memcg: clean up memcg->nodeinfo
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 /*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198 };
199
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213 };
214
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223 };
224
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234 };
235
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240 };
241
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244
245 /*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
255 */
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 union {
267 /*
268 * the counter to account for mem+swap usage.
269 */
270 struct res_counter memsw;
271
272 /*
273 * rcu_freeing is used only when freeing struct mem_cgroup,
274 * so put it into a union to avoid wasting more memory.
275 * It must be disjoint from the css field. It could be
276 * in a union with the res field, but res plays a much
277 * larger part in mem_cgroup life than memsw, and might
278 * be of interest, even at time of free, when debugging.
279 * So share rcu_head with the less interesting memsw.
280 */
281 struct rcu_head rcu_freeing;
282 /*
283 * We also need some space for a worker in deferred freeing.
284 * By the time we call it, rcu_freeing is no longer in use.
285 */
286 struct work_struct work_freeing;
287 };
288
289 /*
290 * the counter to account for kernel memory usage.
291 */
292 struct res_counter kmem;
293 /*
294 * Should the accounting and control be hierarchical, per subtree?
295 */
296 bool use_hierarchy;
297 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
298
299 bool oom_lock;
300 atomic_t under_oom;
301
302 atomic_t refcnt;
303
304 int swappiness;
305 /* OOM-Killer disable */
306 int oom_kill_disable;
307
308 /* set when res.limit == memsw.limit */
309 bool memsw_is_minimum;
310
311 /* protect arrays of thresholds */
312 struct mutex thresholds_lock;
313
314 /* thresholds for memory usage. RCU-protected */
315 struct mem_cgroup_thresholds thresholds;
316
317 /* thresholds for mem+swap usage. RCU-protected */
318 struct mem_cgroup_thresholds memsw_thresholds;
319
320 /* For oom notifier event fd */
321 struct list_head oom_notify;
322
323 /*
324 * Should we move charges of a task when a task is moved into this
325 * mem_cgroup ? And what type of charges should we move ?
326 */
327 unsigned long move_charge_at_immigrate;
328 /*
329 * set > 0 if pages under this cgroup are moving to other cgroup.
330 */
331 atomic_t moving_account;
332 /* taken only while moving_account > 0 */
333 spinlock_t move_lock;
334 /*
335 * percpu counter.
336 */
337 struct mem_cgroup_stat_cpu __percpu *stat;
338 /*
339 * used when a cpu is offlined or other synchronizations
340 * See mem_cgroup_read_stat().
341 */
342 struct mem_cgroup_stat_cpu nocpu_base;
343 spinlock_t pcp_counter_lock;
344
345 atomic_t dead_count;
346 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
347 struct tcp_memcontrol tcp_mem;
348 #endif
349 #if defined(CONFIG_MEMCG_KMEM)
350 /* analogous to slab_common's slab_caches list. per-memcg */
351 struct list_head memcg_slab_caches;
352 /* Not a spinlock, we can take a lot of time walking the list */
353 struct mutex slab_caches_mutex;
354 /* Index in the kmem_cache->memcg_params->memcg_caches array */
355 int kmemcg_id;
356 #endif
357
358 int last_scanned_node;
359 #if MAX_NUMNODES > 1
360 nodemask_t scan_nodes;
361 atomic_t numainfo_events;
362 atomic_t numainfo_updating;
363 #endif
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 static size_t memcg_size(void)
370 {
371 return sizeof(struct mem_cgroup) +
372 nr_node_ids * sizeof(struct mem_cgroup_per_node);
373 }
374
375 /* internal only representation about the status of kmem accounting. */
376 enum {
377 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
378 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
379 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
380 };
381
382 /* We account when limit is on, but only after call sites are patched */
383 #define KMEM_ACCOUNTED_MASK \
384 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
385
386 #ifdef CONFIG_MEMCG_KMEM
387 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
388 {
389 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
390 }
391
392 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
393 {
394 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395 }
396
397 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
398 {
399 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
400 }
401
402 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
403 {
404 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
405 }
406
407 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
408 {
409 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
410 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
411 }
412
413 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
414 {
415 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
416 &memcg->kmem_account_flags);
417 }
418 #endif
419
420 /* Stuffs for move charges at task migration. */
421 /*
422 * Types of charges to be moved. "move_charge_at_immitgrate" and
423 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
424 */
425 enum move_type {
426 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
427 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
428 NR_MOVE_TYPE,
429 };
430
431 /* "mc" and its members are protected by cgroup_mutex */
432 static struct move_charge_struct {
433 spinlock_t lock; /* for from, to */
434 struct mem_cgroup *from;
435 struct mem_cgroup *to;
436 unsigned long immigrate_flags;
437 unsigned long precharge;
438 unsigned long moved_charge;
439 unsigned long moved_swap;
440 struct task_struct *moving_task; /* a task moving charges */
441 wait_queue_head_t waitq; /* a waitq for other context */
442 } mc = {
443 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
444 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
445 };
446
447 static bool move_anon(void)
448 {
449 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
450 }
451
452 static bool move_file(void)
453 {
454 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
455 }
456
457 /*
458 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
459 * limit reclaim to prevent infinite loops, if they ever occur.
460 */
461 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
462 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
463
464 enum charge_type {
465 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
466 MEM_CGROUP_CHARGE_TYPE_ANON,
467 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
468 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
469 NR_CHARGE_TYPE,
470 };
471
472 /* for encoding cft->private value on file */
473 enum res_type {
474 _MEM,
475 _MEMSWAP,
476 _OOM_TYPE,
477 _KMEM,
478 };
479
480 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
481 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
482 #define MEMFILE_ATTR(val) ((val) & 0xffff)
483 /* Used for OOM nofiier */
484 #define OOM_CONTROL (0)
485
486 /*
487 * Reclaim flags for mem_cgroup_hierarchical_reclaim
488 */
489 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
490 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
491 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
492 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
493
494 /*
495 * The memcg_create_mutex will be held whenever a new cgroup is created.
496 * As a consequence, any change that needs to protect against new child cgroups
497 * appearing has to hold it as well.
498 */
499 static DEFINE_MUTEX(memcg_create_mutex);
500
501 static void mem_cgroup_get(struct mem_cgroup *memcg);
502 static void mem_cgroup_put(struct mem_cgroup *memcg);
503
504 static inline
505 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
506 {
507 return container_of(s, struct mem_cgroup, css);
508 }
509
510 /* Some nice accessors for the vmpressure. */
511 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
512 {
513 if (!memcg)
514 memcg = root_mem_cgroup;
515 return &memcg->vmpressure;
516 }
517
518 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
519 {
520 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
521 }
522
523 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
524 {
525 return &mem_cgroup_from_css(css)->vmpressure;
526 }
527
528 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529 {
530 return (memcg == root_mem_cgroup);
531 }
532
533 /* Writing them here to avoid exposing memcg's inner layout */
534 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
535
536 void sock_update_memcg(struct sock *sk)
537 {
538 if (mem_cgroup_sockets_enabled) {
539 struct mem_cgroup *memcg;
540 struct cg_proto *cg_proto;
541
542 BUG_ON(!sk->sk_prot->proto_cgroup);
543
544 /* Socket cloning can throw us here with sk_cgrp already
545 * filled. It won't however, necessarily happen from
546 * process context. So the test for root memcg given
547 * the current task's memcg won't help us in this case.
548 *
549 * Respecting the original socket's memcg is a better
550 * decision in this case.
551 */
552 if (sk->sk_cgrp) {
553 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
554 mem_cgroup_get(sk->sk_cgrp->memcg);
555 return;
556 }
557
558 rcu_read_lock();
559 memcg = mem_cgroup_from_task(current);
560 cg_proto = sk->sk_prot->proto_cgroup(memcg);
561 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
562 mem_cgroup_get(memcg);
563 sk->sk_cgrp = cg_proto;
564 }
565 rcu_read_unlock();
566 }
567 }
568 EXPORT_SYMBOL(sock_update_memcg);
569
570 void sock_release_memcg(struct sock *sk)
571 {
572 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
573 struct mem_cgroup *memcg;
574 WARN_ON(!sk->sk_cgrp->memcg);
575 memcg = sk->sk_cgrp->memcg;
576 mem_cgroup_put(memcg);
577 }
578 }
579
580 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581 {
582 if (!memcg || mem_cgroup_is_root(memcg))
583 return NULL;
584
585 return &memcg->tcp_mem.cg_proto;
586 }
587 EXPORT_SYMBOL(tcp_proto_cgroup);
588
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
592 return;
593 static_key_slow_dec(&memcg_socket_limit_enabled);
594 }
595 #else
596 static void disarm_sock_keys(struct mem_cgroup *memcg)
597 {
598 }
599 #endif
600
601 #ifdef CONFIG_MEMCG_KMEM
602 /*
603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604 * There are two main reasons for not using the css_id for this:
605 * 1) this works better in sparse environments, where we have a lot of memcgs,
606 * but only a few kmem-limited. Or also, if we have, for instance, 200
607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
608 * 200 entry array for that.
609 *
610 * 2) In order not to violate the cgroup API, we would like to do all memory
611 * allocation in ->create(). At that point, we haven't yet allocated the
612 * css_id. Having a separate index prevents us from messing with the cgroup
613 * core for this
614 *
615 * The current size of the caches array is stored in
616 * memcg_limited_groups_array_size. It will double each time we have to
617 * increase it.
618 */
619 static DEFINE_IDA(kmem_limited_groups);
620 int memcg_limited_groups_array_size;
621
622 /*
623 * MIN_SIZE is different than 1, because we would like to avoid going through
624 * the alloc/free process all the time. In a small machine, 4 kmem-limited
625 * cgroups is a reasonable guess. In the future, it could be a parameter or
626 * tunable, but that is strictly not necessary.
627 *
628 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
629 * this constant directly from cgroup, but it is understandable that this is
630 * better kept as an internal representation in cgroup.c. In any case, the
631 * css_id space is not getting any smaller, and we don't have to necessarily
632 * increase ours as well if it increases.
633 */
634 #define MEMCG_CACHES_MIN_SIZE 4
635 #define MEMCG_CACHES_MAX_SIZE 65535
636
637 /*
638 * A lot of the calls to the cache allocation functions are expected to be
639 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
640 * conditional to this static branch, we'll have to allow modules that does
641 * kmem_cache_alloc and the such to see this symbol as well
642 */
643 struct static_key memcg_kmem_enabled_key;
644 EXPORT_SYMBOL(memcg_kmem_enabled_key);
645
646 static void disarm_kmem_keys(struct mem_cgroup *memcg)
647 {
648 if (memcg_kmem_is_active(memcg)) {
649 static_key_slow_dec(&memcg_kmem_enabled_key);
650 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
651 }
652 /*
653 * This check can't live in kmem destruction function,
654 * since the charges will outlive the cgroup
655 */
656 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
657 }
658 #else
659 static void disarm_kmem_keys(struct mem_cgroup *memcg)
660 {
661 }
662 #endif /* CONFIG_MEMCG_KMEM */
663
664 static void disarm_static_keys(struct mem_cgroup *memcg)
665 {
666 disarm_sock_keys(memcg);
667 disarm_kmem_keys(memcg);
668 }
669
670 static void drain_all_stock_async(struct mem_cgroup *memcg);
671
672 static struct mem_cgroup_per_zone *
673 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
674 {
675 VM_BUG_ON((unsigned)nid >= nr_node_ids);
676 return &memcg->nodeinfo[nid]->zoneinfo[zid];
677 }
678
679 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
680 {
681 return &memcg->css;
682 }
683
684 static struct mem_cgroup_per_zone *
685 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
686 {
687 int nid = page_to_nid(page);
688 int zid = page_zonenum(page);
689
690 return mem_cgroup_zoneinfo(memcg, nid, zid);
691 }
692
693 static struct mem_cgroup_tree_per_zone *
694 soft_limit_tree_node_zone(int nid, int zid)
695 {
696 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
697 }
698
699 static struct mem_cgroup_tree_per_zone *
700 soft_limit_tree_from_page(struct page *page)
701 {
702 int nid = page_to_nid(page);
703 int zid = page_zonenum(page);
704
705 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
706 }
707
708 static void
709 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
710 struct mem_cgroup_per_zone *mz,
711 struct mem_cgroup_tree_per_zone *mctz,
712 unsigned long long new_usage_in_excess)
713 {
714 struct rb_node **p = &mctz->rb_root.rb_node;
715 struct rb_node *parent = NULL;
716 struct mem_cgroup_per_zone *mz_node;
717
718 if (mz->on_tree)
719 return;
720
721 mz->usage_in_excess = new_usage_in_excess;
722 if (!mz->usage_in_excess)
723 return;
724 while (*p) {
725 parent = *p;
726 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
727 tree_node);
728 if (mz->usage_in_excess < mz_node->usage_in_excess)
729 p = &(*p)->rb_left;
730 /*
731 * We can't avoid mem cgroups that are over their soft
732 * limit by the same amount
733 */
734 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
735 p = &(*p)->rb_right;
736 }
737 rb_link_node(&mz->tree_node, parent, p);
738 rb_insert_color(&mz->tree_node, &mctz->rb_root);
739 mz->on_tree = true;
740 }
741
742 static void
743 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
744 struct mem_cgroup_per_zone *mz,
745 struct mem_cgroup_tree_per_zone *mctz)
746 {
747 if (!mz->on_tree)
748 return;
749 rb_erase(&mz->tree_node, &mctz->rb_root);
750 mz->on_tree = false;
751 }
752
753 static void
754 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
755 struct mem_cgroup_per_zone *mz,
756 struct mem_cgroup_tree_per_zone *mctz)
757 {
758 spin_lock(&mctz->lock);
759 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
760 spin_unlock(&mctz->lock);
761 }
762
763
764 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
765 {
766 unsigned long long excess;
767 struct mem_cgroup_per_zone *mz;
768 struct mem_cgroup_tree_per_zone *mctz;
769 int nid = page_to_nid(page);
770 int zid = page_zonenum(page);
771 mctz = soft_limit_tree_from_page(page);
772
773 /*
774 * Necessary to update all ancestors when hierarchy is used.
775 * because their event counter is not touched.
776 */
777 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
778 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
779 excess = res_counter_soft_limit_excess(&memcg->res);
780 /*
781 * We have to update the tree if mz is on RB-tree or
782 * mem is over its softlimit.
783 */
784 if (excess || mz->on_tree) {
785 spin_lock(&mctz->lock);
786 /* if on-tree, remove it */
787 if (mz->on_tree)
788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 /*
790 * Insert again. mz->usage_in_excess will be updated.
791 * If excess is 0, no tree ops.
792 */
793 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
794 spin_unlock(&mctz->lock);
795 }
796 }
797 }
798
799 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
800 {
801 int node, zone;
802 struct mem_cgroup_per_zone *mz;
803 struct mem_cgroup_tree_per_zone *mctz;
804
805 for_each_node(node) {
806 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
807 mz = mem_cgroup_zoneinfo(memcg, node, zone);
808 mctz = soft_limit_tree_node_zone(node, zone);
809 mem_cgroup_remove_exceeded(memcg, mz, mctz);
810 }
811 }
812 }
813
814 static struct mem_cgroup_per_zone *
815 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct rb_node *rightmost = NULL;
818 struct mem_cgroup_per_zone *mz;
819
820 retry:
821 mz = NULL;
822 rightmost = rb_last(&mctz->rb_root);
823 if (!rightmost)
824 goto done; /* Nothing to reclaim from */
825
826 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
827 /*
828 * Remove the node now but someone else can add it back,
829 * we will to add it back at the end of reclaim to its correct
830 * position in the tree.
831 */
832 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
833 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
834 !css_tryget(&mz->memcg->css))
835 goto retry;
836 done:
837 return mz;
838 }
839
840 static struct mem_cgroup_per_zone *
841 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
842 {
843 struct mem_cgroup_per_zone *mz;
844
845 spin_lock(&mctz->lock);
846 mz = __mem_cgroup_largest_soft_limit_node(mctz);
847 spin_unlock(&mctz->lock);
848 return mz;
849 }
850
851 /*
852 * Implementation Note: reading percpu statistics for memcg.
853 *
854 * Both of vmstat[] and percpu_counter has threshold and do periodic
855 * synchronization to implement "quick" read. There are trade-off between
856 * reading cost and precision of value. Then, we may have a chance to implement
857 * a periodic synchronizion of counter in memcg's counter.
858 *
859 * But this _read() function is used for user interface now. The user accounts
860 * memory usage by memory cgroup and he _always_ requires exact value because
861 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
862 * have to visit all online cpus and make sum. So, for now, unnecessary
863 * synchronization is not implemented. (just implemented for cpu hotplug)
864 *
865 * If there are kernel internal actions which can make use of some not-exact
866 * value, and reading all cpu value can be performance bottleneck in some
867 * common workload, threashold and synchonization as vmstat[] should be
868 * implemented.
869 */
870 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
871 enum mem_cgroup_stat_index idx)
872 {
873 long val = 0;
874 int cpu;
875
876 get_online_cpus();
877 for_each_online_cpu(cpu)
878 val += per_cpu(memcg->stat->count[idx], cpu);
879 #ifdef CONFIG_HOTPLUG_CPU
880 spin_lock(&memcg->pcp_counter_lock);
881 val += memcg->nocpu_base.count[idx];
882 spin_unlock(&memcg->pcp_counter_lock);
883 #endif
884 put_online_cpus();
885 return val;
886 }
887
888 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
889 bool charge)
890 {
891 int val = (charge) ? 1 : -1;
892 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
893 }
894
895 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
896 enum mem_cgroup_events_index idx)
897 {
898 unsigned long val = 0;
899 int cpu;
900
901 for_each_online_cpu(cpu)
902 val += per_cpu(memcg->stat->events[idx], cpu);
903 #ifdef CONFIG_HOTPLUG_CPU
904 spin_lock(&memcg->pcp_counter_lock);
905 val += memcg->nocpu_base.events[idx];
906 spin_unlock(&memcg->pcp_counter_lock);
907 #endif
908 return val;
909 }
910
911 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
912 struct page *page,
913 bool anon, int nr_pages)
914 {
915 preempt_disable();
916
917 /*
918 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
919 * counted as CACHE even if it's on ANON LRU.
920 */
921 if (anon)
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
923 nr_pages);
924 else
925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
926 nr_pages);
927
928 if (PageTransHuge(page))
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
930 nr_pages);
931
932 /* pagein of a big page is an event. So, ignore page size */
933 if (nr_pages > 0)
934 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
935 else {
936 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
937 nr_pages = -nr_pages; /* for event */
938 }
939
940 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
941
942 preempt_enable();
943 }
944
945 unsigned long
946 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
947 {
948 struct mem_cgroup_per_zone *mz;
949
950 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
951 return mz->lru_size[lru];
952 }
953
954 static unsigned long
955 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
956 unsigned int lru_mask)
957 {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960 unsigned long ret = 0;
961
962 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
963
964 for_each_lru(lru) {
965 if (BIT(lru) & lru_mask)
966 ret += mz->lru_size[lru];
967 }
968 return ret;
969 }
970
971 static unsigned long
972 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
973 int nid, unsigned int lru_mask)
974 {
975 u64 total = 0;
976 int zid;
977
978 for (zid = 0; zid < MAX_NR_ZONES; zid++)
979 total += mem_cgroup_zone_nr_lru_pages(memcg,
980 nid, zid, lru_mask);
981
982 return total;
983 }
984
985 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
986 unsigned int lru_mask)
987 {
988 int nid;
989 u64 total = 0;
990
991 for_each_node_state(nid, N_MEMORY)
992 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
993 return total;
994 }
995
996 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
997 enum mem_cgroup_events_target target)
998 {
999 unsigned long val, next;
1000
1001 val = __this_cpu_read(memcg->stat->nr_page_events);
1002 next = __this_cpu_read(memcg->stat->targets[target]);
1003 /* from time_after() in jiffies.h */
1004 if ((long)next - (long)val < 0) {
1005 switch (target) {
1006 case MEM_CGROUP_TARGET_THRESH:
1007 next = val + THRESHOLDS_EVENTS_TARGET;
1008 break;
1009 case MEM_CGROUP_TARGET_SOFTLIMIT:
1010 next = val + SOFTLIMIT_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_NUMAINFO:
1013 next = val + NUMAINFO_EVENTS_TARGET;
1014 break;
1015 default:
1016 break;
1017 }
1018 __this_cpu_write(memcg->stat->targets[target], next);
1019 return true;
1020 }
1021 return false;
1022 }
1023
1024 /*
1025 * Check events in order.
1026 *
1027 */
1028 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1029 {
1030 preempt_disable();
1031 /* threshold event is triggered in finer grain than soft limit */
1032 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1033 MEM_CGROUP_TARGET_THRESH))) {
1034 bool do_softlimit;
1035 bool do_numainfo __maybe_unused;
1036
1037 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_SOFTLIMIT);
1039 #if MAX_NUMNODES > 1
1040 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1041 MEM_CGROUP_TARGET_NUMAINFO);
1042 #endif
1043 preempt_enable();
1044
1045 mem_cgroup_threshold(memcg);
1046 if (unlikely(do_softlimit))
1047 mem_cgroup_update_tree(memcg, page);
1048 #if MAX_NUMNODES > 1
1049 if (unlikely(do_numainfo))
1050 atomic_inc(&memcg->numainfo_events);
1051 #endif
1052 } else
1053 preempt_enable();
1054 }
1055
1056 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1057 {
1058 return mem_cgroup_from_css(
1059 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1060 }
1061
1062 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1063 {
1064 /*
1065 * mm_update_next_owner() may clear mm->owner to NULL
1066 * if it races with swapoff, page migration, etc.
1067 * So this can be called with p == NULL.
1068 */
1069 if (unlikely(!p))
1070 return NULL;
1071
1072 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1073 }
1074
1075 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1076 {
1077 struct mem_cgroup *memcg = NULL;
1078
1079 if (!mm)
1080 return NULL;
1081 /*
1082 * Because we have no locks, mm->owner's may be being moved to other
1083 * cgroup. We use css_tryget() here even if this looks
1084 * pessimistic (rather than adding locks here).
1085 */
1086 rcu_read_lock();
1087 do {
1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1089 if (unlikely(!memcg))
1090 break;
1091 } while (!css_tryget(&memcg->css));
1092 rcu_read_unlock();
1093 return memcg;
1094 }
1095
1096 /*
1097 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1098 * ref. count) or NULL if the whole root's subtree has been visited.
1099 *
1100 * helper function to be used by mem_cgroup_iter
1101 */
1102 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1103 struct mem_cgroup *last_visited)
1104 {
1105 struct cgroup *prev_cgroup, *next_cgroup;
1106
1107 /*
1108 * Root is not visited by cgroup iterators so it needs an
1109 * explicit visit.
1110 */
1111 if (!last_visited)
1112 return root;
1113
1114 prev_cgroup = (last_visited == root) ? NULL
1115 : last_visited->css.cgroup;
1116 skip_node:
1117 next_cgroup = cgroup_next_descendant_pre(
1118 prev_cgroup, root->css.cgroup);
1119
1120 /*
1121 * Even if we found a group we have to make sure it is
1122 * alive. css && !memcg means that the groups should be
1123 * skipped and we should continue the tree walk.
1124 * last_visited css is safe to use because it is
1125 * protected by css_get and the tree walk is rcu safe.
1126 */
1127 if (next_cgroup) {
1128 struct mem_cgroup *mem = mem_cgroup_from_cont(
1129 next_cgroup);
1130 if (css_tryget(&mem->css))
1131 return mem;
1132 else {
1133 prev_cgroup = next_cgroup;
1134 goto skip_node;
1135 }
1136 }
1137
1138 return NULL;
1139 }
1140
1141 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1142 {
1143 /*
1144 * When a group in the hierarchy below root is destroyed, the
1145 * hierarchy iterator can no longer be trusted since it might
1146 * have pointed to the destroyed group. Invalidate it.
1147 */
1148 atomic_inc(&root->dead_count);
1149 }
1150
1151 static struct mem_cgroup *
1152 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1153 struct mem_cgroup *root,
1154 int *sequence)
1155 {
1156 struct mem_cgroup *position = NULL;
1157 /*
1158 * A cgroup destruction happens in two stages: offlining and
1159 * release. They are separated by a RCU grace period.
1160 *
1161 * If the iterator is valid, we may still race with an
1162 * offlining. The RCU lock ensures the object won't be
1163 * released, tryget will fail if we lost the race.
1164 */
1165 *sequence = atomic_read(&root->dead_count);
1166 if (iter->last_dead_count == *sequence) {
1167 smp_rmb();
1168 position = iter->last_visited;
1169 if (position && !css_tryget(&position->css))
1170 position = NULL;
1171 }
1172 return position;
1173 }
1174
1175 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1176 struct mem_cgroup *last_visited,
1177 struct mem_cgroup *new_position,
1178 int sequence)
1179 {
1180 if (last_visited)
1181 css_put(&last_visited->css);
1182 /*
1183 * We store the sequence count from the time @last_visited was
1184 * loaded successfully instead of rereading it here so that we
1185 * don't lose destruction events in between. We could have
1186 * raced with the destruction of @new_position after all.
