5a1d584ffed3052e808b266f0a04d36d88f5a742
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account 0
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99 };
100
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 /*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
131
132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138
139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144 };
145
146 /*
147 * per-zone information in memory controller.
148 */
149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161 };
162
163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170
171 /*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179 };
180
181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184
185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194 };
195
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204 };
205
206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215 };
216
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221 };
222
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226 /*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237 struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277 #endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333
334 /* Stuffs for move charges at task migration. */
335 /*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343 };
344
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359
360 static bool move_anon(void)
361 {
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364 }
365
366 static bool move_file(void)
367 {
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370 }
371
372 /*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
384 NR_CHARGE_TYPE,
385 };
386
387 /* for encoding cft->private value on file */
388 #define _MEM (0)
389 #define _MEMSWAP (1)
390 #define _OOM_TYPE (2)
391 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
392 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
393 #define MEMFILE_ATTR(val) ((val) & 0xffff)
394 /* Used for OOM nofiier */
395 #define OOM_CONTROL (0)
396
397 /*
398 * Reclaim flags for mem_cgroup_hierarchical_reclaim
399 */
400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
401 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
403 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404
405 static void mem_cgroup_get(struct mem_cgroup *memcg);
406 static void mem_cgroup_put(struct mem_cgroup *memcg);
407
408 static inline
409 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
410 {
411 return container_of(s, struct mem_cgroup, css);
412 }
413
414 /* Writing them here to avoid exposing memcg's inner layout */
415 #ifdef CONFIG_MEMCG_KMEM
416 #include <net/sock.h>
417 #include <net/ip.h>
418
419 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
420 void sock_update_memcg(struct sock *sk)
421 {
422 if (mem_cgroup_sockets_enabled) {
423 struct mem_cgroup *memcg;
424 struct cg_proto *cg_proto;
425
426 BUG_ON(!sk->sk_prot->proto_cgroup);
427
428 /* Socket cloning can throw us here with sk_cgrp already
429 * filled. It won't however, necessarily happen from
430 * process context. So the test for root memcg given
431 * the current task's memcg won't help us in this case.
432 *
433 * Respecting the original socket's memcg is a better
434 * decision in this case.
435 */
436 if (sk->sk_cgrp) {
437 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
438 mem_cgroup_get(sk->sk_cgrp->memcg);
439 return;
440 }
441
442 rcu_read_lock();
443 memcg = mem_cgroup_from_task(current);
444 cg_proto = sk->sk_prot->proto_cgroup(memcg);
445 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
446 mem_cgroup_get(memcg);
447 sk->sk_cgrp = cg_proto;
448 }
449 rcu_read_unlock();
450 }
451 }
452 EXPORT_SYMBOL(sock_update_memcg);
453
454 void sock_release_memcg(struct sock *sk)
455 {
456 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
457 struct mem_cgroup *memcg;
458 WARN_ON(!sk->sk_cgrp->memcg);
459 memcg = sk->sk_cgrp->memcg;
460 mem_cgroup_put(memcg);
461 }
462 }
463
464 #ifdef CONFIG_INET
465 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
466 {
467 if (!memcg || mem_cgroup_is_root(memcg))
468 return NULL;
469
470 return &memcg->tcp_mem.cg_proto;
471 }
472 EXPORT_SYMBOL(tcp_proto_cgroup);
473 #endif /* CONFIG_INET */
474 #endif /* CONFIG_MEMCG_KMEM */
475
476 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
477 static void disarm_sock_keys(struct mem_cgroup *memcg)
478 {
479 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
480 return;
481 static_key_slow_dec(&memcg_socket_limit_enabled);
482 }
483 #else
484 static void disarm_sock_keys(struct mem_cgroup *memcg)
485 {
486 }
487 #endif
488
489 static void drain_all_stock_async(struct mem_cgroup *memcg);
490
491 static struct mem_cgroup_per_zone *
492 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
493 {
494 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
495 }
496
497 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
498 {
499 return &memcg->css;
500 }
501
502 static struct mem_cgroup_per_zone *
503 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
504 {
505 int nid = page_to_nid(page);
506 int zid = page_zonenum(page);
507
508 return mem_cgroup_zoneinfo(memcg, nid, zid);
509 }
510
511 static struct mem_cgroup_tree_per_zone *
512 soft_limit_tree_node_zone(int nid, int zid)
513 {
514 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
515 }
516
517 static struct mem_cgroup_tree_per_zone *
518 soft_limit_tree_from_page(struct page *page)
519 {
520 int nid = page_to_nid(page);
521 int zid = page_zonenum(page);
522
523 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
524 }
525
526 static void
527 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
528 struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz,
530 unsigned long long new_usage_in_excess)
531 {
532 struct rb_node **p = &mctz->rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct mem_cgroup_per_zone *mz_node;
535
536 if (mz->on_tree)
537 return;
538
539 mz->usage_in_excess = new_usage_in_excess;
540 if (!mz->usage_in_excess)
541 return;
542 while (*p) {
543 parent = *p;
544 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
545 tree_node);
546 if (mz->usage_in_excess < mz_node->usage_in_excess)
547 p = &(*p)->rb_left;
548 /*
549 * We can't avoid mem cgroups that are over their soft
550 * limit by the same amount
551 */
552 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
553 p = &(*p)->rb_right;
554 }
555 rb_link_node(&mz->tree_node, parent, p);
556 rb_insert_color(&mz->tree_node, &mctz->rb_root);
557 mz->on_tree = true;
558 }
559
560 static void
561 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
562 struct mem_cgroup_per_zone *mz,
563 struct mem_cgroup_tree_per_zone *mctz)
564 {
565 if (!mz->on_tree)
566 return;
567 rb_erase(&mz->tree_node, &mctz->rb_root);
568 mz->on_tree = false;
569 }
570
571 static void
572 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
573 struct mem_cgroup_per_zone *mz,
574 struct mem_cgroup_tree_per_zone *mctz)
575 {
576 spin_lock(&mctz->lock);
577 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
578 spin_unlock(&mctz->lock);
579 }
580
581
582 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
583 {
584 unsigned long long excess;
585 struct mem_cgroup_per_zone *mz;
586 struct mem_cgroup_tree_per_zone *mctz;
587 int nid = page_to_nid(page);
588 int zid = page_zonenum(page);
589 mctz = soft_limit_tree_from_page(page);
590
591 /*
592 * Necessary to update all ancestors when hierarchy is used.
593 * because their event counter is not touched.
594 */
595 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
596 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
597 excess = res_counter_soft_limit_excess(&memcg->res);
598 /*
599 * We have to update the tree if mz is on RB-tree or
600 * mem is over its softlimit.
601 */
602 if (excess || mz->on_tree) {
603 spin_lock(&mctz->lock);
604 /* if on-tree, remove it */
605 if (mz->on_tree)
606 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
607 /*
608 * Insert again. mz->usage_in_excess will be updated.
609 * If excess is 0, no tree ops.
610 */
611 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
612 spin_unlock(&mctz->lock);
613 }
614 }
615 }
616
617 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
618 {
619 int node, zone;
620 struct mem_cgroup_per_zone *mz;
621 struct mem_cgroup_tree_per_zone *mctz;
622
623 for_each_node(node) {
624 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
625 mz = mem_cgroup_zoneinfo(memcg, node, zone);
626 mctz = soft_limit_tree_node_zone(node, zone);
627 mem_cgroup_remove_exceeded(memcg, mz, mctz);
628 }
629 }
630 }
631
632 static struct mem_cgroup_per_zone *
633 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
634 {
635 struct rb_node *rightmost = NULL;
636 struct mem_cgroup_per_zone *mz;
637
638 retry:
639 mz = NULL;
640 rightmost = rb_last(&mctz->rb_root);
641 if (!rightmost)
642 goto done; /* Nothing to reclaim from */
643
644 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
645 /*
646 * Remove the node now but someone else can add it back,
647 * we will to add it back at the end of reclaim to its correct
648 * position in the tree.
649 */
650 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
651 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
652 !css_tryget(&mz->memcg->css))
653 goto retry;
654 done:
655 return mz;
656 }
657
658 static struct mem_cgroup_per_zone *
659 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
660 {
661 struct mem_cgroup_per_zone *mz;
662
663 spin_lock(&mctz->lock);
664 mz = __mem_cgroup_largest_soft_limit_node(mctz);
665 spin_unlock(&mctz->lock);
666 return mz;
667 }
668
669 /*
670 * Implementation Note: reading percpu statistics for memcg.
671 *
672 * Both of vmstat[] and percpu_counter has threshold and do periodic
673 * synchronization to implement "quick" read. There are trade-off between
674 * reading cost and precision of value. Then, we may have a chance to implement
675 * a periodic synchronizion of counter in memcg's counter.
676 *
677 * But this _read() function is used for user interface now. The user accounts
678 * memory usage by memory cgroup and he _always_ requires exact value because
679 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
680 * have to visit all online cpus and make sum. So, for now, unnecessary
681 * synchronization is not implemented. (just implemented for cpu hotplug)
682 *
683 * If there are kernel internal actions which can make use of some not-exact
684 * value, and reading all cpu value can be performance bottleneck in some
685 * common workload, threashold and synchonization as vmstat[] should be
686 * implemented.
687 */
688 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689 enum mem_cgroup_stat_index idx)
690 {
691 long val = 0;
692 int cpu;
693
694 get_online_cpus();
695 for_each_online_cpu(cpu)
696 val += per_cpu(memcg->stat->count[idx], cpu);
697 #ifdef CONFIG_HOTPLUG_CPU
698 spin_lock(&memcg->pcp_counter_lock);
699 val += memcg->nocpu_base.count[idx];
700 spin_unlock(&memcg->pcp_counter_lock);
701 #endif
702 put_online_cpus();
703 return val;
704 }
705
706 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
707 bool charge)
708 {
709 int val = (charge) ? 1 : -1;
710 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
711 }
712
713 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
714 enum mem_cgroup_events_index idx)
715 {
716 unsigned long val = 0;
717 int cpu;
718
719 for_each_online_cpu(cpu)
720 val += per_cpu(memcg->stat->events[idx], cpu);
721 #ifdef CONFIG_HOTPLUG_CPU
722 spin_lock(&memcg->pcp_counter_lock);
723 val += memcg->nocpu_base.events[idx];
724 spin_unlock(&memcg->pcp_counter_lock);
725 #endif
726 return val;
727 }
728
729 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
730 bool anon, int nr_pages)
731 {
732 preempt_disable();
733
734 /*
735 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
736 * counted as CACHE even if it's on ANON LRU.
737 */
738 if (anon)
739 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
740 nr_pages);
741 else
742 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
743 nr_pages);
744
745 /* pagein of a big page is an event. So, ignore page size */
746 if (nr_pages > 0)
747 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748 else {
749 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 nr_pages = -nr_pages; /* for event */
751 }
752
753 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754
755 preempt_enable();
756 }
757
758 unsigned long
759 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 {
761 struct mem_cgroup_per_zone *mz;
762
763 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
764 return mz->lru_size[lru];
765 }
766
767 static unsigned long
768 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769 unsigned int lru_mask)
770 {
771 struct mem_cgroup_per_zone *mz;
772 enum lru_list lru;
773 unsigned long ret = 0;
774
775 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776
777 for_each_lru(lru) {
778 if (BIT(lru) & lru_mask)
779 ret += mz->lru_size[lru];
780 }
781 return ret;
782 }
783
784 static unsigned long
785 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 int nid, unsigned int lru_mask)
787 {
788 u64 total = 0;
789 int zid;
790
791 for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 total += mem_cgroup_zone_nr_lru_pages(memcg,
793 nid, zid, lru_mask);
794
795 return total;
796 }
797
798 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799 unsigned int lru_mask)
800 {
801 int nid;
802 u64 total = 0;
803
804 for_each_node_state(nid, N_HIGH_MEMORY)
805 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806 return total;
807 }
808
809 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810 enum mem_cgroup_events_target target)
811 {
812 unsigned long val, next;
813
814 val = __this_cpu_read(memcg->stat->nr_page_events);
815 next = __this_cpu_read(memcg->stat->targets[target]);
816 /* from time_after() in jiffies.h */
817 if ((long)next - (long)val < 0) {
818 switch (target) {
819 case MEM_CGROUP_TARGET_THRESH:
820 next = val + THRESHOLDS_EVENTS_TARGET;
821 break;
822 case MEM_CGROUP_TARGET_SOFTLIMIT:
823 next = val + SOFTLIMIT_EVENTS_TARGET;
824 break;
825 case MEM_CGROUP_TARGET_NUMAINFO:
826 next = val + NUMAINFO_EVENTS_TARGET;
827 break;
828 default:
829 break;
830 }
831 __this_cpu_write(memcg->stat->targets[target], next);
832 return true;
833 }
834 return false;
835 }
836
837 /*
838 * Check events in order.
839 *
840 */
841 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
842 {
843 preempt_disable();
844 /* threshold event is triggered in finer grain than soft limit */
845 if (unlikely(mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_THRESH))) {
847 bool do_softlimit;
848 bool do_numainfo __maybe_unused;
849
850 do_softlimit = mem_cgroup_event_ratelimit(memcg,
851 MEM_CGROUP_TARGET_SOFTLIMIT);
852 #if MAX_NUMNODES > 1
853 do_numainfo = mem_cgroup_event_ratelimit(memcg,
854 MEM_CGROUP_TARGET_NUMAINFO);
855 #endif
856 preempt_enable();
857
858 mem_cgroup_threshold(memcg);
859 if (unlikely(do_softlimit))
860 mem_cgroup_update_tree(memcg, page);
861 #if MAX_NUMNODES > 1
862 if (unlikely(do_numainfo))
863 atomic_inc(&memcg->numainfo_events);
864 #endif
865 } else
866 preempt_enable();
867 }
868
869 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
870 {
871 return mem_cgroup_from_css(
872 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
873 }
874
875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876 {
877 /*
878 * mm_update_next_owner() may clear mm->owner to NULL
879 * if it races with swapoff, page migration, etc.
880 * So this can be called with p == NULL.
881 */
882 if (unlikely(!p))
883 return NULL;
884
885 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
886 }
887
888 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
889 {
890 struct mem_cgroup *memcg = NULL;
891
892 if (!mm)
893 return NULL;
894 /*
895 * Because we have no locks, mm->owner's may be being moved to other
896 * cgroup. We use css_tryget() here even if this looks
897 * pessimistic (rather than adding locks here).
898 */
899 rcu_read_lock();
900 do {
901 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
902 if (unlikely(!memcg))
903 break;
904 } while (!css_tryget(&memcg->css));
905 rcu_read_unlock();
906 return memcg;
907 }
908
909 /**
910 * mem_cgroup_iter - iterate over memory cgroup hierarchy
911 * @root: hierarchy root
912 * @prev: previously returned memcg, NULL on first invocation
913 * @reclaim: cookie for shared reclaim walks, NULL for full walks
914 *
915 * Returns references to children of the hierarchy below @root, or
916 * @root itself, or %NULL after a full round-trip.
917 *
918 * Caller must pass the return value in @prev on subsequent
919 * invocations for reference counting, or use mem_cgroup_iter_break()
920 * to cancel a hierarchy walk before the round-trip is complete.
921 *
922 * Reclaimers can specify a zone and a priority level in @reclaim to
923 * divide up the memcgs in the hierarchy among all concurrent
924 * reclaimers operating on the same zone and priority.
925 */
926 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
927 struct mem_cgroup *prev,
928 struct mem_cgroup_reclaim_cookie *reclaim)
929 {
930 struct mem_cgroup *memcg = NULL;
931 int id = 0;
932
933 if (mem_cgroup_disabled())
934 return NULL;
935
936 if (!root)
937 root = root_mem_cgroup;
938
939 if (prev && !reclaim)
940 id = css_id(&prev->css);
941
942 if (prev && prev != root)
943 css_put(&prev->css);
944
945 if (!root->use_hierarchy && root != root_mem_cgroup) {
946 if (prev)
947 return NULL;
948 return root;
949 }
950
951 while (!memcg) {
952 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
953 struct cgroup_subsys_state *css;
954
955 if (reclaim) {
956 int nid = zone_to_nid(reclaim->zone);
957 int zid = zone_idx(reclaim->zone);
958 struct mem_cgroup_per_zone *mz;
959
960 mz = mem_cgroup_zoneinfo(root, nid, zid);
961 iter = &mz->reclaim_iter[reclaim->priority];
962 if (prev && reclaim->generation != iter->generation)
963 return NULL;
964 id = iter->position;
965 }
966
967 rcu_read_lock();
968 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
969 if (css) {
970 if (css == &root->css || css_tryget(css))
971 memcg = mem_cgroup_from_css(css);
972 } else
973 id = 0;
974 rcu_read_unlock();
975
976 if (reclaim) {
977 iter->position = id;
978 if (!css)
979 iter->generation++;
980 else if (!prev && memcg)
981 reclaim->generation = iter->generation;
982 }
983
984 if (prev && !css)
985 return NULL;
986 }
987 return memcg;
988 }
989
990 /**
991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992 * @root: hierarchy root
993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 */
995 void mem_cgroup_iter_break(struct mem_cgroup *root,
996 struct mem_cgroup *prev)
997 {
998 if (!root)
999 root = root_mem_cgroup;
1000 if (prev && prev != root)
1001 css_put(&prev->css);
1002 }
1003
1004 /*
1005 * Iteration constructs for visiting all cgroups (under a tree). If
1006 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1007 * be used for reference counting.
1008 */
1009 #define for_each_mem_cgroup_tree(iter, root) \
1010 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1011 iter != NULL; \
1012 iter = mem_cgroup_iter(root, iter, NULL))
1013
1014 #define for_each_mem_cgroup(iter) \
1015 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1016 iter != NULL; \
1017 iter = mem_cgroup_iter(NULL, iter, NULL))
1018
1019 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1020 {
1021 return (memcg == root_mem_cgroup);
1022 }
1023
1024 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1025 {
1026 struct mem_cgroup *memcg;
1027
1028 if (!mm)
1029 return;
1030
1031 rcu_read_lock();
1032 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033 if (unlikely(!memcg))
1034 goto out;
1035
1036 switch (idx) {
1037 case PGFAULT:
1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1039 break;
1040 case PGMAJFAULT:
1041 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1042 break;
1043 default:
1044 BUG();
1045 }
1046 out:
1047 rcu_read_unlock();
1048 }
1049 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1050
1051 /**
1052 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1053 * @zone: zone of the wanted lruvec
1054 * @memcg: memcg of the wanted lruvec
1055 *
1056 * Returns the lru list vector holding pages for the given @zone and
1057 * @mem. This can be the global zone lruvec, if the memory controller
1058 * is disabled.
1059 */
1060 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1061 struct mem_cgroup *memcg)
1062 {
1063 struct mem_cgroup_per_zone *mz;
1064
1065 if (mem_cgroup_disabled())
1066 return &zone->lruvec;
1067
1068 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1069 return &mz->lruvec;
1070 }
1071
1072 /*
1073 * Following LRU functions are allowed to be used without PCG_LOCK.
1074 * Operations are called by routine of global LRU independently from memcg.
1075 * What we have to take care of here is validness of pc->mem_cgroup.
1076 *
1077 * Changes to pc->mem_cgroup happens when
1078 * 1. charge
1079 * 2. moving account
1080 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1081 * It is added to LRU before charge.
