memcg: oom kill disable and oom status
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
51
52 #include <asm/uaccess.h>
53
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES 5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account (0)
64 #endif
65
66 /*
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 *
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72 */
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76 /*
77 * Statistics for memory cgroup.
78 */
79 enum mem_cgroup_stat_index {
80 /*
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82 */
83 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
84 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
85 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
86 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
90
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 struct mem_cgroup_stat_cpu {
95 s64 count[MEM_CGROUP_STAT_NSTATS];
96 };
97
98 /*
99 * per-zone information in memory controller.
100 */
101 struct mem_cgroup_per_zone {
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
109 struct rb_node tree_node; /* RB tree node */
110 unsigned long long usage_in_excess;/* Set to the value by which */
111 /* the soft limit is exceeded*/
112 bool on_tree;
113 struct mem_cgroup *mem; /* Back pointer, we cannot */
114 /* use container_of */
115 };
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
118
119 struct mem_cgroup_per_node {
120 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121 };
122
123 struct mem_cgroup_lru_info {
124 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125 };
126
127 /*
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
130 */
131
132 struct mem_cgroup_tree_per_zone {
133 struct rb_root rb_root;
134 spinlock_t lock;
135 };
136
137 struct mem_cgroup_tree_per_node {
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139 };
140
141 struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147 struct mem_cgroup_threshold {
148 struct eventfd_ctx *eventfd;
149 u64 threshold;
150 };
151
152 /* For threshold */
153 struct mem_cgroup_threshold_ary {
154 /* An array index points to threshold just below usage. */
155 atomic_t current_threshold;
156 /* Size of entries[] */
157 unsigned int size;
158 /* Array of thresholds */
159 struct mem_cgroup_threshold entries[0];
160 };
161 /* for OOM */
162 struct mem_cgroup_eventfd_list {
163 struct list_head list;
164 struct eventfd_ctx *eventfd;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *mem);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169
170 /*
171 * The memory controller data structure. The memory controller controls both
172 * page cache and RSS per cgroup. We would eventually like to provide
173 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
174 * to help the administrator determine what knobs to tune.
175 *
176 * TODO: Add a water mark for the memory controller. Reclaim will begin when
177 * we hit the water mark. May be even add a low water mark, such that
178 * no reclaim occurs from a cgroup at it's low water mark, this is
179 * a feature that will be implemented much later in the future.
180 */
181 struct mem_cgroup {
182 struct cgroup_subsys_state css;
183 /*
184 * the counter to account for memory usage
185 */
186 struct res_counter res;
187 /*
188 * the counter to account for mem+swap usage.
189 */
190 struct res_counter memsw;
191 /*
192 * Per cgroup active and inactive list, similar to the
193 * per zone LRU lists.
194 */
195 struct mem_cgroup_lru_info info;
196
197 /*
198 protect against reclaim related member.
199 */
200 spinlock_t reclaim_param_lock;
201
202 int prev_priority; /* for recording reclaim priority */
203
204 /*
205 * While reclaiming in a hierarchy, we cache the last child we
206 * reclaimed from.
207 */
208 int last_scanned_child;
209 /*
210 * Should the accounting and control be hierarchical, per subtree?
211 */
212 bool use_hierarchy;
213 atomic_t oom_lock;
214 atomic_t refcnt;
215
216 unsigned int swappiness;
217 /* OOM-Killer disable */
218 int oom_kill_disable;
219
220 /* set when res.limit == memsw.limit */
221 bool memsw_is_minimum;
222
223 /* protect arrays of thresholds */
224 struct mutex thresholds_lock;
225
226 /* thresholds for memory usage. RCU-protected */
227 struct mem_cgroup_threshold_ary *thresholds;
228
229 /* thresholds for mem+swap usage. RCU-protected */
230 struct mem_cgroup_threshold_ary *memsw_thresholds;
231
232 /* For oom notifier event fd */
233 struct list_head oom_notify;
234
235 /*
236 * Should we move charges of a task when a task is moved into this
237 * mem_cgroup ? And what type of charges should we move ?
238 */
239 unsigned long move_charge_at_immigrate;
240 /*
241 * percpu counter.
242 */
243 struct mem_cgroup_stat_cpu *stat;
244 };
245
246 /* Stuffs for move charges at task migration. */
247 /*
248 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
249 * left-shifted bitmap of these types.
250 */
251 enum move_type {
252 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
253 NR_MOVE_TYPE,
254 };
255
256 /* "mc" and its members are protected by cgroup_mutex */
257 static struct move_charge_struct {
258 struct mem_cgroup *from;
259 struct mem_cgroup *to;
260 unsigned long precharge;
261 unsigned long moved_charge;
262 unsigned long moved_swap;
263 struct task_struct *moving_task; /* a task moving charges */
264 wait_queue_head_t waitq; /* a waitq for other context */
265 } mc = {
266 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
267 };
268
269 /*
270 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
271 * limit reclaim to prevent infinite loops, if they ever occur.
272 */
273 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
274 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
275
276 enum charge_type {
277 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
278 MEM_CGROUP_CHARGE_TYPE_MAPPED,
279 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
280 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
281 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
282 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
283 NR_CHARGE_TYPE,
284 };
285
286 /* only for here (for easy reading.) */
287 #define PCGF_CACHE (1UL << PCG_CACHE)
288 #define PCGF_USED (1UL << PCG_USED)
289 #define PCGF_LOCK (1UL << PCG_LOCK)
290 /* Not used, but added here for completeness */
291 #define PCGF_ACCT (1UL << PCG_ACCT)
292
293 /* for encoding cft->private value on file */
294 #define _MEM (0)
295 #define _MEMSWAP (1)
296 #define _OOM_TYPE (2)
297 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
298 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
299 #define MEMFILE_ATTR(val) ((val) & 0xffff)
300 /* Used for OOM nofiier */
301 #define OOM_CONTROL (0)
302
303 /*
304 * Reclaim flags for mem_cgroup_hierarchical_reclaim
305 */
306 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
307 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
308 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
309 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
310 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
311 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
312
313 static void mem_cgroup_get(struct mem_cgroup *mem);
314 static void mem_cgroup_put(struct mem_cgroup *mem);
315 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
316 static void drain_all_stock_async(void);
317
318 static struct mem_cgroup_per_zone *
319 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
320 {
321 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
322 }
323
324 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
325 {
326 return &mem->css;
327 }
328
329 static struct mem_cgroup_per_zone *
330 page_cgroup_zoneinfo(struct page_cgroup *pc)
331 {
332 struct mem_cgroup *mem = pc->mem_cgroup;
333 int nid = page_cgroup_nid(pc);
334 int zid = page_cgroup_zid(pc);
335
336 if (!mem)
337 return NULL;
338
339 return mem_cgroup_zoneinfo(mem, nid, zid);
340 }
341
342 static struct mem_cgroup_tree_per_zone *
343 soft_limit_tree_node_zone(int nid, int zid)
344 {
345 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
346 }
347
348 static struct mem_cgroup_tree_per_zone *
349 soft_limit_tree_from_page(struct page *page)
350 {
351 int nid = page_to_nid(page);
352 int zid = page_zonenum(page);
353
354 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
355 }
356
357 static void
358 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
359 struct mem_cgroup_per_zone *mz,
360 struct mem_cgroup_tree_per_zone *mctz,
361 unsigned long long new_usage_in_excess)
362 {
363 struct rb_node **p = &mctz->rb_root.rb_node;
364 struct rb_node *parent = NULL;
365 struct mem_cgroup_per_zone *mz_node;
366
367 if (mz->on_tree)
368 return;
369
370 mz->usage_in_excess = new_usage_in_excess;
371 if (!mz->usage_in_excess)
372 return;
373 while (*p) {
374 parent = *p;
375 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
376 tree_node);
377 if (mz->usage_in_excess < mz_node->usage_in_excess)
378 p = &(*p)->rb_left;
379 /*
380 * We can't avoid mem cgroups that are over their soft
381 * limit by the same amount
382 */
383 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
384 p = &(*p)->rb_right;
385 }
386 rb_link_node(&mz->tree_node, parent, p);
387 rb_insert_color(&mz->tree_node, &mctz->rb_root);
388 mz->on_tree = true;
389 }
390
391 static void
392 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
393 struct mem_cgroup_per_zone *mz,
394 struct mem_cgroup_tree_per_zone *mctz)
395 {
396 if (!mz->on_tree)
397 return;
398 rb_erase(&mz->tree_node, &mctz->rb_root);
399 mz->on_tree = false;
400 }
401
402 static void
403 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
404 struct mem_cgroup_per_zone *mz,
405 struct mem_cgroup_tree_per_zone *mctz)
406 {
407 spin_lock(&mctz->lock);
408 __mem_cgroup_remove_exceeded(mem, mz, mctz);
409 spin_unlock(&mctz->lock);
410 }
411
412
413 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
414 {
415 unsigned long long excess;
416 struct mem_cgroup_per_zone *mz;
417 struct mem_cgroup_tree_per_zone *mctz;
418 int nid = page_to_nid(page);
419 int zid = page_zonenum(page);
420 mctz = soft_limit_tree_from_page(page);
421
422 /*
423 * Necessary to update all ancestors when hierarchy is used.
424 * because their event counter is not touched.
425 */
426 for (; mem; mem = parent_mem_cgroup(mem)) {
427 mz = mem_cgroup_zoneinfo(mem, nid, zid);
428 excess = res_counter_soft_limit_excess(&mem->res);
429 /*
430 * We have to update the tree if mz is on RB-tree or
431 * mem is over its softlimit.
432 */
433 if (excess || mz->on_tree) {
434 spin_lock(&mctz->lock);
435 /* if on-tree, remove it */
436 if (mz->on_tree)
437 __mem_cgroup_remove_exceeded(mem, mz, mctz);
438 /*
439 * Insert again. mz->usage_in_excess will be updated.
440 * If excess is 0, no tree ops.
441 */
442 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
443 spin_unlock(&mctz->lock);
444 }
445 }
446 }
447
448 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
449 {
450 int node, zone;
451 struct mem_cgroup_per_zone *mz;
452 struct mem_cgroup_tree_per_zone *mctz;
453
454 for_each_node_state(node, N_POSSIBLE) {
455 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
456 mz = mem_cgroup_zoneinfo(mem, node, zone);
457 mctz = soft_limit_tree_node_zone(node, zone);
458 mem_cgroup_remove_exceeded(mem, mz, mctz);
459 }
460 }
461 }
462
463 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
464 {
465 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
466 }
467
468 static struct mem_cgroup_per_zone *
469 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
470 {
471 struct rb_node *rightmost = NULL;
472 struct mem_cgroup_per_zone *mz;
473
474 retry:
475 mz = NULL;
476 rightmost = rb_last(&mctz->rb_root);
477 if (!rightmost)
478 goto done; /* Nothing to reclaim from */
479
480 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
481 /*
482 * Remove the node now but someone else can add it back,
483 * we will to add it back at the end of reclaim to its correct
484 * position in the tree.
485 */
486 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
487 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
488 !css_tryget(&mz->mem->css))
489 goto retry;
490 done:
491 return mz;
492 }
493
494 static struct mem_cgroup_per_zone *
495 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
496 {
497 struct mem_cgroup_per_zone *mz;
498
499 spin_lock(&mctz->lock);
500 mz = __mem_cgroup_largest_soft_limit_node(mctz);
501 spin_unlock(&mctz->lock);
502 return mz;
503 }
504
505 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
506 enum mem_cgroup_stat_index idx)
507 {
508 int cpu;
509 s64 val = 0;
510
511 for_each_possible_cpu(cpu)
512 val += per_cpu(mem->stat->count[idx], cpu);
513 return val;
514 }
515
516 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
517 {
518 s64 ret;
519
520 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
521 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
522 return ret;
523 }
524
525 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
526 bool charge)
527 {
528 int val = (charge) ? 1 : -1;
529 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
530 }
531
532 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
533 struct page_cgroup *pc,
534 bool charge)
535 {
536 int val = (charge) ? 1 : -1;
537
538 preempt_disable();
539
540 if (PageCgroupCache(pc))
541 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
542 else
543 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
544
545 if (charge)
546 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
547 else
548 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
549 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
550
551 preempt_enable();
552 }
553
554 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
555 enum lru_list idx)
556 {
557 int nid, zid;
558 struct mem_cgroup_per_zone *mz;
559 u64 total = 0;
560
561 for_each_online_node(nid)
562 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
563 mz = mem_cgroup_zoneinfo(mem, nid, zid);
564 total += MEM_CGROUP_ZSTAT(mz, idx);
565 }
566 return total;
567 }
568
569 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
570 {
571 s64 val;
572
573 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
574
575 return !(val & ((1 << event_mask_shift) - 1));
576 }
577
578 /*
579 * Check events in order.
580 *
581 */
582 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
583 {
584 /* threshold event is triggered in finer grain than soft limit */
585 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
586 mem_cgroup_threshold(mem);
587 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
588 mem_cgroup_update_tree(mem, page);
589 }
590 }
591
592 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
593 {
594 return container_of(cgroup_subsys_state(cont,
595 mem_cgroup_subsys_id), struct mem_cgroup,
596 css);
597 }
598
599 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
600 {
601 /*
602 * mm_update_next_owner() may clear mm->owner to NULL
603 * if it races with swapoff, page migration, etc.
604 * So this can be called with p == NULL.
605 */
606 if (unlikely(!p))
607 return NULL;
608
609 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
610 struct mem_cgroup, css);
611 }
612
613 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
614 {
615 struct mem_cgroup *mem = NULL;
616
617 if (!mm)
618 return NULL;
619 /*
620 * Because we have no locks, mm->owner's may be being moved to other
621 * cgroup. We use css_tryget() here even if this looks
622 * pessimistic (rather than adding locks here).
623 */
624 rcu_read_lock();
625 do {
626 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
627 if (unlikely(!mem))
628 break;
629 } while (!css_tryget(&mem->css));
630 rcu_read_unlock();
631 return mem;
632 }
633
634 /*
635 * Call callback function against all cgroup under hierarchy tree.
636 */
637 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
638 int (*func)(struct mem_cgroup *, void *))
639 {
640 int found, ret, nextid;
641 struct cgroup_subsys_state *css;
642 struct mem_cgroup *mem;
643
644 if (!root->use_hierarchy)
645 return (*func)(root, data);
646
647 nextid = 1;
648 do {
649 ret = 0;
650 mem = NULL;
651
652 rcu_read_lock();
653 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
654 &found);
655 if (css && css_tryget(css))
656 mem = container_of(css, struct mem_cgroup, css);
657 rcu_read_unlock();
658
659 if (mem) {
660 ret = (*func)(mem, data);
661 css_put(&mem->css);
662 }
663 nextid = found + 1;
664 } while (!ret && css);
665
666 return ret;
667 }
668
669 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
670 {
671 return (mem == root_mem_cgroup);
672 }
673
674 /*
675 * Following LRU functions are allowed to be used without PCG_LOCK.
676 * Operations are called by routine of global LRU independently from memcg.
677 * What we have to take care of here is validness of pc->mem_cgroup.
678 *
679 * Changes to pc->mem_cgroup happens when
680 * 1. charge
681 * 2. moving account
682 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
683 * It is added to LRU before charge.
684 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
685 * When moving account, the page is not on LRU. It's isolated.
686 */
687
688 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
689 {
690 struct page_cgroup *pc;
691 struct mem_cgroup_per_zone *mz;
692
693 if (mem_cgroup_disabled())
694 return;
695 pc = lookup_page_cgroup(page);
696 /* can happen while we handle swapcache. */
697 if (!TestClearPageCgroupAcctLRU(pc))
698 return;
699 VM_BUG_ON(!pc->mem_cgroup);
700 /*
701 * We don't check PCG_USED bit. It's cleared when the "page" is finally
702 * removed from global LRU.