1187 */
1188 iter->last_visited = new_position;
1189 smp_wmb();
1190 iter->last_dead_count = sequence;
1191 }
1192
1193 /**
1194 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1195 * @root: hierarchy root
1196 * @prev: previously returned memcg, NULL on first invocation
1197 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1198 *
1199 * Returns references to children of the hierarchy below @root, or
1200 * @root itself, or %NULL after a full round-trip.
1201 *
1202 * Caller must pass the return value in @prev on subsequent
1203 * invocations for reference counting, or use mem_cgroup_iter_break()
1204 * to cancel a hierarchy walk before the round-trip is complete.
1205 *
1206 * Reclaimers can specify a zone and a priority level in @reclaim to
1207 * divide up the memcgs in the hierarchy among all concurrent
1208 * reclaimers operating on the same zone and priority.
1209 */
1210 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1211 struct mem_cgroup *prev,
1212 struct mem_cgroup_reclaim_cookie *reclaim)
1213 {
1214 struct mem_cgroup *memcg = NULL;
1215 struct mem_cgroup *last_visited = NULL;
1216
1217 if (mem_cgroup_disabled())
1218 return NULL;
1219
1220 if (!root)
1221 root = root_mem_cgroup;
1222
1223 if (prev && !reclaim)
1224 last_visited = prev;
1225
1226 if (!root->use_hierarchy && root != root_mem_cgroup) {
1227 if (prev)
1228 goto out_css_put;
1229 return root;
1230 }
1231
1232 rcu_read_lock();
1233 while (!memcg) {
1234 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1235 int uninitialized_var(seq);
1236
1237 if (reclaim) {
1238 int nid = zone_to_nid(reclaim->zone);
1239 int zid = zone_idx(reclaim->zone);
1240 struct mem_cgroup_per_zone *mz;
1241
1242 mz = mem_cgroup_zoneinfo(root, nid, zid);
1243 iter = &mz->reclaim_iter[reclaim->priority];
1244 if (prev && reclaim->generation != iter->generation) {
1245 iter->last_visited = NULL;
1246 goto out_unlock;
1247 }
1248
1249 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1250 }
1251
1252 memcg = __mem_cgroup_iter_next(root, last_visited);
1253
1254 if (reclaim) {
1255 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1256
1257 if (!memcg)
1258 iter->generation++;
1259 else if (!prev && memcg)
1260 reclaim->generation = iter->generation;
1261 }
1262
1263 if (prev && !memcg)
1264 goto out_unlock;
1265 }
1266 out_unlock:
1267 rcu_read_unlock();
1268 out_css_put:
1269 if (prev && prev != root)
1270 css_put(&prev->css);
1271
1272 return memcg;
1273 }
1274
1275 /**
1276 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1277 * @root: hierarchy root
1278 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1279 */
1280 void mem_cgroup_iter_break(struct mem_cgroup *root,
1281 struct mem_cgroup *prev)
1282 {
1283 if (!root)
1284 root = root_mem_cgroup;
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287 }
1288
1289 /*
1290 * Iteration constructs for visiting all cgroups (under a tree). If
1291 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1292 * be used for reference counting.
1293 */
1294 #define for_each_mem_cgroup_tree(iter, root) \
1295 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1296 iter != NULL; \
1297 iter = mem_cgroup_iter(root, iter, NULL))
1298
1299 #define for_each_mem_cgroup(iter) \
1300 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1301 iter != NULL; \
1302 iter = mem_cgroup_iter(NULL, iter, NULL))
1303
1304 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1305 {
1306 struct mem_cgroup *memcg;
1307
1308 rcu_read_lock();
1309 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1310 if (unlikely(!memcg))
1311 goto out;
1312
1313 switch (idx) {
1314 case PGFAULT:
1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1316 break;
1317 case PGMAJFAULT:
1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1319 break;
1320 default:
1321 BUG();
1322 }
1323 out:
1324 rcu_read_unlock();
1325 }
1326 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1327
1328 /**
1329 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1330 * @zone: zone of the wanted lruvec
1331 * @memcg: memcg of the wanted lruvec
1332 *
1333 * Returns the lru list vector holding pages for the given @zone and
1334 * @mem. This can be the global zone lruvec, if the memory controller
1335 * is disabled.
1336 */
1337 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1338 struct mem_cgroup *memcg)
1339 {
1340 struct mem_cgroup_per_zone *mz;
1341 struct lruvec *lruvec;
1342
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
1347
1348 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1349 lruvec = &mz->lruvec;
1350 out:
1351 /*
1352 * Since a node can be onlined after the mem_cgroup was created,
1353 * we have to be prepared to initialize lruvec->zone here;
1354 * and if offlined then reonlined, we need to reinitialize it.
1355 */
1356 if (unlikely(lruvec->zone != zone))
1357 lruvec->zone = zone;
1358 return lruvec;
1359 }
1360
1361 /*
1362 * Following LRU functions are allowed to be used without PCG_LOCK.
1363 * Operations are called by routine of global LRU independently from memcg.
1364 * What we have to take care of here is validness of pc->mem_cgroup.
1365 *
1366 * Changes to pc->mem_cgroup happens when
1367 * 1. charge
1368 * 2. moving account
1369 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1370 * It is added to LRU before charge.
1371 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1372 * When moving account, the page is not on LRU. It's isolated.
1373 */
1374
1375 /**
1376 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1377 * @page: the page
1378 * @zone: zone of the page
1379 */
1380 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1381 {
1382 struct mem_cgroup_per_zone *mz;
1383 struct mem_cgroup *memcg;
1384 struct page_cgroup *pc;
1385 struct lruvec *lruvec;
1386
1387 if (mem_cgroup_disabled()) {
1388 lruvec = &zone->lruvec;
1389 goto out;
1390 }
1391
1392 pc = lookup_page_cgroup(page);
1393 memcg = pc->mem_cgroup;
1394
1395 /*
1396 * Surreptitiously switch any uncharged offlist page to root:
1397 * an uncharged page off lru does nothing to secure
1398 * its former mem_cgroup from sudden removal.
1399 *
1400 * Our caller holds lru_lock, and PageCgroupUsed is updated
1401 * under page_cgroup lock: between them, they make all uses
1402 * of pc->mem_cgroup safe.
1403 */
1404 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1405 pc->mem_cgroup = memcg = root_mem_cgroup;
1406
1407 mz = page_cgroup_zoneinfo(memcg, page);
1408 lruvec = &mz->lruvec;
1409 out:
1410 /*
1411 * Since a node can be onlined after the mem_cgroup was created,
1412 * we have to be prepared to initialize lruvec->zone here;
1413 * and if offlined then reonlined, we need to reinitialize it.
1414 */
1415 if (unlikely(lruvec->zone != zone))
1416 lruvec->zone = zone;
1417 return lruvec;
1418 }
1419
1420 /**
1421 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1422 * @lruvec: mem_cgroup per zone lru vector
1423 * @lru: index of lru list the page is sitting on
1424 * @nr_pages: positive when adding or negative when removing
1425 *
1426 * This function must be called when a page is added to or removed from an
1427 * lru list.
1428 */
1429 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1430 int nr_pages)
1431 {
1432 struct mem_cgroup_per_zone *mz;
1433 unsigned long *lru_size;
1434
1435 if (mem_cgroup_disabled())
1436 return;
1437
1438 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1439 lru_size = mz->lru_size + lru;
1440 *lru_size += nr_pages;
1441 VM_BUG_ON((long)(*lru_size) < 0);
1442 }
1443
1444 /*
1445 * Checks whether given mem is same or in the root_mem_cgroup's
1446 * hierarchy subtree
1447 */
1448 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1449 struct mem_cgroup *memcg)
1450 {
1451 if (root_memcg == memcg)
1452 return true;
1453 if (!root_memcg->use_hierarchy || !memcg)
1454 return false;
1455 return css_is_ancestor(&memcg->css, &root_memcg->css);
1456 }
1457
1458 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 struct mem_cgroup *memcg)
1460 {
1461 bool ret;
1462
1463 rcu_read_lock();
1464 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1465 rcu_read_unlock();
1466 return ret;
1467 }
1468
1469 bool task_in_mem_cgroup(struct task_struct *task,
1470 const struct mem_cgroup *memcg)
1471 {
1472 struct mem_cgroup *curr = NULL;
1473 struct task_struct *p;
1474 bool ret;
1475
1476 p = find_lock_task_mm(task);
1477 if (p) {
1478 curr = try_get_mem_cgroup_from_mm(p->mm);
1479 task_unlock(p);
1480 } else {
1481 /*
1482 * All threads may have already detached their mm's, but the oom
1483 * killer still needs to detect if they have already been oom
1484 * killed to prevent needlessly killing additional tasks.
1485 */
1486 rcu_read_lock();
1487 curr = mem_cgroup_from_task(task);
1488 if (curr)
1489 css_get(&curr->css);
1490 rcu_read_unlock();
1491 }
1492 if (!curr)
1493 return false;
1494 /*
1495 * We should check use_hierarchy of "memcg" not "curr". Because checking
1496 * use_hierarchy of "curr" here make this function true if hierarchy is
1497 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1498 * hierarchy(even if use_hierarchy is disabled in "memcg").
1499 */
1500 ret = mem_cgroup_same_or_subtree(memcg, curr);
1501 css_put(&curr->css);
1502 return ret;
1503 }
1504
1505 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1506 {
1507 unsigned long inactive_ratio;
1508 unsigned long inactive;
1509 unsigned long active;
1510 unsigned long gb;
1511
1512 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1513 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1514
1515 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1516 if (gb)
1517 inactive_ratio = int_sqrt(10 * gb);
1518 else
1519 inactive_ratio = 1;
1520
1521 return inactive * inactive_ratio < active;
1522 }
1523
1524 #define mem_cgroup_from_res_counter(counter, member) \
1525 container_of(counter, struct mem_cgroup, member)
1526
1527 /**
1528 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1529 * @memcg: the memory cgroup
1530 *
1531 * Returns the maximum amount of memory @mem can be charged with, in
1532 * pages.
1533 */
1534 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1535 {
1536 unsigned long long margin;
1537
1538 margin = res_counter_margin(&memcg->res);
1539 if (do_swap_account)
1540 margin = min(margin, res_counter_margin(&memcg->memsw));
1541 return margin >> PAGE_SHIFT;
1542 }
1543
1544 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1545 {
1546 struct cgroup *cgrp = memcg->css.cgroup;
1547
1548 /* root ? */
1549 if (cgrp->parent == NULL)
1550 return vm_swappiness;
1551
1552 return memcg->swappiness;
1553 }
1554
1555 /*
1556 * memcg->moving_account is used for checking possibility that some thread is
1557 * calling move_account(). When a thread on CPU-A starts moving pages under
1558 * a memcg, other threads should check memcg->moving_account under
1559 * rcu_read_lock(), like this:
1560 *
1561 * CPU-A CPU-B
1562 * rcu_read_lock()
1563 * memcg->moving_account+1 if (memcg->mocing_account)
1564 * take heavy locks.
1565 * synchronize_rcu() update something.
1566 * rcu_read_unlock()
1567 * start move here.
1568 */
1569
1570 /* for quick checking without looking up memcg */
1571 atomic_t memcg_moving __read_mostly;
1572
1573 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1574 {
1575 atomic_inc(&memcg_moving);
1576 atomic_inc(&memcg->moving_account);
1577 synchronize_rcu();
1578 }
1579
1580 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1581 {
1582 /*
1583 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1584 * We check NULL in callee rather than caller.
1585 */
1586 if (memcg) {
1587 atomic_dec(&memcg_moving);
1588 atomic_dec(&memcg->moving_account);
1589 }
1590 }
1591
1592 /*
1593 * 2 routines for checking "mem" is under move_account() or not.
1594 *
1595 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1596 * is used for avoiding races in accounting. If true,
1597 * pc->mem_cgroup may be overwritten.
1598 *
1599 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1600 * under hierarchy of moving cgroups. This is for
1601 * waiting at hith-memory prressure caused by "move".
1602 */
1603
1604 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1605 {
1606 VM_BUG_ON(!rcu_read_lock_held());
1607 return atomic_read(&memcg->moving_account) > 0;
1608 }
1609
1610 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1611 {
1612 struct mem_cgroup *from;
1613 struct mem_cgroup *to;
1614 bool ret = false;
1615 /*
1616 * Unlike task_move routines, we access mc.to, mc.from not under
1617 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1618 */
1619 spin_lock(&mc.lock);
1620 from = mc.from;
1621 to = mc.to;
1622 if (!from)
1623 goto unlock;
1624
1625 ret = mem_cgroup_same_or_subtree(memcg, from)
1626 || mem_cgroup_same_or_subtree(memcg, to);
1627 unlock:
1628 spin_unlock(&mc.lock);
1629 return ret;
1630 }
1631
1632 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1633 {
1634 if (mc.moving_task && current != mc.moving_task) {
1635 if (mem_cgroup_under_move(memcg)) {
1636 DEFINE_WAIT(wait);
1637 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1638 /* moving charge context might have finished. */
1639 if (mc.moving_task)
1640 schedule();
1641 finish_wait(&mc.waitq, &wait);
1642 return true;
1643 }
1644 }
1645 return false;
1646 }
1647
1648 /*
1649 * Take this lock when
1650 * - a code tries to modify page's memcg while it's USED.
1651 * - a code tries to modify page state accounting in a memcg.
1652 * see mem_cgroup_stolen(), too.
1653 */
1654 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1655 unsigned long *flags)
1656 {
1657 spin_lock_irqsave(&memcg->move_lock, *flags);
1658 }
1659
1660 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1661 unsigned long *flags)
1662 {
1663 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1664 }
1665
1666 #define K(x) ((x) << (PAGE_SHIFT-10))
1667 /**
1668 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1669 * @memcg: The memory cgroup that went over limit
1670 * @p: Task that is going to be killed
1671 *
1672 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1673 * enabled
1674 */
1675 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1676 {
1677 struct cgroup *task_cgrp;
1678 struct cgroup *mem_cgrp;
1679 /*
1680 * Need a buffer in BSS, can't rely on allocations. The code relies
1681 * on the assumption that OOM is serialized for memory controller.
1682 * If this assumption is broken, revisit this code.
1683 */
1684 static char memcg_name[PATH_MAX];
1685 int ret;
1686 struct mem_cgroup *iter;
1687 unsigned int i;
1688
1689 if (!p)
1690 return;
1691
1692 rcu_read_lock();
1693
1694 mem_cgrp = memcg->css.cgroup;
1695 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1696
1697 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1698 if (ret < 0) {
1699 /*
1700 * Unfortunately, we are unable to convert to a useful name
1701 * But we'll still print out the usage information
1702 */
1703 rcu_read_unlock();
1704 goto done;
1705 }
1706 rcu_read_unlock();
1707
1708 pr_info("Task in %s killed", memcg_name);
1709
1710 rcu_read_lock();
1711 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1712 if (ret < 0) {
1713 rcu_read_unlock();
1714 goto done;
1715 }
1716 rcu_read_unlock();
1717
1718 /*
1719 * Continues from above, so we don't need an KERN_ level
1720 */
1721 pr_cont(" as a result of limit of %s\n", memcg_name);
1722 done:
1723
1724 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1725 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1726 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1727 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1728 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1729 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1730 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1731 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1732 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1733 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1736
1737 for_each_mem_cgroup_tree(iter, memcg) {
1738 pr_info("Memory cgroup stats");
1739
1740 rcu_read_lock();
1741 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1742 if (!ret)
1743 pr_cont(" for %s", memcg_name);
1744 rcu_read_unlock();
1745 pr_cont(":");
1746
1747 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1748 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1749 continue;
1750 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1751 K(mem_cgroup_read_stat(iter, i)));
1752 }
1753
1754 for (i = 0; i < NR_LRU_LISTS; i++)
1755 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1756 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1757
1758 pr_cont("\n");
1759 }
1760 }
1761
1762 /*
1763 * This function returns the number of memcg under hierarchy tree. Returns
1764 * 1(self count) if no children.
1765 */
1766 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1767 {
1768 int num = 0;
1769 struct mem_cgroup *iter;
1770
1771 for_each_mem_cgroup_tree(iter, memcg)
1772 num++;
1773 return num;
1774 }
1775
1776 /*
1777 * Return the memory (and swap, if configured) limit for a memcg.
1778 */
1779 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1780 {
1781 u64 limit;
1782
1783 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1784
1785 /*
1786 * Do not consider swap space if we cannot swap due to swappiness
1787 */
1788 if (mem_cgroup_swappiness(memcg)) {
1789 u64 memsw;
1790
1791 limit += total_swap_pages << PAGE_SHIFT;
1792 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1793
1794 /*
1795 * If memsw is finite and limits the amount of swap space
1796 * available to this memcg, return that limit.
1797 */
1798 limit = min(limit, memsw);
1799 }
1800
1801 return limit;
1802 }
1803
1804 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1805 int order)
1806 {
1807 struct mem_cgroup *iter;
1808 unsigned long chosen_points = 0;
1809 unsigned long totalpages;
1810 unsigned int points = 0;
1811 struct task_struct *chosen = NULL;
1812
1813 /*
1814 * If current has a pending SIGKILL or is exiting, then automatically
1815 * select it. The goal is to allow it to allocate so that it may
1816 * quickly exit and free its memory.
1817 */
1818 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1819 set_thread_flag(TIF_MEMDIE);
1820 return;
1821 }
1822
1823 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1824 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1825 for_each_mem_cgroup_tree(iter, memcg) {
1826 struct cgroup *cgroup = iter->css.cgroup;
1827 struct cgroup_iter it;
1828 struct task_struct *task;
1829
1830 cgroup_iter_start(cgroup, &it);
1831 while ((task = cgroup_iter_next(cgroup, &it))) {
1832 switch (oom_scan_process_thread(task, totalpages, NULL,
1833 false)) {
1834 case OOM_SCAN_SELECT:
1835 if (chosen)
1836 put_task_struct(chosen);
1837 chosen = task;
1838 chosen_points = ULONG_MAX;
1839 get_task_struct(chosen);
1840 /* fall through */
1841 case OOM_SCAN_CONTINUE:
1842 continue;
1843 case OOM_SCAN_ABORT:
1844 cgroup_iter_end(cgroup, &it);
1845 mem_cgroup_iter_break(memcg, iter);
1846 if (chosen)
1847 put_task_struct(chosen);
1848 return;
1849 case OOM_SCAN_OK:
1850 break;
1851 };
1852 points = oom_badness(task, memcg, NULL, totalpages);
1853 if (points > chosen_points) {
1854 if (chosen)
1855 put_task_struct(chosen);
1856 chosen = task;
1857 chosen_points = points;
1858 get_task_struct(chosen);
1859 }
1860 }
1861 cgroup_iter_end(cgroup, &it);
1862 }
1863
1864 if (!chosen)
1865 return;
1866 points = chosen_points * 1000 / totalpages;
1867 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1868 NULL, "Memory cgroup out of memory");
1869 }
1870
1871 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1872 gfp_t gfp_mask,
1873 unsigned long flags)
1874 {
1875 unsigned long total = 0;
1876 bool noswap = false;
1877 int loop;
1878
1879 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1880 noswap = true;
1881 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1882 noswap = true;
1883
1884 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1885 if (loop)
1886 drain_all_stock_async(memcg);
1887 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1888 /*
1889 * Allow limit shrinkers, which are triggered directly
1890 * by userspace, to catch signals and stop reclaim
1891 * after minimal progress, regardless of the margin.
1892 */
1893 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1894 break;
1895 if (mem_cgroup_margin(memcg))
1896 break;
1897 /*
1898 * If nothing was reclaimed after two attempts, there
1899 * may be no reclaimable pages in this hierarchy.
1900 */
1901 if (loop && !total)
1902 break;
1903 }
1904 return total;
1905 }
1906
1907 /**
1908 * test_mem_cgroup_node_reclaimable
1909 * @memcg: the target memcg
1910 * @nid: the node ID to be checked.
1911 * @noswap : specify true here if the user wants flle only information.
1912 *
1913 * This function returns whether the specified memcg contains any
1914 * reclaimable pages on a node. Returns true if there are any reclaimable
1915 * pages in the node.
1916 */
1917 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1918 int nid, bool noswap)
1919 {
1920 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1921 return true;
1922 if (noswap || !total_swap_pages)
1923 return false;
1924 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1925 return true;
1926 return false;
1927
1928 }
1929 #if MAX_NUMNODES > 1
1930
1931 /*
1932 * Always updating the nodemask is not very good - even if we have an empty
1933 * list or the wrong list here, we can start from some node and traverse all
1934 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1935 *
1936 */
1937 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1938 {
1939 int nid;
1940 /*
1941 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1942 * pagein/pageout changes since the last update.
1943 */
1944 if (!atomic_read(&memcg->numainfo_events))
1945 return;
1946 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1947 return;
1948
1949 /* make a nodemask where this memcg uses memory from */
1950 memcg->scan_nodes = node_states[N_MEMORY];
1951
1952 for_each_node_mask(nid, node_states[N_MEMORY]) {
1953
1954 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1955 node_clear(nid, memcg->scan_nodes);
1956 }
1957
1958 atomic_set(&memcg->numainfo_events, 0);
1959 atomic_set(&memcg->numainfo_updating, 0);
1960 }
1961
1962 /*
1963 * Selecting a node where we start reclaim from. Because what we need is just
1964 * reducing usage counter, start from anywhere is O,K. Considering
1965 * memory reclaim from current node, there are pros. and cons.
1966 *
1967 * Freeing memory from current node means freeing memory from a node which
1968 * we'll use or we've used. So, it may make LRU bad. And if several threads
1969 * hit limits, it will see a contention on a node. But freeing from remote
1970 * node means more costs for memory reclaim because of memory latency.
1971 *
1972 * Now, we use round-robin. Better algorithm is welcomed.
1973 */
1974 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1975 {
1976 int node;
1977
1978 mem_cgroup_may_update_nodemask(memcg);
1979 node = memcg->last_scanned_node;
1980
1981 node = next_node(node, memcg->scan_nodes);
1982 if (node == MAX_NUMNODES)
1983 node = first_node(memcg->scan_nodes);
1984 /*
1985 * We call this when we hit limit, not when pages are added to LRU.
1986 * No LRU may hold pages because all pages are UNEVICTABLE or
1987 * memcg is too small and all pages are not on LRU. In that case,
1988 * we use curret node.
1989 */
1990 if (unlikely(node == MAX_NUMNODES))
1991 node = numa_node_id();
1992
1993 memcg->last_scanned_node = node;
1994 return node;
1995 }
1996
1997 /*
1998 * Check all nodes whether it contains reclaimable pages or not.
1999 * For quick scan, we make use of scan_nodes. This will allow us to skip
2000 * unused nodes. But scan_nodes is lazily updated and may not cotain
2001 * enough new information. We need to do double check.
2002 */
2003 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2004 {
2005 int nid;
2006
2007 /*
2008 * quick check...making use of scan_node.
2009 * We can skip unused nodes.
2010 */
2011 if (!nodes_empty(memcg->scan_nodes)) {
2012 for (nid = first_node(memcg->scan_nodes);
2013 nid < MAX_NUMNODES;
2014 nid = next_node(nid, memcg->scan_nodes)) {
2015
2016 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2017 return true;
2018 }
2019 }
2020 /*
2021 * Check rest of nodes.
2022 */
2023 for_each_node_state(nid, N_MEMORY) {
2024 if (node_isset(nid, memcg->scan_nodes))
2025 continue;
2026 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2027 return true;
2028 }
2029 return false;
2030 }
2031
2032 #else
2033 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2034 {
2035 return 0;
2036 }
2037
2038 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2039 {
2040 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2041 }
2042 #endif
2043
2044 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2045 struct zone *zone,
2046 gfp_t gfp_mask,
2047 unsigned long *total_scanned)
2048 {
2049 struct mem_cgroup *victim = NULL;
2050 int total = 0;
2051 int loop = 0;
2052 unsigned long excess;
2053 unsigned long nr_scanned;
2054 struct mem_cgroup_reclaim_cookie reclaim = {
2055 .zone = zone,
2056 .priority = 0,
2057 };
2058
2059 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2060
2061 while (1) {
2062 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2063 if (!victim) {
2064 loop++;
2065 if (loop >= 2) {
2066 /*
2067 * If we have not been able to reclaim
2068 * anything, it might because there are
2069 * no reclaimable pages under this hierarchy
2070 */
2071 if (!total)
2072 break;
2073 /*
2074 * We want to do more targeted reclaim.
