memcg: simplify mem_cgroup_iter
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60
61 #include <asm/uaccess.h>
62
63 #include <trace/events/vmscan.h>
64
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81
82 #else
83 #define do_swap_account 0
84 #endif
85
86
87 /*
88 * Statistics for memory cgroup.
89 */
90 enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
99 };
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106 };
107
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
114 };
115
116 static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121 };
122
123 static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
129 };
130
131 /*
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
136 */
137 enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
140 MEM_CGROUP_TARGET_NUMAINFO,
141 MEM_CGROUP_NTARGETS,
142 };
143 #define THRESHOLDS_EVENTS_TARGET 128
144 #define SOFTLIMIT_EVENTS_TARGET 1024
145 #define NUMAINFO_EVENTS_TARGET 1024
146
147 struct mem_cgroup_stat_cpu {
148 long count[MEM_CGROUP_STAT_NSTATS];
149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150 unsigned long nr_page_events;
151 unsigned long targets[MEM_CGROUP_NTARGETS];
152 };
153
154 struct mem_cgroup_reclaim_iter {
155 /*
156 * last scanned hierarchy member. Valid only if last_dead_count
157 * matches memcg->dead_count of the hierarchy root group.
158 */
159 struct mem_cgroup *last_visited;
160 unsigned long last_dead_count;
161
162 /* scan generation, increased every round-trip */
163 unsigned int generation;
164 };
165
166 /*
167 * per-zone information in memory controller.
168 */
169 struct mem_cgroup_per_zone {
170 struct lruvec lruvec;
171 unsigned long lru_size[NR_LRU_LISTS];
172
173 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
174
175 struct rb_node tree_node; /* RB tree node */
176 unsigned long long usage_in_excess;/* Set to the value by which */
177 /* the soft limit is exceeded*/
178 bool on_tree;
179 struct mem_cgroup *memcg; /* Back pointer, we cannot */
180 /* use container_of */
181 };
182
183 struct mem_cgroup_per_node {
184 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_lru_info {
188 struct mem_cgroup_per_node *nodeinfo[0];
189 };
190
191 /*
192 * Cgroups above their limits are maintained in a RB-Tree, independent of
193 * their hierarchy representation
194 */
195
196 struct mem_cgroup_tree_per_zone {
197 struct rb_root rb_root;
198 spinlock_t lock;
199 };
200
201 struct mem_cgroup_tree_per_node {
202 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
203 };
204
205 struct mem_cgroup_tree {
206 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
207 };
208
209 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
210
211 struct mem_cgroup_threshold {
212 struct eventfd_ctx *eventfd;
213 u64 threshold;
214 };
215
216 /* For threshold */
217 struct mem_cgroup_threshold_ary {
218 /* An array index points to threshold just below or equal to usage. */
219 int current_threshold;
220 /* Size of entries[] */
221 unsigned int size;
222 /* Array of thresholds */
223 struct mem_cgroup_threshold entries[0];
224 };
225
226 struct mem_cgroup_thresholds {
227 /* Primary thresholds array */
228 struct mem_cgroup_threshold_ary *primary;
229 /*
230 * Spare threshold array.
231 * This is needed to make mem_cgroup_unregister_event() "never fail".
232 * It must be able to store at least primary->size - 1 entries.
233 */
234 struct mem_cgroup_threshold_ary *spare;
235 };
236
237 /* for OOM */
238 struct mem_cgroup_eventfd_list {
239 struct list_head list;
240 struct eventfd_ctx *eventfd;
241 };
242
243 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
244 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
245
246 /*
247 * The memory controller data structure. The memory controller controls both
248 * page cache and RSS per cgroup. We would eventually like to provide
249 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
250 * to help the administrator determine what knobs to tune.
251 *
252 * TODO: Add a water mark for the memory controller. Reclaim will begin when
253 * we hit the water mark. May be even add a low water mark, such that
254 * no reclaim occurs from a cgroup at it's low water mark, this is
255 * a feature that will be implemented much later in the future.
256 */
257 struct mem_cgroup {
258 struct cgroup_subsys_state css;
259 /*
260 * the counter to account for memory usage
261 */
262 struct res_counter res;
263
264 union {
265 /*
266 * the counter to account for mem+swap usage.
267 */
268 struct res_counter memsw;
269
270 /*
271 * rcu_freeing is used only when freeing struct mem_cgroup,
272 * so put it into a union to avoid wasting more memory.
273 * It must be disjoint from the css field. It could be
274 * in a union with the res field, but res plays a much
275 * larger part in mem_cgroup life than memsw, and might
276 * be of interest, even at time of free, when debugging.
277 * So share rcu_head with the less interesting memsw.
278 */
279 struct rcu_head rcu_freeing;
280 /*
281 * We also need some space for a worker in deferred freeing.
282 * By the time we call it, rcu_freeing is no longer in use.
283 */
284 struct work_struct work_freeing;
285 };
286
287 /*
288 * the counter to account for kernel memory usage.
289 */
290 struct res_counter kmem;
291 /*
292 * Should the accounting and control be hierarchical, per subtree?
293 */
294 bool use_hierarchy;
295 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
296
297 bool oom_lock;
298 atomic_t under_oom;
299
300 atomic_t refcnt;
301
302 int swappiness;
303 /* OOM-Killer disable */
304 int oom_kill_disable;
305
306 /* set when res.limit == memsw.limit */
307 bool memsw_is_minimum;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 atomic_t dead_count;
344 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
345 struct tcp_memcontrol tcp_mem;
346 #endif
347 #if defined(CONFIG_MEMCG_KMEM)
348 /* analogous to slab_common's slab_caches list. per-memcg */
349 struct list_head memcg_slab_caches;
350 /* Not a spinlock, we can take a lot of time walking the list */
351 struct mutex slab_caches_mutex;
352 /* Index in the kmem_cache->memcg_params->memcg_caches array */
353 int kmemcg_id;
354 #endif
355
356 int last_scanned_node;
357 #if MAX_NUMNODES > 1
358 nodemask_t scan_nodes;
359 atomic_t numainfo_events;
360 atomic_t numainfo_updating;
361 #endif
362 /*
363 * Per cgroup active and inactive list, similar to the
364 * per zone LRU lists.
365 *
366 * WARNING: This has to be the last element of the struct. Don't
367 * add new fields after this point.
368 */
369 struct mem_cgroup_lru_info info;
370 };
371
372 static size_t memcg_size(void)
373 {
374 return sizeof(struct mem_cgroup) +
375 nr_node_ids * sizeof(struct mem_cgroup_per_node);
376 }
377
378 /* internal only representation about the status of kmem accounting. */
379 enum {
380 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
381 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
382 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
383 };
384
385 /* We account when limit is on, but only after call sites are patched */
386 #define KMEM_ACCOUNTED_MASK \
387 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
388
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
401 {
402 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
403 }
404
405 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
406 {
407 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409
410 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
411 {
412 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
413 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
414 }
415
416 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
417 {
418 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
419 &memcg->kmem_account_flags);
420 }
421 #endif
422
423 /* Stuffs for move charges at task migration. */
424 /*
425 * Types of charges to be moved. "move_charge_at_immitgrate" and
426 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
427 */
428 enum move_type {
429 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
430 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
431 NR_MOVE_TYPE,
432 };
433
434 /* "mc" and its members are protected by cgroup_mutex */
435 static struct move_charge_struct {
436 spinlock_t lock; /* for from, to */
437 struct mem_cgroup *from;
438 struct mem_cgroup *to;
439 unsigned long immigrate_flags;
440 unsigned long precharge;
441 unsigned long moved_charge;
442 unsigned long moved_swap;
443 struct task_struct *moving_task; /* a task moving charges */
444 wait_queue_head_t waitq; /* a waitq for other context */
445 } mc = {
446 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
447 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
448 };
449
450 static bool move_anon(void)
451 {
452 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
453 }
454
455 static bool move_file(void)
456 {
457 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
458 }
459
460 /*
461 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
462 * limit reclaim to prevent infinite loops, if they ever occur.
463 */
464 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
465 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
466
467 enum charge_type {
468 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
469 MEM_CGROUP_CHARGE_TYPE_ANON,
470 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
471 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
472 NR_CHARGE_TYPE,
473 };
474
475 /* for encoding cft->private value on file */
476 enum res_type {
477 _MEM,
478 _MEMSWAP,
479 _OOM_TYPE,
480 _KMEM,
481 };
482
483 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
484 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
485 #define MEMFILE_ATTR(val) ((val) & 0xffff)
486 /* Used for OOM nofiier */
487 #define OOM_CONTROL (0)
488
489 /*
490 * Reclaim flags for mem_cgroup_hierarchical_reclaim
491 */
492 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
493 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
494 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
495 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
496
497 /*
498 * The memcg_create_mutex will be held whenever a new cgroup is created.
499 * As a consequence, any change that needs to protect against new child cgroups
500 * appearing has to hold it as well.
501 */
502 static DEFINE_MUTEX(memcg_create_mutex);
503
504 static void mem_cgroup_get(struct mem_cgroup *memcg);
505 static void mem_cgroup_put(struct mem_cgroup *memcg);
506
507 static inline
508 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
509 {
510 return container_of(s, struct mem_cgroup, css);
511 }
512
513 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
514 {
515 return (memcg == root_mem_cgroup);
516 }
517
518 /* Writing them here to avoid exposing memcg's inner layout */
519 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
520
521 void sock_update_memcg(struct sock *sk)
522 {
523 if (mem_cgroup_sockets_enabled) {
524 struct mem_cgroup *memcg;
525 struct cg_proto *cg_proto;
526
527 BUG_ON(!sk->sk_prot->proto_cgroup);
528
529 /* Socket cloning can throw us here with sk_cgrp already
530 * filled. It won't however, necessarily happen from
531 * process context. So the test for root memcg given
532 * the current task's memcg won't help us in this case.
533 *
534 * Respecting the original socket's memcg is a better
535 * decision in this case.
536 */
537 if (sk->sk_cgrp) {
538 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
539 mem_cgroup_get(sk->sk_cgrp->memcg);
540 return;
541 }
542
543 rcu_read_lock();
544 memcg = mem_cgroup_from_task(current);
545 cg_proto = sk->sk_prot->proto_cgroup(memcg);
546 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
547 mem_cgroup_get(memcg);
548 sk->sk_cgrp = cg_proto;
549 }
550 rcu_read_unlock();
551 }
552 }
553 EXPORT_SYMBOL(sock_update_memcg);
554
555 void sock_release_memcg(struct sock *sk)
556 {
557 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
558 struct mem_cgroup *memcg;
559 WARN_ON(!sk->sk_cgrp->memcg);
560 memcg = sk->sk_cgrp->memcg;
561 mem_cgroup_put(memcg);
562 }
563 }
564
565 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
566 {
567 if (!memcg || mem_cgroup_is_root(memcg))
568 return NULL;
569
570 return &memcg->tcp_mem.cg_proto;
571 }
572 EXPORT_SYMBOL(tcp_proto_cgroup);
573
574 static void disarm_sock_keys(struct mem_cgroup *memcg)
575 {
576 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
577 return;
578 static_key_slow_dec(&memcg_socket_limit_enabled);
579 }
580 #else
581 static void disarm_sock_keys(struct mem_cgroup *memcg)
582 {
583 }
584 #endif
585
586 #ifdef CONFIG_MEMCG_KMEM
587 /*
588 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
589 * There are two main reasons for not using the css_id for this:
590 * 1) this works better in sparse environments, where we have a lot of memcgs,
591 * but only a few kmem-limited. Or also, if we have, for instance, 200
592 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
593 * 200 entry array for that.
594 *
595 * 2) In order not to violate the cgroup API, we would like to do all memory
596 * allocation in ->create(). At that point, we haven't yet allocated the
597 * css_id. Having a separate index prevents us from messing with the cgroup
598 * core for this
599 *
600 * The current size of the caches array is stored in
601 * memcg_limited_groups_array_size. It will double each time we have to
602 * increase it.