703 */
704 mz = page_cgroup_zoneinfo(pc);
705 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
706 if (mem_cgroup_is_root(pc->mem_cgroup))
707 return;
708 VM_BUG_ON(list_empty(&pc->lru));
709 list_del_init(&pc->lru);
710 return;
711 }
712
713 void mem_cgroup_del_lru(struct page *page)
714 {
715 mem_cgroup_del_lru_list(page, page_lru(page));
716 }
717
718 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
719 {
720 struct mem_cgroup_per_zone *mz;
721 struct page_cgroup *pc;
722
723 if (mem_cgroup_disabled())
724 return;
725
726 pc = lookup_page_cgroup(page);
727 /*
728 * Used bit is set without atomic ops but after smp_wmb().
729 * For making pc->mem_cgroup visible, insert smp_rmb() here.
730 */
731 smp_rmb();
732 /* unused or root page is not rotated. */
733 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
734 return;
735 mz = page_cgroup_zoneinfo(pc);
736 list_move(&pc->lru, &mz->lists[lru]);
737 }
738
739 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
740 {
741 struct page_cgroup *pc;
742 struct mem_cgroup_per_zone *mz;
743
744 if (mem_cgroup_disabled())
745 return;
746 pc = lookup_page_cgroup(page);
747 VM_BUG_ON(PageCgroupAcctLRU(pc));
748 /*
749 * Used bit is set without atomic ops but after smp_wmb().
750 * For making pc->mem_cgroup visible, insert smp_rmb() here.
751 */
752 smp_rmb();
753 if (!PageCgroupUsed(pc))
754 return;
755
756 mz = page_cgroup_zoneinfo(pc);
757 MEM_CGROUP_ZSTAT(mz, lru) += 1;
758 SetPageCgroupAcctLRU(pc);
759 if (mem_cgroup_is_root(pc->mem_cgroup))
760 return;
761 list_add(&pc->lru, &mz->lists[lru]);
762 }
763
764 /*
765 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
766 * lru because the page may.be reused after it's fully uncharged (because of
767 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
768 * it again. This function is only used to charge SwapCache. It's done under
769 * lock_page and expected that zone->lru_lock is never held.
770 */
771 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
772 {
773 unsigned long flags;
774 struct zone *zone = page_zone(page);
775 struct page_cgroup *pc = lookup_page_cgroup(page);
776
777 spin_lock_irqsave(&zone->lru_lock, flags);
778 /*
779 * Forget old LRU when this page_cgroup is *not* used. This Used bit
780 * is guarded by lock_page() because the page is SwapCache.
781 */
782 if (!PageCgroupUsed(pc))
783 mem_cgroup_del_lru_list(page, page_lru(page));
784 spin_unlock_irqrestore(&zone->lru_lock, flags);
785 }
786
787 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
788 {
789 unsigned long flags;
790 struct zone *zone = page_zone(page);
791 struct page_cgroup *pc = lookup_page_cgroup(page);
792
793 spin_lock_irqsave(&zone->lru_lock, flags);
794 /* link when the page is linked to LRU but page_cgroup isn't */
795 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
796 mem_cgroup_add_lru_list(page, page_lru(page));
797 spin_unlock_irqrestore(&zone->lru_lock, flags);
798 }
799
800
801 void mem_cgroup_move_lists(struct page *page,
802 enum lru_list from, enum lru_list to)
803 {
804 if (mem_cgroup_disabled())
805 return;
806 mem_cgroup_del_lru_list(page, from);
807 mem_cgroup_add_lru_list(page, to);
808 }
809
810 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
811 {
812 int ret;
813 struct mem_cgroup *curr = NULL;
814
815 task_lock(task);
816 rcu_read_lock();
817 curr = try_get_mem_cgroup_from_mm(task->mm);
818 rcu_read_unlock();
819 task_unlock(task);
820 if (!curr)
821 return 0;
822 /*
823 * We should check use_hierarchy of "mem" not "curr". Because checking
824 * use_hierarchy of "curr" here make this function true if hierarchy is
825 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
826 * hierarchy(even if use_hierarchy is disabled in "mem").
827 */
828 if (mem->use_hierarchy)
829 ret = css_is_ancestor(&curr->css, &mem->css);
830 else
831 ret = (curr == mem);
832 css_put(&curr->css);
833 return ret;
834 }
835
836 /*
837 * prev_priority control...this will be used in memory reclaim path.
838 */
839 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
840 {
841 int prev_priority;
842
843 spin_lock(&mem->reclaim_param_lock);
844 prev_priority = mem->prev_priority;
845 spin_unlock(&mem->reclaim_param_lock);
846
847 return prev_priority;
848 }
849
850 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
851 {
852 spin_lock(&mem->reclaim_param_lock);
853 if (priority < mem->prev_priority)
854 mem->prev_priority = priority;
855 spin_unlock(&mem->reclaim_param_lock);
856 }
857
858 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
859 {
860 spin_lock(&mem->reclaim_param_lock);
861 mem->prev_priority = priority;
862 spin_unlock(&mem->reclaim_param_lock);
863 }
864
865 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
866 {
867 unsigned long active;
868 unsigned long inactive;
869 unsigned long gb;
870 unsigned long inactive_ratio;
871
872 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
873 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
874
875 gb = (inactive + active) >> (30 - PAGE_SHIFT);
876 if (gb)
877 inactive_ratio = int_sqrt(10 * gb);
878 else
879 inactive_ratio = 1;
880
881 if (present_pages) {
882 present_pages[0] = inactive;
883 present_pages[1] = active;
884 }
885
886 return inactive_ratio;
887 }
888
889 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
890 {
891 unsigned long active;
892 unsigned long inactive;
893 unsigned long present_pages[2];
894 unsigned long inactive_ratio;
895
896 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
897
898 inactive = present_pages[0];
899 active = present_pages[1];
900
901 if (inactive * inactive_ratio < active)
902 return 1;
903
904 return 0;
905 }
906
907 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
908 {
909 unsigned long active;
910 unsigned long inactive;
911
912 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
913 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
914
915 return (active > inactive);
916 }
917
918 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
919 struct zone *zone,
920 enum lru_list lru)
921 {
922 int nid = zone->zone_pgdat->node_id;
923 int zid = zone_idx(zone);
924 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
925
926 return MEM_CGROUP_ZSTAT(mz, lru);
927 }
928
929 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
930 struct zone *zone)
931 {
932 int nid = zone->zone_pgdat->node_id;
933 int zid = zone_idx(zone);
934 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935
936 return &mz->reclaim_stat;
937 }
938
939 struct zone_reclaim_stat *
940 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
941 {
942 struct page_cgroup *pc;
943 struct mem_cgroup_per_zone *mz;
944
945 if (mem_cgroup_disabled())
946 return NULL;
947
948 pc = lookup_page_cgroup(page);
949 /*
950 * Used bit is set without atomic ops but after smp_wmb().
951 * For making pc->mem_cgroup visible, insert smp_rmb() here.
952 */
953 smp_rmb();
954 if (!PageCgroupUsed(pc))
955 return NULL;
956
957 mz = page_cgroup_zoneinfo(pc);
958 if (!mz)
959 return NULL;
960
961 return &mz->reclaim_stat;
962 }
963
964 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
965 struct list_head *dst,
966 unsigned long *scanned, int order,
967 int mode, struct zone *z,
968 struct mem_cgroup *mem_cont,
969 int active, int file)
970 {
971 unsigned long nr_taken = 0;
972 struct page *page;
973 unsigned long scan;
974 LIST_HEAD(pc_list);
975 struct list_head *src;
976 struct page_cgroup *pc, *tmp;
977 int nid = z->zone_pgdat->node_id;
978 int zid = zone_idx(z);
979 struct mem_cgroup_per_zone *mz;
980 int lru = LRU_FILE * file + active;
981 int ret;
982
983 BUG_ON(!mem_cont);
984 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
985 src = &mz->lists[lru];
986
987 scan = 0;
988 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
989 if (scan >= nr_to_scan)
990 break;
991
992 page = pc->page;
993 if (unlikely(!PageCgroupUsed(pc)))
994 continue;
995 if (unlikely(!PageLRU(page)))
996 continue;
997
998 scan++;
999 ret = __isolate_lru_page(page, mode, file);
1000 switch (ret) {
1001 case 0:
1002 list_move(&page->lru, dst);
1003 mem_cgroup_del_lru(page);
1004 nr_taken++;
1005 break;
1006 case -EBUSY:
1007 /* we don't affect global LRU but rotate in our LRU */
1008 mem_cgroup_rotate_lru_list(page, page_lru(page));
1009 break;
1010 default:
1011 break;
1012 }
1013 }
1014
1015 *scanned = scan;
1016 return nr_taken;
1017 }
1018
1019 #define mem_cgroup_from_res_counter(counter, member) \
1020 container_of(counter, struct mem_cgroup, member)
1021
1022 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1023 {
1024 if (do_swap_account) {
1025 if (res_counter_check_under_limit(&mem->res) &&
1026 res_counter_check_under_limit(&mem->memsw))
1027 return true;
1028 } else
1029 if (res_counter_check_under_limit(&mem->res))
1030 return true;
1031 return false;
1032 }
1033
1034 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1035 {
1036 struct cgroup *cgrp = memcg->css.cgroup;
1037 unsigned int swappiness;
1038
1039 /* root ? */
1040 if (cgrp->parent == NULL)
1041 return vm_swappiness;
1042
1043 spin_lock(&memcg->reclaim_param_lock);
1044 swappiness = memcg->swappiness;
1045 spin_unlock(&memcg->reclaim_param_lock);
1046
1047 return swappiness;
1048 }
1049
1050 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1051 {
1052 int *val = data;
1053 (*val)++;
1054 return 0;
1055 }
1056
1057 /**
1058 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1059 * @memcg: The memory cgroup that went over limit
1060 * @p: Task that is going to be killed
1061 *
1062 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1063 * enabled
1064 */
1065 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1066 {
1067 struct cgroup *task_cgrp;
1068 struct cgroup *mem_cgrp;
1069 /*
1070 * Need a buffer in BSS, can't rely on allocations. The code relies
1071 * on the assumption that OOM is serialized for memory controller.
1072 * If this assumption is broken, revisit this code.
1073 */
1074 static char memcg_name[PATH_MAX];
1075 int ret;
1076
1077 if (!memcg || !p)
1078 return;
1079
1080
1081 rcu_read_lock();
1082
1083 mem_cgrp = memcg->css.cgroup;
1084 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1085
1086 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1087 if (ret < 0) {
1088 /*
1089 * Unfortunately, we are unable to convert to a useful name
1090 * But we'll still print out the usage information
1091 */
1092 rcu_read_unlock();
1093 goto done;
1094 }
1095 rcu_read_unlock();
1096
1097 printk(KERN_INFO "Task in %s killed", memcg_name);
1098
1099 rcu_read_lock();
1100 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1101 if (ret < 0) {
1102 rcu_read_unlock();
1103 goto done;
1104 }
1105 rcu_read_unlock();
1106
1107 /*
1108 * Continues from above, so we don't need an KERN_ level
1109 */
1110 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1111 done:
1112
1113 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1114 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1115 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1116 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1117 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1118 "failcnt %llu\n",
1119 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1120 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1121 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1122 }
1123
1124 /*
1125 * This function returns the number of memcg under hierarchy tree. Returns
1126 * 1(self count) if no children.
1127 */
1128 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1129 {
1130 int num = 0;
1131 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1132 return num;
1133 }
1134
1135 /*
1136 * Visit the first child (need not be the first child as per the ordering
1137 * of the cgroup list, since we track last_scanned_child) of @mem and use
1138 * that to reclaim free pages from.
1139 */
1140 static struct mem_cgroup *
1141 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1142 {
1143 struct mem_cgroup *ret = NULL;
1144 struct cgroup_subsys_state *css;
1145 int nextid, found;
1146
1147 if (!root_mem->use_hierarchy) {
1148 css_get(&root_mem->css);
1149 ret = root_mem;
1150 }
1151
1152 while (!ret) {
1153 rcu_read_lock();
1154 nextid = root_mem->last_scanned_child + 1;
1155 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1156 &found);
1157 if (css && css_tryget(css))
1158 ret = container_of(css, struct mem_cgroup, css);
1159
1160 rcu_read_unlock();
1161 /* Updates scanning parameter */
1162 spin_lock(&root_mem->reclaim_param_lock);
1163 if (!css) {
1164 /* this means start scan from ID:1 */
1165 root_mem->last_scanned_child = 0;
1166 } else
1167 root_mem->last_scanned_child = found;
1168 spin_unlock(&root_mem->reclaim_param_lock);
1169 }
1170
1171 return ret;
1172 }
1173
1174 /*
1175 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1176 * we reclaimed from, so that we don't end up penalizing one child extensively
1177 * based on its position in the children list.
1178 *
1179 * root_mem is the original ancestor that we've been reclaim from.
1180 *
1181 * We give up and return to the caller when we visit root_mem twice.
1182 * (other groups can be removed while we're walking....)
1183 *
1184 * If shrink==true, for avoiding to free too much, this returns immedieately.
1185 */
1186 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1187 struct zone *zone,
1188 gfp_t gfp_mask,
1189 unsigned long reclaim_options)
1190 {
1191 struct mem_cgroup *victim;
1192 int ret, total = 0;
1193 int loop = 0;
1194 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1195 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1196 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1197 unsigned long excess = mem_cgroup_get_excess(root_mem);
1198
1199 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1200 if (root_mem->memsw_is_minimum)
1201 noswap = true;
1202
1203 while (1) {
1204 victim = mem_cgroup_select_victim(root_mem);
1205 if (victim == root_mem) {
1206 loop++;
1207 if (loop >= 1)
1208 drain_all_stock_async();
1209 if (loop >= 2) {
1210 /*
1211 * If we have not been able to reclaim
1212 * anything, it might because there are
1213 * no reclaimable pages under this hierarchy
1214 */
1215 if (!check_soft || !total) {
1216 css_put(&victim->css);
1217 break;
1218 }
1219 /*
1220 * We want to do more targetted reclaim.
1221 * excess >> 2 is not to excessive so as to
1222 * reclaim too much, nor too less that we keep
1223 * coming back to reclaim from this cgroup
1224 */
1225 if (total >= (excess >> 2) ||
1226 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1227 css_put(&victim->css);
1228 break;
1229 }
1230 }
1231 }
1232 if (!mem_cgroup_local_usage(victim)) {
1233 /* this cgroup's local usage == 0 */
1234 css_put(&victim->css);
1235 continue;
1236 }
1237 /* we use swappiness of local cgroup */
1238 if (check_soft)
1239 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1240 noswap, get_swappiness(victim), zone,
1241 zone->zone_pgdat->node_id);
1242 else
1243 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1244 noswap, get_swappiness(victim));
1245 css_put(&victim->css);
1246 /*
1247 * At shrinking usage, we can't check we should stop here or
1248 * reclaim more. It's depends on callers. last_scanned_child
1249 * will work enough for keeping fairness under tree.
1250 */
1251 if (shrink)
1252 return ret;
1253 total += ret;
1254 if (check_soft) {
1255 if (res_counter_check_under_soft_limit(&root_mem->res))
1256 return total;
1257 } else if (mem_cgroup_check_under_limit(root_mem))
1258 return 1 + total;
1259 }
1260 return total;
1261 }
1262
1263 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1264 {
1265 int *val = (int *)data;
1266 int x;
1267 /*
1268 * Logically, we can stop scanning immediately when we find
1269 * a memcg is already locked. But condidering unlock ops and
1270 * creation/removal of memcg, scan-all is simple operation.
1271 */
1272 x = atomic_inc_return(&mem->oom_lock);
1273 *val = max(x, *val);
1274 return 0;
1275 }
1276 /*
1277 * Check OOM-Killer is already running under our hierarchy.
1278 * If someone is running, return false.
1279 */
1280 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1281 {
1282 int lock_count = 0;
1283
1284 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1285
1286 if (lock_count == 1)
1287 return true;
1288 return false;
1289 }
1290
1291 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1292 {
1293 /*
1294 * When a new child is created while the hierarchy is under oom,
1295 * mem_cgroup_oom_lock() may not be called. We have to use
1296 * atomic_add_unless() here.