1082 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1083 * When moving account, the page is not on LRU. It's isolated.
1084 */
1085
1086 /**
1087 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1088 * @page: the page
1089 * @zone: zone of the page
1090 */
1091 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1092 {
1093 struct mem_cgroup_per_zone *mz;
1094 struct mem_cgroup *memcg;
1095 struct page_cgroup *pc;
1096
1097 if (mem_cgroup_disabled())
1098 return &zone->lruvec;
1099
1100 pc = lookup_page_cgroup(page);
1101 memcg = pc->mem_cgroup;
1102
1103 /*
1104 * Surreptitiously switch any uncharged offlist page to root:
1105 * an uncharged page off lru does nothing to secure
1106 * its former mem_cgroup from sudden removal.
1107 *
1108 * Our caller holds lru_lock, and PageCgroupUsed is updated
1109 * under page_cgroup lock: between them, they make all uses
1110 * of pc->mem_cgroup safe.
1111 */
1112 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1113 pc->mem_cgroup = memcg = root_mem_cgroup;
1114
1115 mz = page_cgroup_zoneinfo(memcg, page);
1116 return &mz->lruvec;
1117 }
1118
1119 /**
1120 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1121 * @lruvec: mem_cgroup per zone lru vector
1122 * @lru: index of lru list the page is sitting on
1123 * @nr_pages: positive when adding or negative when removing
1124 *
1125 * This function must be called when a page is added to or removed from an
1126 * lru list.
1127 */
1128 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1129 int nr_pages)
1130 {
1131 struct mem_cgroup_per_zone *mz;
1132 unsigned long *lru_size;
1133
1134 if (mem_cgroup_disabled())
1135 return;
1136
1137 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1138 lru_size = mz->lru_size + lru;
1139 *lru_size += nr_pages;
1140 VM_BUG_ON((long)(*lru_size) < 0);
1141 }
1142
1143 /*
1144 * Checks whether given mem is same or in the root_mem_cgroup's
1145 * hierarchy subtree
1146 */
1147 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1148 struct mem_cgroup *memcg)
1149 {
1150 if (root_memcg == memcg)
1151 return true;
1152 if (!root_memcg->use_hierarchy || !memcg)
1153 return false;
1154 return css_is_ancestor(&memcg->css, &root_memcg->css);
1155 }
1156
1157 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1158 struct mem_cgroup *memcg)
1159 {
1160 bool ret;
1161
1162 rcu_read_lock();
1163 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1164 rcu_read_unlock();
1165 return ret;
1166 }
1167
1168 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1169 {
1170 int ret;
1171 struct mem_cgroup *curr = NULL;
1172 struct task_struct *p;
1173
1174 p = find_lock_task_mm(task);
1175 if (p) {
1176 curr = try_get_mem_cgroup_from_mm(p->mm);
1177 task_unlock(p);
1178 } else {
1179 /*
1180 * All threads may have already detached their mm's, but the oom
1181 * killer still needs to detect if they have already been oom
1182 * killed to prevent needlessly killing additional tasks.
1183 */
1184 task_lock(task);
1185 curr = mem_cgroup_from_task(task);
1186 if (curr)
1187 css_get(&curr->css);
1188 task_unlock(task);
1189 }
1190 if (!curr)
1191 return 0;
1192 /*
1193 * We should check use_hierarchy of "memcg" not "curr". Because checking
1194 * use_hierarchy of "curr" here make this function true if hierarchy is
1195 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1196 * hierarchy(even if use_hierarchy is disabled in "memcg").
1197 */
1198 ret = mem_cgroup_same_or_subtree(memcg, curr);
1199 css_put(&curr->css);
1200 return ret;
1201 }
1202
1203 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1204 {
1205 unsigned long inactive_ratio;
1206 unsigned long inactive;
1207 unsigned long active;
1208 unsigned long gb;
1209
1210 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1211 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1212
1213 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1214 if (gb)
1215 inactive_ratio = int_sqrt(10 * gb);
1216 else
1217 inactive_ratio = 1;
1218
1219 return inactive * inactive_ratio < active;
1220 }
1221
1222 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1223 {
1224 unsigned long active;
1225 unsigned long inactive;
1226
1227 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1228 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1229
1230 return (active > inactive);
1231 }
1232
1233 #define mem_cgroup_from_res_counter(counter, member) \
1234 container_of(counter, struct mem_cgroup, member)
1235
1236 /**
1237 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1238 * @memcg: the memory cgroup
1239 *
1240 * Returns the maximum amount of memory @mem can be charged with, in
1241 * pages.
1242 */
1243 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1244 {
1245 unsigned long long margin;
1246
1247 margin = res_counter_margin(&memcg->res);
1248 if (do_swap_account)
1249 margin = min(margin, res_counter_margin(&memcg->memsw));
1250 return margin >> PAGE_SHIFT;
1251 }
1252
1253 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1254 {
1255 struct cgroup *cgrp = memcg->css.cgroup;
1256
1257 /* root ? */
1258 if (cgrp->parent == NULL)
1259 return vm_swappiness;
1260
1261 return memcg->swappiness;
1262 }
1263
1264 /*
1265 * memcg->moving_account is used for checking possibility that some thread is
1266 * calling move_account(). When a thread on CPU-A starts moving pages under
1267 * a memcg, other threads should check memcg->moving_account under
1268 * rcu_read_lock(), like this:
1269 *
1270 * CPU-A CPU-B
1271 * rcu_read_lock()
1272 * memcg->moving_account+1 if (memcg->mocing_account)
1273 * take heavy locks.
1274 * synchronize_rcu() update something.
1275 * rcu_read_unlock()
1276 * start move here.
1277 */
1278
1279 /* for quick checking without looking up memcg */
1280 atomic_t memcg_moving __read_mostly;
1281
1282 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1283 {
1284 atomic_inc(&memcg_moving);
1285 atomic_inc(&memcg->moving_account);
1286 synchronize_rcu();
1287 }
1288
1289 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1290 {
1291 /*
1292 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1293 * We check NULL in callee rather than caller.
1294 */
1295 if (memcg) {
1296 atomic_dec(&memcg_moving);
1297 atomic_dec(&memcg->moving_account);
1298 }
1299 }
1300
1301 /*
1302 * 2 routines for checking "mem" is under move_account() or not.
1303 *
1304 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1305 * is used for avoiding races in accounting. If true,
1306 * pc->mem_cgroup may be overwritten.
1307 *
1308 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1309 * under hierarchy of moving cgroups. This is for
1310 * waiting at hith-memory prressure caused by "move".
1311 */
1312
1313 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1314 {
1315 VM_BUG_ON(!rcu_read_lock_held());
1316 return atomic_read(&memcg->moving_account) > 0;
1317 }
1318
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320 {
1321 struct mem_cgroup *from;
1322 struct mem_cgroup *to;
1323 bool ret = false;
1324 /*
1325 * Unlike task_move routines, we access mc.to, mc.from not under
1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 */
1328 spin_lock(&mc.lock);
1329 from = mc.from;
1330 to = mc.to;
1331 if (!from)
1332 goto unlock;
1333
1334 ret = mem_cgroup_same_or_subtree(memcg, from)
1335 || mem_cgroup_same_or_subtree(memcg, to);
1336 unlock:
1337 spin_unlock(&mc.lock);
1338 return ret;
1339 }
1340
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 {
1343 if (mc.moving_task && current != mc.moving_task) {
1344 if (mem_cgroup_under_move(memcg)) {
1345 DEFINE_WAIT(wait);
1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 /* moving charge context might have finished. */
1348 if (mc.moving_task)
1349 schedule();
1350 finish_wait(&mc.waitq, &wait);
1351 return true;
1352 }
1353 }
1354 return false;
1355 }
1356
1357 /*
1358 * Take this lock when
1359 * - a code tries to modify page's memcg while it's USED.
1360 * - a code tries to modify page state accounting in a memcg.
1361 * see mem_cgroup_stolen(), too.
1362 */
1363 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1364 unsigned long *flags)
1365 {
1366 spin_lock_irqsave(&memcg->move_lock, *flags);
1367 }
1368
1369 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1370 unsigned long *flags)
1371 {
1372 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1373 }
1374
1375 /**
1376 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377 * @memcg: The memory cgroup that went over limit
1378 * @p: Task that is going to be killed
1379 *
1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 * enabled
1382 */
1383 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1384 {
1385 struct cgroup *task_cgrp;
1386 struct cgroup *mem_cgrp;
1387 /*
1388 * Need a buffer in BSS, can't rely on allocations. The code relies
1389 * on the assumption that OOM is serialized for memory controller.
1390 * If this assumption is broken, revisit this code.
1391 */
1392 static char memcg_name[PATH_MAX];
1393 int ret;
1394
1395 if (!memcg || !p)
1396 return;
1397
1398 rcu_read_lock();
1399
1400 mem_cgrp = memcg->css.cgroup;
1401 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1402
1403 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1404 if (ret < 0) {
1405 /*
1406 * Unfortunately, we are unable to convert to a useful name
1407 * But we'll still print out the usage information
1408 */
1409 rcu_read_unlock();
1410 goto done;
1411 }
1412 rcu_read_unlock();
1413
1414 printk(KERN_INFO "Task in %s killed", memcg_name);
1415
1416 rcu_read_lock();
1417 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1418 if (ret < 0) {
1419 rcu_read_unlock();
1420 goto done;
1421 }
1422 rcu_read_unlock();
1423
1424 /*
1425 * Continues from above, so we don't need an KERN_ level
1426 */
1427 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1428 done:
1429
1430 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1431 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1433 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1434 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1435 "failcnt %llu\n",
1436 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1438 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1439 }
1440
1441 /*
1442 * This function returns the number of memcg under hierarchy tree. Returns
1443 * 1(self count) if no children.
1444 */
1445 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446 {
1447 int num = 0;
1448 struct mem_cgroup *iter;
1449
1450 for_each_mem_cgroup_tree(iter, memcg)
1451 num++;
1452 return num;
1453 }
1454
1455 /*
1456 * Return the memory (and swap, if configured) limit for a memcg.
1457 */
1458 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1459 {
1460 u64 limit;
1461 u64 memsw;
1462
1463 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1464 limit += total_swap_pages << PAGE_SHIFT;
1465
1466 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1467 /*
1468 * If memsw is finite and limits the amount of swap space available
1469 * to this memcg, return that limit.
1470 */
1471 return min(limit, memsw);
1472 }
1473
1474 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1475 int order)
1476 {
1477 struct mem_cgroup *iter;
1478 unsigned long chosen_points = 0;
1479 unsigned long totalpages;
1480 unsigned int points = 0;
1481 struct task_struct *chosen = NULL;
1482
1483 /*
1484 * If current has a pending SIGKILL, then automatically select it. The
1485 * goal is to allow it to allocate so that it may quickly exit and free
1486 * its memory.
1487 */
1488 if (fatal_signal_pending(current)) {
1489 set_thread_flag(TIF_MEMDIE);
1490 return;
1491 }
1492
1493 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1494 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1495 for_each_mem_cgroup_tree(iter, memcg) {
1496 struct cgroup *cgroup = iter->css.cgroup;
1497 struct cgroup_iter it;
1498 struct task_struct *task;
1499
1500 cgroup_iter_start(cgroup, &it);
1501 while ((task = cgroup_iter_next(cgroup, &it))) {
1502 switch (oom_scan_process_thread(task, totalpages, NULL,
1503 false)) {
1504 case OOM_SCAN_SELECT:
1505 if (chosen)
1506 put_task_struct(chosen);
1507 chosen = task;
1508 chosen_points = ULONG_MAX;
1509 get_task_struct(chosen);
1510 /* fall through */
1511 case OOM_SCAN_CONTINUE:
1512 continue;
1513 case OOM_SCAN_ABORT:
1514 cgroup_iter_end(cgroup, &it);
1515 mem_cgroup_iter_break(memcg, iter);
1516 if (chosen)
1517 put_task_struct(chosen);
1518 return;
1519 case OOM_SCAN_OK:
1520 break;
1521 };
1522 points = oom_badness(task, memcg, NULL, totalpages);
1523 if (points > chosen_points) {
1524 if (chosen)
1525 put_task_struct(chosen);
1526 chosen = task;
1527 chosen_points = points;
1528 get_task_struct(chosen);
1529 }
1530 }
1531 cgroup_iter_end(cgroup, &it);
1532 }
1533
1534 if (!chosen)
1535 return;
1536 points = chosen_points * 1000 / totalpages;
1537 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1538 NULL, "Memory cgroup out of memory");
1539 }
1540
1541 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1542 gfp_t gfp_mask,
1543 unsigned long flags)
1544 {
1545 unsigned long total = 0;
1546 bool noswap = false;
1547 int loop;
1548
1549 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1550 noswap = true;
1551 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1552 noswap = true;
1553
1554 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1555 if (loop)
1556 drain_all_stock_async(memcg);
1557 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1558 /*
1559 * Allow limit shrinkers, which are triggered directly
1560 * by userspace, to catch signals and stop reclaim
1561 * after minimal progress, regardless of the margin.
1562 */
1563 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1564 break;
1565 if (mem_cgroup_margin(memcg))
1566 break;
1567 /*
1568 * If nothing was reclaimed after two attempts, there
1569 * may be no reclaimable pages in this hierarchy.
1570 */
1571 if (loop && !total)
1572 break;
1573 }
1574 return total;
1575 }
1576
1577 /**
1578 * test_mem_cgroup_node_reclaimable
1579 * @memcg: the target memcg
1580 * @nid: the node ID to be checked.
1581 * @noswap : specify true here if the user wants flle only information.
1582 *
1583 * This function returns whether the specified memcg contains any
1584 * reclaimable pages on a node. Returns true if there are any reclaimable
1585 * pages in the node.
1586 */
1587 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1588 int nid, bool noswap)
1589 {
1590 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1591 return true;
1592 if (noswap || !total_swap_pages)
1593 return false;
1594 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1595 return true;
1596 return false;
1597
1598 }
1599 #if MAX_NUMNODES > 1
1600
1601 /*
1602 * Always updating the nodemask is not very good - even if we have an empty
1603 * list or the wrong list here, we can start from some node and traverse all
1604 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1605 *
1606 */
1607 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1608 {
1609 int nid;
1610 /*
1611 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1612 * pagein/pageout changes since the last update.
1613 */
1614 if (!atomic_read(&memcg->numainfo_events))
1615 return;
1616 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1617 return;
1618
1619 /* make a nodemask where this memcg uses memory from */
1620 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1621
1622 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1623
1624 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1625 node_clear(nid, memcg->scan_nodes);
1626 }
1627
1628 atomic_set(&memcg->numainfo_events, 0);
1629 atomic_set(&memcg->numainfo_updating, 0);
1630 }
1631
1632 /*
1633 * Selecting a node where we start reclaim from. Because what we need is just
1634 * reducing usage counter, start from anywhere is O,K. Considering
1635 * memory reclaim from current node, there are pros. and cons.
1636 *
1637 * Freeing memory from current node means freeing memory from a node which
1638 * we'll use or we've used. So, it may make LRU bad. And if several threads
1639 * hit limits, it will see a contention on a node. But freeing from remote
1640 * node means more costs for memory reclaim because of memory latency.
1641 *
1642 * Now, we use round-robin. Better algorithm is welcomed.
1643 */
1644 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1645 {
1646 int node;
1647
1648 mem_cgroup_may_update_nodemask(memcg);
1649 node = memcg->last_scanned_node;
1650
1651 node = next_node(node, memcg->scan_nodes);
1652 if (node == MAX_NUMNODES)
1653 node = first_node(memcg->scan_nodes);
1654 /*
1655 * We call this when we hit limit, not when pages are added to LRU.
1656 * No LRU may hold pages because all pages are UNEVICTABLE or
1657 * memcg is too small and all pages are not on LRU. In that case,
1658 * we use curret node.
1659 */
1660 if (unlikely(node == MAX_NUMNODES))
1661 node = numa_node_id();
1662
1663 memcg->last_scanned_node = node;
1664 return node;
1665 }
1666
1667 /*
1668 * Check all nodes whether it contains reclaimable pages or not.
1669 * For quick scan, we make use of scan_nodes. This will allow us to skip
1670 * unused nodes. But scan_nodes is lazily updated and may not cotain
1671 * enough new information. We need to do double check.
1672 */
1673 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1674 {
1675 int nid;
1676
1677 /*
1678 * quick check...making use of scan_node.
1679 * We can skip unused nodes.
1680 */
1681 if (!nodes_empty(memcg->scan_nodes)) {
1682 for (nid = first_node(memcg->scan_nodes);
1683 nid < MAX_NUMNODES;
1684 nid = next_node(nid, memcg->scan_nodes)) {
1685
1686 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1687 return true;
1688 }
1689 }
1690 /*
1691 * Check rest of nodes.
1692 */
1693 for_each_node_state(nid, N_HIGH_MEMORY) {
1694 if (node_isset(nid, memcg->scan_nodes))
1695 continue;
1696 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1697 return true;
1698 }
1699 return false;
1700 }
1701
1702 #else
1703 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1704 {
1705 return 0;
1706 }
1707
1708 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1709 {
1710 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1711 }
1712 #endif
1713
1714 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1715 struct zone *zone,
1716 gfp_t gfp_mask,
1717 unsigned long *total_scanned)
1718 {
1719 struct mem_cgroup *victim = NULL;
1720 int total = 0;
1721 int loop = 0;
1722 unsigned long excess;
1723 unsigned long nr_scanned;
1724 struct mem_cgroup_reclaim_cookie reclaim = {
1725 .zone = zone,
1726 .priority = 0,
1727 };
1728
1729 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1730
1731 while (1) {
1732 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733 if (!victim) {
1734 loop++;
1735 if (loop >= 2) {
1736 /*
1737 * If we have not been able to reclaim
1738 * anything, it might because there are
1739 * no reclaimable pages under this hierarchy
1740 */
1741 if (!total)
1742 break;
1743 /*
1744 * We want to do more targeted reclaim.
1745 * excess >> 2 is not to excessive so as to
1746 * reclaim too much, nor too less that we keep
1747 * coming back to reclaim from this cgroup
1748 */
1749 if (total >= (excess >> 2) ||
1750 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751 break;
1752 }
1753 continue;
1754 }
1755 if (!mem_cgroup_reclaimable(victim, false))
1756 continue;
1757 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1758 zone, &nr_scanned);
1759 *total_scanned += nr_scanned;
1760 if (!res_counter_soft_limit_excess(&root_memcg->res))
1761 break;
1762 }
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
1765 }
1766
1767 /*
1768 * Check OOM-Killer is already running under our hierarchy.
1769 * If someone is running, return false.
1770 * Has to be called with memcg_oom_lock
1771 */
1772 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1773 {
1774 struct mem_cgroup *iter, *failed = NULL;
1775
1776 for_each_mem_cgroup_tree(iter, memcg) {
1777 if (iter->oom_lock) {
1778 /*
1779 * this subtree of our hierarchy is already locked
1780 * so we cannot give a lock.