2075 * excess >> 2 is not to excessive so as to
2076 * reclaim too much, nor too less that we keep
2077 * coming back to reclaim from this cgroup
2078 */
2079 if (total >= (excess >> 2) ||
2080 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2081 break;
2082 }
2083 continue;
2084 }
2085 if (!mem_cgroup_reclaimable(victim, false))
2086 continue;
2087 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2088 zone, &nr_scanned);
2089 *total_scanned += nr_scanned;
2090 if (!res_counter_soft_limit_excess(&root_memcg->res))
2091 break;
2092 }
2093 mem_cgroup_iter_break(root_memcg, victim);
2094 return total;
2095 }
2096
2097 /*
2098 * Check OOM-Killer is already running under our hierarchy.
2099 * If someone is running, return false.
2100 * Has to be called with memcg_oom_lock
2101 */
2102 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2103 {
2104 struct mem_cgroup *iter, *failed = NULL;
2105
2106 for_each_mem_cgroup_tree(iter, memcg) {
2107 if (iter->oom_lock) {
2108 /*
2109 * this subtree of our hierarchy is already locked
2110 * so we cannot give a lock.
2111 */
2112 failed = iter;
2113 mem_cgroup_iter_break(memcg, iter);
2114 break;
2115 } else
2116 iter->oom_lock = true;
2117 }
2118
2119 if (!failed)
2120 return true;
2121
2122 /*
2123 * OK, we failed to lock the whole subtree so we have to clean up
2124 * what we set up to the failing subtree
2125 */
2126 for_each_mem_cgroup_tree(iter, memcg) {
2127 if (iter == failed) {
2128 mem_cgroup_iter_break(memcg, iter);
2129 break;
2130 }
2131 iter->oom_lock = false;
2132 }
2133 return false;
2134 }
2135
2136 /*
2137 * Has to be called with memcg_oom_lock
2138 */
2139 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2140 {
2141 struct mem_cgroup *iter;
2142
2143 for_each_mem_cgroup_tree(iter, memcg)
2144 iter->oom_lock = false;
2145 return 0;
2146 }
2147
2148 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2149 {
2150 struct mem_cgroup *iter;
2151
2152 for_each_mem_cgroup_tree(iter, memcg)
2153 atomic_inc(&iter->under_oom);
2154 }
2155
2156 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2157 {
2158 struct mem_cgroup *iter;
2159
2160 /*
2161 * When a new child is created while the hierarchy is under oom,
2162 * mem_cgroup_oom_lock() may not be called. We have to use
2163 * atomic_add_unless() here.
2164 */
2165 for_each_mem_cgroup_tree(iter, memcg)
2166 atomic_add_unless(&iter->under_oom, -1, 0);
2167 }
2168
2169 static DEFINE_SPINLOCK(memcg_oom_lock);
2170 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2171
2172 struct oom_wait_info {
2173 struct mem_cgroup *memcg;
2174 wait_queue_t wait;
2175 };
2176
2177 static int memcg_oom_wake_function(wait_queue_t *wait,
2178 unsigned mode, int sync, void *arg)
2179 {
2180 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2181 struct mem_cgroup *oom_wait_memcg;
2182 struct oom_wait_info *oom_wait_info;
2183
2184 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2185 oom_wait_memcg = oom_wait_info->memcg;
2186
2187 /*
2188 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2189 * Then we can use css_is_ancestor without taking care of RCU.
2190 */
2191 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2192 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2193 return 0;
2194 return autoremove_wake_function(wait, mode, sync, arg);
2195 }
2196
2197 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2198 {
2199 /* for filtering, pass "memcg" as argument. */
2200 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2201 }
2202
2203 static void memcg_oom_recover(struct mem_cgroup *memcg)
2204 {
2205 if (memcg && atomic_read(&memcg->under_oom))
2206 memcg_wakeup_oom(memcg);
2207 }
2208
2209 /*
2210 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2211 */
2212 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2213 int order)
2214 {
2215 struct oom_wait_info owait;
2216 bool locked, need_to_kill;
2217
2218 owait.memcg = memcg;
2219 owait.wait.flags = 0;
2220 owait.wait.func = memcg_oom_wake_function;
2221 owait.wait.private = current;
2222 INIT_LIST_HEAD(&owait.wait.task_list);
2223 need_to_kill = true;
2224 mem_cgroup_mark_under_oom(memcg);
2225
2226 /* At first, try to OOM lock hierarchy under memcg.*/
2227 spin_lock(&memcg_oom_lock);
2228 locked = mem_cgroup_oom_lock(memcg);
2229 /*
2230 * Even if signal_pending(), we can't quit charge() loop without
2231 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2232 * under OOM is always welcomed, use TASK_KILLABLE here.
2233 */
2234 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2235 if (!locked || memcg->oom_kill_disable)
2236 need_to_kill = false;
2237 if (locked)
2238 mem_cgroup_oom_notify(memcg);
2239 spin_unlock(&memcg_oom_lock);
2240
2241 if (need_to_kill) {
2242 finish_wait(&memcg_oom_waitq, &owait.wait);
2243 mem_cgroup_out_of_memory(memcg, mask, order);
2244 } else {
2245 schedule();
2246 finish_wait(&memcg_oom_waitq, &owait.wait);
2247 }
2248 spin_lock(&memcg_oom_lock);
2249 if (locked)
2250 mem_cgroup_oom_unlock(memcg);
2251 memcg_wakeup_oom(memcg);
2252 spin_unlock(&memcg_oom_lock);
2253
2254 mem_cgroup_unmark_under_oom(memcg);
2255
2256 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2257 return false;
2258 /* Give chance to dying process */
2259 schedule_timeout_uninterruptible(1);
2260 return true;
2261 }
2262
2263 /*
2264 * Currently used to update mapped file statistics, but the routine can be
2265 * generalized to update other statistics as well.
2266 *
2267 * Notes: Race condition
2268 *
2269 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2270 * it tends to be costly. But considering some conditions, we doesn't need
2271 * to do so _always_.
2272 *
2273 * Considering "charge", lock_page_cgroup() is not required because all
2274 * file-stat operations happen after a page is attached to radix-tree. There
2275 * are no race with "charge".
2276 *
2277 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2278 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2279 * if there are race with "uncharge". Statistics itself is properly handled
2280 * by flags.
2281 *
2282 * Considering "move", this is an only case we see a race. To make the race
2283 * small, we check mm->moving_account and detect there are possibility of race
2284 * If there is, we take a lock.
2285 */
2286
2287 void __mem_cgroup_begin_update_page_stat(struct page *page,
2288 bool *locked, unsigned long *flags)
2289 {
2290 struct mem_cgroup *memcg;
2291 struct page_cgroup *pc;
2292
2293 pc = lookup_page_cgroup(page);
2294 again:
2295 memcg = pc->mem_cgroup;
2296 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2297 return;
2298 /*
2299 * If this memory cgroup is not under account moving, we don't
2300 * need to take move_lock_mem_cgroup(). Because we already hold
2301 * rcu_read_lock(), any calls to move_account will be delayed until
2302 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2303 */
2304 if (!mem_cgroup_stolen(memcg))
2305 return;
2306
2307 move_lock_mem_cgroup(memcg, flags);
2308 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2309 move_unlock_mem_cgroup(memcg, flags);
2310 goto again;
2311 }
2312 *locked = true;
2313 }
2314
2315 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2316 {
2317 struct page_cgroup *pc = lookup_page_cgroup(page);
2318
2319 /*
2320 * It's guaranteed that pc->mem_cgroup never changes while
2321 * lock is held because a routine modifies pc->mem_cgroup
2322 * should take move_lock_mem_cgroup().
2323 */
2324 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2325 }
2326
2327 void mem_cgroup_update_page_stat(struct page *page,
2328 enum mem_cgroup_page_stat_item idx, int val)
2329 {
2330 struct mem_cgroup *memcg;
2331 struct page_cgroup *pc = lookup_page_cgroup(page);
2332 unsigned long uninitialized_var(flags);
2333
2334 if (mem_cgroup_disabled())
2335 return;
2336
2337 memcg = pc->mem_cgroup;
2338 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2339 return;
2340
2341 switch (idx) {
2342 case MEMCG_NR_FILE_MAPPED:
2343 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2344 break;
2345 default:
2346 BUG();
2347 }
2348
2349 this_cpu_add(memcg->stat->count[idx], val);
2350 }
2351
2352 /*
2353 * size of first charge trial. "32" comes from vmscan.c's magic value.
2354 * TODO: maybe necessary to use big numbers in big irons.
2355 */
2356 #define CHARGE_BATCH 32U
2357 struct memcg_stock_pcp {
2358 struct mem_cgroup *cached; /* this never be root cgroup */
2359 unsigned int nr_pages;
2360 struct work_struct work;
2361 unsigned long flags;
2362 #define FLUSHING_CACHED_CHARGE 0
2363 };
2364 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2365 static DEFINE_MUTEX(percpu_charge_mutex);
2366
2367 /**
2368 * consume_stock: Try to consume stocked charge on this cpu.
2369 * @memcg: memcg to consume from.
2370 * @nr_pages: how many pages to charge.
2371 *
2372 * The charges will only happen if @memcg matches the current cpu's memcg
2373 * stock, and at least @nr_pages are available in that stock. Failure to
2374 * service an allocation will refill the stock.
2375 *
2376 * returns true if successful, false otherwise.
2377 */
2378 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2379 {
2380 struct memcg_stock_pcp *stock;
2381 bool ret = true;
2382
2383 if (nr_pages > CHARGE_BATCH)
2384 return false;
2385
2386 stock = &get_cpu_var(memcg_stock);
2387 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2388 stock->nr_pages -= nr_pages;
2389 else /* need to call res_counter_charge */
2390 ret = false;
2391 put_cpu_var(memcg_stock);
2392 return ret;
2393 }
2394
2395 /*
2396 * Returns stocks cached in percpu to res_counter and reset cached information.
2397 */
2398 static void drain_stock(struct memcg_stock_pcp *stock)
2399 {
2400 struct mem_cgroup *old = stock->cached;
2401
2402 if (stock->nr_pages) {
2403 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2404
2405 res_counter_uncharge(&old->res, bytes);
2406 if (do_swap_account)
2407 res_counter_uncharge(&old->memsw, bytes);
2408 stock->nr_pages = 0;
2409 }
2410 stock->cached = NULL;
2411 }
2412
2413 /*
2414 * This must be called under preempt disabled or must be called by
2415 * a thread which is pinned to local cpu.
2416 */
2417 static void drain_local_stock(struct work_struct *dummy)
2418 {
2419 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2420 drain_stock(stock);
2421 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2422 }
2423
2424 static void __init memcg_stock_init(void)
2425 {
2426 int cpu;
2427
2428 for_each_possible_cpu(cpu) {
2429 struct memcg_stock_pcp *stock =
2430 &per_cpu(memcg_stock, cpu);
2431 INIT_WORK(&stock->work, drain_local_stock);
2432 }
2433 }
2434
2435 /*
2436 * Cache charges(val) which is from res_counter, to local per_cpu area.
2437 * This will be consumed by consume_stock() function, later.
2438 */
2439 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2440 {
2441 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2442
2443 if (stock->cached != memcg) { /* reset if necessary */
2444 drain_stock(stock);
2445 stock->cached = memcg;
2446 }
2447 stock->nr_pages += nr_pages;
2448 put_cpu_var(memcg_stock);
2449 }
2450
2451 /*
2452 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2453 * of the hierarchy under it. sync flag says whether we should block
2454 * until the work is done.
2455 */
2456 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2457 {
2458 int cpu, curcpu;
2459
2460 /* Notify other cpus that system-wide "drain" is running */
2461 get_online_cpus();
2462 curcpu = get_cpu();
2463 for_each_online_cpu(cpu) {
2464 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2465 struct mem_cgroup *memcg;
2466
2467 memcg = stock->cached;
2468 if (!memcg || !stock->nr_pages)
2469 continue;
2470 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2471 continue;
2472 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2473 if (cpu == curcpu)
2474 drain_local_stock(&stock->work);
2475 else
2476 schedule_work_on(cpu, &stock->work);
2477 }
2478 }
2479 put_cpu();
2480
2481 if (!sync)
2482 goto out;
2483
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2486 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2487 flush_work(&stock->work);
2488 }
2489 out:
2490 put_online_cpus();
2491 }
2492
2493 /*
2494 * Tries to drain stocked charges in other cpus. This function is asynchronous
2495 * and just put a work per cpu for draining localy on each cpu. Caller can
2496 * expects some charges will be back to res_counter later but cannot wait for
2497 * it.
2498 */
2499 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2500 {
2501 /*
2502 * If someone calls draining, avoid adding more kworker runs.
2503 */
2504 if (!mutex_trylock(&percpu_charge_mutex))
2505 return;
2506 drain_all_stock(root_memcg, false);
2507 mutex_unlock(&percpu_charge_mutex);
2508 }
2509
2510 /* This is a synchronous drain interface. */
2511 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2512 {
2513 /* called when force_empty is called */
2514 mutex_lock(&percpu_charge_mutex);
2515 drain_all_stock(root_memcg, true);
2516 mutex_unlock(&percpu_charge_mutex);
2517 }
2518
2519 /*
2520 * This function drains percpu counter value from DEAD cpu and
2521 * move it to local cpu. Note that this function can be preempted.
2522 */
2523 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2524 {
2525 int i;
2526
2527 spin_lock(&memcg->pcp_counter_lock);
2528 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2529 long x = per_cpu(memcg->stat->count[i], cpu);
2530
2531 per_cpu(memcg->stat->count[i], cpu) = 0;
2532 memcg->nocpu_base.count[i] += x;
2533 }
2534 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2535 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2536
2537 per_cpu(memcg->stat->events[i], cpu) = 0;
2538 memcg->nocpu_base.events[i] += x;
2539 }
2540 spin_unlock(&memcg->pcp_counter_lock);
2541 }
2542
2543 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2544 unsigned long action,
2545 void *hcpu)
2546 {
2547 int cpu = (unsigned long)hcpu;
2548 struct memcg_stock_pcp *stock;
2549 struct mem_cgroup *iter;
2550
2551 if (action == CPU_ONLINE)
2552 return NOTIFY_OK;
2553
2554 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2555 return NOTIFY_OK;
2556
2557 for_each_mem_cgroup(iter)
2558 mem_cgroup_drain_pcp_counter(iter, cpu);
2559
2560 stock = &per_cpu(memcg_stock, cpu);
2561 drain_stock(stock);
2562 return NOTIFY_OK;
2563 }
2564
2565
2566 /* See __mem_cgroup_try_charge() for details */
2567 enum {
2568 CHARGE_OK, /* success */
2569 CHARGE_RETRY, /* need to retry but retry is not bad */
2570 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2571 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2572 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2573 };
2574
2575 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2576 unsigned int nr_pages, unsigned int min_pages,
2577 bool oom_check)
2578 {
2579 unsigned long csize = nr_pages * PAGE_SIZE;
2580 struct mem_cgroup *mem_over_limit;
2581 struct res_counter *fail_res;
2582 unsigned long flags = 0;
2583 int ret;
2584
2585 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2586
2587 if (likely(!ret)) {
2588 if (!do_swap_account)
2589 return CHARGE_OK;
2590 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2591 if (likely(!ret))
2592 return CHARGE_OK;
2593
2594 res_counter_uncharge(&memcg->res, csize);
2595 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2596 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2597 } else
2598 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2599 /*
2600 * Never reclaim on behalf of optional batching, retry with a
2601 * single page instead.
2602 */
2603 if (nr_pages > min_pages)
2604 return CHARGE_RETRY;
2605
2606 if (!(gfp_mask & __GFP_WAIT))
2607 return CHARGE_WOULDBLOCK;
2608
2609 if (gfp_mask & __GFP_NORETRY)
2610 return CHARGE_NOMEM;
2611
2612 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2613 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2614 return CHARGE_RETRY;
2615 /*
2616 * Even though the limit is exceeded at this point, reclaim
2617 * may have been able to free some pages. Retry the charge
2618 * before killing the task.
2619 *
2620 * Only for regular pages, though: huge pages are rather
2621 * unlikely to succeed so close to the limit, and we fall back
2622 * to regular pages anyway in case of failure.
2623 */
2624 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2625 return CHARGE_RETRY;
2626
2627 /*
2628 * At task move, charge accounts can be doubly counted. So, it's
2629 * better to wait until the end of task_move if something is going on.
2630 */
2631 if (mem_cgroup_wait_acct_move(mem_over_limit))
2632 return CHARGE_RETRY;
2633
2634 /* If we don't need to call oom-killer at el, return immediately */
2635 if (!oom_check)
2636 return CHARGE_NOMEM;
2637 /* check OOM */
2638 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2639 return CHARGE_OOM_DIE;
2640
2641 return CHARGE_RETRY;
2642 }
2643
2644 /*
2645 * __mem_cgroup_try_charge() does
2646 * 1. detect memcg to be charged against from passed *mm and *ptr,
2647 * 2. update res_counter
2648 * 3. call memory reclaim if necessary.
2649 *
2650 * In some special case, if the task is fatal, fatal_signal_pending() or
2651 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2652 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2653 * as possible without any hazards. 2: all pages should have a valid
2654 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2655 * pointer, that is treated as a charge to root_mem_cgroup.
2656 *
2657 * So __mem_cgroup_try_charge() will return
2658 * 0 ... on success, filling *ptr with a valid memcg pointer.
2659 * -ENOMEM ... charge failure because of resource limits.
2660 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2661 *
2662 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2663 * the oom-killer can be invoked.
2664 */
2665 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2666 gfp_t gfp_mask,
2667 unsigned int nr_pages,
2668 struct mem_cgroup **ptr,
2669 bool oom)
2670 {
2671 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2672 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2673 struct mem_cgroup *memcg = NULL;
2674 int ret;
2675
2676 /*
2677 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2678 * in system level. So, allow to go ahead dying process in addition to
2679 * MEMDIE process.
2680 */
2681 if (unlikely(test_thread_flag(TIF_MEMDIE)
2682 || fatal_signal_pending(current)))
2683 goto bypass;
2684
2685 /*
2686 * We always charge the cgroup the mm_struct belongs to.
2687 * The mm_struct's mem_cgroup changes on task migration if the
2688 * thread group leader migrates. It's possible that mm is not
2689 * set, if so charge the root memcg (happens for pagecache usage).
2690 */
2691 if (!*ptr && !mm)
2692 *ptr = root_mem_cgroup;
2693 again:
2694 if (*ptr) { /* css should be a valid one */
2695 memcg = *ptr;
2696 if (mem_cgroup_is_root(memcg))
2697 goto done;
2698 if (consume_stock(memcg, nr_pages))
2699 goto done;
2700 css_get(&memcg->css);
2701 } else {
2702 struct task_struct *p;
2703
2704 rcu_read_lock();
2705 p = rcu_dereference(mm->owner);
2706 /*
2707 * Because we don't have task_lock(), "p" can exit.
2708 * In that case, "memcg" can point to root or p can be NULL with
2709 * race with swapoff. Then, we have small risk of mis-accouning.
2710 * But such kind of mis-account by race always happens because
2711 * we don't have cgroup_mutex(). It's overkill and we allo that
2712 * small race, here.
2713 * (*) swapoff at el will charge against mm-struct not against
2714 * task-struct. So, mm->owner can be NULL.
2715 */
2716 memcg = mem_cgroup_from_task(p);
2717 if (!memcg)
2718 memcg = root_mem_cgroup;
2719 if (mem_cgroup_is_root(memcg)) {
2720 rcu_read_unlock();
2721 goto done;
2722 }
2723 if (consume_stock(memcg, nr_pages)) {
2724 /*
2725 * It seems dagerous to access memcg without css_get().
2726 * But considering how consume_stok works, it's not
2727 * necessary. If consume_stock success, some charges
2728 * from this memcg are cached on this cpu. So, we
2729 * don't need to call css_get()/css_tryget() before
2730 * calling consume_stock().
2731 */
2732 rcu_read_unlock();
2733 goto done;
2734 }
2735 /* after here, we may be blocked. we need to get refcnt */
2736 if (!css_tryget(&memcg->css)) {
2737 rcu_read_unlock();
2738 goto again;
2739 }
2740 rcu_read_unlock();
2741 }
2742
2743 do {
2744 bool oom_check;
2745
2746 /* If killed, bypass charge */
2747 if (fatal_signal_pending(current)) {
2748 css_put(&memcg->css);
2749 goto bypass;
2750 }
2751
2752 oom_check = false;
2753 if (oom && !nr_oom_retries) {
2754 oom_check = true;
2755 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2756 }
2757
2758 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2759 oom_check);
2760 switch (ret) {
2761 case CHARGE_OK:
2762 break;
2763 case CHARGE_RETRY: /* not in OOM situation but retry */
2764 batch = nr_pages;
2765 css_put(&memcg->css);
2766 memcg = NULL;
2767 goto again;
2768 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2769 css_put(&memcg->css);
2770 goto nomem;
2771 case CHARGE_NOMEM: /* OOM routine works */
2772 if (!oom) {
2773 css_put(&memcg->css);
2774 goto nomem;
2775 }
2776 /* If oom, we never return -ENOMEM */
2777 nr_oom_retries--;
2778 break;
2779 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2780 css_put(&memcg->css);
2781 goto bypass;
2782 }
2783 } while (ret != CHARGE_OK);
2784
2785 if (batch > nr_pages)
2786 refill_stock(memcg, batch - nr_pages);
2787 css_put(&memcg->css);
2788 done:
2789 *ptr = memcg;
2790 return 0;
2791 nomem:
2792 *ptr = NULL;
2793 return -ENOMEM;
2794 bypass:
2795 *ptr = root_mem_cgroup;
2796 return -EINTR;
2797 }
2798
2799 /*
2800 * Somemtimes we have to undo a charge we got by try_charge().
2801 * This function is for that and do uncharge, put css's refcnt.
2802 * gotten by try_charge().
2803 */
2804 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2805 unsigned int nr_pages)
2806 {
2807 if (!mem_cgroup_is_root(memcg)) {
2808 unsigned long bytes = nr_pages * PAGE_SIZE;
2809
2810 res_counter_uncharge(&memcg->res, bytes);
2811 if (do_swap_account)
2812 res_counter_uncharge(&memcg->memsw, bytes);
2813 }
2814 }
2815
2816 /*
2817 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2818 * This is useful when moving usage to parent cgroup.
2819 */
2820 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2821 unsigned int nr_pages)
2822 {
2823 unsigned long bytes = nr_pages * PAGE_SIZE;
2824
2825 if (mem_cgroup_is_root(memcg))
2826 return;
2827
2828 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2829 if (do_swap_account)
2830 res_counter_uncharge_until(&memcg->memsw,
2831 memcg->memsw.parent, bytes);
2832 }
2833
2834 /*
2835 * A helper function to get mem_cgroup from ID. must be called under
2836 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2837 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2838 * called against removed memcg.)
2839 */
2840 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2841 {
2842 struct cgroup_subsys_state *css;
2843
2844 /* ID 0 is unused ID */
2845 if (!id)
2846 return NULL;
2847 css = css_lookup(&mem_cgroup_subsys, id);
2848 if (!css)
2849 return NULL;
2850 return mem_cgroup_from_css(css);
2851 }
2852
2853 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2854 {
2855 struct mem_cgroup *memcg = NULL;
2856 struct page_cgroup *pc;
2857 unsigned short id;
2858 swp_entry_t ent;
2859
2860 VM_BUG_ON(!PageLocked(page));
2861
2862 pc = lookup_page_cgroup(page);
2863 lock_page_cgroup(pc);
2864 if (PageCgroupUsed(pc)) {
2865 memcg = pc->mem_cgroup;
2866 if (memcg && !css_tryget(&memcg->css))
2867 memcg = NULL;
2868 } else if (PageSwapCache(page)) {
2869 ent.val = page_private(page);
2870 id = lookup_swap_cgroup_id(ent);
2871 rcu_read_lock();
2872 memcg = mem_cgroup_lookup(id);
2873 if (memcg && !css_tryget(&memcg->css))
2874 memcg = NULL;
2875 rcu_read_unlock();
2876 }
2877 unlock_page_cgroup(pc);
2878 return memcg;
2879 }
2880
2881 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2882 struct page *page,
2883 unsigned int nr_pages,
2884 enum charge_type ctype,
2885 bool lrucare)
2886 {
2887 struct page_cgroup *pc = lookup_page_cgroup(page);
2888 struct zone *uninitialized_var(zone);
2889 struct lruvec *lruvec;
2890 bool was_on_lru = false;
2891 bool anon;
2892
2893 lock_page_cgroup(pc);
2894 VM_BUG_ON(PageCgroupUsed(pc));
2895 /*
2896 * we don't need page_cgroup_lock about tail pages, becase they are not
2897 * accessed by any other context at this point.
2898 */
2899
2900 /*
2901 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2902 * may already be on some other mem_cgroup's LRU. Take care of it.
