
3193 kmem_cache_destroy_work_func);
3194 if (memcg) {
3195 s->memcg_params->memcg = memcg;
3196 s->memcg_params->root_cache = root_cache;
3197 } else
3198 s->memcg_params->is_root_cache = true;
3199
3200 return 0;
3201 }
3202
3203 void memcg_release_cache(struct kmem_cache *s)
3204 {
3205 struct kmem_cache *root;
3206 struct mem_cgroup *memcg;
3207 int id;
3208
3209 /*
3210 * This happens, for instance, when a root cache goes away before we
3211 * add any memcg.
3212 */
3213 if (!s->memcg_params)
3214 return;
3215
3216 if (s->memcg_params->is_root_cache)
3217 goto out;
3218
3219 memcg = s->memcg_params->memcg;
3220 id = memcg_cache_id(memcg);
3221
3222 root = s->memcg_params->root_cache;
3223 root->memcg_params->memcg_caches[id] = NULL;
3224
3225 mutex_lock(&memcg->slab_caches_mutex);
3226 list_del(&s->memcg_params->list);
3227 mutex_unlock(&memcg->slab_caches_mutex);
3228
3229 css_put(&memcg->css);
3230 out:
3231 kfree(s->memcg_params);
3232 }
3233
3234 /*
3235 * During the creation a new cache, we need to disable our accounting mechanism
3236 * altogether. This is true even if we are not creating, but rather just
3237 * enqueing new caches to be created.
3238 *
3239 * This is because that process will trigger allocations; some visible, like
3240 * explicit kmallocs to auxiliary data structures, name strings and internal
3241 * cache structures; some well concealed, like INIT_WORK() that can allocate
3242 * objects during debug.
3243 *
3244 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3245 * to it. This may not be a bounded recursion: since the first cache creation
3246 * failed to complete (waiting on the allocation), we'll just try to create the
3247 * cache again, failing at the same point.
3248 *
3249 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3250 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3251 * inside the following two functions.
3252 */
3253 static inline void memcg_stop_kmem_account(void)
3254 {
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account++;
3257 }
3258
3259 static inline void memcg_resume_kmem_account(void)
3260 {
3261 VM_BUG_ON(!current->mm);
3262 current->memcg_kmem_skip_account--;
3263 }
3264
3265 static void kmem_cache_destroy_work_func(struct work_struct *w)
3266 {
3267 struct kmem_cache *cachep;
3268 struct memcg_cache_params *p;
3269
3270 p = container_of(w, struct memcg_cache_params, destroy);
3271
3272 cachep = memcg_params_to_cache(p);
3273
3274 /*
3275 * If we get down to 0 after shrink, we could delete right away.
3276 * However, memcg_release_pages() already puts us back in the workqueue
3277 * in that case. If we proceed deleting, we'll get a dangling
3278 * reference, and removing the object from the workqueue in that case
3279 * is unnecessary complication. We are not a fast path.
3280 *
3281 * Note that this case is fundamentally different from racing with
3282 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3283 * kmem_cache_shrink, not only we would be reinserting a dead cache
3284 * into the queue, but doing so from inside the worker racing to
3285 * destroy it.
3286 *
3287 * So if we aren't down to zero, we'll just schedule a worker and try
3288 * again
3289 */
3290 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3291 kmem_cache_shrink(cachep);
3292 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3293 return;
3294 } else
3295 kmem_cache_destroy(cachep);
3296 }
3297
3298 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3299 {
3300 if (!cachep->memcg_params->dead)
3301 return;
3302
3303 /*
3304 * There are many ways in which we can get here.
3305 *
3306 * We can get to a memory-pressure situation while the delayed work is
3307 * still pending to run. The vmscan shrinkers can then release all
3308 * cache memory and get us to destruction. If this is the case, we'll
3309 * be executed twice, which is a bug (the second time will execute over
3310 * bogus data). In this case, cancelling the work should be fine.
3311 *
3312 * But we can also get here from the worker itself, if
3313 * kmem_cache_shrink is enough to shake all the remaining objects and
3314 * get the page count to 0. In this case, we'll deadlock if we try to
3315 * cancel the work (the worker runs with an internal lock held, which
3316 * is the same lock we would hold for cancel_work_sync().)
3317 *
3318 * Since we can't possibly know who got us here, just refrain from
3319 * running if there is already work pending
3320 */
3321 if (work_pending(&cachep->memcg_params->destroy))
3322 return;
3323 /*
3324 * We have to defer the actual destroying to a workqueue, because
3325 * we might currently be in a context that cannot sleep.
3326 */
3327 schedule_work(&cachep->memcg_params->destroy);
3328 }
3329
3330 /*
3331 * This lock protects updaters, not readers. We want readers to be as fast as
3332 * they can, and they will either see NULL or a valid cache value. Our model
3333 * allow them to see NULL, in which case the root memcg will be selected.
3334 *
3335 * We need this lock because multiple allocations to the same cache from a non
3336 * will span more than one worker. Only one of them can create the cache.
3337 */
3338 static DEFINE_MUTEX(memcg_cache_mutex);
3339
3340 /*
3341 * Called with memcg_cache_mutex held
3342 */
3343 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3344 struct kmem_cache *s)
3345 {
3346 struct kmem_cache *new;
3347 static char *tmp_name = NULL;
3348
3349 lockdep_assert_held(&memcg_cache_mutex);
3350
3351 /*
3352 * kmem_cache_create_memcg duplicates the given name and
3353 * cgroup_name for this name requires RCU context.
3354 * This static temporary buffer is used to prevent from
3355 * pointless shortliving allocation.
3356 */
3357 if (!tmp_name) {
3358 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3359 if (!tmp_name)
3360 return NULL;
3361 }
3362
3363 rcu_read_lock();
3364 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3365 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3366 rcu_read_unlock();
3367
3368 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3369 (s->flags & ~SLAB_PANIC), s->ctor, s);
3370
3371 if (new)
3372 new->allocflags |= __GFP_KMEMCG;
3373
3374 return new;
3375 }
3376
3377 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3378 struct kmem_cache *cachep)
3379 {
3380 struct kmem_cache *new_cachep;
3381 int idx;
3382
3383 BUG_ON(!memcg_can_account_kmem(memcg));
3384
3385 idx = memcg_cache_id(memcg);
3386
3387 mutex_lock(&memcg_cache_mutex);
3388 new_cachep = cachep->memcg_params->memcg_caches[idx];
3389 if (new_cachep) {
3390 css_put(&memcg->css);
3391 goto out;
3392 }
3393
3394 new_cachep = kmem_cache_dup(memcg, cachep);
3395 if (new_cachep == NULL) {
3396 new_cachep = cachep;
3397 css_put(&memcg->css);
3398 goto out;
3399 }
3400
3401 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3402
3403 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3404 /*
3405 * the readers won't lock, make sure everybody sees the updated value,
3406 * so they won't put stuff in the queue again for no reason
3407 */
3408 wmb();
3409 out:
3410 mutex_unlock(&memcg_cache_mutex);
3411 return new_cachep;
3412 }
3413
3414 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3415 {
3416 struct kmem_cache *c;
3417 int i;
3418
3419 if (!s->memcg_params)
3420 return;
3421 if (!s->memcg_params->is_root_cache)
3422 return;
3423
3424 /*
3425 * If the cache is being destroyed, we trust that there is no one else
3426 * requesting objects from it. Even if there are, the sanity checks in
3427 * kmem_cache_destroy should caught this ill-case.
3428 *
3429 * Still, we don't want anyone else freeing memcg_caches under our
3430 * noses, which can happen if a new memcg comes to life. As usual,
3431 * we'll take the set_limit_mutex to protect ourselves against this.
3432 */
3433 mutex_lock(&set_limit_mutex);
3434 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3435 c = s->memcg_params->memcg_caches[i];
3436 if (!c)
3437 continue;
3438
3439 /*
3440 * We will now manually delete the caches, so to avoid races
3441 * we need to cancel all pending destruction workers and
3442 * proceed with destruction ourselves.
3443 *
3444 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3445 * and that could spawn the workers again: it is likely that
3446 * the cache still have active pages until this very moment.
3447 * This would lead us back to mem_cgroup_destroy_cache.
3448 *
3449 * But that will not execute at all if the "dead" flag is not
3450 * set, so flip it down to guarantee we are in control.
3451 */
3452 c->memcg_params->dead = false;
3453 cancel_work_sync(&c->memcg_params->destroy);
3454 kmem_cache_destroy(c);
3455 }
3456 mutex_unlock(&set_limit_mutex);
3457 }
3458
3459 struct create_work {
3460 struct mem_cgroup *memcg;
3461 struct kmem_cache *cachep;
3462 struct work_struct work;
3463 };
3464
3465 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3466 {
3467 struct kmem_cache *cachep;
3468 struct memcg_cache_params *params;
3469
3470 if (!memcg_kmem_is_active(memcg))
3471 return;
3472
3473 mutex_lock(&memcg->slab_caches_mutex);
3474 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3475 cachep = memcg_params_to_cache(params);
3476 cachep->memcg_params->dead = true;
3477 schedule_work(&cachep->memcg_params->destroy);
3478 }
3479 mutex_unlock(&memcg->slab_caches_mutex);
3480 }
3481
3482 static void memcg_create_cache_work_func(struct work_struct *w)
3483 {
3484 struct create_work *cw;
3485
3486 cw = container_of(w, struct create_work, work);
3487 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3488 kfree(cw);
3489 }
3490
3491 /*
3492 * Enqueue the creation of a per-memcg kmem_cache.
3493 */
3494 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3495 struct kmem_cache *cachep)
3496 {
3497 struct create_work *cw;
3498
3499 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3500 if (cw == NULL) {
3501 css_put(&memcg->css);
3502 return;
3503 }
3504
3505 cw->memcg = memcg;
3506 cw->cachep = cachep;
3507
3508 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3509 schedule_work(&cw->work);
3510 }
3511
3512 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3513 struct kmem_cache *cachep)
3514 {
3515 /*
3516 * We need to stop accounting when we kmalloc, because if the
3517 * corresponding kmalloc cache is not yet created, the first allocation
3518 * in __memcg_create_cache_enqueue will recurse.
3519 *
3520 * However, it is better to enclose the whole function. Depending on
3521 * the debugging options enabled, INIT_WORK(), for instance, can
3522 * trigger an allocation. This too, will make us recurse. Because at
3523 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3524 * the safest choice is to do it like this, wrapping the whole function.
3525 */
3526 memcg_stop_kmem_account();
3527 __memcg_create_cache_enqueue(memcg, cachep);
3528 memcg_resume_kmem_account();
3529 }
3530 /*
3531 * Return the kmem_cache we're supposed to use for a slab allocation.
3532 * We try to use the current memcg's version of the cache.
3533 *
3534 * If the cache does not exist yet, if we are the first user of it,
3535 * we either create it immediately, if possible, or create it asynchronously
3536 * in a workqueue.
3537 * In the latter case, we will let the current allocation go through with
3538 * the original cache.
3539 *
3540 * Can't be called in interrupt context or from kernel threads.
3541 * This function needs to be called with rcu_read_lock() held.
3542 */
3543 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3544 gfp_t gfp)
3545 {
3546 struct mem_cgroup *memcg;
3547 int idx;
3548
3549 VM_BUG_ON(!cachep->memcg_params);
3550 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3551
3552 if (!current->mm || current->memcg_kmem_skip_account)
3553 return cachep;
3554
3555 rcu_read_lock();
3556 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3557
3558 if (!memcg_can_account_kmem(memcg))
3559 goto out;
3560
3561 idx = memcg_cache_id(memcg);
3562
3563 /*
3564 * barrier to mare sure we're always seeing the up to date value. The
3565 * code updating memcg_caches will issue a write barrier to match this.
3566 */
3567 read_barrier_depends();
3568 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3569 cachep = cachep->memcg_params->memcg_caches[idx];
3570 goto out;
3571 }
3572
3573 /* The corresponding put will be done in the workqueue. */
3574 if (!css_tryget(&memcg->css))
3575 goto out;
3576 rcu_read_unlock();
3577
3578 /*
3579 * If we are in a safe context (can wait, and not in interrupt
3580 * context), we could be be predictable and return right away.
3581 * This would guarantee that the allocation being performed
3582 * already belongs in the new cache.
3583 *
3584 * However, there are some clashes that can arrive from locking.
3585 * For instance, because we acquire the slab_mutex while doing
3586 * kmem_cache_dup, this means no further allocation could happen
3587 * with the slab_mutex held.
3588 *
3589 * Also, because cache creation issue get_online_cpus(), this
3590 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3591 * that ends up reversed during cpu hotplug. (cpuset allocates
3592 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3593 * better to defer everything.
3594 */
3595 memcg_create_cache_enqueue(memcg, cachep);
3596 return cachep;
3597 out:
3598 rcu_read_unlock();
3599 return cachep;
3600 }
3601 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3602
3603 /*
3604 * We need to verify if the allocation against current->mm->owner's memcg is
3605 * possible for the given order. But the page is not allocated yet, so we'll
3606 * need a further commit step to do the final arrangements.
3607 *
3608 * It is possible for the task to switch cgroups in this mean time, so at
3609 * commit time, we can't rely on task conversion any longer. We'll then use
3610 * the handle argument to return to the caller which cgroup we should commit
3611 * against. We could also return the memcg directly and avoid the pointer
3612 * passing, but a boolean return value gives better semantics considering
3613 * the compiled-out case as well.
3614 *
3615 * Returning true means the allocation is possible.
3616 */
3617 bool
3618 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3619 {
3620 struct mem_cgroup *memcg;
3621 int ret;
3622
3623 *_memcg = NULL;
3624
3625 /*
3626 * Disabling accounting is only relevant for some specific memcg
3627 * internal allocations. Therefore we would initially not have such
3628 * check here, since direct calls to the page allocator that are marked
3629 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3630 * concerned with cache allocations, and by having this test at
3631 * memcg_kmem_get_cache, we are already able to relay the allocation to
3632 * the root cache and bypass the memcg cache altogether.
3633 *
3634 * There is one exception, though: the SLUB allocator does not create
3635 * large order caches, but rather service large kmallocs directly from
3636 * the page allocator. Therefore, the following sequence when backed by
3637 * the SLUB allocator:
3638 *
3639 * memcg_stop_kmem_account();
3640 * kmalloc(<large_number>)
3641 * memcg_resume_kmem_account();
3642 *
3643 * would effectively ignore the fact that we should skip accounting,
3644 * since it will drive us directly to this function without passing
3645 * through the cache selector memcg_kmem_get_cache. Such large
3646 * allocations are extremely rare but can happen, for instance, for the
3647 * cache arrays. We bring this test here.