1781 */
1782 failed = iter;
1783 mem_cgroup_iter_break(memcg, iter);
1784 break;
1785 } else
1786 iter->oom_lock = true;
1787 }
1788
1789 if (!failed)
1790 return true;
1791
1792 /*
1793 * OK, we failed to lock the whole subtree so we have to clean up
1794 * what we set up to the failing subtree
1795 */
1796 for_each_mem_cgroup_tree(iter, memcg) {
1797 if (iter == failed) {
1798 mem_cgroup_iter_break(memcg, iter);
1799 break;
1800 }
1801 iter->oom_lock = false;
1802 }
1803 return false;
1804 }
1805
1806 /*
1807 * Has to be called with memcg_oom_lock
1808 */
1809 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1810 {
1811 struct mem_cgroup *iter;
1812
1813 for_each_mem_cgroup_tree(iter, memcg)
1814 iter->oom_lock = false;
1815 return 0;
1816 }
1817
1818 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1819 {
1820 struct mem_cgroup *iter;
1821
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 atomic_inc(&iter->under_oom);
1824 }
1825
1826 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1827 {
1828 struct mem_cgroup *iter;
1829
1830 /*
1831 * When a new child is created while the hierarchy is under oom,
1832 * mem_cgroup_oom_lock() may not be called. We have to use
1833 * atomic_add_unless() here.
1834 */
1835 for_each_mem_cgroup_tree(iter, memcg)
1836 atomic_add_unless(&iter->under_oom, -1, 0);
1837 }
1838
1839 static DEFINE_SPINLOCK(memcg_oom_lock);
1840 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1841
1842 struct oom_wait_info {
1843 struct mem_cgroup *memcg;
1844 wait_queue_t wait;
1845 };
1846
1847 static int memcg_oom_wake_function(wait_queue_t *wait,
1848 unsigned mode, int sync, void *arg)
1849 {
1850 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1851 struct mem_cgroup *oom_wait_memcg;
1852 struct oom_wait_info *oom_wait_info;
1853
1854 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1855 oom_wait_memcg = oom_wait_info->memcg;
1856
1857 /*
1858 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1859 * Then we can use css_is_ancestor without taking care of RCU.
1860 */
1861 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1862 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1863 return 0;
1864 return autoremove_wake_function(wait, mode, sync, arg);
1865 }
1866
1867 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1868 {
1869 /* for filtering, pass "memcg" as argument. */
1870 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1871 }
1872
1873 static void memcg_oom_recover(struct mem_cgroup *memcg)
1874 {
1875 if (memcg && atomic_read(&memcg->under_oom))
1876 memcg_wakeup_oom(memcg);
1877 }
1878
1879 /*
1880 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1881 */
1882 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1883 int order)
1884 {
1885 struct oom_wait_info owait;
1886 bool locked, need_to_kill;
1887
1888 owait.memcg = memcg;
1889 owait.wait.flags = 0;
1890 owait.wait.func = memcg_oom_wake_function;
1891 owait.wait.private = current;
1892 INIT_LIST_HEAD(&owait.wait.task_list);
1893 need_to_kill = true;
1894 mem_cgroup_mark_under_oom(memcg);
1895
1896 /* At first, try to OOM lock hierarchy under memcg.*/
1897 spin_lock(&memcg_oom_lock);
1898 locked = mem_cgroup_oom_lock(memcg);
1899 /*
1900 * Even if signal_pending(), we can't quit charge() loop without
1901 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902 * under OOM is always welcomed, use TASK_KILLABLE here.
1903 */
1904 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905 if (!locked || memcg->oom_kill_disable)
1906 need_to_kill = false;
1907 if (locked)
1908 mem_cgroup_oom_notify(memcg);
1909 spin_unlock(&memcg_oom_lock);
1910
1911 if (need_to_kill) {
1912 finish_wait(&memcg_oom_waitq, &owait.wait);
1913 mem_cgroup_out_of_memory(memcg, mask, order);
1914 } else {
1915 schedule();
1916 finish_wait(&memcg_oom_waitq, &owait.wait);
1917 }
1918 spin_lock(&memcg_oom_lock);
1919 if (locked)
1920 mem_cgroup_oom_unlock(memcg);
1921 memcg_wakeup_oom(memcg);
1922 spin_unlock(&memcg_oom_lock);
1923
1924 mem_cgroup_unmark_under_oom(memcg);
1925
1926 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1927 return false;
1928 /* Give chance to dying process */
1929 schedule_timeout_uninterruptible(1);
1930 return true;
1931 }
1932
1933 /*
1934 * Currently used to update mapped file statistics, but the routine can be
1935 * generalized to update other statistics as well.
1936 *
1937 * Notes: Race condition
1938 *
1939 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1940 * it tends to be costly. But considering some conditions, we doesn't need
1941 * to do so _always_.
1942 *
1943 * Considering "charge", lock_page_cgroup() is not required because all
1944 * file-stat operations happen after a page is attached to radix-tree. There
1945 * are no race with "charge".
1946 *
1947 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1948 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1949 * if there are race with "uncharge". Statistics itself is properly handled
1950 * by flags.
1951 *
1952 * Considering "move", this is an only case we see a race. To make the race
1953 * small, we check mm->moving_account and detect there are possibility of race
1954 * If there is, we take a lock.
1955 */
1956
1957 void __mem_cgroup_begin_update_page_stat(struct page *page,
1958 bool *locked, unsigned long *flags)
1959 {
1960 struct mem_cgroup *memcg;
1961 struct page_cgroup *pc;
1962
1963 pc = lookup_page_cgroup(page);
1964 again:
1965 memcg = pc->mem_cgroup;
1966 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1967 return;
1968 /*
1969 * If this memory cgroup is not under account moving, we don't
1970 * need to take move_lock_mem_cgroup(). Because we already hold
1971 * rcu_read_lock(), any calls to move_account will be delayed until
1972 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1973 */
1974 if (!mem_cgroup_stolen(memcg))
1975 return;
1976
1977 move_lock_mem_cgroup(memcg, flags);
1978 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1979 move_unlock_mem_cgroup(memcg, flags);
1980 goto again;
1981 }
1982 *locked = true;
1983 }
1984
1985 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1986 {
1987 struct page_cgroup *pc = lookup_page_cgroup(page);
1988
1989 /*
1990 * It's guaranteed that pc->mem_cgroup never changes while
1991 * lock is held because a routine modifies pc->mem_cgroup
1992 * should take move_lock_mem_cgroup().
1993 */
1994 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1995 }
1996
1997 void mem_cgroup_update_page_stat(struct page *page,
1998 enum mem_cgroup_page_stat_item idx, int val)
1999 {
2000 struct mem_cgroup *memcg;
2001 struct page_cgroup *pc = lookup_page_cgroup(page);
2002 unsigned long uninitialized_var(flags);
2003
2004 if (mem_cgroup_disabled())
2005 return;
2006
2007 memcg = pc->mem_cgroup;
2008 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2009 return;
2010
2011 switch (idx) {
2012 case MEMCG_NR_FILE_MAPPED:
2013 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2014 break;
2015 default:
2016 BUG();
2017 }
2018
2019 this_cpu_add(memcg->stat->count[idx], val);
2020 }
2021
2022 /*
2023 * size of first charge trial. "32" comes from vmscan.c's magic value.
2024 * TODO: maybe necessary to use big numbers in big irons.
2025 */
2026 #define CHARGE_BATCH 32U
2027 struct memcg_stock_pcp {
2028 struct mem_cgroup *cached; /* this never be root cgroup */
2029 unsigned int nr_pages;
2030 struct work_struct work;
2031 unsigned long flags;
2032 #define FLUSHING_CACHED_CHARGE 0
2033 };
2034 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2035 static DEFINE_MUTEX(percpu_charge_mutex);
2036
2037 /*
2038 * Try to consume stocked charge on this cpu. If success, one page is consumed
2039 * from local stock and true is returned. If the stock is 0 or charges from a
2040 * cgroup which is not current target, returns false. This stock will be
2041 * refilled.
2042 */
2043 static bool consume_stock(struct mem_cgroup *memcg)
2044 {
2045 struct memcg_stock_pcp *stock;
2046 bool ret = true;
2047
2048 stock = &get_cpu_var(memcg_stock);
2049 if (memcg == stock->cached && stock->nr_pages)
2050 stock->nr_pages--;
2051 else /* need to call res_counter_charge */
2052 ret = false;
2053 put_cpu_var(memcg_stock);
2054 return ret;
2055 }
2056
2057 /*
2058 * Returns stocks cached in percpu to res_counter and reset cached information.
2059 */
2060 static void drain_stock(struct memcg_stock_pcp *stock)
2061 {
2062 struct mem_cgroup *old = stock->cached;
2063
2064 if (stock->nr_pages) {
2065 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2066
2067 res_counter_uncharge(&old->res, bytes);
2068 if (do_swap_account)
2069 res_counter_uncharge(&old->memsw, bytes);
2070 stock->nr_pages = 0;
2071 }
2072 stock->cached = NULL;
2073 }
2074
2075 /*
2076 * This must be called under preempt disabled or must be called by
2077 * a thread which is pinned to local cpu.
2078 */
2079 static void drain_local_stock(struct work_struct *dummy)
2080 {
2081 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2082 drain_stock(stock);
2083 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2084 }
2085
2086 /*
2087 * Cache charges(val) which is from res_counter, to local per_cpu area.
2088 * This will be consumed by consume_stock() function, later.
2089 */
2090 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2091 {
2092 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2093
2094 if (stock->cached != memcg) { /* reset if necessary */
2095 drain_stock(stock);
2096 stock->cached = memcg;
2097 }
2098 stock->nr_pages += nr_pages;
2099 put_cpu_var(memcg_stock);
2100 }
2101
2102 /*
2103 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2104 * of the hierarchy under it. sync flag says whether we should block
2105 * until the work is done.
2106 */
2107 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2108 {
2109 int cpu, curcpu;
2110
2111 /* Notify other cpus that system-wide "drain" is running */
2112 get_online_cpus();
2113 curcpu = get_cpu();
2114 for_each_online_cpu(cpu) {
2115 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2116 struct mem_cgroup *memcg;
2117
2118 memcg = stock->cached;
2119 if (!memcg || !stock->nr_pages)
2120 continue;
2121 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2122 continue;
2123 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2124 if (cpu == curcpu)
2125 drain_local_stock(&stock->work);
2126 else
2127 schedule_work_on(cpu, &stock->work);
2128 }
2129 }
2130 put_cpu();
2131
2132 if (!sync)
2133 goto out;
2134
2135 for_each_online_cpu(cpu) {
2136 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2137 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2138 flush_work(&stock->work);
2139 }
2140 out:
2141 put_online_cpus();
2142 }
2143
2144 /*
2145 * Tries to drain stocked charges in other cpus. This function is asynchronous
2146 * and just put a work per cpu for draining localy on each cpu. Caller can
2147 * expects some charges will be back to res_counter later but cannot wait for
2148 * it.
2149 */
2150 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2151 {
2152 /*
2153 * If someone calls draining, avoid adding more kworker runs.
2154 */
2155 if (!mutex_trylock(&percpu_charge_mutex))
2156 return;
2157 drain_all_stock(root_memcg, false);
2158 mutex_unlock(&percpu_charge_mutex);
2159 }
2160
2161 /* This is a synchronous drain interface. */
2162 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2163 {
2164 /* called when force_empty is called */
2165 mutex_lock(&percpu_charge_mutex);
2166 drain_all_stock(root_memcg, true);
2167 mutex_unlock(&percpu_charge_mutex);
2168 }
2169
2170 /*
2171 * This function drains percpu counter value from DEAD cpu and
2172 * move it to local cpu. Note that this function can be preempted.
2173 */
2174 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2175 {
2176 int i;
2177
2178 spin_lock(&memcg->pcp_counter_lock);
2179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2180 long x = per_cpu(memcg->stat->count[i], cpu);
2181
2182 per_cpu(memcg->stat->count[i], cpu) = 0;
2183 memcg->nocpu_base.count[i] += x;
2184 }
2185 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2186 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2187
2188 per_cpu(memcg->stat->events[i], cpu) = 0;
2189 memcg->nocpu_base.events[i] += x;
2190 }
2191 spin_unlock(&memcg->pcp_counter_lock);
2192 }
2193
2194 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2195 unsigned long action,
2196 void *hcpu)
2197 {
2198 int cpu = (unsigned long)hcpu;
2199 struct memcg_stock_pcp *stock;
2200 struct mem_cgroup *iter;
2201
2202 if (action == CPU_ONLINE)
2203 return NOTIFY_OK;
2204
2205 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2206 return NOTIFY_OK;
2207
2208 for_each_mem_cgroup(iter)
2209 mem_cgroup_drain_pcp_counter(iter, cpu);
2210
2211 stock = &per_cpu(memcg_stock, cpu);
2212 drain_stock(stock);
2213 return NOTIFY_OK;
2214 }
2215
2216
2217 /* See __mem_cgroup_try_charge() for details */
2218 enum {
2219 CHARGE_OK, /* success */
2220 CHARGE_RETRY, /* need to retry but retry is not bad */
2221 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2222 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2223 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2224 };
2225
2226 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2227 unsigned int nr_pages, bool oom_check)
2228 {
2229 unsigned long csize = nr_pages * PAGE_SIZE;
2230 struct mem_cgroup *mem_over_limit;
2231 struct res_counter *fail_res;
2232 unsigned long flags = 0;
2233 int ret;
2234
2235 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2236
2237 if (likely(!ret)) {
2238 if (!do_swap_account)
2239 return CHARGE_OK;
2240 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2241 if (likely(!ret))
2242 return CHARGE_OK;
2243
2244 res_counter_uncharge(&memcg->res, csize);
2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2246 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2247 } else
2248 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2249 /*
2250 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2251 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2252 *
2253 * Never reclaim on behalf of optional batching, retry with a
2254 * single page instead.
2255 */
2256 if (nr_pages == CHARGE_BATCH)
2257 return CHARGE_RETRY;
2258
2259 if (!(gfp_mask & __GFP_WAIT))
2260 return CHARGE_WOULDBLOCK;
2261
2262 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2263 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2264 return CHARGE_RETRY;
2265 /*
2266 * Even though the limit is exceeded at this point, reclaim
2267 * may have been able to free some pages. Retry the charge
2268 * before killing the task.
2269 *
2270 * Only for regular pages, though: huge pages are rather
2271 * unlikely to succeed so close to the limit, and we fall back
2272 * to regular pages anyway in case of failure.
2273 */
2274 if (nr_pages == 1 && ret)
2275 return CHARGE_RETRY;
2276
2277 /*
2278 * At task move, charge accounts can be doubly counted. So, it's
2279 * better to wait until the end of task_move if something is going on.
2280 */
2281 if (mem_cgroup_wait_acct_move(mem_over_limit))
2282 return CHARGE_RETRY;
2283
2284 /* If we don't need to call oom-killer at el, return immediately */
2285 if (!oom_check)
2286 return CHARGE_NOMEM;
2287 /* check OOM */
2288 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2289 return CHARGE_OOM_DIE;
2290
2291 return CHARGE_RETRY;
2292 }
2293
2294 /*
2295 * __mem_cgroup_try_charge() does
2296 * 1. detect memcg to be charged against from passed *mm and *ptr,
2297 * 2. update res_counter
2298 * 3. call memory reclaim if necessary.
2299 *
2300 * In some special case, if the task is fatal, fatal_signal_pending() or
2301 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2302 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2303 * as possible without any hazards. 2: all pages should have a valid
2304 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2305 * pointer, that is treated as a charge to root_mem_cgroup.
2306 *
2307 * So __mem_cgroup_try_charge() will return
2308 * 0 ... on success, filling *ptr with a valid memcg pointer.
2309 * -ENOMEM ... charge failure because of resource limits.
2310 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2311 *
2312 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2313 * the oom-killer can be invoked.
2314 */
2315 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2316 gfp_t gfp_mask,
2317 unsigned int nr_pages,
2318 struct mem_cgroup **ptr,
2319 bool oom)
2320 {
2321 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323 struct mem_cgroup *memcg = NULL;
2324 int ret;
2325
2326 /*
2327 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2328 * in system level. So, allow to go ahead dying process in addition to
2329 * MEMDIE process.
2330 */
2331 if (unlikely(test_thread_flag(TIF_MEMDIE)
2332 || fatal_signal_pending(current)))
2333 goto bypass;
2334
2335 /*
2336 * We always charge the cgroup the mm_struct belongs to.
2337 * The mm_struct's mem_cgroup changes on task migration if the
2338 * thread group leader migrates. It's possible that mm is not
2339 * set, if so charge the root memcg (happens for pagecache usage).
2340 */
2341 if (!*ptr && !mm)
2342 *ptr = root_mem_cgroup;
2343 again:
2344 if (*ptr) { /* css should be a valid one */
2345 memcg = *ptr;
2346 VM_BUG_ON(css_is_removed(&memcg->css));
2347 if (mem_cgroup_is_root(memcg))
2348 goto done;
2349 if (nr_pages == 1 && consume_stock(memcg))
2350 goto done;
2351 css_get(&memcg->css);
2352 } else {
2353 struct task_struct *p;
2354
2355 rcu_read_lock();
2356 p = rcu_dereference(mm->owner);
2357 /*
2358 * Because we don't have task_lock(), "p" can exit.
2359 * In that case, "memcg" can point to root or p can be NULL with
2360 * race with swapoff. Then, we have small risk of mis-accouning.
2361 * But such kind of mis-account by race always happens because
2362 * we don't have cgroup_mutex(). It's overkill and we allo that
2363 * small race, here.
2364 * (*) swapoff at el will charge against mm-struct not against
2365 * task-struct. So, mm->owner can be NULL.
2366 */
2367 memcg = mem_cgroup_from_task(p);
2368 if (!memcg)
2369 memcg = root_mem_cgroup;
2370 if (mem_cgroup_is_root(memcg)) {
2371 rcu_read_unlock();
2372 goto done;
2373 }
2374 if (nr_pages == 1 && consume_stock(memcg)) {
2375 /*
2376 * It seems dagerous to access memcg without css_get().
2377 * But considering how consume_stok works, it's not
2378 * necessary. If consume_stock success, some charges
2379 * from this memcg are cached on this cpu. So, we
2380 * don't need to call css_get()/css_tryget() before
2381 * calling consume_stock().
2382 */
2383 rcu_read_unlock();
2384 goto done;
2385 }
2386 /* after here, we may be blocked. we need to get refcnt */
2387 if (!css_tryget(&memcg->css)) {
2388 rcu_read_unlock();
2389 goto again;
2390 }
2391 rcu_read_unlock();
2392 }
2393
2394 do {
2395 bool oom_check;
2396
2397 /* If killed, bypass charge */
2398 if (fatal_signal_pending(current)) {
2399 css_put(&memcg->css);
2400 goto bypass;
2401 }
2402
2403 oom_check = false;
2404 if (oom && !nr_oom_retries) {
2405 oom_check = true;
2406 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2407 }
2408
2409 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2410 switch (ret) {
2411 case CHARGE_OK:
2412 break;
2413 case CHARGE_RETRY: /* not in OOM situation but retry */
2414 batch = nr_pages;
2415 css_put(&memcg->css);
2416 memcg = NULL;
2417 goto again;
2418 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2419 css_put(&memcg->css);
2420 goto nomem;
2421 case CHARGE_NOMEM: /* OOM routine works */
2422 if (!oom) {
2423 css_put(&memcg->css);
2424 goto nomem;
2425 }
2426 /* If oom, we never return -ENOMEM */
2427 nr_oom_retries--;
2428 break;
2429 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2430 css_put(&memcg->css);
2431 goto bypass;
2432 }
2433 } while (ret != CHARGE_OK);
2434
2435 if (batch > nr_pages)
2436 refill_stock(memcg, batch - nr_pages);
2437 css_put(&memcg->css);
2438 done:
2439 *ptr = memcg;
2440 return 0;
2441 nomem:
2442 *ptr = NULL;
2443 return -ENOMEM;
2444 bypass:
2445 *ptr = root_mem_cgroup;
2446 return -EINTR;
2447 }
2448
2449 /*
2450 * Somemtimes we have to undo a charge we got by try_charge().