2903 */
2904 if (lrucare) {
2905 zone = page_zone(page);
2906 spin_lock_irq(&zone->lru_lock);
2907 if (PageLRU(page)) {
2908 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2909 ClearPageLRU(page);
2910 del_page_from_lru_list(page, lruvec, page_lru(page));
2911 was_on_lru = true;
2912 }
2913 }
2914
2915 pc->mem_cgroup = memcg;
2916 /*
2917 * We access a page_cgroup asynchronously without lock_page_cgroup().
2918 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2919 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2920 * before USED bit, we need memory barrier here.
2921 * See mem_cgroup_add_lru_list(), etc.
2922 */
2923 smp_wmb();
2924 SetPageCgroupUsed(pc);
2925
2926 if (lrucare) {
2927 if (was_on_lru) {
2928 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2929 VM_BUG_ON(PageLRU(page));
2930 SetPageLRU(page);
2931 add_page_to_lru_list(page, lruvec, page_lru(page));
2932 }
2933 spin_unlock_irq(&zone->lru_lock);
2934 }
2935
2936 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2937 anon = true;
2938 else
2939 anon = false;
2940
2941 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2942 unlock_page_cgroup(pc);
2943
2944 /*
2945 * "charge_statistics" updated event counter. Then, check it.
2946 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2947 * if they exceeds softlimit.
2948 */
2949 memcg_check_events(memcg, page);
2950 }
2951
2952 static DEFINE_MUTEX(set_limit_mutex);
2953
2954 #ifdef CONFIG_MEMCG_KMEM
2955 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2956 {
2957 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2958 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2959 }
2960
2961 /*
2962 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2963 * in the memcg_cache_params struct.
2964 */
2965 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2966 {
2967 struct kmem_cache *cachep;
2968
2969 VM_BUG_ON(p->is_root_cache);
2970 cachep = p->root_cache;
2971 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2972 }
2973
2974 #ifdef CONFIG_SLABINFO
2975 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2976 struct seq_file *m)
2977 {
2978 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2979 struct memcg_cache_params *params;
2980
2981 if (!memcg_can_account_kmem(memcg))
2982 return -EIO;
2983
2984 print_slabinfo_header(m);
2985
2986 mutex_lock(&memcg->slab_caches_mutex);
2987 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2988 cache_show(memcg_params_to_cache(params), m);
2989 mutex_unlock(&memcg->slab_caches_mutex);
2990
2991 return 0;
2992 }
2993 #endif
2994
2995 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2996 {
2997 struct res_counter *fail_res;
2998 struct mem_cgroup *_memcg;
2999 int ret = 0;
3000 bool may_oom;
3001
3002 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3003 if (ret)
3004 return ret;
3005
3006 /*
3007 * Conditions under which we can wait for the oom_killer. Those are
3008 * the same conditions tested by the core page allocator
3009 */
3010 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3011
3012 _memcg = memcg;
3013 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3014 &_memcg, may_oom);
3015
3016 if (ret == -EINTR) {
3017 /*
3018 * __mem_cgroup_try_charge() chosed to bypass to root due to
3019 * OOM kill or fatal signal. Since our only options are to
3020 * either fail the allocation or charge it to this cgroup, do
3021 * it as a temporary condition. But we can't fail. From a
3022 * kmem/slab perspective, the cache has already been selected,
3023 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3024 * our minds.
3025 *
3026 * This condition will only trigger if the task entered
3027 * memcg_charge_kmem in a sane state, but was OOM-killed during
3028 * __mem_cgroup_try_charge() above. Tasks that were already
3029 * dying when the allocation triggers should have been already
3030 * directed to the root cgroup in memcontrol.h
3031 */
3032 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3033 if (do_swap_account)
3034 res_counter_charge_nofail(&memcg->memsw, size,
3035 &fail_res);
3036 ret = 0;
3037 } else if (ret)
3038 res_counter_uncharge(&memcg->kmem, size);
3039
3040 return ret;
3041 }
3042
3043 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3044 {
3045 res_counter_uncharge(&memcg->res, size);
3046 if (do_swap_account)
3047 res_counter_uncharge(&memcg->memsw, size);
3048
3049 /* Not down to 0 */
3050 if (res_counter_uncharge(&memcg->kmem, size))
3051 return;
3052
3053 if (memcg_kmem_test_and_clear_dead(memcg))
3054 mem_cgroup_put(memcg);
3055 }
3056
3057 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3058 {
3059 if (!memcg)
3060 return;
3061
3062 mutex_lock(&memcg->slab_caches_mutex);
3063 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3064 mutex_unlock(&memcg->slab_caches_mutex);
3065 }
3066
3067 /*
3068 * helper for acessing a memcg's index. It will be used as an index in the
3069 * child cache array in kmem_cache, and also to derive its name. This function
3070 * will return -1 when this is not a kmem-limited memcg.
3071 */
3072 int memcg_cache_id(struct mem_cgroup *memcg)
3073 {
3074 return memcg ? memcg->kmemcg_id : -1;
3075 }
3076
3077 /*
3078 * This ends up being protected by the set_limit mutex, during normal
3079 * operation, because that is its main call site.
3080 *
3081 * But when we create a new cache, we can call this as well if its parent
3082 * is kmem-limited. That will have to hold set_limit_mutex as well.
3083 */
3084 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3085 {
3086 int num, ret;
3087
3088 num = ida_simple_get(&kmem_limited_groups,
3089 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3090 if (num < 0)
3091 return num;
3092 /*
3093 * After this point, kmem_accounted (that we test atomically in
3094 * the beginning of this conditional), is no longer 0. This
3095 * guarantees only one process will set the following boolean
3096 * to true. We don't need test_and_set because we're protected
3097 * by the set_limit_mutex anyway.
3098 */
3099 memcg_kmem_set_activated(memcg);
3100
3101 ret = memcg_update_all_caches(num+1);
3102 if (ret) {
3103 ida_simple_remove(&kmem_limited_groups, num);
3104 memcg_kmem_clear_activated(memcg);
3105 return ret;
3106 }
3107
3108 memcg->kmemcg_id = num;
3109 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3110 mutex_init(&memcg->slab_caches_mutex);
3111 return 0;
3112 }
3113
3114 static size_t memcg_caches_array_size(int num_groups)
3115 {
3116 ssize_t size;
3117 if (num_groups <= 0)
3118 return 0;
3119
3120 size = 2 * num_groups;
3121 if (size < MEMCG_CACHES_MIN_SIZE)
3122 size = MEMCG_CACHES_MIN_SIZE;
3123 else if (size > MEMCG_CACHES_MAX_SIZE)
3124 size = MEMCG_CACHES_MAX_SIZE;
3125
3126 return size;
3127 }
3128
3129 /*
3130 * We should update the current array size iff all caches updates succeed. This
3131 * can only be done from the slab side. The slab mutex needs to be held when
3132 * calling this.
3133 */
3134 void memcg_update_array_size(int num)
3135 {
3136 if (num > memcg_limited_groups_array_size)
3137 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3138 }
3139
3140 static void kmem_cache_destroy_work_func(struct work_struct *w);
3141
3142 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3143 {
3144 struct memcg_cache_params *cur_params = s->memcg_params;
3145
3146 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3147
3148 if (num_groups > memcg_limited_groups_array_size) {
3149 int i;
3150 ssize_t size = memcg_caches_array_size(num_groups);
3151
3152 size *= sizeof(void *);
3153 size += sizeof(struct memcg_cache_params);
3154
3155 s->memcg_params = kzalloc(size, GFP_KERNEL);
3156 if (!s->memcg_params) {
3157 s->memcg_params = cur_params;
3158 return -ENOMEM;
3159 }
3160
3161 s->memcg_params->is_root_cache = true;
3162
3163 /*
3164 * There is the chance it will be bigger than
3165 * memcg_limited_groups_array_size, if we failed an allocation
3166 * in a cache, in which case all caches updated before it, will
3167 * have a bigger array.
3168 *
3169 * But if that is the case, the data after
3170 * memcg_limited_groups_array_size is certainly unused
3171 */
3172 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3173 if (!cur_params->memcg_caches[i])
3174 continue;
3175 s->memcg_params->memcg_caches[i] =
3176 cur_params->memcg_caches[i];
3177 }
3178
3179 /*
3180 * Ideally, we would wait until all caches succeed, and only
3181 * then free the old one. But this is not worth the extra
3182 * pointer per-cache we'd have to have for this.
3183 *
3184 * It is not a big deal if some caches are left with a size
3185 * bigger than the others. And all updates will reset this
3186 * anyway.
3187 */
3188 kfree(cur_params);
3189 }
3190 return 0;
3191 }
3192
3193 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3194 struct kmem_cache *root_cache)
3195 {
3196 size_t size = sizeof(struct memcg_cache_params);
3197
3198 if (!memcg_kmem_enabled())
3199 return 0;
3200
3201 if (!memcg)
3202 size += memcg_limited_groups_array_size * sizeof(void *);
3203
3204 s->memcg_params = kzalloc(size, GFP_KERNEL);
3205 if (!s->memcg_params)
3206 return -ENOMEM;
3207
3208 INIT_WORK(&s->memcg_params->destroy,
3209 kmem_cache_destroy_work_func);
3210 if (memcg) {
3211 s->memcg_params->memcg = memcg;
3212 s->memcg_params->root_cache = root_cache;
3213 } else
3214 s->memcg_params->is_root_cache = true;
3215
3216 return 0;
3217 }
3218
3219 void memcg_release_cache(struct kmem_cache *s)
3220 {
3221 struct kmem_cache *root;
3222 struct mem_cgroup *memcg;
3223 int id;
3224
3225 /*
3226 * This happens, for instance, when a root cache goes away before we
3227 * add any memcg.
3228 */
3229 if (!s->memcg_params)
3230 return;
3231
3232 if (s->memcg_params->is_root_cache)
3233 goto out;
3234
3235 memcg = s->memcg_params->memcg;
3236 id = memcg_cache_id(memcg);
3237
3238 root = s->memcg_params->root_cache;
3239 root->memcg_params->memcg_caches[id] = NULL;
3240
3241 mutex_lock(&memcg->slab_caches_mutex);
3242 list_del(&s->memcg_params->list);
3243 mutex_unlock(&memcg->slab_caches_mutex);
3244
3245 mem_cgroup_put(memcg);
3246 out:
3247 kfree(s->memcg_params);
3248 }
3249
3250 /*
3251 * During the creation a new cache, we need to disable our accounting mechanism
3252 * altogether. This is true even if we are not creating, but rather just
3253 * enqueing new caches to be created.
3254 *
3255 * This is because that process will trigger allocations; some visible, like
3256 * explicit kmallocs to auxiliary data structures, name strings and internal
3257 * cache structures; some well concealed, like INIT_WORK() that can allocate
3258 * objects during debug.
3259 *
3260 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3261 * to it. This may not be a bounded recursion: since the first cache creation
3262 * failed to complete (waiting on the allocation), we'll just try to create the
3263 * cache again, failing at the same point.
3264 *
3265 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3266 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3267 * inside the following two functions.
3268 */
3269 static inline void memcg_stop_kmem_account(void)
3270 {
3271 VM_BUG_ON(!current->mm);
3272 current->memcg_kmem_skip_account++;
3273 }
3274
3275 static inline void memcg_resume_kmem_account(void)
3276 {
3277 VM_BUG_ON(!current->mm);
3278 current->memcg_kmem_skip_account--;
3279 }
3280
3281 static void kmem_cache_destroy_work_func(struct work_struct *w)
3282 {
3283 struct kmem_cache *cachep;
3284 struct memcg_cache_params *p;
3285
3286 p = container_of(w, struct memcg_cache_params, destroy);
3287
3288 cachep = memcg_params_to_cache(p);
3289
3290 /*
3291 * If we get down to 0 after shrink, we could delete right away.
3292 * However, memcg_release_pages() already puts us back in the workqueue
3293 * in that case. If we proceed deleting, we'll get a dangling
3294 * reference, and removing the object from the workqueue in that case
3295 * is unnecessary complication. We are not a fast path.
3296 *
3297 * Note that this case is fundamentally different from racing with
3298 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3299 * kmem_cache_shrink, not only we would be reinserting a dead cache
3300 * into the queue, but doing so from inside the worker racing to
3301 * destroy it.
3302 *
3303 * So if we aren't down to zero, we'll just schedule a worker and try
3304 * again
3305 */
3306 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3307 kmem_cache_shrink(cachep);
3308 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3309 return;
3310 } else
3311 kmem_cache_destroy(cachep);
3312 }
3313
3314 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3315 {
3316 if (!cachep->memcg_params->dead)
3317 return;
3318
3319 /*
3320 * There are many ways in which we can get here.
3321 *
3322 * We can get to a memory-pressure situation while the delayed work is
3323 * still pending to run. The vmscan shrinkers can then release all
3324 * cache memory and get us to destruction. If this is the case, we'll
3325 * be executed twice, which is a bug (the second time will execute over
3326 * bogus data). In this case, cancelling the work should be fine.
3327 *
3328 * But we can also get here from the worker itself, if
3329 * kmem_cache_shrink is enough to shake all the remaining objects and
3330 * get the page count to 0. In this case, we'll deadlock if we try to
3331 * cancel the work (the worker runs with an internal lock held, which
3332 * is the same lock we would hold for cancel_work_sync().)
3333 *
3334 * Since we can't possibly know who got us here, just refrain from
3335 * running if there is already work pending
3336 */
3337 if (work_pending(&cachep->memcg_params->destroy))
3338 return;
3339 /*
3340 * We have to defer the actual destroying to a workqueue, because
3341 * we might currently be in a context that cannot sleep.
3342 */
3343 schedule_work(&cachep->memcg_params->destroy);
3344 }
3345
3346 /*
3347 * This lock protects updaters, not readers. We want readers to be as fast as
3348 * they can, and they will either see NULL or a valid cache value. Our model
3349 * allow them to see NULL, in which case the root memcg will be selected.
3350 *
3351 * We need this lock because multiple allocations to the same cache from a non
3352 * will span more than one worker. Only one of them can create the cache.
3353 */
3354 static DEFINE_MUTEX(memcg_cache_mutex);
3355
3356 /*
3357 * Called with memcg_cache_mutex held
3358 */
3359 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3360 struct kmem_cache *s)
3361 {
3362 struct kmem_cache *new;
3363 static char *tmp_name = NULL;
3364
3365 lockdep_assert_held(&memcg_cache_mutex);
3366
3367 /*
3368 * kmem_cache_create_memcg duplicates the given name and
3369 * cgroup_name for this name requires RCU context.
3370 * This static temporary buffer is used to prevent from
3371 * pointless shortliving allocation.
3372 */
3373 if (!tmp_name) {
3374 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3375 if (!tmp_name)
3376 return NULL;
3377 }
3378
3379 rcu_read_lock();
3380 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3381 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3382 rcu_read_unlock();
3383
3384 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3385 (s->flags & ~SLAB_PANIC), s->ctor, s);
3386
3387 if (new)
3388 new->allocflags |= __GFP_KMEMCG;
3389
3390 return new;
3391 }
3392
3393 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3394 struct kmem_cache *cachep)
3395 {
3396 struct kmem_cache *new_cachep;
3397 int idx;
3398
3399 BUG_ON(!memcg_can_account_kmem(memcg));
3400
3401 idx = memcg_cache_id(memcg);
3402
3403 mutex_lock(&memcg_cache_mutex);
3404 new_cachep = cachep->memcg_params->memcg_caches[idx];
3405 if (new_cachep)
3406 goto out;
3407
3408 new_cachep = kmem_cache_dup(memcg, cachep);
3409 if (new_cachep == NULL) {
3410 new_cachep = cachep;
3411 goto out;
3412 }
3413
3414 mem_cgroup_get(memcg);
3415 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3416
3417 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3418 /*
3419 * the readers won't lock, make sure everybody sees the updated value,
3420 * so they won't put stuff in the queue again for no reason
3421 */
3422 wmb();
3423 out:
3424 mutex_unlock(&memcg_cache_mutex);
3425 return new_cachep;
3426 }
3427
3428 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3429 {
3430 struct kmem_cache *c;
3431 int i;
3432
3433 if (!s->memcg_params)
3434 return;
3435 if (!s->memcg_params->is_root_cache)
3436 return;
3437
3438 /*
3439 * If the cache is being destroyed, we trust that there is no one else
3440 * requesting objects from it. Even if there are, the sanity checks in
3441 * kmem_cache_destroy should caught this ill-case.
3442 *
3443 * Still, we don't want anyone else freeing memcg_caches under our
3444 * noses, which can happen if a new memcg comes to life. As usual,
3445 * we'll take the set_limit_mutex to protect ourselves against this.
3446 */
3447 mutex_lock(&set_limit_mutex);
3448 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3449 c = s->memcg_params->memcg_caches[i];
3450 if (!c)
3451 continue;
3452
3453 /*
3454 * We will now manually delete the caches, so to avoid races
3455 * we need to cancel all pending destruction workers and
3456 * proceed with destruction ourselves.
3457 *
3458 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3459 * and that could spawn the workers again: it is likely that
3460 * the cache still have active pages until this very moment.
3461 * This would lead us back to mem_cgroup_destroy_cache.
3462 *
3463 * But that will not execute at all if the "dead" flag is not
3464 * set, so flip it down to guarantee we are in control.
3465 */
3466 c->memcg_params->dead = false;
3467 cancel_work_sync(&c->memcg_params->destroy);
3468 kmem_cache_destroy(c);
3469 }
3470 mutex_unlock(&set_limit_mutex);
3471 }
3472
3473 struct create_work {
3474 struct mem_cgroup *memcg;
3475 struct kmem_cache *cachep;
3476 struct work_struct work;
3477 };
3478
3479 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3480 {
3481 struct kmem_cache *cachep;
3482 struct memcg_cache_params *params;
3483
3484 if (!memcg_kmem_is_active(memcg))
3485 return;
3486
3487 mutex_lock(&memcg->slab_caches_mutex);
3488 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3489 cachep = memcg_params_to_cache(params);
3490 cachep->memcg_params->dead = true;
3491 schedule_work(&cachep->memcg_params->destroy);
3492 }
3493 mutex_unlock(&memcg->slab_caches_mutex);
3494 }
3495
3496 static void memcg_create_cache_work_func(struct work_struct *w)
3497 {
3498 struct create_work *cw;
3499
3500 cw = container_of(w, struct create_work, work);
3501 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3502 /* Drop the reference gotten when we enqueued. */
3503 css_put(&cw->memcg->css);
3504 kfree(cw);
3505 }
3506
3507 /*
3508 * Enqueue the creation of a per-memcg kmem_cache.
3509 */
3510 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3511 struct kmem_cache *cachep)
3512 {
3513 struct create_work *cw;
3514
3515 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3516 if (cw == NULL) {
3517 css_put(&memcg->css);
3518 return;
3519 }
3520
3521 cw->memcg = memcg;
3522 cw->cachep = cachep;
3523
3524 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3525 schedule_work(&cw->work);
3526 }
3527
3528 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3529 struct kmem_cache *cachep)
3530 {
3531 /*
3532 * We need to stop accounting when we kmalloc, because if the
3533 * corresponding kmalloc cache is not yet created, the first allocation
3534 * in __memcg_create_cache_enqueue will recurse.
3535 *
3536 * However, it is better to enclose the whole function. Depending on
3537 * the debugging options enabled, INIT_WORK(), for instance, can
3538 * trigger an allocation. This too, will make us recurse. Because at
3539 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3540 * the safest choice is to do it like this, wrapping the whole function.
3541 */
3542 memcg_stop_kmem_account();
3543 __memcg_create_cache_enqueue(memcg, cachep);
3544 memcg_resume_kmem_account();
3545 }
3546 /*
3547 * Return the kmem_cache we're supposed to use for a slab allocation.
3548 * We try to use the current memcg's version of the cache.
3549 *
3550 * If the cache does not exist yet, if we are the first user of it,
3551 * we either create it immediately, if possible, or create it asynchronously
3552 * in a workqueue.
3553 * In the latter case, we will let the current allocation go through with
3554 * the original cache.
3555 *
3556 * Can't be called in interrupt context or from kernel threads.
3557 * This function needs to be called with rcu_read_lock() held.
3558 */
3559 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3560 gfp_t gfp)
3561 {
3562 struct mem_cgroup *memcg;
3563 int idx;
3564
3565 VM_BUG_ON(!cachep->memcg_params);
3566 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3567
3568 if (!current->mm || current->memcg_kmem_skip_account)
3569 return cachep;
3570
3571 rcu_read_lock();
3572 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3573
3574 if (!memcg_can_account_kmem(memcg))
3575 goto out;
3576
3577 idx = memcg_cache_id(memcg);
3578
3579 /*
3580 * barrier to mare sure we're always seeing the up to date value. The
3581 * code updating memcg_caches will issue a write barrier to match this.
3582 */
3583 read_barrier_depends();
3584 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3585 cachep = cachep->memcg_params->memcg_caches[idx];
3586 goto out;
3587 }
3588
3589 /* The corresponding put will be done in the workqueue. */
3590 if (!css_tryget(&memcg->css))
3591 goto out;
3592 rcu_read_unlock();
3593
3594 /*
3595 * If we are in a safe context (can wait, and not in interrupt
3596 * context), we could be be predictable and return right away.
3597 * This would guarantee that the allocation being performed
3598 * already belongs in the new cache.
3599 *
3600 * However, there are some clashes that can arrive from locking.
3601 * For instance, because we acquire the slab_mutex while doing
3602 * kmem_cache_dup, this means no further allocation could happen
3603 * with the slab_mutex held.
3604 *
3605 * Also, because cache creation issue get_online_cpus(), this
3606 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3607 * that ends up reversed during cpu hotplug. (cpuset allocates
3608 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3609 * better to defer everything.
3610 */
3611 memcg_create_cache_enqueue(memcg, cachep);
3612 return cachep;
3613 out:
3614 rcu_read_unlock();
3615 return cachep;
3616 }
3617 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3618
3619 /*
3620 * We need to verify if the allocation against current->mm->owner's memcg is
3621 * possible for the given order. But the page is not allocated yet, so we'll
3622 * need a further commit step to do the final arrangements.
3623 *
3624 * It is possible for the task to switch cgroups in this mean time, so at
3625 * commit time, we can't rely on task conversion any longer. We'll then use
3626 * the handle argument to return to the caller which cgroup we should commit
3627 * against. We could also return the memcg directly and avoid the pointer
3628 * passing, but a boolean return value gives better semantics considering
3629 * the compiled-out case as well.
3630 *
3631 * Returning true means the allocation is possible.
3632 */
3633 bool
3634 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3635 {
3636 struct mem_cgroup *memcg;
3637 int ret;
3638
3639 *_memcg = NULL;
3640 memcg = try_get_mem_cgroup_from_mm(current->mm);
3641
3642 /*
3643 * very rare case described in mem_cgroup_from_task. Unfortunately there
3644 * isn't much we can do without complicating this too much, and it would
3645 * be gfp-dependent anyway. Just let it go
3646 */
3647 if (unlikely(!memcg))
3648 return true;
3649
3650 if (!memcg_can_account_kmem(memcg)) {
3651 css_put(&memcg->css);
3652 return true;
3653 }
3654
3655 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3656 if (!ret)
3657 *_memcg = memcg;
3658
3659 css_put(&memcg->css);
3660 return (ret == 0);
3661 }
3662
3663 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3664 int order)
3665 {
3666 struct page_cgroup *pc;
3667
3668 VM_BUG_ON(mem_cgroup_is_root(memcg));
3669
3670 /* The page allocation failed. Revert */
3671 if (!page) {
3672 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3673 return;
3674 }
3675
3676 pc = lookup_page_cgroup(page);
3677 lock_page_cgroup(pc);
3678 pc->mem_cgroup = memcg;
3679 SetPageCgroupUsed(pc);
3680 unlock_page_cgroup(pc);
3681 }
3682
3683 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3684 {
3685 struct mem_cgroup *memcg = NULL;
3686 struct page_cgroup *pc;
3687
3688
3689 pc = lookup_page_cgroup(page);
3690 /*
3691 * Fast unlocked return. Theoretically might have changed, have to
3692 * check again after locking.
3693 */
3694 if (!PageCgroupUsed(pc))
3695 return;
3696
3697 lock_page_cgroup(pc);
3698 if (PageCgroupUsed(pc)) {
3699 memcg = pc->mem_cgroup;
3700 ClearPageCgroupUsed(pc);
3701 }
3702 unlock_page_cgroup(pc);
3703
3704 /*
3705 * We trust that only if there is a memcg associated with the page, it
3706 * is a valid allocation
3707 */
3708 if (!memcg)
3709 return;
3710
3711 VM_BUG_ON(mem_cgroup_is_root(memcg));
3712 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3713 }
3714 #else
3715 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3716 {
3717 }
3718 #endif /* CONFIG_MEMCG_KMEM */
3719
3720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3721
3722 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3723 /*
3724 * Because tail pages are not marked as "used", set it. We're under
3725 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3726 * charge/uncharge will be never happen and move_account() is done under
3727 * compound_lock(), so we don't have to take care of races.
