cgroup: make cftype->[un]register_event() deal with cgroup_subsys_state instead of...
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 /*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198 };
199
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213 };
214
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223 };
224
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234 };
235
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240 };
241
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244
245 /*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
255 */
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
270
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280
281 bool oom_lock;
282 atomic_t under_oom;
283
284 int swappiness;
285 /* OOM-Killer disable */
286 int oom_kill_disable;
287
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
295 struct mem_cgroup_thresholds thresholds;
296
297 /* thresholds for mem+swap usage. RCU-protected */
298 struct mem_cgroup_thresholds memsw_thresholds;
299
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
302
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
314 /*
315 * percpu counter.
316 */
317 struct mem_cgroup_stat_cpu __percpu *stat;
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
324
325 atomic_t dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336 #endif
337
338 int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343 #endif
344
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
347 };
348
349 static size_t memcg_size(void)
350 {
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353 }
354
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 };
361
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 {
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370 }
371
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 {
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375 }
376
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 {
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380 }
381
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 {
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385 }
386
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 {
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396 }
397
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399 {
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402 }
403 #endif
404
405 /* Stuffs for move charges at task migration. */
406 /*
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 */
410 enum move_type {
411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
413 NR_MOVE_TYPE,
414 };
415
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 spinlock_t lock; /* for from, to */
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
421 unsigned long immigrate_flags;
422 unsigned long precharge;
423 unsigned long moved_charge;
424 unsigned long moved_swap;
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427 } mc = {
428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430 };
431
432 static bool move_anon(void)
433 {
434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
435 }
436
437 static bool move_file(void)
438 {
439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 }
441
442 /*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
448
449 enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 MEM_CGROUP_CHARGE_TYPE_ANON,
452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
454 NR_CHARGE_TYPE,
455 };
456
457 /* for encoding cft->private value on file */
458 enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
462 _KMEM,
463 };
464
465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val) ((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL (0)
470
471 /*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
479 /*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484 static DEFINE_MUTEX(memcg_create_mutex);
485
486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487 {
488 return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 }
490
491 /* Some nice accessors for the vmpressure. */
492 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493 {
494 if (!memcg)
495 memcg = root_mem_cgroup;
496 return &memcg->vmpressure;
497 }
498
499 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500 {
501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502 }
503
504 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505 {
506 return &mem_cgroup_from_css(css)->vmpressure;
507 }
508
509 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510 {
511 return (memcg == root_mem_cgroup);
512 }
513
514 /* Writing them here to avoid exposing memcg's inner layout */
515 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
516
517 void sock_update_memcg(struct sock *sk)
518 {
519 if (mem_cgroup_sockets_enabled) {
520 struct mem_cgroup *memcg;
521 struct cg_proto *cg_proto;
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535 css_get(&sk->sk_cgrp->memcg->css);
536 return;
537 }
538
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544 sk->sk_cgrp = cg_proto;
545 }
546 rcu_read_unlock();
547 }
548 }
549 EXPORT_SYMBOL(sock_update_memcg);
550
551 void sock_release_memcg(struct sock *sk)
552 {
553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
557 css_put(&sk->sk_cgrp->memcg->css);
558 }
559 }
560
561 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562 {
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567 }
568 EXPORT_SYMBOL(tcp_proto_cgroup);
569
570 static void disarm_sock_keys(struct mem_cgroup *memcg)
571 {
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575 }
576 #else
577 static void disarm_sock_keys(struct mem_cgroup *memcg)
578 {
579 }
580 #endif
581
582 #ifdef CONFIG_MEMCG_KMEM
583 /*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600 static DEFINE_IDA(kmem_limited_groups);
601 int memcg_limited_groups_array_size;
602
603 /*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615 #define MEMCG_CACHES_MIN_SIZE 4
616 #define MEMCG_CACHES_MAX_SIZE 65535
617
618 /*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
624 struct static_key memcg_kmem_enabled_key;
625 EXPORT_SYMBOL(memcg_kmem_enabled_key);
626
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
628 {
629 if (memcg_kmem_is_active(memcg)) {
630 static_key_slow_dec(&memcg_kmem_enabled_key);
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 }
639 #else
640 static void disarm_kmem_keys(struct mem_cgroup *memcg)
641 {
642 }
643 #endif /* CONFIG_MEMCG_KMEM */
644
645 static void disarm_static_keys(struct mem_cgroup *memcg)
646 {
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649 }
650
651 static void drain_all_stock_async(struct mem_cgroup *memcg);
652
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655 {
656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661 {
662 return &memcg->css;
663 }
664
665 static struct mem_cgroup_per_zone *
666 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667 {
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
670
671 return mem_cgroup_zoneinfo(memcg, nid, zid);
672 }
673
674 static struct mem_cgroup_tree_per_zone *
675 soft_limit_tree_node_zone(int nid, int zid)
676 {
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 }
679
680 static struct mem_cgroup_tree_per_zone *
681 soft_limit_tree_from_page(struct page *page)
682 {
683 int nid = page_to_nid(page);
684 int zid = page_zonenum(page);
685
686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687 }
688
689 static void
690 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691 struct mem_cgroup_per_zone *mz,
692 struct mem_cgroup_tree_per_zone *mctz,
693 unsigned long long new_usage_in_excess)
694 {
695 struct rb_node **p = &mctz->rb_root.rb_node;
696 struct rb_node *parent = NULL;
697 struct mem_cgroup_per_zone *mz_node;
698
699 if (mz->on_tree)
700 return;
701
702 mz->usage_in_excess = new_usage_in_excess;
703 if (!mz->usage_in_excess)
704 return;
705 while (*p) {
706 parent = *p;
707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 tree_node);
709 if (mz->usage_in_excess < mz_node->usage_in_excess)
710 p = &(*p)->rb_left;
711 /*
712 * We can't avoid mem cgroups that are over their soft
713 * limit by the same amount
714 */
715 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&mz->tree_node, parent, p);
719 rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = true;
721 }
722
723 static void
724 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
727 {
728 if (!mz->on_tree)
729 return;
730 rb_erase(&mz->tree_node, &mctz->rb_root);
731 mz->on_tree = false;
732 }
733
734 static void
735 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz)
738 {
739 spin_lock(&mctz->lock);
740 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 spin_unlock(&mctz->lock);
742 }
743
744
745 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746 {
747 unsigned long long excess;
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
750 int nid = page_to_nid(page);
751 int zid = page_zonenum(page);
752 mctz = soft_limit_tree_from_page(page);
753
754 /*
755 * Necessary to update all ancestors when hierarchy is used.
756 * because their event counter is not touched.
757 */
758 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 excess = res_counter_soft_limit_excess(&memcg->res);
761 /*
762 * We have to update the tree if mz is on RB-tree or
763 * mem is over its softlimit.
764 */
765 if (excess || mz->on_tree) {
766 spin_lock(&mctz->lock);
767 /* if on-tree, remove it */
768 if (mz->on_tree)
769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 /*
771 * Insert again. mz->usage_in_excess will be updated.
772 * If excess is 0, no tree ops.
773 */
774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 spin_unlock(&mctz->lock);
776 }
777 }
778 }
779
780 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 {
782 int node, zone;
783 struct mem_cgroup_per_zone *mz;
784 struct mem_cgroup_tree_per_zone *mctz;
785
786 for_each_node(node) {
787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788 mz = mem_cgroup_zoneinfo(memcg, node, zone);
789 mctz = soft_limit_tree_node_zone(node, zone);
790 mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 }
792 }
793 }
794
795 static struct mem_cgroup_per_zone *
796 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797 {
798 struct rb_node *rightmost = NULL;
799 struct mem_cgroup_per_zone *mz;
800
801 retry:
802 mz = NULL;
803 rightmost = rb_last(&mctz->rb_root);
804 if (!rightmost)
805 goto done; /* Nothing to reclaim from */
806
807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 /*
809 * Remove the node now but someone else can add it back,
810 * we will to add it back at the end of reclaim to its correct
811 * position in the tree.
812 */
813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 !css_tryget(&mz->memcg->css))
816 goto retry;
817 done:
818 return mz;
819 }
820
821 static struct mem_cgroup_per_zone *
822 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct mem_cgroup_per_zone *mz;
825
826 spin_lock(&mctz->lock);
827 mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 spin_unlock(&mctz->lock);
829 return mz;
830 }
831
832 /*
833 * Implementation Note: reading percpu statistics for memcg.
834 *
835 * Both of vmstat[] and percpu_counter has threshold and do periodic
836 * synchronization to implement "quick" read. There are trade-off between
837 * reading cost and precision of value. Then, we may have a chance to implement
838 * a periodic synchronizion of counter in memcg's counter.
839 *
840 * But this _read() function is used for user interface now. The user accounts
841 * memory usage by memory cgroup and he _always_ requires exact value because
842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843 * have to visit all online cpus and make sum. So, for now, unnecessary
844 * synchronization is not implemented. (just implemented for cpu hotplug)
845 *
846 * If there are kernel internal actions which can make use of some not-exact
847 * value, and reading all cpu value can be performance bottleneck in some
848 * common workload, threashold and synchonization as vmstat[] should be
849 * implemented.
850 */
851 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852 enum mem_cgroup_stat_index idx)
853 {
854 long val = 0;
855 int cpu;
856
857 get_online_cpus();
858 for_each_online_cpu(cpu)
859 val += per_cpu(memcg->stat->count[idx], cpu);
860 #ifdef CONFIG_HOTPLUG_CPU
861 spin_lock(&memcg->pcp_counter_lock);
862 val += memcg->nocpu_base.count[idx];
863 spin_unlock(&memcg->pcp_counter_lock);
864 #endif
865 put_online_cpus();
866 return val;
867 }
868
869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 bool charge)
871 {
872 int val = (charge) ? 1 : -1;
873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 }
875
876 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 enum mem_cgroup_events_index idx)
878 {
879 unsigned long val = 0;
880 int cpu;
881
882 for_each_online_cpu(cpu)
883 val += per_cpu(memcg->stat->events[idx], cpu);
884 #ifdef CONFIG_HOTPLUG_CPU
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.events[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
888 #endif
889 return val;
890 }
891
892 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893 struct page *page,
894 bool anon, int nr_pages)
895 {
896 preempt_disable();
897
898 /*
899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 * counted as CACHE even if it's on ANON LRU.
901 */
902 if (anon)
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904 nr_pages);
905 else
906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907 nr_pages);
908
909 if (PageTransHuge(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 nr_pages);
912
913 /* pagein of a big page is an event. So, ignore page size */
914 if (nr_pages > 0)
915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916 else {
917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 nr_pages = -nr_pages; /* for event */
919 }
920
921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922
923 preempt_enable();
924 }
925
926 unsigned long
927 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 {
929 struct mem_cgroup_per_zone *mz;
930
931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 return mz->lru_size[lru];
933 }
934
935 static unsigned long
936 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937 unsigned int lru_mask)
938 {
939 struct mem_cgroup_per_zone *mz;
940 enum lru_list lru;
941 unsigned long ret = 0;
942
943 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944
945 for_each_lru(lru) {
946 if (BIT(lru) & lru_mask)
947 ret += mz->lru_size[lru];
948 }
949 return ret;
950 }
951
952 static unsigned long
953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 int nid, unsigned int lru_mask)
955 {
956 u64 total = 0;
957 int zid;
958
959 for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 total += mem_cgroup_zone_nr_lru_pages(memcg,
961 nid, zid, lru_mask);
962
963 return total;
964 }
965
966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967 unsigned int lru_mask)
968 {
969 int nid;
970 u64 total = 0;
971
972 for_each_node_state(nid, N_MEMORY)
973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974 return total;
975 }
976
977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
979 {
980 unsigned long val, next;
981
982 val = __this_cpu_read(memcg->stat->nr_page_events);
983 next = __this_cpu_read(memcg->stat->targets[target]);
984 /* from time_after() in jiffies.h */
985 if ((long)next - (long)val < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 case MEM_CGROUP_TARGET_NUMAINFO:
994 next = val + NUMAINFO_EVENTS_TARGET;
995 break;
996 default:
997 break;
998 }
999 __this_cpu_write(memcg->stat->targets[target], next);
1000 return true;
1001 }
1002 return false;
1003 }
1004
1005 /*
1006 * Check events in order.
1007 *
1008 */
1009 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010 {
1011 preempt_disable();
1012 /* threshold event is triggered in finer grain than soft limit */
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
1015 bool do_softlimit;
1016 bool do_numainfo __maybe_unused;
1017
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
1020 #if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023 #endif
1024 preempt_enable();
1025
1026 mem_cgroup_threshold(memcg);
1027 if (unlikely(do_softlimit))
1028 mem_cgroup_update_tree(memcg, page);
1029 #if MAX_NUMNODES > 1
1030 if (unlikely(do_numainfo))
1031 atomic_inc(&memcg->numainfo_events);
1032 #endif
1033 } else
1034 preempt_enable();
1035 }
1036
1037 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1038 {
1039 /*
1040 * mm_update_next_owner() may clear mm->owner to NULL
1041 * if it races with swapoff, page migration, etc.
1042 * So this can be called with p == NULL.
1043 */
1044 if (unlikely(!p))
1045 return NULL;
1046
1047 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1048 }
1049
1050 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051 {
1052 struct mem_cgroup *memcg = NULL;
1053
1054 if (!mm)
1055 return NULL;
1056 /*
1057 * Because we have no locks, mm->owner's may be being moved to other
1058 * cgroup. We use css_tryget() here even if this looks
1059 * pessimistic (rather than adding locks here).
1060 */
1061 rcu_read_lock();
1062 do {
1063 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1064 if (unlikely(!memcg))
1065 break;
1066 } while (!css_tryget(&memcg->css));
1067 rcu_read_unlock();
1068 return memcg;
1069 }
1070
1071 /*
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1074 *
1075 * helper function to be used by mem_cgroup_iter
1076 */
1077 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 struct mem_cgroup *last_visited)
1079 {
1080 struct cgroup_subsys_state *prev_css, *next_css;
1081
1082 /*
1083 * Root is not visited by cgroup iterators so it needs an
1084 * explicit visit.
1085 */
1086 if (!last_visited)
1087 return root;
1088
1089 prev_css = (last_visited == root) ? NULL : &last_visited->css;
1090 skip_node:
1091 next_css = css_next_descendant_pre(prev_css, &root->css);
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
1099 */
1100 if (next_css) {
1101 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1102
1103 if (css_tryget(&mem->css))
1104 return mem;
1105 else {
1106 prev_css = next_css;
1107 goto skip_node;
1108 }
1109 }
1110
1111 return NULL;
1112 }
1113
1114 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1115 {
1116 /*
1117 * When a group in the hierarchy below root is destroyed, the
1118 * hierarchy iterator can no longer be trusted since it might
1119 * have pointed to the destroyed group. Invalidate it.
1120 */
1121 atomic_inc(&root->dead_count);
1122 }
1123
1124 static struct mem_cgroup *
1125 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 struct mem_cgroup *root,
1127 int *sequence)
1128 {
1129 struct mem_cgroup *position = NULL;
1130 /*
1131 * A cgroup destruction happens in two stages: offlining and
1132 * release. They are separated by a RCU grace period.
1133 *
1134 * If the iterator is valid, we may still race with an
1135 * offlining. The RCU lock ensures the object won't be
1136 * released, tryget will fail if we lost the race.
1137 */
1138 *sequence = atomic_read(&root->dead_count);
1139 if (iter->last_dead_count == *sequence) {
1140 smp_rmb();
1141 position = iter->last_visited;
1142 if (position && !css_tryget(&position->css))
1143 position = NULL;
1144 }
1145 return position;
1146 }
1147
1148 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1149 struct mem_cgroup *last_visited,
1150 struct mem_cgroup *new_position,
1151 int sequence)
1152 {
1153 if (last_visited)
1154 css_put(&last_visited->css);
1155 /*
1156 * We store the sequence count from the time @last_visited was
1157 * loaded successfully instead of rereading it here so that we
1158 * don't lose destruction events in between. We could have
1159 * raced with the destruction of @new_position after all.
1160 */
1161 iter->last_visited = new_position;
1162 smp_wmb();
1163 iter->last_dead_count = sequence;
1164 }
1165
1166 /**
1167 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1168 * @root: hierarchy root
1169 * @prev: previously returned memcg, NULL on first invocation
1170 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1171 *
1172 * Returns references to children of the hierarchy below @root, or
1173 * @root itself, or %NULL after a full round-trip.
1174 *
1175 * Caller must pass the return value in @prev on subsequent
1176 * invocations for reference counting, or use mem_cgroup_iter_break()
1177 * to cancel a hierarchy walk before the round-trip is complete.
1178 *
1179 * Reclaimers can specify a zone and a priority level in @reclaim to
1180 * divide up the memcgs in the hierarchy among all concurrent
1181 * reclaimers operating on the same zone and priority.
1182 */
1183 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1184 struct mem_cgroup *prev,
1185 struct mem_cgroup_reclaim_cookie *reclaim)
1186 {
1187 struct mem_cgroup *memcg = NULL;
1188 struct mem_cgroup *last_visited = NULL;
1189
1190 if (mem_cgroup_disabled())
1191 return NULL;
1192
1193 if (!root)
1194 root = root_mem_cgroup;
1195
1196 if (prev && !reclaim)
1197 last_visited = prev;
1198
1199 if (!root->use_hierarchy && root != root_mem_cgroup) {
1200 if (prev)
1201 goto out_css_put;
1202 return root;
1203 }
1204
1205 rcu_read_lock();
1206 while (!memcg) {
1207 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1208 int uninitialized_var(seq);
1209
1210 if (reclaim) {
1211 int nid = zone_to_nid(reclaim->zone);
1212 int zid = zone_idx(reclaim->zone);
1213 struct mem_cgroup_per_zone *mz;
1214
1215 mz = mem_cgroup_zoneinfo(root, nid, zid);
1216 iter = &mz->reclaim_iter[reclaim->priority];
1217 if (prev && reclaim->generation != iter->generation) {
1218 iter->last_visited = NULL;
1219 goto out_unlock;
1220 }
1221
1222 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1223 }
1224
1225 memcg = __mem_cgroup_iter_next(root, last_visited);
1226
1227 if (reclaim) {
1228 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1229
1230 if (!memcg)
1231 iter->generation++;
1232 else if (!prev && memcg)
1233 reclaim->generation = iter->generation;
1234 }
1235
1236 if (prev && !memcg)
1237 goto out_unlock;
1238 }
1239 out_unlock:
1240 rcu_read_unlock();
1241 out_css_put:
1242 if (prev && prev != root)
1243 css_put(&prev->css);
1244
1245 return memcg;
1246 }
1247
1248 /**
1249 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1250 * @root: hierarchy root
1251 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1252 */
1253 void mem_cgroup_iter_break(struct mem_cgroup *root,
1254 struct mem_cgroup *prev)
1255 {
1256 if (!root)
1257 root = root_mem_cgroup;
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260 }
1261
1262 /*
1263 * Iteration constructs for visiting all cgroups (under a tree). If
1264 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1265 * be used for reference counting.
1266 */
1267 #define for_each_mem_cgroup_tree(iter, root) \
1268 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1269 iter != NULL; \
1270 iter = mem_cgroup_iter(root, iter, NULL))
1271
1272 #define for_each_mem_cgroup(iter) \
1273 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1274 iter != NULL; \
1275 iter = mem_cgroup_iter(NULL, iter, NULL))
1276
1277 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1278 {
1279 struct mem_cgroup *memcg;
1280
1281 rcu_read_lock();
1282 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1283 if (unlikely(!memcg))
1284 goto out;
1285
1286 switch (idx) {
1287 case PGFAULT:
1288 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1289 break;
1290 case PGMAJFAULT:
1291 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1292 break;
1293 default:
1294 BUG();
1295 }
1296 out:
1297 rcu_read_unlock();
1298 }
1299 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1300
1301 /**
1302 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1303 * @zone: zone of the wanted lruvec
1304 * @memcg: memcg of the wanted lruvec
1305 *
1306 * Returns the lru list vector holding pages for the given @zone and
1307 * @mem. This can be the global zone lruvec, if the memory controller
1308 * is disabled.
1309 */
1310 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1311 struct mem_cgroup *memcg)
1312 {
1313 struct mem_cgroup_per_zone *mz;
1314 struct lruvec *lruvec;
1315
1316 if (mem_cgroup_disabled()) {
1317 lruvec = &zone->lruvec;
1318 goto out;
1319 }
1320
1321 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1322 lruvec = &mz->lruvec;
1323 out:
1324 /*
1325 * Since a node can be onlined after the mem_cgroup was created,
1326 * we have to be prepared to initialize lruvec->zone here;
1327 * and if offlined then reonlined, we need to reinitialize it.
1328 */
1329 if (unlikely(lruvec->zone != zone))
1330 lruvec->zone = zone;
1331 return lruvec;
1332 }
1333
1334 /*
1335 * Following LRU functions are allowed to be used without PCG_LOCK.
1336 * Operations are called by routine of global LRU independently from memcg.
1337 * What we have to take care of here is validness of pc->mem_cgroup.
1338 *
1339 * Changes to pc->mem_cgroup happens when
1340 * 1. charge
1341 * 2. moving account
1342 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1343 * It is added to LRU before charge.
1344 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1345 * When moving account, the page is not on LRU. It's isolated.
1346 */
1347
1348 /**
1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350 * @page: the page
1351 * @zone: zone of the page
1352 */
1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1354 {
1355 struct mem_cgroup_per_zone *mz;
1356 struct mem_cgroup *memcg;
1357 struct page_cgroup *pc;
1358 struct lruvec *lruvec;
1359
1360 if (mem_cgroup_disabled()) {
1361 lruvec = &zone->lruvec;
1362 goto out;
1363 }
1364
1365 pc = lookup_page_cgroup(page);
1366 memcg = pc->mem_cgroup;
1367
1368 /*
1369 * Surreptitiously switch any uncharged offlist page to root:
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1372 *
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1376 */
1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 pc->mem_cgroup = memcg = root_mem_cgroup;
1379
1380 mz = page_cgroup_zoneinfo(memcg, page);
1381 lruvec = &mz->lruvec;
1382 out:
1383 /*
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1387 */
1388 if (unlikely(lruvec->zone != zone))
1389 lruvec->zone = zone;
1390 return lruvec;
1391 }
1392
1393 /**
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
1398 *
1399 * This function must be called when a page is added to or removed from an
1400 * lru list.
1401 */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int nr_pages)
1404 {
1405 struct mem_cgroup_per_zone *mz;
1406 unsigned long *lru_size;
1407
1408 if (mem_cgroup_disabled())
1409 return;
1410
1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 lru_size = mz->lru_size + lru;
1413 *lru_size += nr_pages;
1414 VM_BUG_ON((long)(*lru_size) < 0);
1415 }
1416
1417 /*
1418 * Checks whether given mem is same or in the root_mem_cgroup's
1419 * hierarchy subtree
1420 */
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 struct mem_cgroup *memcg)
1423 {
1424 if (root_memcg == memcg)
1425 return true;
1426 if (!root_memcg->use_hierarchy || !memcg)
1427 return false;
1428 return css_is_ancestor(&memcg->css, &root_memcg->css);
1429 }
1430
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1433 {
1434 bool ret;
1435
1436 rcu_read_lock();
1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 rcu_read_unlock();
1439 return ret;
1440 }
1441
1442 bool task_in_mem_cgroup(struct task_struct *task,
1443 const struct mem_cgroup *memcg)
1444 {
1445 struct mem_cgroup *curr = NULL;
1446 struct task_struct *p;
1447 bool ret;
1448
1449 p = find_lock_task_mm(task);
1450 if (p) {
1451 curr = try_get_mem_cgroup_from_mm(p->mm);
1452 task_unlock(p);
1453 } else {
1454 /*
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1458 */
1459 rcu_read_lock();
1460 curr = mem_cgroup_from_task(task);
1461 if (curr)
1462 css_get(&curr->css);
1463 rcu_read_unlock();
1464 }
1465 if (!curr)
1466 return false;
1467 /*
1468 * We should check use_hierarchy of "memcg" not "curr". Because checking
1469 * use_hierarchy of "curr" here make this function true if hierarchy is
1470 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1471 * hierarchy(even if use_hierarchy is disabled in "memcg").