3648 */
3649 if (!current->mm || current->memcg_kmem_skip_account)
3650 return true;
3651
3652 memcg = try_get_mem_cgroup_from_mm(current->mm);
3653
3654 /*
3655 * very rare case described in mem_cgroup_from_task. Unfortunately there
3656 * isn't much we can do without complicating this too much, and it would
3657 * be gfp-dependent anyway. Just let it go
3658 */
3659 if (unlikely(!memcg))
3660 return true;
3661
3662 if (!memcg_can_account_kmem(memcg)) {
3663 css_put(&memcg->css);
3664 return true;
3665 }
3666
3667 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3668 if (!ret)
3669 *_memcg = memcg;
3670
3671 css_put(&memcg->css);
3672 return (ret == 0);
3673 }
3674
3675 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3676 int order)
3677 {
3678 struct page_cgroup *pc;
3679
3680 VM_BUG_ON(mem_cgroup_is_root(memcg));
3681
3682 /* The page allocation failed. Revert */
3683 if (!page) {
3684 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3685 return;
3686 }
3687
3688 pc = lookup_page_cgroup(page);
3689 lock_page_cgroup(pc);
3690 pc->mem_cgroup = memcg;
3691 SetPageCgroupUsed(pc);
3692 unlock_page_cgroup(pc);
3693 }
3694
3695 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3696 {
3697 struct mem_cgroup *memcg = NULL;
3698 struct page_cgroup *pc;
3699
3700
3701 pc = lookup_page_cgroup(page);
3702 /*
3703 * Fast unlocked return. Theoretically might have changed, have to
3704 * check again after locking.
3705 */
3706 if (!PageCgroupUsed(pc))
3707 return;
3708
3709 lock_page_cgroup(pc);
3710 if (PageCgroupUsed(pc)) {
3711 memcg = pc->mem_cgroup;
3712 ClearPageCgroupUsed(pc);
3713 }
3714 unlock_page_cgroup(pc);
3715
3716 /*
3717 * We trust that only if there is a memcg associated with the page, it
3718 * is a valid allocation
3719 */
3720 if (!memcg)
3721 return;
3722
3723 VM_BUG_ON(mem_cgroup_is_root(memcg));
3724 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3725 }
3726 #else
3727 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3728 {
3729 }
3730 #endif /* CONFIG_MEMCG_KMEM */
3731
3732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3733
3734 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3735 /*
3736 * Because tail pages are not marked as "used", set it. We're under
3737 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3738 * charge/uncharge will be never happen and move_account() is done under
3739 * compound_lock(), so we don't have to take care of races.
3740 */
3741 void mem_cgroup_split_huge_fixup(struct page *head)
3742 {
3743 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3744 struct page_cgroup *pc;
3745 struct mem_cgroup *memcg;
3746 int i;
3747
3748 if (mem_cgroup_disabled())
3749 return;
3750
3751 memcg = head_pc->mem_cgroup;
3752 for (i = 1; i < HPAGE_PMD_NR; i++) {
3753 pc = head_pc + i;
3754 pc->mem_cgroup = memcg;
3755 smp_wmb();/* see __commit_charge() */
3756 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3757 }
3758 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3759 HPAGE_PMD_NR);
3760 }
3761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3762
3763 /**
3764 * mem_cgroup_move_account - move account of the page
3765 * @page: the page
3766 * @nr_pages: number of regular pages (>1 for huge pages)
3767 * @pc: page_cgroup of the page.
3768 * @from: mem_cgroup which the page is moved from.
3769 * @to: mem_cgroup which the page is moved to. @from != @to.
3770 *
3771 * The caller must confirm following.
3772 * - page is not on LRU (isolate_page() is useful.)
3773 * - compound_lock is held when nr_pages > 1
3774 *
3775 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3776 * from old cgroup.
3777 */
3778 static int mem_cgroup_move_account(struct page *page,
3779 unsigned int nr_pages,
3780 struct page_cgroup *pc,
3781 struct mem_cgroup *from,
3782 struct mem_cgroup *to)
3783 {
3784 unsigned long flags;
3785 int ret;
3786 bool anon = PageAnon(page);
3787
3788 VM_BUG_ON(from == to);
3789 VM_BUG_ON(PageLRU(page));
3790 /*
3791 * The page is isolated from LRU. So, collapse function
3792 * will not handle this page. But page splitting can happen.
3793 * Do this check under compound_page_lock(). The caller should
3794 * hold it.
3795 */
3796 ret = -EBUSY;
3797 if (nr_pages > 1 && !PageTransHuge(page))
3798 goto out;
3799
3800 lock_page_cgroup(pc);
3801
3802 ret = -EINVAL;
3803 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3804 goto unlock;
3805
3806 move_lock_mem_cgroup(from, &flags);
3807
3808 if (!anon && page_mapped(page)) {
3809 /* Update mapped_file data for mem_cgroup */
3810 preempt_disable();
3811 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3812 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3813 preempt_enable();
3814 }
3815 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3816
3817 /* caller should have done css_get */
3818 pc->mem_cgroup = to;
3819 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3820 move_unlock_mem_cgroup(from, &flags);
3821 ret = 0;
3822 unlock:
3823 unlock_page_cgroup(pc);
3824 /*
3825 * check events
3826 */
3827 memcg_check_events(to, page);
3828 memcg_check_events(from, page);
3829 out:
3830 return ret;
3831 }
3832
3833 /**
3834 * mem_cgroup_move_parent - moves page to the parent group
3835 * @page: the page to move
3836 * @pc: page_cgroup of the page
3837 * @child: page's cgroup
3838 *
3839 * move charges to its parent or the root cgroup if the group has no
3840 * parent (aka use_hierarchy==0).
3841 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3842 * mem_cgroup_move_account fails) the failure is always temporary and
3843 * it signals a race with a page removal/uncharge or migration. In the
3844 * first case the page is on the way out and it will vanish from the LRU
3845 * on the next attempt and the call should be retried later.
3846 * Isolation from the LRU fails only if page has been isolated from
3847 * the LRU since we looked at it and that usually means either global
3848 * reclaim or migration going on. The page will either get back to the
3849 * LRU or vanish.
3850 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3851 * (!PageCgroupUsed) or moved to a different group. The page will
3852 * disappear in the next attempt.
3853 */
3854 static int mem_cgroup_move_parent(struct page *page,
3855 struct page_cgroup *pc,
3856 struct mem_cgroup *child)
3857 {
3858 struct mem_cgroup *parent;
3859 unsigned int nr_pages;
3860 unsigned long uninitialized_var(flags);
3861 int ret;
3862
3863 VM_BUG_ON(mem_cgroup_is_root(child));
3864
3865 ret = -EBUSY;
3866 if (!get_page_unless_zero(page))
3867 goto out;
3868 if (isolate_lru_page(page))
3869 goto put;
3870
3871 nr_pages = hpage_nr_pages(page);
3872
3873 parent = parent_mem_cgroup(child);
3874 /*
3875 * If no parent, move charges to root cgroup.
3876 */
3877 if (!parent)
3878 parent = root_mem_cgroup;
3879
3880 if (nr_pages > 1) {
3881 VM_BUG_ON(!PageTransHuge(page));
3882 flags = compound_lock_irqsave(page);
3883 }
3884
3885 ret = mem_cgroup_move_account(page, nr_pages,
3886 pc, child, parent);
3887 if (!ret)
3888 __mem_cgroup_cancel_local_charge(child, nr_pages);
3889
3890 if (nr_pages > 1)
3891 compound_unlock_irqrestore(page, flags);
3892 putback_lru_page(page);
3893 put:
3894 put_page(page);
3895 out:
3896 return ret;
3897 }
3898
3899 /*
3900 * Charge the memory controller for page usage.
3901 * Return
3902 * 0 if the charge was successful
3903 * < 0 if the cgroup is over its limit
3904 */
3905 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3906 gfp_t gfp_mask, enum charge_type ctype)
3907 {
3908 struct mem_cgroup *memcg = NULL;
3909 unsigned int nr_pages = 1;
3910 bool oom = true;
3911 int ret;
3912
3913 if (PageTransHuge(page)) {
3914 nr_pages <<= compound_order(page);
3915 VM_BUG_ON(!PageTransHuge(page));
3916 /*
3917 * Never OOM-kill a process for a huge page. The
3918 * fault handler will fall back to regular pages.
3919 */
3920 oom = false;
3921 }
3922
3923 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3924 if (ret == -ENOMEM)
3925 return ret;
3926 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3927 return 0;
3928 }
3929
3930 int mem_cgroup_newpage_charge(struct page *page,
3931 struct mm_struct *mm, gfp_t gfp_mask)
3932 {
3933 if (mem_cgroup_disabled())
3934 return 0;
3935 VM_BUG_ON(page_mapped(page));
3936 VM_BUG_ON(page->mapping && !PageAnon(page));
3937 VM_BUG_ON(!mm);
3938 return mem_cgroup_charge_common(page, mm, gfp_mask,
3939 MEM_CGROUP_CHARGE_TYPE_ANON);
3940 }
3941
3942 /*
3943 * While swap-in, try_charge -> commit or cancel, the page is locked.
3944 * And when try_charge() successfully returns, one refcnt to memcg without
3945 * struct page_cgroup is acquired. This refcnt will be consumed by
3946 * "commit()" or removed by "cancel()"
3947 */
3948 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3949 struct page *page,
3950 gfp_t mask,
3951 struct mem_cgroup **memcgp)
3952 {
3953 struct mem_cgroup *memcg;
3954 struct page_cgroup *pc;
3955 int ret;
3956
3957 pc = lookup_page_cgroup(page);
3958 /*
3959 * Every swap fault against a single page tries to charge the
3960 * page, bail as early as possible. shmem_unuse() encounters
3961 * already charged pages, too. The USED bit is protected by
3962 * the page lock, which serializes swap cache removal, which
3963 * in turn serializes uncharging.
3964 */
3965 if (PageCgroupUsed(pc))
3966 return 0;
3967 if (!do_swap_account)
3968 goto charge_cur_mm;
3969 memcg = try_get_mem_cgroup_from_page(page);
3970 if (!memcg)
3971 goto charge_cur_mm;
3972 *memcgp = memcg;
3973 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3974 css_put(&memcg->css);
3975 if (ret == -EINTR)
3976 ret = 0;
3977 return ret;
3978 charge_cur_mm:
3979 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3980 if (ret == -EINTR)
3981 ret = 0;
3982 return ret;
3983 }
3984
3985 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3986 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3987 {
3988 *memcgp = NULL;
3989 if (mem_cgroup_disabled())
3990 return 0;
3991 /*
3992 * A racing thread's fault, or swapoff, may have already
3993 * updated the pte, and even removed page from swap cache: in
3994 * those cases unuse_pte()'s pte_same() test will fail; but
3995 * there's also a KSM case which does need to charge the page.
3996 */
3997 if (!PageSwapCache(page)) {
3998 int ret;
3999
4000 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4001 if (ret == -EINTR)
4002 ret = 0;
4003 return ret;
4004 }
4005 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4006 }
4007
4008 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4009 {
4010 if (mem_cgroup_disabled())
4011 return;
4012 if (!memcg)
4013 return;
4014 __mem_cgroup_cancel_charge(memcg, 1);
4015 }
4016
4017 static void
4018 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4019 enum charge_type ctype)
4020 {
4021 if (mem_cgroup_disabled())
4022 return;
4023 if (!memcg)
4024 return;
4025
4026 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4027 /*
4028 * Now swap is on-memory. This means this page may be
4029 * counted both as mem and swap....double count.
4030 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4031 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4032 * may call delete_from_swap_cache() before reach here.
4033 */
4034 if (do_swap_account && PageSwapCache(page)) {
4035 swp_entry_t ent = {.val = page_private(page)};
4036 mem_cgroup_uncharge_swap(ent);
4037 }
4038 }
4039
4040 void mem_cgroup_commit_charge_swapin(struct page *page,
4041 struct mem_cgroup *memcg)
4042 {
4043 __mem_cgroup_commit_charge_swapin(page, memcg,
4044 MEM_CGROUP_CHARGE_TYPE_ANON);
4045 }
4046
4047 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4048 gfp_t gfp_mask)
4049 {
4050 struct mem_cgroup *memcg = NULL;
4051 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4052 int ret;
4053
4054 if (mem_cgroup_disabled())
4055 return 0;
4056 if (PageCompound(page))
4057 return 0;
4058
4059 if (!PageSwapCache(page))
4060 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4061 else { /* page is swapcache/shmem */
4062 ret = __mem_cgroup_try_charge_swapin(mm, page,
4063 gfp_mask, &memcg);
4064 if (!ret)
4065 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4066 }
4067 return ret;
4068 }
4069
4070 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4071 unsigned int nr_pages,
4072 const enum charge_type ctype)
4073 {
4074 struct memcg_batch_info *batch = NULL;
4075 bool uncharge_memsw = true;
4076
4077 /* If swapout, usage of swap doesn't decrease */
4078 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4079 uncharge_memsw = false;
4080
4081 batch = &current->memcg_batch;
4082 /*
4083 * In usual, we do css_get() when we remember memcg pointer.
4084 * But in this case, we keep res->usage until end of a series of
4085 * uncharges. Then, it's ok to ignore memcg's refcnt.
4086 */
4087 if (!batch->memcg)
4088 batch->memcg = memcg;
4089 /*
4090 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4091 * In those cases, all pages freed continuously can be expected to be in
4092 * the same cgroup and we have chance to coalesce uncharges.
4093 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4094 * because we want to do uncharge as soon as possible.
4095 */
4096
4097 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4098 goto direct_uncharge;
4099
4100 if (nr_pages > 1)
4101 goto direct_uncharge;
4102
4103 /*
4104 * In typical case, batch->memcg == mem. This means we can
4105 * merge a series of uncharges to an uncharge of res_counter.
4106 * If not, we uncharge res_counter ony by one.