3728 */
3729 void mem_cgroup_split_huge_fixup(struct page *head)
3730 {
3731 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3732 struct page_cgroup *pc;
3733 struct mem_cgroup *memcg;
3734 int i;
3735
3736 if (mem_cgroup_disabled())
3737 return;
3738
3739 memcg = head_pc->mem_cgroup;
3740 for (i = 1; i < HPAGE_PMD_NR; i++) {
3741 pc = head_pc + i;
3742 pc->mem_cgroup = memcg;
3743 smp_wmb();/* see __commit_charge() */
3744 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3745 }
3746 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3747 HPAGE_PMD_NR);
3748 }
3749 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3750
3751 /**
3752 * mem_cgroup_move_account - move account of the page
3753 * @page: the page
3754 * @nr_pages: number of regular pages (>1 for huge pages)
3755 * @pc: page_cgroup of the page.
3756 * @from: mem_cgroup which the page is moved from.
3757 * @to: mem_cgroup which the page is moved to. @from != @to.
3758 *
3759 * The caller must confirm following.
3760 * - page is not on LRU (isolate_page() is useful.)
3761 * - compound_lock is held when nr_pages > 1
3762 *
3763 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3764 * from old cgroup.
3765 */
3766 static int mem_cgroup_move_account(struct page *page,
3767 unsigned int nr_pages,
3768 struct page_cgroup *pc,
3769 struct mem_cgroup *from,
3770 struct mem_cgroup *to)
3771 {
3772 unsigned long flags;
3773 int ret;
3774 bool anon = PageAnon(page);
3775
3776 VM_BUG_ON(from == to);
3777 VM_BUG_ON(PageLRU(page));
3778 /*
3779 * The page is isolated from LRU. So, collapse function
3780 * will not handle this page. But page splitting can happen.
3781 * Do this check under compound_page_lock(). The caller should
3782 * hold it.
3783 */
3784 ret = -EBUSY;
3785 if (nr_pages > 1 && !PageTransHuge(page))
3786 goto out;
3787
3788 lock_page_cgroup(pc);
3789
3790 ret = -EINVAL;
3791 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3792 goto unlock;
3793
3794 move_lock_mem_cgroup(from, &flags);
3795
3796 if (!anon && page_mapped(page)) {
3797 /* Update mapped_file data for mem_cgroup */
3798 preempt_disable();
3799 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3800 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3801 preempt_enable();
3802 }
3803 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3804
3805 /* caller should have done css_get */
3806 pc->mem_cgroup = to;
3807 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3808 move_unlock_mem_cgroup(from, &flags);
3809 ret = 0;
3810 unlock:
3811 unlock_page_cgroup(pc);
3812 /*
3813 * check events
3814 */
3815 memcg_check_events(to, page);
3816 memcg_check_events(from, page);
3817 out:
3818 return ret;
3819 }
3820
3821 /**
3822 * mem_cgroup_move_parent - moves page to the parent group
3823 * @page: the page to move
3824 * @pc: page_cgroup of the page
3825 * @child: page's cgroup
3826 *
3827 * move charges to its parent or the root cgroup if the group has no
3828 * parent (aka use_hierarchy==0).
3829 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3830 * mem_cgroup_move_account fails) the failure is always temporary and
3831 * it signals a race with a page removal/uncharge or migration. In the
3832 * first case the page is on the way out and it will vanish from the LRU
3833 * on the next attempt and the call should be retried later.
3834 * Isolation from the LRU fails only if page has been isolated from
3835 * the LRU since we looked at it and that usually means either global
3836 * reclaim or migration going on. The page will either get back to the
3837 * LRU or vanish.
3838 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3839 * (!PageCgroupUsed) or moved to a different group. The page will
3840 * disappear in the next attempt.
3841 */
3842 static int mem_cgroup_move_parent(struct page *page,
3843 struct page_cgroup *pc,
3844 struct mem_cgroup *child)
3845 {
3846 struct mem_cgroup *parent;
3847 unsigned int nr_pages;
3848 unsigned long uninitialized_var(flags);
3849 int ret;
3850
3851 VM_BUG_ON(mem_cgroup_is_root(child));
3852
3853 ret = -EBUSY;
3854 if (!get_page_unless_zero(page))
3855 goto out;
3856 if (isolate_lru_page(page))
3857 goto put;
3858
3859 nr_pages = hpage_nr_pages(page);
3860
3861 parent = parent_mem_cgroup(child);
3862 /*
3863 * If no parent, move charges to root cgroup.
3864 */
3865 if (!parent)
3866 parent = root_mem_cgroup;
3867
3868 if (nr_pages > 1) {
3869 VM_BUG_ON(!PageTransHuge(page));
3870 flags = compound_lock_irqsave(page);
3871 }
3872
3873 ret = mem_cgroup_move_account(page, nr_pages,
3874 pc, child, parent);
3875 if (!ret)
3876 __mem_cgroup_cancel_local_charge(child, nr_pages);
3877
3878 if (nr_pages > 1)
3879 compound_unlock_irqrestore(page, flags);
3880 putback_lru_page(page);
3881 put:
3882 put_page(page);
3883 out:
3884 return ret;
3885 }
3886
3887 /*
3888 * Charge the memory controller for page usage.
3889 * Return
3890 * 0 if the charge was successful
3891 * < 0 if the cgroup is over its limit
3892 */
3893 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3894 gfp_t gfp_mask, enum charge_type ctype)
3895 {
3896 struct mem_cgroup *memcg = NULL;
3897 unsigned int nr_pages = 1;
3898 bool oom = true;
3899 int ret;
3900
3901 if (PageTransHuge(page)) {
3902 nr_pages <<= compound_order(page);
3903 VM_BUG_ON(!PageTransHuge(page));
3904 /*
3905 * Never OOM-kill a process for a huge page. The
3906 * fault handler will fall back to regular pages.
3907 */
3908 oom = false;
3909 }
3910
3911 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3912 if (ret == -ENOMEM)
3913 return ret;
3914 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3915 return 0;
3916 }
3917
3918 int mem_cgroup_newpage_charge(struct page *page,
3919 struct mm_struct *mm, gfp_t gfp_mask)
3920 {
3921 if (mem_cgroup_disabled())
3922 return 0;
3923 VM_BUG_ON(page_mapped(page));
3924 VM_BUG_ON(page->mapping && !PageAnon(page));
3925 VM_BUG_ON(!mm);
3926 return mem_cgroup_charge_common(page, mm, gfp_mask,
3927 MEM_CGROUP_CHARGE_TYPE_ANON);
3928 }
3929
3930 /*
3931 * While swap-in, try_charge -> commit or cancel, the page is locked.
3932 * And when try_charge() successfully returns, one refcnt to memcg without
3933 * struct page_cgroup is acquired. This refcnt will be consumed by
3934 * "commit()" or removed by "cancel()"
3935 */
3936 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3937 struct page *page,
3938 gfp_t mask,
3939 struct mem_cgroup **memcgp)
3940 {
3941 struct mem_cgroup *memcg;
3942 struct page_cgroup *pc;
3943 int ret;
3944
3945 pc = lookup_page_cgroup(page);
3946 /*
3947 * Every swap fault against a single page tries to charge the
3948 * page, bail as early as possible. shmem_unuse() encounters
3949 * already charged pages, too. The USED bit is protected by
3950 * the page lock, which serializes swap cache removal, which
3951 * in turn serializes uncharging.
3952 */
3953 if (PageCgroupUsed(pc))
3954 return 0;
3955 if (!do_swap_account)
3956 goto charge_cur_mm;
3957 memcg = try_get_mem_cgroup_from_page(page);
3958 if (!memcg)
3959 goto charge_cur_mm;
3960 *memcgp = memcg;
3961 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3962 css_put(&memcg->css);
3963 if (ret == -EINTR)
3964 ret = 0;
3965 return ret;
3966 charge_cur_mm:
3967 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3968 if (ret == -EINTR)
3969 ret = 0;
3970 return ret;
3971 }
3972
3973 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3974 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3975 {
3976 *memcgp = NULL;
3977 if (mem_cgroup_disabled())
3978 return 0;
3979 /*
3980 * A racing thread's fault, or swapoff, may have already
3981 * updated the pte, and even removed page from swap cache: in
3982 * those cases unuse_pte()'s pte_same() test will fail; but
3983 * there's also a KSM case which does need to charge the page.
3984 */
3985 if (!PageSwapCache(page)) {
3986 int ret;
3987
3988 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3989 if (ret == -EINTR)
3990 ret = 0;
3991 return ret;
3992 }
3993 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3994 }
3995
3996 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3997 {
3998 if (mem_cgroup_disabled())
3999 return;
4000 if (!memcg)
4001 return;
4002 __mem_cgroup_cancel_charge(memcg, 1);
4003 }
4004
4005 static void
4006 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4007 enum charge_type ctype)
4008 {
4009 if (mem_cgroup_disabled())
4010 return;
4011 if (!memcg)
4012 return;
4013
4014 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4015 /*
4016 * Now swap is on-memory. This means this page may be
4017 * counted both as mem and swap....double count.
4018 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4019 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4020 * may call delete_from_swap_cache() before reach here.
4021 */
4022 if (do_swap_account && PageSwapCache(page)) {
4023 swp_entry_t ent = {.val = page_private(page)};
4024 mem_cgroup_uncharge_swap(ent);
4025 }
4026 }
4027
4028 void mem_cgroup_commit_charge_swapin(struct page *page,
4029 struct mem_cgroup *memcg)
4030 {
4031 __mem_cgroup_commit_charge_swapin(page, memcg,
4032 MEM_CGROUP_CHARGE_TYPE_ANON);
4033 }
4034
4035 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4036 gfp_t gfp_mask)
4037 {
4038 struct mem_cgroup *memcg = NULL;
4039 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4040 int ret;
4041
4042 if (mem_cgroup_disabled())
4043 return 0;
4044 if (PageCompound(page))
4045 return 0;
4046
4047 if (!PageSwapCache(page))
4048 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4049 else { /* page is swapcache/shmem */
4050 ret = __mem_cgroup_try_charge_swapin(mm, page,
4051 gfp_mask, &memcg);
4052 if (!ret)
4053 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4054 }
4055 return ret;
4056 }
4057
4058 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4059 unsigned int nr_pages,
4060 const enum charge_type ctype)
4061 {
4062 struct memcg_batch_info *batch = NULL;
4063 bool uncharge_memsw = true;
4064
4065 /* If swapout, usage of swap doesn't decrease */
4066 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4067 uncharge_memsw = false;
4068
4069 batch = &current->memcg_batch;
4070 /*
4071 * In usual, we do css_get() when we remember memcg pointer.
4072 * But in this case, we keep res->usage until end of a series of
4073 * uncharges. Then, it's ok to ignore memcg's refcnt.
4074 */
4075 if (!batch->memcg)
4076 batch->memcg = memcg;
4077 /*
4078 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4079 * In those cases, all pages freed continuously can be expected to be in
4080 * the same cgroup and we have chance to coalesce uncharges.
4081 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4082 * because we want to do uncharge as soon as possible.
4083 */
4084
4085 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4086 goto direct_uncharge;
4087
4088 if (nr_pages > 1)
4089 goto direct_uncharge;
4090
4091 /*
4092 * In typical case, batch->memcg == mem. This means we can
4093 * merge a series of uncharges to an uncharge of res_counter.
4094 * If not, we uncharge res_counter ony by one.
4095 */
4096 if (batch->memcg != memcg)
4097 goto direct_uncharge;
4098 /* remember freed charge and uncharge it later */
4099 batch->nr_pages++;
4100 if (uncharge_memsw)
4101 batch->memsw_nr_pages++;
4102 return;
4103 direct_uncharge:
4104 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4105 if (uncharge_memsw)
4106 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4107 if (unlikely(batch->memcg != memcg))
4108 memcg_oom_recover(memcg);
4109 }
4110
4111 /*
4112 * uncharge if !page_mapped(page)
4113 */
4114 static struct mem_cgroup *
4115 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4116 bool end_migration)
4117 {
4118 struct mem_cgroup *memcg = NULL;
4119 unsigned int nr_pages = 1;
4120 struct page_cgroup *pc;
4121 bool anon;
4122
4123 if (mem_cgroup_disabled())
4124 return NULL;
4125
4126 if (PageTransHuge(page)) {
4127 nr_pages <<= compound_order(page);
4128 VM_BUG_ON(!PageTransHuge(page));
4129 }
4130 /*
4131 * Check if our page_cgroup is valid
4132 */
4133 pc = lookup_page_cgroup(page);
4134 if (unlikely(!PageCgroupUsed(pc)))
4135 return NULL;
4136
4137 lock_page_cgroup(pc);
4138
4139 memcg = pc->mem_cgroup;
4140
4141 if (!PageCgroupUsed(pc))
4142 goto unlock_out;
4143
4144 anon = PageAnon(page);
4145
4146 switch (ctype) {
4147 case MEM_CGROUP_CHARGE_TYPE_ANON:
4148 /*
4149 * Generally PageAnon tells if it's the anon statistics to be
4150 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4151 * used before page reached the stage of being marked PageAnon.
4152 */
4153 anon = true;
4154 /* fallthrough */
4155 case MEM_CGROUP_CHARGE_TYPE_DROP:
4156 /* See mem_cgroup_prepare_migration() */
4157 if (page_mapped(page))
4158 goto unlock_out;
4159 /*
4160 * Pages under migration may not be uncharged. But
4161 * end_migration() /must/ be the one uncharging the
4162 * unused post-migration page and so it has to call
4163 * here with the migration bit still set. See the
4164 * res_counter handling below.
4165 */
4166 if (!end_migration && PageCgroupMigration(pc))
4167 goto unlock_out;
4168 break;
4169 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4170 if (!PageAnon(page)) { /* Shared memory */
4171 if (page->mapping && !page_is_file_cache(page))
4172 goto unlock_out;
4173 } else if (page_mapped(page)) /* Anon */
4174 goto unlock_out;
4175 break;
4176 default:
4177 break;
4178 }
4179
4180 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4181
4182 ClearPageCgroupUsed(pc);
4183 /*
4184 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4185 * freed from LRU. This is safe because uncharged page is expected not
4186 * to be reused (freed soon). Exception is SwapCache, it's handled by
4187 * special functions.
4188 */
4189
4190 unlock_page_cgroup(pc);
4191 /*
4192 * even after unlock, we have memcg->res.usage here and this memcg
4193 * will never be freed.
4194 */
4195 memcg_check_events(memcg, page);
4196 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4197 mem_cgroup_swap_statistics(memcg, true);
4198 mem_cgroup_get(memcg);
4199 }
4200 /*
4201 * Migration does not charge the res_counter for the
4202 * replacement page, so leave it alone when phasing out the
4203 * page that is unused after the migration.
4204 */
4205 if (!end_migration && !mem_cgroup_is_root(memcg))
4206 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4207
4208 return memcg;
4209
4210 unlock_out:
4211 unlock_page_cgroup(pc);
4212 return NULL;
4213 }
4214
4215 void mem_cgroup_uncharge_page(struct page *page)
4216 {
4217 /* early check. */
4218 if (page_mapped(page))
4219 return;
4220 VM_BUG_ON(page->mapping && !PageAnon(page));
4221 /*
4222 * If the page is in swap cache, uncharge should be deferred
4223 * to the swap path, which also properly accounts swap usage
4224 * and handles memcg lifetime.
4225 *
4226 * Note that this check is not stable and reclaim may add the
4227 * page to swap cache at any time after this. However, if the
4228 * page is not in swap cache by the time page->mapcount hits
4229 * 0, there won't be any page table references to the swap
4230 * slot, and reclaim will free it and not actually write the
4231 * page to disk.
4232 */
4233 if (PageSwapCache(page))
4234 return;
4235 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4236 }
4237
4238 void mem_cgroup_uncharge_cache_page(struct page *page)
4239 {
4240 VM_BUG_ON(page_mapped(page));
4241 VM_BUG_ON(page->mapping);
4242 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4243 }
4244
4245 /*
4246 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4247 * In that cases, pages are freed continuously and we can expect pages
4248 * are in the same memcg. All these calls itself limits the number of
4249 * pages freed at once, then uncharge_start/end() is called properly.
4250 * This may be called prural(2) times in a context,
4251 */
4252
4253 void mem_cgroup_uncharge_start(void)
4254 {
4255 current->memcg_batch.do_batch++;
4256 /* We can do nest. */
4257 if (current->memcg_batch.do_batch == 1) {
4258 current->memcg_batch.memcg = NULL;
4259 current->memcg_batch.nr_pages = 0;
4260 current->memcg_batch.memsw_nr_pages = 0;
4261 }
4262 }
4263
4264 void mem_cgroup_uncharge_end(void)
4265 {
4266 struct memcg_batch_info *batch = &current->memcg_batch;
4267
4268 if (!batch->do_batch)
4269 return;
4270
4271 batch->do_batch--;
4272 if (batch->do_batch) /* If stacked, do nothing. */
4273 return;
4274
4275 if (!batch->memcg)
4276 return;
4277 /*
4278 * This "batch->memcg" is valid without any css_get/put etc...
4279 * bacause we hide charges behind us.
4280 */
4281 if (batch->nr_pages)
4282 res_counter_uncharge(&batch->memcg->res,
4283 batch->nr_pages * PAGE_SIZE);
4284 if (batch->memsw_nr_pages)
4285 res_counter_uncharge(&batch->memcg->memsw,
4286 batch->memsw_nr_pages * PAGE_SIZE);
4287 memcg_oom_recover(batch->memcg);
4288 /* forget this pointer (for sanity check) */
4289 batch->memcg = NULL;
4290 }
4291
4292 #ifdef CONFIG_SWAP
4293 /*
4294 * called after __delete_from_swap_cache() and drop "page" account.
4295 * memcg information is recorded to swap_cgroup of "ent"
4296 */
4297 void
4298 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4299 {
4300 struct mem_cgroup *memcg;
4301 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4302
4303 if (!swapout) /* this was a swap cache but the swap is unused ! */
4304 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4305
4306 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4307
4308 /*
4309 * record memcg information, if swapout && memcg != NULL,
4310 * mem_cgroup_get() was called in uncharge().
4311 */
4312 if (do_swap_account && swapout && memcg)
4313 swap_cgroup_record(ent, css_id(&memcg->css));
4314 }
4315 #endif
4316
4317 #ifdef CONFIG_MEMCG_SWAP
4318 /*
4319 * called from swap_entry_free(). remove record in swap_cgroup and
4320 * uncharge "memsw" account.
4321 */
4322 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4323 {
4324 struct mem_cgroup *memcg;
4325 unsigned short id;
4326
4327 if (!do_swap_account)
4328 return;
4329
4330 id = swap_cgroup_record(ent, 0);
4331 rcu_read_lock();
4332 memcg = mem_cgroup_lookup(id);
4333 if (memcg) {
4334 /*
4335 * We uncharge this because swap is freed.
4336 * This memcg can be obsolete one. We avoid calling css_tryget
4337 */
4338 if (!mem_cgroup_is_root(memcg))
4339 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4340 mem_cgroup_swap_statistics(memcg, false);
4341 mem_cgroup_put(memcg);
4342 }
4343 rcu_read_unlock();
4344 }
4345
4346 /**
4347 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4348 * @entry: swap entry to be moved
4349 * @from: mem_cgroup which the entry is moved from
4350 * @to: mem_cgroup which the entry is moved to
4351 *
4352 * It succeeds only when the swap_cgroup's record for this entry is the same
4353 * as the mem_cgroup's id of @from.
4354 *
4355 * Returns 0 on success, -EINVAL on failure.
4356 *
4357 * The caller must have charged to @to, IOW, called res_counter_charge() about
4358 * both res and memsw, and called css_get().
4359 */
4360 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4361 struct mem_cgroup *from, struct mem_cgroup *to)
4362 {
4363 unsigned short old_id, new_id;
4364
4365 old_id = css_id(&from->css);
4366 new_id = css_id(&to->css);
4367
4368 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4369 mem_cgroup_swap_statistics(from, false);
4370 mem_cgroup_swap_statistics(to, true);
4371 /*
4372 * This function is only called from task migration context now.
4373 * It postpones res_counter and refcount handling till the end
4374 * of task migration(mem_cgroup_clear_mc()) for performance
4375 * improvement. But we cannot postpone mem_cgroup_get(to)
4376 * because if the process that has been moved to @to does
4377 * swap-in, the refcount of @to might be decreased to 0.
4378 */
4379 mem_cgroup_get(to);
4380 return 0;
4381 }
4382 return -EINVAL;
4383 }
4384 #else
4385 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4386 struct mem_cgroup *from, struct mem_cgroup *to)
4387 {
4388 return -EINVAL;
4389 }
4390 #endif
4391
4392 /*
4393 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4394 * page belongs to.
4395 */
4396 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4397 struct mem_cgroup **memcgp)
4398 {
4399 struct mem_cgroup *memcg = NULL;
4400 unsigned int nr_pages = 1;
4401 struct page_cgroup *pc;
4402 enum charge_type ctype;
4403
4404 *memcgp = NULL;
4405
4406 if (mem_cgroup_disabled())
4407 return;
4408
4409 if (PageTransHuge(page))
4410 nr_pages <<= compound_order(page);
4411
4412 pc = lookup_page_cgroup(page);
4413 lock_page_cgroup(pc);
4414 if (PageCgroupUsed(pc)) {
4415 memcg = pc->mem_cgroup;
4416 css_get(&memcg->css);
4417 /*
4418 * At migrating an anonymous page, its mapcount goes down
4419 * to 0 and uncharge() will be called. But, even if it's fully
4420 * unmapped, migration may fail and this page has to be
4421 * charged again. We set MIGRATION flag here and delay uncharge
4422 * until end_migration() is called
4423 *
4424 * Corner Case Thinking
4425 * A)
4426 * When the old page was mapped as Anon and it's unmap-and-freed
4427 * while migration was ongoing.
4428 * If unmap finds the old page, uncharge() of it will be delayed
4429 * until end_migration(). If unmap finds a new page, it's
4430 * uncharged when it make mapcount to be 1->0. If unmap code
4431 * finds swap_migration_entry, the new page will not be mapped
4432 * and end_migration() will find it(mapcount==0).
4433 *
4434 * B)
4435 * When the old page was mapped but migraion fails, the kernel
4436 * remaps it. A charge for it is kept by MIGRATION flag even
4437 * if mapcount goes down to 0. We can do remap successfully
4438 * without charging it again.
4439 *
4440 * C)
4441 * The "old" page is under lock_page() until the end of
4442 * migration, so, the old page itself will not be swapped-out.
4443 * If the new page is swapped out before end_migraton, our
4444 * hook to usual swap-out path will catch the event.
4445 */
4446 if (PageAnon(page))
4447 SetPageCgroupMigration(pc);
4448 }
4449 unlock_page_cgroup(pc);
4450 /*
4451 * If the page is not charged at this point,
4452 * we return here.
4453 */
4454 if (!memcg)
4455 return;
4456
4457 *memcgp = memcg;
4458 /*
4459 * We charge new page before it's used/mapped. So, even if unlock_page()
4460 * is called before end_migration, we can catch all events on this new
4461 * page. In the case new page is migrated but not remapped, new page's
4462 * mapcount will be finally 0 and we call uncharge in end_migration().
4463 */
4464 if (PageAnon(page))
4465 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4466 else
4467 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4468 /*
4469 * The page is committed to the memcg, but it's not actually
4470 * charged to the res_counter since we plan on replacing the
4471 * old one and only one page is going to be left afterwards.
4472 */
4473 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4474 }
4475
4476 /* remove redundant charge if migration failed*/
4477 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4478 struct page *oldpage, struct page *newpage, bool migration_ok)
4479 {
4480 struct page *used, *unused;
4481 struct page_cgroup *pc;
4482 bool anon;
4483
4484 if (!memcg)
4485 return;
4486
4487 if (!migration_ok) {
4488 used = oldpage;
4489 unused = newpage;
4490 } else {
4491 used = newpage;
4492 unused = oldpage;
4493 }
4494 anon = PageAnon(used);
4495 __mem_cgroup_uncharge_common(unused,
4496 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4497 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4498 true);
4499 css_put(&memcg->css);
4500 /*
4501 * We disallowed uncharge of pages under migration because mapcount
4502 * of the page goes down to zero, temporarly.
4503 * Clear the flag and check the page should be charged.