1297 */
1298 atomic_add_unless(&mem->oom_lock, -1, 0);
1299 return 0;
1300 }
1301
1302 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1303 {
1304 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1305 }
1306
1307 static DEFINE_MUTEX(memcg_oom_mutex);
1308 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1309
1310 struct oom_wait_info {
1311 struct mem_cgroup *mem;
1312 wait_queue_t wait;
1313 };
1314
1315 static int memcg_oom_wake_function(wait_queue_t *wait,
1316 unsigned mode, int sync, void *arg)
1317 {
1318 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1319 struct oom_wait_info *oom_wait_info;
1320
1321 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1322
1323 if (oom_wait_info->mem == wake_mem)
1324 goto wakeup;
1325 /* if no hierarchy, no match */
1326 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1327 return 0;
1328 /*
1329 * Both of oom_wait_info->mem and wake_mem are stable under us.
1330 * Then we can use css_is_ancestor without taking care of RCU.
1331 */
1332 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1333 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1334 return 0;
1335
1336 wakeup:
1337 return autoremove_wake_function(wait, mode, sync, arg);
1338 }
1339
1340 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1341 {
1342 /* for filtering, pass "mem" as argument. */
1343 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1344 }
1345
1346 static void memcg_oom_recover(struct mem_cgroup *mem)
1347 {
1348 if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
1349 memcg_wakeup_oom(mem);
1350 }
1351
1352 /*
1353 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1354 */
1355 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1356 {
1357 struct oom_wait_info owait;
1358 bool locked, need_to_kill;
1359
1360 owait.mem = mem;
1361 owait.wait.flags = 0;
1362 owait.wait.func = memcg_oom_wake_function;
1363 owait.wait.private = current;
1364 INIT_LIST_HEAD(&owait.wait.task_list);
1365 need_to_kill = true;
1366 /* At first, try to OOM lock hierarchy under mem.*/
1367 mutex_lock(&memcg_oom_mutex);
1368 locked = mem_cgroup_oom_lock(mem);
1369 /*
1370 * Even if signal_pending(), we can't quit charge() loop without
1371 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1372 * under OOM is always welcomed, use TASK_KILLABLE here.
1373 */
1374 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1375 if (!locked || mem->oom_kill_disable)
1376 need_to_kill = false;
1377 if (locked)
1378 mem_cgroup_oom_notify(mem);
1379 mutex_unlock(&memcg_oom_mutex);
1380
1381 if (need_to_kill) {
1382 finish_wait(&memcg_oom_waitq, &owait.wait);
1383 mem_cgroup_out_of_memory(mem, mask);
1384 } else {
1385 schedule();
1386 finish_wait(&memcg_oom_waitq, &owait.wait);
1387 }
1388 mutex_lock(&memcg_oom_mutex);
1389 mem_cgroup_oom_unlock(mem);
1390 memcg_wakeup_oom(mem);
1391 mutex_unlock(&memcg_oom_mutex);
1392
1393 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1394 return false;
1395 /* Give chance to dying process */
1396 schedule_timeout(1);
1397 return true;
1398 }
1399
1400 /*
1401 * Currently used to update mapped file statistics, but the routine can be
1402 * generalized to update other statistics as well.
1403 */
1404 void mem_cgroup_update_file_mapped(struct page *page, int val)
1405 {
1406 struct mem_cgroup *mem;
1407 struct page_cgroup *pc;
1408
1409 pc = lookup_page_cgroup(page);
1410 if (unlikely(!pc))
1411 return;
1412
1413 lock_page_cgroup(pc);
1414 mem = pc->mem_cgroup;
1415 if (!mem || !PageCgroupUsed(pc))
1416 goto done;
1417
1418 /*
1419 * Preemption is already disabled. We can use __this_cpu_xxx
1420 */
1421 if (val > 0) {
1422 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1423 SetPageCgroupFileMapped(pc);
1424 } else {
1425 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1426 ClearPageCgroupFileMapped(pc);
1427 }
1428
1429 done:
1430 unlock_page_cgroup(pc);
1431 }
1432
1433 /*
1434 * size of first charge trial. "32" comes from vmscan.c's magic value.
1435 * TODO: maybe necessary to use big numbers in big irons.
1436 */
1437 #define CHARGE_SIZE (32 * PAGE_SIZE)
1438 struct memcg_stock_pcp {
1439 struct mem_cgroup *cached; /* this never be root cgroup */
1440 int charge;
1441 struct work_struct work;
1442 };
1443 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1444 static atomic_t memcg_drain_count;
1445
1446 /*
1447 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1448 * from local stock and true is returned. If the stock is 0 or charges from a
1449 * cgroup which is not current target, returns false. This stock will be
1450 * refilled.
1451 */
1452 static bool consume_stock(struct mem_cgroup *mem)
1453 {
1454 struct memcg_stock_pcp *stock;
1455 bool ret = true;
1456
1457 stock = &get_cpu_var(memcg_stock);
1458 if (mem == stock->cached && stock->charge)
1459 stock->charge -= PAGE_SIZE;
1460 else /* need to call res_counter_charge */
1461 ret = false;
1462 put_cpu_var(memcg_stock);
1463 return ret;
1464 }
1465
1466 /*
1467 * Returns stocks cached in percpu to res_counter and reset cached information.
1468 */
1469 static void drain_stock(struct memcg_stock_pcp *stock)
1470 {
1471 struct mem_cgroup *old = stock->cached;
1472
1473 if (stock->charge) {
1474 res_counter_uncharge(&old->res, stock->charge);
1475 if (do_swap_account)
1476 res_counter_uncharge(&old->memsw, stock->charge);
1477 }
1478 stock->cached = NULL;
1479 stock->charge = 0;
1480 }
1481
1482 /*
1483 * This must be called under preempt disabled or must be called by
1484 * a thread which is pinned to local cpu.
1485 */
1486 static void drain_local_stock(struct work_struct *dummy)
1487 {
1488 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1489 drain_stock(stock);
1490 }
1491
1492 /*
1493 * Cache charges(val) which is from res_counter, to local per_cpu area.
1494 * This will be consumed by consume_stock() function, later.
1495 */
1496 static void refill_stock(struct mem_cgroup *mem, int val)
1497 {
1498 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1499
1500 if (stock->cached != mem) { /* reset if necessary */
1501 drain_stock(stock);
1502 stock->cached = mem;
1503 }
1504 stock->charge += val;
1505 put_cpu_var(memcg_stock);
1506 }
1507
1508 /*
1509 * Tries to drain stocked charges in other cpus. This function is asynchronous
1510 * and just put a work per cpu for draining localy on each cpu. Caller can
1511 * expects some charges will be back to res_counter later but cannot wait for
1512 * it.
1513 */
1514 static void drain_all_stock_async(void)
1515 {
1516 int cpu;
1517 /* This function is for scheduling "drain" in asynchronous way.
1518 * The result of "drain" is not directly handled by callers. Then,
1519 * if someone is calling drain, we don't have to call drain more.
1520 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1521 * there is a race. We just do loose check here.
1522 */
1523 if (atomic_read(&memcg_drain_count))
1524 return;
1525 /* Notify other cpus that system-wide "drain" is running */
1526 atomic_inc(&memcg_drain_count);
1527 get_online_cpus();
1528 for_each_online_cpu(cpu) {
1529 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1530 schedule_work_on(cpu, &stock->work);
1531 }
1532 put_online_cpus();
1533 atomic_dec(&memcg_drain_count);
1534 /* We don't wait for flush_work */
1535 }
1536
1537 /* This is a synchronous drain interface. */
1538 static void drain_all_stock_sync(void)
1539 {
1540 /* called when force_empty is called */
1541 atomic_inc(&memcg_drain_count);
1542 schedule_on_each_cpu(drain_local_stock);
1543 atomic_dec(&memcg_drain_count);
1544 }
1545
1546 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1547 unsigned long action,
1548 void *hcpu)
1549 {
1550 int cpu = (unsigned long)hcpu;
1551 struct memcg_stock_pcp *stock;
1552
1553 if (action != CPU_DEAD)
1554 return NOTIFY_OK;
1555 stock = &per_cpu(memcg_stock, cpu);
1556 drain_stock(stock);
1557 return NOTIFY_OK;
1558 }
1559
1560 /*
1561 * Unlike exported interface, "oom" parameter is added. if oom==true,
1562 * oom-killer can be invoked.
1563 */
1564 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1565 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1566 {
1567 struct mem_cgroup *mem, *mem_over_limit;
1568 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1569 struct res_counter *fail_res;
1570 int csize = CHARGE_SIZE;
1571
1572 /*
1573 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1574 * in system level. So, allow to go ahead dying process in addition to
1575 * MEMDIE process.
1576 */
1577 if (unlikely(test_thread_flag(TIF_MEMDIE)
1578 || fatal_signal_pending(current)))
1579 goto bypass;
1580
1581 /*
1582 * We always charge the cgroup the mm_struct belongs to.
1583 * The mm_struct's mem_cgroup changes on task migration if the
1584 * thread group leader migrates. It's possible that mm is not
1585 * set, if so charge the init_mm (happens for pagecache usage).
1586 */
1587 mem = *memcg;
1588 if (likely(!mem)) {
1589 mem = try_get_mem_cgroup_from_mm(mm);
1590 *memcg = mem;
1591 } else {
1592 css_get(&mem->css);
1593 }
1594 if (unlikely(!mem))
1595 return 0;
1596
1597 VM_BUG_ON(css_is_removed(&mem->css));
1598 if (mem_cgroup_is_root(mem))
1599 goto done;
1600
1601 while (1) {
1602 int ret = 0;
1603 unsigned long flags = 0;
1604
1605 if (consume_stock(mem))
1606 goto done;
1607
1608 ret = res_counter_charge(&mem->res, csize, &fail_res);
1609 if (likely(!ret)) {
1610 if (!do_swap_account)
1611 break;
1612 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1613 if (likely(!ret))
1614 break;
1615 /* mem+swap counter fails */
1616 res_counter_uncharge(&mem->res, csize);
1617 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1618 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1619 memsw);
1620 } else
1621 /* mem counter fails */
1622 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1623 res);
1624
1625 /* reduce request size and retry */
1626 if (csize > PAGE_SIZE) {
1627 csize = PAGE_SIZE;
1628 continue;
1629 }
1630 if (!(gfp_mask & __GFP_WAIT))
1631 goto nomem;
1632
1633 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1634 gfp_mask, flags);
1635 if (ret)
1636 continue;
1637
1638 /*
1639 * try_to_free_mem_cgroup_pages() might not give us a full
1640 * picture of reclaim. Some pages are reclaimed and might be
1641 * moved to swap cache or just unmapped from the cgroup.
1642 * Check the limit again to see if the reclaim reduced the
1643 * current usage of the cgroup before giving up
1644 *
1645 */
1646 if (mem_cgroup_check_under_limit(mem_over_limit))
1647 continue;
1648
1649 /* try to avoid oom while someone is moving charge */
1650 if (mc.moving_task && current != mc.moving_task) {
1651 struct mem_cgroup *from, *to;
1652 bool do_continue = false;
1653 /*
1654 * There is a small race that "from" or "to" can be
1655 * freed by rmdir, so we use css_tryget().
1656 */
1657 from = mc.from;
1658 to = mc.to;
1659 if (from && css_tryget(&from->css)) {
1660 if (mem_over_limit->use_hierarchy)
1661 do_continue = css_is_ancestor(
1662 &from->css,
1663 &mem_over_limit->css);
1664 else
1665 do_continue = (from == mem_over_limit);
1666 css_put(&from->css);
1667 }
1668 if (!do_continue && to && css_tryget(&to->css)) {
1669 if (mem_over_limit->use_hierarchy)
1670 do_continue = css_is_ancestor(
1671 &to->css,
1672 &mem_over_limit->css);
1673 else
1674 do_continue = (to == mem_over_limit);
1675 css_put(&to->css);
1676 }
1677 if (do_continue) {
1678 DEFINE_WAIT(wait);
1679 prepare_to_wait(&mc.waitq, &wait,
1680 TASK_INTERRUPTIBLE);
1681 /* moving charge context might have finished. */
1682 if (mc.moving_task)
1683 schedule();
1684 finish_wait(&mc.waitq, &wait);
1685 continue;
1686 }
1687 }
1688
1689 if (!nr_retries--) {
1690 if (!oom)
1691 goto nomem;
1692 if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1693 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1694 continue;
1695 }
1696 /* When we reach here, current task is dying .*/
1697 css_put(&mem->css);
1698 goto bypass;
1699 }
1700 }
1701 if (csize > PAGE_SIZE)
1702 refill_stock(mem, csize - PAGE_SIZE);
1703 done:
1704 return 0;
1705 nomem:
1706 css_put(&mem->css);
1707 return -ENOMEM;
1708 bypass:
1709 *memcg = NULL;
1710 return 0;
1711 }
1712
1713 /*
1714 * Somemtimes we have to undo a charge we got by try_charge().
1715 * This function is for that and do uncharge, put css's refcnt.
1716 * gotten by try_charge().
1717 */
1718 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1719 unsigned long count)
1720 {
1721 if (!mem_cgroup_is_root(mem)) {
1722 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1723 if (do_swap_account)
1724 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1725 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1726 WARN_ON_ONCE(count > INT_MAX);
1727 __css_put(&mem->css, (int)count);
1728 }
1729 /* we don't need css_put for root */
1730 }
1731
1732 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1733 {
1734 __mem_cgroup_cancel_charge(mem, 1);
1735 }
1736
1737 /*
1738 * A helper function to get mem_cgroup from ID. must be called under
1739 * rcu_read_lock(). The caller must check css_is_removed() or some if
1740 * it's concern. (dropping refcnt from swap can be called against removed
1741 * memcg.)
1742 */
1743 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1744 {
1745 struct cgroup_subsys_state *css;
1746
1747 /* ID 0 is unused ID */
1748 if (!id)
1749 return NULL;
1750 css = css_lookup(&mem_cgroup_subsys, id);
1751 if (!css)
1752 return NULL;
1753 return container_of(css, struct mem_cgroup, css);
1754 }
1755
1756 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1757 {
1758 struct mem_cgroup *mem = NULL;
1759 struct page_cgroup *pc;
1760 unsigned short id;
1761 swp_entry_t ent;
1762
1763 VM_BUG_ON(!PageLocked(page));
1764
1765 pc = lookup_page_cgroup(page);
1766 lock_page_cgroup(pc);
1767 if (PageCgroupUsed(pc)) {
1768 mem = pc->mem_cgroup;
1769 if (mem && !css_tryget(&mem->css))
1770 mem = NULL;
1771 } else if (PageSwapCache(page)) {
1772 ent.val = page_private(page);
1773 id = lookup_swap_cgroup(ent);
1774 rcu_read_lock();
1775 mem = mem_cgroup_lookup(id);
1776 if (mem && !css_tryget(&mem->css))
1777 mem = NULL;
1778 rcu_read_unlock();
1779 }
1780 unlock_page_cgroup(pc);
1781 return mem;
1782 }
1783
1784 /*
1785 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1786 * USED state. If already USED, uncharge and return.
1787 */
1788
1789 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1790 struct page_cgroup *pc,
1791 enum charge_type ctype)
1792 {
1793 /* try_charge() can return NULL to *memcg, taking care of it. */
1794 if (!mem)
1795 return;
1796
1797 lock_page_cgroup(pc);
1798 if (unlikely(PageCgroupUsed(pc))) {
1799 unlock_page_cgroup(pc);
1800 mem_cgroup_cancel_charge(mem);
1801 return;
1802 }
1803
1804 pc->mem_cgroup = mem;
1805 /*
1806 * We access a page_cgroup asynchronously without lock_page_cgroup().
1807 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1808 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1809 * before USED bit, we need memory barrier here.
1810 * See mem_cgroup_add_lru_list(), etc.
1811 */
1812 smp_wmb();
1813 switch (ctype) {
1814 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1815 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1816 SetPageCgroupCache(pc);
1817 SetPageCgroupUsed(pc);
1818 break;
1819 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1820 ClearPageCgroupCache(pc);
1821 SetPageCgroupUsed(pc);
1822 break;
1823 default:
1824 break;
1825 }
1826
1827 mem_cgroup_charge_statistics(mem, pc, true);
1828
1829 unlock_page_cgroup(pc);
1830 /*
1831 * "charge_statistics" updated event counter. Then, check it.