1472 */
1473 ret = mem_cgroup_same_or_subtree(memcg, curr);
1474 css_put(&curr->css);
1475 return ret;
1476 }
1477
1478 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1479 {
1480 unsigned long inactive_ratio;
1481 unsigned long inactive;
1482 unsigned long active;
1483 unsigned long gb;
1484
1485 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1486 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1487
1488 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1489 if (gb)
1490 inactive_ratio = int_sqrt(10 * gb);
1491 else
1492 inactive_ratio = 1;
1493
1494 return inactive * inactive_ratio < active;
1495 }
1496
1497 #define mem_cgroup_from_res_counter(counter, member) \
1498 container_of(counter, struct mem_cgroup, member)
1499
1500 /**
1501 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1502 * @memcg: the memory cgroup
1503 *
1504 * Returns the maximum amount of memory @mem can be charged with, in
1505 * pages.
1506 */
1507 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1508 {
1509 unsigned long long margin;
1510
1511 margin = res_counter_margin(&memcg->res);
1512 if (do_swap_account)
1513 margin = min(margin, res_counter_margin(&memcg->memsw));
1514 return margin >> PAGE_SHIFT;
1515 }
1516
1517 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1518 {
1519 /* root ? */
1520 if (!css_parent(&memcg->css))
1521 return vm_swappiness;
1522
1523 return memcg->swappiness;
1524 }
1525
1526 /*
1527 * memcg->moving_account is used for checking possibility that some thread is
1528 * calling move_account(). When a thread on CPU-A starts moving pages under
1529 * a memcg, other threads should check memcg->moving_account under
1530 * rcu_read_lock(), like this:
1531 *
1532 * CPU-A CPU-B
1533 * rcu_read_lock()
1534 * memcg->moving_account+1 if (memcg->mocing_account)
1535 * take heavy locks.
1536 * synchronize_rcu() update something.
1537 * rcu_read_unlock()
1538 * start move here.
1539 */
1540
1541 /* for quick checking without looking up memcg */
1542 atomic_t memcg_moving __read_mostly;
1543
1544 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1545 {
1546 atomic_inc(&memcg_moving);
1547 atomic_inc(&memcg->moving_account);
1548 synchronize_rcu();
1549 }
1550
1551 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1552 {
1553 /*
1554 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1555 * We check NULL in callee rather than caller.
1556 */
1557 if (memcg) {
1558 atomic_dec(&memcg_moving);
1559 atomic_dec(&memcg->moving_account);
1560 }
1561 }
1562
1563 /*
1564 * 2 routines for checking "mem" is under move_account() or not.
1565 *
1566 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1567 * is used for avoiding races in accounting. If true,
1568 * pc->mem_cgroup may be overwritten.
1569 *
1570 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1571 * under hierarchy of moving cgroups. This is for
1572 * waiting at hith-memory prressure caused by "move".
1573 */
1574
1575 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1576 {
1577 VM_BUG_ON(!rcu_read_lock_held());
1578 return atomic_read(&memcg->moving_account) > 0;
1579 }
1580
1581 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1582 {
1583 struct mem_cgroup *from;
1584 struct mem_cgroup *to;
1585 bool ret = false;
1586 /*
1587 * Unlike task_move routines, we access mc.to, mc.from not under
1588 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1589 */
1590 spin_lock(&mc.lock);
1591 from = mc.from;
1592 to = mc.to;
1593 if (!from)
1594 goto unlock;
1595
1596 ret = mem_cgroup_same_or_subtree(memcg, from)
1597 || mem_cgroup_same_or_subtree(memcg, to);
1598 unlock:
1599 spin_unlock(&mc.lock);
1600 return ret;
1601 }
1602
1603 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1604 {
1605 if (mc.moving_task && current != mc.moving_task) {
1606 if (mem_cgroup_under_move(memcg)) {
1607 DEFINE_WAIT(wait);
1608 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1609 /* moving charge context might have finished. */
1610 if (mc.moving_task)
1611 schedule();
1612 finish_wait(&mc.waitq, &wait);
1613 return true;
1614 }
1615 }
1616 return false;
1617 }
1618
1619 /*
1620 * Take this lock when
1621 * - a code tries to modify page's memcg while it's USED.
1622 * - a code tries to modify page state accounting in a memcg.
1623 * see mem_cgroup_stolen(), too.
1624 */
1625 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1626 unsigned long *flags)
1627 {
1628 spin_lock_irqsave(&memcg->move_lock, *flags);
1629 }
1630
1631 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1632 unsigned long *flags)
1633 {
1634 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1635 }
1636
1637 #define K(x) ((x) << (PAGE_SHIFT-10))
1638 /**
1639 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1640 * @memcg: The memory cgroup that went over limit
1641 * @p: Task that is going to be killed
1642 *
1643 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1644 * enabled
1645 */
1646 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1647 {
1648 struct cgroup *task_cgrp;
1649 struct cgroup *mem_cgrp;
1650 /*
1651 * Need a buffer in BSS, can't rely on allocations. The code relies
1652 * on the assumption that OOM is serialized for memory controller.
1653 * If this assumption is broken, revisit this code.
1654 */
1655 static char memcg_name[PATH_MAX];
1656 int ret;
1657 struct mem_cgroup *iter;
1658 unsigned int i;
1659
1660 if (!p)
1661 return;
1662
1663 rcu_read_lock();
1664
1665 mem_cgrp = memcg->css.cgroup;
1666 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1667
1668 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1669 if (ret < 0) {
1670 /*
1671 * Unfortunately, we are unable to convert to a useful name
1672 * But we'll still print out the usage information
1673 */
1674 rcu_read_unlock();
1675 goto done;
1676 }
1677 rcu_read_unlock();
1678
1679 pr_info("Task in %s killed", memcg_name);
1680
1681 rcu_read_lock();
1682 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1683 if (ret < 0) {
1684 rcu_read_unlock();
1685 goto done;
1686 }
1687 rcu_read_unlock();
1688
1689 /*
1690 * Continues from above, so we don't need an KERN_ level
1691 */
1692 pr_cont(" as a result of limit of %s\n", memcg_name);
1693 done:
1694
1695 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1696 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1697 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1698 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1699 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1700 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1701 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1702 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1703 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1704 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1705 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1706 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1707
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 pr_info("Memory cgroup stats");
1710
1711 rcu_read_lock();
1712 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1713 if (!ret)
1714 pr_cont(" for %s", memcg_name);
1715 rcu_read_unlock();
1716 pr_cont(":");
1717
1718 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1719 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1720 continue;
1721 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1722 K(mem_cgroup_read_stat(iter, i)));
1723 }
1724
1725 for (i = 0; i < NR_LRU_LISTS; i++)
1726 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1727 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1728
1729 pr_cont("\n");
1730 }
1731 }
1732
1733 /*
1734 * This function returns the number of memcg under hierarchy tree. Returns
1735 * 1(self count) if no children.
1736 */
1737 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1738 {
1739 int num = 0;
1740 struct mem_cgroup *iter;
1741
1742 for_each_mem_cgroup_tree(iter, memcg)
1743 num++;
1744 return num;
1745 }
1746
1747 /*
1748 * Return the memory (and swap, if configured) limit for a memcg.
1749 */
1750 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1751 {
1752 u64 limit;
1753
1754 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1755
1756 /*
1757 * Do not consider swap space if we cannot swap due to swappiness
1758 */
1759 if (mem_cgroup_swappiness(memcg)) {
1760 u64 memsw;
1761
1762 limit += total_swap_pages << PAGE_SHIFT;
1763 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1764
1765 /*
1766 * If memsw is finite and limits the amount of swap space
1767 * available to this memcg, return that limit.
1768 */
1769 limit = min(limit, memsw);
1770 }
1771
1772 return limit;
1773 }
1774
1775 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1776 int order)
1777 {
1778 struct mem_cgroup *iter;
1779 unsigned long chosen_points = 0;
1780 unsigned long totalpages;
1781 unsigned int points = 0;
1782 struct task_struct *chosen = NULL;
1783
1784 /*
1785 * If current has a pending SIGKILL or is exiting, then automatically
1786 * select it. The goal is to allow it to allocate so that it may
1787 * quickly exit and free its memory.
1788 */
1789 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1790 set_thread_flag(TIF_MEMDIE);
1791 return;
1792 }
1793
1794 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1795 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1796 for_each_mem_cgroup_tree(iter, memcg) {
1797 struct css_task_iter it;
1798 struct task_struct *task;
1799
1800 css_task_iter_start(&iter->css, &it);
1801 while ((task = css_task_iter_next(&it))) {
1802 switch (oom_scan_process_thread(task, totalpages, NULL,
1803 false)) {
1804 case OOM_SCAN_SELECT:
1805 if (chosen)
1806 put_task_struct(chosen);
1807 chosen = task;
1808 chosen_points = ULONG_MAX;
1809 get_task_struct(chosen);
1810 /* fall through */
1811 case OOM_SCAN_CONTINUE:
1812 continue;
1813 case OOM_SCAN_ABORT:
1814 css_task_iter_end(&it);
1815 mem_cgroup_iter_break(memcg, iter);
1816 if (chosen)
1817 put_task_struct(chosen);
1818 return;
1819 case OOM_SCAN_OK:
1820 break;
1821 };
1822 points = oom_badness(task, memcg, NULL, totalpages);
1823 if (points > chosen_points) {
1824 if (chosen)
1825 put_task_struct(chosen);
1826 chosen = task;
1827 chosen_points = points;
1828 get_task_struct(chosen);
1829 }
1830 }
1831 css_task_iter_end(&it);
1832 }
1833
1834 if (!chosen)
1835 return;
1836 points = chosen_points * 1000 / totalpages;
1837 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1838 NULL, "Memory cgroup out of memory");
1839 }
1840
1841 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1842 gfp_t gfp_mask,
1843 unsigned long flags)
1844 {
1845 unsigned long total = 0;
1846 bool noswap = false;
1847 int loop;
1848
1849 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1850 noswap = true;
1851 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1852 noswap = true;
1853
1854 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1855 if (loop)
1856 drain_all_stock_async(memcg);
1857 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1858 /*
1859 * Allow limit shrinkers, which are triggered directly
1860 * by userspace, to catch signals and stop reclaim
1861 * after minimal progress, regardless of the margin.
1862 */
1863 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1864 break;
1865 if (mem_cgroup_margin(memcg))
1866 break;
1867 /*
1868 * If nothing was reclaimed after two attempts, there
1869 * may be no reclaimable pages in this hierarchy.
1870 */
1871 if (loop && !total)
1872 break;
1873 }
1874 return total;
1875 }
1876
1877 /**
1878 * test_mem_cgroup_node_reclaimable
1879 * @memcg: the target memcg
1880 * @nid: the node ID to be checked.
1881 * @noswap : specify true here if the user wants flle only information.
1882 *
1883 * This function returns whether the specified memcg contains any
1884 * reclaimable pages on a node. Returns true if there are any reclaimable
1885 * pages in the node.
1886 */
1887 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1888 int nid, bool noswap)
1889 {
1890 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1891 return true;
1892 if (noswap || !total_swap_pages)
1893 return false;
1894 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1895 return true;
1896 return false;
1897
1898 }
1899 #if MAX_NUMNODES > 1
1900
1901 /*
1902 * Always updating the nodemask is not very good - even if we have an empty
1903 * list or the wrong list here, we can start from some node and traverse all
1904 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1905 *
1906 */
1907 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1908 {
1909 int nid;
1910 /*
1911 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1912 * pagein/pageout changes since the last update.
1913 */
1914 if (!atomic_read(&memcg->numainfo_events))
1915 return;
1916 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1917 return;
1918
1919 /* make a nodemask where this memcg uses memory from */
1920 memcg->scan_nodes = node_states[N_MEMORY];
1921
1922 for_each_node_mask(nid, node_states[N_MEMORY]) {
1923
1924 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1925 node_clear(nid, memcg->scan_nodes);
1926 }
1927
1928 atomic_set(&memcg->numainfo_events, 0);
1929 atomic_set(&memcg->numainfo_updating, 0);
1930 }
1931
1932 /*
1933 * Selecting a node where we start reclaim from. Because what we need is just
1934 * reducing usage counter, start from anywhere is O,K. Considering
1935 * memory reclaim from current node, there are pros. and cons.
1936 *
1937 * Freeing memory from current node means freeing memory from a node which
1938 * we'll use or we've used. So, it may make LRU bad. And if several threads
1939 * hit limits, it will see a contention on a node. But freeing from remote
1940 * node means more costs for memory reclaim because of memory latency.
1941 *
1942 * Now, we use round-robin. Better algorithm is welcomed.
1943 */
1944 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1945 {
1946 int node;
1947
1948 mem_cgroup_may_update_nodemask(memcg);
1949 node = memcg->last_scanned_node;
1950
1951 node = next_node(node, memcg->scan_nodes);
1952 if (node == MAX_NUMNODES)
1953 node = first_node(memcg->scan_nodes);
1954 /*
1955 * We call this when we hit limit, not when pages are added to LRU.
1956 * No LRU may hold pages because all pages are UNEVICTABLE or
1957 * memcg is too small and all pages are not on LRU. In that case,
1958 * we use curret node.
1959 */
1960 if (unlikely(node == MAX_NUMNODES))
1961 node = numa_node_id();
1962
1963 memcg->last_scanned_node = node;
1964 return node;
1965 }
1966
1967 /*
1968 * Check all nodes whether it contains reclaimable pages or not.
1969 * For quick scan, we make use of scan_nodes. This will allow us to skip
1970 * unused nodes. But scan_nodes is lazily updated and may not cotain
1971 * enough new information. We need to do double check.
1972 */
1973 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1974 {
1975 int nid;
1976
1977 /*
1978 * quick check...making use of scan_node.
1979 * We can skip unused nodes.
1980 */
1981 if (!nodes_empty(memcg->scan_nodes)) {
1982 for (nid = first_node(memcg->scan_nodes);
1983 nid < MAX_NUMNODES;
1984 nid = next_node(nid, memcg->scan_nodes)) {
1985
1986 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1987 return true;
1988 }
1989 }
1990 /*
1991 * Check rest of nodes.
1992 */
1993 for_each_node_state(nid, N_MEMORY) {
1994 if (node_isset(nid, memcg->scan_nodes))
1995 continue;
1996 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1997 return true;
1998 }
1999 return false;
2000 }
2001
2002 #else
2003 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2004 {
2005 return 0;
2006 }
2007
2008 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2009 {
2010 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2011 }
2012 #endif
2013
2014 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2015 struct zone *zone,
2016 gfp_t gfp_mask,
2017 unsigned long *total_scanned)
2018 {
2019 struct mem_cgroup *victim = NULL;
2020 int total = 0;
2021 int loop = 0;
2022 unsigned long excess;
2023 unsigned long nr_scanned;
2024 struct mem_cgroup_reclaim_cookie reclaim = {
2025 .zone = zone,
2026 .priority = 0,
2027 };
2028
2029 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2030
2031 while (1) {
2032 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2033 if (!victim) {
2034 loop++;
2035 if (loop >= 2) {
2036 /*
2037 * If we have not been able to reclaim
2038 * anything, it might because there are
2039 * no reclaimable pages under this hierarchy
2040 */
2041 if (!total)
2042 break;
2043 /*
2044 * We want to do more targeted reclaim.
2045 * excess >> 2 is not to excessive so as to
2046 * reclaim too much, nor too less that we keep
2047 * coming back to reclaim from this cgroup
2048 */
2049 if (total >= (excess >> 2) ||
2050 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2051 break;
2052 }
2053 continue;
2054 }
2055 if (!mem_cgroup_reclaimable(victim, false))
2056 continue;
2057 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2058 zone, &nr_scanned);
2059 *total_scanned += nr_scanned;
2060 if (!res_counter_soft_limit_excess(&root_memcg->res))
2061 break;
2062 }
2063 mem_cgroup_iter_break(root_memcg, victim);
2064 return total;
2065 }
2066
2067 /*
2068 * Check OOM-Killer is already running under our hierarchy.
2069 * If someone is running, return false.
2070 * Has to be called with memcg_oom_lock
2071 */
2072 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2073 {
2074 struct mem_cgroup *iter, *failed = NULL;
2075
2076 for_each_mem_cgroup_tree(iter, memcg) {
2077 if (iter->oom_lock) {
2078 /*
2079 * this subtree of our hierarchy is already locked
2080 * so we cannot give a lock.
2081 */
2082 failed = iter;
2083 mem_cgroup_iter_break(memcg, iter);
2084 break;
2085 } else
2086 iter->oom_lock = true;
2087 }
2088
2089 if (!failed)
2090 return true;
2091
2092 /*
2093 * OK, we failed to lock the whole subtree so we have to clean up
2094 * what we set up to the failing subtree
2095 */
2096 for_each_mem_cgroup_tree(iter, memcg) {
2097 if (iter == failed) {
2098 mem_cgroup_iter_break(memcg, iter);
2099 break;
2100 }
2101 iter->oom_lock = false;
2102 }
2103 return false;
2104 }
2105
2106 /*
2107 * Has to be called with memcg_oom_lock
2108 */
2109 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2110 {
2111 struct mem_cgroup *iter;
2112
2113 for_each_mem_cgroup_tree(iter, memcg)
2114 iter->oom_lock = false;
2115 return 0;
2116 }
2117
2118 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2119 {
2120 struct mem_cgroup *iter;
2121
2122 for_each_mem_cgroup_tree(iter, memcg)
2123 atomic_inc(&iter->under_oom);
2124 }
2125
2126 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2127 {
2128 struct mem_cgroup *iter;
2129
2130 /*
2131 * When a new child is created while the hierarchy is under oom,
2132 * mem_cgroup_oom_lock() may not be called. We have to use
2133 * atomic_add_unless() here.
2134 */
2135 for_each_mem_cgroup_tree(iter, memcg)
2136 atomic_add_unless(&iter->under_oom, -1, 0);
2137 }
2138
2139 static DEFINE_SPINLOCK(memcg_oom_lock);
2140 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2141
2142 struct oom_wait_info {
2143 struct mem_cgroup *memcg;
2144 wait_queue_t wait;
2145 };
2146
2147 static int memcg_oom_wake_function(wait_queue_t *wait,
2148 unsigned mode, int sync, void *arg)
2149 {
2150 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2151 struct mem_cgroup *oom_wait_memcg;
2152 struct oom_wait_info *oom_wait_info;
2153
2154 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2155 oom_wait_memcg = oom_wait_info->memcg;
2156
2157 /*
2158 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2159 * Then we can use css_is_ancestor without taking care of RCU.
2160 */
2161 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2162 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2163 return 0;
2164 return autoremove_wake_function(wait, mode, sync, arg);
2165 }
2166
2167 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2168 {
2169 /* for filtering, pass "memcg" as argument. */
2170 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2171 }
2172
2173 static void memcg_oom_recover(struct mem_cgroup *memcg)
2174 {
2175 if (memcg && atomic_read(&memcg->under_oom))
2176 memcg_wakeup_oom(memcg);
2177 }
2178
2179 /*
2180 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2181 */
2182 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2183 int order)
2184 {
2185 struct oom_wait_info owait;
2186 bool locked, need_to_kill;
2187
2188 owait.memcg = memcg;
2189 owait.wait.flags = 0;
2190 owait.wait.func = memcg_oom_wake_function;
2191 owait.wait.private = current;
2192 INIT_LIST_HEAD(&owait.wait.task_list);
2193 need_to_kill = true;
2194 mem_cgroup_mark_under_oom(memcg);
2195
2196 /* At first, try to OOM lock hierarchy under memcg.*/
2197 spin_lock(&memcg_oom_lock);
2198 locked = mem_cgroup_oom_lock(memcg);
2199 /*
2200 * Even if signal_pending(), we can't quit charge() loop without
2201 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2202 * under OOM is always welcomed, use TASK_KILLABLE here.
2203 */
2204 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205 if (!locked || memcg->oom_kill_disable)
2206 need_to_kill = false;
2207 if (locked)
2208 mem_cgroup_oom_notify(memcg);
2209 spin_unlock(&memcg_oom_lock);
2210
2211 if (need_to_kill) {
2212 finish_wait(&memcg_oom_waitq, &owait.wait);
2213 mem_cgroup_out_of_memory(memcg, mask, order);
2214 } else {
2215 schedule();
2216 finish_wait(&memcg_oom_waitq, &owait.wait);
2217 }
2218 spin_lock(&memcg_oom_lock);
2219 if (locked)
2220 mem_cgroup_oom_unlock(memcg);
2221 memcg_wakeup_oom(memcg);
2222 spin_unlock(&memcg_oom_lock);
2223
2224 mem_cgroup_unmark_under_oom(memcg);
2225
2226 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2227 return false;
2228 /* Give chance to dying process */
2229 schedule_timeout_uninterruptible(1);
2230 return true;
2231 }
2232
2233 /*
2234 * Currently used to update mapped file statistics, but the routine can be
2235 * generalized to update other statistics as well.
2236 *
2237 * Notes: Race condition
2238 *
2239 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2240 * it tends to be costly. But considering some conditions, we doesn't need
2241 * to do so _always_.
2242 *
2243 * Considering "charge", lock_page_cgroup() is not required because all
2244 * file-stat operations happen after a page is attached to radix-tree. There
2245 * are no race with "charge".
2246 *
2247 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2248 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2249 * if there are race with "uncharge". Statistics itself is properly handled
2250 * by flags.
2251 *
2252 * Considering "move", this is an only case we see a race. To make the race
2253 * small, we check mm->moving_account and detect there are possibility of race
2254 * If there is, we take a lock.
2255 */
2256
2257 void __mem_cgroup_begin_update_page_stat(struct page *page,
2258 bool *locked, unsigned long *flags)
2259 {
2260 struct mem_cgroup *memcg;
2261 struct page_cgroup *pc;
2262
2263 pc = lookup_page_cgroup(page);
2264 again:
2265 memcg = pc->mem_cgroup;
2266 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2267 return;
2268 /*
2269 * If this memory cgroup is not under account moving, we don't
2270 * need to take move_lock_mem_cgroup(). Because we already hold
2271 * rcu_read_lock(), any calls to move_account will be delayed until
2272 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2273 */
2274 if (!mem_cgroup_stolen(memcg))
2275 return;
2276
2277 move_lock_mem_cgroup(memcg, flags);
2278 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2279 move_unlock_mem_cgroup(memcg, flags);
2280 goto again;
2281 }
2282 *locked = true;
2283 }
2284
2285 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2286 {
2287 struct page_cgroup *pc = lookup_page_cgroup(page);
2288
2289 /*
2290 * It's guaranteed that pc->mem_cgroup never changes while
2291 * lock is held because a routine modifies pc->mem_cgroup
2292 * should take move_lock_mem_cgroup().