603 */
604 static DEFINE_IDA(kmem_limited_groups);
605 int memcg_limited_groups_array_size;
606
607 /*
608 * MIN_SIZE is different than 1, because we would like to avoid going through
609 * the alloc/free process all the time. In a small machine, 4 kmem-limited
610 * cgroups is a reasonable guess. In the future, it could be a parameter or
611 * tunable, but that is strictly not necessary.
612 *
613 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
614 * this constant directly from cgroup, but it is understandable that this is
615 * better kept as an internal representation in cgroup.c. In any case, the
616 * css_id space is not getting any smaller, and we don't have to necessarily
617 * increase ours as well if it increases.
618 */
619 #define MEMCG_CACHES_MIN_SIZE 4
620 #define MEMCG_CACHES_MAX_SIZE 65535
621
622 /*
623 * A lot of the calls to the cache allocation functions are expected to be
624 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
625 * conditional to this static branch, we'll have to allow modules that does
626 * kmem_cache_alloc and the such to see this symbol as well
627 */
628 struct static_key memcg_kmem_enabled_key;
629 EXPORT_SYMBOL(memcg_kmem_enabled_key);
630
631 static void disarm_kmem_keys(struct mem_cgroup *memcg)
632 {
633 if (memcg_kmem_is_active(memcg)) {
634 static_key_slow_dec(&memcg_kmem_enabled_key);
635 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
636 }
637 /*
638 * This check can't live in kmem destruction function,
639 * since the charges will outlive the cgroup
640 */
641 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
642 }
643 #else
644 static void disarm_kmem_keys(struct mem_cgroup *memcg)
645 {
646 }
647 #endif /* CONFIG_MEMCG_KMEM */
648
649 static void disarm_static_keys(struct mem_cgroup *memcg)
650 {
651 disarm_sock_keys(memcg);
652 disarm_kmem_keys(memcg);
653 }
654
655 static void drain_all_stock_async(struct mem_cgroup *memcg);
656
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
659 {
660 VM_BUG_ON((unsigned)nid >= nr_node_ids);
661 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
662 }
663
664 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
665 {
666 return &memcg->css;
667 }
668
669 static struct mem_cgroup_per_zone *
670 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
671 {
672 int nid = page_to_nid(page);
673 int zid = page_zonenum(page);
674
675 return mem_cgroup_zoneinfo(memcg, nid, zid);
676 }
677
678 static struct mem_cgroup_tree_per_zone *
679 soft_limit_tree_node_zone(int nid, int zid)
680 {
681 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
682 }
683
684 static struct mem_cgroup_tree_per_zone *
685 soft_limit_tree_from_page(struct page *page)
686 {
687 int nid = page_to_nid(page);
688 int zid = page_zonenum(page);
689
690 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
691 }
692
693 static void
694 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
695 struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz,
697 unsigned long long new_usage_in_excess)
698 {
699 struct rb_node **p = &mctz->rb_root.rb_node;
700 struct rb_node *parent = NULL;
701 struct mem_cgroup_per_zone *mz_node;
702
703 if (mz->on_tree)
704 return;
705
706 mz->usage_in_excess = new_usage_in_excess;
707 if (!mz->usage_in_excess)
708 return;
709 while (*p) {
710 parent = *p;
711 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
712 tree_node);
713 if (mz->usage_in_excess < mz_node->usage_in_excess)
714 p = &(*p)->rb_left;
715 /*
716 * We can't avoid mem cgroups that are over their soft
717 * limit by the same amount
718 */
719 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
720 p = &(*p)->rb_right;
721 }
722 rb_link_node(&mz->tree_node, parent, p);
723 rb_insert_color(&mz->tree_node, &mctz->rb_root);
724 mz->on_tree = true;
725 }
726
727 static void
728 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
729 struct mem_cgroup_per_zone *mz,
730 struct mem_cgroup_tree_per_zone *mctz)
731 {
732 if (!mz->on_tree)
733 return;
734 rb_erase(&mz->tree_node, &mctz->rb_root);
735 mz->on_tree = false;
736 }
737
738 static void
739 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
740 struct mem_cgroup_per_zone *mz,
741 struct mem_cgroup_tree_per_zone *mctz)
742 {
743 spin_lock(&mctz->lock);
744 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
745 spin_unlock(&mctz->lock);
746 }
747
748
749 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
750 {
751 unsigned long long excess;
752 struct mem_cgroup_per_zone *mz;
753 struct mem_cgroup_tree_per_zone *mctz;
754 int nid = page_to_nid(page);
755 int zid = page_zonenum(page);
756 mctz = soft_limit_tree_from_page(page);
757
758 /*
759 * Necessary to update all ancestors when hierarchy is used.
760 * because their event counter is not touched.
761 */
762 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
763 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
764 excess = res_counter_soft_limit_excess(&memcg->res);
765 /*
766 * We have to update the tree if mz is on RB-tree or
767 * mem is over its softlimit.
768 */
769 if (excess || mz->on_tree) {
770 spin_lock(&mctz->lock);
771 /* if on-tree, remove it */
772 if (mz->on_tree)
773 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
774 /*
775 * Insert again. mz->usage_in_excess will be updated.
776 * If excess is 0, no tree ops.
777 */
778 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
779 spin_unlock(&mctz->lock);
780 }
781 }
782 }
783
784 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
785 {
786 int node, zone;
787 struct mem_cgroup_per_zone *mz;
788 struct mem_cgroup_tree_per_zone *mctz;
789
790 for_each_node(node) {
791 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
792 mz = mem_cgroup_zoneinfo(memcg, node, zone);
793 mctz = soft_limit_tree_node_zone(node, zone);
794 mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 }
796 }
797 }
798
799 static struct mem_cgroup_per_zone *
800 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
801 {
802 struct rb_node *rightmost = NULL;
803 struct mem_cgroup_per_zone *mz;
804
805 retry:
806 mz = NULL;
807 rightmost = rb_last(&mctz->rb_root);
808 if (!rightmost)
809 goto done; /* Nothing to reclaim from */
810
811 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
812 /*
813 * Remove the node now but someone else can add it back,
814 * we will to add it back at the end of reclaim to its correct
815 * position in the tree.
816 */
817 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
818 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
819 !css_tryget(&mz->memcg->css))
820 goto retry;
821 done:
822 return mz;
823 }
824
825 static struct mem_cgroup_per_zone *
826 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827 {
828 struct mem_cgroup_per_zone *mz;
829
830 spin_lock(&mctz->lock);
831 mz = __mem_cgroup_largest_soft_limit_node(mctz);
832 spin_unlock(&mctz->lock);
833 return mz;
834 }
835
836 /*
837 * Implementation Note: reading percpu statistics for memcg.
838 *
839 * Both of vmstat[] and percpu_counter has threshold and do periodic
840 * synchronization to implement "quick" read. There are trade-off between
841 * reading cost and precision of value. Then, we may have a chance to implement
842 * a periodic synchronizion of counter in memcg's counter.
843 *
844 * But this _read() function is used for user interface now. The user accounts
845 * memory usage by memory cgroup and he _always_ requires exact value because
846 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
847 * have to visit all online cpus and make sum. So, for now, unnecessary
848 * synchronization is not implemented. (just implemented for cpu hotplug)
849 *
850 * If there are kernel internal actions which can make use of some not-exact
851 * value, and reading all cpu value can be performance bottleneck in some
852 * common workload, threashold and synchonization as vmstat[] should be
853 * implemented.
854 */
855 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
856 enum mem_cgroup_stat_index idx)
857 {
858 long val = 0;
859 int cpu;
860
861 get_online_cpus();
862 for_each_online_cpu(cpu)
863 val += per_cpu(memcg->stat->count[idx], cpu);
864 #ifdef CONFIG_HOTPLUG_CPU
865 spin_lock(&memcg->pcp_counter_lock);
866 val += memcg->nocpu_base.count[idx];
867 spin_unlock(&memcg->pcp_counter_lock);
868 #endif
869 put_online_cpus();
870 return val;
871 }
872
873 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
874 bool charge)
875 {
876 int val = (charge) ? 1 : -1;
877 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
878 }
879
880 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
881 enum mem_cgroup_events_index idx)
882 {
883 unsigned long val = 0;
884 int cpu;
885
886 for_each_online_cpu(cpu)
887 val += per_cpu(memcg->stat->events[idx], cpu);
888 #ifdef CONFIG_HOTPLUG_CPU
889 spin_lock(&memcg->pcp_counter_lock);
890 val += memcg->nocpu_base.events[idx];
891 spin_unlock(&memcg->pcp_counter_lock);
892 #endif
893 return val;
894 }
895
896 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
897 bool anon, int nr_pages)
898 {
899 preempt_disable();
900
901 /*
902 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
903 * counted as CACHE even if it's on ANON LRU.
904 */
905 if (anon)
906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
907 nr_pages);
908 else
909 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
910 nr_pages);
911
912 /* pagein of a big page is an event. So, ignore page size */
913 if (nr_pages > 0)
914 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
915 else {
916 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
917 nr_pages = -nr_pages; /* for event */
918 }
919
920 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
921
922 preempt_enable();
923 }
924
925 unsigned long
926 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
927 {
928 struct mem_cgroup_per_zone *mz;
929
930 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
931 return mz->lru_size[lru];
932 }
933
934 static unsigned long
935 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
936 unsigned int lru_mask)
937 {
938 struct mem_cgroup_per_zone *mz;
939 enum lru_list lru;
940 unsigned long ret = 0;
941
942 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
943
944 for_each_lru(lru) {
945 if (BIT(lru) & lru_mask)
946 ret += mz->lru_size[lru];
947 }
948 return ret;
949 }
950
951 static unsigned long
952 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
953 int nid, unsigned int lru_mask)
954 {
955 u64 total = 0;
956 int zid;
957
958 for (zid = 0; zid < MAX_NR_ZONES; zid++)
959 total += mem_cgroup_zone_nr_lru_pages(memcg,
960 nid, zid, lru_mask);
961
962 return total;
963 }
964
965 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
966 unsigned int lru_mask)
967 {
968 int nid;
969 u64 total = 0;
970
971 for_each_node_state(nid, N_MEMORY)
972 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
973 return total;
974 }
975
976 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
977 enum mem_cgroup_events_target target)
978 {
979 unsigned long val, next;
980
981 val = __this_cpu_read(memcg->stat->nr_page_events);
982 next = __this_cpu_read(memcg->stat->targets[target]);
983 /* from time_after() in jiffies.h */
984 if ((long)next - (long)val < 0) {
985 switch (target) {
986 case MEM_CGROUP_TARGET_THRESH:
987 next = val + THRESHOLDS_EVENTS_TARGET;
988 break;
989 case MEM_CGROUP_TARGET_SOFTLIMIT:
990 next = val + SOFTLIMIT_EVENTS_TARGET;
991 break;
992 case MEM_CGROUP_TARGET_NUMAINFO:
993 next = val + NUMAINFO_EVENTS_TARGET;
994 break;
995 default:
996 break;
997 }
998 __this_cpu_write(memcg->stat->targets[target], next);
999 return true;
1000 }
1001 return false;
1002 }
1003
1004 /*
1005 * Check events in order.