4504 */
4505 pc = lookup_page_cgroup(oldpage);
4506 lock_page_cgroup(pc);
4507 ClearPageCgroupMigration(pc);
4508 unlock_page_cgroup(pc);
4509
4510 /*
4511 * If a page is a file cache, radix-tree replacement is very atomic
4512 * and we can skip this check. When it was an Anon page, its mapcount
4513 * goes down to 0. But because we added MIGRATION flage, it's not
4514 * uncharged yet. There are several case but page->mapcount check
4515 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4516 * check. (see prepare_charge() also)
4517 */
4518 if (anon)
4519 mem_cgroup_uncharge_page(used);
4520 }
4521
4522 /*
4523 * At replace page cache, newpage is not under any memcg but it's on
4524 * LRU. So, this function doesn't touch res_counter but handles LRU
4525 * in correct way. Both pages are locked so we cannot race with uncharge.
4526 */
4527 void mem_cgroup_replace_page_cache(struct page *oldpage,
4528 struct page *newpage)
4529 {
4530 struct mem_cgroup *memcg = NULL;
4531 struct page_cgroup *pc;
4532 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4533
4534 if (mem_cgroup_disabled())
4535 return;
4536
4537 pc = lookup_page_cgroup(oldpage);
4538 /* fix accounting on old pages */
4539 lock_page_cgroup(pc);
4540 if (PageCgroupUsed(pc)) {
4541 memcg = pc->mem_cgroup;
4542 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4543 ClearPageCgroupUsed(pc);
4544 }
4545 unlock_page_cgroup(pc);
4546
4547 /*
4548 * When called from shmem_replace_page(), in some cases the
4549 * oldpage has already been charged, and in some cases not.
4550 */
4551 if (!memcg)
4552 return;
4553 /*
4554 * Even if newpage->mapping was NULL before starting replacement,
4555 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4556 * LRU while we overwrite pc->mem_cgroup.
4557 */
4558 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4559 }
4560
4561 #ifdef CONFIG_DEBUG_VM
4562 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4563 {
4564 struct page_cgroup *pc;
4565
4566 pc = lookup_page_cgroup(page);
4567 /*
4568 * Can be NULL while feeding pages into the page allocator for
4569 * the first time, i.e. during boot or memory hotplug;
4570 * or when mem_cgroup_disabled().
4571 */
4572 if (likely(pc) && PageCgroupUsed(pc))
4573 return pc;
4574 return NULL;
4575 }
4576
4577 bool mem_cgroup_bad_page_check(struct page *page)
4578 {
4579 if (mem_cgroup_disabled())
4580 return false;
4581
4582 return lookup_page_cgroup_used(page) != NULL;
4583 }
4584
4585 void mem_cgroup_print_bad_page(struct page *page)
4586 {
4587 struct page_cgroup *pc;
4588
4589 pc = lookup_page_cgroup_used(page);
4590 if (pc) {
4591 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4592 pc, pc->flags, pc->mem_cgroup);
4593 }
4594 }
4595 #endif
4596
4597 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4598 unsigned long long val)
4599 {
4600 int retry_count;
4601 u64 memswlimit, memlimit;
4602 int ret = 0;
4603 int children = mem_cgroup_count_children(memcg);
4604 u64 curusage, oldusage;
4605 int enlarge;
4606
4607 /*
4608 * For keeping hierarchical_reclaim simple, how long we should retry
4609 * is depends on callers. We set our retry-count to be function
4610 * of # of children which we should visit in this loop.
4611 */
4612 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4613
4614 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4615
4616 enlarge = 0;
4617 while (retry_count) {
4618 if (signal_pending(current)) {
4619 ret = -EINTR;
4620 break;
4621 }
4622 /*
4623 * Rather than hide all in some function, I do this in
4624 * open coded manner. You see what this really does.
4625 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4626 */
4627 mutex_lock(&set_limit_mutex);
4628 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4629 if (memswlimit < val) {
4630 ret = -EINVAL;
4631 mutex_unlock(&set_limit_mutex);
4632 break;
4633 }
4634
4635 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4636 if (memlimit < val)
4637 enlarge = 1;
4638
4639 ret = res_counter_set_limit(&memcg->res, val);
4640 if (!ret) {
4641 if (memswlimit == val)
4642 memcg->memsw_is_minimum = true;
4643 else
4644 memcg->memsw_is_minimum = false;
4645 }
4646 mutex_unlock(&set_limit_mutex);
4647
4648 if (!ret)
4649 break;
4650
4651 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4652 MEM_CGROUP_RECLAIM_SHRINK);
4653 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4654 /* Usage is reduced ? */
4655 if (curusage >= oldusage)
4656 retry_count--;
4657 else
4658 oldusage = curusage;
4659 }
4660 if (!ret && enlarge)
4661 memcg_oom_recover(memcg);
4662
4663 return ret;
4664 }
4665
4666 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4667 unsigned long long val)
4668 {
4669 int retry_count;
4670 u64 memlimit, memswlimit, oldusage, curusage;
4671 int children = mem_cgroup_count_children(memcg);
4672 int ret = -EBUSY;
4673 int enlarge = 0;
4674
4675 /* see mem_cgroup_resize_res_limit */
4676 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4677 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4678 while (retry_count) {
4679 if (signal_pending(current)) {
4680 ret = -EINTR;
4681 break;
4682 }
4683 /*
4684 * Rather than hide all in some function, I do this in
4685 * open coded manner. You see what this really does.
4686 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4687 */
4688 mutex_lock(&set_limit_mutex);
4689 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4690 if (memlimit > val) {
4691 ret = -EINVAL;
4692 mutex_unlock(&set_limit_mutex);
4693 break;
4694 }
4695 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4696 if (memswlimit < val)
4697 enlarge = 1;
4698 ret = res_counter_set_limit(&memcg->memsw, val);
4699 if (!ret) {
4700 if (memlimit == val)
4701 memcg->memsw_is_minimum = true;
4702 else
4703 memcg->memsw_is_minimum = false;
4704 }
4705 mutex_unlock(&set_limit_mutex);
4706
4707 if (!ret)
4708 break;
4709
4710 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4711 MEM_CGROUP_RECLAIM_NOSWAP |
4712 MEM_CGROUP_RECLAIM_SHRINK);
4713 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4714 /* Usage is reduced ? */
4715 if (curusage >= oldusage)
4716 retry_count--;
4717 else
4718 oldusage = curusage;
4719 }
4720 if (!ret && enlarge)
4721 memcg_oom_recover(memcg);
4722 return ret;
4723 }
4724
4725 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4726 gfp_t gfp_mask,
4727 unsigned long *total_scanned)
4728 {
4729 unsigned long nr_reclaimed = 0;
4730 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4731 unsigned long reclaimed;
4732 int loop = 0;
4733 struct mem_cgroup_tree_per_zone *mctz;
4734 unsigned long long excess;
4735 unsigned long nr_scanned;
4736
4737 if (order > 0)
4738 return 0;
4739
4740 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4741 /*
4742 * This loop can run a while, specially if mem_cgroup's continuously
4743 * keep exceeding their soft limit and putting the system under
4744 * pressure
4745 */
4746 do {
4747 if (next_mz)
4748 mz = next_mz;
4749 else
4750 mz = mem_cgroup_largest_soft_limit_node(mctz);
4751 if (!mz)
4752 break;
4753
4754 nr_scanned = 0;
4755 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4756 gfp_mask, &nr_scanned);
4757 nr_reclaimed += reclaimed;
4758 *total_scanned += nr_scanned;
4759 spin_lock(&mctz->lock);
4760
4761 /*
4762 * If we failed to reclaim anything from this memory cgroup
4763 * it is time to move on to the next cgroup
4764 */
4765 next_mz = NULL;
4766 if (!reclaimed) {
4767 do {
4768 /*
4769 * Loop until we find yet another one.
4770 *
4771 * By the time we get the soft_limit lock
4772 * again, someone might have aded the
4773 * group back on the RB tree. Iterate to
4774 * make sure we get a different mem.
4775 * mem_cgroup_largest_soft_limit_node returns
4776 * NULL if no other cgroup is present on
4777 * the tree
4778 */
4779 next_mz =
4780 __mem_cgroup_largest_soft_limit_node(mctz);
4781 if (next_mz == mz)
4782 css_put(&next_mz->memcg->css);
4783 else /* next_mz == NULL or other memcg */
4784 break;
4785 } while (1);
4786 }
4787 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4788 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4789 /*
4790 * One school of thought says that we should not add
4791 * back the node to the tree if reclaim returns 0.
4792 * But our reclaim could return 0, simply because due
4793 * to priority we are exposing a smaller subset of
4794 * memory to reclaim from. Consider this as a longer
4795 * term TODO.
4796 */
4797 /* If excess == 0, no tree ops */
4798 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4799 spin_unlock(&mctz->lock);
4800 css_put(&mz->memcg->css);
4801 loop++;
4802 /*
4803 * Could not reclaim anything and there are no more
4804 * mem cgroups to try or we seem to be looping without
4805 * reclaiming anything.
4806 */
4807 if (!nr_reclaimed &&
4808 (next_mz == NULL ||
4809 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4810 break;
4811 } while (!nr_reclaimed);
4812 if (next_mz)
4813 css_put(&next_mz->memcg->css);
4814 return nr_reclaimed;
4815 }
4816
4817 /**
4818 * mem_cgroup_force_empty_list - clears LRU of a group
4819 * @memcg: group to clear
4820 * @node: NUMA node
4821 * @zid: zone id
4822 * @lru: lru to to clear
4823 *
4824 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4825 * reclaim the pages page themselves - pages are moved to the parent (or root)
4826 * group.
4827 */
4828 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4829 int node, int zid, enum lru_list lru)
4830 {
4831 struct lruvec *lruvec;
4832 unsigned long flags;
4833 struct list_head *list;
4834 struct page *busy;
4835 struct zone *zone;
4836
4837 zone = &NODE_DATA(node)->node_zones[zid];
4838 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4839 list = &lruvec->lists[lru];
4840
4841 busy = NULL;
4842 do {
4843 struct page_cgroup *pc;
4844 struct page *page;
4845
4846 spin_lock_irqsave(&zone->lru_lock, flags);
4847 if (list_empty(list)) {
4848 spin_unlock_irqrestore(&zone->lru_lock, flags);
4849 break;
4850 }
4851 page = list_entry(list->prev, struct page, lru);
4852 if (busy == page) {
4853 list_move(&page->lru, list);
4854 busy = NULL;
4855 spin_unlock_irqrestore(&zone->lru_lock, flags);
4856 continue;
4857 }
4858 spin_unlock_irqrestore(&zone->lru_lock, flags);
4859
4860 pc = lookup_page_cgroup(page);
4861
4862 if (mem_cgroup_move_parent(page, pc, memcg)) {
4863 /* found lock contention or "pc" is obsolete. */
4864 busy = page;
4865 cond_resched();
4866 } else
4867 busy = NULL;
4868 } while (!list_empty(list));
4869 }
4870
4871 /*
4872 * make mem_cgroup's charge to be 0 if there is no task by moving
4873 * all the charges and pages to the parent.
4874 * This enables deleting this mem_cgroup.
4875 *
4876 * Caller is responsible for holding css reference on the memcg.
4877 */
4878 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4879 {
4880 int node, zid;
4881 u64 usage;
4882
4883 do {
4884 /* This is for making all *used* pages to be on LRU. */
4885 lru_add_drain_all();
4886 drain_all_stock_sync(memcg);
4887 mem_cgroup_start_move(memcg);
4888 for_each_node_state(node, N_MEMORY) {
4889 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4890 enum lru_list lru;
4891 for_each_lru(lru) {
4892 mem_cgroup_force_empty_list(memcg,
4893 node, zid, lru);
4894 }
4895 }
4896 }
4897 mem_cgroup_end_move(memcg);
4898 memcg_oom_recover(memcg);
4899 cond_resched();
4900
4901 /*
4902 * Kernel memory may not necessarily be trackable to a specific
4903 * process. So they are not migrated, and therefore we can't
4904 * expect their value to drop to 0 here.
4905 * Having res filled up with kmem only is enough.
4906 *
4907 * This is a safety check because mem_cgroup_force_empty_list
4908 * could have raced with mem_cgroup_replace_page_cache callers
4909 * so the lru seemed empty but the page could have been added
4910 * right after the check. RES_USAGE should be safe as we always
4911 * charge before adding to the LRU.
4912 */
4913 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4914 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4915 } while (usage > 0);
4916 }
4917
4918 /*
4919 * This mainly exists for tests during the setting of set of use_hierarchy.
4920 * Since this is the very setting we are changing, the current hierarchy value
4921 * is meaningless
4922 */
4923 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4924 {
4925 struct cgroup *pos;
4926
4927 /* bounce at first found */
4928 cgroup_for_each_child(pos, memcg->css.cgroup)
4929 return true;
4930 return false;
4931 }
4932
4933 /*
4934 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4935 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4936 * from mem_cgroup_count_children(), in the sense that we don't really care how
4937 * many children we have; we only need to know if we have any. It also counts
4938 * any memcg without hierarchy as infertile.
4939 */
4940 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4941 {
4942 return memcg->use_hierarchy && __memcg_has_children(memcg);
4943 }
4944
4945 /*
4946 * Reclaims as many pages from the given memcg as possible and moves
4947 * the rest to the parent.
4948 *
4949 * Caller is responsible for holding css reference for memcg.
4950 */
4951 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4952 {
4953 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4954 struct cgroup *cgrp = memcg->css.cgroup;
4955
4956 /* returns EBUSY if there is a task or if we come here twice. */
4957 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4958 return -EBUSY;
4959
4960 /* we call try-to-free pages for make this cgroup empty */
4961 lru_add_drain_all();
4962 /* try to free all pages in this cgroup */
4963 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4964 int progress;
4965
4966 if (signal_pending(current))
4967 return -EINTR;
4968
4969 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4970 false);
4971 if (!progress) {
4972 nr_retries--;
4973 /* maybe some writeback is necessary */
4974 congestion_wait(BLK_RW_ASYNC, HZ/10);
4975 }
4976
4977 }
4978 lru_add_drain();
4979 mem_cgroup_reparent_charges(memcg);
4980
4981 return 0;
4982 }
4983
4984 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4985 {
4986 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4987 int ret;
4988
4989 if (mem_cgroup_is_root(memcg))
4990 return -EINVAL;
4991 css_get(&memcg->css);
4992 ret = mem_cgroup_force_empty(memcg);
4993 css_put(&memcg->css);
4994
4995 return ret;
4996 }
4997
4998
4999 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5000 {
5001 return mem_cgroup_from_cont(cont)->use_hierarchy;
5002 }
5003
5004 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5005 u64 val)
5006 {
5007 int retval = 0;
5008 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5009 struct cgroup *parent = cont->parent;
5010 struct mem_cgroup *parent_memcg = NULL;
5011
5012 if (parent)
5013 parent_memcg = mem_cgroup_from_cont(parent);
5014
5015 mutex_lock(&memcg_create_mutex);
5016
5017 if (memcg->use_hierarchy == val)
5018 goto out;
5019
5020 /*
5021 * If parent's use_hierarchy is set, we can't make any modifications
5022 * in the child subtrees. If it is unset, then the change can
5023 * occur, provided the current cgroup has no children.
5024 *
5025 * For the root cgroup, parent_mem is NULL, we allow value to be
5026 * set if there are no children.
5027 */
5028 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5029 (val == 1 || val == 0)) {
5030 if (!__memcg_has_children(memcg))
5031 memcg->use_hierarchy = val;
5032 else
5033 retval = -EBUSY;
5034 } else
5035 retval = -EINVAL;
5036
5037 out:
5038 mutex_unlock(&memcg_create_mutex);
5039
5040 return retval;
5041 }
5042
5043
5044 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5045 enum mem_cgroup_stat_index idx)
5046 {
5047 struct mem_cgroup *iter;
5048 long val = 0;
5049
5050 /* Per-cpu values can be negative, use a signed accumulator */
5051 for_each_mem_cgroup_tree(iter, memcg)
5052 val += mem_cgroup_read_stat(iter, idx);
5053
5054 if (val < 0) /* race ? */
5055 val = 0;
5056 return val;
5057 }
5058
5059 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5060 {
5061 u64 val;
5062
5063 if (!mem_cgroup_is_root(memcg)) {
5064 if (!swap)
5065 return res_counter_read_u64(&memcg->res, RES_USAGE);
5066 else
5067 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5068 }
5069
5070 /*
5071 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5072 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5073 */
5074 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5075 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5076
5077 if (swap)
5078 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5079
5080 return val << PAGE_SHIFT;
5081 }
5082
5083 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5084 struct file *file, char __user *buf,
5085 size_t nbytes, loff_t *ppos)
5086 {
5087 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5088 char str[64];
5089 u64 val;
5090 int name, len;
5091 enum res_type type;
5092
5093 type = MEMFILE_TYPE(cft->private);
5094 name = MEMFILE_ATTR(cft->private);
5095
5096 switch (type) {
5097 case _MEM:
5098 if (name == RES_USAGE)
5099 val = mem_cgroup_usage(memcg, false);
5100 else
5101 val = res_counter_read_u64(&memcg->res, name);
5102 break;
5103 case _MEMSWAP:
5104 if (name == RES_USAGE)
5105 val = mem_cgroup_usage(memcg, true);
5106 else
5107 val = res_counter_read_u64(&memcg->memsw, name);
5108 break;
5109 case _KMEM:
5110 val = res_counter_read_u64(&memcg->kmem, name);
5111 break;
5112 default:
5113 BUG();
5114 }
5115
5116 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5117 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5118 }
5119
5120 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5121 {
5122 int ret = -EINVAL;
5123 #ifdef CONFIG_MEMCG_KMEM
5124 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5125 /*
5126 * For simplicity, we won't allow this to be disabled. It also can't
5127 * be changed if the cgroup has children already, or if tasks had
5128 * already joined.
5129 *
5130 * If tasks join before we set the limit, a person looking at
5131 * kmem.usage_in_bytes will have no way to determine when it took
5132 * place, which makes the value quite meaningless.
5133 *
5134 * After it first became limited, changes in the value of the limit are
5135 * of course permitted.
5136 */
5137 mutex_lock(&memcg_create_mutex);
5138 mutex_lock(&set_limit_mutex);
5139 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5140 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5141 ret = -EBUSY;
5142 goto out;
5143 }
5144 ret = res_counter_set_limit(&memcg->kmem, val);
5145 VM_BUG_ON(ret);
5146
5147 ret = memcg_update_cache_sizes(memcg);
5148 if (ret) {
5149 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5150 goto out;
5151 }
5152 static_key_slow_inc(&memcg_kmem_enabled_key);
5153 /*
5154 * setting the active bit after the inc will guarantee no one
5155 * starts accounting before all call sites are patched
5156 */
5157 memcg_kmem_set_active(memcg);
5158
5159 /*
5160 * kmem charges can outlive the cgroup. In the case of slab
5161 * pages, for instance, a page contain objects from various
5162 * processes, so it is unfeasible to migrate them away. We
5163 * need to reference count the memcg because of that.
5164 */
5165 mem_cgroup_get(memcg);
5166 } else
5167 ret = res_counter_set_limit(&memcg->kmem, val);
5168 out:
5169 mutex_unlock(&set_limit_mutex);
5170 mutex_unlock(&memcg_create_mutex);
5171 #endif
5172 return ret;
5173 }
5174
5175 #ifdef CONFIG_MEMCG_KMEM
5176 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5177 {
5178 int ret = 0;
5179 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5180 if (!parent)
5181 goto out;
5182
5183 memcg->kmem_account_flags = parent->kmem_account_flags;
5184 /*
5185 * When that happen, we need to disable the static branch only on those
5186 * memcgs that enabled it. To achieve this, we would be forced to
5187 * complicate the code by keeping track of which memcgs were the ones
5188 * that actually enabled limits, and which ones got it from its
5189 * parents.
5190 *
5191 * It is a lot simpler just to do static_key_slow_inc() on every child
5192 * that is accounted.
5193 */
5194 if (!memcg_kmem_is_active(memcg))
5195 goto out;
5196
5197 /*
5198 * destroy(), called if we fail, will issue static_key_slow_inc() and
5199 * mem_cgroup_put() if kmem is enabled. We have to either call them
5200 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5201 * this more consistent, since it always leads to the same destroy path
5202 */
5203 mem_cgroup_get(memcg);
5204 static_key_slow_inc(&memcg_kmem_enabled_key);
5205
5206 mutex_lock(&set_limit_mutex);
5207 ret = memcg_update_cache_sizes(memcg);
5208 mutex_unlock(&set_limit_mutex);
5209 out:
5210 return ret;
5211 }
5212 #endif /* CONFIG_MEMCG_KMEM */
5213
5214 /*
5215 * The user of this function is...
5216 * RES_LIMIT.
5217 */
5218 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5219 const char *buffer)
5220 {
5221 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5222 enum res_type type;
5223 int name;
5224 unsigned long long val;
5225 int ret;
5226
5227 type = MEMFILE_TYPE(cft->private);
5228 name = MEMFILE_ATTR(cft->private);
5229
5230 switch (name) {
5231 case RES_LIMIT:
5232 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5233 ret = -EINVAL;
5234 break;
5235 }
5236 /* This function does all necessary parse...reuse it */
5237 ret = res_counter_memparse_write_strategy(buffer, &val);
5238 if (ret)
5239 break;
5240 if (type == _MEM)
5241 ret = mem_cgroup_resize_limit(memcg, val);
5242 else if (type == _MEMSWAP)
5243 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5244 else if (type == _KMEM)
5245 ret = memcg_update_kmem_limit(cont, val);
5246 else
5247 return -EINVAL;
5248 break;
5249 case RES_SOFT_LIMIT:
5250 ret = res_counter_memparse_write_strategy(buffer, &val);
5251 if (ret)
5252 break;
5253 /*
5254 * For memsw, soft limits are hard to implement in terms
5255 * of semantics, for now, we support soft limits for
5256 * control without swap
5257 */
5258 if (type == _MEM)
5259 ret = res_counter_set_soft_limit(&memcg->res, val);
5260 else
5261 ret = -EINVAL;
5262 break;
5263 default:
5264 ret = -EINVAL; /* should be BUG() ? */
5265 break;
5266 }
5267 return ret;
5268 }
5269
5270 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5271 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5272 {
5273 struct cgroup *cgroup;
5274 unsigned long long min_limit, min_memsw_limit, tmp;
5275
5276 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5277 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5278 cgroup = memcg->css.cgroup;
5279 if (!memcg->use_hierarchy)
5280 goto out;
5281
5282 while (cgroup->parent) {
5283 cgroup = cgroup->parent;
5284 memcg = mem_cgroup_from_cont(cgroup);
5285 if (!memcg->use_hierarchy)
5286 break;
5287 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5288 min_limit = min(min_limit, tmp);
5289 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5290 min_memsw_limit = min(min_memsw_limit, tmp);
5291 }
5292 out:
5293 *mem_limit = min_limit;
5294 *memsw_limit = min_memsw_limit;
5295 }
5296
5297 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5298 {
5299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5300 int name;
5301 enum res_type type;
5302
5303 type = MEMFILE_TYPE(event);
5304 name = MEMFILE_ATTR(event);
5305
5306 switch (name) {
5307 case RES_MAX_USAGE:
5308 if (type == _MEM)
5309 res_counter_reset_max(&memcg->res);
5310 else if (type == _MEMSWAP)
5311 res_counter_reset_max(&memcg->memsw);
5312 else if (type == _KMEM)
5313 res_counter_reset_max(&memcg->kmem);
5314 else
5315 return -EINVAL;
5316 break;
5317 case RES_FAILCNT:
5318 if (type == _MEM)
5319 res_counter_reset_failcnt(&memcg->res);
5320 else if (type == _MEMSWAP)
5321 res_counter_reset_failcnt(&memcg->memsw);
5322 else if (type == _KMEM)
5323 res_counter_reset_failcnt(&memcg->kmem);
5324 else
5325 return -EINVAL;
5326 break;
5327 }
5328
5329 return 0;
5330 }
5331
5332 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5333 struct cftype *cft)
5334 {
5335 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5336 }
5337
5338 #ifdef CONFIG_MMU
5339 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5340 struct cftype *cft, u64 val)
5341 {
5342 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5343
5344 if (val >= (1 << NR_MOVE_TYPE))
5345 return -EINVAL;
5346
5347 /*
5348 * No kind of locking is needed in here, because ->can_attach() will
5349 * check this value once in the beginning of the process, and then carry
5350 * on with stale data. This means that changes to this value will only
5351 * affect task migrations starting after the change.