2293 */
2294 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2295 }
2296
2297 void mem_cgroup_update_page_stat(struct page *page,
2298 enum mem_cgroup_page_stat_item idx, int val)
2299 {
2300 struct mem_cgroup *memcg;
2301 struct page_cgroup *pc = lookup_page_cgroup(page);
2302 unsigned long uninitialized_var(flags);
2303
2304 if (mem_cgroup_disabled())
2305 return;
2306
2307 memcg = pc->mem_cgroup;
2308 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2309 return;
2310
2311 switch (idx) {
2312 case MEMCG_NR_FILE_MAPPED:
2313 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2314 break;
2315 default:
2316 BUG();
2317 }
2318
2319 this_cpu_add(memcg->stat->count[idx], val);
2320 }
2321
2322 /*
2323 * size of first charge trial. "32" comes from vmscan.c's magic value.
2324 * TODO: maybe necessary to use big numbers in big irons.
2325 */
2326 #define CHARGE_BATCH 32U
2327 struct memcg_stock_pcp {
2328 struct mem_cgroup *cached; /* this never be root cgroup */
2329 unsigned int nr_pages;
2330 struct work_struct work;
2331 unsigned long flags;
2332 #define FLUSHING_CACHED_CHARGE 0
2333 };
2334 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2335 static DEFINE_MUTEX(percpu_charge_mutex);
2336
2337 /**
2338 * consume_stock: Try to consume stocked charge on this cpu.
2339 * @memcg: memcg to consume from.
2340 * @nr_pages: how many pages to charge.
2341 *
2342 * The charges will only happen if @memcg matches the current cpu's memcg
2343 * stock, and at least @nr_pages are available in that stock. Failure to
2344 * service an allocation will refill the stock.
2345 *
2346 * returns true if successful, false otherwise.
2347 */
2348 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2349 {
2350 struct memcg_stock_pcp *stock;
2351 bool ret = true;
2352
2353 if (nr_pages > CHARGE_BATCH)
2354 return false;
2355
2356 stock = &get_cpu_var(memcg_stock);
2357 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2358 stock->nr_pages -= nr_pages;
2359 else /* need to call res_counter_charge */
2360 ret = false;
2361 put_cpu_var(memcg_stock);
2362 return ret;
2363 }
2364
2365 /*
2366 * Returns stocks cached in percpu to res_counter and reset cached information.
2367 */
2368 static void drain_stock(struct memcg_stock_pcp *stock)
2369 {
2370 struct mem_cgroup *old = stock->cached;
2371
2372 if (stock->nr_pages) {
2373 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2374
2375 res_counter_uncharge(&old->res, bytes);
2376 if (do_swap_account)
2377 res_counter_uncharge(&old->memsw, bytes);
2378 stock->nr_pages = 0;
2379 }
2380 stock->cached = NULL;
2381 }
2382
2383 /*
2384 * This must be called under preempt disabled or must be called by
2385 * a thread which is pinned to local cpu.
2386 */
2387 static void drain_local_stock(struct work_struct *dummy)
2388 {
2389 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2390 drain_stock(stock);
2391 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2392 }
2393
2394 static void __init memcg_stock_init(void)
2395 {
2396 int cpu;
2397
2398 for_each_possible_cpu(cpu) {
2399 struct memcg_stock_pcp *stock =
2400 &per_cpu(memcg_stock, cpu);
2401 INIT_WORK(&stock->work, drain_local_stock);
2402 }
2403 }
2404
2405 /*
2406 * Cache charges(val) which is from res_counter, to local per_cpu area.
2407 * This will be consumed by consume_stock() function, later.
2408 */
2409 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2410 {
2411 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2412
2413 if (stock->cached != memcg) { /* reset if necessary */
2414 drain_stock(stock);
2415 stock->cached = memcg;
2416 }
2417 stock->nr_pages += nr_pages;
2418 put_cpu_var(memcg_stock);
2419 }
2420
2421 /*
2422 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2423 * of the hierarchy under it. sync flag says whether we should block
2424 * until the work is done.
2425 */
2426 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2427 {
2428 int cpu, curcpu;
2429
2430 /* Notify other cpus that system-wide "drain" is running */
2431 get_online_cpus();
2432 curcpu = get_cpu();
2433 for_each_online_cpu(cpu) {
2434 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2435 struct mem_cgroup *memcg;
2436
2437 memcg = stock->cached;
2438 if (!memcg || !stock->nr_pages)
2439 continue;
2440 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2441 continue;
2442 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2443 if (cpu == curcpu)
2444 drain_local_stock(&stock->work);
2445 else
2446 schedule_work_on(cpu, &stock->work);
2447 }
2448 }
2449 put_cpu();
2450
2451 if (!sync)
2452 goto out;
2453
2454 for_each_online_cpu(cpu) {
2455 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2456 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2457 flush_work(&stock->work);
2458 }
2459 out:
2460 put_online_cpus();
2461 }
2462
2463 /*
2464 * Tries to drain stocked charges in other cpus. This function is asynchronous
2465 * and just put a work per cpu for draining localy on each cpu. Caller can
2466 * expects some charges will be back to res_counter later but cannot wait for
2467 * it.
2468 */
2469 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2470 {
2471 /*
2472 * If someone calls draining, avoid adding more kworker runs.
2473 */
2474 if (!mutex_trylock(&percpu_charge_mutex))
2475 return;
2476 drain_all_stock(root_memcg, false);
2477 mutex_unlock(&percpu_charge_mutex);
2478 }
2479
2480 /* This is a synchronous drain interface. */
2481 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2482 {
2483 /* called when force_empty is called */
2484 mutex_lock(&percpu_charge_mutex);
2485 drain_all_stock(root_memcg, true);
2486 mutex_unlock(&percpu_charge_mutex);
2487 }
2488
2489 /*
2490 * This function drains percpu counter value from DEAD cpu and
2491 * move it to local cpu. Note that this function can be preempted.
2492 */
2493 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2494 {
2495 int i;
2496
2497 spin_lock(&memcg->pcp_counter_lock);
2498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2499 long x = per_cpu(memcg->stat->count[i], cpu);
2500
2501 per_cpu(memcg->stat->count[i], cpu) = 0;
2502 memcg->nocpu_base.count[i] += x;
2503 }
2504 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2505 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2506
2507 per_cpu(memcg->stat->events[i], cpu) = 0;
2508 memcg->nocpu_base.events[i] += x;
2509 }
2510 spin_unlock(&memcg->pcp_counter_lock);
2511 }
2512
2513 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2514 unsigned long action,
2515 void *hcpu)
2516 {
2517 int cpu = (unsigned long)hcpu;
2518 struct memcg_stock_pcp *stock;
2519 struct mem_cgroup *iter;
2520
2521 if (action == CPU_ONLINE)
2522 return NOTIFY_OK;
2523
2524 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2525 return NOTIFY_OK;
2526
2527 for_each_mem_cgroup(iter)
2528 mem_cgroup_drain_pcp_counter(iter, cpu);
2529
2530 stock = &per_cpu(memcg_stock, cpu);
2531 drain_stock(stock);
2532 return NOTIFY_OK;
2533 }
2534
2535
2536 /* See __mem_cgroup_try_charge() for details */
2537 enum {
2538 CHARGE_OK, /* success */
2539 CHARGE_RETRY, /* need to retry but retry is not bad */
2540 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2541 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2542 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2543 };
2544
2545 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2546 unsigned int nr_pages, unsigned int min_pages,
2547 bool oom_check)
2548 {
2549 unsigned long csize = nr_pages * PAGE_SIZE;
2550 struct mem_cgroup *mem_over_limit;
2551 struct res_counter *fail_res;
2552 unsigned long flags = 0;
2553 int ret;
2554
2555 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2556
2557 if (likely(!ret)) {
2558 if (!do_swap_account)
2559 return CHARGE_OK;
2560 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2561 if (likely(!ret))
2562 return CHARGE_OK;
2563
2564 res_counter_uncharge(&memcg->res, csize);
2565 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2566 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2567 } else
2568 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2569 /*
2570 * Never reclaim on behalf of optional batching, retry with a
2571 * single page instead.
2572 */
2573 if (nr_pages > min_pages)
2574 return CHARGE_RETRY;
2575
2576 if (!(gfp_mask & __GFP_WAIT))
2577 return CHARGE_WOULDBLOCK;
2578
2579 if (gfp_mask & __GFP_NORETRY)
2580 return CHARGE_NOMEM;
2581
2582 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2583 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2584 return CHARGE_RETRY;
2585 /*
2586 * Even though the limit is exceeded at this point, reclaim
2587 * may have been able to free some pages. Retry the charge
2588 * before killing the task.
2589 *
2590 * Only for regular pages, though: huge pages are rather
2591 * unlikely to succeed so close to the limit, and we fall back
2592 * to regular pages anyway in case of failure.
2593 */
2594 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2595 return CHARGE_RETRY;
2596
2597 /*
2598 * At task move, charge accounts can be doubly counted. So, it's
2599 * better to wait until the end of task_move if something is going on.
2600 */
2601 if (mem_cgroup_wait_acct_move(mem_over_limit))
2602 return CHARGE_RETRY;
2603
2604 /* If we don't need to call oom-killer at el, return immediately */
2605 if (!oom_check)
2606 return CHARGE_NOMEM;
2607 /* check OOM */
2608 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2609 return CHARGE_OOM_DIE;
2610
2611 return CHARGE_RETRY;
2612 }
2613
2614 /*
2615 * __mem_cgroup_try_charge() does
2616 * 1. detect memcg to be charged against from passed *mm and *ptr,
2617 * 2. update res_counter
2618 * 3. call memory reclaim if necessary.
2619 *
2620 * In some special case, if the task is fatal, fatal_signal_pending() or
2621 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2622 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2623 * as possible without any hazards. 2: all pages should have a valid
2624 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2625 * pointer, that is treated as a charge to root_mem_cgroup.
2626 *
2627 * So __mem_cgroup_try_charge() will return
2628 * 0 ... on success, filling *ptr with a valid memcg pointer.
2629 * -ENOMEM ... charge failure because of resource limits.
2630 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2631 *
2632 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2633 * the oom-killer can be invoked.
2634 */
2635 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2636 gfp_t gfp_mask,
2637 unsigned int nr_pages,
2638 struct mem_cgroup **ptr,
2639 bool oom)
2640 {
2641 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2642 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2643 struct mem_cgroup *memcg = NULL;
2644 int ret;
2645
2646 /*
2647 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2648 * in system level. So, allow to go ahead dying process in addition to
2649 * MEMDIE process.
2650 */
2651 if (unlikely(test_thread_flag(TIF_MEMDIE)
2652 || fatal_signal_pending(current)))
2653 goto bypass;
2654
2655 /*
2656 * We always charge the cgroup the mm_struct belongs to.
2657 * The mm_struct's mem_cgroup changes on task migration if the
2658 * thread group leader migrates. It's possible that mm is not
2659 * set, if so charge the root memcg (happens for pagecache usage).
2660 */
2661 if (!*ptr && !mm)
2662 *ptr = root_mem_cgroup;
2663 again:
2664 if (*ptr) { /* css should be a valid one */
2665 memcg = *ptr;
2666 if (mem_cgroup_is_root(memcg))
2667 goto done;
2668 if (consume_stock(memcg, nr_pages))
2669 goto done;
2670 css_get(&memcg->css);
2671 } else {
2672 struct task_struct *p;
2673
2674 rcu_read_lock();
2675 p = rcu_dereference(mm->owner);
2676 /*
2677 * Because we don't have task_lock(), "p" can exit.
2678 * In that case, "memcg" can point to root or p can be NULL with
2679 * race with swapoff. Then, we have small risk of mis-accouning.
2680 * But such kind of mis-account by race always happens because
2681 * we don't have cgroup_mutex(). It's overkill and we allo that
2682 * small race, here.
2683 * (*) swapoff at el will charge against mm-struct not against
2684 * task-struct. So, mm->owner can be NULL.
2685 */
2686 memcg = mem_cgroup_from_task(p);
2687 if (!memcg)
2688 memcg = root_mem_cgroup;
2689 if (mem_cgroup_is_root(memcg)) {
2690 rcu_read_unlock();
2691 goto done;
2692 }
2693 if (consume_stock(memcg, nr_pages)) {
2694 /*
2695 * It seems dagerous to access memcg without css_get().
2696 * But considering how consume_stok works, it's not
2697 * necessary. If consume_stock success, some charges
2698 * from this memcg are cached on this cpu. So, we
2699 * don't need to call css_get()/css_tryget() before
2700 * calling consume_stock().
2701 */
2702 rcu_read_unlock();
2703 goto done;
2704 }
2705 /* after here, we may be blocked. we need to get refcnt */
2706 if (!css_tryget(&memcg->css)) {
2707 rcu_read_unlock();
2708 goto again;
2709 }
2710 rcu_read_unlock();
2711 }
2712
2713 do {
2714 bool oom_check;
2715
2716 /* If killed, bypass charge */
2717 if (fatal_signal_pending(current)) {
2718 css_put(&memcg->css);
2719 goto bypass;
2720 }
2721
2722 oom_check = false;
2723 if (oom && !nr_oom_retries) {
2724 oom_check = true;
2725 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2726 }
2727
2728 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2729 oom_check);
2730 switch (ret) {
2731 case CHARGE_OK:
2732 break;
2733 case CHARGE_RETRY: /* not in OOM situation but retry */
2734 batch = nr_pages;
2735 css_put(&memcg->css);
2736 memcg = NULL;
2737 goto again;
2738 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2739 css_put(&memcg->css);
2740 goto nomem;
2741 case CHARGE_NOMEM: /* OOM routine works */
2742 if (!oom) {
2743 css_put(&memcg->css);
2744 goto nomem;
2745 }
2746 /* If oom, we never return -ENOMEM */
2747 nr_oom_retries--;
2748 break;
2749 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2750 css_put(&memcg->css);
2751 goto bypass;
2752 }
2753 } while (ret != CHARGE_OK);
2754
2755 if (batch > nr_pages)
2756 refill_stock(memcg, batch - nr_pages);
2757 css_put(&memcg->css);
2758 done:
2759 *ptr = memcg;
2760 return 0;
2761 nomem:
2762 *ptr = NULL;
2763 return -ENOMEM;
2764 bypass:
2765 *ptr = root_mem_cgroup;
2766 return -EINTR;
2767 }
2768
2769 /*
2770 * Somemtimes we have to undo a charge we got by try_charge().
2771 * This function is for that and do uncharge, put css's refcnt.
2772 * gotten by try_charge().
2773 */
2774 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2775 unsigned int nr_pages)
2776 {
2777 if (!mem_cgroup_is_root(memcg)) {
2778 unsigned long bytes = nr_pages * PAGE_SIZE;
2779
2780 res_counter_uncharge(&memcg->res, bytes);
2781 if (do_swap_account)
2782 res_counter_uncharge(&memcg->memsw, bytes);
2783 }
2784 }
2785
2786 /*
2787 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2788 * This is useful when moving usage to parent cgroup.
2789 */
2790 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2791 unsigned int nr_pages)
2792 {
2793 unsigned long bytes = nr_pages * PAGE_SIZE;
2794
2795 if (mem_cgroup_is_root(memcg))
2796 return;
2797
2798 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2799 if (do_swap_account)
2800 res_counter_uncharge_until(&memcg->memsw,
2801 memcg->memsw.parent, bytes);
2802 }
2803
2804 /*
2805 * A helper function to get mem_cgroup from ID. must be called under
2806 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2807 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2808 * called against removed memcg.)
2809 */
2810 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2811 {
2812 struct cgroup_subsys_state *css;
2813
2814 /* ID 0 is unused ID */
2815 if (!id)
2816 return NULL;
2817 css = css_lookup(&mem_cgroup_subsys, id);
2818 if (!css)
2819 return NULL;
2820 return mem_cgroup_from_css(css);
2821 }
2822
2823 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2824 {
2825 struct mem_cgroup *memcg = NULL;
2826 struct page_cgroup *pc;
2827 unsigned short id;
2828 swp_entry_t ent;
2829
2830 VM_BUG_ON(!PageLocked(page));
2831
2832 pc = lookup_page_cgroup(page);
2833 lock_page_cgroup(pc);
2834 if (PageCgroupUsed(pc)) {
2835 memcg = pc->mem_cgroup;
2836 if (memcg && !css_tryget(&memcg->css))
2837 memcg = NULL;
2838 } else if (PageSwapCache(page)) {
2839 ent.val = page_private(page);
2840 id = lookup_swap_cgroup_id(ent);
2841 rcu_read_lock();
2842 memcg = mem_cgroup_lookup(id);
2843 if (memcg && !css_tryget(&memcg->css))
2844 memcg = NULL;
2845 rcu_read_unlock();
2846 }
2847 unlock_page_cgroup(pc);
2848 return memcg;
2849 }
2850
2851 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2852 struct page *page,
2853 unsigned int nr_pages,
2854 enum charge_type ctype,
2855 bool lrucare)
2856 {
2857 struct page_cgroup *pc = lookup_page_cgroup(page);
2858 struct zone *uninitialized_var(zone);
2859 struct lruvec *lruvec;
2860 bool was_on_lru = false;
2861 bool anon;
2862
2863 lock_page_cgroup(pc);
2864 VM_BUG_ON(PageCgroupUsed(pc));
2865 /*
2866 * we don't need page_cgroup_lock about tail pages, becase they are not
2867 * accessed by any other context at this point.
2868 */
2869
2870 /*
2871 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2872 * may already be on some other mem_cgroup's LRU. Take care of it.
2873 */
2874 if (lrucare) {
2875 zone = page_zone(page);
2876 spin_lock_irq(&zone->lru_lock);
2877 if (PageLRU(page)) {
2878 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2879 ClearPageLRU(page);
2880 del_page_from_lru_list(page, lruvec, page_lru(page));
2881 was_on_lru = true;
2882 }
2883 }
2884
2885 pc->mem_cgroup = memcg;
2886 /*
2887 * We access a page_cgroup asynchronously without lock_page_cgroup().
2888 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2889 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2890 * before USED bit, we need memory barrier here.
2891 * See mem_cgroup_add_lru_list(), etc.
2892 */
2893 smp_wmb();
2894 SetPageCgroupUsed(pc);
2895
2896 if (lrucare) {
2897 if (was_on_lru) {
2898 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2899 VM_BUG_ON(PageLRU(page));
2900 SetPageLRU(page);
2901 add_page_to_lru_list(page, lruvec, page_lru(page));
2902 }
2903 spin_unlock_irq(&zone->lru_lock);
2904 }
2905
2906 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2907 anon = true;
2908 else
2909 anon = false;
2910
2911 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2912 unlock_page_cgroup(pc);
2913
2914 /*
2915 * "charge_statistics" updated event counter. Then, check it.
2916 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2917 * if they exceeds softlimit.
2918 */
2919 memcg_check_events(memcg, page);
2920 }
2921
2922 static DEFINE_MUTEX(set_limit_mutex);
2923
2924 #ifdef CONFIG_MEMCG_KMEM
2925 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2926 {
2927 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2928 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2929 }
2930
2931 /*
2932 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2933 * in the memcg_cache_params struct.
2934 */
2935 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2936 {
2937 struct kmem_cache *cachep;
2938
2939 VM_BUG_ON(p->is_root_cache);
2940 cachep = p->root_cache;
2941 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2942 }
2943
2944 #ifdef CONFIG_SLABINFO
2945 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2946 struct cftype *cft, struct seq_file *m)
2947 {
2948 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2949 struct memcg_cache_params *params;
2950
2951 if (!memcg_can_account_kmem(memcg))
2952 return -EIO;
2953
2954 print_slabinfo_header(m);
2955
2956 mutex_lock(&memcg->slab_caches_mutex);
2957 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2958 cache_show(memcg_params_to_cache(params), m);
2959 mutex_unlock(&memcg->slab_caches_mutex);
2960
2961 return 0;
2962 }
2963 #endif
2964
2965 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2966 {
2967 struct res_counter *fail_res;
2968 struct mem_cgroup *_memcg;
2969 int ret = 0;
2970 bool may_oom;
2971
2972 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2973 if (ret)
2974 return ret;
2975
2976 /*
2977 * Conditions under which we can wait for the oom_killer. Those are
2978 * the same conditions tested by the core page allocator
2979 */
2980 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2981
2982 _memcg = memcg;
2983 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2984 &_memcg, may_oom);
2985
2986 if (ret == -EINTR) {
2987 /*
2988 * __mem_cgroup_try_charge() chosed to bypass to root due to
2989 * OOM kill or fatal signal. Since our only options are to
2990 * either fail the allocation or charge it to this cgroup, do
2991 * it as a temporary condition. But we can't fail. From a
2992 * kmem/slab perspective, the cache has already been selected,
2993 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2994 * our minds.
2995 *
2996 * This condition will only trigger if the task entered
2997 * memcg_charge_kmem in a sane state, but was OOM-killed during
2998 * __mem_cgroup_try_charge() above. Tasks that were already
2999 * dying when the allocation triggers should have been already
3000 * directed to the root cgroup in memcontrol.h
3001 */
3002 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3003 if (do_swap_account)
3004 res_counter_charge_nofail(&memcg->memsw, size,
3005 &fail_res);
3006 ret = 0;
3007 } else if (ret)
3008 res_counter_uncharge(&memcg->kmem, size);
3009
3010 return ret;
3011 }
3012
3013 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3014 {
3015 res_counter_uncharge(&memcg->res, size);
3016 if (do_swap_account)
3017 res_counter_uncharge(&memcg->memsw, size);
3018
3019 /* Not down to 0 */
3020 if (res_counter_uncharge(&memcg->kmem, size))
3021 return;
3022
3023 /*
3024 * Releases a reference taken in kmem_cgroup_css_offline in case
3025 * this last uncharge is racing with the offlining code or it is
3026 * outliving the memcg existence.
3027 *
3028 * The memory barrier imposed by test&clear is paired with the
3029 * explicit one in memcg_kmem_mark_dead().
3030 */
3031 if (memcg_kmem_test_and_clear_dead(memcg))
3032 css_put(&memcg->css);
3033 }
3034
3035 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3036 {
3037 if (!memcg)
3038 return;
3039
3040 mutex_lock(&memcg->slab_caches_mutex);
3041 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3042 mutex_unlock(&memcg->slab_caches_mutex);
3043 }
3044
3045 /*
3046 * helper for acessing a memcg's index. It will be used as an index in the
3047 * child cache array in kmem_cache, and also to derive its name. This function
3048 * will return -1 when this is not a kmem-limited memcg.
3049 */
3050 int memcg_cache_id(struct mem_cgroup *memcg)
3051 {
3052 return memcg ? memcg->kmemcg_id : -1;
3053 }
3054
3055 /*
3056 * This ends up being protected by the set_limit mutex, during normal
3057 * operation, because that is its main call site.
3058 *
3059 * But when we create a new cache, we can call this as well if its parent
3060 * is kmem-limited. That will have to hold set_limit_mutex as well.
3061 */
3062 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3063 {
3064 int num, ret;
3065
3066 num = ida_simple_get(&kmem_limited_groups,
3067 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3068 if (num < 0)
3069 return num;
3070 /*
3071 * After this point, kmem_accounted (that we test atomically in
3072 * the beginning of this conditional), is no longer 0. This
3073 * guarantees only one process will set the following boolean
3074 * to true. We don't need test_and_set because we're protected
3075 * by the set_limit_mutex anyway.