1006 *
1007 */
1008 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1009 {
1010 preempt_disable();
1011 /* threshold event is triggered in finer grain than soft limit */
1012 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_THRESH))) {
1014 bool do_softlimit;
1015 bool do_numainfo __maybe_unused;
1016
1017 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1018 MEM_CGROUP_TARGET_SOFTLIMIT);
1019 #if MAX_NUMNODES > 1
1020 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1021 MEM_CGROUP_TARGET_NUMAINFO);
1022 #endif
1023 preempt_enable();
1024
1025 mem_cgroup_threshold(memcg);
1026 if (unlikely(do_softlimit))
1027 mem_cgroup_update_tree(memcg, page);
1028 #if MAX_NUMNODES > 1
1029 if (unlikely(do_numainfo))
1030 atomic_inc(&memcg->numainfo_events);
1031 #endif
1032 } else
1033 preempt_enable();
1034 }
1035
1036 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1037 {
1038 return mem_cgroup_from_css(
1039 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1053 }
1054
1055 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 if (!mm)
1060 return NULL;
1061 /*
1062 * Because we have no locks, mm->owner's may be being moved to other
1063 * cgroup. We use css_tryget() here even if this looks
1064 * pessimistic (rather than adding locks here).
1065 */
1066 rcu_read_lock();
1067 do {
1068 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1069 if (unlikely(!memcg))
1070 break;
1071 } while (!css_tryget(&memcg->css));
1072 rcu_read_unlock();
1073 return memcg;
1074 }
1075
1076 /**
1077 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1078 * @root: hierarchy root
1079 * @prev: previously returned memcg, NULL on first invocation
1080 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1081 *
1082 * Returns references to children of the hierarchy below @root, or
1083 * @root itself, or %NULL after a full round-trip.
1084 *
1085 * Caller must pass the return value in @prev on subsequent
1086 * invocations for reference counting, or use mem_cgroup_iter_break()
1087 * to cancel a hierarchy walk before the round-trip is complete.
1088 *
1089 * Reclaimers can specify a zone and a priority level in @reclaim to
1090 * divide up the memcgs in the hierarchy among all concurrent
1091 * reclaimers operating on the same zone and priority.
1092 */
1093 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1094 struct mem_cgroup *prev,
1095 struct mem_cgroup_reclaim_cookie *reclaim)
1096 {
1097 struct mem_cgroup *memcg = NULL;
1098 struct mem_cgroup *last_visited = NULL;
1099 unsigned long uninitialized_var(dead_count);
1100
1101 if (mem_cgroup_disabled())
1102 return NULL;
1103
1104 if (!root)
1105 root = root_mem_cgroup;
1106
1107 if (prev && !reclaim)
1108 last_visited = prev;
1109
1110 if (!root->use_hierarchy && root != root_mem_cgroup) {
1111 if (prev)
1112 goto out_css_put;
1113 return root;
1114 }
1115
1116 rcu_read_lock();
1117 while (!memcg) {
1118 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1119
1120 if (reclaim) {
1121 int nid = zone_to_nid(reclaim->zone);
1122 int zid = zone_idx(reclaim->zone);
1123 struct mem_cgroup_per_zone *mz;
1124
1125 mz = mem_cgroup_zoneinfo(root, nid, zid);
1126 iter = &mz->reclaim_iter[reclaim->priority];
1127 last_visited = iter->last_visited;
1128 if (prev && reclaim->generation != iter->generation) {
1129 iter->last_visited = NULL;
1130 goto out_unlock;
1131 }
1132
1133 /*
1134 * If the dead_count mismatches, a destruction
1135 * has happened or is happening concurrently.
1136 * If the dead_count matches, a destruction
1137 * might still happen concurrently, but since
1138 * we checked under RCU, that destruction
1139 * won't free the object until we release the
1140 * RCU reader lock. Thus, the dead_count
1141 * check verifies the pointer is still valid,
1142 * css_tryget() verifies the cgroup pointed to
1143 * is alive.
1144 */
1145 dead_count = atomic_read(&root->dead_count);
1146 smp_rmb();
1147 last_visited = iter->last_visited;
1148 if (last_visited) {
1149 if ((dead_count != iter->last_dead_count) ||
1150 !css_tryget(&last_visited->css)) {
1151 last_visited = NULL;
1152 }
1153 }
1154 }
1155
1156 /*
1157 * Root is not visited by cgroup iterators so it needs an
1158 * explicit visit.
1159 */
1160 if (!last_visited) {
1161 memcg = root;
1162 } else {
1163 struct cgroup *prev_cgroup, *next_cgroup;
1164
1165 prev_cgroup = (last_visited == root) ? NULL
1166 : last_visited->css.cgroup;
1167 skip_node:
1168 next_cgroup = cgroup_next_descendant_pre(
1169 prev_cgroup, root->css.cgroup);
1170
1171 /*
1172 * Even if we found a group we have to make sure it is
1173 * alive. css && !memcg means that the groups should be
1174 * skipped and we should continue the tree walk.
1175 * last_visited css is safe to use because it is
1176 * protected by css_get and the tree walk is rcu safe.
1177 */
1178 if (next_cgroup) {
1179 struct mem_cgroup *mem = mem_cgroup_from_cont(
1180 next_cgroup);
1181 if (css_tryget(&mem->css))
1182 memcg = mem;
1183 else {
1184 prev_cgroup = next_cgroup;
1185 goto skip_node;
1186 }
1187 }
1188 }
1189
1190 if (reclaim) {
1191 if (last_visited)
1192 css_put(&last_visited->css);
1193
1194 iter->last_visited = memcg;
1195 smp_wmb();
1196 iter->last_dead_count = dead_count;
1197
1198 if (!memcg)
1199 iter->generation++;
1200 else if (!prev && memcg)
1201 reclaim->generation = iter->generation;
1202 }
1203
1204 if (prev && !memcg)
1205 goto out_unlock;
1206 }
1207 out_unlock:
1208 rcu_read_unlock();
1209 out_css_put:
1210 if (prev && prev != root)
1211 css_put(&prev->css);
1212
1213 return memcg;
1214 }
1215
1216 /**
1217 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1218 * @root: hierarchy root
1219 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1220 */
1221 void mem_cgroup_iter_break(struct mem_cgroup *root,
1222 struct mem_cgroup *prev)
1223 {
1224 if (!root)
1225 root = root_mem_cgroup;
1226 if (prev && prev != root)
1227 css_put(&prev->css);
1228 }
1229
1230 /*
1231 * Iteration constructs for visiting all cgroups (under a tree). If
1232 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1233 * be used for reference counting.
1234 */
1235 #define for_each_mem_cgroup_tree(iter, root) \
1236 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1237 iter != NULL; \
1238 iter = mem_cgroup_iter(root, iter, NULL))
1239
1240 #define for_each_mem_cgroup(iter) \
1241 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1242 iter != NULL; \
1243 iter = mem_cgroup_iter(NULL, iter, NULL))
1244
1245 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1246 {
1247 struct mem_cgroup *memcg;
1248
1249 rcu_read_lock();
1250 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1251 if (unlikely(!memcg))
1252 goto out;
1253
1254 switch (idx) {
1255 case PGFAULT:
1256 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1257 break;
1258 case PGMAJFAULT:
1259 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1260 break;
1261 default:
1262 BUG();
1263 }
1264 out:
1265 rcu_read_unlock();
1266 }
1267 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1268
1269 /**
1270 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1271 * @zone: zone of the wanted lruvec
1272 * @memcg: memcg of the wanted lruvec
1273 *
1274 * Returns the lru list vector holding pages for the given @zone and
1275 * @mem. This can be the global zone lruvec, if the memory controller
1276 * is disabled.
1277 */
1278 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1279 struct mem_cgroup *memcg)
1280 {
1281 struct mem_cgroup_per_zone *mz;
1282 struct lruvec *lruvec;
1283
1284 if (mem_cgroup_disabled()) {
1285 lruvec = &zone->lruvec;
1286 goto out;
1287 }
1288
1289 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1290 lruvec = &mz->lruvec;
1291 out:
1292 /*
1293 * Since a node can be onlined after the mem_cgroup was created,
1294 * we have to be prepared to initialize lruvec->zone here;
1295 * and if offlined then reonlined, we need to reinitialize it.
1296 */
1297 if (unlikely(lruvec->zone != zone))
1298 lruvec->zone = zone;
1299 return lruvec;
1300 }
1301
1302 /*
1303 * Following LRU functions are allowed to be used without PCG_LOCK.
1304 * Operations are called by routine of global LRU independently from memcg.
1305 * What we have to take care of here is validness of pc->mem_cgroup.
1306 *
1307 * Changes to pc->mem_cgroup happens when
1308 * 1. charge
1309 * 2. moving account
1310 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1311 * It is added to LRU before charge.
1312 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1313 * When moving account, the page is not on LRU. It's isolated.
1314 */
1315
1316 /**
1317 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1318 * @page: the page
1319 * @zone: zone of the page
1320 */
1321 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1322 {
1323 struct mem_cgroup_per_zone *mz;
1324 struct mem_cgroup *memcg;
1325 struct page_cgroup *pc;
1326 struct lruvec *lruvec;
1327
1328 if (mem_cgroup_disabled()) {
1329 lruvec = &zone->lruvec;
1330 goto out;
1331 }
1332
1333 pc = lookup_page_cgroup(page);
1334 memcg = pc->mem_cgroup;
1335
1336 /*
1337 * Surreptitiously switch any uncharged offlist page to root:
1338 * an uncharged page off lru does nothing to secure
1339 * its former mem_cgroup from sudden removal.
1340 *
1341 * Our caller holds lru_lock, and PageCgroupUsed is updated
1342 * under page_cgroup lock: between them, they make all uses
1343 * of pc->mem_cgroup safe.
1344 */
1345 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1346 pc->mem_cgroup = memcg = root_mem_cgroup;
1347
1348 mz = page_cgroup_zoneinfo(memcg, page);
1349 lruvec = &mz->lruvec;
1350 out:
1351 /*
1352 * Since a node can be onlined after the mem_cgroup was created,
1353 * we have to be prepared to initialize lruvec->zone here;
1354 * and if offlined then reonlined, we need to reinitialize it.
1355 */
1356 if (unlikely(lruvec->zone != zone))
1357 lruvec->zone = zone;
1358 return lruvec;
1359 }
1360
1361 /**
1362 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1363 * @lruvec: mem_cgroup per zone lru vector
1364 * @lru: index of lru list the page is sitting on
1365 * @nr_pages: positive when adding or negative when removing
1366 *
1367 * This function must be called when a page is added to or removed from an
1368 * lru list.
1369 */
1370 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1371 int nr_pages)
1372 {
1373 struct mem_cgroup_per_zone *mz;
1374 unsigned long *lru_size;
1375
1376 if (mem_cgroup_disabled())
1377 return;
1378
1379 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1380 lru_size = mz->lru_size + lru;
1381 *lru_size += nr_pages;
1382 VM_BUG_ON((long)(*lru_size) < 0);
1383 }
1384
1385 /*
1386 * Checks whether given mem is same or in the root_mem_cgroup's
1387 * hierarchy subtree
1388 */
1389 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1390 struct mem_cgroup *memcg)
1391 {
1392 if (root_memcg == memcg)
1393 return true;
1394 if (!root_memcg->use_hierarchy || !memcg)
1395 return false;
1396 return css_is_ancestor(&memcg->css, &root_memcg->css);
1397 }
1398
1399 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1400 struct mem_cgroup *memcg)
1401 {
1402 bool ret;
1403
1404 rcu_read_lock();
1405 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1406 rcu_read_unlock();
1407 return ret;
1408 }
1409
1410 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1411 {
1412 int ret;
1413 struct mem_cgroup *curr = NULL;
1414 struct task_struct *p;
1415
1416 p = find_lock_task_mm(task);
1417 if (p) {
1418 curr = try_get_mem_cgroup_from_mm(p->mm);
1419 task_unlock(p);
1420 } else {
1421 /*
1422 * All threads may have already detached their mm's, but the oom
1423 * killer still needs to detect if they have already been oom
1424 * killed to prevent needlessly killing additional tasks.