1832 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1833 * if they exceeds softlimit.
1834 */
1835 memcg_check_events(mem, pc->page);
1836 }
1837
1838 /**
1839 * __mem_cgroup_move_account - move account of the page
1840 * @pc: page_cgroup of the page.
1841 * @from: mem_cgroup which the page is moved from.
1842 * @to: mem_cgroup which the page is moved to. @from != @to.
1843 * @uncharge: whether we should call uncharge and css_put against @from.
1844 *
1845 * The caller must confirm following.
1846 * - page is not on LRU (isolate_page() is useful.)
1847 * - the pc is locked, used, and ->mem_cgroup points to @from.
1848 *
1849 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1850 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1851 * true, this function does "uncharge" from old cgroup, but it doesn't if
1852 * @uncharge is false, so a caller should do "uncharge".
1853 */
1854
1855 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1856 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1857 {
1858 VM_BUG_ON(from == to);
1859 VM_BUG_ON(PageLRU(pc->page));
1860 VM_BUG_ON(!PageCgroupLocked(pc));
1861 VM_BUG_ON(!PageCgroupUsed(pc));
1862 VM_BUG_ON(pc->mem_cgroup != from);
1863
1864 if (PageCgroupFileMapped(pc)) {
1865 /* Update mapped_file data for mem_cgroup */
1866 preempt_disable();
1867 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1868 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1869 preempt_enable();
1870 }
1871 mem_cgroup_charge_statistics(from, pc, false);
1872 if (uncharge)
1873 /* This is not "cancel", but cancel_charge does all we need. */
1874 mem_cgroup_cancel_charge(from);
1875
1876 /* caller should have done css_get */
1877 pc->mem_cgroup = to;
1878 mem_cgroup_charge_statistics(to, pc, true);
1879 /*
1880 * We charges against "to" which may not have any tasks. Then, "to"
1881 * can be under rmdir(). But in current implementation, caller of
1882 * this function is just force_empty() and move charge, so it's
1883 * garanteed that "to" is never removed. So, we don't check rmdir
1884 * status here.
1885 */
1886 }
1887
1888 /*
1889 * check whether the @pc is valid for moving account and call
1890 * __mem_cgroup_move_account()
1891 */
1892 static int mem_cgroup_move_account(struct page_cgroup *pc,
1893 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1894 {
1895 int ret = -EINVAL;
1896 lock_page_cgroup(pc);
1897 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1898 __mem_cgroup_move_account(pc, from, to, uncharge);
1899 ret = 0;
1900 }
1901 unlock_page_cgroup(pc);
1902 /*
1903 * check events
1904 */
1905 memcg_check_events(to, pc->page);
1906 memcg_check_events(from, pc->page);
1907 return ret;
1908 }
1909
1910 /*
1911 * move charges to its parent.
1912 */
1913
1914 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1915 struct mem_cgroup *child,
1916 gfp_t gfp_mask)
1917 {
1918 struct page *page = pc->page;
1919 struct cgroup *cg = child->css.cgroup;
1920 struct cgroup *pcg = cg->parent;
1921 struct mem_cgroup *parent;
1922 int ret;
1923
1924 /* Is ROOT ? */
1925 if (!pcg)
1926 return -EINVAL;
1927
1928 ret = -EBUSY;
1929 if (!get_page_unless_zero(page))
1930 goto out;
1931 if (isolate_lru_page(page))
1932 goto put;
1933
1934 parent = mem_cgroup_from_cont(pcg);
1935 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1936 if (ret || !parent)
1937 goto put_back;
1938
1939 ret = mem_cgroup_move_account(pc, child, parent, true);
1940 if (ret)
1941 mem_cgroup_cancel_charge(parent);
1942 put_back:
1943 putback_lru_page(page);
1944 put:
1945 put_page(page);
1946 out:
1947 return ret;
1948 }
1949
1950 /*
1951 * Charge the memory controller for page usage.
1952 * Return
1953 * 0 if the charge was successful
1954 * < 0 if the cgroup is over its limit
1955 */
1956 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1957 gfp_t gfp_mask, enum charge_type ctype,
1958 struct mem_cgroup *memcg)
1959 {
1960 struct mem_cgroup *mem;
1961 struct page_cgroup *pc;
1962 int ret;
1963
1964 pc = lookup_page_cgroup(page);
1965 /* can happen at boot */
1966 if (unlikely(!pc))
1967 return 0;
1968 prefetchw(pc);
1969
1970 mem = memcg;
1971 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1972 if (ret || !mem)
1973 return ret;
1974
1975 __mem_cgroup_commit_charge(mem, pc, ctype);
1976 return 0;
1977 }
1978
1979 int mem_cgroup_newpage_charge(struct page *page,
1980 struct mm_struct *mm, gfp_t gfp_mask)
1981 {
1982 if (mem_cgroup_disabled())
1983 return 0;
1984 if (PageCompound(page))
1985 return 0;
1986 /*
1987 * If already mapped, we don't have to account.
1988 * If page cache, page->mapping has address_space.
1989 * But page->mapping may have out-of-use anon_vma pointer,
1990 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1991 * is NULL.
1992 */
1993 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1994 return 0;
1995 if (unlikely(!mm))
1996 mm = &init_mm;
1997 return mem_cgroup_charge_common(page, mm, gfp_mask,
1998 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1999 }
2000
2001 static void
2002 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2003 enum charge_type ctype);
2004
2005 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2006 gfp_t gfp_mask)
2007 {
2008 struct mem_cgroup *mem = NULL;
2009 int ret;
2010
2011 if (mem_cgroup_disabled())
2012 return 0;
2013 if (PageCompound(page))
2014 return 0;
2015 /*
2016 * Corner case handling. This is called from add_to_page_cache()
2017 * in usual. But some FS (shmem) precharges this page before calling it
2018 * and call add_to_page_cache() with GFP_NOWAIT.
2019 *
2020 * For GFP_NOWAIT case, the page may be pre-charged before calling
2021 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2022 * charge twice. (It works but has to pay a bit larger cost.)
2023 * And when the page is SwapCache, it should take swap information
2024 * into account. This is under lock_page() now.
2025 */
2026 if (!(gfp_mask & __GFP_WAIT)) {
2027 struct page_cgroup *pc;
2028
2029
2030 pc = lookup_page_cgroup(page);
2031 if (!pc)
2032 return 0;
2033 lock_page_cgroup(pc);
2034 if (PageCgroupUsed(pc)) {
2035 unlock_page_cgroup(pc);
2036 return 0;
2037 }
2038 unlock_page_cgroup(pc);
2039 }
2040
2041 if (unlikely(!mm && !mem))
2042 mm = &init_mm;
2043
2044 if (page_is_file_cache(page))
2045 return mem_cgroup_charge_common(page, mm, gfp_mask,
2046 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2047
2048 /* shmem */
2049 if (PageSwapCache(page)) {
2050 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2051 if (!ret)
2052 __mem_cgroup_commit_charge_swapin(page, mem,
2053 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2054 } else
2055 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2056 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2057
2058 return ret;
2059 }
2060
2061 /*
2062 * While swap-in, try_charge -> commit or cancel, the page is locked.
2063 * And when try_charge() successfully returns, one refcnt to memcg without
2064 * struct page_cgroup is acquired. This refcnt will be consumed by
2065 * "commit()" or removed by "cancel()"
2066 */
2067 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2068 struct page *page,
2069 gfp_t mask, struct mem_cgroup **ptr)
2070 {
2071 struct mem_cgroup *mem;
2072 int ret;
2073
2074 if (mem_cgroup_disabled())
2075 return 0;
2076
2077 if (!do_swap_account)
2078 goto charge_cur_mm;
2079 /*
2080 * A racing thread's fault, or swapoff, may have already updated
2081 * the pte, and even removed page from swap cache: in those cases
2082 * do_swap_page()'s pte_same() test will fail; but there's also a
2083 * KSM case which does need to charge the page.
2084 */
2085 if (!PageSwapCache(page))
2086 goto charge_cur_mm;
2087 mem = try_get_mem_cgroup_from_page(page);
2088 if (!mem)
2089 goto charge_cur_mm;
2090 *ptr = mem;
2091 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2092 /* drop extra refcnt from tryget */
2093 css_put(&mem->css);
2094 return ret;
2095 charge_cur_mm:
2096 if (unlikely(!mm))
2097 mm = &init_mm;
2098 return __mem_cgroup_try_charge(mm, mask, ptr, true);
2099 }
2100
2101 static void
2102 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2103 enum charge_type ctype)
2104 {
2105 struct page_cgroup *pc;
2106
2107 if (mem_cgroup_disabled())
2108 return;
2109 if (!ptr)
2110 return;
2111 cgroup_exclude_rmdir(&ptr->css);
2112 pc = lookup_page_cgroup(page);
2113 mem_cgroup_lru_del_before_commit_swapcache(page);
2114 __mem_cgroup_commit_charge(ptr, pc, ctype);
2115 mem_cgroup_lru_add_after_commit_swapcache(page);
2116 /*
2117 * Now swap is on-memory. This means this page may be
2118 * counted both as mem and swap....double count.
2119 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2120 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2121 * may call delete_from_swap_cache() before reach here.
2122 */
2123 if (do_swap_account && PageSwapCache(page)) {
2124 swp_entry_t ent = {.val = page_private(page)};
2125 unsigned short id;
2126 struct mem_cgroup *memcg;
2127
2128 id = swap_cgroup_record(ent, 0);
2129 rcu_read_lock();
2130 memcg = mem_cgroup_lookup(id);
2131 if (memcg) {
2132 /*
2133 * This recorded memcg can be obsolete one. So, avoid
2134 * calling css_tryget
2135 */
2136 if (!mem_cgroup_is_root(memcg))
2137 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2138 mem_cgroup_swap_statistics(memcg, false);
2139 mem_cgroup_put(memcg);
2140 }
2141 rcu_read_unlock();
2142 }
2143 /*
2144 * At swapin, we may charge account against cgroup which has no tasks.
2145 * So, rmdir()->pre_destroy() can be called while we do this charge.
2146 * In that case, we need to call pre_destroy() again. check it here.
2147 */
2148 cgroup_release_and_wakeup_rmdir(&ptr->css);
2149 }
2150
2151 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2152 {
2153 __mem_cgroup_commit_charge_swapin(page, ptr,
2154 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2155 }
2156
2157 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2158 {
2159 if (mem_cgroup_disabled())
2160 return;
2161 if (!mem)
2162 return;
2163 mem_cgroup_cancel_charge(mem);
2164 }
2165
2166 static void
2167 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2168 {
2169 struct memcg_batch_info *batch = NULL;
2170 bool uncharge_memsw = true;
2171 /* If swapout, usage of swap doesn't decrease */
2172 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2173 uncharge_memsw = false;
2174
2175 batch = &current->memcg_batch;
2176 /*
2177 * In usual, we do css_get() when we remember memcg pointer.
2178 * But in this case, we keep res->usage until end of a series of
2179 * uncharges. Then, it's ok to ignore memcg's refcnt.
2180 */
2181 if (!batch->memcg)
2182 batch->memcg = mem;
2183 /*
2184 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2185 * In those cases, all pages freed continously can be expected to be in
2186 * the same cgroup and we have chance to coalesce uncharges.
2187 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2188 * because we want to do uncharge as soon as possible.
2189 */
2190
2191 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2192 goto direct_uncharge;
2193
2194 /*
2195 * In typical case, batch->memcg == mem. This means we can
2196 * merge a series of uncharges to an uncharge of res_counter.
2197 * If not, we uncharge res_counter ony by one.
2198 */
2199 if (batch->memcg != mem)
2200 goto direct_uncharge;
2201 /* remember freed charge and uncharge it later */
2202 batch->bytes += PAGE_SIZE;
2203 if (uncharge_memsw)
2204 batch->memsw_bytes += PAGE_SIZE;
2205 return;
2206 direct_uncharge:
2207 res_counter_uncharge(&mem->res, PAGE_SIZE);
2208 if (uncharge_memsw)
2209 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2210 if (unlikely(batch->memcg != mem))
2211 memcg_oom_recover(mem);
2212 return;
2213 }
2214
2215 /*
2216 * uncharge if !page_mapped(page)
2217 */
2218 static struct mem_cgroup *
2219 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2220 {
2221 struct page_cgroup *pc;
2222 struct mem_cgroup *mem = NULL;
2223 struct mem_cgroup_per_zone *mz;
2224
2225 if (mem_cgroup_disabled())
2226 return NULL;
2227
2228 if (PageSwapCache(page))
2229 return NULL;
2230
2231 /*
2232 * Check if our page_cgroup is valid
2233 */
2234 pc = lookup_page_cgroup(page);
2235 if (unlikely(!pc || !PageCgroupUsed(pc)))
2236 return NULL;
2237
2238 lock_page_cgroup(pc);
2239
2240 mem = pc->mem_cgroup;
2241
2242 if (!PageCgroupUsed(pc))
2243 goto unlock_out;
2244
2245 switch (ctype) {
2246 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2247 case MEM_CGROUP_CHARGE_TYPE_DROP:
2248 if (page_mapped(page))
2249 goto unlock_out;
2250 break;
2251 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2252 if (!PageAnon(page)) { /* Shared memory */
2253 if (page->mapping && !page_is_file_cache(page))
2254 goto unlock_out;
2255 } else if (page_mapped(page)) /* Anon */
2256 goto unlock_out;
2257 break;
2258 default:
2259 break;
2260 }
2261
2262 if (!mem_cgroup_is_root(mem))
2263 __do_uncharge(mem, ctype);
2264 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2265 mem_cgroup_swap_statistics(mem, true);
2266 mem_cgroup_charge_statistics(mem, pc, false);
2267
2268 ClearPageCgroupUsed(pc);
2269 /*
2270 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2271 * freed from LRU. This is safe because uncharged page is expected not
2272 * to be reused (freed soon). Exception is SwapCache, it's handled by
2273 * special functions.
2274 */
2275
2276 mz = page_cgroup_zoneinfo(pc);
2277 unlock_page_cgroup(pc);
2278
2279 memcg_check_events(mem, page);
2280 /* at swapout, this memcg will be accessed to record to swap */
2281 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2282 css_put(&mem->css);
2283
2284 return mem;
2285
2286 unlock_out:
2287 unlock_page_cgroup(pc);
2288 return NULL;
2289 }
2290
2291 void mem_cgroup_uncharge_page(struct page *page)
2292 {
2293 /* early check. */
2294 if (page_mapped(page))
2295 return;
2296 if (page->mapping && !PageAnon(page))
2297 return;
2298 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2299 }
2300
2301 void mem_cgroup_uncharge_cache_page(struct page *page)
2302 {
2303 VM_BUG_ON(page_mapped(page));
2304 VM_BUG_ON(page->mapping);
2305 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2306 }
2307
2308 /*
2309 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2310 * In that cases, pages are freed continuously and we can expect pages
2311 * are in the same memcg. All these calls itself limits the number of
2312 * pages freed at once, then uncharge_start/end() is called properly.
2313 * This may be called prural(2) times in a context,
2314 */
2315
2316 void mem_cgroup_uncharge_start(void)
2317 {
2318 current->memcg_batch.do_batch++;
2319 /* We can do nest. */
2320 if (current->memcg_batch.do_batch == 1) {
2321 current->memcg_batch.memcg = NULL;
2322 current->memcg_batch.bytes = 0;
2323 current->memcg_batch.memsw_bytes = 0;
2324 }
2325 }
2326
2327 void mem_cgroup_uncharge_end(void)
2328 {
2329 struct memcg_batch_info *batch = &current->memcg_batch;
2330
2331 if (!batch->do_batch)
2332 return;
2333
2334 batch->do_batch--;
2335 if (batch->do_batch) /* If stacked, do nothing. */
2336 return;
2337
2338 if (!batch->memcg)
2339 return;
2340 /*
2341 * This "batch->memcg" is valid without any css_get/put etc...