5352 */
5353 memcg->move_charge_at_immigrate = val;
5354 return 0;
5355 }
5356 #else
5357 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5358 struct cftype *cft, u64 val)
5359 {
5360 return -ENOSYS;
5361 }
5362 #endif
5363
5364 #ifdef CONFIG_NUMA
5365 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5366 struct seq_file *m)
5367 {
5368 int nid;
5369 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5370 unsigned long node_nr;
5371 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5372
5373 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5374 seq_printf(m, "total=%lu", total_nr);
5375 for_each_node_state(nid, N_MEMORY) {
5376 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5377 seq_printf(m, " N%d=%lu", nid, node_nr);
5378 }
5379 seq_putc(m, '\n');
5380
5381 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5382 seq_printf(m, "file=%lu", file_nr);
5383 for_each_node_state(nid, N_MEMORY) {
5384 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5385 LRU_ALL_FILE);
5386 seq_printf(m, " N%d=%lu", nid, node_nr);
5387 }
5388 seq_putc(m, '\n');
5389
5390 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5391 seq_printf(m, "anon=%lu", anon_nr);
5392 for_each_node_state(nid, N_MEMORY) {
5393 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5394 LRU_ALL_ANON);
5395 seq_printf(m, " N%d=%lu", nid, node_nr);
5396 }
5397 seq_putc(m, '\n');
5398
5399 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5400 seq_printf(m, "unevictable=%lu", unevictable_nr);
5401 for_each_node_state(nid, N_MEMORY) {
5402 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5403 BIT(LRU_UNEVICTABLE));
5404 seq_printf(m, " N%d=%lu", nid, node_nr);
5405 }
5406 seq_putc(m, '\n');
5407 return 0;
5408 }
5409 #endif /* CONFIG_NUMA */
5410
5411 static inline void mem_cgroup_lru_names_not_uptodate(void)
5412 {
5413 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5414 }
5415
5416 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5417 struct seq_file *m)
5418 {
5419 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5420 struct mem_cgroup *mi;
5421 unsigned int i;
5422
5423 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5424 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5425 continue;
5426 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5427 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5428 }
5429
5430 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5431 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5432 mem_cgroup_read_events(memcg, i));
5433
5434 for (i = 0; i < NR_LRU_LISTS; i++)
5435 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5436 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5437
5438 /* Hierarchical information */
5439 {
5440 unsigned long long limit, memsw_limit;
5441 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5442 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5443 if (do_swap_account)
5444 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5445 memsw_limit);
5446 }
5447
5448 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5449 long long val = 0;
5450
5451 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5452 continue;
5453 for_each_mem_cgroup_tree(mi, memcg)
5454 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5455 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5456 }
5457
5458 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5459 unsigned long long val = 0;
5460
5461 for_each_mem_cgroup_tree(mi, memcg)
5462 val += mem_cgroup_read_events(mi, i);
5463 seq_printf(m, "total_%s %llu\n",
5464 mem_cgroup_events_names[i], val);
5465 }
5466
5467 for (i = 0; i < NR_LRU_LISTS; i++) {
5468 unsigned long long val = 0;
5469
5470 for_each_mem_cgroup_tree(mi, memcg)
5471 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5472 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5473 }
5474
5475 #ifdef CONFIG_DEBUG_VM
5476 {
5477 int nid, zid;
5478 struct mem_cgroup_per_zone *mz;
5479 struct zone_reclaim_stat *rstat;
5480 unsigned long recent_rotated[2] = {0, 0};
5481 unsigned long recent_scanned[2] = {0, 0};
5482
5483 for_each_online_node(nid)
5484 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5485 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5486 rstat = &mz->lruvec.reclaim_stat;
5487
5488 recent_rotated[0] += rstat->recent_rotated[0];
5489 recent_rotated[1] += rstat->recent_rotated[1];
5490 recent_scanned[0] += rstat->recent_scanned[0];
5491 recent_scanned[1] += rstat->recent_scanned[1];
5492 }
5493 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5494 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5495 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5496 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5497 }
5498 #endif
5499
5500 return 0;
5501 }
5502
5503 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5504 {
5505 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5506
5507 return mem_cgroup_swappiness(memcg);
5508 }
5509
5510 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5511 u64 val)
5512 {
5513 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5514 struct mem_cgroup *parent;
5515
5516 if (val > 100)
5517 return -EINVAL;
5518
5519 if (cgrp->parent == NULL)
5520 return -EINVAL;
5521
5522 parent = mem_cgroup_from_cont(cgrp->parent);
5523
5524 mutex_lock(&memcg_create_mutex);
5525
5526 /* If under hierarchy, only empty-root can set this value */
5527 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5528 mutex_unlock(&memcg_create_mutex);
5529 return -EINVAL;
5530 }
5531
5532 memcg->swappiness = val;
5533
5534 mutex_unlock(&memcg_create_mutex);
5535
5536 return 0;
5537 }
5538
5539 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5540 {
5541 struct mem_cgroup_threshold_ary *t;
5542 u64 usage;
5543 int i;
5544
5545 rcu_read_lock();
5546 if (!swap)
5547 t = rcu_dereference(memcg->thresholds.primary);
5548 else
5549 t = rcu_dereference(memcg->memsw_thresholds.primary);
5550
5551 if (!t)
5552 goto unlock;
5553
5554 usage = mem_cgroup_usage(memcg, swap);
5555
5556 /*
5557 * current_threshold points to threshold just below or equal to usage.
5558 * If it's not true, a threshold was crossed after last
5559 * call of __mem_cgroup_threshold().
5560 */
5561 i = t->current_threshold;
5562
5563 /*
5564 * Iterate backward over array of thresholds starting from
5565 * current_threshold and check if a threshold is crossed.
5566 * If none of thresholds below usage is crossed, we read
5567 * only one element of the array here.
5568 */
5569 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5570 eventfd_signal(t->entries[i].eventfd, 1);
5571
5572 /* i = current_threshold + 1 */
5573 i++;
5574
5575 /*
5576 * Iterate forward over array of thresholds starting from
5577 * current_threshold+1 and check if a threshold is crossed.
5578 * If none of thresholds above usage is crossed, we read
5579 * only one element of the array here.
5580 */
5581 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5582 eventfd_signal(t->entries[i].eventfd, 1);
5583
5584 /* Update current_threshold */
5585 t->current_threshold = i - 1;
5586 unlock:
5587 rcu_read_unlock();
5588 }
5589
5590 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5591 {
5592 while (memcg) {
5593 __mem_cgroup_threshold(memcg, false);
5594 if (do_swap_account)
5595 __mem_cgroup_threshold(memcg, true);
5596
5597 memcg = parent_mem_cgroup(memcg);
5598 }
5599 }
5600
5601 static int compare_thresholds(const void *a, const void *b)
5602 {
5603 const struct mem_cgroup_threshold *_a = a;
5604 const struct mem_cgroup_threshold *_b = b;
5605
5606 return _a->threshold - _b->threshold;
5607 }
5608
5609 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5610 {
5611 struct mem_cgroup_eventfd_list *ev;
5612
5613 list_for_each_entry(ev, &memcg->oom_notify, list)
5614 eventfd_signal(ev->eventfd, 1);
5615 return 0;
5616 }
5617
5618 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5619 {
5620 struct mem_cgroup *iter;
5621
5622 for_each_mem_cgroup_tree(iter, memcg)
5623 mem_cgroup_oom_notify_cb(iter);
5624 }
5625
5626 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5627 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5628 {
5629 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5630 struct mem_cgroup_thresholds *thresholds;
5631 struct mem_cgroup_threshold_ary *new;
5632 enum res_type type = MEMFILE_TYPE(cft->private);
5633 u64 threshold, usage;
5634 int i, size, ret;
5635
5636 ret = res_counter_memparse_write_strategy(args, &threshold);
5637 if (ret)
5638 return ret;
5639
5640 mutex_lock(&memcg->thresholds_lock);
5641
5642 if (type == _MEM)
5643 thresholds = &memcg->thresholds;
5644 else if (type == _MEMSWAP)
5645 thresholds = &memcg->memsw_thresholds;
5646 else
5647 BUG();
5648
5649 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5650
5651 /* Check if a threshold crossed before adding a new one */
5652 if (thresholds->primary)
5653 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5654
5655 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5656
5657 /* Allocate memory for new array of thresholds */
5658 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5659 GFP_KERNEL);
5660 if (!new) {
5661 ret = -ENOMEM;
5662 goto unlock;
5663 }
5664 new->size = size;
5665
5666 /* Copy thresholds (if any) to new array */
5667 if (thresholds->primary) {
5668 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5669 sizeof(struct mem_cgroup_threshold));
5670 }
5671
5672 /* Add new threshold */
5673 new->entries[size - 1].eventfd = eventfd;
5674 new->entries[size - 1].threshold = threshold;
5675
5676 /* Sort thresholds. Registering of new threshold isn't time-critical */
5677 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5678 compare_thresholds, NULL);
5679
5680 /* Find current threshold */
5681 new->current_threshold = -1;
5682 for (i = 0; i < size; i++) {
5683 if (new->entries[i].threshold <= usage) {
5684 /*
5685 * new->current_threshold will not be used until
5686 * rcu_assign_pointer(), so it's safe to increment
5687 * it here.
5688 */
5689 ++new->current_threshold;
5690 } else
5691 break;
5692 }
5693
5694 /* Free old spare buffer and save old primary buffer as spare */
5695 kfree(thresholds->spare);
5696 thresholds->spare = thresholds->primary;
5697
5698 rcu_assign_pointer(thresholds->primary, new);
5699
5700 /* To be sure that nobody uses thresholds */
5701 synchronize_rcu();
5702
5703 unlock:
5704 mutex_unlock(&memcg->thresholds_lock);
5705
5706 return ret;
5707 }
5708
5709 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5710 struct cftype *cft, struct eventfd_ctx *eventfd)
5711 {
5712 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5713 struct mem_cgroup_thresholds *thresholds;
5714 struct mem_cgroup_threshold_ary *new;
5715 enum res_type type = MEMFILE_TYPE(cft->private);
5716 u64 usage;
5717 int i, j, size;
5718
5719 mutex_lock(&memcg->thresholds_lock);
5720 if (type == _MEM)
5721 thresholds = &memcg->thresholds;
5722 else if (type == _MEMSWAP)
5723 thresholds = &memcg->memsw_thresholds;
5724 else
5725 BUG();
5726
5727 if (!thresholds->primary)
5728 goto unlock;
5729
5730 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5731
5732 /* Check if a threshold crossed before removing */
5733 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5734
5735 /* Calculate new number of threshold */
5736 size = 0;
5737 for (i = 0; i < thresholds->primary->size; i++) {
5738 if (thresholds->primary->entries[i].eventfd != eventfd)
5739 size++;
5740 }
5741
5742 new = thresholds->spare;
5743
5744 /* Set thresholds array to NULL if we don't have thresholds */
5745 if (!size) {
5746 kfree(new);
5747 new = NULL;
5748 goto swap_buffers;
5749 }
5750
5751 new->size = size;
5752
5753 /* Copy thresholds and find current threshold */
5754 new->current_threshold = -1;
5755 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5756 if (thresholds->primary->entries[i].eventfd == eventfd)
5757 continue;
5758
5759 new->entries[j] = thresholds->primary->entries[i];
5760 if (new->entries[j].threshold <= usage) {
5761 /*
5762 * new->current_threshold will not be used
5763 * until rcu_assign_pointer(), so it's safe to increment
5764 * it here.
5765 */
5766 ++new->current_threshold;
5767 }
5768 j++;
5769 }
5770
5771 swap_buffers:
5772 /* Swap primary and spare array */
5773 thresholds->spare = thresholds->primary;
5774 /* If all events are unregistered, free the spare array */
5775 if (!new) {
5776 kfree(thresholds->spare);
5777 thresholds->spare = NULL;
5778 }
5779
5780 rcu_assign_pointer(thresholds->primary, new);
5781
5782 /* To be sure that nobody uses thresholds */
5783 synchronize_rcu();
5784 unlock:
5785 mutex_unlock(&memcg->thresholds_lock);
5786 }
5787
5788 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5789 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5790 {
5791 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5792 struct mem_cgroup_eventfd_list *event;
5793 enum res_type type = MEMFILE_TYPE(cft->private);
5794
5795 BUG_ON(type != _OOM_TYPE);
5796 event = kmalloc(sizeof(*event), GFP_KERNEL);
5797 if (!event)
5798 return -ENOMEM;
5799
5800 spin_lock(&memcg_oom_lock);
5801
5802 event->eventfd = eventfd;
5803 list_add(&event->list, &memcg->oom_notify);
5804
5805 /* already in OOM ? */
5806 if (atomic_read(&memcg->under_oom))
5807 eventfd_signal(eventfd, 1);
5808 spin_unlock(&memcg_oom_lock);
5809
5810 return 0;
5811 }
5812
5813 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5814 struct cftype *cft, struct eventfd_ctx *eventfd)
5815 {
5816 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5817 struct mem_cgroup_eventfd_list *ev, *tmp;
5818 enum res_type type = MEMFILE_TYPE(cft->private);
5819
5820 BUG_ON(type != _OOM_TYPE);
5821
5822 spin_lock(&memcg_oom_lock);
5823
5824 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5825 if (ev->eventfd == eventfd) {
5826 list_del(&ev->list);
5827 kfree(ev);
5828 }
5829 }
5830
5831 spin_unlock(&memcg_oom_lock);
5832 }
5833
5834 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5835 struct cftype *cft, struct cgroup_map_cb *cb)
5836 {
5837 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5838
5839 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5840
5841 if (atomic_read(&memcg->under_oom))
5842 cb->fill(cb, "under_oom", 1);
5843 else
5844 cb->fill(cb, "under_oom", 0);
5845 return 0;
5846 }
5847
5848 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5849 struct cftype *cft, u64 val)
5850 {
5851 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5852 struct mem_cgroup *parent;
5853
5854 /* cannot set to root cgroup and only 0 and 1 are allowed */
5855 if (!cgrp->parent || !((val == 0) || (val == 1)))
5856 return -EINVAL;
5857
5858 parent = mem_cgroup_from_cont(cgrp->parent);
5859
5860 mutex_lock(&memcg_create_mutex);
5861 /* oom-kill-disable is a flag for subhierarchy. */
5862 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5863 mutex_unlock(&memcg_create_mutex);
5864 return -EINVAL;
5865 }
5866 memcg->oom_kill_disable = val;
5867 if (!val)
5868 memcg_oom_recover(memcg);
5869 mutex_unlock(&memcg_create_mutex);
5870 return 0;
5871 }
5872
5873 #ifdef CONFIG_MEMCG_KMEM
5874 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5875 {
5876 int ret;
5877
5878 memcg->kmemcg_id = -1;
5879 ret = memcg_propagate_kmem(memcg);
5880 if (ret)
5881 return ret;
5882
5883 return mem_cgroup_sockets_init(memcg, ss);
5884 }
5885
5886 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5887 {
5888 mem_cgroup_sockets_destroy(memcg);
5889
5890 memcg_kmem_mark_dead(memcg);
5891
5892 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5893 return;
5894
5895 /*
5896 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5897 * path here, being careful not to race with memcg_uncharge_kmem: it is
5898 * possible that the charges went down to 0 between mark_dead and the
5899 * res_counter read, so in that case, we don't need the put
5900 */
5901 if (memcg_kmem_test_and_clear_dead(memcg))
5902 mem_cgroup_put(memcg);
5903 }
5904 #else
5905 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5906 {
5907 return 0;
5908 }
5909
5910 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5911 {
5912 }
5913 #endif
5914
5915 static struct cftype mem_cgroup_files[] = {
5916 {
5917 .name = "usage_in_bytes",
5918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5919 .read = mem_cgroup_read,
5920 .register_event = mem_cgroup_usage_register_event,
5921 .unregister_event = mem_cgroup_usage_unregister_event,
5922 },
5923 {
5924 .name = "max_usage_in_bytes",
5925 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5926 .trigger = mem_cgroup_reset,
5927 .read = mem_cgroup_read,
5928 },
5929 {
5930 .name = "limit_in_bytes",
5931 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5932 .write_string = mem_cgroup_write,
5933 .read = mem_cgroup_read,
5934 },
5935 {
5936 .name = "soft_limit_in_bytes",
5937 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5938 .write_string = mem_cgroup_write,
5939 .read = mem_cgroup_read,
5940 },
5941 {
5942 .name = "failcnt",
5943 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5944 .trigger = mem_cgroup_reset,
5945 .read = mem_cgroup_read,
5946 },
5947 {
5948 .name = "stat",
5949 .read_seq_string = memcg_stat_show,
5950 },
5951 {
5952 .name = "force_empty",
5953 .trigger = mem_cgroup_force_empty_write,
5954 },
5955 {
5956 .name = "use_hierarchy",
5957 .flags = CFTYPE_INSANE,
5958 .write_u64 = mem_cgroup_hierarchy_write,
5959 .read_u64 = mem_cgroup_hierarchy_read,
5960 },
5961 {
5962 .name = "swappiness",
5963 .read_u64 = mem_cgroup_swappiness_read,
5964 .write_u64 = mem_cgroup_swappiness_write,
5965 },
5966 {
5967 .name = "move_charge_at_immigrate",
5968 .read_u64 = mem_cgroup_move_charge_read,
5969 .write_u64 = mem_cgroup_move_charge_write,
5970 },
5971 {
5972 .name = "oom_control",
5973 .read_map = mem_cgroup_oom_control_read,
5974 .write_u64 = mem_cgroup_oom_control_write,
5975 .register_event = mem_cgroup_oom_register_event,
5976 .unregister_event = mem_cgroup_oom_unregister_event,
5977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5978 },
5979 {
5980 .name = "pressure_level",
5981 .register_event = vmpressure_register_event,
5982 .unregister_event = vmpressure_unregister_event,
5983 },
5984 #ifdef CONFIG_NUMA
5985 {
5986 .name = "numa_stat",
5987 .read_seq_string = memcg_numa_stat_show,
5988 },
5989 #endif
5990 #ifdef CONFIG_MEMCG_KMEM
5991 {
5992 .name = "kmem.limit_in_bytes",
5993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5994 .write_string = mem_cgroup_write,
5995 .read = mem_cgroup_read,
5996 },
5997 {
5998 .name = "kmem.usage_in_bytes",
5999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6000 .read = mem_cgroup_read,
6001 },
6002 {
6003 .name = "kmem.failcnt",
6004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6005 .trigger = mem_cgroup_reset,
6006 .read = mem_cgroup_read,
6007 },
6008 {
6009 .name = "kmem.max_usage_in_bytes",
6010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6011 .trigger = mem_cgroup_reset,
6012 .read = mem_cgroup_read,
6013 },
6014 #ifdef CONFIG_SLABINFO
6015 {
6016 .name = "kmem.slabinfo",
6017 .read_seq_string = mem_cgroup_slabinfo_read,
6018 },
6019 #endif
6020 #endif
6021 { }, /* terminate */
6022 };
6023
6024 #ifdef CONFIG_MEMCG_SWAP
6025 static struct cftype memsw_cgroup_files[] = {
6026 {
6027 .name = "memsw.usage_in_bytes",
6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6029 .read = mem_cgroup_read,
6030 .register_event = mem_cgroup_usage_register_event,
6031 .unregister_event = mem_cgroup_usage_unregister_event,
6032 },
6033 {
6034 .name = "memsw.max_usage_in_bytes",
6035 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6036 .trigger = mem_cgroup_reset,
6037 .read = mem_cgroup_read,
6038 },
6039 {
6040 .name = "memsw.limit_in_bytes",
6041 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6042 .write_string = mem_cgroup_write,
6043 .read = mem_cgroup_read,
6044 },
6045 {
6046 .name = "memsw.failcnt",
6047 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6048 .trigger = mem_cgroup_reset,
6049 .read = mem_cgroup_read,
6050 },
6051 { }, /* terminate */
6052 };
6053 #endif
6054 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6055 {
6056 struct mem_cgroup_per_node *pn;
6057 struct mem_cgroup_per_zone *mz;
6058 int zone, tmp = node;
6059 /*
6060 * This routine is called against possible nodes.
6061 * But it's BUG to call kmalloc() against offline node.
6062 *
6063 * TODO: this routine can waste much memory for nodes which will
6064 * never be onlined. It's better to use memory hotplug callback
6065 * function.
6066 */
6067 if (!node_state(node, N_NORMAL_MEMORY))
6068 tmp = -1;
6069 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6070 if (!pn)
6071 return 1;
6072
6073 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6074 mz = &pn->zoneinfo[zone];
6075 lruvec_init(&mz->lruvec);
6076 mz->usage_in_excess = 0;
6077 mz->on_tree = false;
6078 mz->memcg = memcg;
6079 }
6080 memcg->nodeinfo[node] = pn;
6081 return 0;
6082 }
6083
6084 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6085 {
6086 kfree(memcg->nodeinfo[node]);
6087 }
6088
6089 static struct mem_cgroup *mem_cgroup_alloc(void)
6090 {
6091 struct mem_cgroup *memcg;
6092 size_t size = memcg_size();
6093
6094 /* Can be very big if nr_node_ids is very big */
6095 if (size < PAGE_SIZE)
6096 memcg = kzalloc(size, GFP_KERNEL);
6097 else
6098 memcg = vzalloc(size);
6099
6100 if (!memcg)
6101 return NULL;
6102
6103 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6104 if (!memcg->stat)
6105 goto out_free;
6106 spin_lock_init(&memcg->pcp_counter_lock);
6107 return memcg;
6108
6109 out_free:
6110 if (size < PAGE_SIZE)
6111 kfree(memcg);
6112 else
6113 vfree(memcg);
6114 return NULL;
6115 }
6116
6117 /*
6118 * At destroying mem_cgroup, references from swap_cgroup can remain.
6119 * (scanning all at force_empty is too costly...)
6120 *
6121 * Instead of clearing all references at force_empty, we remember
6122 * the number of reference from swap_cgroup and free mem_cgroup when
6123 * it goes down to 0.
6124 *
6125 * Removal of cgroup itself succeeds regardless of refs from swap.
6126 */
6127
6128 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6129 {
6130 int node;
6131 size_t size = memcg_size();
6132
6133 mem_cgroup_remove_from_trees(memcg);
6134 free_css_id(&mem_cgroup_subsys, &memcg->css);
6135
6136 for_each_node(node)
6137 free_mem_cgroup_per_zone_info(memcg, node);
6138
6139 free_percpu(memcg->stat);
6140
6141 /*
6142 * We need to make sure that (at least for now), the jump label
6143 * destruction code runs outside of the cgroup lock. This is because
6144 * get_online_cpus(), which is called from the static_branch update,
6145 * can't be called inside the cgroup_lock. cpusets are the ones
6146 * enforcing this dependency, so if they ever change, we might as well.
6147 *
6148 * schedule_work() will guarantee this happens. Be careful if you need
6149 * to move this code around, and make sure it is outside
6150 * the cgroup_lock.
6151 */
6152 disarm_static_keys(memcg);
6153 if (size < PAGE_SIZE)
6154 kfree(memcg);
6155 else
6156 vfree(memcg);
6157 }
6158
6159
6160 /*
6161 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6162 * but in process context. The work_freeing structure is overlaid
6163 * on the rcu_freeing structure, which itself is overlaid on memsw.
6164 */
6165 static void free_work(struct work_struct *work)
6166 {
6167 struct mem_cgroup *memcg;
6168
6169 memcg = container_of(work, struct mem_cgroup, work_freeing);
6170 __mem_cgroup_free(memcg);
6171 }
6172
6173 static void free_rcu(struct rcu_head *rcu_head)
6174 {
6175 struct mem_cgroup *memcg;
6176
6177 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6178 INIT_WORK(&memcg->work_freeing, free_work);
6179 schedule_work(&memcg->work_freeing);
6180 }
6181
6182 static void mem_cgroup_get(struct mem_cgroup *memcg)
6183 {
6184 atomic_inc(&memcg->refcnt);
6185 }
6186
6187 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6188 {
6189 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6190 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6191 call_rcu(&memcg->rcu_freeing, free_rcu);
6192 if (parent)
6193 mem_cgroup_put(parent);
6194 }
6195 }
6196
6197 static void mem_cgroup_put(struct mem_cgroup *memcg)
6198 {
6199 __mem_cgroup_put(memcg, 1);
6200 }
6201
6202 /*
6203 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6204 */
6205 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6206 {
6207 if (!memcg->res.parent)
6208 return NULL;
6209 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6210 }
6211 EXPORT_SYMBOL(parent_mem_cgroup);
6212
6213 static void __init mem_cgroup_soft_limit_tree_init(void)
6214 {
6215 struct mem_cgroup_tree_per_node *rtpn;
6216 struct mem_cgroup_tree_per_zone *rtpz;
6217 int tmp, node, zone;
6218
6219 for_each_node(node) {
6220 tmp = node;
6221 if (!node_state(node, N_NORMAL_MEMORY))
6222 tmp = -1;
6223 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6224 BUG_ON(!rtpn);
6225
6226 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6227
6228 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6229 rtpz = &rtpn->rb_tree_per_zone[zone];
6230 rtpz->rb_root = RB_ROOT;
6231 spin_lock_init(&rtpz->lock);
6232 }
6233 }
6234 }
6235
6236 static struct cgroup_subsys_state * __ref
6237 mem_cgroup_css_alloc(struct cgroup *cont)
6238 {
6239 struct mem_cgroup *memcg;
6240 long error = -ENOMEM;
6241 int node;
6242
6243 memcg = mem_cgroup_alloc();
6244 if (!memcg)
6245 return ERR_PTR(error);
6246
6247 for_each_node(node)
6248 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6249 goto free_out;
6250
6251 /* root ? */
6252 if (cont->parent == NULL) {
6253 root_mem_cgroup = memcg;
6254 res_counter_init(&memcg->res, NULL);
6255 res_counter_init(&memcg->memsw, NULL);
6256 res_counter_init(&memcg->kmem, NULL);
6257 }
6258
6259 memcg->last_scanned_node = MAX_NUMNODES;
6260 INIT_LIST_HEAD(&memcg->oom_notify);
6261 atomic_set(&memcg->refcnt, 1);
6262 memcg->move_charge_at_immigrate = 0;
6263 mutex_init(&memcg->thresholds_lock);
6264 spin_lock_init(&memcg->move_lock);
6265 vmpressure_init(&memcg->vmpressure);
6266
6267 return &memcg->css;
6268
6269 free_out:
6270 __mem_cgroup_free(memcg);
6271 return ERR_PTR(error);
6272 }
6273
6274 static int
6275 mem_cgroup_css_online(struct cgroup *cont)
6276 {
6277 struct mem_cgroup *memcg, *parent;
6278 int error = 0;
6279
6280 if (!cont->parent)
6281 return 0;
6282
6283 mutex_lock(&memcg_create_mutex);
6284 memcg = mem_cgroup_from_cont(cont);
6285 parent = mem_cgroup_from_cont(cont->parent);
6286
6287 memcg->use_hierarchy = parent->use_hierarchy;
6288 memcg->oom_kill_disable = parent->oom_kill_disable;
6289 memcg->swappiness = mem_cgroup_swappiness(parent);
6290
6291 if (parent->use_hierarchy) {
6292 res_counter_init(&memcg->res, &parent->res);
6293 res_counter_init(&memcg->memsw, &parent->memsw);
6294 res_counter_init(&memcg->kmem, &parent->kmem);
6295
6296 /*
6297 * We increment refcnt of the parent to ensure that we can
6298 * safely access it on res_counter_charge/uncharge.