4107 */
4108 if (batch->memcg != memcg)
4109 goto direct_uncharge;
4110 /* remember freed charge and uncharge it later */
4111 batch->nr_pages++;
4112 if (uncharge_memsw)
4113 batch->memsw_nr_pages++;
4114 return;
4115 direct_uncharge:
4116 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4117 if (uncharge_memsw)
4118 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4119 if (unlikely(batch->memcg != memcg))
4120 memcg_oom_recover(memcg);
4121 }
4122
4123 /*
4124 * uncharge if !page_mapped(page)
4125 */
4126 static struct mem_cgroup *
4127 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4128 bool end_migration)
4129 {
4130 struct mem_cgroup *memcg = NULL;
4131 unsigned int nr_pages = 1;
4132 struct page_cgroup *pc;
4133 bool anon;
4134
4135 if (mem_cgroup_disabled())
4136 return NULL;
4137
4138 if (PageTransHuge(page)) {
4139 nr_pages <<= compound_order(page);
4140 VM_BUG_ON(!PageTransHuge(page));
4141 }
4142 /*
4143 * Check if our page_cgroup is valid
4144 */
4145 pc = lookup_page_cgroup(page);
4146 if (unlikely(!PageCgroupUsed(pc)))
4147 return NULL;
4148
4149 lock_page_cgroup(pc);
4150
4151 memcg = pc->mem_cgroup;
4152
4153 if (!PageCgroupUsed(pc))
4154 goto unlock_out;
4155
4156 anon = PageAnon(page);
4157
4158 switch (ctype) {
4159 case MEM_CGROUP_CHARGE_TYPE_ANON:
4160 /*
4161 * Generally PageAnon tells if it's the anon statistics to be
4162 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4163 * used before page reached the stage of being marked PageAnon.
4164 */
4165 anon = true;
4166 /* fallthrough */
4167 case MEM_CGROUP_CHARGE_TYPE_DROP:
4168 /* See mem_cgroup_prepare_migration() */
4169 if (page_mapped(page))
4170 goto unlock_out;
4171 /*
4172 * Pages under migration may not be uncharged. But
4173 * end_migration() /must/ be the one uncharging the
4174 * unused post-migration page and so it has to call
4175 * here with the migration bit still set. See the
4176 * res_counter handling below.
4177 */
4178 if (!end_migration && PageCgroupMigration(pc))
4179 goto unlock_out;
4180 break;
4181 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4182 if (!PageAnon(page)) { /* Shared memory */
4183 if (page->mapping && !page_is_file_cache(page))
4184 goto unlock_out;
4185 } else if (page_mapped(page)) /* Anon */
4186 goto unlock_out;
4187 break;
4188 default:
4189 break;
4190 }
4191
4192 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4193
4194 ClearPageCgroupUsed(pc);
4195 /*
4196 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4197 * freed from LRU. This is safe because uncharged page is expected not
4198 * to be reused (freed soon). Exception is SwapCache, it's handled by
4199 * special functions.
4200 */
4201
4202 unlock_page_cgroup(pc);
4203 /*
4204 * even after unlock, we have memcg->res.usage here and this memcg
4205 * will never be freed, so it's safe to call css_get().
4206 */
4207 memcg_check_events(memcg, page);
4208 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4209 mem_cgroup_swap_statistics(memcg, true);
4210 css_get(&memcg->css);
4211 }
4212 /*
4213 * Migration does not charge the res_counter for the
4214 * replacement page, so leave it alone when phasing out the
4215 * page that is unused after the migration.
4216 */
4217 if (!end_migration && !mem_cgroup_is_root(memcg))
4218 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4219
4220 return memcg;
4221
4222 unlock_out:
4223 unlock_page_cgroup(pc);
4224 return NULL;
4225 }
4226
4227 void mem_cgroup_uncharge_page(struct page *page)
4228 {
4229 /* early check. */
4230 if (page_mapped(page))
4231 return;
4232 VM_BUG_ON(page->mapping && !PageAnon(page));
4233 /*
4234 * If the page is in swap cache, uncharge should be deferred
4235 * to the swap path, which also properly accounts swap usage
4236 * and handles memcg lifetime.
4237 *
4238 * Note that this check is not stable and reclaim may add the
4239 * page to swap cache at any time after this. However, if the
4240 * page is not in swap cache by the time page->mapcount hits
4241 * 0, there won't be any page table references to the swap
4242 * slot, and reclaim will free it and not actually write the
4243 * page to disk.
4244 */
4245 if (PageSwapCache(page))
4246 return;
4247 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4248 }
4249
4250 void mem_cgroup_uncharge_cache_page(struct page *page)
4251 {
4252 VM_BUG_ON(page_mapped(page));
4253 VM_BUG_ON(page->mapping);
4254 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4255 }
4256
4257 /*
4258 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4259 * In that cases, pages are freed continuously and we can expect pages
4260 * are in the same memcg. All these calls itself limits the number of
4261 * pages freed at once, then uncharge_start/end() is called properly.
4262 * This may be called prural(2) times in a context,
4263 */
4264
4265 void mem_cgroup_uncharge_start(void)
4266 {
4267 current->memcg_batch.do_batch++;
4268 /* We can do nest. */
4269 if (current->memcg_batch.do_batch == 1) {
4270 current->memcg_batch.memcg = NULL;
4271 current->memcg_batch.nr_pages = 0;
4272 current->memcg_batch.memsw_nr_pages = 0;
4273 }
4274 }
4275
4276 void mem_cgroup_uncharge_end(void)
4277 {
4278 struct memcg_batch_info *batch = &current->memcg_batch;
4279
4280 if (!batch->do_batch)
4281 return;
4282
4283 batch->do_batch--;
4284 if (batch->do_batch) /* If stacked, do nothing. */
4285 return;
4286
4287 if (!batch->memcg)
4288 return;
4289 /*
4290 * This "batch->memcg" is valid without any css_get/put etc...
4291 * bacause we hide charges behind us.
4292 */
4293 if (batch->nr_pages)
4294 res_counter_uncharge(&batch->memcg->res,
4295 batch->nr_pages * PAGE_SIZE);
4296 if (batch->memsw_nr_pages)
4297 res_counter_uncharge(&batch->memcg->memsw,
4298 batch->memsw_nr_pages * PAGE_SIZE);
4299 memcg_oom_recover(batch->memcg);
4300 /* forget this pointer (for sanity check) */
4301 batch->memcg = NULL;
4302 }
4303
4304 #ifdef CONFIG_SWAP
4305 /*
4306 * called after __delete_from_swap_cache() and drop "page" account.
4307 * memcg information is recorded to swap_cgroup of "ent"
4308 */
4309 void
4310 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4311 {
4312 struct mem_cgroup *memcg;
4313 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4314
4315 if (!swapout) /* this was a swap cache but the swap is unused ! */
4316 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4317
4318 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4319
4320 /*
4321 * record memcg information, if swapout && memcg != NULL,
4322 * css_get() was called in uncharge().
4323 */
4324 if (do_swap_account && swapout && memcg)
4325 swap_cgroup_record(ent, css_id(&memcg->css));
4326 }
4327 #endif
4328
4329 #ifdef CONFIG_MEMCG_SWAP
4330 /*
4331 * called from swap_entry_free(). remove record in swap_cgroup and
4332 * uncharge "memsw" account.
4333 */
4334 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4335 {
4336 struct mem_cgroup *memcg;
4337 unsigned short id;
4338
4339 if (!do_swap_account)
4340 return;
4341
4342 id = swap_cgroup_record(ent, 0);
4343 rcu_read_lock();
4344 memcg = mem_cgroup_lookup(id);
4345 if (memcg) {
4346 /*
4347 * We uncharge this because swap is freed.
4348 * This memcg can be obsolete one. We avoid calling css_tryget
4349 */
4350 if (!mem_cgroup_is_root(memcg))
4351 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4352 mem_cgroup_swap_statistics(memcg, false);
4353 css_put(&memcg->css);
4354 }
4355 rcu_read_unlock();
4356 }
4357
4358 /**
4359 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4360 * @entry: swap entry to be moved
4361 * @from: mem_cgroup which the entry is moved from
4362 * @to: mem_cgroup which the entry is moved to
4363 *
4364 * It succeeds only when the swap_cgroup's record for this entry is the same
4365 * as the mem_cgroup's id of @from.
4366 *
4367 * Returns 0 on success, -EINVAL on failure.
4368 *
4369 * The caller must have charged to @to, IOW, called res_counter_charge() about
4370 * both res and memsw, and called css_get().
4371 */
4372 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4373 struct mem_cgroup *from, struct mem_cgroup *to)
4374 {
4375 unsigned short old_id, new_id;
4376
4377 old_id = css_id(&from->css);
4378 new_id = css_id(&to->css);
4379
4380 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4381 mem_cgroup_swap_statistics(from, false);
4382 mem_cgroup_swap_statistics(to, true);
4383 /*
4384 * This function is only called from task migration context now.
4385 * It postpones res_counter and refcount handling till the end
4386 * of task migration(mem_cgroup_clear_mc()) for performance
4387 * improvement. But we cannot postpone css_get(to) because if
4388 * the process that has been moved to @to does swap-in, the
4389 * refcount of @to might be decreased to 0.
4390 *
4391 * We are in attach() phase, so the cgroup is guaranteed to be
4392 * alive, so we can just call css_get().
4393 */
4394 css_get(&to->css);
4395 return 0;
4396 }
4397 return -EINVAL;
4398 }
4399 #else
4400 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4401 struct mem_cgroup *from, struct mem_cgroup *to)
4402 {
4403 return -EINVAL;
4404 }
4405 #endif
4406
4407 /*
4408 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4409 * page belongs to.
4410 */
4411 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4412 struct mem_cgroup **memcgp)
4413 {
4414 struct mem_cgroup *memcg = NULL;
4415 unsigned int nr_pages = 1;
4416 struct page_cgroup *pc;
4417 enum charge_type ctype;
4418
4419 *memcgp = NULL;
4420
4421 if (mem_cgroup_disabled())
4422 return;
4423
4424 if (PageTransHuge(page))
4425 nr_pages <<= compound_order(page);
4426
4427 pc = lookup_page_cgroup(page);
4428 lock_page_cgroup(pc);
4429 if (PageCgroupUsed(pc)) {
4430 memcg = pc->mem_cgroup;
4431 css_get(&memcg->css);
4432 /*
4433 * At migrating an anonymous page, its mapcount goes down
4434 * to 0 and uncharge() will be called. But, even if it's fully
4435 * unmapped, migration may fail and this page has to be
4436 * charged again. We set MIGRATION flag here and delay uncharge
4437 * until end_migration() is called
4438 *
4439 * Corner Case Thinking
4440 * A)
4441 * When the old page was mapped as Anon and it's unmap-and-freed
4442 * while migration was ongoing.
4443 * If unmap finds the old page, uncharge() of it will be delayed
4444 * until end_migration(). If unmap finds a new page, it's
4445 * uncharged when it make mapcount to be 1->0. If unmap code
4446 * finds swap_migration_entry, the new page will not be mapped
4447 * and end_migration() will find it(mapcount==0).
4448 *
4449 * B)
4450 * When the old page was mapped but migraion fails, the kernel
4451 * remaps it. A charge for it is kept by MIGRATION flag even
4452 * if mapcount goes down to 0. We can do remap successfully
4453 * without charging it again.
4454 *
4455 * C)
4456 * The "old" page is under lock_page() until the end of
4457 * migration, so, the old page itself will not be swapped-out.
4458 * If the new page is swapped out before end_migraton, our
4459 * hook to usual swap-out path will catch the event.
4460 */
4461 if (PageAnon(page))
4462 SetPageCgroupMigration(pc);
4463 }
4464 unlock_page_cgroup(pc);
4465 /*
4466 * If the page is not charged at this point,
4467 * we return here.
4468 */
4469 if (!memcg)
4470 return;
4471
4472 *memcgp = memcg;
4473 /*
4474 * We charge new page before it's used/mapped. So, even if unlock_page()
4475 * is called before end_migration, we can catch all events on this new
4476 * page. In the case new page is migrated but not remapped, new page's
4477 * mapcount will be finally 0 and we call uncharge in end_migration().
4478 */
4479 if (PageAnon(page))
4480 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4481 else
4482 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4483 /*
4484 * The page is committed to the memcg, but it's not actually
4485 * charged to the res_counter since we plan on replacing the
4486 * old one and only one page is going to be left afterwards.
4487 */
4488 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4489 }
4490
4491 /* remove redundant charge if migration failed*/
4492 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4493 struct page *oldpage, struct page *newpage, bool migration_ok)
4494 {
4495 struct page *used, *unused;
4496 struct page_cgroup *pc;
4497 bool anon;
4498
4499 if (!memcg)
4500 return;
4501
4502 if (!migration_ok) {
4503 used = oldpage;
4504 unused = newpage;
4505 } else {
4506 used = newpage;
4507 unused = oldpage;
4508 }
4509 anon = PageAnon(used);
4510 __mem_cgroup_uncharge_common(unused,
4511 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4512 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4513 true);
4514 css_put(&memcg->css);
4515 /*
4516 * We disallowed uncharge of pages under migration because mapcount
4517 * of the page goes down to zero, temporarly.
4518 * Clear the flag and check the page should be charged.
4519 */
4520 pc = lookup_page_cgroup(oldpage);
4521 lock_page_cgroup(pc);
4522 ClearPageCgroupMigration(pc);
4523 unlock_page_cgroup(pc);
4524
4525 /*
4526 * If a page is a file cache, radix-tree replacement is very atomic
4527 * and we can skip this check. When it was an Anon page, its mapcount
4528 * goes down to 0. But because we added MIGRATION flage, it's not
4529 * uncharged yet. There are several case but page->mapcount check
4530 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4531 * check. (see prepare_charge() also)
4532 */
4533 if (anon)
4534 mem_cgroup_uncharge_page(used);
4535 }
4536
4537 /*
4538 * At replace page cache, newpage is not under any memcg but it's on
4539 * LRU. So, this function doesn't touch res_counter but handles LRU
4540 * in correct way. Both pages are locked so we cannot race with uncharge.