1425 */
1426 task_lock(task);
1427 curr = mem_cgroup_from_task(task);
1428 if (curr)
1429 css_get(&curr->css);
1430 task_unlock(task);
1431 }
1432 if (!curr)
1433 return 0;
1434 /*
1435 * We should check use_hierarchy of "memcg" not "curr". Because checking
1436 * use_hierarchy of "curr" here make this function true if hierarchy is
1437 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1438 * hierarchy(even if use_hierarchy is disabled in "memcg").
1439 */
1440 ret = mem_cgroup_same_or_subtree(memcg, curr);
1441 css_put(&curr->css);
1442 return ret;
1443 }
1444
1445 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1446 {
1447 unsigned long inactive_ratio;
1448 unsigned long inactive;
1449 unsigned long active;
1450 unsigned long gb;
1451
1452 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1453 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1454
1455 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1456 if (gb)
1457 inactive_ratio = int_sqrt(10 * gb);
1458 else
1459 inactive_ratio = 1;
1460
1461 return inactive * inactive_ratio < active;
1462 }
1463
1464 #define mem_cgroup_from_res_counter(counter, member) \
1465 container_of(counter, struct mem_cgroup, member)
1466
1467 /**
1468 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1469 * @memcg: the memory cgroup
1470 *
1471 * Returns the maximum amount of memory @mem can be charged with, in
1472 * pages.
1473 */
1474 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475 {
1476 unsigned long long margin;
1477
1478 margin = res_counter_margin(&memcg->res);
1479 if (do_swap_account)
1480 margin = min(margin, res_counter_margin(&memcg->memsw));
1481 return margin >> PAGE_SHIFT;
1482 }
1483
1484 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1485 {
1486 struct cgroup *cgrp = memcg->css.cgroup;
1487
1488 /* root ? */
1489 if (cgrp->parent == NULL)
1490 return vm_swappiness;
1491
1492 return memcg->swappiness;
1493 }
1494
1495 /*
1496 * memcg->moving_account is used for checking possibility that some thread is
1497 * calling move_account(). When a thread on CPU-A starts moving pages under
1498 * a memcg, other threads should check memcg->moving_account under
1499 * rcu_read_lock(), like this:
1500 *
1501 * CPU-A CPU-B
1502 * rcu_read_lock()
1503 * memcg->moving_account+1 if (memcg->mocing_account)
1504 * take heavy locks.
1505 * synchronize_rcu() update something.
1506 * rcu_read_unlock()
1507 * start move here.
1508 */
1509
1510 /* for quick checking without looking up memcg */
1511 atomic_t memcg_moving __read_mostly;
1512
1513 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1514 {
1515 atomic_inc(&memcg_moving);
1516 atomic_inc(&memcg->moving_account);
1517 synchronize_rcu();
1518 }
1519
1520 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1521 {
1522 /*
1523 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1524 * We check NULL in callee rather than caller.
1525 */
1526 if (memcg) {
1527 atomic_dec(&memcg_moving);
1528 atomic_dec(&memcg->moving_account);
1529 }
1530 }
1531
1532 /*
1533 * 2 routines for checking "mem" is under move_account() or not.
1534 *
1535 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1536 * is used for avoiding races in accounting. If true,
1537 * pc->mem_cgroup may be overwritten.
1538 *
1539 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1540 * under hierarchy of moving cgroups. This is for
1541 * waiting at hith-memory prressure caused by "move".
1542 */
1543
1544 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1545 {
1546 VM_BUG_ON(!rcu_read_lock_held());
1547 return atomic_read(&memcg->moving_account) > 0;
1548 }
1549
1550 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1551 {
1552 struct mem_cgroup *from;
1553 struct mem_cgroup *to;
1554 bool ret = false;
1555 /*
1556 * Unlike task_move routines, we access mc.to, mc.from not under
1557 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1558 */
1559 spin_lock(&mc.lock);
1560 from = mc.from;
1561 to = mc.to;
1562 if (!from)
1563 goto unlock;
1564
1565 ret = mem_cgroup_same_or_subtree(memcg, from)
1566 || mem_cgroup_same_or_subtree(memcg, to);
1567 unlock:
1568 spin_unlock(&mc.lock);
1569 return ret;
1570 }
1571
1572 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1573 {
1574 if (mc.moving_task && current != mc.moving_task) {
1575 if (mem_cgroup_under_move(memcg)) {
1576 DEFINE_WAIT(wait);
1577 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1578 /* moving charge context might have finished. */
1579 if (mc.moving_task)
1580 schedule();
1581 finish_wait(&mc.waitq, &wait);
1582 return true;
1583 }
1584 }
1585 return false;
1586 }
1587
1588 /*
1589 * Take this lock when
1590 * - a code tries to modify page's memcg while it's USED.
1591 * - a code tries to modify page state accounting in a memcg.
1592 * see mem_cgroup_stolen(), too.
1593 */
1594 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1595 unsigned long *flags)
1596 {
1597 spin_lock_irqsave(&memcg->move_lock, *flags);
1598 }
1599
1600 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1601 unsigned long *flags)
1602 {
1603 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1604 }
1605
1606 #define K(x) ((x) << (PAGE_SHIFT-10))
1607 /**
1608 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1609 * @memcg: The memory cgroup that went over limit
1610 * @p: Task that is going to be killed
1611 *
1612 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1613 * enabled
1614 */
1615 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1616 {
1617 struct cgroup *task_cgrp;
1618 struct cgroup *mem_cgrp;
1619 /*
1620 * Need a buffer in BSS, can't rely on allocations. The code relies
1621 * on the assumption that OOM is serialized for memory controller.
1622 * If this assumption is broken, revisit this code.
1623 */
1624 static char memcg_name[PATH_MAX];
1625 int ret;
1626 struct mem_cgroup *iter;
1627 unsigned int i;
1628
1629 if (!p)
1630 return;
1631
1632 rcu_read_lock();
1633
1634 mem_cgrp = memcg->css.cgroup;
1635 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1636
1637 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1638 if (ret < 0) {
1639 /*
1640 * Unfortunately, we are unable to convert to a useful name
1641 * But we'll still print out the usage information
1642 */
1643 rcu_read_unlock();
1644 goto done;
1645 }
1646 rcu_read_unlock();
1647
1648 pr_info("Task in %s killed", memcg_name);
1649
1650 rcu_read_lock();
1651 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1652 if (ret < 0) {
1653 rcu_read_unlock();
1654 goto done;
1655 }
1656 rcu_read_unlock();
1657
1658 /*
1659 * Continues from above, so we don't need an KERN_ level
1660 */
1661 pr_cont(" as a result of limit of %s\n", memcg_name);
1662 done:
1663
1664 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1665 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1666 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1667 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1668 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1669 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1670 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1671 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1672 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1673 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1674 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1675 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1676
1677 for_each_mem_cgroup_tree(iter, memcg) {
1678 pr_info("Memory cgroup stats");
1679
1680 rcu_read_lock();
1681 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1682 if (!ret)
1683 pr_cont(" for %s", memcg_name);
1684 rcu_read_unlock();
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
1700 }
1701
1702 /*
1703 * This function returns the number of memcg under hierarchy tree. Returns
1704 * 1(self count) if no children.
1705 */
1706 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1707 {
1708 int num = 0;
1709 struct mem_cgroup *iter;
1710
1711 for_each_mem_cgroup_tree(iter, memcg)
1712 num++;
1713 return num;
1714 }
1715
1716 /*
1717 * Return the memory (and swap, if configured) limit for a memcg.
1718 */
1719 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1720 {
1721 u64 limit;
1722
1723 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1724
1725 /*
1726 * Do not consider swap space if we cannot swap due to swappiness
1727 */
1728 if (mem_cgroup_swappiness(memcg)) {
1729 u64 memsw;
1730
1731 limit += total_swap_pages << PAGE_SHIFT;
1732 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1733
1734 /*
1735 * If memsw is finite and limits the amount of swap space
1736 * available to this memcg, return that limit.
1737 */
1738 limit = min(limit, memsw);
1739 }
1740
1741 return limit;
1742 }
1743
1744 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1745 int order)
1746 {
1747 struct mem_cgroup *iter;
1748 unsigned long chosen_points = 0;
1749 unsigned long totalpages;
1750 unsigned int points = 0;
1751 struct task_struct *chosen = NULL;
1752
1753 /*
1754 * If current has a pending SIGKILL, then automatically select it. The
1755 * goal is to allow it to allocate so that it may quickly exit and free
1756 * its memory.
1757 */
1758 if (fatal_signal_pending(current)) {
1759 set_thread_flag(TIF_MEMDIE);
1760 return;
1761 }
1762
1763 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1764 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1765 for_each_mem_cgroup_tree(iter, memcg) {
1766 struct cgroup *cgroup = iter->css.cgroup;
1767 struct cgroup_iter it;
1768 struct task_struct *task;
1769
1770 cgroup_iter_start(cgroup, &it);
1771 while ((task = cgroup_iter_next(cgroup, &it))) {
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
1784 cgroup_iter_end(cgroup, &it);
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
1793 if (points > chosen_points) {
1794 if (chosen)
1795 put_task_struct(chosen);
1796 chosen = task;
1797 chosen_points = points;
1798 get_task_struct(chosen);
1799 }
1800 }
1801 cgroup_iter_end(cgroup, &it);
1802 }
1803
1804 if (!chosen)
1805 return;
1806 points = chosen_points * 1000 / totalpages;
1807 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1808 NULL, "Memory cgroup out of memory");
1809 }
1810
1811 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1812 gfp_t gfp_mask,
1813 unsigned long flags)
1814 {
1815 unsigned long total = 0;
1816 bool noswap = false;
1817 int loop;
1818
1819 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1820 noswap = true;
1821 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1822 noswap = true;
1823
1824 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1825 if (loop)
1826 drain_all_stock_async(memcg);
1827 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1828 /*
1829 * Allow limit shrinkers, which are triggered directly
1830 * by userspace, to catch signals and stop reclaim
1831 * after minimal progress, regardless of the margin.
1832 */
1833 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1834 break;
1835 if (mem_cgroup_margin(memcg))
1836 break;
1837 /*
1838 * If nothing was reclaimed after two attempts, there
1839 * may be no reclaimable pages in this hierarchy.
1840 */
1841 if (loop && !total)
1842 break;
1843 }
1844 return total;
1845 }
1846
1847 /**
1848 * test_mem_cgroup_node_reclaimable
1849 * @memcg: the target memcg
1850 * @nid: the node ID to be checked.
1851 * @noswap : specify true here if the user wants flle only information.
1852 *
1853 * This function returns whether the specified memcg contains any
1854 * reclaimable pages on a node. Returns true if there are any reclaimable
1855 * pages in the node.
1856 */
1857 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1858 int nid, bool noswap)
1859 {
1860 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1861 return true;
1862 if (noswap || !total_swap_pages)
1863 return false;
1864 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1865 return true;
1866 return false;
1867
1868 }
1869 #if MAX_NUMNODES > 1
1870
1871 /*
1872 * Always updating the nodemask is not very good - even if we have an empty
1873 * list or the wrong list here, we can start from some node and traverse all
1874 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1875 *
1876 */
1877 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1878 {
1879 int nid;
1880 /*
1881 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1882 * pagein/pageout changes since the last update.
1883 */
1884 if (!atomic_read(&memcg->numainfo_events))
1885 return;
1886 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1887 return;
1888
1889 /* make a nodemask where this memcg uses memory from */
1890 memcg->scan_nodes = node_states[N_MEMORY];
1891
1892 for_each_node_mask(nid, node_states[N_MEMORY]) {
1893
1894 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1895 node_clear(nid, memcg->scan_nodes);
1896 }
1897
1898 atomic_set(&memcg->numainfo_events, 0);
1899 atomic_set(&memcg->numainfo_updating, 0);
1900 }
1901
1902 /*
1903 * Selecting a node where we start reclaim from. Because what we need is just
1904 * reducing usage counter, start from anywhere is O,K. Considering
1905 * memory reclaim from current node, there are pros. and cons.