3076 */
3077 memcg_kmem_set_activated(memcg);
3078
3079 ret = memcg_update_all_caches(num+1);
3080 if (ret) {
3081 ida_simple_remove(&kmem_limited_groups, num);
3082 memcg_kmem_clear_activated(memcg);
3083 return ret;
3084 }
3085
3086 memcg->kmemcg_id = num;
3087 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3088 mutex_init(&memcg->slab_caches_mutex);
3089 return 0;
3090 }
3091
3092 static size_t memcg_caches_array_size(int num_groups)
3093 {
3094 ssize_t size;
3095 if (num_groups <= 0)
3096 return 0;
3097
3098 size = 2 * num_groups;
3099 if (size < MEMCG_CACHES_MIN_SIZE)
3100 size = MEMCG_CACHES_MIN_SIZE;
3101 else if (size > MEMCG_CACHES_MAX_SIZE)
3102 size = MEMCG_CACHES_MAX_SIZE;
3103
3104 return size;
3105 }
3106
3107 /*
3108 * We should update the current array size iff all caches updates succeed. This
3109 * can only be done from the slab side. The slab mutex needs to be held when
3110 * calling this.
3111 */
3112 void memcg_update_array_size(int num)
3113 {
3114 if (num > memcg_limited_groups_array_size)
3115 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3116 }
3117
3118 static void kmem_cache_destroy_work_func(struct work_struct *w);
3119
3120 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3121 {
3122 struct memcg_cache_params *cur_params = s->memcg_params;
3123
3124 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3125
3126 if (num_groups > memcg_limited_groups_array_size) {
3127 int i;
3128 ssize_t size = memcg_caches_array_size(num_groups);
3129
3130 size *= sizeof(void *);
3131 size += sizeof(struct memcg_cache_params);
3132
3133 s->memcg_params = kzalloc(size, GFP_KERNEL);
3134 if (!s->memcg_params) {
3135 s->memcg_params = cur_params;
3136 return -ENOMEM;
3137 }
3138
3139 s->memcg_params->is_root_cache = true;
3140
3141 /*
3142 * There is the chance it will be bigger than
3143 * memcg_limited_groups_array_size, if we failed an allocation
3144 * in a cache, in which case all caches updated before it, will
3145 * have a bigger array.
3146 *
3147 * But if that is the case, the data after
3148 * memcg_limited_groups_array_size is certainly unused
3149 */
3150 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3151 if (!cur_params->memcg_caches[i])
3152 continue;
3153 s->memcg_params->memcg_caches[i] =
3154 cur_params->memcg_caches[i];
3155 }
3156
3157 /*
3158 * Ideally, we would wait until all caches succeed, and only
3159 * then free the old one. But this is not worth the extra
3160 * pointer per-cache we'd have to have for this.
3161 *
3162 * It is not a big deal if some caches are left with a size
3163 * bigger than the others. And all updates will reset this
3164 * anyway.
3165 */
3166 kfree(cur_params);
3167 }
3168 return 0;
3169 }
3170
3171 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3172 struct kmem_cache *root_cache)
3173 {
3174 size_t size = sizeof(struct memcg_cache_params);
3175
3176 if (!memcg_kmem_enabled())
3177 return 0;
3178
3179 if (!memcg)
3180 size += memcg_limited_groups_array_size * sizeof(void *);
3181
3182 s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 if (!s->memcg_params)
3184 return -ENOMEM;
3185
3186 INIT_WORK(&s->memcg_params->destroy,
3187 kmem_cache_destroy_work_func);
3188 if (memcg) {
3189 s->memcg_params->memcg = memcg;
3190 s->memcg_params->root_cache = root_cache;
3191 } else
3192 s->memcg_params->is_root_cache = true;
3193
3194 return 0;
3195 }
3196
3197 void memcg_release_cache(struct kmem_cache *s)
3198 {
3199 struct kmem_cache *root;
3200 struct mem_cgroup *memcg;
3201 int id;
3202
3203 /*
3204 * This happens, for instance, when a root cache goes away before we
3205 * add any memcg.
3206 */
3207 if (!s->memcg_params)
3208 return;
3209
3210 if (s->memcg_params->is_root_cache)
3211 goto out;
3212
3213 memcg = s->memcg_params->memcg;
3214 id = memcg_cache_id(memcg);
3215
3216 root = s->memcg_params->root_cache;
3217 root->memcg_params->memcg_caches[id] = NULL;
3218
3219 mutex_lock(&memcg->slab_caches_mutex);
3220 list_del(&s->memcg_params->list);
3221 mutex_unlock(&memcg->slab_caches_mutex);
3222
3223 css_put(&memcg->css);
3224 out:
3225 kfree(s->memcg_params);
3226 }
3227
3228 /*
3229 * During the creation a new cache, we need to disable our accounting mechanism
3230 * altogether. This is true even if we are not creating, but rather just
3231 * enqueing new caches to be created.
3232 *
3233 * This is because that process will trigger allocations; some visible, like
3234 * explicit kmallocs to auxiliary data structures, name strings and internal
3235 * cache structures; some well concealed, like INIT_WORK() that can allocate
3236 * objects during debug.
3237 *
3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239 * to it. This may not be a bounded recursion: since the first cache creation
3240 * failed to complete (waiting on the allocation), we'll just try to create the
3241 * cache again, failing at the same point.
3242 *
3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245 * inside the following two functions.
3246 */
3247 static inline void memcg_stop_kmem_account(void)
3248 {
3249 VM_BUG_ON(!current->mm);
3250 current->memcg_kmem_skip_account++;
3251 }
3252
3253 static inline void memcg_resume_kmem_account(void)
3254 {
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account--;
3257 }
3258
3259 static void kmem_cache_destroy_work_func(struct work_struct *w)
3260 {
3261 struct kmem_cache *cachep;
3262 struct memcg_cache_params *p;
3263
3264 p = container_of(w, struct memcg_cache_params, destroy);
3265
3266 cachep = memcg_params_to_cache(p);
3267
3268 /*
3269 * If we get down to 0 after shrink, we could delete right away.
3270 * However, memcg_release_pages() already puts us back in the workqueue
3271 * in that case. If we proceed deleting, we'll get a dangling
3272 * reference, and removing the object from the workqueue in that case
3273 * is unnecessary complication. We are not a fast path.
3274 *
3275 * Note that this case is fundamentally different from racing with
3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 * into the queue, but doing so from inside the worker racing to
3279 * destroy it.
3280 *
3281 * So if we aren't down to zero, we'll just schedule a worker and try
3282 * again
3283 */
3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3285 kmem_cache_shrink(cachep);
3286 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3287 return;
3288 } else
3289 kmem_cache_destroy(cachep);
3290 }
3291
3292 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293 {
3294 if (!cachep->memcg_params->dead)
3295 return;
3296
3297 /*
3298 * There are many ways in which we can get here.
3299 *
3300 * We can get to a memory-pressure situation while the delayed work is
3301 * still pending to run. The vmscan shrinkers can then release all
3302 * cache memory and get us to destruction. If this is the case, we'll
3303 * be executed twice, which is a bug (the second time will execute over
3304 * bogus data). In this case, cancelling the work should be fine.
3305 *
3306 * But we can also get here from the worker itself, if
3307 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 * get the page count to 0. In this case, we'll deadlock if we try to
3309 * cancel the work (the worker runs with an internal lock held, which
3310 * is the same lock we would hold for cancel_work_sync().)
3311 *
3312 * Since we can't possibly know who got us here, just refrain from
3313 * running if there is already work pending
3314 */
3315 if (work_pending(&cachep->memcg_params->destroy))
3316 return;
3317 /*
3318 * We have to defer the actual destroying to a workqueue, because
3319 * we might currently be in a context that cannot sleep.
3320 */
3321 schedule_work(&cachep->memcg_params->destroy);
3322 }
3323
3324 /*
3325 * This lock protects updaters, not readers. We want readers to be as fast as
3326 * they can, and they will either see NULL or a valid cache value. Our model
3327 * allow them to see NULL, in which case the root memcg will be selected.
3328 *
3329 * We need this lock because multiple allocations to the same cache from a non
3330 * will span more than one worker. Only one of them can create the cache.
3331 */
3332 static DEFINE_MUTEX(memcg_cache_mutex);
3333
3334 /*
3335 * Called with memcg_cache_mutex held
3336 */
3337 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3338 struct kmem_cache *s)
3339 {
3340 struct kmem_cache *new;
3341 static char *tmp_name = NULL;
3342
3343 lockdep_assert_held(&memcg_cache_mutex);
3344
3345 /*
3346 * kmem_cache_create_memcg duplicates the given name and
3347 * cgroup_name for this name requires RCU context.
3348 * This static temporary buffer is used to prevent from
3349 * pointless shortliving allocation.
3350 */
3351 if (!tmp_name) {
3352 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3353 if (!tmp_name)
3354 return NULL;
3355 }
3356
3357 rcu_read_lock();
3358 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3359 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3360 rcu_read_unlock();
3361
3362 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3363 (s->flags & ~SLAB_PANIC), s->ctor, s);
3364
3365 if (new)
3366 new->allocflags |= __GFP_KMEMCG;
3367
3368 return new;
3369 }
3370
3371 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3372 struct kmem_cache *cachep)
3373 {
3374 struct kmem_cache *new_cachep;
3375 int idx;
3376
3377 BUG_ON(!memcg_can_account_kmem(memcg));
3378
3379 idx = memcg_cache_id(memcg);
3380
3381 mutex_lock(&memcg_cache_mutex);
3382 new_cachep = cachep->memcg_params->memcg_caches[idx];
3383 if (new_cachep) {
3384 css_put(&memcg->css);
3385 goto out;
3386 }
3387
3388 new_cachep = kmem_cache_dup(memcg, cachep);
3389 if (new_cachep == NULL) {
3390 new_cachep = cachep;
3391 css_put(&memcg->css);
3392 goto out;
3393 }
3394
3395 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3396
3397 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3398 /*
3399 * the readers won't lock, make sure everybody sees the updated value,
3400 * so they won't put stuff in the queue again for no reason
3401 */
3402 wmb();
3403 out:
3404 mutex_unlock(&memcg_cache_mutex);
3405 return new_cachep;
3406 }
3407
3408 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3409 {
3410 struct kmem_cache *c;
3411 int i;
3412
3413 if (!s->memcg_params)
3414 return;
3415 if (!s->memcg_params->is_root_cache)
3416 return;
3417
3418 /*
3419 * If the cache is being destroyed, we trust that there is no one else
3420 * requesting objects from it. Even if there are, the sanity checks in
3421 * kmem_cache_destroy should caught this ill-case.
3422 *
3423 * Still, we don't want anyone else freeing memcg_caches under our
3424 * noses, which can happen if a new memcg comes to life. As usual,
3425 * we'll take the set_limit_mutex to protect ourselves against this.
3426 */
3427 mutex_lock(&set_limit_mutex);
3428 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3429 c = s->memcg_params->memcg_caches[i];
3430 if (!c)
3431 continue;
3432
3433 /*
3434 * We will now manually delete the caches, so to avoid races
3435 * we need to cancel all pending destruction workers and
3436 * proceed with destruction ourselves.
3437 *
3438 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3439 * and that could spawn the workers again: it is likely that
3440 * the cache still have active pages until this very moment.
3441 * This would lead us back to mem_cgroup_destroy_cache.
3442 *
3443 * But that will not execute at all if the "dead" flag is not
3444 * set, so flip it down to guarantee we are in control.
3445 */
3446 c->memcg_params->dead = false;
3447 cancel_work_sync(&c->memcg_params->destroy);
3448 kmem_cache_destroy(c);
3449 }
3450 mutex_unlock(&set_limit_mutex);
3451 }
3452
3453 struct create_work {
3454 struct mem_cgroup *memcg;
3455 struct kmem_cache *cachep;
3456 struct work_struct work;
3457 };
3458
3459 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3460 {
3461 struct kmem_cache *cachep;
3462 struct memcg_cache_params *params;
3463
3464 if (!memcg_kmem_is_active(memcg))
3465 return;
3466
3467 mutex_lock(&memcg->slab_caches_mutex);
3468 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3469 cachep = memcg_params_to_cache(params);
3470 cachep->memcg_params->dead = true;
3471 schedule_work(&cachep->memcg_params->destroy);
3472 }
3473 mutex_unlock(&memcg->slab_caches_mutex);
3474 }
3475
3476 static void memcg_create_cache_work_func(struct work_struct *w)
3477 {
3478 struct create_work *cw;
3479
3480 cw = container_of(w, struct create_work, work);
3481 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3482 kfree(cw);
3483 }
3484
3485 /*
3486 * Enqueue the creation of a per-memcg kmem_cache.
3487 */
3488 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3489 struct kmem_cache *cachep)
3490 {
3491 struct create_work *cw;
3492
3493 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3494 if (cw == NULL) {
3495 css_put(&memcg->css);
3496 return;
3497 }
3498
3499 cw->memcg = memcg;
3500 cw->cachep = cachep;
3501
3502 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3503 schedule_work(&cw->work);
3504 }
3505
3506 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3507 struct kmem_cache *cachep)
3508 {
3509 /*
3510 * We need to stop accounting when we kmalloc, because if the
3511 * corresponding kmalloc cache is not yet created, the first allocation
3512 * in __memcg_create_cache_enqueue will recurse.
3513 *
3514 * However, it is better to enclose the whole function. Depending on
3515 * the debugging options enabled, INIT_WORK(), for instance, can
3516 * trigger an allocation. This too, will make us recurse. Because at
3517 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3518 * the safest choice is to do it like this, wrapping the whole function.
3519 */
3520 memcg_stop_kmem_account();
3521 __memcg_create_cache_enqueue(memcg, cachep);
3522 memcg_resume_kmem_account();
3523 }
3524 /*
3525 * Return the kmem_cache we're supposed to use for a slab allocation.
3526 * We try to use the current memcg's version of the cache.
3527 *
3528 * If the cache does not exist yet, if we are the first user of it,
3529 * we either create it immediately, if possible, or create it asynchronously
3530 * in a workqueue.
3531 * In the latter case, we will let the current allocation go through with
3532 * the original cache.
3533 *
3534 * Can't be called in interrupt context or from kernel threads.
3535 * This function needs to be called with rcu_read_lock() held.
3536 */
3537 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3538 gfp_t gfp)
3539 {
3540 struct mem_cgroup *memcg;
3541 int idx;
3542
3543 VM_BUG_ON(!cachep->memcg_params);
3544 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3545
3546 if (!current->mm || current->memcg_kmem_skip_account)
3547 return cachep;
3548
3549 rcu_read_lock();
3550 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3551
3552 if (!memcg_can_account_kmem(memcg))
3553 goto out;
3554
3555 idx = memcg_cache_id(memcg);
3556
3557 /*
3558 * barrier to mare sure we're always seeing the up to date value. The
3559 * code updating memcg_caches will issue a write barrier to match this.
3560 */
3561 read_barrier_depends();
3562 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3563 cachep = cachep->memcg_params->memcg_caches[idx];
3564 goto out;
3565 }
3566
3567 /* The corresponding put will be done in the workqueue. */
3568 if (!css_tryget(&memcg->css))
3569 goto out;
3570 rcu_read_unlock();
3571
3572 /*
3573 * If we are in a safe context (can wait, and not in interrupt
3574 * context), we could be be predictable and return right away.
3575 * This would guarantee that the allocation being performed
3576 * already belongs in the new cache.
3577 *
3578 * However, there are some clashes that can arrive from locking.
3579 * For instance, because we acquire the slab_mutex while doing
3580 * kmem_cache_dup, this means no further allocation could happen
3581 * with the slab_mutex held.
3582 *
3583 * Also, because cache creation issue get_online_cpus(), this
3584 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3585 * that ends up reversed during cpu hotplug. (cpuset allocates
3586 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3587 * better to defer everything.
3588 */
3589 memcg_create_cache_enqueue(memcg, cachep);
3590 return cachep;
3591 out:
3592 rcu_read_unlock();
3593 return cachep;
3594 }
3595 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3596
3597 /*
3598 * We need to verify if the allocation against current->mm->owner's memcg is
3599 * possible for the given order. But the page is not allocated yet, so we'll
3600 * need a further commit step to do the final arrangements.
3601 *
3602 * It is possible for the task to switch cgroups in this mean time, so at
3603 * commit time, we can't rely on task conversion any longer. We'll then use
3604 * the handle argument to return to the caller which cgroup we should commit
3605 * against. We could also return the memcg directly and avoid the pointer
3606 * passing, but a boolean return value gives better semantics considering
3607 * the compiled-out case as well.
3608 *
3609 * Returning true means the allocation is possible.
3610 */
3611 bool
3612 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3613 {
3614 struct mem_cgroup *memcg;
3615 int ret;
3616
3617 *_memcg = NULL;
3618
3619 /*
3620 * Disabling accounting is only relevant for some specific memcg
3621 * internal allocations. Therefore we would initially not have such
3622 * check here, since direct calls to the page allocator that are marked
3623 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3624 * concerned with cache allocations, and by having this test at
3625 * memcg_kmem_get_cache, we are already able to relay the allocation to
3626 * the root cache and bypass the memcg cache altogether.
3627 *
3628 * There is one exception, though: the SLUB allocator does not create
3629 * large order caches, but rather service large kmallocs directly from
3630 * the page allocator. Therefore, the following sequence when backed by
3631 * the SLUB allocator:
3632 *
3633 * memcg_stop_kmem_account();
3634 * kmalloc(<large_number>)
3635 * memcg_resume_kmem_account();
3636 *
3637 * would effectively ignore the fact that we should skip accounting,
3638 * since it will drive us directly to this function without passing
3639 * through the cache selector memcg_kmem_get_cache. Such large
3640 * allocations are extremely rare but can happen, for instance, for the
3641 * cache arrays. We bring this test here.
3642 */
3643 if (!current->mm || current->memcg_kmem_skip_account)
3644 return true;
3645
3646 memcg = try_get_mem_cgroup_from_mm(current->mm);
3647
3648 /*
3649 * very rare case described in mem_cgroup_from_task. Unfortunately there
3650 * isn't much we can do without complicating this too much, and it would
3651 * be gfp-dependent anyway. Just let it go
3652 */
3653 if (unlikely(!memcg))
3654 return true;
3655
3656 if (!memcg_can_account_kmem(memcg)) {
3657 css_put(&memcg->css);
3658 return true;
3659 }
3660
3661 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3662 if (!ret)
3663 *_memcg = memcg;
3664
3665 css_put(&memcg->css);
3666 return (ret == 0);
3667 }
3668
3669 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3670 int order)
3671 {
3672 struct page_cgroup *pc;
3673
3674 VM_BUG_ON(mem_cgroup_is_root(memcg));
3675
3676 /* The page allocation failed. Revert */
3677 if (!page) {
3678 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3679 return;
3680 }
3681
3682 pc = lookup_page_cgroup(page);
3683 lock_page_cgroup(pc);
3684 pc->mem_cgroup = memcg;
3685 SetPageCgroupUsed(pc);
3686 unlock_page_cgroup(pc);
3687 }
3688
3689 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3690 {
3691 struct mem_cgroup *memcg = NULL;
3692 struct page_cgroup *pc;
3693
3694
3695 pc = lookup_page_cgroup(page);
3696 /*
3697 * Fast unlocked return. Theoretically might have changed, have to
3698 * check again after locking.
3699 */
3700 if (!PageCgroupUsed(pc))
3701 return;
3702
3703 lock_page_cgroup(pc);
3704 if (PageCgroupUsed(pc)) {
3705 memcg = pc->mem_cgroup;
3706 ClearPageCgroupUsed(pc);
3707 }
3708 unlock_page_cgroup(pc);
3709
3710 /*
3711 * We trust that only if there is a memcg associated with the page, it
3712 * is a valid allocation
3713 */
3714 if (!memcg)
3715 return;
3716
3717 VM_BUG_ON(mem_cgroup_is_root(memcg));
3718 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3719 }
3720 #else
3721 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3722 {
3723 }
3724 #endif /* CONFIG_MEMCG_KMEM */
3725
3726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3727
3728 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3729 /*
3730 * Because tail pages are not marked as "used", set it. We're under
3731 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3732 * charge/uncharge will be never happen and move_account() is done under
3733 * compound_lock(), so we don't have to take care of races.
3734 */
3735 void mem_cgroup_split_huge_fixup(struct page *head)
3736 {
3737 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3738 struct page_cgroup *pc;
3739 struct mem_cgroup *memcg;
3740 int i;
3741
3742 if (mem_cgroup_disabled())
3743 return;
3744
3745 memcg = head_pc->mem_cgroup;
3746 for (i = 1; i < HPAGE_PMD_NR; i++) {
3747 pc = head_pc + i;
3748 pc->mem_cgroup = memcg;
3749 smp_wmb();/* see __commit_charge() */
3750 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3751 }
3752 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3753 HPAGE_PMD_NR);
3754 }
3755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3756
3757 /**
3758 * mem_cgroup_move_account - move account of the page
3759 * @page: the page
3760 * @nr_pages: number of regular pages (>1 for huge pages)
3761 * @pc: page_cgroup of the page.
3762 * @from: mem_cgroup which the page is moved from.
3763 * @to: mem_cgroup which the page is moved to. @from != @to.
3764 *
3765 * The caller must confirm following.
3766 * - page is not on LRU (isolate_page() is useful.)
3767 * - compound_lock is held when nr_pages > 1
3768 *
3769 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3770 * from old cgroup.
3771 */
3772 static int mem_cgroup_move_account(struct page *page,
3773 unsigned int nr_pages,
3774 struct page_cgroup *pc,
3775 struct mem_cgroup *from,
3776 struct mem_cgroup *to)
3777 {
3778 unsigned long flags;
3779 int ret;
3780 bool anon = PageAnon(page);
3781
3782 VM_BUG_ON(from == to);
3783 VM_BUG_ON(PageLRU(page));
3784 /*
3785 * The page is isolated from LRU. So, collapse function
3786 * will not handle this page. But page splitting can happen.
3787 * Do this check under compound_page_lock(). The caller should
3788 * hold it.
3789 */
3790 ret = -EBUSY;
3791 if (nr_pages > 1 && !PageTransHuge(page))
3792 goto out;
3793
3794 lock_page_cgroup(pc);
3795
3796 ret = -EINVAL;
3797 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3798 goto unlock;
3799
3800 move_lock_mem_cgroup(from, &flags);
3801
3802 if (!anon && page_mapped(page)) {
3803 /* Update mapped_file data for mem_cgroup */
3804 preempt_disable();
3805 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3806 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3807 preempt_enable();
3808 }
3809 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3810
3811 /* caller should have done css_get */
3812 pc->mem_cgroup = to;
3813 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3814 move_unlock_mem_cgroup(from, &flags);
3815 ret = 0;
3816 unlock:
3817 unlock_page_cgroup(pc);
3818 /*
3819 * check events
3820 */
3821 memcg_check_events(to, page);
3822 memcg_check_events(from, page);
3823 out:
3824 return ret;
3825 }
3826
3827 /**
3828 * mem_cgroup_move_parent - moves page to the parent group
3829 * @page: the page to move
3830 * @pc: page_cgroup of the page
3831 * @child: page's cgroup
3832 *
3833 * move charges to its parent or the root cgroup if the group has no
3834 * parent (aka use_hierarchy==0).
3835 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3836 * mem_cgroup_move_account fails) the failure is always temporary and
3837 * it signals a race with a page removal/uncharge or migration. In the
3838 * first case the page is on the way out and it will vanish from the LRU
3839 * on the next attempt and the call should be retried later.