4541 */
4542 void mem_cgroup_replace_page_cache(struct page *oldpage,
4543 struct page *newpage)
4544 {
4545 struct mem_cgroup *memcg = NULL;
4546 struct page_cgroup *pc;
4547 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4548
4549 if (mem_cgroup_disabled())
4550 return;
4551
4552 pc = lookup_page_cgroup(oldpage);
4553 /* fix accounting on old pages */
4554 lock_page_cgroup(pc);
4555 if (PageCgroupUsed(pc)) {
4556 memcg = pc->mem_cgroup;
4557 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4558 ClearPageCgroupUsed(pc);
4559 }
4560 unlock_page_cgroup(pc);
4561
4562 /*
4563 * When called from shmem_replace_page(), in some cases the
4564 * oldpage has already been charged, and in some cases not.
4565 */
4566 if (!memcg)
4567 return;
4568 /*
4569 * Even if newpage->mapping was NULL before starting replacement,
4570 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4571 * LRU while we overwrite pc->mem_cgroup.
4572 */
4573 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4574 }
4575
4576 #ifdef CONFIG_DEBUG_VM
4577 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4578 {
4579 struct page_cgroup *pc;
4580
4581 pc = lookup_page_cgroup(page);
4582 /*
4583 * Can be NULL while feeding pages into the page allocator for
4584 * the first time, i.e. during boot or memory hotplug;
4585 * or when mem_cgroup_disabled().
4586 */
4587 if (likely(pc) && PageCgroupUsed(pc))
4588 return pc;
4589 return NULL;
4590 }
4591
4592 bool mem_cgroup_bad_page_check(struct page *page)
4593 {
4594 if (mem_cgroup_disabled())
4595 return false;
4596
4597 return lookup_page_cgroup_used(page) != NULL;
4598 }
4599
4600 void mem_cgroup_print_bad_page(struct page *page)
4601 {
4602 struct page_cgroup *pc;
4603
4604 pc = lookup_page_cgroup_used(page);
4605 if (pc) {
4606 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4607 pc, pc->flags, pc->mem_cgroup);
4608 }
4609 }
4610 #endif
4611
4612 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4613 unsigned long long val)
4614 {
4615 int retry_count;
4616 u64 memswlimit, memlimit;
4617 int ret = 0;
4618 int children = mem_cgroup_count_children(memcg);
4619 u64 curusage, oldusage;
4620 int enlarge;
4621
4622 /*
4623 * For keeping hierarchical_reclaim simple, how long we should retry
4624 * is depends on callers. We set our retry-count to be function
4625 * of # of children which we should visit in this loop.
4626 */
4627 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4628
4629 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4630
4631 enlarge = 0;
4632 while (retry_count) {
4633 if (signal_pending(current)) {
4634 ret = -EINTR;
4635 break;
4636 }
4637 /*
4638 * Rather than hide all in some function, I do this in
4639 * open coded manner. You see what this really does.
4640 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4641 */
4642 mutex_lock(&set_limit_mutex);
4643 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4644 if (memswlimit < val) {
4645 ret = -EINVAL;
4646 mutex_unlock(&set_limit_mutex);
4647 break;
4648 }
4649
4650 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4651 if (memlimit < val)
4652 enlarge = 1;
4653
4654 ret = res_counter_set_limit(&memcg->res, val);
4655 if (!ret) {
4656 if (memswlimit == val)
4657 memcg->memsw_is_minimum = true;
4658 else
4659 memcg->memsw_is_minimum = false;
4660 }
4661 mutex_unlock(&set_limit_mutex);
4662
4663 if (!ret)
4664 break;
4665
4666 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4667 MEM_CGROUP_RECLAIM_SHRINK);
4668 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4669 /* Usage is reduced ? */
4670 if (curusage >= oldusage)
4671 retry_count--;
4672 else
4673 oldusage = curusage;
4674 }
4675 if (!ret && enlarge)
4676 memcg_oom_recover(memcg);
4677
4678 return ret;
4679 }
4680
4681 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4682 unsigned long long val)
4683 {
4684 int retry_count;
4685 u64 memlimit, memswlimit, oldusage, curusage;
4686 int children = mem_cgroup_count_children(memcg);
4687 int ret = -EBUSY;
4688 int enlarge = 0;
4689
4690 /* see mem_cgroup_resize_res_limit */
4691 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4692 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4693 while (retry_count) {
4694 if (signal_pending(current)) {
4695 ret = -EINTR;
4696 break;
4697 }
4698 /*
4699 * Rather than hide all in some function, I do this in
4700 * open coded manner. You see what this really does.
4701 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4702 */
4703 mutex_lock(&set_limit_mutex);
4704 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4705 if (memlimit > val) {
4706 ret = -EINVAL;
4707 mutex_unlock(&set_limit_mutex);
4708 break;
4709 }
4710 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4711 if (memswlimit < val)
4712 enlarge = 1;
4713 ret = res_counter_set_limit(&memcg->memsw, val);
4714 if (!ret) {
4715 if (memlimit == val)
4716 memcg->memsw_is_minimum = true;
4717 else
4718 memcg->memsw_is_minimum = false;
4719 }
4720 mutex_unlock(&set_limit_mutex);
4721
4722 if (!ret)
4723 break;
4724
4725 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4726 MEM_CGROUP_RECLAIM_NOSWAP |
4727 MEM_CGROUP_RECLAIM_SHRINK);
4728 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4729 /* Usage is reduced ? */
4730 if (curusage >= oldusage)
4731 retry_count--;
4732 else
4733 oldusage = curusage;
4734 }
4735 if (!ret && enlarge)
4736 memcg_oom_recover(memcg);
4737 return ret;
4738 }
4739
4740 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4741 gfp_t gfp_mask,
4742 unsigned long *total_scanned)
4743 {
4744 unsigned long nr_reclaimed = 0;
4745 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4746 unsigned long reclaimed;
4747 int loop = 0;
4748 struct mem_cgroup_tree_per_zone *mctz;
4749 unsigned long long excess;
4750 unsigned long nr_scanned;
4751
4752 if (order > 0)
4753 return 0;
4754
4755 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4756 /*
4757 * This loop can run a while, specially if mem_cgroup's continuously
4758 * keep exceeding their soft limit and putting the system under
4759 * pressure
4760 */
4761 do {
4762 if (next_mz)
4763 mz = next_mz;
4764 else
4765 mz = mem_cgroup_largest_soft_limit_node(mctz);
4766 if (!mz)
4767 break;
4768
4769 nr_scanned = 0;
4770 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4771 gfp_mask, &nr_scanned);
4772 nr_reclaimed += reclaimed;
4773 *total_scanned += nr_scanned;
4774 spin_lock(&mctz->lock);
4775
4776 /*
4777 * If we failed to reclaim anything from this memory cgroup
4778 * it is time to move on to the next cgroup
4779 */
4780 next_mz = NULL;
4781 if (!reclaimed) {
4782 do {
4783 /*
4784 * Loop until we find yet another one.
4785 *
4786 * By the time we get the soft_limit lock
4787 * again, someone might have aded the
4788 * group back on the RB tree. Iterate to
4789 * make sure we get a different mem.
4790 * mem_cgroup_largest_soft_limit_node returns
4791 * NULL if no other cgroup is present on
4792 * the tree
4793 */
4794 next_mz =
4795 __mem_cgroup_largest_soft_limit_node(mctz);
4796 if (next_mz == mz)
4797 css_put(&next_mz->memcg->css);
4798 else /* next_mz == NULL or other memcg */
4799 break;
4800 } while (1);
4801 }
4802 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4803 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4804 /*
4805 * One school of thought says that we should not add
4806 * back the node to the tree if reclaim returns 0.
4807 * But our reclaim could return 0, simply because due
4808 * to priority we are exposing a smaller subset of
4809 * memory to reclaim from. Consider this as a longer
4810 * term TODO.
4811 */
4812 /* If excess == 0, no tree ops */
4813 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4814 spin_unlock(&mctz->lock);
4815 css_put(&mz->memcg->css);
4816 loop++;
4817 /*
4818 * Could not reclaim anything and there are no more
4819 * mem cgroups to try or we seem to be looping without
4820 * reclaiming anything.
4821 */
4822 if (!nr_reclaimed &&
4823 (next_mz == NULL ||
4824 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4825 break;
4826 } while (!nr_reclaimed);
4827 if (next_mz)
4828 css_put(&next_mz->memcg->css);
4829 return nr_reclaimed;
4830 }
4831
4832 /**
4833 * mem_cgroup_force_empty_list - clears LRU of a group
4834 * @memcg: group to clear
4835 * @node: NUMA node
4836 * @zid: zone id
4837 * @lru: lru to to clear
4838 *
4839 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4840 * reclaim the pages page themselves - pages are moved to the parent (or root)
4841 * group.
4842 */
4843 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4844 int node, int zid, enum lru_list lru)
4845 {
4846 struct lruvec *lruvec;
4847 unsigned long flags;
4848 struct list_head *list;
4849 struct page *busy;
4850 struct zone *zone;
4851
4852 zone = &NODE_DATA(node)->node_zones[zid];
4853 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4854 list = &lruvec->lists[lru];
4855
4856 busy = NULL;
4857 do {
4858 struct page_cgroup *pc;
4859 struct page *page;
4860
4861 spin_lock_irqsave(&zone->lru_lock, flags);
4862 if (list_empty(list)) {
4863 spin_unlock_irqrestore(&zone->lru_lock, flags);
4864 break;
4865 }
4866 page = list_entry(list->prev, struct page, lru);
4867 if (busy == page) {
4868 list_move(&page->lru, list);
4869 busy = NULL;
4870 spin_unlock_irqrestore(&zone->lru_lock, flags);
4871 continue;
4872 }
4873 spin_unlock_irqrestore(&zone->lru_lock, flags);
4874
4875 pc = lookup_page_cgroup(page);
4876
4877 if (mem_cgroup_move_parent(page, pc, memcg)) {
4878 /* found lock contention or "pc" is obsolete. */
4879 busy = page;
4880 cond_resched();
4881 } else
4882 busy = NULL;
4883 } while (!list_empty(list));
4884 }
4885
4886 /*
4887 * make mem_cgroup's charge to be 0 if there is no task by moving
4888 * all the charges and pages to the parent.
4889 * This enables deleting this mem_cgroup.
4890 *
4891 * Caller is responsible for holding css reference on the memcg.
4892 */
4893 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4894 {
4895 int node, zid;
4896 u64 usage;
4897
4898 do {
4899 /* This is for making all *used* pages to be on LRU. */
4900 lru_add_drain_all();
4901 drain_all_stock_sync(memcg);
4902 mem_cgroup_start_move(memcg);
4903 for_each_node_state(node, N_MEMORY) {
4904 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4905 enum lru_list lru;
4906 for_each_lru(lru) {
4907 mem_cgroup_force_empty_list(memcg,
4908 node, zid, lru);
4909 }
4910 }
4911 }
4912 mem_cgroup_end_move(memcg);
4913 memcg_oom_recover(memcg);
4914 cond_resched();
4915
4916 /*
4917 * Kernel memory may not necessarily be trackable to a specific
4918 * process. So they are not migrated, and therefore we can't
4919 * expect their value to drop to 0 here.
4920 * Having res filled up with kmem only is enough.
4921 *
4922 * This is a safety check because mem_cgroup_force_empty_list
4923 * could have raced with mem_cgroup_replace_page_cache callers
4924 * so the lru seemed empty but the page could have been added
4925 * right after the check. RES_USAGE should be safe as we always
4926 * charge before adding to the LRU.
4927 */
4928 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4929 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4930 } while (usage > 0);
4931 }
4932
4933 /*
4934 * This mainly exists for tests during the setting of set of use_hierarchy.
4935 * Since this is the very setting we are changing, the current hierarchy value
4936 * is meaningless
4937 */
4938 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4939 {
4940 struct cgroup_subsys_state *pos;
4941
4942 /* bounce at first found */
4943 css_for_each_child(pos, &memcg->css)
4944 return true;
4945 return false;
4946 }
4947
4948 /*
4949 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4950 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4951 * from mem_cgroup_count_children(), in the sense that we don't really care how
4952 * many children we have; we only need to know if we have any. It also counts
4953 * any memcg without hierarchy as infertile.
4954 */
4955 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4956 {
4957 return memcg->use_hierarchy && __memcg_has_children(memcg);
4958 }
4959
4960 /*
4961 * Reclaims as many pages from the given memcg as possible and moves
4962 * the rest to the parent.
4963 *
4964 * Caller is responsible for holding css reference for memcg.
4965 */
4966 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4967 {
4968 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4969 struct cgroup *cgrp = memcg->css.cgroup;
4970
4971 /* returns EBUSY if there is a task or if we come here twice. */
4972 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4973 return -EBUSY;
4974
4975 /* we call try-to-free pages for make this cgroup empty */
4976 lru_add_drain_all();
4977 /* try to free all pages in this cgroup */
4978 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4979 int progress;
4980
4981 if (signal_pending(current))
4982 return -EINTR;
4983
4984 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4985 false);
4986 if (!progress) {
4987 nr_retries--;
4988 /* maybe some writeback is necessary */
4989 congestion_wait(BLK_RW_ASYNC, HZ/10);
4990 }
4991
4992 }
4993 lru_add_drain();
4994 mem_cgroup_reparent_charges(memcg);
4995
4996 return 0;
4997 }
4998
4999 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5000 unsigned int event)
5001 {
5002 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5003 int ret;
5004
5005 if (mem_cgroup_is_root(memcg))
5006 return -EINVAL;
5007 css_get(&memcg->css);
5008 ret = mem_cgroup_force_empty(memcg);
5009 css_put(&memcg->css);
5010
5011 return ret;
5012 }
5013
5014
5015 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5016 struct cftype *cft)
5017 {
5018 return mem_cgroup_from_css(css)->use_hierarchy;
5019 }
5020
5021 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5022 struct cftype *cft, u64 val)
5023 {
5024 int retval = 0;
5025 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5026 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5027
5028 mutex_lock(&memcg_create_mutex);
5029
5030 if (memcg->use_hierarchy == val)
5031 goto out;
5032
5033 /*
5034 * If parent's use_hierarchy is set, we can't make any modifications
5035 * in the child subtrees. If it is unset, then the change can
5036 * occur, provided the current cgroup has no children.
5037 *
5038 * For the root cgroup, parent_mem is NULL, we allow value to be
5039 * set if there are no children.