2342 * bacause we hide charges behind us.
2343 */
2344 if (batch->bytes)
2345 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2346 if (batch->memsw_bytes)
2347 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2348 memcg_oom_recover(batch->memcg);
2349 /* forget this pointer (for sanity check) */
2350 batch->memcg = NULL;
2351 }
2352
2353 #ifdef CONFIG_SWAP
2354 /*
2355 * called after __delete_from_swap_cache() and drop "page" account.
2356 * memcg information is recorded to swap_cgroup of "ent"
2357 */
2358 void
2359 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2360 {
2361 struct mem_cgroup *memcg;
2362 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2363
2364 if (!swapout) /* this was a swap cache but the swap is unused ! */
2365 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2366
2367 memcg = __mem_cgroup_uncharge_common(page, ctype);
2368
2369 /* record memcg information */
2370 if (do_swap_account && swapout && memcg) {
2371 swap_cgroup_record(ent, css_id(&memcg->css));
2372 mem_cgroup_get(memcg);
2373 }
2374 if (swapout && memcg)
2375 css_put(&memcg->css);
2376 }
2377 #endif
2378
2379 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2380 /*
2381 * called from swap_entry_free(). remove record in swap_cgroup and
2382 * uncharge "memsw" account.
2383 */
2384 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2385 {
2386 struct mem_cgroup *memcg;
2387 unsigned short id;
2388
2389 if (!do_swap_account)
2390 return;
2391
2392 id = swap_cgroup_record(ent, 0);
2393 rcu_read_lock();
2394 memcg = mem_cgroup_lookup(id);
2395 if (memcg) {
2396 /*
2397 * We uncharge this because swap is freed.
2398 * This memcg can be obsolete one. We avoid calling css_tryget
2399 */
2400 if (!mem_cgroup_is_root(memcg))
2401 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2402 mem_cgroup_swap_statistics(memcg, false);
2403 mem_cgroup_put(memcg);
2404 }
2405 rcu_read_unlock();
2406 }
2407
2408 /**
2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410 * @entry: swap entry to be moved
2411 * @from: mem_cgroup which the entry is moved from
2412 * @to: mem_cgroup which the entry is moved to
2413 * @need_fixup: whether we should fixup res_counters and refcounts.
2414 *
2415 * It succeeds only when the swap_cgroup's record for this entry is the same
2416 * as the mem_cgroup's id of @from.
2417 *
2418 * Returns 0 on success, -EINVAL on failure.
2419 *
2420 * The caller must have charged to @to, IOW, called res_counter_charge() about
2421 * both res and memsw, and called css_get().
2422 */
2423 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2424 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2425 {
2426 unsigned short old_id, new_id;
2427
2428 old_id = css_id(&from->css);
2429 new_id = css_id(&to->css);
2430
2431 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2432 mem_cgroup_swap_statistics(from, false);
2433 mem_cgroup_swap_statistics(to, true);
2434 /*
2435 * This function is only called from task migration context now.
2436 * It postpones res_counter and refcount handling till the end
2437 * of task migration(mem_cgroup_clear_mc()) for performance
2438 * improvement. But we cannot postpone mem_cgroup_get(to)
2439 * because if the process that has been moved to @to does
2440 * swap-in, the refcount of @to might be decreased to 0.
2441 */
2442 mem_cgroup_get(to);
2443 if (need_fixup) {
2444 if (!mem_cgroup_is_root(from))
2445 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2446 mem_cgroup_put(from);
2447 /*
2448 * we charged both to->res and to->memsw, so we should
2449 * uncharge to->res.
2450 */
2451 if (!mem_cgroup_is_root(to))
2452 res_counter_uncharge(&to->res, PAGE_SIZE);
2453 css_put(&to->css);
2454 }
2455 return 0;
2456 }
2457 return -EINVAL;
2458 }
2459 #else
2460 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2461 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2462 {
2463 return -EINVAL;
2464 }
2465 #endif
2466
2467 /*
2468 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2469 * page belongs to.
2470 */
2471 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2472 {
2473 struct page_cgroup *pc;
2474 struct mem_cgroup *mem = NULL;
2475 int ret = 0;
2476
2477 if (mem_cgroup_disabled())
2478 return 0;
2479
2480 pc = lookup_page_cgroup(page);
2481 lock_page_cgroup(pc);
2482 if (PageCgroupUsed(pc)) {
2483 mem = pc->mem_cgroup;
2484 css_get(&mem->css);
2485 }
2486 unlock_page_cgroup(pc);
2487
2488 *ptr = mem;
2489 if (mem) {
2490 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2491 css_put(&mem->css);
2492 }
2493 return ret;
2494 }
2495
2496 /* remove redundant charge if migration failed*/
2497 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2498 struct page *oldpage, struct page *newpage)
2499 {
2500 struct page *target, *unused;
2501 struct page_cgroup *pc;
2502 enum charge_type ctype;
2503
2504 if (!mem)
2505 return;
2506 cgroup_exclude_rmdir(&mem->css);
2507 /* at migration success, oldpage->mapping is NULL. */
2508 if (oldpage->mapping) {
2509 target = oldpage;
2510 unused = NULL;
2511 } else {
2512 target = newpage;
2513 unused = oldpage;
2514 }
2515
2516 if (PageAnon(target))
2517 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2518 else if (page_is_file_cache(target))
2519 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2520 else
2521 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2522
2523 /* unused page is not on radix-tree now. */
2524 if (unused)
2525 __mem_cgroup_uncharge_common(unused, ctype);
2526
2527 pc = lookup_page_cgroup(target);
2528 /*
2529 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2530 * So, double-counting is effectively avoided.
2531 */
2532 __mem_cgroup_commit_charge(mem, pc, ctype);
2533
2534 /*
2535 * Both of oldpage and newpage are still under lock_page().
2536 * Then, we don't have to care about race in radix-tree.
2537 * But we have to be careful that this page is unmapped or not.
2538 *
2539 * There is a case for !page_mapped(). At the start of
2540 * migration, oldpage was mapped. But now, it's zapped.
2541 * But we know *target* page is not freed/reused under us.
2542 * mem_cgroup_uncharge_page() does all necessary checks.
2543 */
2544 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2545 mem_cgroup_uncharge_page(target);
2546 /*
2547 * At migration, we may charge account against cgroup which has no tasks
2548 * So, rmdir()->pre_destroy() can be called while we do this charge.
2549 * In that case, we need to call pre_destroy() again. check it here.
2550 */
2551 cgroup_release_and_wakeup_rmdir(&mem->css);
2552 }
2553
2554 /*
2555 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2556 * Calling hierarchical_reclaim is not enough because we should update
2557 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2558 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2559 * not from the memcg which this page would be charged to.
2560 * try_charge_swapin does all of these works properly.
2561 */
2562 int mem_cgroup_shmem_charge_fallback(struct page *page,
2563 struct mm_struct *mm,
2564 gfp_t gfp_mask)
2565 {
2566 struct mem_cgroup *mem = NULL;
2567 int ret;
2568
2569 if (mem_cgroup_disabled())
2570 return 0;
2571
2572 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2573 if (!ret)
2574 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2575
2576 return ret;
2577 }
2578
2579 static DEFINE_MUTEX(set_limit_mutex);
2580
2581 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2582 unsigned long long val)
2583 {
2584 int retry_count;
2585 u64 memswlimit, memlimit;
2586 int ret = 0;
2587 int children = mem_cgroup_count_children(memcg);
2588 u64 curusage, oldusage;
2589 int enlarge;
2590
2591 /*
2592 * For keeping hierarchical_reclaim simple, how long we should retry
2593 * is depends on callers. We set our retry-count to be function
2594 * of # of children which we should visit in this loop.
2595 */
2596 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2597
2598 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2599
2600 enlarge = 0;
2601 while (retry_count) {
2602 if (signal_pending(current)) {
2603 ret = -EINTR;
2604 break;
2605 }
2606 /*
2607 * Rather than hide all in some function, I do this in
2608 * open coded manner. You see what this really does.
2609 * We have to guarantee mem->res.limit < mem->memsw.limit.
2610 */
2611 mutex_lock(&set_limit_mutex);
2612 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2613 if (memswlimit < val) {
2614 ret = -EINVAL;
2615 mutex_unlock(&set_limit_mutex);
2616 break;
2617 }
2618
2619 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2620 if (memlimit < val)
2621 enlarge = 1;
2622
2623 ret = res_counter_set_limit(&memcg->res, val);
2624 if (!ret) {
2625 if (memswlimit == val)
2626 memcg->memsw_is_minimum = true;
2627 else
2628 memcg->memsw_is_minimum = false;
2629 }
2630 mutex_unlock(&set_limit_mutex);
2631
2632 if (!ret)
2633 break;
2634
2635 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2636 MEM_CGROUP_RECLAIM_SHRINK);
2637 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2638 /* Usage is reduced ? */
2639 if (curusage >= oldusage)
2640 retry_count--;
2641 else
2642 oldusage = curusage;
2643 }
2644 if (!ret && enlarge)
2645 memcg_oom_recover(memcg);
2646
2647 return ret;
2648 }
2649
2650 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2651 unsigned long long val)
2652 {
2653 int retry_count;
2654 u64 memlimit, memswlimit, oldusage, curusage;
2655 int children = mem_cgroup_count_children(memcg);
2656 int ret = -EBUSY;
2657 int enlarge = 0;
2658
2659 /* see mem_cgroup_resize_res_limit */
2660 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2661 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2662 while (retry_count) {
2663 if (signal_pending(current)) {
2664 ret = -EINTR;
2665 break;
2666 }
2667 /*
2668 * Rather than hide all in some function, I do this in
2669 * open coded manner. You see what this really does.
2670 * We have to guarantee mem->res.limit < mem->memsw.limit.
2671 */
2672 mutex_lock(&set_limit_mutex);
2673 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2674 if (memlimit > val) {
2675 ret = -EINVAL;
2676 mutex_unlock(&set_limit_mutex);
2677 break;
2678 }
2679 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2680 if (memswlimit < val)
2681 enlarge = 1;
2682 ret = res_counter_set_limit(&memcg->memsw, val);
2683 if (!ret) {
2684 if (memlimit == val)
2685 memcg->memsw_is_minimum = true;
2686 else
2687 memcg->memsw_is_minimum = false;
2688 }
2689 mutex_unlock(&set_limit_mutex);
2690
2691 if (!ret)
2692 break;
2693
2694 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2695 MEM_CGROUP_RECLAIM_NOSWAP |
2696 MEM_CGROUP_RECLAIM_SHRINK);
2697 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2698 /* Usage is reduced ? */
2699 if (curusage >= oldusage)
2700 retry_count--;
2701 else
2702 oldusage = curusage;
2703 }
2704 if (!ret && enlarge)
2705 memcg_oom_recover(memcg);
2706 return ret;
2707 }
2708
2709 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2710 gfp_t gfp_mask, int nid,
2711 int zid)
2712 {
2713 unsigned long nr_reclaimed = 0;
2714 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2715 unsigned long reclaimed;
2716 int loop = 0;
2717 struct mem_cgroup_tree_per_zone *mctz;
2718 unsigned long long excess;
2719
2720 if (order > 0)
2721 return 0;
2722
2723 mctz = soft_limit_tree_node_zone(nid, zid);
2724 /*
2725 * This loop can run a while, specially if mem_cgroup's continuously
2726 * keep exceeding their soft limit and putting the system under
2727 * pressure
2728 */
2729 do {
2730 if (next_mz)
2731 mz = next_mz;
2732 else
2733 mz = mem_cgroup_largest_soft_limit_node(mctz);
2734 if (!mz)
2735 break;
2736
2737 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2738 gfp_mask,
2739 MEM_CGROUP_RECLAIM_SOFT);
2740 nr_reclaimed += reclaimed;
2741 spin_lock(&mctz->lock);
2742
2743 /*
2744 * If we failed to reclaim anything from this memory cgroup
2745 * it is time to move on to the next cgroup
2746 */
2747 next_mz = NULL;
2748 if (!reclaimed) {
2749 do {
2750 /*
2751 * Loop until we find yet another one.
2752 *
2753 * By the time we get the soft_limit lock
2754 * again, someone might have aded the
2755 * group back on the RB tree. Iterate to
2756 * make sure we get a different mem.
2757 * mem_cgroup_largest_soft_limit_node returns
2758 * NULL if no other cgroup is present on
2759 * the tree
2760 */
2761 next_mz =
2762 __mem_cgroup_largest_soft_limit_node(mctz);
2763 if (next_mz == mz) {
2764 css_put(&next_mz->mem->css);
2765 next_mz = NULL;
2766 } else /* next_mz == NULL or other memcg */
2767 break;
2768 } while (1);
2769 }
2770 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2771 excess = res_counter_soft_limit_excess(&mz->mem->res);
2772 /*
2773 * One school of thought says that we should not add
2774 * back the node to the tree if reclaim returns 0.
2775 * But our reclaim could return 0, simply because due
2776 * to priority we are exposing a smaller subset of
2777 * memory to reclaim from. Consider this as a longer
2778 * term TODO.
2779 */
2780 /* If excess == 0, no tree ops */
2781 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2782 spin_unlock(&mctz->lock);
2783 css_put(&mz->mem->css);
2784 loop++;
2785 /*
2786 * Could not reclaim anything and there are no more
2787 * mem cgroups to try or we seem to be looping without
2788 * reclaiming anything.
2789 */
2790 if (!nr_reclaimed &&
2791 (next_mz == NULL ||
2792 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2793 break;
2794 } while (!nr_reclaimed);
2795 if (next_mz)
2796 css_put(&next_mz->mem->css);
2797 return nr_reclaimed;
2798 }
2799
2800 /*
2801 * This routine traverse page_cgroup in given list and drop them all.
2802 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2803 */
2804 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2805 int node, int zid, enum lru_list lru)
2806 {
2807 struct zone *zone;
2808 struct mem_cgroup_per_zone *mz;
2809 struct page_cgroup *pc, *busy;
2810 unsigned long flags, loop;
2811 struct list_head *list;
2812 int ret = 0;
2813
2814 zone = &NODE_DATA(node)->node_zones[zid];
2815 mz = mem_cgroup_zoneinfo(mem, node, zid);
2816 list = &mz->lists[lru];
2817
2818 loop = MEM_CGROUP_ZSTAT(mz, lru);
2819 /* give some margin against EBUSY etc...*/
2820 loop += 256;
2821 busy = NULL;
2822 while (loop--) {
2823 ret = 0;
2824 spin_lock_irqsave(&zone->lru_lock, flags);
2825 if (list_empty(list)) {
2826 spin_unlock_irqrestore(&zone->lru_lock, flags);
2827 break;
2828 }
2829 pc = list_entry(list->prev, struct page_cgroup, lru);
2830 if (busy == pc) {
2831 list_move(&pc->lru, list);
2832 busy = NULL;
2833 spin_unlock_irqrestore(&zone->lru_lock, flags);
2834 continue;
2835 }
2836 spin_unlock_irqrestore(&zone->lru_lock, flags);
2837
2838 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2839 if (ret == -ENOMEM)
2840 break;
2841
2842 if (ret == -EBUSY || ret == -EINVAL) {
2843 /* found lock contention or "pc" is obsolete. */
2844 busy = pc;
2845 cond_resched();
2846 } else
2847 busy = NULL;
2848 }
2849
2850 if (!ret && !list_empty(list))
2851 return -EBUSY;
2852 return ret;
2853 }
2854
2855 /*
2856 * make mem_cgroup's charge to be 0 if there is no task.
2857 * This enables deleting this mem_cgroup.