3840 * Isolation from the LRU fails only if page has been isolated from
3841 * the LRU since we looked at it and that usually means either global
3842 * reclaim or migration going on. The page will either get back to the
3843 * LRU or vanish.
3844 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3845 * (!PageCgroupUsed) or moved to a different group. The page will
3846 * disappear in the next attempt.
3847 */
3848 static int mem_cgroup_move_parent(struct page *page,
3849 struct page_cgroup *pc,
3850 struct mem_cgroup *child)
3851 {
3852 struct mem_cgroup *parent;
3853 unsigned int nr_pages;
3854 unsigned long uninitialized_var(flags);
3855 int ret;
3856
3857 VM_BUG_ON(mem_cgroup_is_root(child));
3858
3859 ret = -EBUSY;
3860 if (!get_page_unless_zero(page))
3861 goto out;
3862 if (isolate_lru_page(page))
3863 goto put;
3864
3865 nr_pages = hpage_nr_pages(page);
3866
3867 parent = parent_mem_cgroup(child);
3868 /*
3869 * If no parent, move charges to root cgroup.
3870 */
3871 if (!parent)
3872 parent = root_mem_cgroup;
3873
3874 if (nr_pages > 1) {
3875 VM_BUG_ON(!PageTransHuge(page));
3876 flags = compound_lock_irqsave(page);
3877 }
3878
3879 ret = mem_cgroup_move_account(page, nr_pages,
3880 pc, child, parent);
3881 if (!ret)
3882 __mem_cgroup_cancel_local_charge(child, nr_pages);
3883
3884 if (nr_pages > 1)
3885 compound_unlock_irqrestore(page, flags);
3886 putback_lru_page(page);
3887 put:
3888 put_page(page);
3889 out:
3890 return ret;
3891 }
3892
3893 /*
3894 * Charge the memory controller for page usage.
3895 * Return
3896 * 0 if the charge was successful
3897 * < 0 if the cgroup is over its limit
3898 */
3899 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3900 gfp_t gfp_mask, enum charge_type ctype)
3901 {
3902 struct mem_cgroup *memcg = NULL;
3903 unsigned int nr_pages = 1;
3904 bool oom = true;
3905 int ret;
3906
3907 if (PageTransHuge(page)) {
3908 nr_pages <<= compound_order(page);
3909 VM_BUG_ON(!PageTransHuge(page));
3910 /*
3911 * Never OOM-kill a process for a huge page. The
3912 * fault handler will fall back to regular pages.
3913 */
3914 oom = false;
3915 }
3916
3917 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3918 if (ret == -ENOMEM)
3919 return ret;
3920 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3921 return 0;
3922 }
3923
3924 int mem_cgroup_newpage_charge(struct page *page,
3925 struct mm_struct *mm, gfp_t gfp_mask)
3926 {
3927 if (mem_cgroup_disabled())
3928 return 0;
3929 VM_BUG_ON(page_mapped(page));
3930 VM_BUG_ON(page->mapping && !PageAnon(page));
3931 VM_BUG_ON(!mm);
3932 return mem_cgroup_charge_common(page, mm, gfp_mask,
3933 MEM_CGROUP_CHARGE_TYPE_ANON);
3934 }
3935
3936 /*
3937 * While swap-in, try_charge -> commit or cancel, the page is locked.
3938 * And when try_charge() successfully returns, one refcnt to memcg without
3939 * struct page_cgroup is acquired. This refcnt will be consumed by
3940 * "commit()" or removed by "cancel()"
3941 */
3942 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3943 struct page *page,
3944 gfp_t mask,
3945 struct mem_cgroup **memcgp)
3946 {
3947 struct mem_cgroup *memcg;
3948 struct page_cgroup *pc;
3949 int ret;
3950
3951 pc = lookup_page_cgroup(page);
3952 /*
3953 * Every swap fault against a single page tries to charge the
3954 * page, bail as early as possible. shmem_unuse() encounters
3955 * already charged pages, too. The USED bit is protected by
3956 * the page lock, which serializes swap cache removal, which
3957 * in turn serializes uncharging.
3958 */
3959 if (PageCgroupUsed(pc))
3960 return 0;
3961 if (!do_swap_account)
3962 goto charge_cur_mm;
3963 memcg = try_get_mem_cgroup_from_page(page);
3964 if (!memcg)
3965 goto charge_cur_mm;
3966 *memcgp = memcg;
3967 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3968 css_put(&memcg->css);
3969 if (ret == -EINTR)
3970 ret = 0;
3971 return ret;
3972 charge_cur_mm:
3973 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3974 if (ret == -EINTR)
3975 ret = 0;
3976 return ret;
3977 }
3978
3979 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3980 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3981 {
3982 *memcgp = NULL;
3983 if (mem_cgroup_disabled())
3984 return 0;
3985 /*
3986 * A racing thread's fault, or swapoff, may have already
3987 * updated the pte, and even removed page from swap cache: in
3988 * those cases unuse_pte()'s pte_same() test will fail; but
3989 * there's also a KSM case which does need to charge the page.
3990 */
3991 if (!PageSwapCache(page)) {
3992 int ret;
3993
3994 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3995 if (ret == -EINTR)
3996 ret = 0;
3997 return ret;
3998 }
3999 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4000 }
4001
4002 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4003 {
4004 if (mem_cgroup_disabled())
4005 return;
4006 if (!memcg)
4007 return;
4008 __mem_cgroup_cancel_charge(memcg, 1);
4009 }
4010
4011 static void
4012 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4013 enum charge_type ctype)
4014 {
4015 if (mem_cgroup_disabled())
4016 return;
4017 if (!memcg)
4018 return;
4019
4020 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4021 /*
4022 * Now swap is on-memory. This means this page may be
4023 * counted both as mem and swap....double count.
4024 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4025 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4026 * may call delete_from_swap_cache() before reach here.
4027 */
4028 if (do_swap_account && PageSwapCache(page)) {
4029 swp_entry_t ent = {.val = page_private(page)};
4030 mem_cgroup_uncharge_swap(ent);
4031 }
4032 }
4033
4034 void mem_cgroup_commit_charge_swapin(struct page *page,
4035 struct mem_cgroup *memcg)
4036 {
4037 __mem_cgroup_commit_charge_swapin(page, memcg,
4038 MEM_CGROUP_CHARGE_TYPE_ANON);
4039 }
4040
4041 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4042 gfp_t gfp_mask)
4043 {
4044 struct mem_cgroup *memcg = NULL;
4045 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4046 int ret;
4047
4048 if (mem_cgroup_disabled())
4049 return 0;
4050 if (PageCompound(page))
4051 return 0;
4052
4053 if (!PageSwapCache(page))
4054 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4055 else { /* page is swapcache/shmem */
4056 ret = __mem_cgroup_try_charge_swapin(mm, page,
4057 gfp_mask, &memcg);
4058 if (!ret)
4059 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4060 }
4061 return ret;
4062 }
4063
4064 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4065 unsigned int nr_pages,
4066 const enum charge_type ctype)
4067 {
4068 struct memcg_batch_info *batch = NULL;
4069 bool uncharge_memsw = true;
4070
4071 /* If swapout, usage of swap doesn't decrease */
4072 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4073 uncharge_memsw = false;
4074
4075 batch = &current->memcg_batch;
4076 /*
4077 * In usual, we do css_get() when we remember memcg pointer.
4078 * But in this case, we keep res->usage until end of a series of
4079 * uncharges. Then, it's ok to ignore memcg's refcnt.
4080 */
4081 if (!batch->memcg)
4082 batch->memcg = memcg;
4083 /*
4084 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4085 * In those cases, all pages freed continuously can be expected to be in
4086 * the same cgroup and we have chance to coalesce uncharges.
4087 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4088 * because we want to do uncharge as soon as possible.
4089 */
4090
4091 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4092 goto direct_uncharge;
4093
4094 if (nr_pages > 1)
4095 goto direct_uncharge;
4096
4097 /*
4098 * In typical case, batch->memcg == mem. This means we can
4099 * merge a series of uncharges to an uncharge of res_counter.
4100 * If not, we uncharge res_counter ony by one.
4101 */
4102 if (batch->memcg != memcg)
4103 goto direct_uncharge;
4104 /* remember freed charge and uncharge it later */
4105 batch->nr_pages++;
4106 if (uncharge_memsw)
4107 batch->memsw_nr_pages++;
4108 return;
4109 direct_uncharge:
4110 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4111 if (uncharge_memsw)
4112 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4113 if (unlikely(batch->memcg != memcg))
4114 memcg_oom_recover(memcg);
4115 }
4116
4117 /*
4118 * uncharge if !page_mapped(page)
4119 */
4120 static struct mem_cgroup *
4121 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4122 bool end_migration)
4123 {
4124 struct mem_cgroup *memcg = NULL;
4125 unsigned int nr_pages = 1;
4126 struct page_cgroup *pc;
4127 bool anon;
4128
4129 if (mem_cgroup_disabled())
4130 return NULL;
4131
4132 if (PageTransHuge(page)) {
4133 nr_pages <<= compound_order(page);
4134 VM_BUG_ON(!PageTransHuge(page));
4135 }
4136 /*
4137 * Check if our page_cgroup is valid
4138 */
4139 pc = lookup_page_cgroup(page);
4140 if (unlikely(!PageCgroupUsed(pc)))
4141 return NULL;
4142
4143 lock_page_cgroup(pc);
4144
4145 memcg = pc->mem_cgroup;
4146
4147 if (!PageCgroupUsed(pc))
4148 goto unlock_out;
4149
4150 anon = PageAnon(page);
4151
4152 switch (ctype) {
4153 case MEM_CGROUP_CHARGE_TYPE_ANON:
4154 /*
4155 * Generally PageAnon tells if it's the anon statistics to be
4156 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4157 * used before page reached the stage of being marked PageAnon.
4158 */
4159 anon = true;
4160 /* fallthrough */
4161 case MEM_CGROUP_CHARGE_TYPE_DROP:
4162 /* See mem_cgroup_prepare_migration() */
4163 if (page_mapped(page))
4164 goto unlock_out;
4165 /*
4166 * Pages under migration may not be uncharged. But
4167 * end_migration() /must/ be the one uncharging the
4168 * unused post-migration page and so it has to call
4169 * here with the migration bit still set. See the
4170 * res_counter handling below.
4171 */
4172 if (!end_migration && PageCgroupMigration(pc))
4173 goto unlock_out;
4174 break;
4175 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4176 if (!PageAnon(page)) { /* Shared memory */
4177 if (page->mapping && !page_is_file_cache(page))
4178 goto unlock_out;
4179 } else if (page_mapped(page)) /* Anon */
4180 goto unlock_out;
4181 break;
4182 default:
4183 break;
4184 }
4185
4186 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4187
4188 ClearPageCgroupUsed(pc);
4189 /*
4190 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4191 * freed from LRU. This is safe because uncharged page is expected not
4192 * to be reused (freed soon). Exception is SwapCache, it's handled by
4193 * special functions.
4194 */
4195
4196 unlock_page_cgroup(pc);
4197 /*
4198 * even after unlock, we have memcg->res.usage here and this memcg
4199 * will never be freed, so it's safe to call css_get().
4200 */
4201 memcg_check_events(memcg, page);
4202 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4203 mem_cgroup_swap_statistics(memcg, true);
4204 css_get(&memcg->css);
4205 }
4206 /*
4207 * Migration does not charge the res_counter for the
4208 * replacement page, so leave it alone when phasing out the
4209 * page that is unused after the migration.
4210 */
4211 if (!end_migration && !mem_cgroup_is_root(memcg))
4212 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4213
4214 return memcg;
4215
4216 unlock_out:
4217 unlock_page_cgroup(pc);
4218 return NULL;
4219 }
4220
4221 void mem_cgroup_uncharge_page(struct page *page)
4222 {
4223 /* early check. */
4224 if (page_mapped(page))
4225 return;
4226 VM_BUG_ON(page->mapping && !PageAnon(page));
4227 /*
4228 * If the page is in swap cache, uncharge should be deferred
4229 * to the swap path, which also properly accounts swap usage
4230 * and handles memcg lifetime.
4231 *
4232 * Note that this check is not stable and reclaim may add the
4233 * page to swap cache at any time after this. However, if the
4234 * page is not in swap cache by the time page->mapcount hits
4235 * 0, there won't be any page table references to the swap
4236 * slot, and reclaim will free it and not actually write the
4237 * page to disk.
4238 */
4239 if (PageSwapCache(page))
4240 return;
4241 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4242 }
4243
4244 void mem_cgroup_uncharge_cache_page(struct page *page)
4245 {
4246 VM_BUG_ON(page_mapped(page));
4247 VM_BUG_ON(page->mapping);
4248 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4249 }
4250
4251 /*
4252 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4253 * In that cases, pages are freed continuously and we can expect pages
4254 * are in the same memcg. All these calls itself limits the number of
4255 * pages freed at once, then uncharge_start/end() is called properly.
4256 * This may be called prural(2) times in a context,
4257 */
4258
4259 void mem_cgroup_uncharge_start(void)
4260 {
4261 current->memcg_batch.do_batch++;
4262 /* We can do nest. */
4263 if (current->memcg_batch.do_batch == 1) {
4264 current->memcg_batch.memcg = NULL;
4265 current->memcg_batch.nr_pages = 0;
4266 current->memcg_batch.memsw_nr_pages = 0;
4267 }
4268 }
4269
4270 void mem_cgroup_uncharge_end(void)
4271 {
4272 struct memcg_batch_info *batch = &current->memcg_batch;
4273
4274 if (!batch->do_batch)
4275 return;
4276
4277 batch->do_batch--;
4278 if (batch->do_batch) /* If stacked, do nothing. */
4279 return;
4280
4281 if (!batch->memcg)
4282 return;
4283 /*
4284 * This "batch->memcg" is valid without any css_get/put etc...
4285 * bacause we hide charges behind us.
4286 */
4287 if (batch->nr_pages)
4288 res_counter_uncharge(&batch->memcg->res,
4289 batch->nr_pages * PAGE_SIZE);
4290 if (batch->memsw_nr_pages)
4291 res_counter_uncharge(&batch->memcg->memsw,
4292 batch->memsw_nr_pages * PAGE_SIZE);
4293 memcg_oom_recover(batch->memcg);
4294 /* forget this pointer (for sanity check) */
4295 batch->memcg = NULL;
4296 }
4297
4298 #ifdef CONFIG_SWAP
4299 /*
4300 * called after __delete_from_swap_cache() and drop "page" account.
4301 * memcg information is recorded to swap_cgroup of "ent"
4302 */
4303 void
4304 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4305 {
4306 struct mem_cgroup *memcg;
4307 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4308
4309 if (!swapout) /* this was a swap cache but the swap is unused ! */
4310 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4311
4312 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4313
4314 /*
4315 * record memcg information, if swapout && memcg != NULL,
4316 * css_get() was called in uncharge().
4317 */
4318 if (do_swap_account && swapout && memcg)
4319 swap_cgroup_record(ent, css_id(&memcg->css));
4320 }
4321 #endif
4322
4323 #ifdef CONFIG_MEMCG_SWAP
4324 /*
4325 * called from swap_entry_free(). remove record in swap_cgroup and
4326 * uncharge "memsw" account.
4327 */
4328 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4329 {
4330 struct mem_cgroup *memcg;
4331 unsigned short id;
4332
4333 if (!do_swap_account)
4334 return;
4335
4336 id = swap_cgroup_record(ent, 0);
4337 rcu_read_lock();
4338 memcg = mem_cgroup_lookup(id);
4339 if (memcg) {
4340 /*
4341 * We uncharge this because swap is freed.
4342 * This memcg can be obsolete one. We avoid calling css_tryget
4343 */
4344 if (!mem_cgroup_is_root(memcg))
4345 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4346 mem_cgroup_swap_statistics(memcg, false);
4347 css_put(&memcg->css);
4348 }
4349 rcu_read_unlock();
4350 }
4351
4352 /**
4353 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4354 * @entry: swap entry to be moved
4355 * @from: mem_cgroup which the entry is moved from
4356 * @to: mem_cgroup which the entry is moved to
4357 *
4358 * It succeeds only when the swap_cgroup's record for this entry is the same
4359 * as the mem_cgroup's id of @from.
4360 *
4361 * Returns 0 on success, -EINVAL on failure.
4362 *
4363 * The caller must have charged to @to, IOW, called res_counter_charge() about
4364 * both res and memsw, and called css_get().
4365 */
4366 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4367 struct mem_cgroup *from, struct mem_cgroup *to)
4368 {
4369 unsigned short old_id, new_id;
4370
4371 old_id = css_id(&from->css);
4372 new_id = css_id(&to->css);
4373
4374 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4375 mem_cgroup_swap_statistics(from, false);
4376 mem_cgroup_swap_statistics(to, true);
4377 /*
4378 * This function is only called from task migration context now.
4379 * It postpones res_counter and refcount handling till the end
4380 * of task migration(mem_cgroup_clear_mc()) for performance
4381 * improvement. But we cannot postpone css_get(to) because if
4382 * the process that has been moved to @to does swap-in, the
4383 * refcount of @to might be decreased to 0.
4384 *
4385 * We are in attach() phase, so the cgroup is guaranteed to be
4386 * alive, so we can just call css_get().
4387 */
4388 css_get(&to->css);
4389 return 0;
4390 }
4391 return -EINVAL;
4392 }
4393 #else
4394 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4395 struct mem_cgroup *from, struct mem_cgroup *to)
4396 {
4397 return -EINVAL;
4398 }
4399 #endif
4400
4401 /*
4402 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4403 * page belongs to.
4404 */
4405 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4406 struct mem_cgroup **memcgp)
4407 {
4408 struct mem_cgroup *memcg = NULL;
4409 unsigned int nr_pages = 1;
4410 struct page_cgroup *pc;
4411 enum charge_type ctype;
4412
4413 *memcgp = NULL;
4414
4415 if (mem_cgroup_disabled())
4416 return;
4417
4418 if (PageTransHuge(page))
4419 nr_pages <<= compound_order(page);
4420
4421 pc = lookup_page_cgroup(page);
4422 lock_page_cgroup(pc);
4423 if (PageCgroupUsed(pc)) {
4424 memcg = pc->mem_cgroup;
4425 css_get(&memcg->css);
4426 /*
4427 * At migrating an anonymous page, its mapcount goes down
4428 * to 0 and uncharge() will be called. But, even if it's fully
4429 * unmapped, migration may fail and this page has to be
4430 * charged again. We set MIGRATION flag here and delay uncharge
4431 * until end_migration() is called
4432 *
4433 * Corner Case Thinking
4434 * A)
4435 * When the old page was mapped as Anon and it's unmap-and-freed
4436 * while migration was ongoing.
4437 * If unmap finds the old page, uncharge() of it will be delayed
4438 * until end_migration(). If unmap finds a new page, it's
4439 * uncharged when it make mapcount to be 1->0. If unmap code
4440 * finds swap_migration_entry, the new page will not be mapped
4441 * and end_migration() will find it(mapcount==0).
4442 *
4443 * B)
4444 * When the old page was mapped but migraion fails, the kernel
4445 * remaps it. A charge for it is kept by MIGRATION flag even
4446 * if mapcount goes down to 0. We can do remap successfully
4447 * without charging it again.
4448 *
4449 * C)
4450 * The "old" page is under lock_page() until the end of
4451 * migration, so, the old page itself will not be swapped-out.
4452 * If the new page is swapped out before end_migraton, our
4453 * hook to usual swap-out path will catch the event.
4454 */
4455 if (PageAnon(page))
4456 SetPageCgroupMigration(pc);
4457 }
4458 unlock_page_cgroup(pc);
4459 /*
4460 * If the page is not charged at this point,
4461 * we return here.
4462 */
4463 if (!memcg)
4464 return;
4465
4466 *memcgp = memcg;
4467 /*
4468 * We charge new page before it's used/mapped. So, even if unlock_page()
4469 * is called before end_migration, we can catch all events on this new
4470 * page. In the case new page is migrated but not remapped, new page's
4471 * mapcount will be finally 0 and we call uncharge in end_migration().
4472 */
4473 if (PageAnon(page))
4474 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4475 else
4476 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4477 /*
4478 * The page is committed to the memcg, but it's not actually
4479 * charged to the res_counter since we plan on replacing the
4480 * old one and only one page is going to be left afterwards.
4481 */
4482 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4483 }
4484
4485 /* remove redundant charge if migration failed*/
4486 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4487 struct page *oldpage, struct page *newpage, bool migration_ok)
4488 {
4489 struct page *used, *unused;
4490 struct page_cgroup *pc;
4491 bool anon;
4492
4493 if (!memcg)
4494 return;
4495
4496 if (!migration_ok) {
4497 used = oldpage;
4498 unused = newpage;
4499 } else {
4500 used = newpage;
4501 unused = oldpage;
4502 }
4503 anon = PageAnon(used);
4504 __mem_cgroup_uncharge_common(unused,
4505 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4506 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4507 true);
4508 css_put(&memcg->css);
4509 /*
4510 * We disallowed uncharge of pages under migration because mapcount
4511 * of the page goes down to zero, temporarly.
4512 * Clear the flag and check the page should be charged.
4513 */
4514 pc = lookup_page_cgroup(oldpage);
4515 lock_page_cgroup(pc);
4516 ClearPageCgroupMigration(pc);
4517 unlock_page_cgroup(pc);
4518
4519 /*
4520 * If a page is a file cache, radix-tree replacement is very atomic
4521 * and we can skip this check. When it was an Anon page, its mapcount
4522 * goes down to 0. But because we added MIGRATION flage, it's not
4523 * uncharged yet. There are several case but page->mapcount check
4524 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4525 * check. (see prepare_charge() also)
4526 */
4527 if (anon)
4528 mem_cgroup_uncharge_page(used);
4529 }
4530
4531 /*
4532 * At replace page cache, newpage is not under any memcg but it's on
4533 * LRU. So, this function doesn't touch res_counter but handles LRU
4534 * in correct way. Both pages are locked so we cannot race with uncharge.
4535 */
4536 void mem_cgroup_replace_page_cache(struct page *oldpage,
4537 struct page *newpage)
4538 {
4539 struct mem_cgroup *memcg = NULL;
4540 struct page_cgroup *pc;
4541 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4542
4543 if (mem_cgroup_disabled())
4544 return;
4545
4546 pc = lookup_page_cgroup(oldpage);
4547 /* fix accounting on old pages */
4548 lock_page_cgroup(pc);
4549 if (PageCgroupUsed(pc)) {
4550 memcg = pc->mem_cgroup;
4551 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4552 ClearPageCgroupUsed(pc);
4553 }
4554 unlock_page_cgroup(pc);
4555
4556 /*
4557 * When called from shmem_replace_page(), in some cases the
4558 * oldpage has already been charged, and in some cases not.
4559 */
4560 if (!memcg)
4561 return;
4562 /*
4563 * Even if newpage->mapping was NULL before starting replacement,
4564 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4565 * LRU while we overwrite pc->mem_cgroup.
4566 */
4567 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4568 }
4569
4570 #ifdef CONFIG_DEBUG_VM
4571 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4572 {
4573 struct page_cgroup *pc;
4574
4575 pc = lookup_page_cgroup(page);
4576 /*
4577 * Can be NULL while feeding pages into the page allocator for
4578 * the first time, i.e. during boot or memory hotplug;
4579 * or when mem_cgroup_disabled().