5040 */
5041 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5042 (val == 1 || val == 0)) {
5043 if (!__memcg_has_children(memcg))
5044 memcg->use_hierarchy = val;
5045 else
5046 retval = -EBUSY;
5047 } else
5048 retval = -EINVAL;
5049
5050 out:
5051 mutex_unlock(&memcg_create_mutex);
5052
5053 return retval;
5054 }
5055
5056
5057 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5058 enum mem_cgroup_stat_index idx)
5059 {
5060 struct mem_cgroup *iter;
5061 long val = 0;
5062
5063 /* Per-cpu values can be negative, use a signed accumulator */
5064 for_each_mem_cgroup_tree(iter, memcg)
5065 val += mem_cgroup_read_stat(iter, idx);
5066
5067 if (val < 0) /* race ? */
5068 val = 0;
5069 return val;
5070 }
5071
5072 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5073 {
5074 u64 val;
5075
5076 if (!mem_cgroup_is_root(memcg)) {
5077 if (!swap)
5078 return res_counter_read_u64(&memcg->res, RES_USAGE);
5079 else
5080 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5081 }
5082
5083 /*
5084 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5085 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5086 */
5087 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5088 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5089
5090 if (swap)
5091 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5092
5093 return val << PAGE_SHIFT;
5094 }
5095
5096 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5097 struct cftype *cft, struct file *file,
5098 char __user *buf, size_t nbytes, loff_t *ppos)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5101 char str[64];
5102 u64 val;
5103 int name, len;
5104 enum res_type type;
5105
5106 type = MEMFILE_TYPE(cft->private);
5107 name = MEMFILE_ATTR(cft->private);
5108
5109 switch (type) {
5110 case _MEM:
5111 if (name == RES_USAGE)
5112 val = mem_cgroup_usage(memcg, false);
5113 else
5114 val = res_counter_read_u64(&memcg->res, name);
5115 break;
5116 case _MEMSWAP:
5117 if (name == RES_USAGE)
5118 val = mem_cgroup_usage(memcg, true);
5119 else
5120 val = res_counter_read_u64(&memcg->memsw, name);
5121 break;
5122 case _KMEM:
5123 val = res_counter_read_u64(&memcg->kmem, name);
5124 break;
5125 default:
5126 BUG();
5127 }
5128
5129 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5130 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5131 }
5132
5133 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5134 {
5135 int ret = -EINVAL;
5136 #ifdef CONFIG_MEMCG_KMEM
5137 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5138 /*
5139 * For simplicity, we won't allow this to be disabled. It also can't
5140 * be changed if the cgroup has children already, or if tasks had
5141 * already joined.
5142 *
5143 * If tasks join before we set the limit, a person looking at
5144 * kmem.usage_in_bytes will have no way to determine when it took
5145 * place, which makes the value quite meaningless.
5146 *
5147 * After it first became limited, changes in the value of the limit are
5148 * of course permitted.
5149 */
5150 mutex_lock(&memcg_create_mutex);
5151 mutex_lock(&set_limit_mutex);
5152 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5153 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5154 ret = -EBUSY;
5155 goto out;
5156 }
5157 ret = res_counter_set_limit(&memcg->kmem, val);
5158 VM_BUG_ON(ret);
5159
5160 ret = memcg_update_cache_sizes(memcg);
5161 if (ret) {
5162 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5163 goto out;
5164 }
5165 static_key_slow_inc(&memcg_kmem_enabled_key);
5166 /*
5167 * setting the active bit after the inc will guarantee no one
5168 * starts accounting before all call sites are patched
5169 */
5170 memcg_kmem_set_active(memcg);
5171 } else
5172 ret = res_counter_set_limit(&memcg->kmem, val);
5173 out:
5174 mutex_unlock(&set_limit_mutex);
5175 mutex_unlock(&memcg_create_mutex);
5176 #endif
5177 return ret;
5178 }
5179
5180 #ifdef CONFIG_MEMCG_KMEM
5181 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5182 {
5183 int ret = 0;
5184 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5185 if (!parent)
5186 goto out;
5187
5188 memcg->kmem_account_flags = parent->kmem_account_flags;
5189 /*
5190 * When that happen, we need to disable the static branch only on those
5191 * memcgs that enabled it. To achieve this, we would be forced to
5192 * complicate the code by keeping track of which memcgs were the ones
5193 * that actually enabled limits, and which ones got it from its
5194 * parents.
5195 *
5196 * It is a lot simpler just to do static_key_slow_inc() on every child
5197 * that is accounted.
5198 */
5199 if (!memcg_kmem_is_active(memcg))
5200 goto out;
5201
5202 /*
5203 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5204 * memcg is active already. If the later initialization fails then the
5205 * cgroup core triggers the cleanup so we do not have to do it here.
5206 */
5207 static_key_slow_inc(&memcg_kmem_enabled_key);
5208
5209 mutex_lock(&set_limit_mutex);
5210 memcg_stop_kmem_account();
5211 ret = memcg_update_cache_sizes(memcg);
5212 memcg_resume_kmem_account();
5213 mutex_unlock(&set_limit_mutex);
5214 out:
5215 return ret;
5216 }
5217 #endif /* CONFIG_MEMCG_KMEM */
5218
5219 /*
5220 * The user of this function is...
5221 * RES_LIMIT.
5222 */
5223 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5224 const char *buffer)
5225 {
5226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5227 enum res_type type;
5228 int name;
5229 unsigned long long val;
5230 int ret;
5231
5232 type = MEMFILE_TYPE(cft->private);
5233 name = MEMFILE_ATTR(cft->private);
5234
5235 switch (name) {
5236 case RES_LIMIT:
5237 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5238 ret = -EINVAL;
5239 break;
5240 }
5241 /* This function does all necessary parse...reuse it */
5242 ret = res_counter_memparse_write_strategy(buffer, &val);
5243 if (ret)
5244 break;
5245 if (type == _MEM)
5246 ret = mem_cgroup_resize_limit(memcg, val);
5247 else if (type == _MEMSWAP)
5248 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5249 else if (type == _KMEM)
5250 ret = memcg_update_kmem_limit(css, val);
5251 else
5252 return -EINVAL;
5253 break;
5254 case RES_SOFT_LIMIT:
5255 ret = res_counter_memparse_write_strategy(buffer, &val);
5256 if (ret)
5257 break;
5258 /*
5259 * For memsw, soft limits are hard to implement in terms
5260 * of semantics, for now, we support soft limits for
5261 * control without swap
5262 */
5263 if (type == _MEM)
5264 ret = res_counter_set_soft_limit(&memcg->res, val);
5265 else
5266 ret = -EINVAL;
5267 break;
5268 default:
5269 ret = -EINVAL; /* should be BUG() ? */
5270 break;
5271 }
5272 return ret;
5273 }
5274
5275 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5276 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5277 {
5278 unsigned long long min_limit, min_memsw_limit, tmp;
5279
5280 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5281 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5282 if (!memcg->use_hierarchy)
5283 goto out;
5284
5285 while (css_parent(&memcg->css)) {
5286 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5287 if (!memcg->use_hierarchy)
5288 break;
5289 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 min_limit = min(min_limit, tmp);
5291 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5292 min_memsw_limit = min(min_memsw_limit, tmp);
5293 }
5294 out:
5295 *mem_limit = min_limit;
5296 *memsw_limit = min_memsw_limit;
5297 }
5298
5299 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5300 {
5301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5302 int name;
5303 enum res_type type;
5304
5305 type = MEMFILE_TYPE(event);
5306 name = MEMFILE_ATTR(event);
5307
5308 switch (name) {
5309 case RES_MAX_USAGE:
5310 if (type == _MEM)
5311 res_counter_reset_max(&memcg->res);
5312 else if (type == _MEMSWAP)
5313 res_counter_reset_max(&memcg->memsw);
5314 else if (type == _KMEM)
5315 res_counter_reset_max(&memcg->kmem);
5316 else
5317 return -EINVAL;
5318 break;
5319 case RES_FAILCNT:
5320 if (type == _MEM)
5321 res_counter_reset_failcnt(&memcg->res);
5322 else if (type == _MEMSWAP)
5323 res_counter_reset_failcnt(&memcg->memsw);
5324 else if (type == _KMEM)
5325 res_counter_reset_failcnt(&memcg->kmem);
5326 else
5327 return -EINVAL;
5328 break;
5329 }
5330
5331 return 0;
5332 }
5333
5334 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5335 struct cftype *cft)
5336 {
5337 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5338 }
5339
5340 #ifdef CONFIG_MMU
5341 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5342 struct cftype *cft, u64 val)
5343 {
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5345
5346 if (val >= (1 << NR_MOVE_TYPE))
5347 return -EINVAL;
5348
5349 /*
5350 * No kind of locking is needed in here, because ->can_attach() will
5351 * check this value once in the beginning of the process, and then carry
5352 * on with stale data. This means that changes to this value will only
5353 * affect task migrations starting after the change.
5354 */
5355 memcg->move_charge_at_immigrate = val;
5356 return 0;
5357 }
5358 #else
5359 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5360 struct cftype *cft, u64 val)
5361 {
5362 return -ENOSYS;
5363 }
5364 #endif
5365
5366 #ifdef CONFIG_NUMA
5367 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5368 struct cftype *cft, struct seq_file *m)
5369 {
5370 int nid;
5371 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5372 unsigned long node_nr;
5373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5374
5375 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5376 seq_printf(m, "total=%lu", total_nr);
5377 for_each_node_state(nid, N_MEMORY) {
5378 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5379 seq_printf(m, " N%d=%lu", nid, node_nr);
5380 }
5381 seq_putc(m, '\n');
5382
5383 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5384 seq_printf(m, "file=%lu", file_nr);
5385 for_each_node_state(nid, N_MEMORY) {
5386 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5387 LRU_ALL_FILE);
5388 seq_printf(m, " N%d=%lu", nid, node_nr);
5389 }
5390 seq_putc(m, '\n');
5391
5392 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5393 seq_printf(m, "anon=%lu", anon_nr);
5394 for_each_node_state(nid, N_MEMORY) {
5395 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5396 LRU_ALL_ANON);
5397 seq_printf(m, " N%d=%lu", nid, node_nr);
5398 }
5399 seq_putc(m, '\n');
5400
5401 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5402 seq_printf(m, "unevictable=%lu", unevictable_nr);
5403 for_each_node_state(nid, N_MEMORY) {
5404 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5405 BIT(LRU_UNEVICTABLE));
5406 seq_printf(m, " N%d=%lu", nid, node_nr);
5407 }
5408 seq_putc(m, '\n');
5409 return 0;
5410 }
5411 #endif /* CONFIG_NUMA */
5412
5413 static inline void mem_cgroup_lru_names_not_uptodate(void)
5414 {
5415 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5416 }
5417
5418 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5419 struct seq_file *m)
5420 {
5421 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5422 struct mem_cgroup *mi;
5423 unsigned int i;
5424
5425 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5426 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5427 continue;
5428 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5429 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5430 }
5431
5432 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5433 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5434 mem_cgroup_read_events(memcg, i));
5435
5436 for (i = 0; i < NR_LRU_LISTS; i++)
5437 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5438 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5439
5440 /* Hierarchical information */
5441 {
5442 unsigned long long limit, memsw_limit;
5443 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5444 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5445 if (do_swap_account)
5446 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5447 memsw_limit);
5448 }
5449
5450 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5451 long long val = 0;
5452
5453 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5454 continue;
5455 for_each_mem_cgroup_tree(mi, memcg)
5456 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5457 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5458 }
5459
5460 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5461 unsigned long long val = 0;
5462
5463 for_each_mem_cgroup_tree(mi, memcg)
5464 val += mem_cgroup_read_events(mi, i);
5465 seq_printf(m, "total_%s %llu\n",
5466 mem_cgroup_events_names[i], val);
5467 }
5468
5469 for (i = 0; i < NR_LRU_LISTS; i++) {
5470 unsigned long long val = 0;
5471
5472 for_each_mem_cgroup_tree(mi, memcg)
5473 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5474 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5475 }
5476
5477 #ifdef CONFIG_DEBUG_VM
5478 {
5479 int nid, zid;
5480 struct mem_cgroup_per_zone *mz;
5481 struct zone_reclaim_stat *rstat;
5482 unsigned long recent_rotated[2] = {0, 0};
5483 unsigned long recent_scanned[2] = {0, 0};
5484
5485 for_each_online_node(nid)
5486 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5487 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5488 rstat = &mz->lruvec.reclaim_stat;
5489
5490 recent_rotated[0] += rstat->recent_rotated[0];
5491 recent_rotated[1] += rstat->recent_rotated[1];
5492 recent_scanned[0] += rstat->recent_scanned[0];
5493 recent_scanned[1] += rstat->recent_scanned[1];
5494 }
5495 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5496 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5497 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5498 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5499 }
5500 #endif
5501
5502 return 0;
5503 }
5504
5505 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5506 struct cftype *cft)
5507 {
5508 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5509
5510 return mem_cgroup_swappiness(memcg);
5511 }
5512
5513 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5514 struct cftype *cft, u64 val)
5515 {
5516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5517 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5518
5519 if (val > 100 || !parent)
5520 return -EINVAL;
5521
5522 mutex_lock(&memcg_create_mutex);
5523
5524 /* If under hierarchy, only empty-root can set this value */
5525 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5526 mutex_unlock(&memcg_create_mutex);
5527 return -EINVAL;
5528 }
5529
5530 memcg->swappiness = val;
5531
5532 mutex_unlock(&memcg_create_mutex);
5533
5534 return 0;
5535 }
5536
5537 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5538 {
5539 struct mem_cgroup_threshold_ary *t;
5540 u64 usage;
5541 int i;
5542
5543 rcu_read_lock();
5544 if (!swap)
5545 t = rcu_dereference(memcg->thresholds.primary);
5546 else
5547 t = rcu_dereference(memcg->memsw_thresholds.primary);
5548
5549 if (!t)
5550 goto unlock;
5551
5552 usage = mem_cgroup_usage(memcg, swap);
5553
5554 /*
5555 * current_threshold points to threshold just below or equal to usage.
5556 * If it's not true, a threshold was crossed after last
5557 * call of __mem_cgroup_threshold().
5558 */
5559 i = t->current_threshold;
5560
5561 /*
5562 * Iterate backward over array of thresholds starting from
5563 * current_threshold and check if a threshold is crossed.
5564 * If none of thresholds below usage is crossed, we read
5565 * only one element of the array here.
5566 */
5567 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5568 eventfd_signal(t->entries[i].eventfd, 1);
5569
5570 /* i = current_threshold + 1 */
5571 i++;
5572
5573 /*
5574 * Iterate forward over array of thresholds starting from
5575 * current_threshold+1 and check if a threshold is crossed.