1906 *
1907 * Freeing memory from current node means freeing memory from a node which
1908 * we'll use or we've used. So, it may make LRU bad. And if several threads
1909 * hit limits, it will see a contention on a node. But freeing from remote
1910 * node means more costs for memory reclaim because of memory latency.
1911 *
1912 * Now, we use round-robin. Better algorithm is welcomed.
1913 */
1914 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1915 {
1916 int node;
1917
1918 mem_cgroup_may_update_nodemask(memcg);
1919 node = memcg->last_scanned_node;
1920
1921 node = next_node(node, memcg->scan_nodes);
1922 if (node == MAX_NUMNODES)
1923 node = first_node(memcg->scan_nodes);
1924 /*
1925 * We call this when we hit limit, not when pages are added to LRU.
1926 * No LRU may hold pages because all pages are UNEVICTABLE or
1927 * memcg is too small and all pages are not on LRU. In that case,
1928 * we use curret node.
1929 */
1930 if (unlikely(node == MAX_NUMNODES))
1931 node = numa_node_id();
1932
1933 memcg->last_scanned_node = node;
1934 return node;
1935 }
1936
1937 /*
1938 * Check all nodes whether it contains reclaimable pages or not.
1939 * For quick scan, we make use of scan_nodes. This will allow us to skip
1940 * unused nodes. But scan_nodes is lazily updated and may not cotain
1941 * enough new information. We need to do double check.
1942 */
1943 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1944 {
1945 int nid;
1946
1947 /*
1948 * quick check...making use of scan_node.
1949 * We can skip unused nodes.
1950 */
1951 if (!nodes_empty(memcg->scan_nodes)) {
1952 for (nid = first_node(memcg->scan_nodes);
1953 nid < MAX_NUMNODES;
1954 nid = next_node(nid, memcg->scan_nodes)) {
1955
1956 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1957 return true;
1958 }
1959 }
1960 /*
1961 * Check rest of nodes.
1962 */
1963 for_each_node_state(nid, N_MEMORY) {
1964 if (node_isset(nid, memcg->scan_nodes))
1965 continue;
1966 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1967 return true;
1968 }
1969 return false;
1970 }
1971
1972 #else
1973 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1974 {
1975 return 0;
1976 }
1977
1978 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1979 {
1980 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1981 }
1982 #endif
1983
1984 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1985 struct zone *zone,
1986 gfp_t gfp_mask,
1987 unsigned long *total_scanned)
1988 {
1989 struct mem_cgroup *victim = NULL;
1990 int total = 0;
1991 int loop = 0;
1992 unsigned long excess;
1993 unsigned long nr_scanned;
1994 struct mem_cgroup_reclaim_cookie reclaim = {
1995 .zone = zone,
1996 .priority = 0,
1997 };
1998
1999 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2000
2001 while (1) {
2002 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2003 if (!victim) {
2004 loop++;
2005 if (loop >= 2) {
2006 /*
2007 * If we have not been able to reclaim
2008 * anything, it might because there are
2009 * no reclaimable pages under this hierarchy
2010 */
2011 if (!total)
2012 break;
2013 /*
2014 * We want to do more targeted reclaim.
2015 * excess >> 2 is not to excessive so as to
2016 * reclaim too much, nor too less that we keep
2017 * coming back to reclaim from this cgroup
2018 */
2019 if (total >= (excess >> 2) ||
2020 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2021 break;
2022 }
2023 continue;
2024 }
2025 if (!mem_cgroup_reclaimable(victim, false))
2026 continue;
2027 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2028 zone, &nr_scanned);
2029 *total_scanned += nr_scanned;
2030 if (!res_counter_soft_limit_excess(&root_memcg->res))
2031 break;
2032 }
2033 mem_cgroup_iter_break(root_memcg, victim);
2034 return total;
2035 }
2036
2037 /*
2038 * Check OOM-Killer is already running under our hierarchy.
2039 * If someone is running, return false.
2040 * Has to be called with memcg_oom_lock
2041 */
2042 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2043 {
2044 struct mem_cgroup *iter, *failed = NULL;
2045
2046 for_each_mem_cgroup_tree(iter, memcg) {
2047 if (iter->oom_lock) {
2048 /*
2049 * this subtree of our hierarchy is already locked
2050 * so we cannot give a lock.
2051 */
2052 failed = iter;
2053 mem_cgroup_iter_break(memcg, iter);
2054 break;
2055 } else
2056 iter->oom_lock = true;
2057 }
2058
2059 if (!failed)
2060 return true;
2061
2062 /*
2063 * OK, we failed to lock the whole subtree so we have to clean up
2064 * what we set up to the failing subtree
2065 */
2066 for_each_mem_cgroup_tree(iter, memcg) {
2067 if (iter == failed) {
2068 mem_cgroup_iter_break(memcg, iter);
2069 break;
2070 }
2071 iter->oom_lock = false;
2072 }
2073 return false;
2074 }
2075
2076 /*
2077 * Has to be called with memcg_oom_lock
2078 */
2079 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2080 {
2081 struct mem_cgroup *iter;
2082
2083 for_each_mem_cgroup_tree(iter, memcg)
2084 iter->oom_lock = false;
2085 return 0;
2086 }
2087
2088 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2089 {
2090 struct mem_cgroup *iter;
2091
2092 for_each_mem_cgroup_tree(iter, memcg)
2093 atomic_inc(&iter->under_oom);
2094 }
2095
2096 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2097 {
2098 struct mem_cgroup *iter;
2099
2100 /*
2101 * When a new child is created while the hierarchy is under oom,
2102 * mem_cgroup_oom_lock() may not be called. We have to use
2103 * atomic_add_unless() here.
2104 */
2105 for_each_mem_cgroup_tree(iter, memcg)
2106 atomic_add_unless(&iter->under_oom, -1, 0);
2107 }
2108
2109 static DEFINE_SPINLOCK(memcg_oom_lock);
2110 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2111
2112 struct oom_wait_info {
2113 struct mem_cgroup *memcg;
2114 wait_queue_t wait;
2115 };
2116
2117 static int memcg_oom_wake_function(wait_queue_t *wait,
2118 unsigned mode, int sync, void *arg)
2119 {
2120 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2121 struct mem_cgroup *oom_wait_memcg;
2122 struct oom_wait_info *oom_wait_info;
2123
2124 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2125 oom_wait_memcg = oom_wait_info->memcg;
2126
2127 /*
2128 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2129 * Then we can use css_is_ancestor without taking care of RCU.
2130 */
2131 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2132 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2133 return 0;
2134 return autoremove_wake_function(wait, mode, sync, arg);
2135 }
2136
2137 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2138 {
2139 /* for filtering, pass "memcg" as argument. */
2140 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2141 }
2142
2143 static void memcg_oom_recover(struct mem_cgroup *memcg)
2144 {
2145 if (memcg && atomic_read(&memcg->under_oom))
2146 memcg_wakeup_oom(memcg);
2147 }
2148
2149 /*
2150 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2151 */
2152 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2153 int order)
2154 {
2155 struct oom_wait_info owait;
2156 bool locked, need_to_kill;
2157
2158 owait.memcg = memcg;
2159 owait.wait.flags = 0;
2160 owait.wait.func = memcg_oom_wake_function;
2161 owait.wait.private = current;
2162 INIT_LIST_HEAD(&owait.wait.task_list);
2163 need_to_kill = true;
2164 mem_cgroup_mark_under_oom(memcg);
2165
2166 /* At first, try to OOM lock hierarchy under memcg.*/
2167 spin_lock(&memcg_oom_lock);
2168 locked = mem_cgroup_oom_lock(memcg);
2169 /*
2170 * Even if signal_pending(), we can't quit charge() loop without
2171 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2172 * under OOM is always welcomed, use TASK_KILLABLE here.
2173 */
2174 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2175 if (!locked || memcg->oom_kill_disable)
2176 need_to_kill = false;
2177 if (locked)
2178 mem_cgroup_oom_notify(memcg);
2179 spin_unlock(&memcg_oom_lock);
2180
2181 if (need_to_kill) {
2182 finish_wait(&memcg_oom_waitq, &owait.wait);
2183 mem_cgroup_out_of_memory(memcg, mask, order);
2184 } else {
2185 schedule();
2186 finish_wait(&memcg_oom_waitq, &owait.wait);
2187 }
2188 spin_lock(&memcg_oom_lock);
2189 if (locked)
2190 mem_cgroup_oom_unlock(memcg);
2191 memcg_wakeup_oom(memcg);
2192 spin_unlock(&memcg_oom_lock);
2193
2194 mem_cgroup_unmark_under_oom(memcg);
2195
2196 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2197 return false;
2198 /* Give chance to dying process */
2199 schedule_timeout_uninterruptible(1);
2200 return true;
2201 }
2202
2203 /*
2204 * Currently used to update mapped file statistics, but the routine can be
2205 * generalized to update other statistics as well.
2206 *
2207 * Notes: Race condition
2208 *
2209 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2210 * it tends to be costly. But considering some conditions, we doesn't need
2211 * to do so _always_.
2212 *
2213 * Considering "charge", lock_page_cgroup() is not required because all
2214 * file-stat operations happen after a page is attached to radix-tree. There
2215 * are no race with "charge".
2216 *
2217 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2218 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2219 * if there are race with "uncharge". Statistics itself is properly handled
2220 * by flags.
2221 *
2222 * Considering "move", this is an only case we see a race. To make the race
2223 * small, we check mm->moving_account and detect there are possibility of race
2224 * If there is, we take a lock.
2225 */
2226
2227 void __mem_cgroup_begin_update_page_stat(struct page *page,
2228 bool *locked, unsigned long *flags)
2229 {
2230 struct mem_cgroup *memcg;
2231 struct page_cgroup *pc;
2232
2233 pc = lookup_page_cgroup(page);
2234 again:
2235 memcg = pc->mem_cgroup;
2236 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2237 return;
2238 /*
2239 * If this memory cgroup is not under account moving, we don't
2240 * need to take move_lock_mem_cgroup(). Because we already hold
2241 * rcu_read_lock(), any calls to move_account will be delayed until
2242 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2243 */
2244 if (!mem_cgroup_stolen(memcg))
2245 return;
2246
2247 move_lock_mem_cgroup(memcg, flags);
2248 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2249 move_unlock_mem_cgroup(memcg, flags);
2250 goto again;
2251 }
2252 *locked = true;
2253 }
2254
2255 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2256 {
2257 struct page_cgroup *pc = lookup_page_cgroup(page);
2258
2259 /*
2260 * It's guaranteed that pc->mem_cgroup never changes while
2261 * lock is held because a routine modifies pc->mem_cgroup
2262 * should take move_lock_mem_cgroup().
2263 */
2264 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2265 }
2266
2267 void mem_cgroup_update_page_stat(struct page *page,
2268 enum mem_cgroup_page_stat_item idx, int val)
2269 {
2270 struct mem_cgroup *memcg;
2271 struct page_cgroup *pc = lookup_page_cgroup(page);
2272 unsigned long uninitialized_var(flags);
2273
2274 if (mem_cgroup_disabled())
2275 return;
2276
2277 memcg = pc->mem_cgroup;
2278 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2279 return;
2280
2281 switch (idx) {
2282 case MEMCG_NR_FILE_MAPPED:
2283 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2284 break;
2285 default:
2286 BUG();
2287 }
2288
2289 this_cpu_add(memcg->stat->count[idx], val);
2290 }
2291
2292 /*
2293 * size of first charge trial. "32" comes from vmscan.c's magic value.
2294 * TODO: maybe necessary to use big numbers in big irons.