2451 * This function is for that and do uncharge, put css's refcnt.
2452 * gotten by try_charge().
2453 */
2454 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2455 unsigned int nr_pages)
2456 {
2457 if (!mem_cgroup_is_root(memcg)) {
2458 unsigned long bytes = nr_pages * PAGE_SIZE;
2459
2460 res_counter_uncharge(&memcg->res, bytes);
2461 if (do_swap_account)
2462 res_counter_uncharge(&memcg->memsw, bytes);
2463 }
2464 }
2465
2466 /*
2467 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2468 * This is useful when moving usage to parent cgroup.
2469 */
2470 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2471 unsigned int nr_pages)
2472 {
2473 unsigned long bytes = nr_pages * PAGE_SIZE;
2474
2475 if (mem_cgroup_is_root(memcg))
2476 return;
2477
2478 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2479 if (do_swap_account)
2480 res_counter_uncharge_until(&memcg->memsw,
2481 memcg->memsw.parent, bytes);
2482 }
2483
2484 /*
2485 * A helper function to get mem_cgroup from ID. must be called under
2486 * rcu_read_lock(). The caller must check css_is_removed() or some if
2487 * it's concern. (dropping refcnt from swap can be called against removed
2488 * memcg.)
2489 */
2490 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2491 {
2492 struct cgroup_subsys_state *css;
2493
2494 /* ID 0 is unused ID */
2495 if (!id)
2496 return NULL;
2497 css = css_lookup(&mem_cgroup_subsys, id);
2498 if (!css)
2499 return NULL;
2500 return mem_cgroup_from_css(css);
2501 }
2502
2503 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2504 {
2505 struct mem_cgroup *memcg = NULL;
2506 struct page_cgroup *pc;
2507 unsigned short id;
2508 swp_entry_t ent;
2509
2510 VM_BUG_ON(!PageLocked(page));
2511
2512 pc = lookup_page_cgroup(page);
2513 lock_page_cgroup(pc);
2514 if (PageCgroupUsed(pc)) {
2515 memcg = pc->mem_cgroup;
2516 if (memcg && !css_tryget(&memcg->css))
2517 memcg = NULL;
2518 } else if (PageSwapCache(page)) {
2519 ent.val = page_private(page);
2520 id = lookup_swap_cgroup_id(ent);
2521 rcu_read_lock();
2522 memcg = mem_cgroup_lookup(id);
2523 if (memcg && !css_tryget(&memcg->css))
2524 memcg = NULL;
2525 rcu_read_unlock();
2526 }
2527 unlock_page_cgroup(pc);
2528 return memcg;
2529 }
2530
2531 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2532 struct page *page,
2533 unsigned int nr_pages,
2534 enum charge_type ctype,
2535 bool lrucare)
2536 {
2537 struct page_cgroup *pc = lookup_page_cgroup(page);
2538 struct zone *uninitialized_var(zone);
2539 struct lruvec *lruvec;
2540 bool was_on_lru = false;
2541 bool anon;
2542
2543 lock_page_cgroup(pc);
2544 VM_BUG_ON(PageCgroupUsed(pc));
2545 /*
2546 * we don't need page_cgroup_lock about tail pages, becase they are not
2547 * accessed by any other context at this point.
2548 */
2549
2550 /*
2551 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2552 * may already be on some other mem_cgroup's LRU. Take care of it.
2553 */
2554 if (lrucare) {
2555 zone = page_zone(page);
2556 spin_lock_irq(&zone->lru_lock);
2557 if (PageLRU(page)) {
2558 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2559 ClearPageLRU(page);
2560 del_page_from_lru_list(page, lruvec, page_lru(page));
2561 was_on_lru = true;
2562 }
2563 }
2564
2565 pc->mem_cgroup = memcg;
2566 /*
2567 * We access a page_cgroup asynchronously without lock_page_cgroup().
2568 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2569 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2570 * before USED bit, we need memory barrier here.
2571 * See mem_cgroup_add_lru_list(), etc.
2572 */
2573 smp_wmb();
2574 SetPageCgroupUsed(pc);
2575
2576 if (lrucare) {
2577 if (was_on_lru) {
2578 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2579 VM_BUG_ON(PageLRU(page));
2580 SetPageLRU(page);
2581 add_page_to_lru_list(page, lruvec, page_lru(page));
2582 }
2583 spin_unlock_irq(&zone->lru_lock);
2584 }
2585
2586 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2587 anon = true;
2588 else
2589 anon = false;
2590
2591 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2592 unlock_page_cgroup(pc);
2593
2594 /*
2595 * "charge_statistics" updated event counter. Then, check it.
2596 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2597 * if they exceeds softlimit.
2598 */
2599 memcg_check_events(memcg, page);
2600 }
2601
2602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2603
2604 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2605 /*
2606 * Because tail pages are not marked as "used", set it. We're under
2607 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2608 * charge/uncharge will be never happen and move_account() is done under
2609 * compound_lock(), so we don't have to take care of races.
2610 */
2611 void mem_cgroup_split_huge_fixup(struct page *head)
2612 {
2613 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2614 struct page_cgroup *pc;
2615 int i;
2616
2617 if (mem_cgroup_disabled())
2618 return;
2619 for (i = 1; i < HPAGE_PMD_NR; i++) {
2620 pc = head_pc + i;
2621 pc->mem_cgroup = head_pc->mem_cgroup;
2622 smp_wmb();/* see __commit_charge() */
2623 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2624 }
2625 }
2626 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2627
2628 /**
2629 * mem_cgroup_move_account - move account of the page
2630 * @page: the page
2631 * @nr_pages: number of regular pages (>1 for huge pages)
2632 * @pc: page_cgroup of the page.
2633 * @from: mem_cgroup which the page is moved from.
2634 * @to: mem_cgroup which the page is moved to. @from != @to.
2635 *
2636 * The caller must confirm following.
2637 * - page is not on LRU (isolate_page() is useful.)
2638 * - compound_lock is held when nr_pages > 1
2639 *
2640 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2641 * from old cgroup.
2642 */
2643 static int mem_cgroup_move_account(struct page *page,
2644 unsigned int nr_pages,
2645 struct page_cgroup *pc,
2646 struct mem_cgroup *from,
2647 struct mem_cgroup *to)
2648 {
2649 unsigned long flags;
2650 int ret;
2651 bool anon = PageAnon(page);
2652
2653 VM_BUG_ON(from == to);
2654 VM_BUG_ON(PageLRU(page));
2655 /*
2656 * The page is isolated from LRU. So, collapse function
2657 * will not handle this page. But page splitting can happen.
2658 * Do this check under compound_page_lock(). The caller should
2659 * hold it.
2660 */
2661 ret = -EBUSY;
2662 if (nr_pages > 1 && !PageTransHuge(page))
2663 goto out;
2664
2665 lock_page_cgroup(pc);
2666
2667 ret = -EINVAL;
2668 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2669 goto unlock;
2670
2671 move_lock_mem_cgroup(from, &flags);
2672
2673 if (!anon && page_mapped(page)) {
2674 /* Update mapped_file data for mem_cgroup */
2675 preempt_disable();
2676 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2677 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2678 preempt_enable();
2679 }
2680 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2681
2682 /* caller should have done css_get */
2683 pc->mem_cgroup = to;
2684 mem_cgroup_charge_statistics(to, anon, nr_pages);
2685 /*
2686 * We charges against "to" which may not have any tasks. Then, "to"
2687 * can be under rmdir(). But in current implementation, caller of
2688 * this function is just force_empty() and move charge, so it's
2689 * guaranteed that "to" is never removed. So, we don't check rmdir
2690 * status here.
2691 */
2692 move_unlock_mem_cgroup(from, &flags);
2693 ret = 0;
2694 unlock:
2695 unlock_page_cgroup(pc);
2696 /*
2697 * check events
2698 */
2699 memcg_check_events(to, page);
2700 memcg_check_events(from, page);
2701 out:
2702 return ret;
2703 }
2704
2705 /**
2706 * mem_cgroup_move_parent - moves page to the parent group
2707 * @page: the page to move
2708 * @pc: page_cgroup of the page
2709 * @child: page's cgroup
2710 *
2711 * move charges to its parent or the root cgroup if the group has no
2712 * parent (aka use_hierarchy==0).
2713 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2714 * mem_cgroup_move_account fails) the failure is always temporary and
2715 * it signals a race with a page removal/uncharge or migration. In the
2716 * first case the page is on the way out and it will vanish from the LRU
2717 * on the next attempt and the call should be retried later.
2718 * Isolation from the LRU fails only if page has been isolated from
2719 * the LRU since we looked at it and that usually means either global
2720 * reclaim or migration going on. The page will either get back to the
2721 * LRU or vanish.
2722 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2723 * (!PageCgroupUsed) or moved to a different group. The page will
2724 * disappear in the next attempt.
2725 */
2726 static int mem_cgroup_move_parent(struct page *page,
2727 struct page_cgroup *pc,
2728 struct mem_cgroup *child)
2729 {
2730 struct mem_cgroup *parent;
2731 unsigned int nr_pages;
2732 unsigned long uninitialized_var(flags);
2733 int ret;
2734
2735 VM_BUG_ON(mem_cgroup_is_root(child));
2736
2737 ret = -EBUSY;
2738 if (!get_page_unless_zero(page))
2739 goto out;
2740 if (isolate_lru_page(page))
2741 goto put;
2742
2743 nr_pages = hpage_nr_pages(page);
2744
2745 parent = parent_mem_cgroup(child);
2746 /*
2747 * If no parent, move charges to root cgroup.
2748 */
2749 if (!parent)
2750 parent = root_mem_cgroup;
2751
2752 if (nr_pages > 1) {
2753 VM_BUG_ON(!PageTransHuge(page));
2754 flags = compound_lock_irqsave(page);
2755 }
2756
2757 ret = mem_cgroup_move_account(page, nr_pages,
2758 pc, child, parent);
2759 if (!ret)
2760 __mem_cgroup_cancel_local_charge(child, nr_pages);
2761
2762 if (nr_pages > 1)
2763 compound_unlock_irqrestore(page, flags);
2764 putback_lru_page(page);
2765 put:
2766 put_page(page);
2767 out:
2768 return ret;
2769 }
2770
2771 /*
2772 * Charge the memory controller for page usage.
2773 * Return
2774 * 0 if the charge was successful
2775 * < 0 if the cgroup is over its limit
2776 */
2777 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2778 gfp_t gfp_mask, enum charge_type ctype)
2779 {
2780 struct mem_cgroup *memcg = NULL;
2781 unsigned int nr_pages = 1;
2782 bool oom = true;
2783 int ret;
2784
2785 if (PageTransHuge(page)) {
2786 nr_pages <<= compound_order(page);
2787 VM_BUG_ON(!PageTransHuge(page));
2788 /*
2789 * Never OOM-kill a process for a huge page. The
2790 * fault handler will fall back to regular pages.
2791 */
2792 oom = false;
2793 }
2794
2795 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2796 if (ret == -ENOMEM)
2797 return ret;
2798 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2799 return 0;
2800 }
2801
2802 int mem_cgroup_newpage_charge(struct page *page,
2803 struct mm_struct *mm, gfp_t gfp_mask)
2804 {
2805 if (mem_cgroup_disabled())
2806 return 0;
2807 VM_BUG_ON(page_mapped(page));
2808 VM_BUG_ON(page->mapping && !PageAnon(page));
2809 VM_BUG_ON(!mm);
2810 return mem_cgroup_charge_common(page, mm, gfp_mask,
2811 MEM_CGROUP_CHARGE_TYPE_ANON);
2812 }
2813
2814 /*
2815 * While swap-in, try_charge -> commit or cancel, the page is locked.
2816 * And when try_charge() successfully returns, one refcnt to memcg without
2817 * struct page_cgroup is acquired. This refcnt will be consumed by
2818 * "commit()" or removed by "cancel()"
2819 */
2820 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2821 struct page *page,
2822 gfp_t mask,
2823 struct mem_cgroup **memcgp)
2824 {
2825 struct mem_cgroup *memcg;
2826 struct page_cgroup *pc;
2827 int ret;
2828
2829 pc = lookup_page_cgroup(page);
2830 /*
2831 * Every swap fault against a single page tries to charge the
2832 * page, bail as early as possible. shmem_unuse() encounters
2833 * already charged pages, too. The USED bit is protected by
2834 * the page lock, which serializes swap cache removal, which
2835 * in turn serializes uncharging.
2836 */
2837 if (PageCgroupUsed(pc))
2838 return 0;
2839 if (!do_swap_account)
2840 goto charge_cur_mm;
2841 memcg = try_get_mem_cgroup_from_page(page);
2842 if (!memcg)
2843 goto charge_cur_mm;
2844 *memcgp = memcg;
2845 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2846 css_put(&memcg->css);
2847 if (ret == -EINTR)
2848 ret = 0;
2849 return ret;
2850 charge_cur_mm:
2851 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2852 if (ret == -EINTR)
2853 ret = 0;
2854 return ret;
2855 }
2856
2857 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2858 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2859 {
2860 *memcgp = NULL;
2861 if (mem_cgroup_disabled())
2862 return 0;
2863 /*
2864 * A racing thread's fault, or swapoff, may have already
2865 * updated the pte, and even removed page from swap cache: in
2866 * those cases unuse_pte()'s pte_same() test will fail; but
2867 * there's also a KSM case which does need to charge the page.
2868 */
2869 if (!PageSwapCache(page)) {
2870 int ret;
2871
2872 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2873 if (ret == -EINTR)
2874 ret = 0;
2875 return ret;
2876 }
2877 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2878 }
2879
2880 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2881 {
2882 if (mem_cgroup_disabled())
2883 return;
2884 if (!memcg)
2885 return;
2886 __mem_cgroup_cancel_charge(memcg, 1);
2887 }
2888
2889 static void
2890 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2891 enum charge_type ctype)
2892 {
2893 if (mem_cgroup_disabled())
2894 return;
2895 if (!memcg)
2896 return;
2897 cgroup_exclude_rmdir(&memcg->css);
2898
2899 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2900 /*
2901 * Now swap is on-memory. This means this page may be
2902 * counted both as mem and swap....double count.
2903 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2904 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2905 * may call delete_from_swap_cache() before reach here.
2906 */
2907 if (do_swap_account && PageSwapCache(page)) {
2908 swp_entry_t ent = {.val = page_private(page)};
2909 mem_cgroup_uncharge_swap(ent);
2910 }
2911 /*
2912 * At swapin, we may charge account against cgroup which has no tasks.
2913 * So, rmdir()->pre_destroy() can be called while we do this charge.
2914 * In that case, we need to call pre_destroy() again. check it here.
2915 */
2916 cgroup_release_and_wakeup_rmdir(&memcg->css);
2917 }
2918
2919 void mem_cgroup_commit_charge_swapin(struct page *page,
2920 struct mem_cgroup *memcg)
2921 {
2922 __mem_cgroup_commit_charge_swapin(page, memcg,
2923 MEM_CGROUP_CHARGE_TYPE_ANON);
2924 }
2925
2926 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2927 gfp_t gfp_mask)
2928 {
2929 struct mem_cgroup *memcg = NULL;
2930 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2931 int ret;
2932
2933 if (mem_cgroup_disabled())
2934 return 0;
2935 if (PageCompound(page))
2936 return 0;
2937
2938 if (!PageSwapCache(page))
2939 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2940 else { /* page is swapcache/shmem */
2941 ret = __mem_cgroup_try_charge_swapin(mm, page,
2942 gfp_mask, &memcg);
2943 if (!ret)
2944 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2945 }
2946 return ret;
2947 }
2948
2949 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2950 unsigned int nr_pages,
2951 const enum charge_type ctype)
2952 {
2953 struct memcg_batch_info *batch = NULL;
2954 bool uncharge_memsw = true;
2955
2956 /* If swapout, usage of swap doesn't decrease */
2957 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2958 uncharge_memsw = false;
2959
2960 batch = &current->memcg_batch;
2961 /*
2962 * In usual, we do css_get() when we remember memcg pointer.
2963 * But in this case, we keep res->usage until end of a series of
2964 * uncharges. Then, it's ok to ignore memcg's refcnt.
2965 */
2966 if (!batch->memcg)
2967 batch->memcg = memcg;
2968 /*
2969 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2970 * In those cases, all pages freed continuously can be expected to be in
2971 * the same cgroup and we have chance to coalesce uncharges.
2972 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2973 * because we want to do uncharge as soon as possible.
2974 */
2975
2976 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2977 goto direct_uncharge;
2978
2979 if (nr_pages > 1)
2980 goto direct_uncharge;
2981
2982 /*
2983 * In typical case, batch->memcg == mem. This means we can
2984 * merge a series of uncharges to an uncharge of res_counter.
2985 * If not, we uncharge res_counter ony by one.
2986 */
2987 if (batch->memcg != memcg)
2988 goto direct_uncharge;
2989 /* remember freed charge and uncharge it later */
2990 batch->nr_pages++;
2991 if (uncharge_memsw)
2992 batch->memsw_nr_pages++;
2993 return;
2994 direct_uncharge:
2995 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2996 if (uncharge_memsw)
2997 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2998 if (unlikely(batch->memcg != memcg))
2999 memcg_oom_recover(memcg);
3000 }
3001
3002 /*
3003 * uncharge if !page_mapped(page)
3004 */
3005 static struct mem_cgroup *
3006 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3007 bool end_migration)
3008 {
3009 struct mem_cgroup *memcg = NULL;
3010 unsigned int nr_pages = 1;
3011 struct page_cgroup *pc;
3012 bool anon;
3013
3014 if (mem_cgroup_disabled())
3015 return NULL;
3016
3017 VM_BUG_ON(PageSwapCache(page));
3018
3019 if (PageTransHuge(page)) {
3020 nr_pages <<= compound_order(page);
3021 VM_BUG_ON(!PageTransHuge(page));
3022 }
3023 /*
3024 * Check if our page_cgroup is valid
3025 */
3026 pc = lookup_page_cgroup(page);
3027 if (unlikely(!PageCgroupUsed(pc)))
3028 return NULL;
3029
3030 lock_page_cgroup(pc);
3031
3032 memcg = pc->mem_cgroup;
3033
3034 if (!PageCgroupUsed(pc))
3035 goto unlock_out;
3036
3037 anon = PageAnon(page);
3038
3039 switch (ctype) {
3040 case MEM_CGROUP_CHARGE_TYPE_ANON:
3041 /*
3042 * Generally PageAnon tells if it's the anon statistics to be
3043 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3044 * used before page reached the stage of being marked PageAnon.
3045 */
3046 anon = true;
3047 /* fallthrough */
3048 case MEM_CGROUP_CHARGE_TYPE_DROP:
3049 /* See mem_cgroup_prepare_migration() */
3050 if (page_mapped(page))
3051 goto unlock_out;
3052 /*
3053 * Pages under migration may not be uncharged. But
3054 * end_migration() /must/ be the one uncharging the
3055 * unused post-migration page and so it has to call
3056 * here with the migration bit still set. See the
3057 * res_counter handling below.