5576 * If none of thresholds above usage is crossed, we read
5577 * only one element of the array here.
5578 */
5579 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5580 eventfd_signal(t->entries[i].eventfd, 1);
5581
5582 /* Update current_threshold */
5583 t->current_threshold = i - 1;
5584 unlock:
5585 rcu_read_unlock();
5586 }
5587
5588 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5589 {
5590 while (memcg) {
5591 __mem_cgroup_threshold(memcg, false);
5592 if (do_swap_account)
5593 __mem_cgroup_threshold(memcg, true);
5594
5595 memcg = parent_mem_cgroup(memcg);
5596 }
5597 }
5598
5599 static int compare_thresholds(const void *a, const void *b)
5600 {
5601 const struct mem_cgroup_threshold *_a = a;
5602 const struct mem_cgroup_threshold *_b = b;
5603
5604 return _a->threshold - _b->threshold;
5605 }
5606
5607 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5608 {
5609 struct mem_cgroup_eventfd_list *ev;
5610
5611 list_for_each_entry(ev, &memcg->oom_notify, list)
5612 eventfd_signal(ev->eventfd, 1);
5613 return 0;
5614 }
5615
5616 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5617 {
5618 struct mem_cgroup *iter;
5619
5620 for_each_mem_cgroup_tree(iter, memcg)
5621 mem_cgroup_oom_notify_cb(iter);
5622 }
5623
5624 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5625 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5626 {
5627 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5628 struct mem_cgroup_thresholds *thresholds;
5629 struct mem_cgroup_threshold_ary *new;
5630 enum res_type type = MEMFILE_TYPE(cft->private);
5631 u64 threshold, usage;
5632 int i, size, ret;
5633
5634 ret = res_counter_memparse_write_strategy(args, &threshold);
5635 if (ret)
5636 return ret;
5637
5638 mutex_lock(&memcg->thresholds_lock);
5639
5640 if (type == _MEM)
5641 thresholds = &memcg->thresholds;
5642 else if (type == _MEMSWAP)
5643 thresholds = &memcg->memsw_thresholds;
5644 else
5645 BUG();
5646
5647 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5648
5649 /* Check if a threshold crossed before adding a new one */
5650 if (thresholds->primary)
5651 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5652
5653 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5654
5655 /* Allocate memory for new array of thresholds */
5656 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5657 GFP_KERNEL);
5658 if (!new) {
5659 ret = -ENOMEM;
5660 goto unlock;
5661 }
5662 new->size = size;
5663
5664 /* Copy thresholds (if any) to new array */
5665 if (thresholds->primary) {
5666 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5667 sizeof(struct mem_cgroup_threshold));
5668 }
5669
5670 /* Add new threshold */
5671 new->entries[size - 1].eventfd = eventfd;
5672 new->entries[size - 1].threshold = threshold;
5673
5674 /* Sort thresholds. Registering of new threshold isn't time-critical */
5675 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5676 compare_thresholds, NULL);
5677
5678 /* Find current threshold */
5679 new->current_threshold = -1;
5680 for (i = 0; i < size; i++) {
5681 if (new->entries[i].threshold <= usage) {
5682 /*
5683 * new->current_threshold will not be used until
5684 * rcu_assign_pointer(), so it's safe to increment
5685 * it here.
5686 */
5687 ++new->current_threshold;
5688 } else
5689 break;
5690 }
5691
5692 /* Free old spare buffer and save old primary buffer as spare */
5693 kfree(thresholds->spare);
5694 thresholds->spare = thresholds->primary;
5695
5696 rcu_assign_pointer(thresholds->primary, new);
5697
5698 /* To be sure that nobody uses thresholds */
5699 synchronize_rcu();
5700
5701 unlock:
5702 mutex_unlock(&memcg->thresholds_lock);
5703
5704 return ret;
5705 }
5706
5707 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5708 struct cftype *cft, struct eventfd_ctx *eventfd)
5709 {
5710 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5711 struct mem_cgroup_thresholds *thresholds;
5712 struct mem_cgroup_threshold_ary *new;
5713 enum res_type type = MEMFILE_TYPE(cft->private);
5714 u64 usage;
5715 int i, j, size;
5716
5717 mutex_lock(&memcg->thresholds_lock);
5718 if (type == _MEM)
5719 thresholds = &memcg->thresholds;
5720 else if (type == _MEMSWAP)
5721 thresholds = &memcg->memsw_thresholds;
5722 else
5723 BUG();
5724
5725 if (!thresholds->primary)
5726 goto unlock;
5727
5728 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5729
5730 /* Check if a threshold crossed before removing */
5731 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5732
5733 /* Calculate new number of threshold */
5734 size = 0;
5735 for (i = 0; i < thresholds->primary->size; i++) {
5736 if (thresholds->primary->entries[i].eventfd != eventfd)
5737 size++;
5738 }
5739
5740 new = thresholds->spare;
5741
5742 /* Set thresholds array to NULL if we don't have thresholds */
5743 if (!size) {
5744 kfree(new);
5745 new = NULL;
5746 goto swap_buffers;
5747 }
5748
5749 new->size = size;
5750
5751 /* Copy thresholds and find current threshold */
5752 new->current_threshold = -1;
5753 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5754 if (thresholds->primary->entries[i].eventfd == eventfd)
5755 continue;
5756
5757 new->entries[j] = thresholds->primary->entries[i];
5758 if (new->entries[j].threshold <= usage) {
5759 /*
5760 * new->current_threshold will not be used
5761 * until rcu_assign_pointer(), so it's safe to increment
5762 * it here.
5763 */
5764 ++new->current_threshold;
5765 }
5766 j++;
5767 }
5768
5769 swap_buffers:
5770 /* Swap primary and spare array */
5771 thresholds->spare = thresholds->primary;
5772 /* If all events are unregistered, free the spare array */
5773 if (!new) {
5774 kfree(thresholds->spare);
5775 thresholds->spare = NULL;
5776 }
5777
5778 rcu_assign_pointer(thresholds->primary, new);
5779
5780 /* To be sure that nobody uses thresholds */
5781 synchronize_rcu();
5782 unlock:
5783 mutex_unlock(&memcg->thresholds_lock);
5784 }
5785
5786 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5787 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5788 {
5789 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5790 struct mem_cgroup_eventfd_list *event;
5791 enum res_type type = MEMFILE_TYPE(cft->private);
5792
5793 BUG_ON(type != _OOM_TYPE);
5794 event = kmalloc(sizeof(*event), GFP_KERNEL);
5795 if (!event)
5796 return -ENOMEM;
5797
5798 spin_lock(&memcg_oom_lock);
5799
5800 event->eventfd = eventfd;
5801 list_add(&event->list, &memcg->oom_notify);
5802
5803 /* already in OOM ? */
5804 if (atomic_read(&memcg->under_oom))
5805 eventfd_signal(eventfd, 1);
5806 spin_unlock(&memcg_oom_lock);
5807
5808 return 0;
5809 }
5810
5811 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5812 struct cftype *cft, struct eventfd_ctx *eventfd)
5813 {
5814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5815 struct mem_cgroup_eventfd_list *ev, *tmp;
5816 enum res_type type = MEMFILE_TYPE(cft->private);
5817
5818 BUG_ON(type != _OOM_TYPE);
5819
5820 spin_lock(&memcg_oom_lock);
5821
5822 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5823 if (ev->eventfd == eventfd) {
5824 list_del(&ev->list);
5825 kfree(ev);
5826 }
5827 }
5828
5829 spin_unlock(&memcg_oom_lock);
5830 }
5831
5832 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5833 struct cftype *cft, struct cgroup_map_cb *cb)
5834 {
5835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5836
5837 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5838
5839 if (atomic_read(&memcg->under_oom))
5840 cb->fill(cb, "under_oom", 1);
5841 else
5842 cb->fill(cb, "under_oom", 0);
5843 return 0;
5844 }
5845
5846 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5847 struct cftype *cft, u64 val)
5848 {
5849 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5850 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5851
5852 /* cannot set to root cgroup and only 0 and 1 are allowed */
5853 if (!parent || !((val == 0) || (val == 1)))
5854 return -EINVAL;
5855
5856 mutex_lock(&memcg_create_mutex);
5857 /* oom-kill-disable is a flag for subhierarchy. */
5858 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5859 mutex_unlock(&memcg_create_mutex);
5860 return -EINVAL;
5861 }
5862 memcg->oom_kill_disable = val;
5863 if (!val)
5864 memcg_oom_recover(memcg);
5865 mutex_unlock(&memcg_create_mutex);
5866 return 0;
5867 }
5868
5869 #ifdef CONFIG_MEMCG_KMEM
5870 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5871 {
5872 int ret;
5873
5874 memcg->kmemcg_id = -1;
5875 ret = memcg_propagate_kmem(memcg);
5876 if (ret)
5877 return ret;
5878
5879 return mem_cgroup_sockets_init(memcg, ss);
5880 }
5881
5882 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5883 {
5884 mem_cgroup_sockets_destroy(memcg);
5885 }
5886
5887 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5888 {
5889 if (!memcg_kmem_is_active(memcg))
5890 return;
5891
5892 /*
5893 * kmem charges can outlive the cgroup. In the case of slab
5894 * pages, for instance, a page contain objects from various
5895 * processes. As we prevent from taking a reference for every
5896 * such allocation we have to be careful when doing uncharge
5897 * (see memcg_uncharge_kmem) and here during offlining.
5898 *
5899 * The idea is that that only the _last_ uncharge which sees
5900 * the dead memcg will drop the last reference. An additional
5901 * reference is taken here before the group is marked dead
5902 * which is then paired with css_put during uncharge resp. here.
5903 *
5904 * Although this might sound strange as this path is called from
5905 * css_offline() when the referencemight have dropped down to 0
5906 * and shouldn't be incremented anymore (css_tryget would fail)
5907 * we do not have other options because of the kmem allocations
5908 * lifetime.
5909 */
5910 css_get(&memcg->css);
5911
5912 memcg_kmem_mark_dead(memcg);
5913
5914 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5915 return;
5916
5917 if (memcg_kmem_test_and_clear_dead(memcg))
5918 css_put(&memcg->css);
5919 }
5920 #else
5921 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5922 {
5923 return 0;
5924 }
5925
5926 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5927 {
5928 }
5929
5930 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5931 {
5932 }
5933 #endif
5934
5935 static struct cftype mem_cgroup_files[] = {
5936 {
5937 .name = "usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5939 .read = mem_cgroup_read,
5940 .register_event = mem_cgroup_usage_register_event,
5941 .unregister_event = mem_cgroup_usage_unregister_event,
5942 },
5943 {
5944 .name = "max_usage_in_bytes",
5945 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5946 .trigger = mem_cgroup_reset,
5947 .read = mem_cgroup_read,
5948 },
5949 {
5950 .name = "limit_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5952 .write_string = mem_cgroup_write,
5953 .read = mem_cgroup_read,
5954 },
5955 {
5956 .name = "soft_limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5958 .write_string = mem_cgroup_write,
5959 .read = mem_cgroup_read,
5960 },
5961 {
5962 .name = "failcnt",
5963 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5964 .trigger = mem_cgroup_reset,
5965 .read = mem_cgroup_read,
5966 },
5967 {
5968 .name = "stat",
5969 .read_seq_string = memcg_stat_show,
5970 },
5971 {
5972 .name = "force_empty",
5973 .trigger = mem_cgroup_force_empty_write,
5974 },
5975 {
5976 .name = "use_hierarchy",
5977 .flags = CFTYPE_INSANE,
5978 .write_u64 = mem_cgroup_hierarchy_write,
5979 .read_u64 = mem_cgroup_hierarchy_read,
5980 },
5981 {
5982 .name = "swappiness",
5983 .read_u64 = mem_cgroup_swappiness_read,
5984 .write_u64 = mem_cgroup_swappiness_write,
5985 },
5986 {
5987 .name = "move_charge_at_immigrate",
5988 .read_u64 = mem_cgroup_move_charge_read,
5989 .write_u64 = mem_cgroup_move_charge_write,
5990 },
5991 {
5992 .name = "oom_control",
5993 .read_map = mem_cgroup_oom_control_read,
5994 .write_u64 = mem_cgroup_oom_control_write,
5995 .register_event = mem_cgroup_oom_register_event,
5996 .unregister_event = mem_cgroup_oom_unregister_event,
5997 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5998 },
5999 {
6000 .name = "pressure_level",
6001 .register_event = vmpressure_register_event,
6002 .unregister_event = vmpressure_unregister_event,
6003 },
6004 #ifdef CONFIG_NUMA
6005 {
6006 .name = "numa_stat",
6007 .read_seq_string = memcg_numa_stat_show,
6008 },
6009 #endif
6010 #ifdef CONFIG_MEMCG_KMEM
6011 {
6012 .name = "kmem.limit_in_bytes",
6013 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6014 .write_string = mem_cgroup_write,
6015 .read = mem_cgroup_read,
6016 },
6017 {
6018 .name = "kmem.usage_in_bytes",
6019 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6020 .read = mem_cgroup_read,
6021 },
6022 {
6023 .name = "kmem.failcnt",
6024 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6027 },
6028 {
6029 .name = "kmem.max_usage_in_bytes",
6030 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6031 .trigger = mem_cgroup_reset,
6032 .read = mem_cgroup_read,
6033 },
6034 #ifdef CONFIG_SLABINFO
6035 {
6036 .name = "kmem.slabinfo",
6037 .read_seq_string = mem_cgroup_slabinfo_read,
6038 },
6039 #endif
6040 #endif
6041 { }, /* terminate */
6042 };
6043
6044 #ifdef CONFIG_MEMCG_SWAP
6045 static struct cftype memsw_cgroup_files[] = {
6046 {
6047 .name = "memsw.usage_in_bytes",
6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6049 .read = mem_cgroup_read,
6050 .register_event = mem_cgroup_usage_register_event,
6051 .unregister_event = mem_cgroup_usage_unregister_event,
6052 },
6053 {
6054 .name = "memsw.max_usage_in_bytes",
6055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6056 .trigger = mem_cgroup_reset,
6057 .read = mem_cgroup_read,
6058 },
6059 {
6060 .name = "memsw.limit_in_bytes",
6061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6062 .write_string = mem_cgroup_write,
6063 .read = mem_cgroup_read,
6064 },
6065 {
6066 .name = "memsw.failcnt",
6067 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6068 .trigger = mem_cgroup_reset,
6069 .read = mem_cgroup_read,
6070 },
6071 { }, /* terminate */
6072 };
6073 #endif
6074 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6075 {
6076 struct mem_cgroup_per_node *pn;
6077 struct mem_cgroup_per_zone *mz;
6078 int zone, tmp = node;
6079 /*
6080 * This routine is called against possible nodes.