2295 */
2296 #define CHARGE_BATCH 32U
2297 struct memcg_stock_pcp {
2298 struct mem_cgroup *cached; /* this never be root cgroup */
2299 unsigned int nr_pages;
2300 struct work_struct work;
2301 unsigned long flags;
2302 #define FLUSHING_CACHED_CHARGE 0
2303 };
2304 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2305 static DEFINE_MUTEX(percpu_charge_mutex);
2306
2307 /**
2308 * consume_stock: Try to consume stocked charge on this cpu.
2309 * @memcg: memcg to consume from.
2310 * @nr_pages: how many pages to charge.
2311 *
2312 * The charges will only happen if @memcg matches the current cpu's memcg
2313 * stock, and at least @nr_pages are available in that stock. Failure to
2314 * service an allocation will refill the stock.
2315 *
2316 * returns true if successful, false otherwise.
2317 */
2318 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2319 {
2320 struct memcg_stock_pcp *stock;
2321 bool ret = true;
2322
2323 if (nr_pages > CHARGE_BATCH)
2324 return false;
2325
2326 stock = &get_cpu_var(memcg_stock);
2327 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2328 stock->nr_pages -= nr_pages;
2329 else /* need to call res_counter_charge */
2330 ret = false;
2331 put_cpu_var(memcg_stock);
2332 return ret;
2333 }
2334
2335 /*
2336 * Returns stocks cached in percpu to res_counter and reset cached information.
2337 */
2338 static void drain_stock(struct memcg_stock_pcp *stock)
2339 {
2340 struct mem_cgroup *old = stock->cached;
2341
2342 if (stock->nr_pages) {
2343 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2344
2345 res_counter_uncharge(&old->res, bytes);
2346 if (do_swap_account)
2347 res_counter_uncharge(&old->memsw, bytes);
2348 stock->nr_pages = 0;
2349 }
2350 stock->cached = NULL;
2351 }
2352
2353 /*
2354 * This must be called under preempt disabled or must be called by
2355 * a thread which is pinned to local cpu.
2356 */
2357 static void drain_local_stock(struct work_struct *dummy)
2358 {
2359 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2360 drain_stock(stock);
2361 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2362 }
2363
2364 static void __init memcg_stock_init(void)
2365 {
2366 int cpu;
2367
2368 for_each_possible_cpu(cpu) {
2369 struct memcg_stock_pcp *stock =
2370 &per_cpu(memcg_stock, cpu);
2371 INIT_WORK(&stock->work, drain_local_stock);
2372 }
2373 }
2374
2375 /*
2376 * Cache charges(val) which is from res_counter, to local per_cpu area.
2377 * This will be consumed by consume_stock() function, later.
2378 */
2379 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2380 {
2381 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2382
2383 if (stock->cached != memcg) { /* reset if necessary */
2384 drain_stock(stock);
2385 stock->cached = memcg;
2386 }
2387 stock->nr_pages += nr_pages;
2388 put_cpu_var(memcg_stock);
2389 }
2390
2391 /*
2392 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2393 * of the hierarchy under it. sync flag says whether we should block
2394 * until the work is done.
2395 */
2396 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2397 {
2398 int cpu, curcpu;
2399
2400 /* Notify other cpus that system-wide "drain" is running */
2401 get_online_cpus();
2402 curcpu = get_cpu();
2403 for_each_online_cpu(cpu) {
2404 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2405 struct mem_cgroup *memcg;
2406
2407 memcg = stock->cached;
2408 if (!memcg || !stock->nr_pages)
2409 continue;
2410 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2411 continue;
2412 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2413 if (cpu == curcpu)
2414 drain_local_stock(&stock->work);
2415 else
2416 schedule_work_on(cpu, &stock->work);
2417 }
2418 }
2419 put_cpu();
2420
2421 if (!sync)
2422 goto out;
2423
2424 for_each_online_cpu(cpu) {
2425 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2427 flush_work(&stock->work);
2428 }
2429 out:
2430 put_online_cpus();
2431 }
2432
2433 /*
2434 * Tries to drain stocked charges in other cpus. This function is asynchronous
2435 * and just put a work per cpu for draining localy on each cpu. Caller can
2436 * expects some charges will be back to res_counter later but cannot wait for
2437 * it.
2438 */
2439 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2440 {
2441 /*
2442 * If someone calls draining, avoid adding more kworker runs.
2443 */
2444 if (!mutex_trylock(&percpu_charge_mutex))
2445 return;
2446 drain_all_stock(root_memcg, false);
2447 mutex_unlock(&percpu_charge_mutex);
2448 }
2449
2450 /* This is a synchronous drain interface. */
2451 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2452 {
2453 /* called when force_empty is called */
2454 mutex_lock(&percpu_charge_mutex);
2455 drain_all_stock(root_memcg, true);
2456 mutex_unlock(&percpu_charge_mutex);
2457 }
2458
2459 /*
2460 * This function drains percpu counter value from DEAD cpu and
2461 * move it to local cpu. Note that this function can be preempted.
2462 */
2463 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2464 {
2465 int i;
2466
2467 spin_lock(&memcg->pcp_counter_lock);
2468 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2469 long x = per_cpu(memcg->stat->count[i], cpu);
2470
2471 per_cpu(memcg->stat->count[i], cpu) = 0;
2472 memcg->nocpu_base.count[i] += x;
2473 }
2474 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2475 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2476
2477 per_cpu(memcg->stat->events[i], cpu) = 0;
2478 memcg->nocpu_base.events[i] += x;
2479 }
2480 spin_unlock(&memcg->pcp_counter_lock);
2481 }
2482
2483 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2484 unsigned long action,
2485 void *hcpu)
2486 {
2487 int cpu = (unsigned long)hcpu;
2488 struct memcg_stock_pcp *stock;
2489 struct mem_cgroup *iter;
2490
2491 if (action == CPU_ONLINE)
2492 return NOTIFY_OK;
2493
2494 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2495 return NOTIFY_OK;
2496
2497 for_each_mem_cgroup(iter)
2498 mem_cgroup_drain_pcp_counter(iter, cpu);
2499
2500 stock = &per_cpu(memcg_stock, cpu);
2501 drain_stock(stock);
2502 return NOTIFY_OK;
2503 }
2504
2505
2506 /* See __mem_cgroup_try_charge() for details */
2507 enum {
2508 CHARGE_OK, /* success */
2509 CHARGE_RETRY, /* need to retry but retry is not bad */
2510 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2511 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2512 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2513 };
2514
2515 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2516 unsigned int nr_pages, unsigned int min_pages,
2517 bool oom_check)
2518 {
2519 unsigned long csize = nr_pages * PAGE_SIZE;
2520 struct mem_cgroup *mem_over_limit;
2521 struct res_counter *fail_res;
2522 unsigned long flags = 0;
2523 int ret;
2524
2525 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2526
2527 if (likely(!ret)) {
2528 if (!do_swap_account)
2529 return CHARGE_OK;
2530 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2531 if (likely(!ret))
2532 return CHARGE_OK;
2533
2534 res_counter_uncharge(&memcg->res, csize);
2535 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2536 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2537 } else
2538 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2539 /*
2540 * Never reclaim on behalf of optional batching, retry with a
2541 * single page instead.
2542 */
2543 if (nr_pages > min_pages)
2544 return CHARGE_RETRY;
2545
2546 if (!(gfp_mask & __GFP_WAIT))
2547 return CHARGE_WOULDBLOCK;
2548
2549 if (gfp_mask & __GFP_NORETRY)
2550 return CHARGE_NOMEM;
2551
2552 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2553 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2554 return CHARGE_RETRY;
2555 /*
2556 * Even though the limit is exceeded at this point, reclaim
2557 * may have been able to free some pages. Retry the charge
2558 * before killing the task.
2559 *
2560 * Only for regular pages, though: huge pages are rather
2561 * unlikely to succeed so close to the limit, and we fall back
2562 * to regular pages anyway in case of failure.
2563 */
2564 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2565 return CHARGE_RETRY;
2566
2567 /*
2568 * At task move, charge accounts can be doubly counted. So, it's
2569 * better to wait until the end of task_move if something is going on.
2570 */
2571 if (mem_cgroup_wait_acct_move(mem_over_limit))
2572 return CHARGE_RETRY;
2573
2574 /* If we don't need to call oom-killer at el, return immediately */
2575 if (!oom_check)
2576 return CHARGE_NOMEM;
2577 /* check OOM */
2578 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2579 return CHARGE_OOM_DIE;
2580
2581 return CHARGE_RETRY;
2582 }
2583
2584 /*
2585 * __mem_cgroup_try_charge() does
2586 * 1. detect memcg to be charged against from passed *mm and *ptr,
2587 * 2. update res_counter
2588 * 3. call memory reclaim if necessary.
2589 *
2590 * In some special case, if the task is fatal, fatal_signal_pending() or
2591 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2592 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2593 * as possible without any hazards. 2: all pages should have a valid
2594 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2595 * pointer, that is treated as a charge to root_mem_cgroup.
2596 *
2597 * So __mem_cgroup_try_charge() will return
2598 * 0 ... on success, filling *ptr with a valid memcg pointer.
2599 * -ENOMEM ... charge failure because of resource limits.
2600 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2601 *
2602 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2603 * the oom-killer can be invoked.
2604 */
2605 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2606 gfp_t gfp_mask,
2607 unsigned int nr_pages,
2608 struct mem_cgroup **ptr,
2609 bool oom)
2610 {
2611 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2612 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2613 struct mem_cgroup *memcg = NULL;
2614 int ret;
2615
2616 /*
2617 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2618 * in system level. So, allow to go ahead dying process in addition to
2619 * MEMDIE process.
2620 */
2621 if (unlikely(test_thread_flag(TIF_MEMDIE)
2622 || fatal_signal_pending(current)))
2623 goto bypass;
2624
2625 /*
2626 * We always charge the cgroup the mm_struct belongs to.
2627 * The mm_struct's mem_cgroup changes on task migration if the
2628 * thread group leader migrates. It's possible that mm is not
2629 * set, if so charge the root memcg (happens for pagecache usage).
2630 */
2631 if (!*ptr && !mm)
2632 *ptr = root_mem_cgroup;
2633 again:
2634 if (*ptr) { /* css should be a valid one */
2635 memcg = *ptr;
2636 if (mem_cgroup_is_root(memcg))
2637 goto done;
2638 if (consume_stock(memcg, nr_pages))
2639 goto done;
2640 css_get(&memcg->css);
2641 } else {
2642 struct task_struct *p;
2643
2644 rcu_read_lock();
2645 p = rcu_dereference(mm->owner);
2646 /*
2647 * Because we don't have task_lock(), "p" can exit.
2648 * In that case, "memcg" can point to root or p can be NULL with
2649 * race with swapoff. Then, we have small risk of mis-accouning.
2650 * But such kind of mis-account by race always happens because
2651 * we don't have cgroup_mutex(). It's overkill and we allo that
2652 * small race, here.
2653 * (*) swapoff at el will charge against mm-struct not against
2654 * task-struct. So, mm->owner can be NULL.
2655 */
2656 memcg = mem_cgroup_from_task(p);
2657 if (!memcg)
2658 memcg = root_mem_cgroup;
2659 if (mem_cgroup_is_root(memcg)) {
2660 rcu_read_unlock();
2661 goto done;
2662 }
2663 if (consume_stock(memcg, nr_pages)) {
2664 /*
2665 * It seems dagerous to access memcg without css_get().
2666 * But considering how consume_stok works, it's not
2667 * necessary. If consume_stock success, some charges
2668 * from this memcg are cached on this cpu. So, we
2669 * don't need to call css_get()/css_tryget() before
2670 * calling consume_stock().