3058 */
3059 if (!end_migration && PageCgroupMigration(pc))
3060 goto unlock_out;
3061 break;
3062 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3063 if (!PageAnon(page)) { /* Shared memory */
3064 if (page->mapping && !page_is_file_cache(page))
3065 goto unlock_out;
3066 } else if (page_mapped(page)) /* Anon */
3067 goto unlock_out;
3068 break;
3069 default:
3070 break;
3071 }
3072
3073 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3074
3075 ClearPageCgroupUsed(pc);
3076 /*
3077 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3078 * freed from LRU. This is safe because uncharged page is expected not
3079 * to be reused (freed soon). Exception is SwapCache, it's handled by
3080 * special functions.
3081 */
3082
3083 unlock_page_cgroup(pc);
3084 /*
3085 * even after unlock, we have memcg->res.usage here and this memcg
3086 * will never be freed.
3087 */
3088 memcg_check_events(memcg, page);
3089 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3090 mem_cgroup_swap_statistics(memcg, true);
3091 mem_cgroup_get(memcg);
3092 }
3093 /*
3094 * Migration does not charge the res_counter for the
3095 * replacement page, so leave it alone when phasing out the
3096 * page that is unused after the migration.
3097 */
3098 if (!end_migration && !mem_cgroup_is_root(memcg))
3099 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3100
3101 return memcg;
3102
3103 unlock_out:
3104 unlock_page_cgroup(pc);
3105 return NULL;
3106 }
3107
3108 void mem_cgroup_uncharge_page(struct page *page)
3109 {
3110 /* early check. */
3111 if (page_mapped(page))
3112 return;
3113 VM_BUG_ON(page->mapping && !PageAnon(page));
3114 if (PageSwapCache(page))
3115 return;
3116 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3117 }
3118
3119 void mem_cgroup_uncharge_cache_page(struct page *page)
3120 {
3121 VM_BUG_ON(page_mapped(page));
3122 VM_BUG_ON(page->mapping);
3123 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3124 }
3125
3126 /*
3127 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3128 * In that cases, pages are freed continuously and we can expect pages
3129 * are in the same memcg. All these calls itself limits the number of
3130 * pages freed at once, then uncharge_start/end() is called properly.
3131 * This may be called prural(2) times in a context,
3132 */
3133
3134 void mem_cgroup_uncharge_start(void)
3135 {
3136 current->memcg_batch.do_batch++;
3137 /* We can do nest. */
3138 if (current->memcg_batch.do_batch == 1) {
3139 current->memcg_batch.memcg = NULL;
3140 current->memcg_batch.nr_pages = 0;
3141 current->memcg_batch.memsw_nr_pages = 0;
3142 }
3143 }
3144
3145 void mem_cgroup_uncharge_end(void)
3146 {
3147 struct memcg_batch_info *batch = &current->memcg_batch;
3148
3149 if (!batch->do_batch)
3150 return;
3151
3152 batch->do_batch--;
3153 if (batch->do_batch) /* If stacked, do nothing. */
3154 return;
3155
3156 if (!batch->memcg)
3157 return;
3158 /*
3159 * This "batch->memcg" is valid without any css_get/put etc...
3160 * bacause we hide charges behind us.
3161 */
3162 if (batch->nr_pages)
3163 res_counter_uncharge(&batch->memcg->res,
3164 batch->nr_pages * PAGE_SIZE);
3165 if (batch->memsw_nr_pages)
3166 res_counter_uncharge(&batch->memcg->memsw,
3167 batch->memsw_nr_pages * PAGE_SIZE);
3168 memcg_oom_recover(batch->memcg);
3169 /* forget this pointer (for sanity check) */
3170 batch->memcg = NULL;
3171 }
3172
3173 #ifdef CONFIG_SWAP
3174 /*
3175 * called after __delete_from_swap_cache() and drop "page" account.
3176 * memcg information is recorded to swap_cgroup of "ent"
3177 */
3178 void
3179 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3180 {
3181 struct mem_cgroup *memcg;
3182 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3183
3184 if (!swapout) /* this was a swap cache but the swap is unused ! */
3185 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3186
3187 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3188
3189 /*
3190 * record memcg information, if swapout && memcg != NULL,
3191 * mem_cgroup_get() was called in uncharge().
3192 */
3193 if (do_swap_account && swapout && memcg)
3194 swap_cgroup_record(ent, css_id(&memcg->css));
3195 }
3196 #endif
3197
3198 #ifdef CONFIG_MEMCG_SWAP
3199 /*
3200 * called from swap_entry_free(). remove record in swap_cgroup and
3201 * uncharge "memsw" account.
3202 */
3203 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3204 {
3205 struct mem_cgroup *memcg;
3206 unsigned short id;
3207
3208 if (!do_swap_account)
3209 return;
3210
3211 id = swap_cgroup_record(ent, 0);
3212 rcu_read_lock();
3213 memcg = mem_cgroup_lookup(id);
3214 if (memcg) {
3215 /*
3216 * We uncharge this because swap is freed.
3217 * This memcg can be obsolete one. We avoid calling css_tryget
3218 */
3219 if (!mem_cgroup_is_root(memcg))
3220 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3221 mem_cgroup_swap_statistics(memcg, false);
3222 mem_cgroup_put(memcg);
3223 }
3224 rcu_read_unlock();
3225 }
3226
3227 /**
3228 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3229 * @entry: swap entry to be moved
3230 * @from: mem_cgroup which the entry is moved from
3231 * @to: mem_cgroup which the entry is moved to
3232 *
3233 * It succeeds only when the swap_cgroup's record for this entry is the same
3234 * as the mem_cgroup's id of @from.
3235 *
3236 * Returns 0 on success, -EINVAL on failure.
3237 *
3238 * The caller must have charged to @to, IOW, called res_counter_charge() about
3239 * both res and memsw, and called css_get().
3240 */
3241 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3242 struct mem_cgroup *from, struct mem_cgroup *to)
3243 {
3244 unsigned short old_id, new_id;
3245
3246 old_id = css_id(&from->css);
3247 new_id = css_id(&to->css);
3248
3249 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3250 mem_cgroup_swap_statistics(from, false);
3251 mem_cgroup_swap_statistics(to, true);
3252 /*
3253 * This function is only called from task migration context now.
3254 * It postpones res_counter and refcount handling till the end
3255 * of task migration(mem_cgroup_clear_mc()) for performance
3256 * improvement. But we cannot postpone mem_cgroup_get(to)
3257 * because if the process that has been moved to @to does
3258 * swap-in, the refcount of @to might be decreased to 0.
3259 */
3260 mem_cgroup_get(to);
3261 return 0;
3262 }
3263 return -EINVAL;
3264 }
3265 #else
3266 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3267 struct mem_cgroup *from, struct mem_cgroup *to)
3268 {
3269 return -EINVAL;
3270 }
3271 #endif
3272
3273 /*
3274 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3275 * page belongs to.
3276 */
3277 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3278 struct mem_cgroup **memcgp)
3279 {
3280 struct mem_cgroup *memcg = NULL;
3281 struct page_cgroup *pc;
3282 enum charge_type ctype;
3283
3284 *memcgp = NULL;
3285
3286 VM_BUG_ON(PageTransHuge(page));
3287 if (mem_cgroup_disabled())
3288 return;
3289
3290 pc = lookup_page_cgroup(page);
3291 lock_page_cgroup(pc);
3292 if (PageCgroupUsed(pc)) {
3293 memcg = pc->mem_cgroup;
3294 css_get(&memcg->css);
3295 /*
3296 * At migrating an anonymous page, its mapcount goes down
3297 * to 0 and uncharge() will be called. But, even if it's fully
3298 * unmapped, migration may fail and this page has to be
3299 * charged again. We set MIGRATION flag here and delay uncharge
3300 * until end_migration() is called
3301 *
3302 * Corner Case Thinking
3303 * A)
3304 * When the old page was mapped as Anon and it's unmap-and-freed
3305 * while migration was ongoing.
3306 * If unmap finds the old page, uncharge() of it will be delayed
3307 * until end_migration(). If unmap finds a new page, it's
3308 * uncharged when it make mapcount to be 1->0. If unmap code
3309 * finds swap_migration_entry, the new page will not be mapped
3310 * and end_migration() will find it(mapcount==0).
3311 *
3312 * B)
3313 * When the old page was mapped but migraion fails, the kernel
3314 * remaps it. A charge for it is kept by MIGRATION flag even
3315 * if mapcount goes down to 0. We can do remap successfully
3316 * without charging it again.
3317 *
3318 * C)
3319 * The "old" page is under lock_page() until the end of
3320 * migration, so, the old page itself will not be swapped-out.
3321 * If the new page is swapped out before end_migraton, our
3322 * hook to usual swap-out path will catch the event.
3323 */
3324 if (PageAnon(page))
3325 SetPageCgroupMigration(pc);
3326 }
3327 unlock_page_cgroup(pc);
3328 /*
3329 * If the page is not charged at this point,
3330 * we return here.
3331 */
3332 if (!memcg)
3333 return;
3334
3335 *memcgp = memcg;
3336 /*
3337 * We charge new page before it's used/mapped. So, even if unlock_page()
3338 * is called before end_migration, we can catch all events on this new
3339 * page. In the case new page is migrated but not remapped, new page's
3340 * mapcount will be finally 0 and we call uncharge in end_migration().
3341 */
3342 if (PageAnon(page))
3343 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3344 else
3345 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3346 /*
3347 * The page is committed to the memcg, but it's not actually
3348 * charged to the res_counter since we plan on replacing the
3349 * old one and only one page is going to be left afterwards.
3350 */
3351 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3352 }
3353
3354 /* remove redundant charge if migration failed*/
3355 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3356 struct page *oldpage, struct page *newpage, bool migration_ok)
3357 {
3358 struct page *used, *unused;
3359 struct page_cgroup *pc;
3360 bool anon;
3361
3362 if (!memcg)
3363 return;
3364 /* blocks rmdir() */
3365 cgroup_exclude_rmdir(&memcg->css);
3366 if (!migration_ok) {
3367 used = oldpage;
3368 unused = newpage;
3369 } else {
3370 used = newpage;
3371 unused = oldpage;
3372 }
3373 anon = PageAnon(used);
3374 __mem_cgroup_uncharge_common(unused,
3375 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3376 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3377 true);
3378 css_put(&memcg->css);
3379 /*
3380 * We disallowed uncharge of pages under migration because mapcount
3381 * of the page goes down to zero, temporarly.
3382 * Clear the flag and check the page should be charged.
3383 */
3384 pc = lookup_page_cgroup(oldpage);
3385 lock_page_cgroup(pc);
3386 ClearPageCgroupMigration(pc);
3387 unlock_page_cgroup(pc);
3388
3389 /*
3390 * If a page is a file cache, radix-tree replacement is very atomic
3391 * and we can skip this check. When it was an Anon page, its mapcount
3392 * goes down to 0. But because we added MIGRATION flage, it's not
3393 * uncharged yet. There are several case but page->mapcount check
3394 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3395 * check. (see prepare_charge() also)
3396 */
3397 if (anon)
3398 mem_cgroup_uncharge_page(used);
3399 /*
3400 * At migration, we may charge account against cgroup which has no
3401 * tasks.
3402 * So, rmdir()->pre_destroy() can be called while we do this charge.
3403 * In that case, we need to call pre_destroy() again. check it here.
3404 */
3405 cgroup_release_and_wakeup_rmdir(&memcg->css);
3406 }
3407
3408 /*
3409 * At replace page cache, newpage is not under any memcg but it's on
3410 * LRU. So, this function doesn't touch res_counter but handles LRU
3411 * in correct way. Both pages are locked so we cannot race with uncharge.
3412 */
3413 void mem_cgroup_replace_page_cache(struct page *oldpage,
3414 struct page *newpage)
3415 {
3416 struct mem_cgroup *memcg = NULL;
3417 struct page_cgroup *pc;
3418 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3419
3420 if (mem_cgroup_disabled())
3421 return;
3422
3423 pc = lookup_page_cgroup(oldpage);
3424 /* fix accounting on old pages */
3425 lock_page_cgroup(pc);
3426 if (PageCgroupUsed(pc)) {
3427 memcg = pc->mem_cgroup;
3428 mem_cgroup_charge_statistics(memcg, false, -1);
3429 ClearPageCgroupUsed(pc);
3430 }
3431 unlock_page_cgroup(pc);
3432
3433 /*
3434 * When called from shmem_replace_page(), in some cases the
3435 * oldpage has already been charged, and in some cases not.
3436 */
3437 if (!memcg)
3438 return;
3439 /*
3440 * Even if newpage->mapping was NULL before starting replacement,
3441 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3442 * LRU while we overwrite pc->mem_cgroup.
3443 */
3444 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3445 }
3446
3447 #ifdef CONFIG_DEBUG_VM
3448 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3449 {
3450 struct page_cgroup *pc;
3451
3452 pc = lookup_page_cgroup(page);
3453 /*
3454 * Can be NULL while feeding pages into the page allocator for
3455 * the first time, i.e. during boot or memory hotplug;
3456 * or when mem_cgroup_disabled().
3457 */
3458 if (likely(pc) && PageCgroupUsed(pc))
3459 return pc;
3460 return NULL;
3461 }
3462
3463 bool mem_cgroup_bad_page_check(struct page *page)
3464 {
3465 if (mem_cgroup_disabled())
3466 return false;
3467
3468 return lookup_page_cgroup_used(page) != NULL;
3469 }
3470
3471 void mem_cgroup_print_bad_page(struct page *page)
3472 {
3473 struct page_cgroup *pc;
3474
3475 pc = lookup_page_cgroup_used(page);
3476 if (pc) {
3477 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3478 pc, pc->flags, pc->mem_cgroup);
3479 }
3480 }
3481 #endif
3482
3483 static DEFINE_MUTEX(set_limit_mutex);
3484
3485 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3486 unsigned long long val)
3487 {
3488 int retry_count;
3489 u64 memswlimit, memlimit;
3490 int ret = 0;
3491 int children = mem_cgroup_count_children(memcg);
3492 u64 curusage, oldusage;
3493 int enlarge;
3494
3495 /*
3496 * For keeping hierarchical_reclaim simple, how long we should retry
3497 * is depends on callers. We set our retry-count to be function
3498 * of # of children which we should visit in this loop.
3499 */
3500 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3501
3502 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3503
3504 enlarge = 0;
3505 while (retry_count) {
3506 if (signal_pending(current)) {
3507 ret = -EINTR;
3508 break;
3509 }
3510 /*
3511 * Rather than hide all in some function, I do this in
3512 * open coded manner. You see what this really does.
3513 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3514 */
3515 mutex_lock(&set_limit_mutex);
3516 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3517 if (memswlimit < val) {
3518 ret = -EINVAL;
3519 mutex_unlock(&set_limit_mutex);
3520 break;
3521 }
3522
3523 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3524 if (memlimit < val)
3525 enlarge = 1;
3526
3527 ret = res_counter_set_limit(&memcg->res, val);
3528 if (!ret) {
3529 if (memswlimit == val)
3530 memcg->memsw_is_minimum = true;
3531 else
3532 memcg->memsw_is_minimum = false;
3533 }
3534 mutex_unlock(&set_limit_mutex);
3535
3536 if (!ret)
3537 break;
3538
3539 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3540 MEM_CGROUP_RECLAIM_SHRINK);
3541 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3542 /* Usage is reduced ? */
3543 if (curusage >= oldusage)
3544 retry_count--;
3545 else
3546 oldusage = curusage;
3547 }
3548 if (!ret && enlarge)
3549 memcg_oom_recover(memcg);
3550
3551 return ret;
3552 }
3553
3554 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3555 unsigned long long val)
3556 {
3557 int retry_count;
3558 u64 memlimit, memswlimit, oldusage, curusage;
3559 int children = mem_cgroup_count_children(memcg);
3560 int ret = -EBUSY;
3561 int enlarge = 0;
3562
3563 /* see mem_cgroup_resize_res_limit */
3564 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3565 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3566 while (retry_count) {
3567 if (signal_pending(current)) {
3568 ret = -EINTR;
3569 break;
3570 }
3571 /*
3572 * Rather than hide all in some function, I do this in
3573 * open coded manner. You see what this really does.
3574 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3575 */
3576 mutex_lock(&set_limit_mutex);
3577 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3578 if (memlimit > val) {
3579 ret = -EINVAL;
3580 mutex_unlock(&set_limit_mutex);
3581 break;
3582 }
3583 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3584 if (memswlimit < val)
3585 enlarge = 1;
3586 ret = res_counter_set_limit(&memcg->memsw, val);
3587 if (!ret) {
3588 if (memlimit == val)
3589 memcg->memsw_is_minimum = true;
3590 else
3591 memcg->memsw_is_minimum = false;
3592 }
3593 mutex_unlock(&set_limit_mutex);
3594
3595 if (!ret)
3596 break;
3597
3598 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3599 MEM_CGROUP_RECLAIM_NOSWAP |
3600 MEM_CGROUP_RECLAIM_SHRINK);
3601 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3602 /* Usage is reduced ? */
3603 if (curusage >= oldusage)
3604 retry_count--;
3605 else
3606 oldusage = curusage;
3607 }
3608 if (!ret && enlarge)
3609 memcg_oom_recover(memcg);
3610 return ret;
3611 }
3612
3613 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3614 gfp_t gfp_mask,
3615 unsigned long *total_scanned)
3616 {
3617 unsigned long nr_reclaimed = 0;
3618 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3619 unsigned long reclaimed;
3620 int loop = 0;
3621 struct mem_cgroup_tree_per_zone *mctz;
3622 unsigned long long excess;
3623 unsigned long nr_scanned;
3624
3625 if (order > 0)
3626 return 0;
3627
3628 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3629 /*
3630 * This loop can run a while, specially if mem_cgroup's continuously
3631 * keep exceeding their soft limit and putting the system under
3632 * pressure
3633 */
3634 do {
3635 if (next_mz)
3636 mz = next_mz;
3637 else
3638 mz = mem_cgroup_largest_soft_limit_node(mctz);
3639 if (!mz)
3640 break;
3641
3642 nr_scanned = 0;
3643 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3644 gfp_mask, &nr_scanned);
3645 nr_reclaimed += reclaimed;
3646 *total_scanned += nr_scanned;
3647 spin_lock(&mctz->lock);
3648
3649 /*
3650 * If we failed to reclaim anything from this memory cgroup
3651 * it is time to move on to the next cgroup
3652 */
3653 next_mz = NULL;
3654 if (!reclaimed) {
3655 do {
3656 /*
3657 * Loop until we find yet another one.
3658 *
3659 * By the time we get the soft_limit lock
3660 * again, someone might have aded the
3661 * group back on the RB tree. Iterate to
3662 * make sure we get a different mem.
3663 * mem_cgroup_largest_soft_limit_node returns
3664 * NULL if no other cgroup is present on
3665 * the tree
3666 */
3667 next_mz =
3668 __mem_cgroup_largest_soft_limit_node(mctz);
3669 if (next_mz == mz)
3670 css_put(&next_mz->memcg->css);
3671 else /* next_mz == NULL or other memcg */
3672 break;
3673 } while (1);
3674 }
3675 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3676 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3677 /*
3678 * One school of thought says that we should not add
3679 * back the node to the tree if reclaim returns 0.