2858 */
2859 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2860 {
2861 int ret;
2862 int node, zid, shrink;
2863 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2864 struct cgroup *cgrp = mem->css.cgroup;
2865
2866 css_get(&mem->css);
2867
2868 shrink = 0;
2869 /* should free all ? */
2870 if (free_all)
2871 goto try_to_free;
2872 move_account:
2873 do {
2874 ret = -EBUSY;
2875 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2876 goto out;
2877 ret = -EINTR;
2878 if (signal_pending(current))
2879 goto out;
2880 /* This is for making all *used* pages to be on LRU. */
2881 lru_add_drain_all();
2882 drain_all_stock_sync();
2883 ret = 0;
2884 for_each_node_state(node, N_HIGH_MEMORY) {
2885 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2886 enum lru_list l;
2887 for_each_lru(l) {
2888 ret = mem_cgroup_force_empty_list(mem,
2889 node, zid, l);
2890 if (ret)
2891 break;
2892 }
2893 }
2894 if (ret)
2895 break;
2896 }
2897 memcg_oom_recover(mem);
2898 /* it seems parent cgroup doesn't have enough mem */
2899 if (ret == -ENOMEM)
2900 goto try_to_free;
2901 cond_resched();
2902 /* "ret" should also be checked to ensure all lists are empty. */
2903 } while (mem->res.usage > 0 || ret);
2904 out:
2905 css_put(&mem->css);
2906 return ret;
2907
2908 try_to_free:
2909 /* returns EBUSY if there is a task or if we come here twice. */
2910 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2911 ret = -EBUSY;
2912 goto out;
2913 }
2914 /* we call try-to-free pages for make this cgroup empty */
2915 lru_add_drain_all();
2916 /* try to free all pages in this cgroup */
2917 shrink = 1;
2918 while (nr_retries && mem->res.usage > 0) {
2919 int progress;
2920
2921 if (signal_pending(current)) {
2922 ret = -EINTR;
2923 goto out;
2924 }
2925 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2926 false, get_swappiness(mem));
2927 if (!progress) {
2928 nr_retries--;
2929 /* maybe some writeback is necessary */
2930 congestion_wait(BLK_RW_ASYNC, HZ/10);
2931 }
2932
2933 }
2934 lru_add_drain();
2935 /* try move_account...there may be some *locked* pages. */
2936 goto move_account;
2937 }
2938
2939 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2940 {
2941 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2942 }
2943
2944
2945 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2946 {
2947 return mem_cgroup_from_cont(cont)->use_hierarchy;
2948 }
2949
2950 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2951 u64 val)
2952 {
2953 int retval = 0;
2954 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2955 struct cgroup *parent = cont->parent;
2956 struct mem_cgroup *parent_mem = NULL;
2957
2958 if (parent)
2959 parent_mem = mem_cgroup_from_cont(parent);
2960
2961 cgroup_lock();
2962 /*
2963 * If parent's use_hierarchy is set, we can't make any modifications
2964 * in the child subtrees. If it is unset, then the change can
2965 * occur, provided the current cgroup has no children.
2966 *
2967 * For the root cgroup, parent_mem is NULL, we allow value to be
2968 * set if there are no children.
2969 */
2970 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2971 (val == 1 || val == 0)) {
2972 if (list_empty(&cont->children))
2973 mem->use_hierarchy = val;
2974 else
2975 retval = -EBUSY;
2976 } else
2977 retval = -EINVAL;
2978 cgroup_unlock();
2979
2980 return retval;
2981 }
2982
2983 struct mem_cgroup_idx_data {
2984 s64 val;
2985 enum mem_cgroup_stat_index idx;
2986 };
2987
2988 static int
2989 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2990 {
2991 struct mem_cgroup_idx_data *d = data;
2992 d->val += mem_cgroup_read_stat(mem, d->idx);
2993 return 0;
2994 }
2995
2996 static void
2997 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2998 enum mem_cgroup_stat_index idx, s64 *val)
2999 {
3000 struct mem_cgroup_idx_data d;
3001 d.idx = idx;
3002 d.val = 0;
3003 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3004 *val = d.val;
3005 }
3006
3007 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3008 {
3009 u64 idx_val, val;
3010
3011 if (!mem_cgroup_is_root(mem)) {
3012 if (!swap)
3013 return res_counter_read_u64(&mem->res, RES_USAGE);
3014 else
3015 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3016 }
3017
3018 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3019 val = idx_val;
3020 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3021 val += idx_val;
3022
3023 if (swap) {
3024 mem_cgroup_get_recursive_idx_stat(mem,
3025 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3026 val += idx_val;
3027 }
3028
3029 return val << PAGE_SHIFT;
3030 }
3031
3032 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3033 {
3034 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3035 u64 val;
3036 int type, name;
3037
3038 type = MEMFILE_TYPE(cft->private);
3039 name = MEMFILE_ATTR(cft->private);
3040 switch (type) {
3041 case _MEM:
3042 if (name == RES_USAGE)
3043 val = mem_cgroup_usage(mem, false);
3044 else
3045 val = res_counter_read_u64(&mem->res, name);
3046 break;
3047 case _MEMSWAP:
3048 if (name == RES_USAGE)
3049 val = mem_cgroup_usage(mem, true);
3050 else
3051 val = res_counter_read_u64(&mem->memsw, name);
3052 break;
3053 default:
3054 BUG();
3055 break;
3056 }
3057 return val;
3058 }
3059 /*
3060 * The user of this function is...
3061 * RES_LIMIT.
3062 */
3063 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3064 const char *buffer)
3065 {
3066 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3067 int type, name;
3068 unsigned long long val;
3069 int ret;
3070
3071 type = MEMFILE_TYPE(cft->private);
3072 name = MEMFILE_ATTR(cft->private);
3073 switch (name) {
3074 case RES_LIMIT:
3075 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3076 ret = -EINVAL;
3077 break;
3078 }
3079 /* This function does all necessary parse...reuse it */
3080 ret = res_counter_memparse_write_strategy(buffer, &val);
3081 if (ret)
3082 break;
3083 if (type == _MEM)
3084 ret = mem_cgroup_resize_limit(memcg, val);
3085 else
3086 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3087 break;
3088 case RES_SOFT_LIMIT:
3089 ret = res_counter_memparse_write_strategy(buffer, &val);
3090 if (ret)
3091 break;
3092 /*
3093 * For memsw, soft limits are hard to implement in terms
3094 * of semantics, for now, we support soft limits for
3095 * control without swap
3096 */
3097 if (type == _MEM)
3098 ret = res_counter_set_soft_limit(&memcg->res, val);
3099 else
3100 ret = -EINVAL;
3101 break;
3102 default:
3103 ret = -EINVAL; /* should be BUG() ? */
3104 break;
3105 }
3106 return ret;
3107 }
3108
3109 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3110 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3111 {
3112 struct cgroup *cgroup;
3113 unsigned long long min_limit, min_memsw_limit, tmp;
3114
3115 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3116 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3117 cgroup = memcg->css.cgroup;
3118 if (!memcg->use_hierarchy)
3119 goto out;
3120
3121 while (cgroup->parent) {
3122 cgroup = cgroup->parent;
3123 memcg = mem_cgroup_from_cont(cgroup);
3124 if (!memcg->use_hierarchy)
3125 break;
3126 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3127 min_limit = min(min_limit, tmp);
3128 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3129 min_memsw_limit = min(min_memsw_limit, tmp);
3130 }
3131 out:
3132 *mem_limit = min_limit;
3133 *memsw_limit = min_memsw_limit;
3134 return;
3135 }
3136
3137 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3138 {
3139 struct mem_cgroup *mem;
3140 int type, name;
3141
3142 mem = mem_cgroup_from_cont(cont);
3143 type = MEMFILE_TYPE(event);
3144 name = MEMFILE_ATTR(event);
3145 switch (name) {
3146 case RES_MAX_USAGE:
3147 if (type == _MEM)
3148 res_counter_reset_max(&mem->res);
3149 else
3150 res_counter_reset_max(&mem->memsw);
3151 break;
3152 case RES_FAILCNT:
3153 if (type == _MEM)
3154 res_counter_reset_failcnt(&mem->res);
3155 else
3156 res_counter_reset_failcnt(&mem->memsw);
3157 break;
3158 }
3159
3160 return 0;
3161 }
3162
3163 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3164 struct cftype *cft)
3165 {
3166 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3167 }
3168
3169 #ifdef CONFIG_MMU
3170 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3171 struct cftype *cft, u64 val)
3172 {
3173 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3174
3175 if (val >= (1 << NR_MOVE_TYPE))
3176 return -EINVAL;
3177 /*
3178 * We check this value several times in both in can_attach() and
3179 * attach(), so we need cgroup lock to prevent this value from being
3180 * inconsistent.
3181 */
3182 cgroup_lock();
3183 mem->move_charge_at_immigrate = val;
3184 cgroup_unlock();
3185
3186 return 0;
3187 }
3188 #else
3189 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3190 struct cftype *cft, u64 val)
3191 {
3192 return -ENOSYS;
3193 }
3194 #endif
3195
3196
3197 /* For read statistics */
3198 enum {
3199 MCS_CACHE,
3200 MCS_RSS,
3201 MCS_FILE_MAPPED,
3202 MCS_PGPGIN,
3203 MCS_PGPGOUT,
3204 MCS_SWAP,
3205 MCS_INACTIVE_ANON,
3206 MCS_ACTIVE_ANON,
3207 MCS_INACTIVE_FILE,
3208 MCS_ACTIVE_FILE,
3209 MCS_UNEVICTABLE,
3210 NR_MCS_STAT,
3211 };
3212
3213 struct mcs_total_stat {
3214 s64 stat[NR_MCS_STAT];
3215 };
3216
3217 struct {
3218 char *local_name;
3219 char *total_name;
3220 } memcg_stat_strings[NR_MCS_STAT] = {
3221 {"cache", "total_cache"},
3222 {"rss", "total_rss"},
3223 {"mapped_file", "total_mapped_file"},
3224 {"pgpgin", "total_pgpgin"},
3225 {"pgpgout", "total_pgpgout"},
3226 {"swap", "total_swap"},
3227 {"inactive_anon", "total_inactive_anon"},
3228 {"active_anon", "total_active_anon"},
3229 {"inactive_file", "total_inactive_file"},
3230 {"active_file", "total_active_file"},
3231 {"unevictable", "total_unevictable"}
3232 };
3233
3234
3235 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3236 {
3237 struct mcs_total_stat *s = data;
3238 s64 val;
3239
3240 /* per cpu stat */
3241 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3242 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3243 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3244 s->stat[MCS_RSS] += val * PAGE_SIZE;
3245 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3246 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3247 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3248 s->stat[MCS_PGPGIN] += val;
3249 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3250 s->stat[MCS_PGPGOUT] += val;
3251 if (do_swap_account) {
3252 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3253 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3254 }
3255
3256 /* per zone stat */
3257 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3258 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3259 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3260 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3261 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3262 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3263 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3264 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3265 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3266 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3267 return 0;
3268 }
3269
3270 static void
3271 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3272 {
3273 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3274 }
3275
3276 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3277 struct cgroup_map_cb *cb)
3278 {
3279 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3280 struct mcs_total_stat mystat;
3281 int i;
3282
3283 memset(&mystat, 0, sizeof(mystat));
3284 mem_cgroup_get_local_stat(mem_cont, &mystat);
3285
3286 for (i = 0; i < NR_MCS_STAT; i++) {
3287 if (i == MCS_SWAP && !do_swap_account)
3288 continue;
3289 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3290 }
3291
3292 /* Hierarchical information */
3293 {
3294 unsigned long long limit, memsw_limit;
3295 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3296 cb->fill(cb, "hierarchical_memory_limit", limit);
3297 if (do_swap_account)
3298 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3299 }
3300
3301 memset(&mystat, 0, sizeof(mystat));
3302 mem_cgroup_get_total_stat(mem_cont, &mystat);
3303 for (i = 0; i < NR_MCS_STAT; i++) {
3304 if (i == MCS_SWAP && !do_swap_account)
3305 continue;
3306 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3307 }
3308
3309 #ifdef CONFIG_DEBUG_VM
3310 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3311
3312 {
3313 int nid, zid;
3314 struct mem_cgroup_per_zone *mz;
3315 unsigned long recent_rotated[2] = {0, 0};
3316 unsigned long recent_scanned[2] = {0, 0};
3317
3318 for_each_online_node(nid)
3319 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3320 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3321
3322 recent_rotated[0] +=
3323 mz->reclaim_stat.recent_rotated[0];
3324 recent_rotated[1] +=
3325 mz->reclaim_stat.recent_rotated[1];
3326 recent_scanned[0] +=
3327 mz->reclaim_stat.recent_scanned[0];
3328 recent_scanned[1] +=
3329 mz->reclaim_stat.recent_scanned[1];
3330 }
3331 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3332 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3333 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3334 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3335 }
3336 #endif
3337
3338 return 0;
3339 }
3340
3341 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3342 {
3343 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3344
3345 return get_swappiness(memcg);
3346 }
3347
3348 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3349 u64 val)
3350 {
3351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3352 struct mem_cgroup *parent;
3353
3354 if (val > 100)
3355 return -EINVAL;
3356
3357 if (cgrp->parent == NULL)
3358 return -EINVAL;
3359
3360 parent = mem_cgroup_from_cont(cgrp->parent);
3361
3362 cgroup_lock();
3363
3364 /* If under hierarchy, only empty-root can set this value */
3365 if ((parent->use_hierarchy) ||
3366 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3367 cgroup_unlock();
3368 return -EINVAL;
3369 }
3370
3371 spin_lock(&memcg->reclaim_param_lock);
3372 memcg->swappiness = val;
3373 spin_unlock(&memcg->reclaim_param_lock);
3374
3375 cgroup_unlock();
3376
3377 return 0;
3378 }
3379
3380 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3381 {
3382 struct mem_cgroup_threshold_ary *t;
3383 u64 usage;
3384 int i;
3385
3386 rcu_read_lock();
3387 if (!swap)
3388 t = rcu_dereference(memcg->thresholds);
3389 else
3390 t = rcu_dereference(memcg->memsw_thresholds);
3391
3392 if (!t)
3393 goto unlock;
3394
3395 usage = mem_cgroup_usage(memcg, swap);
3396
3397 /*
3398 * current_threshold points to threshold just below usage.
3399 * If it's not true, a threshold was crossed after last
3400 * call of __mem_cgroup_threshold().
3401 */
3402 i = atomic_read(&t->current_threshold);
3403
3404 /*
3405 * Iterate backward over array of thresholds starting from
3406 * current_threshold and check if a threshold is crossed.
3407 * If none of thresholds below usage is crossed, we read
3408 * only one element of the array here.
3409 */
3410 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3411 eventfd_signal(t->entries[i].eventfd, 1);
3412
3413 /* i = current_threshold + 1 */
3414 i++;
3415
3416 /*
3417 * Iterate forward over array of thresholds starting from
3418 * current_threshold+1 and check if a threshold is crossed.
3419 * If none of thresholds above usage is crossed, we read
3420 * only one element of the array here.