2671 */
2672 rcu_read_unlock();
2673 goto done;
2674 }
2675 /* after here, we may be blocked. we need to get refcnt */
2676 if (!css_tryget(&memcg->css)) {
2677 rcu_read_unlock();
2678 goto again;
2679 }
2680 rcu_read_unlock();
2681 }
2682
2683 do {
2684 bool oom_check;
2685
2686 /* If killed, bypass charge */
2687 if (fatal_signal_pending(current)) {
2688 css_put(&memcg->css);
2689 goto bypass;
2690 }
2691
2692 oom_check = false;
2693 if (oom && !nr_oom_retries) {
2694 oom_check = true;
2695 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2696 }
2697
2698 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2699 oom_check);
2700 switch (ret) {
2701 case CHARGE_OK:
2702 break;
2703 case CHARGE_RETRY: /* not in OOM situation but retry */
2704 batch = nr_pages;
2705 css_put(&memcg->css);
2706 memcg = NULL;
2707 goto again;
2708 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2709 css_put(&memcg->css);
2710 goto nomem;
2711 case CHARGE_NOMEM: /* OOM routine works */
2712 if (!oom) {
2713 css_put(&memcg->css);
2714 goto nomem;
2715 }
2716 /* If oom, we never return -ENOMEM */
2717 nr_oom_retries--;
2718 break;
2719 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2720 css_put(&memcg->css);
2721 goto bypass;
2722 }
2723 } while (ret != CHARGE_OK);
2724
2725 if (batch > nr_pages)
2726 refill_stock(memcg, batch - nr_pages);
2727 css_put(&memcg->css);
2728 done:
2729 *ptr = memcg;
2730 return 0;
2731 nomem:
2732 *ptr = NULL;
2733 return -ENOMEM;
2734 bypass:
2735 *ptr = root_mem_cgroup;
2736 return -EINTR;
2737 }
2738
2739 /*
2740 * Somemtimes we have to undo a charge we got by try_charge().
2741 * This function is for that and do uncharge, put css's refcnt.
2742 * gotten by try_charge().
2743 */
2744 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2745 unsigned int nr_pages)
2746 {
2747 if (!mem_cgroup_is_root(memcg)) {
2748 unsigned long bytes = nr_pages * PAGE_SIZE;
2749
2750 res_counter_uncharge(&memcg->res, bytes);
2751 if (do_swap_account)
2752 res_counter_uncharge(&memcg->memsw, bytes);
2753 }
2754 }
2755
2756 /*
2757 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2758 * This is useful when moving usage to parent cgroup.
2759 */
2760 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2761 unsigned int nr_pages)
2762 {
2763 unsigned long bytes = nr_pages * PAGE_SIZE;
2764
2765 if (mem_cgroup_is_root(memcg))
2766 return;
2767
2768 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2769 if (do_swap_account)
2770 res_counter_uncharge_until(&memcg->memsw,
2771 memcg->memsw.parent, bytes);
2772 }
2773
2774 /*
2775 * A helper function to get mem_cgroup from ID. must be called under
2776 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2777 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2778 * called against removed memcg.)
2779 */
2780 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2781 {
2782 struct cgroup_subsys_state *css;
2783
2784 /* ID 0 is unused ID */
2785 if (!id)
2786 return NULL;
2787 css = css_lookup(&mem_cgroup_subsys, id);
2788 if (!css)
2789 return NULL;
2790 return mem_cgroup_from_css(css);
2791 }
2792
2793 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2794 {
2795 struct mem_cgroup *memcg = NULL;
2796 struct page_cgroup *pc;
2797 unsigned short id;
2798 swp_entry_t ent;
2799
2800 VM_BUG_ON(!PageLocked(page));
2801
2802 pc = lookup_page_cgroup(page);
2803 lock_page_cgroup(pc);
2804 if (PageCgroupUsed(pc)) {
2805 memcg = pc->mem_cgroup;
2806 if (memcg && !css_tryget(&memcg->css))
2807 memcg = NULL;
2808 } else if (PageSwapCache(page)) {
2809 ent.val = page_private(page);
2810 id = lookup_swap_cgroup_id(ent);
2811 rcu_read_lock();
2812 memcg = mem_cgroup_lookup(id);
2813 if (memcg && !css_tryget(&memcg->css))
2814 memcg = NULL;
2815 rcu_read_unlock();
2816 }
2817 unlock_page_cgroup(pc);
2818 return memcg;
2819 }
2820
2821 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2822 struct page *page,
2823 unsigned int nr_pages,
2824 enum charge_type ctype,
2825 bool lrucare)
2826 {
2827 struct page_cgroup *pc = lookup_page_cgroup(page);
2828 struct zone *uninitialized_var(zone);
2829 struct lruvec *lruvec;
2830 bool was_on_lru = false;
2831 bool anon;
2832
2833 lock_page_cgroup(pc);
2834 VM_BUG_ON(PageCgroupUsed(pc));
2835 /*
2836 * we don't need page_cgroup_lock about tail pages, becase they are not
2837 * accessed by any other context at this point.
2838 */
2839
2840 /*
2841 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2842 * may already be on some other mem_cgroup's LRU. Take care of it.
2843 */
2844 if (lrucare) {
2845 zone = page_zone(page);
2846 spin_lock_irq(&zone->lru_lock);
2847 if (PageLRU(page)) {
2848 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2849 ClearPageLRU(page);
2850 del_page_from_lru_list(page, lruvec, page_lru(page));
2851 was_on_lru = true;
2852 }
2853 }
2854
2855 pc->mem_cgroup = memcg;
2856 /*
2857 * We access a page_cgroup asynchronously without lock_page_cgroup().
2858 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2859 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2860 * before USED bit, we need memory barrier here.
2861 * See mem_cgroup_add_lru_list(), etc.
2862 */
2863 smp_wmb();
2864 SetPageCgroupUsed(pc);
2865
2866 if (lrucare) {
2867 if (was_on_lru) {
2868 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2869 VM_BUG_ON(PageLRU(page));
2870 SetPageLRU(page);
2871 add_page_to_lru_list(page, lruvec, page_lru(page));
2872 }
2873 spin_unlock_irq(&zone->lru_lock);
2874 }
2875
2876 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2877 anon = true;
2878 else
2879 anon = false;
2880
2881 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2882 unlock_page_cgroup(pc);
2883
2884 /*
2885 * "charge_statistics" updated event counter. Then, check it.
2886 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2887 * if they exceeds softlimit.
2888 */
2889 memcg_check_events(memcg, page);
2890 }
2891
2892 static DEFINE_MUTEX(set_limit_mutex);
2893
2894 #ifdef CONFIG_MEMCG_KMEM
2895 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2896 {
2897 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2898 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2899 }
2900
2901 /*
2902 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2903 * in the memcg_cache_params struct.
2904 */
2905 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2906 {
2907 struct kmem_cache *cachep;
2908
2909 VM_BUG_ON(p->is_root_cache);
2910 cachep = p->root_cache;
2911 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2912 }
2913
2914 #ifdef CONFIG_SLABINFO
2915 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2916 struct seq_file *m)
2917 {
2918 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2919 struct memcg_cache_params *params;
2920
2921 if (!memcg_can_account_kmem(memcg))
2922 return -EIO;
2923
2924 print_slabinfo_header(m);
2925
2926 mutex_lock(&memcg->slab_caches_mutex);
2927 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2928 cache_show(memcg_params_to_cache(params), m);
2929 mutex_unlock(&memcg->slab_caches_mutex);
2930
2931 return 0;
2932 }
2933 #endif
2934
2935 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2936 {
2937 struct res_counter *fail_res;
2938 struct mem_cgroup *_memcg;
2939 int ret = 0;
2940 bool may_oom;
2941
2942 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2943 if (ret)
2944 return ret;
2945
2946 /*
2947 * Conditions under which we can wait for the oom_killer. Those are
2948 * the same conditions tested by the core page allocator
2949 */
2950 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2951
2952 _memcg = memcg;
2953 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2954 &_memcg, may_oom);
2955
2956 if (ret == -EINTR) {
2957 /*
2958 * __mem_cgroup_try_charge() chosed to bypass to root due to
2959 * OOM kill or fatal signal. Since our only options are to
2960 * either fail the allocation or charge it to this cgroup, do
2961 * it as a temporary condition. But we can't fail. From a
2962 * kmem/slab perspective, the cache has already been selected,
2963 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2964 * our minds.
2965 *
2966 * This condition will only trigger if the task entered
2967 * memcg_charge_kmem in a sane state, but was OOM-killed during
2968 * __mem_cgroup_try_charge() above. Tasks that were already
2969 * dying when the allocation triggers should have been already
2970 * directed to the root cgroup in memcontrol.h
2971 */
2972 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2973 if (do_swap_account)
2974 res_counter_charge_nofail(&memcg->memsw, size,
2975 &fail_res);
2976 ret = 0;
2977 } else if (ret)
2978 res_counter_uncharge(&memcg->kmem, size);
2979
2980 return ret;
2981 }
2982
2983 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2984 {
2985 res_counter_uncharge(&memcg->res, size);
2986 if (do_swap_account)
2987 res_counter_uncharge(&memcg->memsw, size);
2988
2989 /* Not down to 0 */
2990 if (res_counter_uncharge(&memcg->kmem, size))
2991 return;
2992
2993 if (memcg_kmem_test_and_clear_dead(memcg))
2994 mem_cgroup_put(memcg);
2995 }
2996
2997 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2998 {
2999 if (!memcg)
3000 return;
3001
3002 mutex_lock(&memcg->slab_caches_mutex);
3003 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3004 mutex_unlock(&memcg->slab_caches_mutex);
3005 }
3006
3007 /*
3008 * helper for acessing a memcg's index. It will be used as an index in the
3009 * child cache array in kmem_cache, and also to derive its name. This function
3010 * will return -1 when this is not a kmem-limited memcg.
3011 */
3012 int memcg_cache_id(struct mem_cgroup *memcg)
3013 {
3014 return memcg ? memcg->kmemcg_id : -1;
3015 }
3016
3017 /*
3018 * This ends up being protected by the set_limit mutex, during normal
3019 * operation, because that is its main call site.
3020 *
3021 * But when we create a new cache, we can call this as well if its parent
3022 * is kmem-limited. That will have to hold set_limit_mutex as well.
3023 */
3024 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3025 {
3026 int num, ret;
3027
3028 num = ida_simple_get(&kmem_limited_groups,
3029 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3030 if (num < 0)
3031 return num;
3032 /*
3033 * After this point, kmem_accounted (that we test atomically in
3034 * the beginning of this conditional), is no longer 0. This
3035 * guarantees only one process will set the following boolean
3036 * to true. We don't need test_and_set because we're protected
3037 * by the set_limit_mutex anyway.
3038 */
3039 memcg_kmem_set_activated(memcg);
3040
3041 ret = memcg_update_all_caches(num+1);
3042 if (ret) {
3043 ida_simple_remove(&kmem_limited_groups, num);
3044 memcg_kmem_clear_activated(memcg);
3045 return ret;
3046 }
3047
3048 memcg->kmemcg_id = num;
3049 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3050 mutex_init(&memcg->slab_caches_mutex);
3051 return 0;
3052 }
3053
3054 static size_t memcg_caches_array_size(int num_groups)
3055 {
3056 ssize_t size;
3057 if (num_groups <= 0)
3058 return 0;
3059
3060 size = 2 * num_groups;
3061 if (size < MEMCG_CACHES_MIN_SIZE)
3062 size = MEMCG_CACHES_MIN_SIZE;
3063 else if (size > MEMCG_CACHES_MAX_SIZE)
3064 size = MEMCG_CACHES_MAX_SIZE;
3065
3066 return size;
3067 }
3068
3069 /*
3070 * We should update the current array size iff all caches updates succeed. This
3071 * can only be done from the slab side. The slab mutex needs to be held when
3072 * calling this.