3680 * But our reclaim could return 0, simply because due
3681 * to priority we are exposing a smaller subset of
3682 * memory to reclaim from. Consider this as a longer
3683 * term TODO.
3684 */
3685 /* If excess == 0, no tree ops */
3686 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3687 spin_unlock(&mctz->lock);
3688 css_put(&mz->memcg->css);
3689 loop++;
3690 /*
3691 * Could not reclaim anything and there are no more
3692 * mem cgroups to try or we seem to be looping without
3693 * reclaiming anything.
3694 */
3695 if (!nr_reclaimed &&
3696 (next_mz == NULL ||
3697 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3698 break;
3699 } while (!nr_reclaimed);
3700 if (next_mz)
3701 css_put(&next_mz->memcg->css);
3702 return nr_reclaimed;
3703 }
3704
3705 /**
3706 * mem_cgroup_force_empty_list - clears LRU of a group
3707 * @memcg: group to clear
3708 * @node: NUMA node
3709 * @zid: zone id
3710 * @lru: lru to to clear
3711 *
3712 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3713 * reclaim the pages page themselves - pages are moved to the parent (or root)
3714 * group.
3715 */
3716 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3717 int node, int zid, enum lru_list lru)
3718 {
3719 struct mem_cgroup_per_zone *mz;
3720 unsigned long flags;
3721 struct list_head *list;
3722 struct page *busy;
3723 struct zone *zone;
3724
3725 zone = &NODE_DATA(node)->node_zones[zid];
3726 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3727 list = &mz->lruvec.lists[lru];
3728
3729 busy = NULL;
3730 do {
3731 struct page_cgroup *pc;
3732 struct page *page;
3733
3734 spin_lock_irqsave(&zone->lru_lock, flags);
3735 if (list_empty(list)) {
3736 spin_unlock_irqrestore(&zone->lru_lock, flags);
3737 break;
3738 }
3739 page = list_entry(list->prev, struct page, lru);
3740 if (busy == page) {
3741 list_move(&page->lru, list);
3742 busy = NULL;
3743 spin_unlock_irqrestore(&zone->lru_lock, flags);
3744 continue;
3745 }
3746 spin_unlock_irqrestore(&zone->lru_lock, flags);
3747
3748 pc = lookup_page_cgroup(page);
3749
3750 if (mem_cgroup_move_parent(page, pc, memcg)) {
3751 /* found lock contention or "pc" is obsolete. */
3752 busy = page;
3753 cond_resched();
3754 } else
3755 busy = NULL;
3756 } while (!list_empty(list));
3757 }
3758
3759 /*
3760 * make mem_cgroup's charge to be 0 if there is no task by moving
3761 * all the charges and pages to the parent.
3762 * This enables deleting this mem_cgroup.
3763 *
3764 * Caller is responsible for holding css reference on the memcg.
3765 */
3766 static int mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3767 {
3768 struct cgroup *cgrp = memcg->css.cgroup;
3769 int node, zid;
3770
3771 do {
3772 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3773 return -EBUSY;
3774 /* This is for making all *used* pages to be on LRU. */
3775 lru_add_drain_all();
3776 drain_all_stock_sync(memcg);
3777 mem_cgroup_start_move(memcg);
3778 for_each_node_state(node, N_HIGH_MEMORY) {
3779 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3780 enum lru_list lru;
3781 for_each_lru(lru) {
3782 mem_cgroup_force_empty_list(memcg,
3783 node, zid, lru);
3784 }
3785 }
3786 }
3787 mem_cgroup_end_move(memcg);
3788 memcg_oom_recover(memcg);
3789 cond_resched();
3790
3791 /*
3792 * This is a safety check because mem_cgroup_force_empty_list
3793 * could have raced with mem_cgroup_replace_page_cache callers
3794 * so the lru seemed empty but the page could have been added
3795 * right after the check. RES_USAGE should be safe as we always
3796 * charge before adding to the LRU.
3797 */
3798 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3799
3800 return 0;
3801 }
3802
3803 /*
3804 * Reclaims as many pages from the given memcg as possible and moves
3805 * the rest to the parent.
3806 *
3807 * Caller is responsible for holding css reference for memcg.
3808 */
3809 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3810 {
3811 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3812 struct cgroup *cgrp = memcg->css.cgroup;
3813
3814 /* returns EBUSY if there is a task or if we come here twice. */
3815 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3816 return -EBUSY;
3817
3818 /* we call try-to-free pages for make this cgroup empty */
3819 lru_add_drain_all();
3820 /* try to free all pages in this cgroup */
3821 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3822 int progress;
3823
3824 if (signal_pending(current))
3825 return -EINTR;
3826
3827 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3828 false);
3829 if (!progress) {
3830 nr_retries--;
3831 /* maybe some writeback is necessary */
3832 congestion_wait(BLK_RW_ASYNC, HZ/10);
3833 }
3834
3835 }
3836 lru_add_drain();
3837 return mem_cgroup_reparent_charges(memcg);
3838 }
3839
3840 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3841 {
3842 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3843 int ret;
3844
3845 if (mem_cgroup_is_root(memcg))
3846 return -EINVAL;
3847 css_get(&memcg->css);
3848 ret = mem_cgroup_force_empty(memcg);
3849 css_put(&memcg->css);
3850
3851 return ret;
3852 }
3853
3854
3855 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3856 {
3857 return mem_cgroup_from_cont(cont)->use_hierarchy;
3858 }
3859
3860 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3861 u64 val)
3862 {
3863 int retval = 0;
3864 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3865 struct cgroup *parent = cont->parent;
3866 struct mem_cgroup *parent_memcg = NULL;
3867
3868 if (parent)
3869 parent_memcg = mem_cgroup_from_cont(parent);
3870
3871 cgroup_lock();
3872
3873 if (memcg->use_hierarchy == val)
3874 goto out;
3875
3876 /*
3877 * If parent's use_hierarchy is set, we can't make any modifications
3878 * in the child subtrees. If it is unset, then the change can
3879 * occur, provided the current cgroup has no children.
3880 *
3881 * For the root cgroup, parent_mem is NULL, we allow value to be
3882 * set if there are no children.
3883 */
3884 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3885 (val == 1 || val == 0)) {
3886 if (list_empty(&cont->children))
3887 memcg->use_hierarchy = val;
3888 else
3889 retval = -EBUSY;
3890 } else
3891 retval = -EINVAL;
3892
3893 out:
3894 cgroup_unlock();
3895
3896 return retval;
3897 }
3898
3899
3900 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3901 enum mem_cgroup_stat_index idx)
3902 {
3903 struct mem_cgroup *iter;
3904 long val = 0;
3905
3906 /* Per-cpu values can be negative, use a signed accumulator */
3907 for_each_mem_cgroup_tree(iter, memcg)
3908 val += mem_cgroup_read_stat(iter, idx);
3909
3910 if (val < 0) /* race ? */
3911 val = 0;
3912 return val;
3913 }
3914
3915 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3916 {
3917 u64 val;
3918
3919 if (!mem_cgroup_is_root(memcg)) {
3920 if (!swap)
3921 return res_counter_read_u64(&memcg->res, RES_USAGE);
3922 else
3923 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3924 }
3925
3926 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3927 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3928
3929 if (swap)
3930 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3931
3932 return val << PAGE_SHIFT;
3933 }
3934
3935 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3936 struct file *file, char __user *buf,
3937 size_t nbytes, loff_t *ppos)
3938 {
3939 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3940 char str[64];
3941 u64 val;
3942 int type, name, len;
3943
3944 type = MEMFILE_TYPE(cft->private);
3945 name = MEMFILE_ATTR(cft->private);
3946
3947 if (!do_swap_account && type == _MEMSWAP)
3948 return -EOPNOTSUPP;
3949
3950 switch (type) {
3951 case _MEM:
3952 if (name == RES_USAGE)
3953 val = mem_cgroup_usage(memcg, false);
3954 else
3955 val = res_counter_read_u64(&memcg->res, name);
3956 break;
3957 case _MEMSWAP:
3958 if (name == RES_USAGE)
3959 val = mem_cgroup_usage(memcg, true);
3960 else
3961 val = res_counter_read_u64(&memcg->memsw, name);
3962 break;
3963 default:
3964 BUG();
3965 }
3966
3967 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3968 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3969 }
3970 /*
3971 * The user of this function is...
3972 * RES_LIMIT.
3973 */
3974 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3975 const char *buffer)
3976 {
3977 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3978 int type, name;
3979 unsigned long long val;
3980 int ret;
3981
3982 type = MEMFILE_TYPE(cft->private);
3983 name = MEMFILE_ATTR(cft->private);
3984
3985 if (!do_swap_account && type == _MEMSWAP)
3986 return -EOPNOTSUPP;
3987
3988 switch (name) {
3989 case RES_LIMIT:
3990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3991 ret = -EINVAL;
3992 break;
3993 }
3994 /* This function does all necessary parse...reuse it */
3995 ret = res_counter_memparse_write_strategy(buffer, &val);
3996 if (ret)
3997 break;
3998 if (type == _MEM)
3999 ret = mem_cgroup_resize_limit(memcg, val);
4000 else
4001 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4002 break;
4003 case RES_SOFT_LIMIT:
4004 ret = res_counter_memparse_write_strategy(buffer, &val);
4005 if (ret)
4006 break;
4007 /*
4008 * For memsw, soft limits are hard to implement in terms
4009 * of semantics, for now, we support soft limits for
4010 * control without swap
4011 */
4012 if (type == _MEM)
4013 ret = res_counter_set_soft_limit(&memcg->res, val);
4014 else
4015 ret = -EINVAL;
4016 break;
4017 default:
4018 ret = -EINVAL; /* should be BUG() ? */
4019 break;
4020 }
4021 return ret;
4022 }
4023
4024 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4025 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4026 {
4027 struct cgroup *cgroup;
4028 unsigned long long min_limit, min_memsw_limit, tmp;
4029
4030 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4031 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4032 cgroup = memcg->css.cgroup;
4033 if (!memcg->use_hierarchy)
4034 goto out;
4035
4036 while (cgroup->parent) {
4037 cgroup = cgroup->parent;
4038 memcg = mem_cgroup_from_cont(cgroup);
4039 if (!memcg->use_hierarchy)
4040 break;
4041 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4042 min_limit = min(min_limit, tmp);
4043 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4044 min_memsw_limit = min(min_memsw_limit, tmp);
4045 }
4046 out:
4047 *mem_limit = min_limit;
4048 *memsw_limit = min_memsw_limit;
4049 }
4050
4051 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4052 {
4053 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4054 int type, name;
4055
4056 type = MEMFILE_TYPE(event);
4057 name = MEMFILE_ATTR(event);
4058
4059 if (!do_swap_account && type == _MEMSWAP)
4060 return -EOPNOTSUPP;
4061
4062 switch (name) {
4063 case RES_MAX_USAGE:
4064 if (type == _MEM)
4065 res_counter_reset_max(&memcg->res);
4066 else
4067 res_counter_reset_max(&memcg->memsw);
4068 break;
4069 case RES_FAILCNT:
4070 if (type == _MEM)
4071 res_counter_reset_failcnt(&memcg->res);
4072 else
4073 res_counter_reset_failcnt(&memcg->memsw);
4074 break;
4075 }
4076
4077 return 0;
4078 }
4079
4080 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4081 struct cftype *cft)
4082 {
4083 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4084 }
4085
4086 #ifdef CONFIG_MMU
4087 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4088 struct cftype *cft, u64 val)
4089 {
4090 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4091
4092 if (val >= (1 << NR_MOVE_TYPE))
4093 return -EINVAL;
4094 /*
4095 * We check this value several times in both in can_attach() and
4096 * attach(), so we need cgroup lock to prevent this value from being
4097 * inconsistent.
4098 */
4099 cgroup_lock();
4100 memcg->move_charge_at_immigrate = val;
4101 cgroup_unlock();
4102
4103 return 0;
4104 }
4105 #else
4106 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4107 struct cftype *cft, u64 val)
4108 {
4109 return -ENOSYS;
4110 }
4111 #endif
4112
4113 #ifdef CONFIG_NUMA
4114 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4115 struct seq_file *m)
4116 {
4117 int nid;
4118 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4119 unsigned long node_nr;
4120 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4121
4122 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4123 seq_printf(m, "total=%lu", total_nr);
4124 for_each_node_state(nid, N_HIGH_MEMORY) {
4125 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4126 seq_printf(m, " N%d=%lu", nid, node_nr);
4127 }
4128 seq_putc(m, '\n');
4129
4130 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4131 seq_printf(m, "file=%lu", file_nr);
4132 for_each_node_state(nid, N_HIGH_MEMORY) {
4133 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4134 LRU_ALL_FILE);
4135 seq_printf(m, " N%d=%lu", nid, node_nr);
4136 }
4137 seq_putc(m, '\n');
4138
4139 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4140 seq_printf(m, "anon=%lu", anon_nr);
4141 for_each_node_state(nid, N_HIGH_MEMORY) {
4142 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4143 LRU_ALL_ANON);
4144 seq_printf(m, " N%d=%lu", nid, node_nr);
4145 }
4146 seq_putc(m, '\n');
4147
4148 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4149 seq_printf(m, "unevictable=%lu", unevictable_nr);
4150 for_each_node_state(nid, N_HIGH_MEMORY) {
4151 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4152 BIT(LRU_UNEVICTABLE));
4153 seq_printf(m, " N%d=%lu", nid, node_nr);
4154 }
4155 seq_putc(m, '\n');
4156 return 0;
4157 }
4158 #endif /* CONFIG_NUMA */
4159
4160 static const char * const mem_cgroup_lru_names[] = {
4161 "inactive_anon",
4162 "active_anon",
4163 "inactive_file",
4164 "active_file",
4165 "unevictable",
4166 };
4167
4168 static inline void mem_cgroup_lru_names_not_uptodate(void)
4169 {
4170 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4171 }
4172
4173 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4174 struct seq_file *m)
4175 {
4176 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4177 struct mem_cgroup *mi;
4178 unsigned int i;
4179
4180 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4181 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4182 continue;
4183 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4184 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4185 }
4186
4187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4188 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4189 mem_cgroup_read_events(memcg, i));
4190
4191 for (i = 0; i < NR_LRU_LISTS; i++)
4192 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4193 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4194
4195 /* Hierarchical information */
4196 {
4197 unsigned long long limit, memsw_limit;
4198 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4199 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4200 if (do_swap_account)
4201 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4202 memsw_limit);
4203 }
4204
4205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4206 long long val = 0;
4207
4208 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4209 continue;
4210 for_each_mem_cgroup_tree(mi, memcg)
4211 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4212 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4213 }
4214
4215 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4216 unsigned long long val = 0;
4217
4218 for_each_mem_cgroup_tree(mi, memcg)
4219 val += mem_cgroup_read_events(mi, i);
4220 seq_printf(m, "total_%s %llu\n",
4221 mem_cgroup_events_names[i], val);
4222 }
4223
4224 for (i = 0; i < NR_LRU_LISTS; i++) {
4225 unsigned long long val = 0;
4226
4227 for_each_mem_cgroup_tree(mi, memcg)
4228 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4229 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4230 }
4231
4232 #ifdef CONFIG_DEBUG_VM
4233 {
4234 int nid, zid;
4235 struct mem_cgroup_per_zone *mz;
4236 struct zone_reclaim_stat *rstat;
4237 unsigned long recent_rotated[2] = {0, 0};
4238 unsigned long recent_scanned[2] = {0, 0};
4239
4240 for_each_online_node(nid)
4241 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4242 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4243 rstat = &mz->lruvec.reclaim_stat;
4244
4245 recent_rotated[0] += rstat->recent_rotated[0];
4246 recent_rotated[1] += rstat->recent_rotated[1];
4247 recent_scanned[0] += rstat->recent_scanned[0];
4248 recent_scanned[1] += rstat->recent_scanned[1];
4249 }
4250 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4251 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4252 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4253 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4254 }
4255 #endif
4256
4257 return 0;
4258 }
4259
4260 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4261 {
4262 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4263
4264 return mem_cgroup_swappiness(memcg);
4265 }
4266
4267 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4268 u64 val)
4269 {
4270 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4271 struct mem_cgroup *parent;
4272
4273 if (val > 100)
4274 return -EINVAL;
4275
4276 if (cgrp->parent == NULL)
4277 return -EINVAL;
4278
4279 parent = mem_cgroup_from_cont(cgrp->parent);
4280
4281 cgroup_lock();
4282
4283 /* If under hierarchy, only empty-root can set this value */
4284 if ((parent->use_hierarchy) ||
4285 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4286 cgroup_unlock();
4287 return -EINVAL;
4288 }
4289
4290 memcg->swappiness = val;
4291
4292 cgroup_unlock();
4293
4294 return 0;
4295 }
4296
4297 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4298 {
4299 struct mem_cgroup_threshold_ary *t;
4300 u64 usage;
4301 int i;
4302
4303 rcu_read_lock();
4304 if (!swap)
4305 t = rcu_dereference(memcg->thresholds.primary);
4306 else
4307 t = rcu_dereference(memcg->memsw_thresholds.primary);
4308
4309 if (!t)
4310 goto unlock;
4311
4312 usage = mem_cgroup_usage(memcg, swap);
4313
4314 /*
4315 * current_threshold points to threshold just below or equal to usage.
4316 * If it's not true, a threshold was crossed after last
4317 * call of __mem_cgroup_threshold().
4318 */
4319 i = t->current_threshold;
4320
4321 /*
4322 * Iterate backward over array of thresholds starting from
4323 * current_threshold and check if a threshold is crossed.
4324 * If none of thresholds below usage is crossed, we read
4325 * only one element of the array here.
4326 */
4327 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4328 eventfd_signal(t->entries[i].eventfd, 1);
4329
4330 /* i = current_threshold + 1 */
4331 i++;
4332
4333 /*
4334 * Iterate forward over array of thresholds starting from
4335 * current_threshold+1 and check if a threshold is crossed.
4336 * If none of thresholds above usage is crossed, we read
4337 * only one element of the array here.