3421 */
3422 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3423 eventfd_signal(t->entries[i].eventfd, 1);
3424
3425 /* Update current_threshold */
3426 atomic_set(&t->current_threshold, i - 1);
3427 unlock:
3428 rcu_read_unlock();
3429 }
3430
3431 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3432 {
3433 __mem_cgroup_threshold(memcg, false);
3434 if (do_swap_account)
3435 __mem_cgroup_threshold(memcg, true);
3436 }
3437
3438 static int compare_thresholds(const void *a, const void *b)
3439 {
3440 const struct mem_cgroup_threshold *_a = a;
3441 const struct mem_cgroup_threshold *_b = b;
3442
3443 return _a->threshold - _b->threshold;
3444 }
3445
3446 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3447 {
3448 struct mem_cgroup_eventfd_list *ev;
3449
3450 list_for_each_entry(ev, &mem->oom_notify, list)
3451 eventfd_signal(ev->eventfd, 1);
3452 return 0;
3453 }
3454
3455 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3456 {
3457 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3458 }
3459
3460 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3461 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3462 {
3463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3464 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3465 int type = MEMFILE_TYPE(cft->private);
3466 u64 threshold, usage;
3467 int size;
3468 int i, ret;
3469
3470 ret = res_counter_memparse_write_strategy(args, &threshold);
3471 if (ret)
3472 return ret;
3473
3474 mutex_lock(&memcg->thresholds_lock);
3475 if (type == _MEM)
3476 thresholds = memcg->thresholds;
3477 else if (type == _MEMSWAP)
3478 thresholds = memcg->memsw_thresholds;
3479 else
3480 BUG();
3481
3482 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3483
3484 /* Check if a threshold crossed before adding a new one */
3485 if (thresholds)
3486 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3487
3488 if (thresholds)
3489 size = thresholds->size + 1;
3490 else
3491 size = 1;
3492
3493 /* Allocate memory for new array of thresholds */
3494 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3495 size * sizeof(struct mem_cgroup_threshold),
3496 GFP_KERNEL);
3497 if (!thresholds_new) {
3498 ret = -ENOMEM;
3499 goto unlock;
3500 }
3501 thresholds_new->size = size;
3502
3503 /* Copy thresholds (if any) to new array */
3504 if (thresholds)
3505 memcpy(thresholds_new->entries, thresholds->entries,
3506 thresholds->size *
3507 sizeof(struct mem_cgroup_threshold));
3508 /* Add new threshold */
3509 thresholds_new->entries[size - 1].eventfd = eventfd;
3510 thresholds_new->entries[size - 1].threshold = threshold;
3511
3512 /* Sort thresholds. Registering of new threshold isn't time-critical */
3513 sort(thresholds_new->entries, size,
3514 sizeof(struct mem_cgroup_threshold),
3515 compare_thresholds, NULL);
3516
3517 /* Find current threshold */
3518 atomic_set(&thresholds_new->current_threshold, -1);
3519 for (i = 0; i < size; i++) {
3520 if (thresholds_new->entries[i].threshold < usage) {
3521 /*
3522 * thresholds_new->current_threshold will not be used
3523 * until rcu_assign_pointer(), so it's safe to increment
3524 * it here.
3525 */
3526 atomic_inc(&thresholds_new->current_threshold);
3527 }
3528 }
3529
3530 if (type == _MEM)
3531 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3532 else
3533 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3534
3535 /* To be sure that nobody uses thresholds before freeing it */
3536 synchronize_rcu();
3537
3538 kfree(thresholds);
3539 unlock:
3540 mutex_unlock(&memcg->thresholds_lock);
3541
3542 return ret;
3543 }
3544
3545 static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3546 struct cftype *cft, struct eventfd_ctx *eventfd)
3547 {
3548 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3549 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3550 int type = MEMFILE_TYPE(cft->private);
3551 u64 usage;
3552 int size = 0;
3553 int i, j, ret;
3554
3555 mutex_lock(&memcg->thresholds_lock);
3556 if (type == _MEM)
3557 thresholds = memcg->thresholds;
3558 else if (type == _MEMSWAP)
3559 thresholds = memcg->memsw_thresholds;
3560 else
3561 BUG();
3562
3563 /*
3564 * Something went wrong if we trying to unregister a threshold
3565 * if we don't have thresholds
3566 */
3567 BUG_ON(!thresholds);
3568
3569 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3570
3571 /* Check if a threshold crossed before removing */
3572 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3573
3574 /* Calculate new number of threshold */
3575 for (i = 0; i < thresholds->size; i++) {
3576 if (thresholds->entries[i].eventfd != eventfd)
3577 size++;
3578 }
3579
3580 /* Set thresholds array to NULL if we don't have thresholds */
3581 if (!size) {
3582 thresholds_new = NULL;
3583 goto assign;
3584 }
3585
3586 /* Allocate memory for new array of thresholds */
3587 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3588 size * sizeof(struct mem_cgroup_threshold),
3589 GFP_KERNEL);
3590 if (!thresholds_new) {
3591 ret = -ENOMEM;
3592 goto unlock;
3593 }
3594 thresholds_new->size = size;
3595
3596 /* Copy thresholds and find current threshold */
3597 atomic_set(&thresholds_new->current_threshold, -1);
3598 for (i = 0, j = 0; i < thresholds->size; i++) {
3599 if (thresholds->entries[i].eventfd == eventfd)
3600 continue;
3601
3602 thresholds_new->entries[j] = thresholds->entries[i];
3603 if (thresholds_new->entries[j].threshold < usage) {
3604 /*
3605 * thresholds_new->current_threshold will not be used
3606 * until rcu_assign_pointer(), so it's safe to increment
3607 * it here.
3608 */
3609 atomic_inc(&thresholds_new->current_threshold);
3610 }
3611 j++;
3612 }
3613
3614 assign:
3615 if (type == _MEM)
3616 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3617 else
3618 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3619
3620 /* To be sure that nobody uses thresholds before freeing it */
3621 synchronize_rcu();
3622
3623 kfree(thresholds);
3624 unlock:
3625 mutex_unlock(&memcg->thresholds_lock);
3626
3627 return ret;
3628 }
3629
3630 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3631 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3632 {
3633 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3634 struct mem_cgroup_eventfd_list *event;
3635 int type = MEMFILE_TYPE(cft->private);
3636
3637 BUG_ON(type != _OOM_TYPE);
3638 event = kmalloc(sizeof(*event), GFP_KERNEL);
3639 if (!event)
3640 return -ENOMEM;
3641
3642 mutex_lock(&memcg_oom_mutex);
3643
3644 event->eventfd = eventfd;
3645 list_add(&event->list, &memcg->oom_notify);
3646
3647 /* already in OOM ? */
3648 if (atomic_read(&memcg->oom_lock))
3649 eventfd_signal(eventfd, 1);
3650 mutex_unlock(&memcg_oom_mutex);
3651
3652 return 0;
3653 }
3654
3655 static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3656 struct cftype *cft, struct eventfd_ctx *eventfd)
3657 {
3658 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3659 struct mem_cgroup_eventfd_list *ev, *tmp;
3660 int type = MEMFILE_TYPE(cft->private);
3661
3662 BUG_ON(type != _OOM_TYPE);
3663
3664 mutex_lock(&memcg_oom_mutex);
3665
3666 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3667 if (ev->eventfd == eventfd) {
3668 list_del(&ev->list);
3669 kfree(ev);
3670 }
3671 }
3672
3673 mutex_unlock(&memcg_oom_mutex);
3674
3675 return 0;
3676 }
3677
3678 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3679 struct cftype *cft, struct cgroup_map_cb *cb)
3680 {
3681 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3682
3683 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3684
3685 if (atomic_read(&mem->oom_lock))
3686 cb->fill(cb, "under_oom", 1);
3687 else
3688 cb->fill(cb, "under_oom", 0);
3689 return 0;
3690 }
3691
3692 /*
3693 */
3694 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3695 struct cftype *cft, u64 val)
3696 {
3697 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3698 struct mem_cgroup *parent;
3699
3700 /* cannot set to root cgroup and only 0 and 1 are allowed */
3701 if (!cgrp->parent || !((val == 0) || (val == 1)))
3702 return -EINVAL;
3703
3704 parent = mem_cgroup_from_cont(cgrp->parent);
3705
3706 cgroup_lock();
3707 /* oom-kill-disable is a flag for subhierarchy. */
3708 if ((parent->use_hierarchy) ||
3709 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3710 cgroup_unlock();
3711 return -EINVAL;
3712 }
3713 mem->oom_kill_disable = val;
3714 cgroup_unlock();
3715 return 0;
3716 }
3717
3718 static struct cftype mem_cgroup_files[] = {
3719 {
3720 .name = "usage_in_bytes",
3721 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3722 .read_u64 = mem_cgroup_read,
3723 .register_event = mem_cgroup_usage_register_event,
3724 .unregister_event = mem_cgroup_usage_unregister_event,
3725 },
3726 {
3727 .name = "max_usage_in_bytes",
3728 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3729 .trigger = mem_cgroup_reset,
3730 .read_u64 = mem_cgroup_read,
3731 },
3732 {
3733 .name = "limit_in_bytes",
3734 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3735 .write_string = mem_cgroup_write,
3736 .read_u64 = mem_cgroup_read,
3737 },
3738 {
3739 .name = "soft_limit_in_bytes",
3740 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3741 .write_string = mem_cgroup_write,
3742 .read_u64 = mem_cgroup_read,
3743 },
3744 {
3745 .name = "failcnt",
3746 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3747 .trigger = mem_cgroup_reset,
3748 .read_u64 = mem_cgroup_read,
3749 },
3750 {
3751 .name = "stat",
3752 .read_map = mem_control_stat_show,
3753 },
3754 {
3755 .name = "force_empty",
3756 .trigger = mem_cgroup_force_empty_write,
3757 },
3758 {
3759 .name = "use_hierarchy",
3760 .write_u64 = mem_cgroup_hierarchy_write,
3761 .read_u64 = mem_cgroup_hierarchy_read,
3762 },
3763 {
3764 .name = "swappiness",
3765 .read_u64 = mem_cgroup_swappiness_read,
3766 .write_u64 = mem_cgroup_swappiness_write,
3767 },
3768 {
3769 .name = "move_charge_at_immigrate",
3770 .read_u64 = mem_cgroup_move_charge_read,
3771 .write_u64 = mem_cgroup_move_charge_write,
3772 },
3773 {
3774 .name = "oom_control",
3775 .read_map = mem_cgroup_oom_control_read,
3776 .write_u64 = mem_cgroup_oom_control_write,
3777 .register_event = mem_cgroup_oom_register_event,
3778 .unregister_event = mem_cgroup_oom_unregister_event,
3779 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3780 },
3781 };
3782
3783 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3784 static struct cftype memsw_cgroup_files[] = {
3785 {
3786 .name = "memsw.usage_in_bytes",
3787 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3788 .read_u64 = mem_cgroup_read,
3789 .register_event = mem_cgroup_usage_register_event,
3790 .unregister_event = mem_cgroup_usage_unregister_event,
3791 },
3792 {
3793 .name = "memsw.max_usage_in_bytes",
3794 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3795 .trigger = mem_cgroup_reset,
3796 .read_u64 = mem_cgroup_read,
3797 },
3798 {
3799 .name = "memsw.limit_in_bytes",
3800 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3801 .write_string = mem_cgroup_write,
3802 .read_u64 = mem_cgroup_read,
3803 },
3804 {
3805 .name = "memsw.failcnt",
3806 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3807 .trigger = mem_cgroup_reset,
3808 .read_u64 = mem_cgroup_read,
3809 },
3810 };
3811
3812 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3813 {
3814 if (!do_swap_account)
3815 return 0;
3816 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3817 ARRAY_SIZE(memsw_cgroup_files));
3818 };
3819 #else
3820 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3821 {
3822 return 0;
3823 }
3824 #endif
3825
3826 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3827 {
3828 struct mem_cgroup_per_node *pn;
3829 struct mem_cgroup_per_zone *mz;
3830 enum lru_list l;
3831 int zone, tmp = node;
3832 /*
3833 * This routine is called against possible nodes.
3834 * But it's BUG to call kmalloc() against offline node.
3835 *
3836 * TODO: this routine can waste much memory for nodes which will
3837 * never be onlined. It's better to use memory hotplug callback
3838 * function.
3839 */
3840 if (!node_state(node, N_NORMAL_MEMORY))
3841 tmp = -1;
3842 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3843 if (!pn)
3844 return 1;
3845
3846 mem->info.nodeinfo[node] = pn;
3847 memset(pn, 0, sizeof(*pn));
3848
3849 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3850 mz = &pn->zoneinfo[zone];
3851 for_each_lru(l)
3852 INIT_LIST_HEAD(&mz->lists[l]);
3853 mz->usage_in_excess = 0;
3854 mz->on_tree = false;
3855 mz->mem = mem;
3856 }
3857 return 0;
3858 }
3859
3860 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3861 {
3862 kfree(mem->info.nodeinfo[node]);
3863 }
3864
3865 static struct mem_cgroup *mem_cgroup_alloc(void)
3866 {
3867 struct mem_cgroup *mem;
3868 int size = sizeof(struct mem_cgroup);
3869
3870 /* Can be very big if MAX_NUMNODES is very big */
3871 if (size < PAGE_SIZE)
3872 mem = kmalloc(size, GFP_KERNEL);
3873 else
3874 mem = vmalloc(size);
3875
3876 if (!mem)
3877 return NULL;
3878
3879 memset(mem, 0, size);
3880 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3881 if (!mem->stat) {
3882 if (size < PAGE_SIZE)
3883 kfree(mem);
3884 else
3885 vfree(mem);
3886 mem = NULL;
3887 }
3888 return mem;
3889 }
3890
3891 /*
3892 * At destroying mem_cgroup, references from swap_cgroup can remain.
3893 * (scanning all at force_empty is too costly...)
3894 *
3895 * Instead of clearing all references at force_empty, we remember
3896 * the number of reference from swap_cgroup and free mem_cgroup when
3897 * it goes down to 0.
3898 *
3899 * Removal of cgroup itself succeeds regardless of refs from swap.
3900 */
3901
3902 static void __mem_cgroup_free(struct mem_cgroup *mem)
3903 {
3904 int node;
3905
3906 mem_cgroup_remove_from_trees(mem);
3907 free_css_id(&mem_cgroup_subsys, &mem->css);
3908
3909 for_each_node_state(node, N_POSSIBLE)
3910 free_mem_cgroup_per_zone_info(mem, node);
3911
3912 free_percpu(mem->stat);
3913 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3914 kfree(mem);
3915 else
3916 vfree(mem);
3917 }
3918
3919 static void mem_cgroup_get(struct mem_cgroup *mem)
3920 {
3921 atomic_inc(&mem->refcnt);
3922 }
3923
3924 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3925 {
3926 if (atomic_sub_and_test(count, &mem->refcnt)) {
3927 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3928 __mem_cgroup_free(mem);
3929 if (parent)
3930 mem_cgroup_put(parent);
3931 }
3932 }
3933
3934 static void mem_cgroup_put(struct mem_cgroup *mem)
3935 {
3936 __mem_cgroup_put(mem, 1);
3937 }
3938
3939 /*
3940 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3941 */
3942 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3943 {
3944 if (!mem->res.parent)
3945 return NULL;
3946 return mem_cgroup_from_res_counter(mem->res.parent, res);
3947 }
3948
3949 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3950 static void __init enable_swap_cgroup(void)
3951 {
3952 if (!mem_cgroup_disabled() && really_do_swap_account)
3953 do_swap_account = 1;
3954 }
3955 #else
3956 static void __init enable_swap_cgroup(void)
3957 {
3958 }
3959 #endif
3960
3961 static int mem_cgroup_soft_limit_tree_init(void)
3962 {
3963 struct mem_cgroup_tree_per_node *rtpn;
3964 struct mem_cgroup_tree_per_zone *rtpz;
3965 int tmp, node, zone;
3966
3967 for_each_node_state(node, N_POSSIBLE) {
3968 tmp = node;
3969 if (!node_state(node, N_NORMAL_MEMORY))
3970 tmp = -1;
3971 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3972 if (!rtpn)
3973 return 1;
3974
3975 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3976
3977 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3978 rtpz = &rtpn->rb_tree_per_zone[zone];
3979 rtpz->rb_root = RB_ROOT;
3980 spin_lock_init(&rtpz->lock);
3981 }
3982 }
3983 return 0;
3984 }
3985
3986 static struct cgroup_subsys_state * __ref
3987 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3988 {
3989 struct mem_cgroup *mem, *parent;
3990 long error = -ENOMEM;
3991 int node;
3992
3993 mem = mem_cgroup_alloc();
3994 if (!mem)
3995 return ERR_PTR(error);
3996
3997 for_each_node_state(node, N_POSSIBLE)
3998 if (alloc_mem_cgroup_per_zone_info(mem, node))
3999 goto free_out;
4000
4001 /* root ? */
4002 if (cont->parent == NULL) {
4003 int cpu;
4004 enable_swap_cgroup();
4005 parent = NULL;
4006 root_mem_cgroup = mem;
4007 if (mem_cgroup_soft_limit_tree_init())
4008 goto free_out;
4009 for_each_possible_cpu(cpu) {
4010 struct memcg_stock_pcp *stock =
4011 &per_cpu(memcg_stock, cpu);
4012 INIT_WORK(&stock->work, drain_local_stock);
4013 }
4014 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4015 } else {
4016 parent = mem_cgroup_from_cont(cont->parent);
4017 mem->use_hierarchy = parent->use_hierarchy;
4018 mem->oom_kill_disable = parent->oom_kill_disable;
4019 }
4020
4021 if (parent && parent->use_hierarchy) {
4022 res_counter_init(&mem->res, &parent->res);
4023 res_counter_init(&mem->memsw, &parent->memsw);
4024 /*
4025 * We increment refcnt of the parent to ensure that we can
4026 * safely access it on res_counter_charge/uncharge.