6081 * But it's BUG to call kmalloc() against offline node.
6082 *
6083 * TODO: this routine can waste much memory for nodes which will
6084 * never be onlined. It's better to use memory hotplug callback
6085 * function.
6086 */
6087 if (!node_state(node, N_NORMAL_MEMORY))
6088 tmp = -1;
6089 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6090 if (!pn)
6091 return 1;
6092
6093 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6094 mz = &pn->zoneinfo[zone];
6095 lruvec_init(&mz->lruvec);
6096 mz->usage_in_excess = 0;
6097 mz->on_tree = false;
6098 mz->memcg = memcg;
6099 }
6100 memcg->nodeinfo[node] = pn;
6101 return 0;
6102 }
6103
6104 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6105 {
6106 kfree(memcg->nodeinfo[node]);
6107 }
6108
6109 static struct mem_cgroup *mem_cgroup_alloc(void)
6110 {
6111 struct mem_cgroup *memcg;
6112 size_t size = memcg_size();
6113
6114 /* Can be very big if nr_node_ids is very big */
6115 if (size < PAGE_SIZE)
6116 memcg = kzalloc(size, GFP_KERNEL);
6117 else
6118 memcg = vzalloc(size);
6119
6120 if (!memcg)
6121 return NULL;
6122
6123 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6124 if (!memcg->stat)
6125 goto out_free;
6126 spin_lock_init(&memcg->pcp_counter_lock);
6127 return memcg;
6128
6129 out_free:
6130 if (size < PAGE_SIZE)
6131 kfree(memcg);
6132 else
6133 vfree(memcg);
6134 return NULL;
6135 }
6136
6137 /*
6138 * At destroying mem_cgroup, references from swap_cgroup can remain.
6139 * (scanning all at force_empty is too costly...)
6140 *
6141 * Instead of clearing all references at force_empty, we remember
6142 * the number of reference from swap_cgroup and free mem_cgroup when
6143 * it goes down to 0.
6144 *
6145 * Removal of cgroup itself succeeds regardless of refs from swap.
6146 */
6147
6148 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6149 {
6150 int node;
6151 size_t size = memcg_size();
6152
6153 mem_cgroup_remove_from_trees(memcg);
6154 free_css_id(&mem_cgroup_subsys, &memcg->css);
6155
6156 for_each_node(node)
6157 free_mem_cgroup_per_zone_info(memcg, node);
6158
6159 free_percpu(memcg->stat);
6160
6161 /*
6162 * We need to make sure that (at least for now), the jump label
6163 * destruction code runs outside of the cgroup lock. This is because
6164 * get_online_cpus(), which is called from the static_branch update,
6165 * can't be called inside the cgroup_lock. cpusets are the ones
6166 * enforcing this dependency, so if they ever change, we might as well.
6167 *
6168 * schedule_work() will guarantee this happens. Be careful if you need
6169 * to move this code around, and make sure it is outside
6170 * the cgroup_lock.
6171 */
6172 disarm_static_keys(memcg);
6173 if (size < PAGE_SIZE)
6174 kfree(memcg);
6175 else
6176 vfree(memcg);
6177 }
6178
6179 /*
6180 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6181 */
6182 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6183 {
6184 if (!memcg->res.parent)
6185 return NULL;
6186 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6187 }
6188 EXPORT_SYMBOL(parent_mem_cgroup);
6189
6190 static void __init mem_cgroup_soft_limit_tree_init(void)
6191 {
6192 struct mem_cgroup_tree_per_node *rtpn;
6193 struct mem_cgroup_tree_per_zone *rtpz;
6194 int tmp, node, zone;
6195
6196 for_each_node(node) {
6197 tmp = node;
6198 if (!node_state(node, N_NORMAL_MEMORY))
6199 tmp = -1;
6200 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6201 BUG_ON(!rtpn);
6202
6203 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6204
6205 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6206 rtpz = &rtpn->rb_tree_per_zone[zone];
6207 rtpz->rb_root = RB_ROOT;
6208 spin_lock_init(&rtpz->lock);
6209 }
6210 }
6211 }
6212
6213 static struct cgroup_subsys_state * __ref
6214 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6215 {
6216 struct mem_cgroup *memcg;
6217 long error = -ENOMEM;
6218 int node;
6219
6220 memcg = mem_cgroup_alloc();
6221 if (!memcg)
6222 return ERR_PTR(error);
6223
6224 for_each_node(node)
6225 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6226 goto free_out;
6227
6228 /* root ? */
6229 if (parent_css == NULL) {
6230 root_mem_cgroup = memcg;
6231 res_counter_init(&memcg->res, NULL);
6232 res_counter_init(&memcg->memsw, NULL);
6233 res_counter_init(&memcg->kmem, NULL);
6234 }
6235
6236 memcg->last_scanned_node = MAX_NUMNODES;
6237 INIT_LIST_HEAD(&memcg->oom_notify);
6238 memcg->move_charge_at_immigrate = 0;
6239 mutex_init(&memcg->thresholds_lock);
6240 spin_lock_init(&memcg->move_lock);
6241 vmpressure_init(&memcg->vmpressure);
6242
6243 return &memcg->css;
6244
6245 free_out:
6246 __mem_cgroup_free(memcg);
6247 return ERR_PTR(error);
6248 }
6249
6250 static int
6251 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6252 {
6253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6254 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6255 int error = 0;
6256
6257 if (!parent)
6258 return 0;
6259
6260 mutex_lock(&memcg_create_mutex);
6261
6262 memcg->use_hierarchy = parent->use_hierarchy;
6263 memcg->oom_kill_disable = parent->oom_kill_disable;
6264 memcg->swappiness = mem_cgroup_swappiness(parent);
6265
6266 if (parent->use_hierarchy) {
6267 res_counter_init(&memcg->res, &parent->res);
6268 res_counter_init(&memcg->memsw, &parent->memsw);
6269 res_counter_init(&memcg->kmem, &parent->kmem);
6270
6271 /*
6272 * No need to take a reference to the parent because cgroup
6273 * core guarantees its existence.
6274 */
6275 } else {
6276 res_counter_init(&memcg->res, NULL);
6277 res_counter_init(&memcg->memsw, NULL);
6278 res_counter_init(&memcg->kmem, NULL);
6279 /*
6280 * Deeper hierachy with use_hierarchy == false doesn't make
6281 * much sense so let cgroup subsystem know about this
6282 * unfortunate state in our controller.
6283 */
6284 if (parent != root_mem_cgroup)
6285 mem_cgroup_subsys.broken_hierarchy = true;
6286 }
6287
6288 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6289 mutex_unlock(&memcg_create_mutex);
6290 return error;
6291 }
6292
6293 /*
6294 * Announce all parents that a group from their hierarchy is gone.
6295 */
6296 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6297 {
6298 struct mem_cgroup *parent = memcg;
6299
6300 while ((parent = parent_mem_cgroup(parent)))
6301 mem_cgroup_iter_invalidate(parent);
6302
6303 /*
6304 * if the root memcg is not hierarchical we have to check it
6305 * explicitely.
6306 */
6307 if (!root_mem_cgroup->use_hierarchy)
6308 mem_cgroup_iter_invalidate(root_mem_cgroup);
6309 }
6310
6311 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6312 {
6313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6314
6315 kmem_cgroup_css_offline(memcg);
6316
6317 mem_cgroup_invalidate_reclaim_iterators(memcg);
6318 mem_cgroup_reparent_charges(memcg);
6319 mem_cgroup_destroy_all_caches(memcg);
6320 }
6321
6322 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6323 {
6324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6325
6326 memcg_destroy_kmem(memcg);
6327 __mem_cgroup_free(memcg);
6328 }
6329
6330 #ifdef CONFIG_MMU
6331 /* Handlers for move charge at task migration. */
6332 #define PRECHARGE_COUNT_AT_ONCE 256
6333 static int mem_cgroup_do_precharge(unsigned long count)
6334 {
6335 int ret = 0;
6336 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6337 struct mem_cgroup *memcg = mc.to;
6338
6339 if (mem_cgroup_is_root(memcg)) {
6340 mc.precharge += count;
6341 /* we don't need css_get for root */
6342 return ret;
6343 }
6344 /* try to charge at once */
6345 if (count > 1) {
6346 struct res_counter *dummy;
6347 /*
6348 * "memcg" cannot be under rmdir() because we've already checked
6349 * by cgroup_lock_live_cgroup() that it is not removed and we
6350 * are still under the same cgroup_mutex. So we can postpone
6351 * css_get().
6352 */
6353 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6354 goto one_by_one;
6355 if (do_swap_account && res_counter_charge(&memcg->memsw,
6356 PAGE_SIZE * count, &dummy)) {
6357 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6358 goto one_by_one;
6359 }
6360 mc.precharge += count;
6361 return ret;
6362 }
6363 one_by_one:
6364 /* fall back to one by one charge */
6365 while (count--) {
6366 if (signal_pending(current)) {
6367 ret = -EINTR;
6368 break;
6369 }
6370 if (!batch_count--) {
6371 batch_count = PRECHARGE_COUNT_AT_ONCE;
6372 cond_resched();
6373 }
6374 ret = __mem_cgroup_try_charge(NULL,
6375 GFP_KERNEL, 1, &memcg, false);
6376 if (ret)
6377 /* mem_cgroup_clear_mc() will do uncharge later */
6378 return ret;
6379 mc.precharge++;
6380 }
6381 return ret;
6382 }
6383
6384 /**
6385 * get_mctgt_type - get target type of moving charge
6386 * @vma: the vma the pte to be checked belongs
6387 * @addr: the address corresponding to the pte to be checked
6388 * @ptent: the pte to be checked
6389 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6390 *
6391 * Returns
6392 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6393 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6394 * move charge. if @target is not NULL, the page is stored in target->page
6395 * with extra refcnt got(Callers should handle it).
6396 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6397 * target for charge migration. if @target is not NULL, the entry is stored
6398 * in target->ent.
6399 *
6400 * Called with pte lock held.
6401 */
6402 union mc_target {
6403 struct page *page;
6404 swp_entry_t ent;
6405 };
6406
6407 enum mc_target_type {
6408 MC_TARGET_NONE = 0,
6409 MC_TARGET_PAGE,
6410 MC_TARGET_SWAP,
6411 };
6412
6413 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6414 unsigned long addr, pte_t ptent)
6415 {
6416 struct page *page = vm_normal_page(vma, addr, ptent);
6417
6418 if (!page || !page_mapped(page))
6419 return NULL;
6420 if (PageAnon(page)) {
6421 /* we don't move shared anon */
6422 if (!move_anon())
6423 return NULL;
6424 } else if (!move_file())
6425 /* we ignore mapcount for file pages */
6426 return NULL;
6427 if (!get_page_unless_zero(page))
6428 return NULL;
6429
6430 return page;
6431 }
6432
6433 #ifdef CONFIG_SWAP
6434 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6435 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6436 {
6437 struct page *page = NULL;
6438 swp_entry_t ent = pte_to_swp_entry(ptent);
6439
6440 if (!move_anon() || non_swap_entry(ent))
6441 return NULL;
6442 /*
6443 * Because lookup_swap_cache() updates some statistics counter,
6444 * we call find_get_page() with swapper_space directly.
6445 */
6446 page = find_get_page(swap_address_space(ent), ent.val);
6447 if (do_swap_account)
6448 entry->val = ent.val;
6449
6450 return page;
6451 }
6452 #else
6453 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6454 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6455 {
6456 return NULL;
6457 }
6458 #endif
6459
6460 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6461 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6462 {
6463 struct page *page = NULL;
6464 struct address_space *mapping;
6465 pgoff_t pgoff;
6466
6467 if (!vma->vm_file) /* anonymous vma */
6468 return NULL;
6469 if (!move_file())
6470 return NULL;
6471
6472 mapping = vma->vm_file->f_mapping;
6473 if (pte_none(ptent))
6474 pgoff = linear_page_index(vma, addr);
6475 else /* pte_file(ptent) is true */
6476 pgoff = pte_to_pgoff(ptent);
6477
6478 /* page is moved even if it's not RSS of this task(page-faulted). */
6479 page = find_get_page(mapping, pgoff);
6480
6481 #ifdef CONFIG_SWAP
6482 /* shmem/tmpfs may report page out on swap: account for that too. */
6483 if (radix_tree_exceptional_entry(page)) {
6484 swp_entry_t swap = radix_to_swp_entry(page);
6485 if (do_swap_account)
6486 *entry = swap;
6487 page = find_get_page(swap_address_space(swap), swap.val);
6488 }
6489 #endif
6490 return page;
6491 }
6492
6493 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6494 unsigned long addr, pte_t ptent, union mc_target *target)
6495 {
6496 struct page *page = NULL;
6497 struct page_cgroup *pc;
6498 enum mc_target_type ret = MC_TARGET_NONE;
6499 swp_entry_t ent = { .val = 0 };
6500
6501 if (pte_present(ptent))
6502 page = mc_handle_present_pte(vma, addr, ptent);
6503 else if (is_swap_pte(ptent))
6504 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6505 else if (pte_none(ptent) || pte_file(ptent))
6506 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6507
6508 if (!page && !ent.val)
6509 return ret;
6510 if (page) {
6511 pc = lookup_page_cgroup(page);
6512 /*
6513 * Do only loose check w/o page_cgroup lock.
6514 * mem_cgroup_move_account() checks the pc is valid or not under
6515 * the lock.
6516 */
6517 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6518 ret = MC_TARGET_PAGE;
6519 if (target)
6520 target->page = page;
6521 }
6522 if (!ret || !target)
6523 put_page(page);
6524 }
6525 /* There is a swap entry and a page doesn't exist or isn't charged */
6526 if (ent.val && !ret &&
6527 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6528 ret = MC_TARGET_SWAP;
6529 if (target)
6530 target->ent = ent;
6531 }
6532 return ret;
6533 }
6534
6535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6536 /*
6537 * We don't consider swapping or file mapped pages because THP does not
6538 * support them for now.