4338 */
4339 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4340 eventfd_signal(t->entries[i].eventfd, 1);
4341
4342 /* Update current_threshold */
4343 t->current_threshold = i - 1;
4344 unlock:
4345 rcu_read_unlock();
4346 }
4347
4348 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4349 {
4350 while (memcg) {
4351 __mem_cgroup_threshold(memcg, false);
4352 if (do_swap_account)
4353 __mem_cgroup_threshold(memcg, true);
4354
4355 memcg = parent_mem_cgroup(memcg);
4356 }
4357 }
4358
4359 static int compare_thresholds(const void *a, const void *b)
4360 {
4361 const struct mem_cgroup_threshold *_a = a;
4362 const struct mem_cgroup_threshold *_b = b;
4363
4364 return _a->threshold - _b->threshold;
4365 }
4366
4367 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4368 {
4369 struct mem_cgroup_eventfd_list *ev;
4370
4371 list_for_each_entry(ev, &memcg->oom_notify, list)
4372 eventfd_signal(ev->eventfd, 1);
4373 return 0;
4374 }
4375
4376 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4377 {
4378 struct mem_cgroup *iter;
4379
4380 for_each_mem_cgroup_tree(iter, memcg)
4381 mem_cgroup_oom_notify_cb(iter);
4382 }
4383
4384 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4385 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4386 {
4387 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4388 struct mem_cgroup_thresholds *thresholds;
4389 struct mem_cgroup_threshold_ary *new;
4390 int type = MEMFILE_TYPE(cft->private);
4391 u64 threshold, usage;
4392 int i, size, ret;
4393
4394 ret = res_counter_memparse_write_strategy(args, &threshold);
4395 if (ret)
4396 return ret;
4397
4398 mutex_lock(&memcg->thresholds_lock);
4399
4400 if (type == _MEM)
4401 thresholds = &memcg->thresholds;
4402 else if (type == _MEMSWAP)
4403 thresholds = &memcg->memsw_thresholds;
4404 else
4405 BUG();
4406
4407 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4408
4409 /* Check if a threshold crossed before adding a new one */
4410 if (thresholds->primary)
4411 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4412
4413 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4414
4415 /* Allocate memory for new array of thresholds */
4416 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4417 GFP_KERNEL);
4418 if (!new) {
4419 ret = -ENOMEM;
4420 goto unlock;
4421 }
4422 new->size = size;
4423
4424 /* Copy thresholds (if any) to new array */
4425 if (thresholds->primary) {
4426 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4427 sizeof(struct mem_cgroup_threshold));
4428 }
4429
4430 /* Add new threshold */
4431 new->entries[size - 1].eventfd = eventfd;
4432 new->entries[size - 1].threshold = threshold;
4433
4434 /* Sort thresholds. Registering of new threshold isn't time-critical */
4435 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4436 compare_thresholds, NULL);
4437
4438 /* Find current threshold */
4439 new->current_threshold = -1;
4440 for (i = 0; i < size; i++) {
4441 if (new->entries[i].threshold <= usage) {
4442 /*
4443 * new->current_threshold will not be used until
4444 * rcu_assign_pointer(), so it's safe to increment
4445 * it here.
4446 */
4447 ++new->current_threshold;
4448 } else
4449 break;
4450 }
4451
4452 /* Free old spare buffer and save old primary buffer as spare */
4453 kfree(thresholds->spare);
4454 thresholds->spare = thresholds->primary;
4455
4456 rcu_assign_pointer(thresholds->primary, new);
4457
4458 /* To be sure that nobody uses thresholds */
4459 synchronize_rcu();
4460
4461 unlock:
4462 mutex_unlock(&memcg->thresholds_lock);
4463
4464 return ret;
4465 }
4466
4467 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4468 struct cftype *cft, struct eventfd_ctx *eventfd)
4469 {
4470 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4471 struct mem_cgroup_thresholds *thresholds;
4472 struct mem_cgroup_threshold_ary *new;
4473 int type = MEMFILE_TYPE(cft->private);
4474 u64 usage;
4475 int i, j, size;
4476
4477 mutex_lock(&memcg->thresholds_lock);
4478 if (type == _MEM)
4479 thresholds = &memcg->thresholds;
4480 else if (type == _MEMSWAP)
4481 thresholds = &memcg->memsw_thresholds;
4482 else
4483 BUG();
4484
4485 if (!thresholds->primary)
4486 goto unlock;
4487
4488 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4489
4490 /* Check if a threshold crossed before removing */
4491 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4492
4493 /* Calculate new number of threshold */
4494 size = 0;
4495 for (i = 0; i < thresholds->primary->size; i++) {
4496 if (thresholds->primary->entries[i].eventfd != eventfd)
4497 size++;
4498 }
4499
4500 new = thresholds->spare;
4501
4502 /* Set thresholds array to NULL if we don't have thresholds */
4503 if (!size) {
4504 kfree(new);
4505 new = NULL;
4506 goto swap_buffers;
4507 }
4508
4509 new->size = size;
4510
4511 /* Copy thresholds and find current threshold */
4512 new->current_threshold = -1;
4513 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4514 if (thresholds->primary->entries[i].eventfd == eventfd)
4515 continue;
4516
4517 new->entries[j] = thresholds->primary->entries[i];
4518 if (new->entries[j].threshold <= usage) {
4519 /*
4520 * new->current_threshold will not be used
4521 * until rcu_assign_pointer(), so it's safe to increment
4522 * it here.
4523 */
4524 ++new->current_threshold;
4525 }
4526 j++;
4527 }
4528
4529 swap_buffers:
4530 /* Swap primary and spare array */
4531 thresholds->spare = thresholds->primary;
4532 /* If all events are unregistered, free the spare array */
4533 if (!new) {
4534 kfree(thresholds->spare);
4535 thresholds->spare = NULL;
4536 }
4537
4538 rcu_assign_pointer(thresholds->primary, new);
4539
4540 /* To be sure that nobody uses thresholds */
4541 synchronize_rcu();
4542 unlock:
4543 mutex_unlock(&memcg->thresholds_lock);
4544 }
4545
4546 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4547 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4548 {
4549 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4550 struct mem_cgroup_eventfd_list *event;
4551 int type = MEMFILE_TYPE(cft->private);
4552
4553 BUG_ON(type != _OOM_TYPE);
4554 event = kmalloc(sizeof(*event), GFP_KERNEL);
4555 if (!event)
4556 return -ENOMEM;
4557
4558 spin_lock(&memcg_oom_lock);
4559
4560 event->eventfd = eventfd;
4561 list_add(&event->list, &memcg->oom_notify);
4562
4563 /* already in OOM ? */
4564 if (atomic_read(&memcg->under_oom))
4565 eventfd_signal(eventfd, 1);
4566 spin_unlock(&memcg_oom_lock);
4567
4568 return 0;
4569 }
4570
4571 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4572 struct cftype *cft, struct eventfd_ctx *eventfd)
4573 {
4574 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4575 struct mem_cgroup_eventfd_list *ev, *tmp;
4576 int type = MEMFILE_TYPE(cft->private);
4577
4578 BUG_ON(type != _OOM_TYPE);
4579
4580 spin_lock(&memcg_oom_lock);
4581
4582 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4583 if (ev->eventfd == eventfd) {
4584 list_del(&ev->list);
4585 kfree(ev);
4586 }
4587 }
4588
4589 spin_unlock(&memcg_oom_lock);
4590 }
4591
4592 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4593 struct cftype *cft, struct cgroup_map_cb *cb)
4594 {
4595 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4596
4597 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4598
4599 if (atomic_read(&memcg->under_oom))
4600 cb->fill(cb, "under_oom", 1);
4601 else
4602 cb->fill(cb, "under_oom", 0);
4603 return 0;
4604 }
4605
4606 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4607 struct cftype *cft, u64 val)
4608 {
4609 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4610 struct mem_cgroup *parent;
4611
4612 /* cannot set to root cgroup and only 0 and 1 are allowed */
4613 if (!cgrp->parent || !((val == 0) || (val == 1)))
4614 return -EINVAL;
4615
4616 parent = mem_cgroup_from_cont(cgrp->parent);
4617
4618 cgroup_lock();
4619 /* oom-kill-disable is a flag for subhierarchy. */
4620 if ((parent->use_hierarchy) ||
4621 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4622 cgroup_unlock();
4623 return -EINVAL;
4624 }
4625 memcg->oom_kill_disable = val;
4626 if (!val)
4627 memcg_oom_recover(memcg);
4628 cgroup_unlock();
4629 return 0;
4630 }
4631
4632 #ifdef CONFIG_MEMCG_KMEM
4633 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4634 {
4635 return mem_cgroup_sockets_init(memcg, ss);
4636 };
4637
4638 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4639 {
4640 mem_cgroup_sockets_destroy(memcg);
4641 }
4642 #else
4643 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4644 {
4645 return 0;
4646 }
4647
4648 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4649 {
4650 }
4651 #endif
4652
4653 static struct cftype mem_cgroup_files[] = {
4654 {
4655 .name = "usage_in_bytes",
4656 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4657 .read = mem_cgroup_read,
4658 .register_event = mem_cgroup_usage_register_event,
4659 .unregister_event = mem_cgroup_usage_unregister_event,
4660 },
4661 {
4662 .name = "max_usage_in_bytes",
4663 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4664 .trigger = mem_cgroup_reset,
4665 .read = mem_cgroup_read,
4666 },
4667 {
4668 .name = "limit_in_bytes",
4669 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4670 .write_string = mem_cgroup_write,
4671 .read = mem_cgroup_read,
4672 },
4673 {
4674 .name = "soft_limit_in_bytes",
4675 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4676 .write_string = mem_cgroup_write,
4677 .read = mem_cgroup_read,
4678 },
4679 {
4680 .name = "failcnt",
4681 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4682 .trigger = mem_cgroup_reset,
4683 .read = mem_cgroup_read,
4684 },
4685 {
4686 .name = "stat",
4687 .read_seq_string = memcg_stat_show,
4688 },
4689 {
4690 .name = "force_empty",
4691 .trigger = mem_cgroup_force_empty_write,
4692 },
4693 {
4694 .name = "use_hierarchy",
4695 .write_u64 = mem_cgroup_hierarchy_write,
4696 .read_u64 = mem_cgroup_hierarchy_read,
4697 },
4698 {
4699 .name = "swappiness",
4700 .read_u64 = mem_cgroup_swappiness_read,
4701 .write_u64 = mem_cgroup_swappiness_write,
4702 },
4703 {
4704 .name = "move_charge_at_immigrate",
4705 .read_u64 = mem_cgroup_move_charge_read,
4706 .write_u64 = mem_cgroup_move_charge_write,
4707 },
4708 {
4709 .name = "oom_control",
4710 .read_map = mem_cgroup_oom_control_read,
4711 .write_u64 = mem_cgroup_oom_control_write,
4712 .register_event = mem_cgroup_oom_register_event,
4713 .unregister_event = mem_cgroup_oom_unregister_event,
4714 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4715 },
4716 #ifdef CONFIG_NUMA
4717 {
4718 .name = "numa_stat",
4719 .read_seq_string = memcg_numa_stat_show,
4720 },
4721 #endif
4722 #ifdef CONFIG_MEMCG_SWAP
4723 {
4724 .name = "memsw.usage_in_bytes",
4725 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4726 .read = mem_cgroup_read,
4727 .register_event = mem_cgroup_usage_register_event,
4728 .unregister_event = mem_cgroup_usage_unregister_event,
4729 },
4730 {
4731 .name = "memsw.max_usage_in_bytes",
4732 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4733 .trigger = mem_cgroup_reset,
4734 .read = mem_cgroup_read,
4735 },
4736 {
4737 .name = "memsw.limit_in_bytes",
4738 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4739 .write_string = mem_cgroup_write,
4740 .read = mem_cgroup_read,
4741 },
4742 {
4743 .name = "memsw.failcnt",
4744 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4745 .trigger = mem_cgroup_reset,
4746 .read = mem_cgroup_read,
4747 },
4748 #endif
4749 { }, /* terminate */
4750 };
4751
4752 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4753 {
4754 struct mem_cgroup_per_node *pn;
4755 struct mem_cgroup_per_zone *mz;
4756 int zone, tmp = node;
4757 /*
4758 * This routine is called against possible nodes.
4759 * But it's BUG to call kmalloc() against offline node.
4760 *
4761 * TODO: this routine can waste much memory for nodes which will
4762 * never be onlined. It's better to use memory hotplug callback
4763 * function.
4764 */
4765 if (!node_state(node, N_NORMAL_MEMORY))
4766 tmp = -1;
4767 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4768 if (!pn)
4769 return 1;
4770
4771 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4772 mz = &pn->zoneinfo[zone];
4773 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4774 mz->usage_in_excess = 0;
4775 mz->on_tree = false;
4776 mz->memcg = memcg;
4777 }
4778 memcg->info.nodeinfo[node] = pn;
4779 return 0;
4780 }
4781
4782 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4783 {
4784 kfree(memcg->info.nodeinfo[node]);
4785 }
4786
4787 static struct mem_cgroup *mem_cgroup_alloc(void)
4788 {
4789 struct mem_cgroup *memcg;
4790 int size = sizeof(struct mem_cgroup);
4791
4792 /* Can be very big if MAX_NUMNODES is very big */
4793 if (size < PAGE_SIZE)
4794 memcg = kzalloc(size, GFP_KERNEL);
4795 else
4796 memcg = vzalloc(size);
4797
4798 if (!memcg)
4799 return NULL;
4800
4801 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4802 if (!memcg->stat)
4803 goto out_free;
4804 spin_lock_init(&memcg->pcp_counter_lock);
4805 return memcg;
4806
4807 out_free:
4808 if (size < PAGE_SIZE)
4809 kfree(memcg);
4810 else
4811 vfree(memcg);
4812 return NULL;
4813 }
4814
4815 /*
4816 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4817 * but in process context. The work_freeing structure is overlaid
4818 * on the rcu_freeing structure, which itself is overlaid on memsw.
4819 */
4820 static void free_work(struct work_struct *work)
4821 {
4822 struct mem_cgroup *memcg;
4823 int size = sizeof(struct mem_cgroup);
4824
4825 memcg = container_of(work, struct mem_cgroup, work_freeing);
4826 /*
4827 * We need to make sure that (at least for now), the jump label
4828 * destruction code runs outside of the cgroup lock. This is because
4829 * get_online_cpus(), which is called from the static_branch update,
4830 * can't be called inside the cgroup_lock. cpusets are the ones
4831 * enforcing this dependency, so if they ever change, we might as well.
4832 *
4833 * schedule_work() will guarantee this happens. Be careful if you need
4834 * to move this code around, and make sure it is outside
4835 * the cgroup_lock.
4836 */
4837 disarm_sock_keys(memcg);
4838 if (size < PAGE_SIZE)
4839 kfree(memcg);
4840 else
4841 vfree(memcg);
4842 }
4843
4844 static void free_rcu(struct rcu_head *rcu_head)
4845 {
4846 struct mem_cgroup *memcg;
4847
4848 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4849 INIT_WORK(&memcg->work_freeing, free_work);
4850 schedule_work(&memcg->work_freeing);
4851 }
4852
4853 /*
4854 * At destroying mem_cgroup, references from swap_cgroup can remain.
4855 * (scanning all at force_empty is too costly...)
4856 *
4857 * Instead of clearing all references at force_empty, we remember
4858 * the number of reference from swap_cgroup and free mem_cgroup when
4859 * it goes down to 0.
4860 *
4861 * Removal of cgroup itself succeeds regardless of refs from swap.
4862 */
4863
4864 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4865 {
4866 int node;
4867
4868 mem_cgroup_remove_from_trees(memcg);
4869 free_css_id(&mem_cgroup_subsys, &memcg->css);
4870
4871 for_each_node(node)
4872 free_mem_cgroup_per_zone_info(memcg, node);
4873
4874 free_percpu(memcg->stat);
4875 call_rcu(&memcg->rcu_freeing, free_rcu);
4876 }
4877
4878 static void mem_cgroup_get(struct mem_cgroup *memcg)
4879 {
4880 atomic_inc(&memcg->refcnt);
4881 }
4882
4883 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4884 {
4885 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4886 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4887 __mem_cgroup_free(memcg);
4888 if (parent)
4889 mem_cgroup_put(parent);
4890 }
4891 }
4892
4893 static void mem_cgroup_put(struct mem_cgroup *memcg)
4894 {
4895 __mem_cgroup_put(memcg, 1);
4896 }
4897
4898 /*
4899 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4900 */
4901 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4902 {
4903 if (!memcg->res.parent)
4904 return NULL;
4905 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4906 }
4907 EXPORT_SYMBOL(parent_mem_cgroup);
4908
4909 #ifdef CONFIG_MEMCG_SWAP
4910 static void __init enable_swap_cgroup(void)
4911 {
4912 if (!mem_cgroup_disabled() && really_do_swap_account)
4913 do_swap_account = 1;
4914 }
4915 #else
4916 static void __init enable_swap_cgroup(void)
4917 {
4918 }
4919 #endif
4920
4921 static int mem_cgroup_soft_limit_tree_init(void)
4922 {
4923 struct mem_cgroup_tree_per_node *rtpn;
4924 struct mem_cgroup_tree_per_zone *rtpz;
4925 int tmp, node, zone;
4926
4927 for_each_node(node) {
4928 tmp = node;
4929 if (!node_state(node, N_NORMAL_MEMORY))
4930 tmp = -1;
4931 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4932 if (!rtpn)
4933 goto err_cleanup;
4934
4935 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4936
4937 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4938 rtpz = &rtpn->rb_tree_per_zone[zone];
4939 rtpz->rb_root = RB_ROOT;
4940 spin_lock_init(&rtpz->lock);
4941 }
4942 }
4943 return 0;
4944
4945 err_cleanup:
4946 for_each_node(node) {
4947 if (!soft_limit_tree.rb_tree_per_node[node])
4948 break;
4949 kfree(soft_limit_tree.rb_tree_per_node[node]);
4950 soft_limit_tree.rb_tree_per_node[node] = NULL;
4951 }
4952 return 1;
4953
4954 }
4955
4956 static struct cgroup_subsys_state * __ref
4957 mem_cgroup_create(struct cgroup *cont)
4958 {
4959 struct mem_cgroup *memcg, *parent;
4960 long error = -ENOMEM;
4961 int node;
4962
4963 memcg = mem_cgroup_alloc();
4964 if (!memcg)
4965 return ERR_PTR(error);
4966
4967 for_each_node(node)
4968 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4969 goto free_out;
4970
4971 /* root ? */
4972 if (cont->parent == NULL) {
4973 int cpu;
4974 enable_swap_cgroup();
4975 parent = NULL;
4976 if (mem_cgroup_soft_limit_tree_init())
4977 goto free_out;
4978 root_mem_cgroup = memcg;
4979 for_each_possible_cpu(cpu) {
4980 struct memcg_stock_pcp *stock =
4981 &per_cpu(memcg_stock, cpu);
4982 INIT_WORK(&stock->work, drain_local_stock);
4983 }
4984 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4985 } else {
4986 parent = mem_cgroup_from_cont(cont->parent);
4987 memcg->use_hierarchy = parent->use_hierarchy;
4988 memcg->oom_kill_disable = parent->oom_kill_disable;
4989 }
4990
4991 if (parent && parent->use_hierarchy) {
4992 res_counter_init(&memcg->res, &parent->res);
4993 res_counter_init(&memcg->memsw, &parent->memsw);
4994 /*
4995 * We increment refcnt of the parent to ensure that we can
4996 * safely access it on res_counter_charge/uncharge.
4997 * This refcnt will be decremented when freeing this
4998 * mem_cgroup(see mem_cgroup_put).