4580 */
4581 if (likely(pc) && PageCgroupUsed(pc))
4582 return pc;
4583 return NULL;
4584 }
4585
4586 bool mem_cgroup_bad_page_check(struct page *page)
4587 {
4588 if (mem_cgroup_disabled())
4589 return false;
4590
4591 return lookup_page_cgroup_used(page) != NULL;
4592 }
4593
4594 void mem_cgroup_print_bad_page(struct page *page)
4595 {
4596 struct page_cgroup *pc;
4597
4598 pc = lookup_page_cgroup_used(page);
4599 if (pc) {
4600 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4601 pc, pc->flags, pc->mem_cgroup);
4602 }
4603 }
4604 #endif
4605
4606 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4607 unsigned long long val)
4608 {
4609 int retry_count;
4610 u64 memswlimit, memlimit;
4611 int ret = 0;
4612 int children = mem_cgroup_count_children(memcg);
4613 u64 curusage, oldusage;
4614 int enlarge;
4615
4616 /*
4617 * For keeping hierarchical_reclaim simple, how long we should retry
4618 * is depends on callers. We set our retry-count to be function
4619 * of # of children which we should visit in this loop.
4620 */
4621 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4622
4623 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4624
4625 enlarge = 0;
4626 while (retry_count) {
4627 if (signal_pending(current)) {
4628 ret = -EINTR;
4629 break;
4630 }
4631 /*
4632 * Rather than hide all in some function, I do this in
4633 * open coded manner. You see what this really does.
4634 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4635 */
4636 mutex_lock(&set_limit_mutex);
4637 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4638 if (memswlimit < val) {
4639 ret = -EINVAL;
4640 mutex_unlock(&set_limit_mutex);
4641 break;
4642 }
4643
4644 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4645 if (memlimit < val)
4646 enlarge = 1;
4647
4648 ret = res_counter_set_limit(&memcg->res, val);
4649 if (!ret) {
4650 if (memswlimit == val)
4651 memcg->memsw_is_minimum = true;
4652 else
4653 memcg->memsw_is_minimum = false;
4654 }
4655 mutex_unlock(&set_limit_mutex);
4656
4657 if (!ret)
4658 break;
4659
4660 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4661 MEM_CGROUP_RECLAIM_SHRINK);
4662 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4663 /* Usage is reduced ? */
4664 if (curusage >= oldusage)
4665 retry_count--;
4666 else
4667 oldusage = curusage;
4668 }
4669 if (!ret && enlarge)
4670 memcg_oom_recover(memcg);
4671
4672 return ret;
4673 }
4674
4675 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4676 unsigned long long val)
4677 {
4678 int retry_count;
4679 u64 memlimit, memswlimit, oldusage, curusage;
4680 int children = mem_cgroup_count_children(memcg);
4681 int ret = -EBUSY;
4682 int enlarge = 0;
4683
4684 /* see mem_cgroup_resize_res_limit */
4685 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4686 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4687 while (retry_count) {
4688 if (signal_pending(current)) {
4689 ret = -EINTR;
4690 break;
4691 }
4692 /*
4693 * Rather than hide all in some function, I do this in
4694 * open coded manner. You see what this really does.
4695 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4696 */
4697 mutex_lock(&set_limit_mutex);
4698 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4699 if (memlimit > val) {
4700 ret = -EINVAL;
4701 mutex_unlock(&set_limit_mutex);
4702 break;
4703 }
4704 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4705 if (memswlimit < val)
4706 enlarge = 1;
4707 ret = res_counter_set_limit(&memcg->memsw, val);
4708 if (!ret) {
4709 if (memlimit == val)
4710 memcg->memsw_is_minimum = true;
4711 else
4712 memcg->memsw_is_minimum = false;
4713 }
4714 mutex_unlock(&set_limit_mutex);
4715
4716 if (!ret)
4717 break;
4718
4719 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4720 MEM_CGROUP_RECLAIM_NOSWAP |
4721 MEM_CGROUP_RECLAIM_SHRINK);
4722 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4723 /* Usage is reduced ? */
4724 if (curusage >= oldusage)
4725 retry_count--;
4726 else
4727 oldusage = curusage;
4728 }
4729 if (!ret && enlarge)
4730 memcg_oom_recover(memcg);
4731 return ret;
4732 }
4733
4734 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4735 gfp_t gfp_mask,
4736 unsigned long *total_scanned)
4737 {
4738 unsigned long nr_reclaimed = 0;
4739 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4740 unsigned long reclaimed;
4741 int loop = 0;
4742 struct mem_cgroup_tree_per_zone *mctz;
4743 unsigned long long excess;
4744 unsigned long nr_scanned;
4745
4746 if (order > 0)
4747 return 0;
4748
4749 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4750 /*
4751 * This loop can run a while, specially if mem_cgroup's continuously
4752 * keep exceeding their soft limit and putting the system under
4753 * pressure
4754 */
4755 do {
4756 if (next_mz)
4757 mz = next_mz;
4758 else
4759 mz = mem_cgroup_largest_soft_limit_node(mctz);
4760 if (!mz)
4761 break;
4762
4763 nr_scanned = 0;
4764 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4765 gfp_mask, &nr_scanned);
4766 nr_reclaimed += reclaimed;
4767 *total_scanned += nr_scanned;
4768 spin_lock(&mctz->lock);
4769
4770 /*
4771 * If we failed to reclaim anything from this memory cgroup
4772 * it is time to move on to the next cgroup
4773 */
4774 next_mz = NULL;
4775 if (!reclaimed) {
4776 do {
4777 /*
4778 * Loop until we find yet another one.
4779 *
4780 * By the time we get the soft_limit lock
4781 * again, someone might have aded the
4782 * group back on the RB tree. Iterate to
4783 * make sure we get a different mem.
4784 * mem_cgroup_largest_soft_limit_node returns
4785 * NULL if no other cgroup is present on
4786 * the tree
4787 */
4788 next_mz =
4789 __mem_cgroup_largest_soft_limit_node(mctz);
4790 if (next_mz == mz)
4791 css_put(&next_mz->memcg->css);
4792 else /* next_mz == NULL or other memcg */
4793 break;
4794 } while (1);
4795 }
4796 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4797 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4798 /*
4799 * One school of thought says that we should not add
4800 * back the node to the tree if reclaim returns 0.
4801 * But our reclaim could return 0, simply because due
4802 * to priority we are exposing a smaller subset of
4803 * memory to reclaim from. Consider this as a longer
4804 * term TODO.
4805 */
4806 /* If excess == 0, no tree ops */
4807 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4808 spin_unlock(&mctz->lock);
4809 css_put(&mz->memcg->css);
4810 loop++;
4811 /*
4812 * Could not reclaim anything and there are no more
4813 * mem cgroups to try or we seem to be looping without
4814 * reclaiming anything.
4815 */
4816 if (!nr_reclaimed &&
4817 (next_mz == NULL ||
4818 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4819 break;
4820 } while (!nr_reclaimed);
4821 if (next_mz)
4822 css_put(&next_mz->memcg->css);
4823 return nr_reclaimed;
4824 }
4825
4826 /**
4827 * mem_cgroup_force_empty_list - clears LRU of a group
4828 * @memcg: group to clear
4829 * @node: NUMA node
4830 * @zid: zone id
4831 * @lru: lru to to clear
4832 *
4833 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4834 * reclaim the pages page themselves - pages are moved to the parent (or root)
4835 * group.
4836 */
4837 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4838 int node, int zid, enum lru_list lru)
4839 {
4840 struct lruvec *lruvec;
4841 unsigned long flags;
4842 struct list_head *list;
4843 struct page *busy;
4844 struct zone *zone;
4845
4846 zone = &NODE_DATA(node)->node_zones[zid];
4847 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4848 list = &lruvec->lists[lru];
4849
4850 busy = NULL;
4851 do {
4852 struct page_cgroup *pc;
4853 struct page *page;
4854
4855 spin_lock_irqsave(&zone->lru_lock, flags);
4856 if (list_empty(list)) {
4857 spin_unlock_irqrestore(&zone->lru_lock, flags);
4858 break;
4859 }
4860 page = list_entry(list->prev, struct page, lru);
4861 if (busy == page) {
4862 list_move(&page->lru, list);
4863 busy = NULL;
4864 spin_unlock_irqrestore(&zone->lru_lock, flags);
4865 continue;
4866 }
4867 spin_unlock_irqrestore(&zone->lru_lock, flags);
4868
4869 pc = lookup_page_cgroup(page);
4870
4871 if (mem_cgroup_move_parent(page, pc, memcg)) {
4872 /* found lock contention or "pc" is obsolete. */
4873 busy = page;
4874 cond_resched();
4875 } else
4876 busy = NULL;
4877 } while (!list_empty(list));
4878 }
4879
4880 /*
4881 * make mem_cgroup's charge to be 0 if there is no task by moving
4882 * all the charges and pages to the parent.
4883 * This enables deleting this mem_cgroup.
4884 *
4885 * Caller is responsible for holding css reference on the memcg.
4886 */
4887 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4888 {
4889 int node, zid;
4890 u64 usage;
4891
4892 do {
4893 /* This is for making all *used* pages to be on LRU. */
4894 lru_add_drain_all();
4895 drain_all_stock_sync(memcg);
4896 mem_cgroup_start_move(memcg);
4897 for_each_node_state(node, N_MEMORY) {
4898 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4899 enum lru_list lru;
4900 for_each_lru(lru) {
4901 mem_cgroup_force_empty_list(memcg,
4902 node, zid, lru);
4903 }
4904 }
4905 }
4906 mem_cgroup_end_move(memcg);
4907 memcg_oom_recover(memcg);
4908 cond_resched();
4909
4910 /*
4911 * Kernel memory may not necessarily be trackable to a specific
4912 * process. So they are not migrated, and therefore we can't
4913 * expect their value to drop to 0 here.
4914 * Having res filled up with kmem only is enough.
4915 *
4916 * This is a safety check because mem_cgroup_force_empty_list
4917 * could have raced with mem_cgroup_replace_page_cache callers
4918 * so the lru seemed empty but the page could have been added
4919 * right after the check. RES_USAGE should be safe as we always
4920 * charge before adding to the LRU.
4921 */
4922 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4923 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4924 } while (usage > 0);
4925 }
4926
4927 /*
4928 * This mainly exists for tests during the setting of set of use_hierarchy.
4929 * Since this is the very setting we are changing, the current hierarchy value
4930 * is meaningless
4931 */
4932 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4933 {
4934 struct cgroup_subsys_state *pos;
4935
4936 /* bounce at first found */
4937 css_for_each_child(pos, &memcg->css)
4938 return true;
4939 return false;
4940 }
4941
4942 /*
4943 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4944 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4945 * from mem_cgroup_count_children(), in the sense that we don't really care how
4946 * many children we have; we only need to know if we have any. It also counts
4947 * any memcg without hierarchy as infertile.
4948 */
4949 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4950 {
4951 return memcg->use_hierarchy && __memcg_has_children(memcg);
4952 }
4953
4954 /*
4955 * Reclaims as many pages from the given memcg as possible and moves
4956 * the rest to the parent.
4957 *
4958 * Caller is responsible for holding css reference for memcg.
4959 */
4960 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4961 {
4962 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4963 struct cgroup *cgrp = memcg->css.cgroup;
4964
4965 /* returns EBUSY if there is a task or if we come here twice. */
4966 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4967 return -EBUSY;
4968
4969 /* we call try-to-free pages for make this cgroup empty */
4970 lru_add_drain_all();
4971 /* try to free all pages in this cgroup */
4972 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4973 int progress;
4974
4975 if (signal_pending(current))
4976 return -EINTR;
4977
4978 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4979 false);
4980 if (!progress) {
4981 nr_retries--;
4982 /* maybe some writeback is necessary */
4983 congestion_wait(BLK_RW_ASYNC, HZ/10);
4984 }
4985
4986 }
4987 lru_add_drain();
4988 mem_cgroup_reparent_charges(memcg);
4989
4990 return 0;
4991 }
4992
4993 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4994 unsigned int event)
4995 {
4996 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4997 int ret;
4998
4999 if (mem_cgroup_is_root(memcg))
5000 return -EINVAL;
5001 css_get(&memcg->css);
5002 ret = mem_cgroup_force_empty(memcg);
5003 css_put(&memcg->css);
5004
5005 return ret;
5006 }
5007
5008
5009 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5010 struct cftype *cft)
5011 {
5012 return mem_cgroup_from_css(css)->use_hierarchy;
5013 }
5014
5015 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5016 struct cftype *cft, u64 val)
5017 {
5018 int retval = 0;
5019 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5020 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5021
5022 mutex_lock(&memcg_create_mutex);
5023
5024 if (memcg->use_hierarchy == val)
5025 goto out;
5026
5027 /*
5028 * If parent's use_hierarchy is set, we can't make any modifications
5029 * in the child subtrees. If it is unset, then the change can
5030 * occur, provided the current cgroup has no children.
5031 *
5032 * For the root cgroup, parent_mem is NULL, we allow value to be
5033 * set if there are no children.
5034 */
5035 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5036 (val == 1 || val == 0)) {
5037 if (!__memcg_has_children(memcg))
5038 memcg->use_hierarchy = val;
5039 else
5040 retval = -EBUSY;
5041 } else
5042 retval = -EINVAL;
5043
5044 out:
5045 mutex_unlock(&memcg_create_mutex);
5046
5047 return retval;
5048 }
5049
5050
5051 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5052 enum mem_cgroup_stat_index idx)
5053 {
5054 struct mem_cgroup *iter;
5055 long val = 0;
5056
5057 /* Per-cpu values can be negative, use a signed accumulator */
5058 for_each_mem_cgroup_tree(iter, memcg)
5059 val += mem_cgroup_read_stat(iter, idx);
5060
5061 if (val < 0) /* race ? */
5062 val = 0;
5063 return val;
5064 }
5065
5066 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5067 {
5068 u64 val;
5069
5070 if (!mem_cgroup_is_root(memcg)) {
5071 if (!swap)
5072 return res_counter_read_u64(&memcg->res, RES_USAGE);
5073 else
5074 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5075 }
5076
5077 /*
5078 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5079 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5080 */
5081 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5082 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5083
5084 if (swap)
5085 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5086
5087 return val << PAGE_SHIFT;
5088 }
5089
5090 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5091 struct cftype *cft, struct file *file,
5092 char __user *buf, size_t nbytes, loff_t *ppos)
5093 {
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5095 char str[64];
5096 u64 val;
5097 int name, len;
5098 enum res_type type;
5099
5100 type = MEMFILE_TYPE(cft->private);
5101 name = MEMFILE_ATTR(cft->private);
5102
5103 switch (type) {
5104 case _MEM:
5105 if (name == RES_USAGE)
5106 val = mem_cgroup_usage(memcg, false);
5107 else
5108 val = res_counter_read_u64(&memcg->res, name);
5109 break;
5110 case _MEMSWAP:
5111 if (name == RES_USAGE)
5112 val = mem_cgroup_usage(memcg, true);
5113 else
5114 val = res_counter_read_u64(&memcg->memsw, name);
5115 break;
5116 case _KMEM:
5117 val = res_counter_read_u64(&memcg->kmem, name);
5118 break;
5119 default:
5120 BUG();
5121 }
5122
5123 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5124 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5125 }
5126
5127 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5128 {
5129 int ret = -EINVAL;
5130 #ifdef CONFIG_MEMCG_KMEM
5131 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5132 /*
5133 * For simplicity, we won't allow this to be disabled. It also can't
5134 * be changed if the cgroup has children already, or if tasks had
5135 * already joined.
5136 *
5137 * If tasks join before we set the limit, a person looking at
5138 * kmem.usage_in_bytes will have no way to determine when it took
5139 * place, which makes the value quite meaningless.
5140 *
5141 * After it first became limited, changes in the value of the limit are
5142 * of course permitted.
5143 */
5144 mutex_lock(&memcg_create_mutex);
5145 mutex_lock(&set_limit_mutex);
5146 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5147 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5148 ret = -EBUSY;
5149 goto out;
5150 }
5151 ret = res_counter_set_limit(&memcg->kmem, val);
5152 VM_BUG_ON(ret);
5153
5154 ret = memcg_update_cache_sizes(memcg);
5155 if (ret) {
5156 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5157 goto out;
5158 }
5159 static_key_slow_inc(&memcg_kmem_enabled_key);
5160 /*
5161 * setting the active bit after the inc will guarantee no one
5162 * starts accounting before all call sites are patched
5163 */
5164 memcg_kmem_set_active(memcg);
5165 } else
5166 ret = res_counter_set_limit(&memcg->kmem, val);
5167 out:
5168 mutex_unlock(&set_limit_mutex);
5169 mutex_unlock(&memcg_create_mutex);
5170 #endif
5171 return ret;
5172 }
5173
5174 #ifdef CONFIG_MEMCG_KMEM
5175 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5176 {
5177 int ret = 0;
5178 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5179 if (!parent)
5180 goto out;
5181
5182 memcg->kmem_account_flags = parent->kmem_account_flags;
5183 /*
5184 * When that happen, we need to disable the static branch only on those
5185 * memcgs that enabled it. To achieve this, we would be forced to
5186 * complicate the code by keeping track of which memcgs were the ones
5187 * that actually enabled limits, and which ones got it from its
5188 * parents.
5189 *
5190 * It is a lot simpler just to do static_key_slow_inc() on every child
5191 * that is accounted.
5192 */
5193 if (!memcg_kmem_is_active(memcg))
5194 goto out;
5195
5196 /*
5197 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5198 * memcg is active already. If the later initialization fails then the
5199 * cgroup core triggers the cleanup so we do not have to do it here.
5200 */
5201 static_key_slow_inc(&memcg_kmem_enabled_key);
5202
5203 mutex_lock(&set_limit_mutex);
5204 memcg_stop_kmem_account();
5205 ret = memcg_update_cache_sizes(memcg);
5206 memcg_resume_kmem_account();
5207 mutex_unlock(&set_limit_mutex);
5208 out:
5209 return ret;
5210 }
5211 #endif /* CONFIG_MEMCG_KMEM */
5212
5213 /*
5214 * The user of this function is...
5215 * RES_LIMIT.
5216 */
5217 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5218 const char *buffer)
5219 {
5220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5221 enum res_type type;
5222 int name;
5223 unsigned long long val;
5224 int ret;
5225
5226 type = MEMFILE_TYPE(cft->private);
5227 name = MEMFILE_ATTR(cft->private);
5228
5229 switch (name) {
5230 case RES_LIMIT:
5231 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5232 ret = -EINVAL;
5233 break;
5234 }
5235 /* This function does all necessary parse...reuse it */
5236 ret = res_counter_memparse_write_strategy(buffer, &val);
5237 if (ret)
5238 break;
5239 if (type == _MEM)
5240 ret = mem_cgroup_resize_limit(memcg, val);
5241 else if (type == _MEMSWAP)
5242 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5243 else if (type == _KMEM)
5244 ret = memcg_update_kmem_limit(css, val);
5245 else
5246 return -EINVAL;
5247 break;
5248 case RES_SOFT_LIMIT:
5249 ret = res_counter_memparse_write_strategy(buffer, &val);
5250 if (ret)
5251 break;
5252 /*
5253 * For memsw, soft limits are hard to implement in terms
5254 * of semantics, for now, we support soft limits for
5255 * control without swap
5256 */
5257 if (type == _MEM)
5258 ret = res_counter_set_soft_limit(&memcg->res, val);
5259 else
5260 ret = -EINVAL;
5261 break;
5262 default:
5263 ret = -EINVAL; /* should be BUG() ? */
5264 break;
5265 }
5266 return ret;
5267 }
5268
5269 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5270 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5271 {
5272 unsigned long long min_limit, min_memsw_limit, tmp;
5273
5274 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5275 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5276 if (!memcg->use_hierarchy)
5277 goto out;
5278
5279 while (css_parent(&memcg->css)) {
5280 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5281 if (!memcg->use_hierarchy)
5282 break;
5283 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5284 min_limit = min(min_limit, tmp);
5285 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5286 min_memsw_limit = min(min_memsw_limit, tmp);
5287 }
5288 out:
5289 *mem_limit = min_limit;
5290 *memsw_limit = min_memsw_limit;
5291 }
5292
5293 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5294 {
5295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5296 int name;
5297 enum res_type type;
5298
5299 type = MEMFILE_TYPE(event);
5300 name = MEMFILE_ATTR(event);
5301
5302 switch (name) {
5303 case RES_MAX_USAGE:
5304 if (type == _MEM)
5305 res_counter_reset_max(&memcg->res);
5306 else if (type == _MEMSWAP)
5307 res_counter_reset_max(&memcg->memsw);
5308 else if (type == _KMEM)
5309 res_counter_reset_max(&memcg->kmem);
5310 else
5311 return -EINVAL;
5312 break;
5313 case RES_FAILCNT:
5314 if (type == _MEM)
5315 res_counter_reset_failcnt(&memcg->res);
5316 else if (type == _MEMSWAP)
5317 res_counter_reset_failcnt(&memcg->memsw);
5318 else if (type == _KMEM)
5319 res_counter_reset_failcnt(&memcg->kmem);
5320 else
5321 return -EINVAL;
5322 break;
5323 }
5324
5325 return 0;
5326 }
5327
5328 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5329 struct cftype *cft)
5330 {
5331 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5332 }
5333
5334 #ifdef CONFIG_MMU
5335 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5336 struct cftype *cft, u64 val)
5337 {
5338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5339
5340 if (val >= (1 << NR_MOVE_TYPE))
5341 return -EINVAL;
5342
5343 /*
5344 * No kind of locking is needed in here, because ->can_attach() will
5345 * check this value once in the beginning of the process, and then carry
5346 * on with stale data. This means that changes to this value will only
5347 * affect task migrations starting after the change.