4027 * This refcnt will be decremented when freeing this
4028 * mem_cgroup(see mem_cgroup_put).
4029 */
4030 mem_cgroup_get(parent);
4031 } else {
4032 res_counter_init(&mem->res, NULL);
4033 res_counter_init(&mem->memsw, NULL);
4034 }
4035 mem->last_scanned_child = 0;
4036 spin_lock_init(&mem->reclaim_param_lock);
4037 INIT_LIST_HEAD(&mem->oom_notify);
4038
4039 if (parent)
4040 mem->swappiness = get_swappiness(parent);
4041 atomic_set(&mem->refcnt, 1);
4042 mem->move_charge_at_immigrate = 0;
4043 mutex_init(&mem->thresholds_lock);
4044 return &mem->css;
4045 free_out:
4046 __mem_cgroup_free(mem);
4047 root_mem_cgroup = NULL;
4048 return ERR_PTR(error);
4049 }
4050
4051 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4052 struct cgroup *cont)
4053 {
4054 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4055
4056 return mem_cgroup_force_empty(mem, false);
4057 }
4058
4059 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4060 struct cgroup *cont)
4061 {
4062 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4063
4064 mem_cgroup_put(mem);
4065 }
4066
4067 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4068 struct cgroup *cont)
4069 {
4070 int ret;
4071
4072 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4073 ARRAY_SIZE(mem_cgroup_files));
4074
4075 if (!ret)
4076 ret = register_memsw_files(cont, ss);
4077 return ret;
4078 }
4079
4080 #ifdef CONFIG_MMU
4081 /* Handlers for move charge at task migration. */
4082 #define PRECHARGE_COUNT_AT_ONCE 256
4083 static int mem_cgroup_do_precharge(unsigned long count)
4084 {
4085 int ret = 0;
4086 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4087 struct mem_cgroup *mem = mc.to;
4088
4089 if (mem_cgroup_is_root(mem)) {
4090 mc.precharge += count;
4091 /* we don't need css_get for root */
4092 return ret;
4093 }
4094 /* try to charge at once */
4095 if (count > 1) {
4096 struct res_counter *dummy;
4097 /*
4098 * "mem" cannot be under rmdir() because we've already checked
4099 * by cgroup_lock_live_cgroup() that it is not removed and we
4100 * are still under the same cgroup_mutex. So we can postpone
4101 * css_get().
4102 */
4103 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4104 goto one_by_one;
4105 if (do_swap_account && res_counter_charge(&mem->memsw,
4106 PAGE_SIZE * count, &dummy)) {
4107 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4108 goto one_by_one;
4109 }
4110 mc.precharge += count;
4111 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4112 WARN_ON_ONCE(count > INT_MAX);
4113 __css_get(&mem->css, (int)count);
4114 return ret;
4115 }
4116 one_by_one:
4117 /* fall back to one by one charge */
4118 while (count--) {
4119 if (signal_pending(current)) {
4120 ret = -EINTR;
4121 break;
4122 }
4123 if (!batch_count--) {
4124 batch_count = PRECHARGE_COUNT_AT_ONCE;
4125 cond_resched();
4126 }
4127 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4128 if (ret || !mem)
4129 /* mem_cgroup_clear_mc() will do uncharge later */
4130 return -ENOMEM;
4131 mc.precharge++;
4132 }
4133 return ret;
4134 }
4135
4136 /**
4137 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4138 * @vma: the vma the pte to be checked belongs
4139 * @addr: the address corresponding to the pte to be checked
4140 * @ptent: the pte to be checked
4141 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4142 *
4143 * Returns
4144 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4145 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4146 * move charge. if @target is not NULL, the page is stored in target->page
4147 * with extra refcnt got(Callers should handle it).
4148 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4149 * target for charge migration. if @target is not NULL, the entry is stored
4150 * in target->ent.
4151 *
4152 * Called with pte lock held.
4153 */
4154 union mc_target {
4155 struct page *page;
4156 swp_entry_t ent;
4157 };
4158
4159 enum mc_target_type {
4160 MC_TARGET_NONE, /* not used */
4161 MC_TARGET_PAGE,
4162 MC_TARGET_SWAP,
4163 };
4164
4165 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4166 unsigned long addr, pte_t ptent, union mc_target *target)
4167 {
4168 struct page *page = NULL;
4169 struct page_cgroup *pc;
4170 int ret = 0;
4171 swp_entry_t ent = { .val = 0 };
4172 int usage_count = 0;
4173 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
4174 &mc.to->move_charge_at_immigrate);
4175
4176 if (!pte_present(ptent)) {
4177 /* TODO: handle swap of shmes/tmpfs */
4178 if (pte_none(ptent) || pte_file(ptent))
4179 return 0;
4180 else if (is_swap_pte(ptent)) {
4181 ent = pte_to_swp_entry(ptent);
4182 if (!move_anon || non_swap_entry(ent))
4183 return 0;
4184 usage_count = mem_cgroup_count_swap_user(ent, &page);
4185 }
4186 } else {
4187 page = vm_normal_page(vma, addr, ptent);
4188 if (!page || !page_mapped(page))
4189 return 0;
4190 /*
4191 * TODO: We don't move charges of file(including shmem/tmpfs)
4192 * pages for now.
4193 */
4194 if (!move_anon || !PageAnon(page))
4195 return 0;
4196 if (!get_page_unless_zero(page))
4197 return 0;
4198 usage_count = page_mapcount(page);
4199 }
4200 if (usage_count > 1) {
4201 /*
4202 * TODO: We don't move charges of shared(used by multiple
4203 * processes) pages for now.
4204 */
4205 if (page)
4206 put_page(page);
4207 return 0;
4208 }
4209 if (page) {
4210 pc = lookup_page_cgroup(page);
4211 /*
4212 * Do only loose check w/o page_cgroup lock.
4213 * mem_cgroup_move_account() checks the pc is valid or not under
4214 * the lock.
4215 */
4216 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4217 ret = MC_TARGET_PAGE;
4218 if (target)
4219 target->page = page;
4220 }
4221 if (!ret || !target)
4222 put_page(page);
4223 }
4224 /* throught */
4225 if (ent.val && do_swap_account && !ret &&
4226 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4227 ret = MC_TARGET_SWAP;
4228 if (target)
4229 target->ent = ent;
4230 }
4231 return ret;
4232 }
4233
4234 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4235 unsigned long addr, unsigned long end,
4236 struct mm_walk *walk)
4237 {
4238 struct vm_area_struct *vma = walk->private;
4239 pte_t *pte;
4240 spinlock_t *ptl;
4241
4242 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4243 for (; addr != end; pte++, addr += PAGE_SIZE)
4244 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4245 mc.precharge++; /* increment precharge temporarily */
4246 pte_unmap_unlock(pte - 1, ptl);
4247 cond_resched();
4248
4249 return 0;
4250 }
4251
4252 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4253 {
4254 unsigned long precharge;
4255 struct vm_area_struct *vma;
4256
4257 down_read(&mm->mmap_sem);
4258 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4259 struct mm_walk mem_cgroup_count_precharge_walk = {
4260 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4261 .mm = mm,
4262 .private = vma,
4263 };
4264 if (is_vm_hugetlb_page(vma))
4265 continue;
4266 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4267 if (vma->vm_flags & VM_SHARED)
4268 continue;
4269 walk_page_range(vma->vm_start, vma->vm_end,
4270 &mem_cgroup_count_precharge_walk);
4271 }
4272 up_read(&mm->mmap_sem);
4273
4274 precharge = mc.precharge;
4275 mc.precharge = 0;
4276
4277 return precharge;
4278 }
4279
4280 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4281 {
4282 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4283 }
4284
4285 static void mem_cgroup_clear_mc(void)
4286 {
4287 /* we must uncharge all the leftover precharges from mc.to */
4288 if (mc.precharge) {
4289 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4290 mc.precharge = 0;
4291 memcg_oom_recover(mc.to);
4292 }
4293 /*
4294 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4295 * we must uncharge here.
4296 */
4297 if (mc.moved_charge) {
4298 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4299 mc.moved_charge = 0;
4300 memcg_oom_recover(mc.from);
4301 }
4302 /* we must fixup refcnts and charges */
4303 if (mc.moved_swap) {
4304 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4305 /* uncharge swap account from the old cgroup */
4306 if (!mem_cgroup_is_root(mc.from))
4307 res_counter_uncharge(&mc.from->memsw,
4308 PAGE_SIZE * mc.moved_swap);
4309 __mem_cgroup_put(mc.from, mc.moved_swap);
4310
4311 if (!mem_cgroup_is_root(mc.to)) {
4312 /*
4313 * we charged both to->res and to->memsw, so we should
4314 * uncharge to->res.
4315 */
4316 res_counter_uncharge(&mc.to->res,
4317 PAGE_SIZE * mc.moved_swap);
4318 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4319 __css_put(&mc.to->css, mc.moved_swap);
4320 }
4321 /* we've already done mem_cgroup_get(mc.to) */
4322
4323 mc.moved_swap = 0;
4324 }
4325 mc.from = NULL;
4326 mc.to = NULL;
4327 mc.moving_task = NULL;
4328 wake_up_all(&mc.waitq);
4329 }
4330
4331 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4332 struct cgroup *cgroup,
4333 struct task_struct *p,
4334 bool threadgroup)
4335 {
4336 int ret = 0;
4337 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4338
4339 if (mem->move_charge_at_immigrate) {
4340 struct mm_struct *mm;
4341 struct mem_cgroup *from = mem_cgroup_from_task(p);
4342
4343 VM_BUG_ON(from == mem);
4344
4345 mm = get_task_mm(p);
4346 if (!mm)
4347 return 0;
4348 /* We move charges only when we move a owner of the mm */
4349 if (mm->owner == p) {
4350 VM_BUG_ON(mc.from);
4351 VM_BUG_ON(mc.to);
4352 VM_BUG_ON(mc.precharge);
4353 VM_BUG_ON(mc.moved_charge);
4354 VM_BUG_ON(mc.moved_swap);
4355 VM_BUG_ON(mc.moving_task);
4356 mc.from = from;
4357 mc.to = mem;
4358 mc.precharge = 0;
4359 mc.moved_charge = 0;
4360 mc.moved_swap = 0;
4361 mc.moving_task = current;
4362
4363 ret = mem_cgroup_precharge_mc(mm);
4364 if (ret)
4365 mem_cgroup_clear_mc();
4366 }
4367 mmput(mm);
4368 }
4369 return ret;
4370 }
4371
4372 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4373 struct cgroup *cgroup,
4374 struct task_struct *p,
4375 bool threadgroup)
4376 {
4377 mem_cgroup_clear_mc();
4378 }
4379
4380 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4381 unsigned long addr, unsigned long end,
4382 struct mm_walk *walk)
4383 {
4384 int ret = 0;
4385 struct vm_area_struct *vma = walk->private;
4386 pte_t *pte;
4387 spinlock_t *ptl;
4388
4389 retry:
4390 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4391 for (; addr != end; addr += PAGE_SIZE) {
4392 pte_t ptent = *(pte++);
4393 union mc_target target;
4394 int type;
4395 struct page *page;
4396 struct page_cgroup *pc;
4397 swp_entry_t ent;
4398
4399 if (!mc.precharge)
4400 break;
4401
4402 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4403 switch (type) {
4404 case MC_TARGET_PAGE:
4405 page = target.page;
4406 if (isolate_lru_page(page))
4407 goto put;
4408 pc = lookup_page_cgroup(page);
4409 if (!mem_cgroup_move_account(pc,
4410 mc.from, mc.to, false)) {
4411 mc.precharge--;
4412 /* we uncharge from mc.from later. */
4413 mc.moved_charge++;
4414 }
4415 putback_lru_page(page);
4416 put: /* is_target_pte_for_mc() gets the page */
4417 put_page(page);
4418 break;
4419 case MC_TARGET_SWAP:
4420 ent = target.ent;
4421 if (!mem_cgroup_move_swap_account(ent,
4422 mc.from, mc.to, false)) {
4423 mc.precharge--;
4424 /* we fixup refcnts and charges later. */
4425 mc.moved_swap++;
4426 }
4427 break;
4428 default:
4429 break;
4430 }
4431 }
4432 pte_unmap_unlock(pte - 1, ptl);
4433 cond_resched();
4434
4435 if (addr != end) {
4436 /*
4437 * We have consumed all precharges we got in can_attach().
4438 * We try charge one by one, but don't do any additional
4439 * charges to mc.to if we have failed in charge once in attach()
4440 * phase.
4441 */
4442 ret = mem_cgroup_do_precharge(1);
4443 if (!ret)
4444 goto retry;
4445 }
4446
4447 return ret;
4448 }
4449
4450 static void mem_cgroup_move_charge(struct mm_struct *mm)
4451 {
4452 struct vm_area_struct *vma;
4453
4454 lru_add_drain_all();
4455 down_read(&mm->mmap_sem);
4456 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4457 int ret;
4458 struct mm_walk mem_cgroup_move_charge_walk = {
4459 .pmd_entry = mem_cgroup_move_charge_pte_range,
4460 .mm = mm,
4461 .private = vma,
4462 };
4463 if (is_vm_hugetlb_page(vma))
4464 continue;
4465 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
4466 if (vma->vm_flags & VM_SHARED)
4467 continue;
4468 ret = walk_page_range(vma->vm_start, vma->vm_end,
4469 &mem_cgroup_move_charge_walk);
4470 if (ret)
4471 /*
4472 * means we have consumed all precharges and failed in
4473 * doing additional charge. Just abandon here.
4474 */
4475 break;
4476 }
4477 up_read(&mm->mmap_sem);
4478 }
4479
4480 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4481 struct cgroup *cont,
4482 struct cgroup *old_cont,
4483 struct task_struct *p,
4484 bool threadgroup)
4485 {
4486 struct mm_struct *mm;
4487
4488 if (!mc.to)
4489 /* no need to move charge */
4490 return;
4491
4492 mm = get_task_mm(p);
4493 if (mm) {
4494 mem_cgroup_move_charge(mm);
4495 mmput(mm);
4496 }
4497 mem_cgroup_clear_mc();
4498 }
4499 #else /* !CONFIG_MMU */
4500 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4501 struct cgroup *cgroup,
4502 struct task_struct *p,
4503 bool threadgroup)
4504 {
4505 return 0;
4506 }
4507 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4508 struct cgroup *cgroup,
4509 struct task_struct *p,
4510 bool threadgroup)
4511 {
4512 }
4513 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4514 struct cgroup *cont,
4515 struct cgroup *old_cont,
4516 struct task_struct *p,
4517 bool threadgroup)
4518 {
4519 }
4520 #endif
4521
4522 struct cgroup_subsys mem_cgroup_subsys = {
4523 .name = "memory",
4524 .subsys_id = mem_cgroup_subsys_id,
4525 .create = mem_cgroup_create,
4526 .pre_destroy = mem_cgroup_pre_destroy,
4527 .destroy = mem_cgroup_destroy,
4528 .populate = mem_cgroup_populate,
4529 .can_attach = mem_cgroup_can_attach,
4530 .cancel_attach = mem_cgroup_cancel_attach,
4531 .attach = mem_cgroup_move_task,
4532 .early_init = 0,
4533 .use_id = 1,
4534 };
4535
4536 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4537
4538 static int __init disable_swap_account(char *s)
4539 {
4540 really_do_swap_account = 0;
4541 return 1;
4542 }
4543 __setup("noswapaccount", disable_swap_account);
4544 #endif
This page took 0.210646 seconds and 5 git commands to generate.