4999 */
5000 mem_cgroup_get(parent);
5001 } else {
5002 res_counter_init(&memcg->res, NULL);
5003 res_counter_init(&memcg->memsw, NULL);
5004 }
5005 memcg->last_scanned_node = MAX_NUMNODES;
5006 INIT_LIST_HEAD(&memcg->oom_notify);
5007
5008 if (parent)
5009 memcg->swappiness = mem_cgroup_swappiness(parent);
5010 atomic_set(&memcg->refcnt, 1);
5011 memcg->move_charge_at_immigrate = 0;
5012 mutex_init(&memcg->thresholds_lock);
5013 spin_lock_init(&memcg->move_lock);
5014
5015 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5016 if (error) {
5017 /*
5018 * We call put now because our (and parent's) refcnts
5019 * are already in place. mem_cgroup_put() will internally
5020 * call __mem_cgroup_free, so return directly
5021 */
5022 mem_cgroup_put(memcg);
5023 return ERR_PTR(error);
5024 }
5025 return &memcg->css;
5026 free_out:
5027 __mem_cgroup_free(memcg);
5028 return ERR_PTR(error);
5029 }
5030
5031 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5032 {
5033 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5034 int ret;
5035
5036 css_get(&memcg->css);
5037 ret = mem_cgroup_reparent_charges(memcg);
5038 css_put(&memcg->css);
5039
5040 return ret;
5041 }
5042
5043 static void mem_cgroup_destroy(struct cgroup *cont)
5044 {
5045 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5046
5047 kmem_cgroup_destroy(memcg);
5048
5049 mem_cgroup_put(memcg);
5050 }
5051
5052 #ifdef CONFIG_MMU
5053 /* Handlers for move charge at task migration. */
5054 #define PRECHARGE_COUNT_AT_ONCE 256
5055 static int mem_cgroup_do_precharge(unsigned long count)
5056 {
5057 int ret = 0;
5058 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5059 struct mem_cgroup *memcg = mc.to;
5060
5061 if (mem_cgroup_is_root(memcg)) {
5062 mc.precharge += count;
5063 /* we don't need css_get for root */
5064 return ret;
5065 }
5066 /* try to charge at once */
5067 if (count > 1) {
5068 struct res_counter *dummy;
5069 /*
5070 * "memcg" cannot be under rmdir() because we've already checked
5071 * by cgroup_lock_live_cgroup() that it is not removed and we
5072 * are still under the same cgroup_mutex. So we can postpone
5073 * css_get().
5074 */
5075 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5076 goto one_by_one;
5077 if (do_swap_account && res_counter_charge(&memcg->memsw,
5078 PAGE_SIZE * count, &dummy)) {
5079 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5080 goto one_by_one;
5081 }
5082 mc.precharge += count;
5083 return ret;
5084 }
5085 one_by_one:
5086 /* fall back to one by one charge */
5087 while (count--) {
5088 if (signal_pending(current)) {
5089 ret = -EINTR;
5090 break;
5091 }
5092 if (!batch_count--) {
5093 batch_count = PRECHARGE_COUNT_AT_ONCE;
5094 cond_resched();
5095 }
5096 ret = __mem_cgroup_try_charge(NULL,
5097 GFP_KERNEL, 1, &memcg, false);
5098 if (ret)
5099 /* mem_cgroup_clear_mc() will do uncharge later */
5100 return ret;
5101 mc.precharge++;
5102 }
5103 return ret;
5104 }
5105
5106 /**
5107 * get_mctgt_type - get target type of moving charge
5108 * @vma: the vma the pte to be checked belongs
5109 * @addr: the address corresponding to the pte to be checked
5110 * @ptent: the pte to be checked
5111 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5112 *
5113 * Returns
5114 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5115 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5116 * move charge. if @target is not NULL, the page is stored in target->page
5117 * with extra refcnt got(Callers should handle it).
5118 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5119 * target for charge migration. if @target is not NULL, the entry is stored
5120 * in target->ent.
5121 *
5122 * Called with pte lock held.
5123 */
5124 union mc_target {
5125 struct page *page;
5126 swp_entry_t ent;
5127 };
5128
5129 enum mc_target_type {
5130 MC_TARGET_NONE = 0,
5131 MC_TARGET_PAGE,
5132 MC_TARGET_SWAP,
5133 };
5134
5135 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5136 unsigned long addr, pte_t ptent)
5137 {
5138 struct page *page = vm_normal_page(vma, addr, ptent);
5139
5140 if (!page || !page_mapped(page))
5141 return NULL;
5142 if (PageAnon(page)) {
5143 /* we don't move shared anon */
5144 if (!move_anon())
5145 return NULL;
5146 } else if (!move_file())
5147 /* we ignore mapcount for file pages */
5148 return NULL;
5149 if (!get_page_unless_zero(page))
5150 return NULL;
5151
5152 return page;
5153 }
5154
5155 #ifdef CONFIG_SWAP
5156 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5157 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5158 {
5159 struct page *page = NULL;
5160 swp_entry_t ent = pte_to_swp_entry(ptent);
5161
5162 if (!move_anon() || non_swap_entry(ent))
5163 return NULL;
5164 /*
5165 * Because lookup_swap_cache() updates some statistics counter,
5166 * we call find_get_page() with swapper_space directly.
5167 */
5168 page = find_get_page(&swapper_space, ent.val);
5169 if (do_swap_account)
5170 entry->val = ent.val;
5171
5172 return page;
5173 }
5174 #else
5175 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5176 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5177 {
5178 return NULL;
5179 }
5180 #endif
5181
5182 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5183 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5184 {
5185 struct page *page = NULL;
5186 struct address_space *mapping;
5187 pgoff_t pgoff;
5188
5189 if (!vma->vm_file) /* anonymous vma */
5190 return NULL;
5191 if (!move_file())
5192 return NULL;
5193
5194 mapping = vma->vm_file->f_mapping;
5195 if (pte_none(ptent))
5196 pgoff = linear_page_index(vma, addr);
5197 else /* pte_file(ptent) is true */
5198 pgoff = pte_to_pgoff(ptent);
5199
5200 /* page is moved even if it's not RSS of this task(page-faulted). */
5201 page = find_get_page(mapping, pgoff);
5202
5203 #ifdef CONFIG_SWAP
5204 /* shmem/tmpfs may report page out on swap: account for that too. */
5205 if (radix_tree_exceptional_entry(page)) {
5206 swp_entry_t swap = radix_to_swp_entry(page);
5207 if (do_swap_account)
5208 *entry = swap;
5209 page = find_get_page(&swapper_space, swap.val);
5210 }
5211 #endif
5212 return page;
5213 }
5214
5215 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5216 unsigned long addr, pte_t ptent, union mc_target *target)
5217 {
5218 struct page *page = NULL;
5219 struct page_cgroup *pc;
5220 enum mc_target_type ret = MC_TARGET_NONE;
5221 swp_entry_t ent = { .val = 0 };
5222
5223 if (pte_present(ptent))
5224 page = mc_handle_present_pte(vma, addr, ptent);
5225 else if (is_swap_pte(ptent))
5226 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5227 else if (pte_none(ptent) || pte_file(ptent))
5228 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5229
5230 if (!page && !ent.val)
5231 return ret;
5232 if (page) {
5233 pc = lookup_page_cgroup(page);
5234 /*
5235 * Do only loose check w/o page_cgroup lock.
5236 * mem_cgroup_move_account() checks the pc is valid or not under
5237 * the lock.
5238 */
5239 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5240 ret = MC_TARGET_PAGE;
5241 if (target)
5242 target->page = page;
5243 }
5244 if (!ret || !target)
5245 put_page(page);
5246 }
5247 /* There is a swap entry and a page doesn't exist or isn't charged */
5248 if (ent.val && !ret &&
5249 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5250 ret = MC_TARGET_SWAP;
5251 if (target)
5252 target->ent = ent;
5253 }
5254 return ret;
5255 }
5256
5257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5258 /*
5259 * We don't consider swapping or file mapped pages because THP does not
5260 * support them for now.
5261 * Caller should make sure that pmd_trans_huge(pmd) is true.
5262 */
5263 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5264 unsigned long addr, pmd_t pmd, union mc_target *target)
5265 {
5266 struct page *page = NULL;
5267 struct page_cgroup *pc;
5268 enum mc_target_type ret = MC_TARGET_NONE;
5269
5270 page = pmd_page(pmd);
5271 VM_BUG_ON(!page || !PageHead(page));
5272 if (!move_anon())
5273 return ret;
5274 pc = lookup_page_cgroup(page);
5275 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5276 ret = MC_TARGET_PAGE;
5277 if (target) {
5278 get_page(page);
5279 target->page = page;
5280 }
5281 }
5282 return ret;
5283 }
5284 #else
5285 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5286 unsigned long addr, pmd_t pmd, union mc_target *target)
5287 {
5288 return MC_TARGET_NONE;
5289 }
5290 #endif
5291
5292 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5293 unsigned long addr, unsigned long end,
5294 struct mm_walk *walk)
5295 {
5296 struct vm_area_struct *vma = walk->private;
5297 pte_t *pte;
5298 spinlock_t *ptl;
5299
5300 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5301 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5302 mc.precharge += HPAGE_PMD_NR;
5303 spin_unlock(&vma->vm_mm->page_table_lock);
5304 return 0;
5305 }
5306
5307 if (pmd_trans_unstable(pmd))
5308 return 0;
5309 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5310 for (; addr != end; pte++, addr += PAGE_SIZE)
5311 if (get_mctgt_type(vma, addr, *pte, NULL))
5312 mc.precharge++; /* increment precharge temporarily */
5313 pte_unmap_unlock(pte - 1, ptl);
5314 cond_resched();
5315
5316 return 0;
5317 }
5318
5319 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5320 {
5321 unsigned long precharge;
5322 struct vm_area_struct *vma;
5323
5324 down_read(&mm->mmap_sem);
5325 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5326 struct mm_walk mem_cgroup_count_precharge_walk = {
5327 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5328 .mm = mm,
5329 .private = vma,
5330 };
5331 if (is_vm_hugetlb_page(vma))
5332 continue;
5333 walk_page_range(vma->vm_start, vma->vm_end,
5334 &mem_cgroup_count_precharge_walk);
5335 }
5336 up_read(&mm->mmap_sem);
5337
5338 precharge = mc.precharge;
5339 mc.precharge = 0;
5340
5341 return precharge;
5342 }
5343
5344 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5345 {
5346 unsigned long precharge = mem_cgroup_count_precharge(mm);
5347
5348 VM_BUG_ON(mc.moving_task);
5349 mc.moving_task = current;
5350 return mem_cgroup_do_precharge(precharge);
5351 }
5352
5353 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5354 static void __mem_cgroup_clear_mc(void)
5355 {
5356 struct mem_cgroup *from = mc.from;
5357 struct mem_cgroup *to = mc.to;
5358
5359 /* we must uncharge all the leftover precharges from mc.to */
5360 if (mc.precharge) {
5361 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5362 mc.precharge = 0;
5363 }
5364 /*
5365 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5366 * we must uncharge here.
5367 */
5368 if (mc.moved_charge) {
5369 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5370 mc.moved_charge = 0;
5371 }
5372 /* we must fixup refcnts and charges */
5373 if (mc.moved_swap) {
5374 /* uncharge swap account from the old cgroup */
5375 if (!mem_cgroup_is_root(mc.from))
5376 res_counter_uncharge(&mc.from->memsw,
5377 PAGE_SIZE * mc.moved_swap);
5378 __mem_cgroup_put(mc.from, mc.moved_swap);
5379
5380 if (!mem_cgroup_is_root(mc.to)) {
5381 /*
5382 * we charged both to->res and to->memsw, so we should
5383 * uncharge to->res.
5384 */
5385 res_counter_uncharge(&mc.to->res,
5386 PAGE_SIZE * mc.moved_swap);
5387 }
5388 /* we've already done mem_cgroup_get(mc.to) */
5389 mc.moved_swap = 0;
5390 }
5391 memcg_oom_recover(from);
5392 memcg_oom_recover(to);
5393 wake_up_all(&mc.waitq);
5394 }
5395
5396 static void mem_cgroup_clear_mc(void)
5397 {
5398 struct mem_cgroup *from = mc.from;
5399
5400 /*
5401 * we must clear moving_task before waking up waiters at the end of
5402 * task migration.
5403 */
5404 mc.moving_task = NULL;
5405 __mem_cgroup_clear_mc();
5406 spin_lock(&mc.lock);
5407 mc.from = NULL;
5408 mc.to = NULL;
5409 spin_unlock(&mc.lock);
5410 mem_cgroup_end_move(from);
5411 }
5412
5413 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5414 struct cgroup_taskset *tset)
5415 {
5416 struct task_struct *p = cgroup_taskset_first(tset);
5417 int ret = 0;
5418 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5419
5420 if (memcg->move_charge_at_immigrate) {
5421 struct mm_struct *mm;
5422 struct mem_cgroup *from = mem_cgroup_from_task(p);
5423
5424 VM_BUG_ON(from == memcg);
5425
5426 mm = get_task_mm(p);
5427 if (!mm)
5428 return 0;
5429 /* We move charges only when we move a owner of the mm */
5430 if (mm->owner == p) {
5431 VM_BUG_ON(mc.from);
5432 VM_BUG_ON(mc.to);
5433 VM_BUG_ON(mc.precharge);
5434 VM_BUG_ON(mc.moved_charge);
5435 VM_BUG_ON(mc.moved_swap);
5436 mem_cgroup_start_move(from);
5437 spin_lock(&mc.lock);
5438 mc.from = from;
5439 mc.to = memcg;
5440 spin_unlock(&mc.lock);
5441 /* We set mc.moving_task later */
5442
5443 ret = mem_cgroup_precharge_mc(mm);
5444 if (ret)
5445 mem_cgroup_clear_mc();
5446 }
5447 mmput(mm);
5448 }
5449 return ret;
5450 }
5451
5452 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5453 struct cgroup_taskset *tset)
5454 {
5455 mem_cgroup_clear_mc();
5456 }
5457
5458 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5459 unsigned long addr, unsigned long end,
5460 struct mm_walk *walk)
5461 {
5462 int ret = 0;
5463 struct vm_area_struct *vma = walk->private;
5464 pte_t *pte;
5465 spinlock_t *ptl;
5466 enum mc_target_type target_type;
5467 union mc_target target;
5468 struct page *page;
5469 struct page_cgroup *pc;
5470
5471 /*
5472 * We don't take compound_lock() here but no race with splitting thp
5473 * happens because:
5474 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5475 * under splitting, which means there's no concurrent thp split,
5476 * - if another thread runs into split_huge_page() just after we
5477 * entered this if-block, the thread must wait for page table lock
5478 * to be unlocked in __split_huge_page_splitting(), where the main
5479 * part of thp split is not executed yet.
5480 */
5481 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5482 if (mc.precharge < HPAGE_PMD_NR) {
5483 spin_unlock(&vma->vm_mm->page_table_lock);
5484 return 0;
5485 }
5486 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5487 if (target_type == MC_TARGET_PAGE) {
5488 page = target.page;
5489 if (!isolate_lru_page(page)) {
5490 pc = lookup_page_cgroup(page);
5491 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5492 pc, mc.from, mc.to)) {
5493 mc.precharge -= HPAGE_PMD_NR;
5494 mc.moved_charge += HPAGE_PMD_NR;
5495 }
5496 putback_lru_page(page);
5497 }
5498 put_page(page);
5499 }
5500 spin_unlock(&vma->vm_mm->page_table_lock);
5501 return 0;
5502 }
5503
5504 if (pmd_trans_unstable(pmd))
5505 return 0;
5506 retry:
5507 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5508 for (; addr != end; addr += PAGE_SIZE) {
5509 pte_t ptent = *(pte++);
5510 swp_entry_t ent;
5511
5512 if (!mc.precharge)
5513 break;
5514
5515 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5516 case MC_TARGET_PAGE:
5517 page = target.page;
5518 if (isolate_lru_page(page))
5519 goto put;
5520 pc = lookup_page_cgroup(page);
5521 if (!mem_cgroup_move_account(page, 1, pc,
5522 mc.from, mc.to)) {
5523 mc.precharge--;
5524 /* we uncharge from mc.from later. */
5525 mc.moved_charge++;
5526 }
5527 putback_lru_page(page);
5528 put: /* get_mctgt_type() gets the page */
5529 put_page(page);
5530 break;
5531 case MC_TARGET_SWAP:
5532 ent = target.ent;
5533 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5534 mc.precharge--;
5535 /* we fixup refcnts and charges later. */
5536 mc.moved_swap++;
5537 }
5538 break;
5539 default:
5540 break;
5541 }
5542 }
5543 pte_unmap_unlock(pte - 1, ptl);
5544 cond_resched();
5545
5546 if (addr != end) {
5547 /*
5548 * We have consumed all precharges we got in can_attach().
5549 * We try charge one by one, but don't do any additional
5550 * charges to mc.to if we have failed in charge once in attach()
5551 * phase.
5552 */
5553 ret = mem_cgroup_do_precharge(1);
5554 if (!ret)
5555 goto retry;
5556 }
5557
5558 return ret;
5559 }
5560
5561 static void mem_cgroup_move_charge(struct mm_struct *mm)
5562 {
5563 struct vm_area_struct *vma;
5564
5565 lru_add_drain_all();
5566 retry:
5567 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5568 /*
5569 * Someone who are holding the mmap_sem might be waiting in
5570 * waitq. So we cancel all extra charges, wake up all waiters,
5571 * and retry. Because we cancel precharges, we might not be able
5572 * to move enough charges, but moving charge is a best-effort
5573 * feature anyway, so it wouldn't be a big problem.
5574 */
5575 __mem_cgroup_clear_mc();
5576 cond_resched();
5577 goto retry;
5578 }
5579 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5580 int ret;
5581 struct mm_walk mem_cgroup_move_charge_walk = {
5582 .pmd_entry = mem_cgroup_move_charge_pte_range,
5583 .mm = mm,
5584 .private = vma,
5585 };
5586 if (is_vm_hugetlb_page(vma))
5587 continue;
5588 ret = walk_page_range(vma->vm_start, vma->vm_end,
5589 &mem_cgroup_move_charge_walk);
5590 if (ret)
5591 /*
5592 * means we have consumed all precharges and failed in
5593 * doing additional charge. Just abandon here.
5594 */
5595 break;
5596 }
5597 up_read(&mm->mmap_sem);
5598 }
5599
5600 static void mem_cgroup_move_task(struct cgroup *cont,
5601 struct cgroup_taskset *tset)
5602 {
5603 struct task_struct *p = cgroup_taskset_first(tset);
5604 struct mm_struct *mm = get_task_mm(p);
5605
5606 if (mm) {
5607 if (mc.to)
5608 mem_cgroup_move_charge(mm);
5609 mmput(mm);
5610 }
5611 if (mc.to)
5612 mem_cgroup_clear_mc();
5613 }
5614 #else /* !CONFIG_MMU */
5615 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5616 struct cgroup_taskset *tset)
5617 {
5618 return 0;
5619 }
5620 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5621 struct cgroup_taskset *tset)
5622 {
5623 }
5624 static void mem_cgroup_move_task(struct cgroup *cont,
5625 struct cgroup_taskset *tset)
5626 {
5627 }
5628 #endif
5629
5630 struct cgroup_subsys mem_cgroup_subsys = {
5631 .name = "memory",
5632 .subsys_id = mem_cgroup_subsys_id,
5633 .create = mem_cgroup_create,
5634 .pre_destroy = mem_cgroup_pre_destroy,
5635 .destroy = mem_cgroup_destroy,
5636 .can_attach = mem_cgroup_can_attach,
5637 .cancel_attach = mem_cgroup_cancel_attach,
5638 .attach = mem_cgroup_move_task,
5639 .base_cftypes = mem_cgroup_files,
5640 .early_init = 0,
5641 .use_id = 1,
5642 };
5643
5644 #ifdef CONFIG_MEMCG_SWAP
5645 static int __init enable_swap_account(char *s)
5646 {
5647 /* consider enabled if no parameter or 1 is given */
5648 if (!strcmp(s, "1"))
5649 really_do_swap_account = 1;
5650 else if (!strcmp(s, "0"))
5651 really_do_swap_account = 0;
5652 return 1;
5653 }
5654 __setup("swapaccount=", enable_swap_account);
5655
5656 #endif
This page took 0.164815 seconds and 4 git commands to generate.