5348 */
5349 memcg->move_charge_at_immigrate = val;
5350 return 0;
5351 }
5352 #else
5353 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5354 struct cftype *cft, u64 val)
5355 {
5356 return -ENOSYS;
5357 }
5358 #endif
5359
5360 #ifdef CONFIG_NUMA
5361 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5362 struct cftype *cft, struct seq_file *m)
5363 {
5364 int nid;
5365 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5366 unsigned long node_nr;
5367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5368
5369 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5370 seq_printf(m, "total=%lu", total_nr);
5371 for_each_node_state(nid, N_MEMORY) {
5372 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5373 seq_printf(m, " N%d=%lu", nid, node_nr);
5374 }
5375 seq_putc(m, '\n');
5376
5377 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5378 seq_printf(m, "file=%lu", file_nr);
5379 for_each_node_state(nid, N_MEMORY) {
5380 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5381 LRU_ALL_FILE);
5382 seq_printf(m, " N%d=%lu", nid, node_nr);
5383 }
5384 seq_putc(m, '\n');
5385
5386 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5387 seq_printf(m, "anon=%lu", anon_nr);
5388 for_each_node_state(nid, N_MEMORY) {
5389 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5390 LRU_ALL_ANON);
5391 seq_printf(m, " N%d=%lu", nid, node_nr);
5392 }
5393 seq_putc(m, '\n');
5394
5395 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5396 seq_printf(m, "unevictable=%lu", unevictable_nr);
5397 for_each_node_state(nid, N_MEMORY) {
5398 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5399 BIT(LRU_UNEVICTABLE));
5400 seq_printf(m, " N%d=%lu", nid, node_nr);
5401 }
5402 seq_putc(m, '\n');
5403 return 0;
5404 }
5405 #endif /* CONFIG_NUMA */
5406
5407 static inline void mem_cgroup_lru_names_not_uptodate(void)
5408 {
5409 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5410 }
5411
5412 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5413 struct seq_file *m)
5414 {
5415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5416 struct mem_cgroup *mi;
5417 unsigned int i;
5418
5419 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5420 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5421 continue;
5422 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5423 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5424 }
5425
5426 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5427 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5428 mem_cgroup_read_events(memcg, i));
5429
5430 for (i = 0; i < NR_LRU_LISTS; i++)
5431 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5432 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5433
5434 /* Hierarchical information */
5435 {
5436 unsigned long long limit, memsw_limit;
5437 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5438 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5439 if (do_swap_account)
5440 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5441 memsw_limit);
5442 }
5443
5444 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5445 long long val = 0;
5446
5447 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5448 continue;
5449 for_each_mem_cgroup_tree(mi, memcg)
5450 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5451 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5452 }
5453
5454 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5455 unsigned long long val = 0;
5456
5457 for_each_mem_cgroup_tree(mi, memcg)
5458 val += mem_cgroup_read_events(mi, i);
5459 seq_printf(m, "total_%s %llu\n",
5460 mem_cgroup_events_names[i], val);
5461 }
5462
5463 for (i = 0; i < NR_LRU_LISTS; i++) {
5464 unsigned long long val = 0;
5465
5466 for_each_mem_cgroup_tree(mi, memcg)
5467 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5468 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5469 }
5470
5471 #ifdef CONFIG_DEBUG_VM
5472 {
5473 int nid, zid;
5474 struct mem_cgroup_per_zone *mz;
5475 struct zone_reclaim_stat *rstat;
5476 unsigned long recent_rotated[2] = {0, 0};
5477 unsigned long recent_scanned[2] = {0, 0};
5478
5479 for_each_online_node(nid)
5480 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5481 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5482 rstat = &mz->lruvec.reclaim_stat;
5483
5484 recent_rotated[0] += rstat->recent_rotated[0];
5485 recent_rotated[1] += rstat->recent_rotated[1];
5486 recent_scanned[0] += rstat->recent_scanned[0];
5487 recent_scanned[1] += rstat->recent_scanned[1];
5488 }
5489 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5490 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5491 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5492 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5493 }
5494 #endif
5495
5496 return 0;
5497 }
5498
5499 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5500 struct cftype *cft)
5501 {
5502 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5503
5504 return mem_cgroup_swappiness(memcg);
5505 }
5506
5507 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5508 struct cftype *cft, u64 val)
5509 {
5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5512
5513 if (val > 100 || !parent)
5514 return -EINVAL;
5515
5516 mutex_lock(&memcg_create_mutex);
5517
5518 /* If under hierarchy, only empty-root can set this value */
5519 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5520 mutex_unlock(&memcg_create_mutex);
5521 return -EINVAL;
5522 }
5523
5524 memcg->swappiness = val;
5525
5526 mutex_unlock(&memcg_create_mutex);
5527
5528 return 0;
5529 }
5530
5531 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5532 {
5533 struct mem_cgroup_threshold_ary *t;
5534 u64 usage;
5535 int i;
5536
5537 rcu_read_lock();
5538 if (!swap)
5539 t = rcu_dereference(memcg->thresholds.primary);
5540 else
5541 t = rcu_dereference(memcg->memsw_thresholds.primary);
5542
5543 if (!t)
5544 goto unlock;
5545
5546 usage = mem_cgroup_usage(memcg, swap);
5547
5548 /*
5549 * current_threshold points to threshold just below or equal to usage.
5550 * If it's not true, a threshold was crossed after last
5551 * call of __mem_cgroup_threshold().
5552 */
5553 i = t->current_threshold;
5554
5555 /*
5556 * Iterate backward over array of thresholds starting from
5557 * current_threshold and check if a threshold is crossed.
5558 * If none of thresholds below usage is crossed, we read
5559 * only one element of the array here.
5560 */
5561 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5562 eventfd_signal(t->entries[i].eventfd, 1);
5563
5564 /* i = current_threshold + 1 */
5565 i++;
5566
5567 /*
5568 * Iterate forward over array of thresholds starting from
5569 * current_threshold+1 and check if a threshold is crossed.
5570 * If none of thresholds above usage is crossed, we read
5571 * only one element of the array here.
5572 */
5573 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5574 eventfd_signal(t->entries[i].eventfd, 1);
5575
5576 /* Update current_threshold */
5577 t->current_threshold = i - 1;
5578 unlock:
5579 rcu_read_unlock();
5580 }
5581
5582 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5583 {
5584 while (memcg) {
5585 __mem_cgroup_threshold(memcg, false);
5586 if (do_swap_account)
5587 __mem_cgroup_threshold(memcg, true);
5588
5589 memcg = parent_mem_cgroup(memcg);
5590 }
5591 }
5592
5593 static int compare_thresholds(const void *a, const void *b)
5594 {
5595 const struct mem_cgroup_threshold *_a = a;
5596 const struct mem_cgroup_threshold *_b = b;
5597
5598 return _a->threshold - _b->threshold;
5599 }
5600
5601 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5602 {
5603 struct mem_cgroup_eventfd_list *ev;
5604
5605 list_for_each_entry(ev, &memcg->oom_notify, list)
5606 eventfd_signal(ev->eventfd, 1);
5607 return 0;
5608 }
5609
5610 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5611 {
5612 struct mem_cgroup *iter;
5613
5614 for_each_mem_cgroup_tree(iter, memcg)
5615 mem_cgroup_oom_notify_cb(iter);
5616 }
5617
5618 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5619 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5620 {
5621 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5622 struct mem_cgroup_thresholds *thresholds;
5623 struct mem_cgroup_threshold_ary *new;
5624 enum res_type type = MEMFILE_TYPE(cft->private);
5625 u64 threshold, usage;
5626 int i, size, ret;
5627
5628 ret = res_counter_memparse_write_strategy(args, &threshold);
5629 if (ret)
5630 return ret;
5631
5632 mutex_lock(&memcg->thresholds_lock);
5633
5634 if (type == _MEM)
5635 thresholds = &memcg->thresholds;
5636 else if (type == _MEMSWAP)
5637 thresholds = &memcg->memsw_thresholds;
5638 else
5639 BUG();
5640
5641 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5642
5643 /* Check if a threshold crossed before adding a new one */
5644 if (thresholds->primary)
5645 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5646
5647 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5648
5649 /* Allocate memory for new array of thresholds */
5650 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5651 GFP_KERNEL);
5652 if (!new) {
5653 ret = -ENOMEM;
5654 goto unlock;
5655 }
5656 new->size = size;
5657
5658 /* Copy thresholds (if any) to new array */
5659 if (thresholds->primary) {
5660 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5661 sizeof(struct mem_cgroup_threshold));
5662 }
5663
5664 /* Add new threshold */
5665 new->entries[size - 1].eventfd = eventfd;
5666 new->entries[size - 1].threshold = threshold;
5667
5668 /* Sort thresholds. Registering of new threshold isn't time-critical */
5669 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5670 compare_thresholds, NULL);
5671
5672 /* Find current threshold */
5673 new->current_threshold = -1;
5674 for (i = 0; i < size; i++) {
5675 if (new->entries[i].threshold <= usage) {
5676 /*
5677 * new->current_threshold will not be used until
5678 * rcu_assign_pointer(), so it's safe to increment
5679 * it here.
5680 */
5681 ++new->current_threshold;
5682 } else
5683 break;
5684 }
5685
5686 /* Free old spare buffer and save old primary buffer as spare */
5687 kfree(thresholds->spare);
5688 thresholds->spare = thresholds->primary;
5689
5690 rcu_assign_pointer(thresholds->primary, new);
5691
5692 /* To be sure that nobody uses thresholds */
5693 synchronize_rcu();
5694
5695 unlock:
5696 mutex_unlock(&memcg->thresholds_lock);
5697
5698 return ret;
5699 }
5700
5701 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5702 struct cftype *cft, struct eventfd_ctx *eventfd)
5703 {
5704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5705 struct mem_cgroup_thresholds *thresholds;
5706 struct mem_cgroup_threshold_ary *new;
5707 enum res_type type = MEMFILE_TYPE(cft->private);
5708 u64 usage;
5709 int i, j, size;
5710
5711 mutex_lock(&memcg->thresholds_lock);
5712 if (type == _MEM)
5713 thresholds = &memcg->thresholds;
5714 else if (type == _MEMSWAP)
5715 thresholds = &memcg->memsw_thresholds;
5716 else
5717 BUG();
5718
5719 if (!thresholds->primary)
5720 goto unlock;
5721
5722 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5723
5724 /* Check if a threshold crossed before removing */
5725 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5726
5727 /* Calculate new number of threshold */
5728 size = 0;
5729 for (i = 0; i < thresholds->primary->size; i++) {
5730 if (thresholds->primary->entries[i].eventfd != eventfd)
5731 size++;
5732 }
5733
5734 new = thresholds->spare;
5735
5736 /* Set thresholds array to NULL if we don't have thresholds */
5737 if (!size) {
5738 kfree(new);
5739 new = NULL;
5740 goto swap_buffers;
5741 }
5742
5743 new->size = size;
5744
5745 /* Copy thresholds and find current threshold */
5746 new->current_threshold = -1;
5747 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5748 if (thresholds->primary->entries[i].eventfd == eventfd)
5749 continue;
5750
5751 new->entries[j] = thresholds->primary->entries[i];
5752 if (new->entries[j].threshold <= usage) {
5753 /*
5754 * new->current_threshold will not be used
5755 * until rcu_assign_pointer(), so it's safe to increment
5756 * it here.
5757 */
5758 ++new->current_threshold;
5759 }
5760 j++;
5761 }
5762
5763 swap_buffers:
5764 /* Swap primary and spare array */
5765 thresholds->spare = thresholds->primary;
5766 /* If all events are unregistered, free the spare array */
5767 if (!new) {
5768 kfree(thresholds->spare);
5769 thresholds->spare = NULL;
5770 }
5771
5772 rcu_assign_pointer(thresholds->primary, new);
5773
5774 /* To be sure that nobody uses thresholds */
5775 synchronize_rcu();
5776 unlock:
5777 mutex_unlock(&memcg->thresholds_lock);
5778 }
5779
5780 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5781 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5782 {
5783 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5784 struct mem_cgroup_eventfd_list *event;
5785 enum res_type type = MEMFILE_TYPE(cft->private);
5786
5787 BUG_ON(type != _OOM_TYPE);
5788 event = kmalloc(sizeof(*event), GFP_KERNEL);
5789 if (!event)
5790 return -ENOMEM;
5791
5792 spin_lock(&memcg_oom_lock);
5793
5794 event->eventfd = eventfd;
5795 list_add(&event->list, &memcg->oom_notify);
5796
5797 /* already in OOM ? */
5798 if (atomic_read(&memcg->under_oom))
5799 eventfd_signal(eventfd, 1);
5800 spin_unlock(&memcg_oom_lock);
5801
5802 return 0;
5803 }
5804
5805 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5806 struct cftype *cft, struct eventfd_ctx *eventfd)
5807 {
5808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5809 struct mem_cgroup_eventfd_list *ev, *tmp;
5810 enum res_type type = MEMFILE_TYPE(cft->private);
5811
5812 BUG_ON(type != _OOM_TYPE);
5813
5814 spin_lock(&memcg_oom_lock);
5815
5816 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5817 if (ev->eventfd == eventfd) {
5818 list_del(&ev->list);
5819 kfree(ev);
5820 }
5821 }
5822
5823 spin_unlock(&memcg_oom_lock);
5824 }
5825
5826 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5827 struct cftype *cft, struct cgroup_map_cb *cb)
5828 {
5829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5830
5831 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5832
5833 if (atomic_read(&memcg->under_oom))
5834 cb->fill(cb, "under_oom", 1);
5835 else
5836 cb->fill(cb, "under_oom", 0);
5837 return 0;
5838 }
5839
5840 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5841 struct cftype *cft, u64 val)
5842 {
5843 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5844 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5845
5846 /* cannot set to root cgroup and only 0 and 1 are allowed */
5847 if (!parent || !((val == 0) || (val == 1)))
5848 return -EINVAL;
5849
5850 mutex_lock(&memcg_create_mutex);
5851 /* oom-kill-disable is a flag for subhierarchy. */
5852 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5853 mutex_unlock(&memcg_create_mutex);
5854 return -EINVAL;
5855 }
5856 memcg->oom_kill_disable = val;
5857 if (!val)
5858 memcg_oom_recover(memcg);
5859 mutex_unlock(&memcg_create_mutex);
5860 return 0;
5861 }
5862
5863 #ifdef CONFIG_MEMCG_KMEM
5864 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5865 {
5866 int ret;
5867
5868 memcg->kmemcg_id = -1;
5869 ret = memcg_propagate_kmem(memcg);
5870 if (ret)
5871 return ret;
5872
5873 return mem_cgroup_sockets_init(memcg, ss);
5874 }
5875
5876 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5877 {
5878 mem_cgroup_sockets_destroy(memcg);
5879 }
5880
5881 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5882 {
5883 if (!memcg_kmem_is_active(memcg))
5884 return;
5885
5886 /*
5887 * kmem charges can outlive the cgroup. In the case of slab
5888 * pages, for instance, a page contain objects from various
5889 * processes. As we prevent from taking a reference for every
5890 * such allocation we have to be careful when doing uncharge
5891 * (see memcg_uncharge_kmem) and here during offlining.
5892 *
5893 * The idea is that that only the _last_ uncharge which sees
5894 * the dead memcg will drop the last reference. An additional
5895 * reference is taken here before the group is marked dead
5896 * which is then paired with css_put during uncharge resp. here.
5897 *
5898 * Although this might sound strange as this path is called from
5899 * css_offline() when the referencemight have dropped down to 0
5900 * and shouldn't be incremented anymore (css_tryget would fail)
5901 * we do not have other options because of the kmem allocations
5902 * lifetime.
5903 */
5904 css_get(&memcg->css);
5905
5906 memcg_kmem_mark_dead(memcg);
5907
5908 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5909 return;
5910
5911 if (memcg_kmem_test_and_clear_dead(memcg))
5912 css_put(&memcg->css);
5913 }
5914 #else
5915 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5916 {
5917 return 0;
5918 }
5919
5920 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5921 {
5922 }
5923
5924 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5925 {
5926 }
5927 #endif
5928
5929 static struct cftype mem_cgroup_files[] = {
5930 {
5931 .name = "usage_in_bytes",
5932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5933 .read = mem_cgroup_read,
5934 .register_event = mem_cgroup_usage_register_event,
5935 .unregister_event = mem_cgroup_usage_unregister_event,
5936 },
5937 {
5938 .name = "max_usage_in_bytes",
5939 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5940 .trigger = mem_cgroup_reset,
5941 .read = mem_cgroup_read,
5942 },
5943 {
5944 .name = "limit_in_bytes",
5945 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5946 .write_string = mem_cgroup_write,
5947 .read = mem_cgroup_read,
5948 },
5949 {
5950 .name = "soft_limit_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5952 .write_string = mem_cgroup_write,
5953 .read = mem_cgroup_read,
5954 },
5955 {
5956 .name = "failcnt",
5957 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5958 .trigger = mem_cgroup_reset,
5959 .read = mem_cgroup_read,
5960 },
5961 {
5962 .name = "stat",
5963 .read_seq_string = memcg_stat_show,
5964 },
5965 {
5966 .name = "force_empty",
5967 .trigger = mem_cgroup_force_empty_write,
5968 },
5969 {
5970 .name = "use_hierarchy",
5971 .flags = CFTYPE_INSANE,
5972 .write_u64 = mem_cgroup_hierarchy_write,
5973 .read_u64 = mem_cgroup_hierarchy_read,
5974 },
5975 {
5976 .name = "swappiness",
5977 .read_u64 = mem_cgroup_swappiness_read,
5978 .write_u64 = mem_cgroup_swappiness_write,
5979 },
5980 {
5981 .name = "move_charge_at_immigrate",
5982 .read_u64 = mem_cgroup_move_charge_read,
5983 .write_u64 = mem_cgroup_move_charge_write,
5984 },
5985 {
5986 .name = "oom_control",
5987 .read_map = mem_cgroup_oom_control_read,
5988 .write_u64 = mem_cgroup_oom_control_write,
5989 .register_event = mem_cgroup_oom_register_event,
5990 .unregister_event = mem_cgroup_oom_unregister_event,
5991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5992 },
5993 {
5994 .name = "pressure_level",
5995 .register_event = vmpressure_register_event,
5996 .unregister_event = vmpressure_unregister_event,
5997 },
5998 #ifdef CONFIG_NUMA
5999 {
6000 .name = "numa_stat",
6001 .read_seq_string = memcg_numa_stat_show,
6002 },
6003 #endif
6004 #ifdef CONFIG_MEMCG_KMEM
6005 {
6006 .name = "kmem.limit_in_bytes",
6007 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6008 .write_string = mem_cgroup_write,
6009 .read = mem_cgroup_read,
6010 },
6011 {
6012 .name = "kmem.usage_in_bytes",
6013 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6014 .read = mem_cgroup_read,
6015 },
6016 {
6017 .name = "kmem.failcnt",
6018 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6019 .trigger = mem_cgroup_reset,
6020 .read = mem_cgroup_read,
6021 },
6022 {
6023 .name = "kmem.max_usage_in_bytes",
6024 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6027 },
6028 #ifdef CONFIG_SLABINFO
6029 {
6030 .name = "kmem.slabinfo",
6031 .read_seq_string = mem_cgroup_slabinfo_read,
6032 },
6033 #endif
6034 #endif
6035 { }, /* terminate */
6036 };
6037
6038 #ifdef CONFIG_MEMCG_SWAP
6039 static struct cftype memsw_cgroup_files[] = {
6040 {
6041 .name = "memsw.usage_in_bytes",
6042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6043 .read = mem_cgroup_read,
6044 .register_event = mem_cgroup_usage_register_event,
6045 .unregister_event = mem_cgroup_usage_unregister_event,
6046 },
6047 {
6048 .name = "memsw.max_usage_in_bytes",
6049 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6050 .trigger = mem_cgroup_reset,
6051 .read = mem_cgroup_read,
6052 },
6053 {
6054 .name = "memsw.limit_in_bytes",
6055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6056 .write_string = mem_cgroup_write,
6057 .read = mem_cgroup_read,
6058 },
6059 {
6060 .name = "memsw.failcnt",
6061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6062 .trigger = mem_cgroup_reset,
6063 .read = mem_cgroup_read,
6064 },
6065 { }, /* terminate */
6066 };
6067 #endif
6068 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6069 {
6070 struct mem_cgroup_per_node *pn;
6071 struct mem_cgroup_per_zone *mz;
6072 int zone, tmp = node;
6073 /*
6074 * This routine is called against possible nodes.
6075 * But it's BUG to call kmalloc() against offline node.
6076 *
6077 * TODO: this routine can waste much memory for nodes which will
6078 * never be onlined. It's better to use memory hotplug callback
6079 * function.
6080 */
6081 if (!node_state(node, N_NORMAL_MEMORY))
6082 tmp = -1;
6083 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6084 if (!pn)
6085 return 1;
6086
6087 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6088 mz = &pn->zoneinfo[zone];
6089 lruvec_init(&mz->lruvec);
6090 mz->usage_in_excess = 0;
6091 mz->on_tree = false;
6092 mz->memcg = memcg;
6093 }
6094 memcg->nodeinfo[node] = pn;
6095 return 0;
6096 }
6097
6098 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6099 {
6100 kfree(memcg->nodeinfo[node]);
6101 }
6102
6103 static struct mem_cgroup *mem_cgroup_alloc(void)
6104 {
6105 struct mem_cgroup *memcg;
6106 size_t size = memcg_size();
6107
6108 /* Can be very big if nr_node_ids is very big */
6109 if (size < PAGE_SIZE)
6110 memcg = kzalloc(size, GFP_KERNEL);
6111 else
6112 memcg = vzalloc(size);
6113
6114 if (!memcg)
6115 return NULL;
6116
6117 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6118 if (!memcg->stat)
6119 goto out_free;
6120 spin_lock_init(&memcg->pcp_counter_lock);
6121 return memcg;
6122
6123 out_free:
6124 if (size < PAGE_SIZE)
6125 kfree(memcg);
6126 else
6127 vfree(memcg);
6128 return NULL;
6129 }
6130
6131 /*
6132 * At destroying mem_cgroup, references from swap_cgroup can remain.
6133 * (scanning all at force_empty is too costly...)
6134 *
6135 * Instead of clearing all references at force_empty, we remember
6136 * the number of reference from swap_cgroup and free mem_cgroup when
6137 * it goes down to 0.
6138 *
6139 * Removal of cgroup itself succeeds regardless of refs from swap.
6140 */
6141
6142 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6143 {
6144 int node;
6145 size_t size = memcg_size();
6146
6147 mem_cgroup_remove_from_trees(memcg);
6148 free_css_id(&mem_cgroup_subsys, &memcg->css);
6149
6150 for_each_node(node)
6151 free_mem_cgroup_per_zone_info(memcg, node);
6152
6153 free_percpu(memcg->stat);
6154
6155 /*
6156 * We need to make sure that (at least for now), the jump label
6157 * destruction code runs outside of the cgroup lock. This is because
6158 * get_online_cpus(), which is called from the static_branch update,
6159 * can't be called inside the cgroup_lock. cpusets are the ones
6160 * enforcing this dependency, so if they ever change, we might as well.
6161 *
6162 * schedule_work() will guarantee this happens. Be careful if you need
6163 * to move this code around, and make sure it is outside
6164 * the cgroup_lock.
6165 */
6166 disarm_static_keys(memcg);
6167 if (size < PAGE_SIZE)
6168 kfree(memcg);
6169 else
6170 vfree(memcg);
6171 }
6172
6173 /*
6174 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6175 */
6176 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6177 {
6178 if (!memcg->res.parent)
6179 return NULL;
6180 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6181 }
6182 EXPORT_SYMBOL(parent_mem_cgroup);
6183
6184 static void __init mem_cgroup_soft_limit_tree_init(void)
6185 {
6186 struct mem_cgroup_tree_per_node *rtpn;
6187 struct mem_cgroup_tree_per_zone *rtpz;
6188 int tmp, node, zone;
6189
6190 for_each_node(node) {
6191 tmp = node;
6192 if (!node_state(node, N_NORMAL_MEMORY))
6193 tmp = -1;
6194 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6195 BUG_ON(!rtpn);
6196
6197 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6198
6199 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6200 rtpz = &rtpn->rb_tree_per_zone[zone];
6201 rtpz->rb_root = RB_ROOT;
6202 spin_lock_init(&rtpz->lock);
6203 }
6204 }
6205 }
6206
6207 static struct cgroup_subsys_state * __ref
6208 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6209 {
6210 struct mem_cgroup *memcg;
6211 long error = -ENOMEM;
6212 int node;
6213
6214 memcg = mem_cgroup_alloc();
6215 if (!memcg)
6216 return ERR_PTR(error);
6217
6218 for_each_node(node)
6219 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6220 goto free_out;
6221
6222 /* root ? */
6223 if (parent_css == NULL) {
6224 root_mem_cgroup = memcg;
6225 res_counter_init(&memcg->res, NULL);
6226 res_counter_init(&memcg->memsw, NULL);
6227 res_counter_init(&memcg->kmem, NULL);
6228 }
6229
6230 memcg->last_scanned_node = MAX_NUMNODES;
6231 INIT_LIST_HEAD(&memcg->oom_notify);
6232 memcg->move_charge_at_immigrate = 0;
6233 mutex_init(&memcg->thresholds_lock);
6234 spin_lock_init(&memcg->move_lock);
6235 vmpressure_init(&memcg->vmpressure);
6236
6237 return &memcg->css;
6238
6239 free_out:
6240 __mem_cgroup_free(memcg);
6241 return ERR_PTR(error);
6242 }
6243
6244 static int
6245 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6246 {
6247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6248 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6249 int error = 0;
6250
6251 if (!parent)
6252 return 0;
6253
6254 mutex_lock(&memcg_create_mutex);
6255
6256 memcg->use_hierarchy = parent->use_hierarchy;
6257 memcg->oom_kill_disable = parent->oom_kill_disable;
6258 memcg->swappiness = mem_cgroup_swappiness(parent);
6259
6260 if (parent->use_hierarchy) {
6261 res_counter_init(&memcg->res, &parent->res);
6262 res_counter_init(&memcg->memsw, &parent->memsw);
6263 res_counter_init(&memcg->kmem, &parent->kmem);
6264
6265 /*
6266 * No need to take a reference to the parent because cgroup
6267 * core guarantees its existence.