6299 * This refcnt will be decremented when freeing this
6300 * mem_cgroup(see mem_cgroup_put).
6301 */
6302 mem_cgroup_get(parent);
6303 } else {
6304 res_counter_init(&memcg->res, NULL);
6305 res_counter_init(&memcg->memsw, NULL);
6306 res_counter_init(&memcg->kmem, NULL);
6307 /*
6308 * Deeper hierachy with use_hierarchy == false doesn't make
6309 * much sense so let cgroup subsystem know about this
6310 * unfortunate state in our controller.
6311 */
6312 if (parent != root_mem_cgroup)
6313 mem_cgroup_subsys.broken_hierarchy = true;
6314 }
6315
6316 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6317 mutex_unlock(&memcg_create_mutex);
6318 if (error) {
6319 /*
6320 * We call put now because our (and parent's) refcnts
6321 * are already in place. mem_cgroup_put() will internally
6322 * call __mem_cgroup_free, so return directly
6323 */
6324 mem_cgroup_put(memcg);
6325 if (parent->use_hierarchy)
6326 mem_cgroup_put(parent);
6327 }
6328 return error;
6329 }
6330
6331 /*
6332 * Announce all parents that a group from their hierarchy is gone.
6333 */
6334 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6335 {
6336 struct mem_cgroup *parent = memcg;
6337
6338 while ((parent = parent_mem_cgroup(parent)))
6339 mem_cgroup_iter_invalidate(parent);
6340
6341 /*
6342 * if the root memcg is not hierarchical we have to check it
6343 * explicitely.
6344 */
6345 if (!root_mem_cgroup->use_hierarchy)
6346 mem_cgroup_iter_invalidate(root_mem_cgroup);
6347 }
6348
6349 static void mem_cgroup_css_offline(struct cgroup *cont)
6350 {
6351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6352
6353 mem_cgroup_invalidate_reclaim_iterators(memcg);
6354 mem_cgroup_reparent_charges(memcg);
6355 mem_cgroup_destroy_all_caches(memcg);
6356 }
6357
6358 static void mem_cgroup_css_free(struct cgroup *cont)
6359 {
6360 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6361
6362 kmem_cgroup_destroy(memcg);
6363
6364 mem_cgroup_put(memcg);
6365 }
6366
6367 #ifdef CONFIG_MMU
6368 /* Handlers for move charge at task migration. */
6369 #define PRECHARGE_COUNT_AT_ONCE 256
6370 static int mem_cgroup_do_precharge(unsigned long count)
6371 {
6372 int ret = 0;
6373 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6374 struct mem_cgroup *memcg = mc.to;
6375
6376 if (mem_cgroup_is_root(memcg)) {
6377 mc.precharge += count;
6378 /* we don't need css_get for root */
6379 return ret;
6380 }
6381 /* try to charge at once */
6382 if (count > 1) {
6383 struct res_counter *dummy;
6384 /*
6385 * "memcg" cannot be under rmdir() because we've already checked
6386 * by cgroup_lock_live_cgroup() that it is not removed and we
6387 * are still under the same cgroup_mutex. So we can postpone
6388 * css_get().
6389 */
6390 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6391 goto one_by_one;
6392 if (do_swap_account && res_counter_charge(&memcg->memsw,
6393 PAGE_SIZE * count, &dummy)) {
6394 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6395 goto one_by_one;
6396 }
6397 mc.precharge += count;
6398 return ret;
6399 }
6400 one_by_one:
6401 /* fall back to one by one charge */
6402 while (count--) {
6403 if (signal_pending(current)) {
6404 ret = -EINTR;
6405 break;
6406 }
6407 if (!batch_count--) {
6408 batch_count = PRECHARGE_COUNT_AT_ONCE;
6409 cond_resched();
6410 }
6411 ret = __mem_cgroup_try_charge(NULL,
6412 GFP_KERNEL, 1, &memcg, false);
6413 if (ret)
6414 /* mem_cgroup_clear_mc() will do uncharge later */
6415 return ret;
6416 mc.precharge++;
6417 }
6418 return ret;
6419 }
6420
6421 /**
6422 * get_mctgt_type - get target type of moving charge
6423 * @vma: the vma the pte to be checked belongs
6424 * @addr: the address corresponding to the pte to be checked
6425 * @ptent: the pte to be checked
6426 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6427 *
6428 * Returns
6429 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6430 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6431 * move charge. if @target is not NULL, the page is stored in target->page
6432 * with extra refcnt got(Callers should handle it).
6433 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6434 * target for charge migration. if @target is not NULL, the entry is stored
6435 * in target->ent.
6436 *
6437 * Called with pte lock held.
6438 */
6439 union mc_target {
6440 struct page *page;
6441 swp_entry_t ent;
6442 };
6443
6444 enum mc_target_type {
6445 MC_TARGET_NONE = 0,
6446 MC_TARGET_PAGE,
6447 MC_TARGET_SWAP,
6448 };
6449
6450 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6451 unsigned long addr, pte_t ptent)
6452 {
6453 struct page *page = vm_normal_page(vma, addr, ptent);
6454
6455 if (!page || !page_mapped(page))
6456 return NULL;
6457 if (PageAnon(page)) {
6458 /* we don't move shared anon */
6459 if (!move_anon())
6460 return NULL;
6461 } else if (!move_file())
6462 /* we ignore mapcount for file pages */
6463 return NULL;
6464 if (!get_page_unless_zero(page))
6465 return NULL;
6466
6467 return page;
6468 }
6469
6470 #ifdef CONFIG_SWAP
6471 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6472 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6473 {
6474 struct page *page = NULL;
6475 swp_entry_t ent = pte_to_swp_entry(ptent);
6476
6477 if (!move_anon() || non_swap_entry(ent))
6478 return NULL;
6479 /*
6480 * Because lookup_swap_cache() updates some statistics counter,
6481 * we call find_get_page() with swapper_space directly.
6482 */
6483 page = find_get_page(swap_address_space(ent), ent.val);
6484 if (do_swap_account)
6485 entry->val = ent.val;
6486
6487 return page;
6488 }
6489 #else
6490 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6491 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6492 {
6493 return NULL;
6494 }
6495 #endif
6496
6497 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6498 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6499 {
6500 struct page *page = NULL;
6501 struct address_space *mapping;
6502 pgoff_t pgoff;
6503
6504 if (!vma->vm_file) /* anonymous vma */
6505 return NULL;
6506 if (!move_file())
6507 return NULL;
6508
6509 mapping = vma->vm_file->f_mapping;
6510 if (pte_none(ptent))
6511 pgoff = linear_page_index(vma, addr);
6512 else /* pte_file(ptent) is true */
6513 pgoff = pte_to_pgoff(ptent);
6514
6515 /* page is moved even if it's not RSS of this task(page-faulted). */
6516 page = find_get_page(mapping, pgoff);
6517
6518 #ifdef CONFIG_SWAP
6519 /* shmem/tmpfs may report page out on swap: account for that too. */
6520 if (radix_tree_exceptional_entry(page)) {
6521 swp_entry_t swap = radix_to_swp_entry(page);
6522 if (do_swap_account)
6523 *entry = swap;
6524 page = find_get_page(swap_address_space(swap), swap.val);
6525 }
6526 #endif
6527 return page;
6528 }
6529
6530 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6531 unsigned long addr, pte_t ptent, union mc_target *target)
6532 {
6533 struct page *page = NULL;
6534 struct page_cgroup *pc;
6535 enum mc_target_type ret = MC_TARGET_NONE;
6536 swp_entry_t ent = { .val = 0 };
6537
6538 if (pte_present(ptent))
6539 page = mc_handle_present_pte(vma, addr, ptent);
6540 else if (is_swap_pte(ptent))
6541 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6542 else if (pte_none(ptent) || pte_file(ptent))
6543 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6544
6545 if (!page && !ent.val)
6546 return ret;
6547 if (page) {
6548 pc = lookup_page_cgroup(page);
6549 /*
6550 * Do only loose check w/o page_cgroup lock.
6551 * mem_cgroup_move_account() checks the pc is valid or not under
6552 * the lock.
6553 */
6554 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6555 ret = MC_TARGET_PAGE;
6556 if (target)
6557 target->page = page;
6558 }
6559 if (!ret || !target)
6560 put_page(page);
6561 }
6562 /* There is a swap entry and a page doesn't exist or isn't charged */
6563 if (ent.val && !ret &&
6564 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6565 ret = MC_TARGET_SWAP;
6566 if (target)
6567 target->ent = ent;
6568 }
6569 return ret;
6570 }
6571
6572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6573 /*
6574 * We don't consider swapping or file mapped pages because THP does not
6575 * support them for now.
6576 * Caller should make sure that pmd_trans_huge(pmd) is true.
6577 */
6578 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6579 unsigned long addr, pmd_t pmd, union mc_target *target)
6580 {
6581 struct page *page = NULL;
6582 struct page_cgroup *pc;
6583 enum mc_target_type ret = MC_TARGET_NONE;
6584
6585 page = pmd_page(pmd);
6586 VM_BUG_ON(!page || !PageHead(page));
6587 if (!move_anon())
6588 return ret;
6589 pc = lookup_page_cgroup(page);
6590 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6591 ret = MC_TARGET_PAGE;
6592 if (target) {
6593 get_page(page);
6594 target->page = page;
6595 }
6596 }
6597 return ret;
6598 }
6599 #else
6600 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6601 unsigned long addr, pmd_t pmd, union mc_target *target)
6602 {
6603 return MC_TARGET_NONE;
6604 }
6605 #endif
6606
6607 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6608 unsigned long addr, unsigned long end,
6609 struct mm_walk *walk)
6610 {
6611 struct vm_area_struct *vma = walk->private;
6612 pte_t *pte;
6613 spinlock_t *ptl;
6614
6615 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6616 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6617 mc.precharge += HPAGE_PMD_NR;
6618 spin_unlock(&vma->vm_mm->page_table_lock);
6619 return 0;
6620 }
6621
6622 if (pmd_trans_unstable(pmd))
6623 return 0;
6624 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6625 for (; addr != end; pte++, addr += PAGE_SIZE)
6626 if (get_mctgt_type(vma, addr, *pte, NULL))
6627 mc.precharge++; /* increment precharge temporarily */
6628 pte_unmap_unlock(pte - 1, ptl);
6629 cond_resched();
6630
6631 return 0;
6632 }
6633
6634 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6635 {
6636 unsigned long precharge;
6637 struct vm_area_struct *vma;
6638
6639 down_read(&mm->mmap_sem);
6640 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6641 struct mm_walk mem_cgroup_count_precharge_walk = {
6642 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6643 .mm = mm,
6644 .private = vma,
6645 };
6646 if (is_vm_hugetlb_page(vma))
6647 continue;
6648 walk_page_range(vma->vm_start, vma->vm_end,
6649 &mem_cgroup_count_precharge_walk);
6650 }
6651 up_read(&mm->mmap_sem);
6652
6653 precharge = mc.precharge;
6654 mc.precharge = 0;
6655
6656 return precharge;
6657 }
6658
6659 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6660 {
6661 unsigned long precharge = mem_cgroup_count_precharge(mm);
6662
6663 VM_BUG_ON(mc.moving_task);
6664 mc.moving_task = current;
6665 return mem_cgroup_do_precharge(precharge);
6666 }
6667
6668 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6669 static void __mem_cgroup_clear_mc(void)
6670 {
6671 struct mem_cgroup *from = mc.from;
6672 struct mem_cgroup *to = mc.to;
6673
6674 /* we must uncharge all the leftover precharges from mc.to */
6675 if (mc.precharge) {
6676 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6677 mc.precharge = 0;
6678 }
6679 /*
6680 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6681 * we must uncharge here.
6682 */
6683 if (mc.moved_charge) {
6684 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6685 mc.moved_charge = 0;
6686 }
6687 /* we must fixup refcnts and charges */
6688 if (mc.moved_swap) {
6689 /* uncharge swap account from the old cgroup */
6690 if (!mem_cgroup_is_root(mc.from))
6691 res_counter_uncharge(&mc.from->memsw,
6692 PAGE_SIZE * mc.moved_swap);
6693 __mem_cgroup_put(mc.from, mc.moved_swap);
6694
6695 if (!mem_cgroup_is_root(mc.to)) {
6696 /*
6697 * we charged both to->res and to->memsw, so we should
6698 * uncharge to->res.
6699 */
6700 res_counter_uncharge(&mc.to->res,
6701 PAGE_SIZE * mc.moved_swap);
6702 }
6703 /* we've already done mem_cgroup_get(mc.to) */
6704 mc.moved_swap = 0;
6705 }
6706 memcg_oom_recover(from);
6707 memcg_oom_recover(to);
6708 wake_up_all(&mc.waitq);
6709 }
6710
6711 static void mem_cgroup_clear_mc(void)
6712 {
6713 struct mem_cgroup *from = mc.from;
6714
6715 /*
6716 * we must clear moving_task before waking up waiters at the end of
6717 * task migration.
6718 */
6719 mc.moving_task = NULL;
6720 __mem_cgroup_clear_mc();
6721 spin_lock(&mc.lock);
6722 mc.from = NULL;
6723 mc.to = NULL;
6724 spin_unlock(&mc.lock);
6725 mem_cgroup_end_move(from);
6726 }
6727
6728 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6729 struct cgroup_taskset *tset)
6730 {
6731 struct task_struct *p = cgroup_taskset_first(tset);
6732 int ret = 0;
6733 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6734 unsigned long move_charge_at_immigrate;
6735
6736 /*
6737 * We are now commited to this value whatever it is. Changes in this
6738 * tunable will only affect upcoming migrations, not the current one.
6739 * So we need to save it, and keep it going.
6740 */
6741 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6742 if (move_charge_at_immigrate) {
6743 struct mm_struct *mm;
6744 struct mem_cgroup *from = mem_cgroup_from_task(p);
6745
6746 VM_BUG_ON(from == memcg);
6747
6748 mm = get_task_mm(p);
6749 if (!mm)
6750 return 0;
6751 /* We move charges only when we move a owner of the mm */
6752 if (mm->owner == p) {
6753 VM_BUG_ON(mc.from);
6754 VM_BUG_ON(mc.to);
6755 VM_BUG_ON(mc.precharge);
6756 VM_BUG_ON(mc.moved_charge);
6757 VM_BUG_ON(mc.moved_swap);
6758 mem_cgroup_start_move(from);
6759 spin_lock(&mc.lock);
6760 mc.from = from;
6761 mc.to = memcg;
6762 mc.immigrate_flags = move_charge_at_immigrate;
6763 spin_unlock(&mc.lock);
6764 /* We set mc.moving_task later */
6765
6766 ret = mem_cgroup_precharge_mc(mm);
6767 if (ret)
6768 mem_cgroup_clear_mc();
6769 }
6770 mmput(mm);
6771 }
6772 return ret;
6773 }
6774
6775 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6776 struct cgroup_taskset *tset)
6777 {
6778 mem_cgroup_clear_mc();
6779 }
6780
6781 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6782 unsigned long addr, unsigned long end,
6783 struct mm_walk *walk)
6784 {
6785 int ret = 0;
6786 struct vm_area_struct *vma = walk->private;
6787 pte_t *pte;
6788 spinlock_t *ptl;
6789 enum mc_target_type target_type;
6790 union mc_target target;
6791 struct page *page;
6792 struct page_cgroup *pc;
6793
6794 /*
6795 * We don't take compound_lock() here but no race with splitting thp
6796 * happens because:
6797 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6798 * under splitting, which means there's no concurrent thp split,
6799 * - if another thread runs into split_huge_page() just after we
6800 * entered this if-block, the thread must wait for page table lock
6801 * to be unlocked in __split_huge_page_splitting(), where the main
6802 * part of thp split is not executed yet.
6803 */
6804 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6805 if (mc.precharge < HPAGE_PMD_NR) {
6806 spin_unlock(&vma->vm_mm->page_table_lock);
6807 return 0;
6808 }
6809 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6810 if (target_type == MC_TARGET_PAGE) {
6811 page = target.page;
6812 if (!isolate_lru_page(page)) {
6813 pc = lookup_page_cgroup(page);
6814 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6815 pc, mc.from, mc.to)) {
6816 mc.precharge -= HPAGE_PMD_NR;
6817 mc.moved_charge += HPAGE_PMD_NR;
6818 }
6819 putback_lru_page(page);
6820 }
6821 put_page(page);
6822 }
6823 spin_unlock(&vma->vm_mm->page_table_lock);
6824 return 0;
6825 }
6826
6827 if (pmd_trans_unstable(pmd))
6828 return 0;
6829 retry:
6830 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6831 for (; addr != end; addr += PAGE_SIZE) {
6832 pte_t ptent = *(pte++);
6833 swp_entry_t ent;
6834
6835 if (!mc.precharge)
6836 break;
6837
6838 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6839 case MC_TARGET_PAGE:
6840 page = target.page;
6841 if (isolate_lru_page(page))
6842 goto put;
6843 pc = lookup_page_cgroup(page);
6844 if (!mem_cgroup_move_account(page, 1, pc,
6845 mc.from, mc.to)) {
6846 mc.precharge--;
6847 /* we uncharge from mc.from later. */
6848 mc.moved_charge++;
6849 }
6850 putback_lru_page(page);
6851 put: /* get_mctgt_type() gets the page */
6852 put_page(page);
6853 break;
6854 case MC_TARGET_SWAP:
6855 ent = target.ent;
6856 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6857 mc.precharge--;
6858 /* we fixup refcnts and charges later. */
6859 mc.moved_swap++;
6860 }
6861 break;
6862 default:
6863 break;
6864 }
6865 }
6866 pte_unmap_unlock(pte - 1, ptl);
6867 cond_resched();
6868
6869 if (addr != end) {
6870 /*
6871 * We have consumed all precharges we got in can_attach().
6872 * We try charge one by one, but don't do any additional
6873 * charges to mc.to if we have failed in charge once in attach()
6874 * phase.
6875 */
6876 ret = mem_cgroup_do_precharge(1);
6877 if (!ret)
6878 goto retry;
6879 }
6880
6881 return ret;
6882 }
6883
6884 static void mem_cgroup_move_charge(struct mm_struct *mm)
6885 {
6886 struct vm_area_struct *vma;
6887
6888 lru_add_drain_all();
6889 retry:
6890 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6891 /*
6892 * Someone who are holding the mmap_sem might be waiting in
6893 * waitq. So we cancel all extra charges, wake up all waiters,
6894 * and retry. Because we cancel precharges, we might not be able
6895 * to move enough charges, but moving charge is a best-effort
6896 * feature anyway, so it wouldn't be a big problem.
6897 */
6898 __mem_cgroup_clear_mc();
6899 cond_resched();
6900 goto retry;
6901 }
6902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6903 int ret;
6904 struct mm_walk mem_cgroup_move_charge_walk = {
6905 .pmd_entry = mem_cgroup_move_charge_pte_range,
6906 .mm = mm,
6907 .private = vma,
6908 };
6909 if (is_vm_hugetlb_page(vma))
6910 continue;
6911 ret = walk_page_range(vma->vm_start, vma->vm_end,
6912 &mem_cgroup_move_charge_walk);
6913 if (ret)
6914 /*
6915 * means we have consumed all precharges and failed in
6916 * doing additional charge. Just abandon here.
6917 */
6918 break;
6919 }
6920 up_read(&mm->mmap_sem);
6921 }
6922
6923 static void mem_cgroup_move_task(struct cgroup *cont,
6924 struct cgroup_taskset *tset)
6925 {
6926 struct task_struct *p = cgroup_taskset_first(tset);
6927 struct mm_struct *mm = get_task_mm(p);
6928
6929 if (mm) {
6930 if (mc.to)
6931 mem_cgroup_move_charge(mm);
6932 mmput(mm);
6933 }
6934 if (mc.to)
6935 mem_cgroup_clear_mc();
6936 }
6937 #else /* !CONFIG_MMU */
6938 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6939 struct cgroup_taskset *tset)
6940 {
6941 return 0;
6942 }
6943 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6944 struct cgroup_taskset *tset)
6945 {
6946 }
6947 static void mem_cgroup_move_task(struct cgroup *cont,
6948 struct cgroup_taskset *tset)
6949 {
6950 }
6951 #endif
6952
6953 /*
6954 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6955 * to verify sane_behavior flag on each mount attempt.
6956 */
6957 static void mem_cgroup_bind(struct cgroup *root)
6958 {
6959 /*
6960 * use_hierarchy is forced with sane_behavior. cgroup core
6961 * guarantees that @root doesn't have any children, so turning it
6962 * on for the root memcg is enough.
6963 */
6964 if (cgroup_sane_behavior(root))
6965 mem_cgroup_from_cont(root)->use_hierarchy = true;
6966 }
6967
6968 struct cgroup_subsys mem_cgroup_subsys = {
6969 .name = "memory",
6970 .subsys_id = mem_cgroup_subsys_id,
6971 .css_alloc = mem_cgroup_css_alloc,
6972 .css_online = mem_cgroup_css_online,
6973 .css_offline = mem_cgroup_css_offline,
6974 .css_free = mem_cgroup_css_free,
6975 .can_attach = mem_cgroup_can_attach,
6976 .cancel_attach = mem_cgroup_cancel_attach,
6977 .attach = mem_cgroup_move_task,
6978 .bind = mem_cgroup_bind,
6979 .base_cftypes = mem_cgroup_files,
6980 .early_init = 0,
6981 .use_id = 1,
6982 };
6983
6984 #ifdef CONFIG_MEMCG_SWAP
6985 static int __init enable_swap_account(char *s)
6986 {
6987 /* consider enabled if no parameter or 1 is given */
6988 if (!strcmp(s, "1"))
6989 really_do_swap_account = 1;
6990 else if (!strcmp(s, "0"))
6991 really_do_swap_account = 0;
6992 return 1;
6993 }
6994 __setup("swapaccount=", enable_swap_account);
6995
6996 static void __init memsw_file_init(void)
6997 {
6998 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6999 }
7000
7001 static void __init enable_swap_cgroup(void)
7002 {
7003 if (!mem_cgroup_disabled() && really_do_swap_account) {
7004 do_swap_account = 1;
7005 memsw_file_init();
7006 }
7007 }
7008
7009 #else
7010 static void __init enable_swap_cgroup(void)
7011 {
7012 }
7013 #endif
7014
7015 /*
7016 * subsys_initcall() for memory controller.
7017 *
7018 * Some parts like hotcpu_notifier() have to be initialized from this context
7019 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7020 * everything that doesn't depend on a specific mem_cgroup structure should
7021 * be initialized from here.
7022 */
7023 static int __init mem_cgroup_init(void)
7024 {
7025 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7026 enable_swap_cgroup();
7027 mem_cgroup_soft_limit_tree_init();
7028 memcg_stock_init();
7029 return 0;
7030 }
7031 subsys_initcall(mem_cgroup_init);
This page took 0.17973 seconds and 5 git commands to generate.