6539 * Caller should make sure that pmd_trans_huge(pmd) is true.
6540 */
6541 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6542 unsigned long addr, pmd_t pmd, union mc_target *target)
6543 {
6544 struct page *page = NULL;
6545 struct page_cgroup *pc;
6546 enum mc_target_type ret = MC_TARGET_NONE;
6547
6548 page = pmd_page(pmd);
6549 VM_BUG_ON(!page || !PageHead(page));
6550 if (!move_anon())
6551 return ret;
6552 pc = lookup_page_cgroup(page);
6553 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6554 ret = MC_TARGET_PAGE;
6555 if (target) {
6556 get_page(page);
6557 target->page = page;
6558 }
6559 }
6560 return ret;
6561 }
6562 #else
6563 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6564 unsigned long addr, pmd_t pmd, union mc_target *target)
6565 {
6566 return MC_TARGET_NONE;
6567 }
6568 #endif
6569
6570 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6571 unsigned long addr, unsigned long end,
6572 struct mm_walk *walk)
6573 {
6574 struct vm_area_struct *vma = walk->private;
6575 pte_t *pte;
6576 spinlock_t *ptl;
6577
6578 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6579 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6580 mc.precharge += HPAGE_PMD_NR;
6581 spin_unlock(&vma->vm_mm->page_table_lock);
6582 return 0;
6583 }
6584
6585 if (pmd_trans_unstable(pmd))
6586 return 0;
6587 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6588 for (; addr != end; pte++, addr += PAGE_SIZE)
6589 if (get_mctgt_type(vma, addr, *pte, NULL))
6590 mc.precharge++; /* increment precharge temporarily */
6591 pte_unmap_unlock(pte - 1, ptl);
6592 cond_resched();
6593
6594 return 0;
6595 }
6596
6597 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6598 {
6599 unsigned long precharge;
6600 struct vm_area_struct *vma;
6601
6602 down_read(&mm->mmap_sem);
6603 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6604 struct mm_walk mem_cgroup_count_precharge_walk = {
6605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6606 .mm = mm,
6607 .private = vma,
6608 };
6609 if (is_vm_hugetlb_page(vma))
6610 continue;
6611 walk_page_range(vma->vm_start, vma->vm_end,
6612 &mem_cgroup_count_precharge_walk);
6613 }
6614 up_read(&mm->mmap_sem);
6615
6616 precharge = mc.precharge;
6617 mc.precharge = 0;
6618
6619 return precharge;
6620 }
6621
6622 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6623 {
6624 unsigned long precharge = mem_cgroup_count_precharge(mm);
6625
6626 VM_BUG_ON(mc.moving_task);
6627 mc.moving_task = current;
6628 return mem_cgroup_do_precharge(precharge);
6629 }
6630
6631 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6632 static void __mem_cgroup_clear_mc(void)
6633 {
6634 struct mem_cgroup *from = mc.from;
6635 struct mem_cgroup *to = mc.to;
6636 int i;
6637
6638 /* we must uncharge all the leftover precharges from mc.to */
6639 if (mc.precharge) {
6640 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6641 mc.precharge = 0;
6642 }
6643 /*
6644 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6645 * we must uncharge here.
6646 */
6647 if (mc.moved_charge) {
6648 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6649 mc.moved_charge = 0;
6650 }
6651 /* we must fixup refcnts and charges */
6652 if (mc.moved_swap) {
6653 /* uncharge swap account from the old cgroup */
6654 if (!mem_cgroup_is_root(mc.from))
6655 res_counter_uncharge(&mc.from->memsw,
6656 PAGE_SIZE * mc.moved_swap);
6657
6658 for (i = 0; i < mc.moved_swap; i++)
6659 css_put(&mc.from->css);
6660
6661 if (!mem_cgroup_is_root(mc.to)) {
6662 /*
6663 * we charged both to->res and to->memsw, so we should
6664 * uncharge to->res.
6665 */
6666 res_counter_uncharge(&mc.to->res,
6667 PAGE_SIZE * mc.moved_swap);
6668 }
6669 /* we've already done css_get(mc.to) */
6670 mc.moved_swap = 0;
6671 }
6672 memcg_oom_recover(from);
6673 memcg_oom_recover(to);
6674 wake_up_all(&mc.waitq);
6675 }
6676
6677 static void mem_cgroup_clear_mc(void)
6678 {
6679 struct mem_cgroup *from = mc.from;
6680
6681 /*
6682 * we must clear moving_task before waking up waiters at the end of
6683 * task migration.
6684 */
6685 mc.moving_task = NULL;
6686 __mem_cgroup_clear_mc();
6687 spin_lock(&mc.lock);
6688 mc.from = NULL;
6689 mc.to = NULL;
6690 spin_unlock(&mc.lock);
6691 mem_cgroup_end_move(from);
6692 }
6693
6694 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6695 struct cgroup_taskset *tset)
6696 {
6697 struct task_struct *p = cgroup_taskset_first(tset);
6698 int ret = 0;
6699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6700 unsigned long move_charge_at_immigrate;
6701
6702 /*
6703 * We are now commited to this value whatever it is. Changes in this
6704 * tunable will only affect upcoming migrations, not the current one.
6705 * So we need to save it, and keep it going.
6706 */
6707 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6708 if (move_charge_at_immigrate) {
6709 struct mm_struct *mm;
6710 struct mem_cgroup *from = mem_cgroup_from_task(p);
6711
6712 VM_BUG_ON(from == memcg);
6713
6714 mm = get_task_mm(p);
6715 if (!mm)
6716 return 0;
6717 /* We move charges only when we move a owner of the mm */
6718 if (mm->owner == p) {
6719 VM_BUG_ON(mc.from);
6720 VM_BUG_ON(mc.to);
6721 VM_BUG_ON(mc.precharge);
6722 VM_BUG_ON(mc.moved_charge);
6723 VM_BUG_ON(mc.moved_swap);
6724 mem_cgroup_start_move(from);
6725 spin_lock(&mc.lock);
6726 mc.from = from;
6727 mc.to = memcg;
6728 mc.immigrate_flags = move_charge_at_immigrate;
6729 spin_unlock(&mc.lock);
6730 /* We set mc.moving_task later */
6731
6732 ret = mem_cgroup_precharge_mc(mm);
6733 if (ret)
6734 mem_cgroup_clear_mc();
6735 }
6736 mmput(mm);
6737 }
6738 return ret;
6739 }
6740
6741 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6742 struct cgroup_taskset *tset)
6743 {
6744 mem_cgroup_clear_mc();
6745 }
6746
6747 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6748 unsigned long addr, unsigned long end,
6749 struct mm_walk *walk)
6750 {
6751 int ret = 0;
6752 struct vm_area_struct *vma = walk->private;
6753 pte_t *pte;
6754 spinlock_t *ptl;
6755 enum mc_target_type target_type;
6756 union mc_target target;
6757 struct page *page;
6758 struct page_cgroup *pc;
6759
6760 /*
6761 * We don't take compound_lock() here but no race with splitting thp
6762 * happens because:
6763 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6764 * under splitting, which means there's no concurrent thp split,
6765 * - if another thread runs into split_huge_page() just after we
6766 * entered this if-block, the thread must wait for page table lock
6767 * to be unlocked in __split_huge_page_splitting(), where the main
6768 * part of thp split is not executed yet.
6769 */
6770 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6771 if (mc.precharge < HPAGE_PMD_NR) {
6772 spin_unlock(&vma->vm_mm->page_table_lock);
6773 return 0;
6774 }
6775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6776 if (target_type == MC_TARGET_PAGE) {
6777 page = target.page;
6778 if (!isolate_lru_page(page)) {
6779 pc = lookup_page_cgroup(page);
6780 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6781 pc, mc.from, mc.to)) {
6782 mc.precharge -= HPAGE_PMD_NR;
6783 mc.moved_charge += HPAGE_PMD_NR;
6784 }
6785 putback_lru_page(page);
6786 }
6787 put_page(page);
6788 }
6789 spin_unlock(&vma->vm_mm->page_table_lock);
6790 return 0;
6791 }
6792
6793 if (pmd_trans_unstable(pmd))
6794 return 0;
6795 retry:
6796 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6797 for (; addr != end; addr += PAGE_SIZE) {
6798 pte_t ptent = *(pte++);
6799 swp_entry_t ent;
6800
6801 if (!mc.precharge)
6802 break;
6803
6804 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6805 case MC_TARGET_PAGE:
6806 page = target.page;
6807 if (isolate_lru_page(page))
6808 goto put;
6809 pc = lookup_page_cgroup(page);
6810 if (!mem_cgroup_move_account(page, 1, pc,
6811 mc.from, mc.to)) {
6812 mc.precharge--;
6813 /* we uncharge from mc.from later. */
6814 mc.moved_charge++;
6815 }
6816 putback_lru_page(page);
6817 put: /* get_mctgt_type() gets the page */
6818 put_page(page);
6819 break;
6820 case MC_TARGET_SWAP:
6821 ent = target.ent;
6822 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6823 mc.precharge--;
6824 /* we fixup refcnts and charges later. */
6825 mc.moved_swap++;
6826 }
6827 break;
6828 default:
6829 break;
6830 }
6831 }
6832 pte_unmap_unlock(pte - 1, ptl);
6833 cond_resched();
6834
6835 if (addr != end) {
6836 /*
6837 * We have consumed all precharges we got in can_attach().
6838 * We try charge one by one, but don't do any additional
6839 * charges to mc.to if we have failed in charge once in attach()
6840 * phase.
6841 */
6842 ret = mem_cgroup_do_precharge(1);
6843 if (!ret)
6844 goto retry;
6845 }
6846
6847 return ret;
6848 }
6849
6850 static void mem_cgroup_move_charge(struct mm_struct *mm)
6851 {
6852 struct vm_area_struct *vma;
6853
6854 lru_add_drain_all();
6855 retry:
6856 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6857 /*
6858 * Someone who are holding the mmap_sem might be waiting in
6859 * waitq. So we cancel all extra charges, wake up all waiters,
6860 * and retry. Because we cancel precharges, we might not be able
6861 * to move enough charges, but moving charge is a best-effort
6862 * feature anyway, so it wouldn't be a big problem.
6863 */
6864 __mem_cgroup_clear_mc();
6865 cond_resched();
6866 goto retry;
6867 }
6868 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6869 int ret;
6870 struct mm_walk mem_cgroup_move_charge_walk = {
6871 .pmd_entry = mem_cgroup_move_charge_pte_range,
6872 .mm = mm,
6873 .private = vma,
6874 };
6875 if (is_vm_hugetlb_page(vma))
6876 continue;
6877 ret = walk_page_range(vma->vm_start, vma->vm_end,
6878 &mem_cgroup_move_charge_walk);
6879 if (ret)
6880 /*
6881 * means we have consumed all precharges and failed in
6882 * doing additional charge. Just abandon here.
6883 */
6884 break;
6885 }
6886 up_read(&mm->mmap_sem);
6887 }
6888
6889 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6890 struct cgroup_taskset *tset)
6891 {
6892 struct task_struct *p = cgroup_taskset_first(tset);
6893 struct mm_struct *mm = get_task_mm(p);
6894
6895 if (mm) {
6896 if (mc.to)
6897 mem_cgroup_move_charge(mm);
6898 mmput(mm);
6899 }
6900 if (mc.to)
6901 mem_cgroup_clear_mc();
6902 }
6903 #else /* !CONFIG_MMU */
6904 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6905 struct cgroup_taskset *tset)
6906 {
6907 return 0;
6908 }
6909 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6910 struct cgroup_taskset *tset)
6911 {
6912 }
6913 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6914 struct cgroup_taskset *tset)
6915 {
6916 }
6917 #endif
6918
6919 /*
6920 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6921 * to verify sane_behavior flag on each mount attempt.
6922 */
6923 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6924 {
6925 /*
6926 * use_hierarchy is forced with sane_behavior. cgroup core
6927 * guarantees that @root doesn't have any children, so turning it
6928 * on for the root memcg is enough.
6929 */
6930 if (cgroup_sane_behavior(root_css->cgroup))
6931 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6932 }
6933
6934 struct cgroup_subsys mem_cgroup_subsys = {
6935 .name = "memory",
6936 .subsys_id = mem_cgroup_subsys_id,
6937 .css_alloc = mem_cgroup_css_alloc,
6938 .css_online = mem_cgroup_css_online,
6939 .css_offline = mem_cgroup_css_offline,
6940 .css_free = mem_cgroup_css_free,
6941 .can_attach = mem_cgroup_can_attach,
6942 .cancel_attach = mem_cgroup_cancel_attach,
6943 .attach = mem_cgroup_move_task,
6944 .bind = mem_cgroup_bind,
6945 .base_cftypes = mem_cgroup_files,
6946 .early_init = 0,
6947 .use_id = 1,
6948 };
6949
6950 #ifdef CONFIG_MEMCG_SWAP
6951 static int __init enable_swap_account(char *s)
6952 {
6953 /* consider enabled if no parameter or 1 is given */
6954 if (!strcmp(s, "1"))
6955 really_do_swap_account = 1;
6956 else if (!strcmp(s, "0"))
6957 really_do_swap_account = 0;
6958 return 1;
6959 }
6960 __setup("swapaccount=", enable_swap_account);
6961
6962 static void __init memsw_file_init(void)
6963 {
6964 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6965 }
6966
6967 static void __init enable_swap_cgroup(void)
6968 {
6969 if (!mem_cgroup_disabled() && really_do_swap_account) {
6970 do_swap_account = 1;
6971 memsw_file_init();
6972 }
6973 }
6974
6975 #else
6976 static void __init enable_swap_cgroup(void)
6977 {
6978 }
6979 #endif
6980
6981 /*
6982 * subsys_initcall() for memory controller.
6983 *
6984 * Some parts like hotcpu_notifier() have to be initialized from this context
6985 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6986 * everything that doesn't depend on a specific mem_cgroup structure should
6987 * be initialized from here.
6988 */
6989 static int __init mem_cgroup_init(void)
6990 {
6991 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6992 enable_swap_cgroup();
6993 mem_cgroup_soft_limit_tree_init();
6994 memcg_stock_init();
6995 return 0;
6996 }
6997 subsys_initcall(mem_cgroup_init);
This page took 0.200878 seconds and 5 git commands to generate.