6268 */
6269 } else {
6270 res_counter_init(&memcg->res, NULL);
6271 res_counter_init(&memcg->memsw, NULL);
6272 res_counter_init(&memcg->kmem, NULL);
6273 /*
6274 * Deeper hierachy with use_hierarchy == false doesn't make
6275 * much sense so let cgroup subsystem know about this
6276 * unfortunate state in our controller.
6277 */
6278 if (parent != root_mem_cgroup)
6279 mem_cgroup_subsys.broken_hierarchy = true;
6280 }
6281
6282 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6283 mutex_unlock(&memcg_create_mutex);
6284 return error;
6285 }
6286
6287 /*
6288 * Announce all parents that a group from their hierarchy is gone.
6289 */
6290 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6291 {
6292 struct mem_cgroup *parent = memcg;
6293
6294 while ((parent = parent_mem_cgroup(parent)))
6295 mem_cgroup_iter_invalidate(parent);
6296
6297 /*
6298 * if the root memcg is not hierarchical we have to check it
6299 * explicitely.
6300 */
6301 if (!root_mem_cgroup->use_hierarchy)
6302 mem_cgroup_iter_invalidate(root_mem_cgroup);
6303 }
6304
6305 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6306 {
6307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6308
6309 kmem_cgroup_css_offline(memcg);
6310
6311 mem_cgroup_invalidate_reclaim_iterators(memcg);
6312 mem_cgroup_reparent_charges(memcg);
6313 mem_cgroup_destroy_all_caches(memcg);
6314 }
6315
6316 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6317 {
6318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6319
6320 memcg_destroy_kmem(memcg);
6321 __mem_cgroup_free(memcg);
6322 }
6323
6324 #ifdef CONFIG_MMU
6325 /* Handlers for move charge at task migration. */
6326 #define PRECHARGE_COUNT_AT_ONCE 256
6327 static int mem_cgroup_do_precharge(unsigned long count)
6328 {
6329 int ret = 0;
6330 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6331 struct mem_cgroup *memcg = mc.to;
6332
6333 if (mem_cgroup_is_root(memcg)) {
6334 mc.precharge += count;
6335 /* we don't need css_get for root */
6336 return ret;
6337 }
6338 /* try to charge at once */
6339 if (count > 1) {
6340 struct res_counter *dummy;
6341 /*
6342 * "memcg" cannot be under rmdir() because we've already checked
6343 * by cgroup_lock_live_cgroup() that it is not removed and we
6344 * are still under the same cgroup_mutex. So we can postpone
6345 * css_get().
6346 */
6347 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6348 goto one_by_one;
6349 if (do_swap_account && res_counter_charge(&memcg->memsw,
6350 PAGE_SIZE * count, &dummy)) {
6351 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6352 goto one_by_one;
6353 }
6354 mc.precharge += count;
6355 return ret;
6356 }
6357 one_by_one:
6358 /* fall back to one by one charge */
6359 while (count--) {
6360 if (signal_pending(current)) {
6361 ret = -EINTR;
6362 break;
6363 }
6364 if (!batch_count--) {
6365 batch_count = PRECHARGE_COUNT_AT_ONCE;
6366 cond_resched();
6367 }
6368 ret = __mem_cgroup_try_charge(NULL,
6369 GFP_KERNEL, 1, &memcg, false);
6370 if (ret)
6371 /* mem_cgroup_clear_mc() will do uncharge later */
6372 return ret;
6373 mc.precharge++;
6374 }
6375 return ret;
6376 }
6377
6378 /**
6379 * get_mctgt_type - get target type of moving charge
6380 * @vma: the vma the pte to be checked belongs
6381 * @addr: the address corresponding to the pte to be checked
6382 * @ptent: the pte to be checked
6383 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6384 *
6385 * Returns
6386 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6387 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6388 * move charge. if @target is not NULL, the page is stored in target->page
6389 * with extra refcnt got(Callers should handle it).
6390 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6391 * target for charge migration. if @target is not NULL, the entry is stored
6392 * in target->ent.
6393 *
6394 * Called with pte lock held.
6395 */
6396 union mc_target {
6397 struct page *page;
6398 swp_entry_t ent;
6399 };
6400
6401 enum mc_target_type {
6402 MC_TARGET_NONE = 0,
6403 MC_TARGET_PAGE,
6404 MC_TARGET_SWAP,
6405 };
6406
6407 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6408 unsigned long addr, pte_t ptent)
6409 {
6410 struct page *page = vm_normal_page(vma, addr, ptent);
6411
6412 if (!page || !page_mapped(page))
6413 return NULL;
6414 if (PageAnon(page)) {
6415 /* we don't move shared anon */
6416 if (!move_anon())
6417 return NULL;
6418 } else if (!move_file())
6419 /* we ignore mapcount for file pages */
6420 return NULL;
6421 if (!get_page_unless_zero(page))
6422 return NULL;
6423
6424 return page;
6425 }
6426
6427 #ifdef CONFIG_SWAP
6428 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6429 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6430 {
6431 struct page *page = NULL;
6432 swp_entry_t ent = pte_to_swp_entry(ptent);
6433
6434 if (!move_anon() || non_swap_entry(ent))
6435 return NULL;
6436 /*
6437 * Because lookup_swap_cache() updates some statistics counter,
6438 * we call find_get_page() with swapper_space directly.
6439 */
6440 page = find_get_page(swap_address_space(ent), ent.val);
6441 if (do_swap_account)
6442 entry->val = ent.val;
6443
6444 return page;
6445 }
6446 #else
6447 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6448 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6449 {
6450 return NULL;
6451 }
6452 #endif
6453
6454 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6455 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6456 {
6457 struct page *page = NULL;
6458 struct address_space *mapping;
6459 pgoff_t pgoff;
6460
6461 if (!vma->vm_file) /* anonymous vma */
6462 return NULL;
6463 if (!move_file())
6464 return NULL;
6465
6466 mapping = vma->vm_file->f_mapping;
6467 if (pte_none(ptent))
6468 pgoff = linear_page_index(vma, addr);
6469 else /* pte_file(ptent) is true */
6470 pgoff = pte_to_pgoff(ptent);
6471
6472 /* page is moved even if it's not RSS of this task(page-faulted). */
6473 page = find_get_page(mapping, pgoff);
6474
6475 #ifdef CONFIG_SWAP
6476 /* shmem/tmpfs may report page out on swap: account for that too. */
6477 if (radix_tree_exceptional_entry(page)) {
6478 swp_entry_t swap = radix_to_swp_entry(page);
6479 if (do_swap_account)
6480 *entry = swap;
6481 page = find_get_page(swap_address_space(swap), swap.val);
6482 }
6483 #endif
6484 return page;
6485 }
6486
6487 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6488 unsigned long addr, pte_t ptent, union mc_target *target)
6489 {
6490 struct page *page = NULL;
6491 struct page_cgroup *pc;
6492 enum mc_target_type ret = MC_TARGET_NONE;
6493 swp_entry_t ent = { .val = 0 };
6494
6495 if (pte_present(ptent))
6496 page = mc_handle_present_pte(vma, addr, ptent);
6497 else if (is_swap_pte(ptent))
6498 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6499 else if (pte_none(ptent) || pte_file(ptent))
6500 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6501
6502 if (!page && !ent.val)
6503 return ret;
6504 if (page) {
6505 pc = lookup_page_cgroup(page);
6506 /*
6507 * Do only loose check w/o page_cgroup lock.
6508 * mem_cgroup_move_account() checks the pc is valid or not under
6509 * the lock.
6510 */
6511 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6512 ret = MC_TARGET_PAGE;
6513 if (target)
6514 target->page = page;
6515 }
6516 if (!ret || !target)
6517 put_page(page);
6518 }
6519 /* There is a swap entry and a page doesn't exist or isn't charged */
6520 if (ent.val && !ret &&
6521 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6522 ret = MC_TARGET_SWAP;
6523 if (target)
6524 target->ent = ent;
6525 }
6526 return ret;
6527 }
6528
6529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6530 /*
6531 * We don't consider swapping or file mapped pages because THP does not
6532 * support them for now.
6533 * Caller should make sure that pmd_trans_huge(pmd) is true.
6534 */
6535 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6536 unsigned long addr, pmd_t pmd, union mc_target *target)
6537 {
6538 struct page *page = NULL;
6539 struct page_cgroup *pc;
6540 enum mc_target_type ret = MC_TARGET_NONE;
6541
6542 page = pmd_page(pmd);
6543 VM_BUG_ON(!page || !PageHead(page));
6544 if (!move_anon())
6545 return ret;
6546 pc = lookup_page_cgroup(page);
6547 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6548 ret = MC_TARGET_PAGE;
6549 if (target) {
6550 get_page(page);
6551 target->page = page;
6552 }
6553 }
6554 return ret;
6555 }
6556 #else
6557 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6558 unsigned long addr, pmd_t pmd, union mc_target *target)
6559 {
6560 return MC_TARGET_NONE;
6561 }
6562 #endif
6563
6564 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6565 unsigned long addr, unsigned long end,
6566 struct mm_walk *walk)
6567 {
6568 struct vm_area_struct *vma = walk->private;
6569 pte_t *pte;
6570 spinlock_t *ptl;
6571
6572 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6573 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6574 mc.precharge += HPAGE_PMD_NR;
6575 spin_unlock(&vma->vm_mm->page_table_lock);
6576 return 0;
6577 }
6578
6579 if (pmd_trans_unstable(pmd))
6580 return 0;
6581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6582 for (; addr != end; pte++, addr += PAGE_SIZE)
6583 if (get_mctgt_type(vma, addr, *pte, NULL))
6584 mc.precharge++; /* increment precharge temporarily */
6585 pte_unmap_unlock(pte - 1, ptl);
6586 cond_resched();
6587
6588 return 0;
6589 }
6590
6591 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6592 {
6593 unsigned long precharge;
6594 struct vm_area_struct *vma;
6595
6596 down_read(&mm->mmap_sem);
6597 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6598 struct mm_walk mem_cgroup_count_precharge_walk = {
6599 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6600 .mm = mm,
6601 .private = vma,
6602 };
6603 if (is_vm_hugetlb_page(vma))
6604 continue;
6605 walk_page_range(vma->vm_start, vma->vm_end,
6606 &mem_cgroup_count_precharge_walk);
6607 }
6608 up_read(&mm->mmap_sem);
6609
6610 precharge = mc.precharge;
6611 mc.precharge = 0;
6612
6613 return precharge;
6614 }
6615
6616 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6617 {
6618 unsigned long precharge = mem_cgroup_count_precharge(mm);
6619
6620 VM_BUG_ON(mc.moving_task);
6621 mc.moving_task = current;
6622 return mem_cgroup_do_precharge(precharge);
6623 }
6624
6625 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6626 static void __mem_cgroup_clear_mc(void)
6627 {
6628 struct mem_cgroup *from = mc.from;
6629 struct mem_cgroup *to = mc.to;
6630 int i;
6631
6632 /* we must uncharge all the leftover precharges from mc.to */
6633 if (mc.precharge) {
6634 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6635 mc.precharge = 0;
6636 }
6637 /*
6638 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6639 * we must uncharge here.
6640 */
6641 if (mc.moved_charge) {
6642 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6643 mc.moved_charge = 0;
6644 }
6645 /* we must fixup refcnts and charges */
6646 if (mc.moved_swap) {
6647 /* uncharge swap account from the old cgroup */
6648 if (!mem_cgroup_is_root(mc.from))
6649 res_counter_uncharge(&mc.from->memsw,
6650 PAGE_SIZE * mc.moved_swap);
6651
6652 for (i = 0; i < mc.moved_swap; i++)
6653 css_put(&mc.from->css);
6654
6655 if (!mem_cgroup_is_root(mc.to)) {
6656 /*
6657 * we charged both to->res and to->memsw, so we should
6658 * uncharge to->res.
6659 */
6660 res_counter_uncharge(&mc.to->res,
6661 PAGE_SIZE * mc.moved_swap);
6662 }
6663 /* we've already done css_get(mc.to) */
6664 mc.moved_swap = 0;
6665 }
6666 memcg_oom_recover(from);
6667 memcg_oom_recover(to);
6668 wake_up_all(&mc.waitq);
6669 }
6670
6671 static void mem_cgroup_clear_mc(void)
6672 {
6673 struct mem_cgroup *from = mc.from;
6674
6675 /*
6676 * we must clear moving_task before waking up waiters at the end of
6677 * task migration.
6678 */
6679 mc.moving_task = NULL;
6680 __mem_cgroup_clear_mc();
6681 spin_lock(&mc.lock);
6682 mc.from = NULL;
6683 mc.to = NULL;
6684 spin_unlock(&mc.lock);
6685 mem_cgroup_end_move(from);
6686 }
6687
6688 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6689 struct cgroup_taskset *tset)
6690 {
6691 struct task_struct *p = cgroup_taskset_first(tset);
6692 int ret = 0;
6693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6694 unsigned long move_charge_at_immigrate;
6695
6696 /*
6697 * We are now commited to this value whatever it is. Changes in this
6698 * tunable will only affect upcoming migrations, not the current one.
6699 * So we need to save it, and keep it going.
6700 */
6701 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6702 if (move_charge_at_immigrate) {
6703 struct mm_struct *mm;
6704 struct mem_cgroup *from = mem_cgroup_from_task(p);
6705
6706 VM_BUG_ON(from == memcg);
6707
6708 mm = get_task_mm(p);
6709 if (!mm)
6710 return 0;
6711 /* We move charges only when we move a owner of the mm */
6712 if (mm->owner == p) {
6713 VM_BUG_ON(mc.from);
6714 VM_BUG_ON(mc.to);
6715 VM_BUG_ON(mc.precharge);
6716 VM_BUG_ON(mc.moved_charge);
6717 VM_BUG_ON(mc.moved_swap);
6718 mem_cgroup_start_move(from);
6719 spin_lock(&mc.lock);
6720 mc.from = from;
6721 mc.to = memcg;
6722 mc.immigrate_flags = move_charge_at_immigrate;
6723 spin_unlock(&mc.lock);
6724 /* We set mc.moving_task later */
6725
6726 ret = mem_cgroup_precharge_mc(mm);
6727 if (ret)
6728 mem_cgroup_clear_mc();
6729 }
6730 mmput(mm);
6731 }
6732 return ret;
6733 }
6734
6735 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6736 struct cgroup_taskset *tset)
6737 {
6738 mem_cgroup_clear_mc();
6739 }
6740
6741 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6742 unsigned long addr, unsigned long end,
6743 struct mm_walk *walk)
6744 {
6745 int ret = 0;
6746 struct vm_area_struct *vma = walk->private;
6747 pte_t *pte;
6748 spinlock_t *ptl;
6749 enum mc_target_type target_type;
6750 union mc_target target;
6751 struct page *page;
6752 struct page_cgroup *pc;
6753
6754 /*
6755 * We don't take compound_lock() here but no race with splitting thp
6756 * happens because:
6757 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6758 * under splitting, which means there's no concurrent thp split,
6759 * - if another thread runs into split_huge_page() just after we
6760 * entered this if-block, the thread must wait for page table lock
6761 * to be unlocked in __split_huge_page_splitting(), where the main
6762 * part of thp split is not executed yet.
6763 */
6764 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6765 if (mc.precharge < HPAGE_PMD_NR) {
6766 spin_unlock(&vma->vm_mm->page_table_lock);
6767 return 0;
6768 }
6769 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6770 if (target_type == MC_TARGET_PAGE) {
6771 page = target.page;
6772 if (!isolate_lru_page(page)) {
6773 pc = lookup_page_cgroup(page);
6774 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6775 pc, mc.from, mc.to)) {
6776 mc.precharge -= HPAGE_PMD_NR;
6777 mc.moved_charge += HPAGE_PMD_NR;
6778 }
6779 putback_lru_page(page);
6780 }
6781 put_page(page);
6782 }
6783 spin_unlock(&vma->vm_mm->page_table_lock);
6784 return 0;
6785 }
6786
6787 if (pmd_trans_unstable(pmd))
6788 return 0;
6789 retry:
6790 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6791 for (; addr != end; addr += PAGE_SIZE) {
6792 pte_t ptent = *(pte++);
6793 swp_entry_t ent;
6794
6795 if (!mc.precharge)
6796 break;
6797
6798 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6799 case MC_TARGET_PAGE:
6800 page = target.page;
6801 if (isolate_lru_page(page))
6802 goto put;
6803 pc = lookup_page_cgroup(page);
6804 if (!mem_cgroup_move_account(page, 1, pc,
6805 mc.from, mc.to)) {
6806 mc.precharge--;
6807 /* we uncharge from mc.from later. */
6808 mc.moved_charge++;
6809 }
6810 putback_lru_page(page);
6811 put: /* get_mctgt_type() gets the page */
6812 put_page(page);
6813 break;
6814 case MC_TARGET_SWAP:
6815 ent = target.ent;
6816 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6817 mc.precharge--;
6818 /* we fixup refcnts and charges later. */
6819 mc.moved_swap++;
6820 }
6821 break;
6822 default:
6823 break;
6824 }
6825 }
6826 pte_unmap_unlock(pte - 1, ptl);
6827 cond_resched();
6828
6829 if (addr != end) {
6830 /*
6831 * We have consumed all precharges we got in can_attach().
6832 * We try charge one by one, but don't do any additional
6833 * charges to mc.to if we have failed in charge once in attach()
6834 * phase.
6835 */
6836 ret = mem_cgroup_do_precharge(1);
6837 if (!ret)
6838 goto retry;
6839 }
6840
6841 return ret;
6842 }
6843
6844 static void mem_cgroup_move_charge(struct mm_struct *mm)
6845 {
6846 struct vm_area_struct *vma;
6847
6848 lru_add_drain_all();
6849 retry:
6850 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6851 /*
6852 * Someone who are holding the mmap_sem might be waiting in
6853 * waitq. So we cancel all extra charges, wake up all waiters,
6854 * and retry. Because we cancel precharges, we might not be able
6855 * to move enough charges, but moving charge is a best-effort
6856 * feature anyway, so it wouldn't be a big problem.
6857 */
6858 __mem_cgroup_clear_mc();
6859 cond_resched();
6860 goto retry;
6861 }
6862 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6863 int ret;
6864 struct mm_walk mem_cgroup_move_charge_walk = {
6865 .pmd_entry = mem_cgroup_move_charge_pte_range,
6866 .mm = mm,
6867 .private = vma,
6868 };
6869 if (is_vm_hugetlb_page(vma))
6870 continue;
6871 ret = walk_page_range(vma->vm_start, vma->vm_end,
6872 &mem_cgroup_move_charge_walk);
6873 if (ret)
6874 /*
6875 * means we have consumed all precharges and failed in
6876 * doing additional charge. Just abandon here.
6877 */
6878 break;
6879 }
6880 up_read(&mm->mmap_sem);
6881 }
6882
6883 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6884 struct cgroup_taskset *tset)
6885 {
6886 struct task_struct *p = cgroup_taskset_first(tset);
6887 struct mm_struct *mm = get_task_mm(p);
6888
6889 if (mm) {
6890 if (mc.to)
6891 mem_cgroup_move_charge(mm);
6892 mmput(mm);
6893 }
6894 if (mc.to)
6895 mem_cgroup_clear_mc();
6896 }
6897 #else /* !CONFIG_MMU */
6898 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6899 struct cgroup_taskset *tset)
6900 {
6901 return 0;
6902 }
6903 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6904 struct cgroup_taskset *tset)
6905 {
6906 }
6907 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6908 struct cgroup_taskset *tset)
6909 {
6910 }
6911 #endif
6912
6913 /*
6914 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6915 * to verify sane_behavior flag on each mount attempt.
6916 */
6917 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6918 {
6919 /*
6920 * use_hierarchy is forced with sane_behavior. cgroup core
6921 * guarantees that @root doesn't have any children, so turning it
6922 * on for the root memcg is enough.
6923 */
6924 if (cgroup_sane_behavior(root_css->cgroup))
6925 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6926 }
6927
6928 struct cgroup_subsys mem_cgroup_subsys = {
6929 .name = "memory",
6930 .subsys_id = mem_cgroup_subsys_id,
6931 .css_alloc = mem_cgroup_css_alloc,
6932 .css_online = mem_cgroup_css_online,
6933 .css_offline = mem_cgroup_css_offline,
6934 .css_free = mem_cgroup_css_free,
6935 .can_attach = mem_cgroup_can_attach,
6936 .cancel_attach = mem_cgroup_cancel_attach,
6937 .attach = mem_cgroup_move_task,
6938 .bind = mem_cgroup_bind,
6939 .base_cftypes = mem_cgroup_files,
6940 .early_init = 0,
6941 .use_id = 1,
6942 };
6943
6944 #ifdef CONFIG_MEMCG_SWAP
6945 static int __init enable_swap_account(char *s)
6946 {
6947 /* consider enabled if no parameter or 1 is given */
6948 if (!strcmp(s, "1"))
6949 really_do_swap_account = 1;
6950 else if (!strcmp(s, "0"))
6951 really_do_swap_account = 0;
6952 return 1;
6953 }
6954 __setup("swapaccount=", enable_swap_account);
6955
6956 static void __init memsw_file_init(void)
6957 {
6958 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6959 }
6960
6961 static void __init enable_swap_cgroup(void)
6962 {
6963 if (!mem_cgroup_disabled() && really_do_swap_account) {
6964 do_swap_account = 1;
6965 memsw_file_init();
6966 }
6967 }
6968
6969 #else
6970 static void __init enable_swap_cgroup(void)
6971 {
6972 }
6973 #endif
6974
6975 /*
6976 * subsys_initcall() for memory controller.
6977 *
6978 * Some parts like hotcpu_notifier() have to be initialized from this context
6979 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6980 * everything that doesn't depend on a specific mem_cgroup structure should
6981 * be initialized from here.
6982 */
6983 static int __init mem_cgroup_init(void)
6984 {
6985 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6986 enable_swap_cgroup();
6987 mem_cgroup_soft_limit_tree_init();
6988 memcg_stock_init();
6989 return 0;
6990 }
6991 subsys_initcall(mem_cgroup_init);
This page took 0.481933 seconds and 5 git commands to generate.