3073 */
3074 void memcg_update_array_size(int num)
3075 {
3076 if (num > memcg_limited_groups_array_size)
3077 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3078 }
3079
3080 static void kmem_cache_destroy_work_func(struct work_struct *w);
3081
3082 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3083 {
3084 struct memcg_cache_params *cur_params = s->memcg_params;
3085
3086 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3087
3088 if (num_groups > memcg_limited_groups_array_size) {
3089 int i;
3090 ssize_t size = memcg_caches_array_size(num_groups);
3091
3092 size *= sizeof(void *);
3093 size += sizeof(struct memcg_cache_params);
3094
3095 s->memcg_params = kzalloc(size, GFP_KERNEL);
3096 if (!s->memcg_params) {
3097 s->memcg_params = cur_params;
3098 return -ENOMEM;
3099 }
3100
3101 INIT_WORK(&s->memcg_params->destroy,
3102 kmem_cache_destroy_work_func);
3103 s->memcg_params->is_root_cache = true;
3104
3105 /*
3106 * There is the chance it will be bigger than
3107 * memcg_limited_groups_array_size, if we failed an allocation
3108 * in a cache, in which case all caches updated before it, will
3109 * have a bigger array.
3110 *
3111 * But if that is the case, the data after
3112 * memcg_limited_groups_array_size is certainly unused
3113 */
3114 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3115 if (!cur_params->memcg_caches[i])
3116 continue;
3117 s->memcg_params->memcg_caches[i] =
3118 cur_params->memcg_caches[i];
3119 }
3120
3121 /*
3122 * Ideally, we would wait until all caches succeed, and only
3123 * then free the old one. But this is not worth the extra
3124 * pointer per-cache we'd have to have for this.
3125 *
3126 * It is not a big deal if some caches are left with a size
3127 * bigger than the others. And all updates will reset this
3128 * anyway.
3129 */
3130 kfree(cur_params);
3131 }
3132 return 0;
3133 }
3134
3135 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3136 struct kmem_cache *root_cache)
3137 {
3138 size_t size = sizeof(struct memcg_cache_params);
3139
3140 if (!memcg_kmem_enabled())
3141 return 0;
3142
3143 if (!memcg)
3144 size += memcg_limited_groups_array_size * sizeof(void *);
3145
3146 s->memcg_params = kzalloc(size, GFP_KERNEL);
3147 if (!s->memcg_params)
3148 return -ENOMEM;
3149
3150 INIT_WORK(&s->memcg_params->destroy,
3151 kmem_cache_destroy_work_func);
3152 if (memcg) {
3153 s->memcg_params->memcg = memcg;
3154 s->memcg_params->root_cache = root_cache;
3155 } else
3156 s->memcg_params->is_root_cache = true;
3157
3158 return 0;
3159 }
3160
3161 void memcg_release_cache(struct kmem_cache *s)
3162 {
3163 struct kmem_cache *root;
3164 struct mem_cgroup *memcg;
3165 int id;
3166
3167 /*
3168 * This happens, for instance, when a root cache goes away before we
3169 * add any memcg.
3170 */
3171 if (!s->memcg_params)
3172 return;
3173
3174 if (s->memcg_params->is_root_cache)
3175 goto out;
3176
3177 memcg = s->memcg_params->memcg;
3178 id = memcg_cache_id(memcg);
3179
3180 root = s->memcg_params->root_cache;
3181 root->memcg_params->memcg_caches[id] = NULL;
3182 mem_cgroup_put(memcg);
3183
3184 mutex_lock(&memcg->slab_caches_mutex);
3185 list_del(&s->memcg_params->list);
3186 mutex_unlock(&memcg->slab_caches_mutex);
3187
3188 out:
3189 kfree(s->memcg_params);
3190 }
3191
3192 /*
3193 * During the creation a new cache, we need to disable our accounting mechanism
3194 * altogether. This is true even if we are not creating, but rather just
3195 * enqueing new caches to be created.
3196 *
3197 * This is because that process will trigger allocations; some visible, like
3198 * explicit kmallocs to auxiliary data structures, name strings and internal
3199 * cache structures; some well concealed, like INIT_WORK() that can allocate
3200 * objects during debug.
3201 *
3202 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3203 * to it. This may not be a bounded recursion: since the first cache creation
3204 * failed to complete (waiting on the allocation), we'll just try to create the
3205 * cache again, failing at the same point.
3206 *
3207 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3208 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3209 * inside the following two functions.
3210 */
3211 static inline void memcg_stop_kmem_account(void)
3212 {
3213 VM_BUG_ON(!current->mm);
3214 current->memcg_kmem_skip_account++;
3215 }
3216
3217 static inline void memcg_resume_kmem_account(void)
3218 {
3219 VM_BUG_ON(!current->mm);
3220 current->memcg_kmem_skip_account--;
3221 }
3222
3223 static void kmem_cache_destroy_work_func(struct work_struct *w)
3224 {
3225 struct kmem_cache *cachep;
3226 struct memcg_cache_params *p;
3227
3228 p = container_of(w, struct memcg_cache_params, destroy);
3229
3230 cachep = memcg_params_to_cache(p);
3231
3232 /*
3233 * If we get down to 0 after shrink, we could delete right away.
3234 * However, memcg_release_pages() already puts us back in the workqueue
3235 * in that case. If we proceed deleting, we'll get a dangling
3236 * reference, and removing the object from the workqueue in that case
3237 * is unnecessary complication. We are not a fast path.
3238 *
3239 * Note that this case is fundamentally different from racing with
3240 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3241 * kmem_cache_shrink, not only we would be reinserting a dead cache
3242 * into the queue, but doing so from inside the worker racing to
3243 * destroy it.
3244 *
3245 * So if we aren't down to zero, we'll just schedule a worker and try
3246 * again
3247 */
3248 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3249 kmem_cache_shrink(cachep);
3250 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3251 return;
3252 } else
3253 kmem_cache_destroy(cachep);
3254 }
3255
3256 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3257 {
3258 if (!cachep->memcg_params->dead)
3259 return;
3260
3261 /*
3262 * There are many ways in which we can get here.
3263 *
3264 * We can get to a memory-pressure situation while the delayed work is
3265 * still pending to run. The vmscan shrinkers can then release all
3266 * cache memory and get us to destruction. If this is the case, we'll
3267 * be executed twice, which is a bug (the second time will execute over
3268 * bogus data). In this case, cancelling the work should be fine.
3269 *
3270 * But we can also get here from the worker itself, if
3271 * kmem_cache_shrink is enough to shake all the remaining objects and
3272 * get the page count to 0. In this case, we'll deadlock if we try to
3273 * cancel the work (the worker runs with an internal lock held, which
3274 * is the same lock we would hold for cancel_work_sync().)
3275 *
3276 * Since we can't possibly know who got us here, just refrain from
3277 * running if there is already work pending
3278 */
3279 if (work_pending(&cachep->memcg_params->destroy))
3280 return;
3281 /*
3282 * We have to defer the actual destroying to a workqueue, because
3283 * we might currently be in a context that cannot sleep.
3284 */
3285 schedule_work(&cachep->memcg_params->destroy);
3286 }
3287
3288 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3289 {
3290 char *name;
3291 struct dentry *dentry;
3292
3293 rcu_read_lock();
3294 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3295 rcu_read_unlock();
3296
3297 BUG_ON(dentry == NULL);
3298
3299 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3300 memcg_cache_id(memcg), dentry->d_name.name);
3301
3302 return name;
3303 }
3304
3305 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3306 struct kmem_cache *s)
3307 {
3308 char *name;
3309 struct kmem_cache *new;
3310
3311 name = memcg_cache_name(memcg, s);
3312 if (!name)
3313 return NULL;
3314
3315 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3316 (s->flags & ~SLAB_PANIC), s->ctor, s);
3317
3318 if (new)
3319 new->allocflags |= __GFP_KMEMCG;
3320
3321 kfree(name);
3322 return new;
3323 }
3324
3325 /*
3326 * This lock protects updaters, not readers. We want readers to be as fast as
3327 * they can, and they will either see NULL or a valid cache value. Our model
3328 * allow them to see NULL, in which case the root memcg will be selected.
3329 *
3330 * We need this lock because multiple allocations to the same cache from a non
3331 * will span more than one worker. Only one of them can create the cache.
3332 */
3333 static DEFINE_MUTEX(memcg_cache_mutex);
3334 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3335 struct kmem_cache *cachep)
3336 {
3337 struct kmem_cache *new_cachep;
3338 int idx;
3339
3340 BUG_ON(!memcg_can_account_kmem(memcg));
3341
3342 idx = memcg_cache_id(memcg);
3343
3344 mutex_lock(&memcg_cache_mutex);
3345 new_cachep = cachep->memcg_params->memcg_caches[idx];
3346 if (new_cachep)
3347 goto out;
3348
3349 new_cachep = kmem_cache_dup(memcg, cachep);
3350 if (new_cachep == NULL) {
3351 new_cachep = cachep;
3352 goto out;
3353 }
3354
3355 mem_cgroup_get(memcg);
3356 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3357
3358 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3359 /*
3360 * the readers won't lock, make sure everybody sees the updated value,
3361 * so they won't put stuff in the queue again for no reason
3362 */
3363 wmb();
3364 out:
3365 mutex_unlock(&memcg_cache_mutex);
3366 return new_cachep;
3367 }
3368
3369 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3370 {
3371 struct kmem_cache *c;
3372 int i;
3373
3374 if (!s->memcg_params)
3375 return;
3376 if (!s->memcg_params->is_root_cache)
3377 return;
3378
3379 /*
3380 * If the cache is being destroyed, we trust that there is no one else
3381 * requesting objects from it. Even if there are, the sanity checks in
3382 * kmem_cache_destroy should caught this ill-case.
3383 *
3384 * Still, we don't want anyone else freeing memcg_caches under our
3385 * noses, which can happen if a new memcg comes to life. As usual,
3386 * we'll take the set_limit_mutex to protect ourselves against this.
3387 */
3388 mutex_lock(&set_limit_mutex);
3389 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3390 c = s->memcg_params->memcg_caches[i];
3391 if (!c)
3392 continue;
3393
3394 /*
3395 * We will now manually delete the caches, so to avoid races
3396 * we need to cancel all pending destruction workers and
3397 * proceed with destruction ourselves.
3398 *
3399 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3400 * and that could spawn the workers again: it is likely that
3401 * the cache still have active pages until this very moment.
3402 * This would lead us back to mem_cgroup_destroy_cache.
3403 *
3404 * But that will not execute at all if the "dead" flag is not
3405 * set, so flip it down to guarantee we are in control.
3406 */
3407 c->memcg_params->dead = false;
3408 cancel_work_sync(&c->memcg_params->destroy);
3409 kmem_cache_destroy(c);
3410 }
3411 mutex_unlock(&set_limit_mutex);
3412 }
3413
3414 struct create_work {
3415 struct mem_cgroup *memcg;
3416 struct kmem_cache *cachep;
3417 struct work_struct work;
3418 };
3419
3420 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3421 {
3422 struct kmem_cache *cachep;
3423 struct memcg_cache_params *params;
3424
3425 if (!memcg_kmem_is_active(memcg))
3426 return;
3427
3428 mutex_lock(&memcg->slab_caches_mutex);
3429 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3430 cachep = memcg_params_to_cache(params);
3431 cachep->memcg_params->dead = true;
3432 schedule_work(&cachep->memcg_params->destroy);
3433 }
3434 mutex_unlock(&memcg->slab_caches_mutex);
3435 }
3436
3437 static void memcg_create_cache_work_func(struct work_struct *w)
3438 {
3439 struct create_work *cw;
3440
3441 cw = container_of(w, struct create_work, work);
3442 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3443 /* Drop the reference gotten when we enqueued. */
3444 css_put(&cw->memcg->css);
3445 kfree(cw);
3446 }
3447
3448 /*
3449 * Enqueue the creation of a per-memcg kmem_cache.
3450 * Called with rcu_read_lock.
3451 */
3452 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3453 struct kmem_cache *cachep)
3454 {
3455 struct create_work *cw;
3456
3457 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3458 if (cw == NULL)
3459 return;
3460
3461 /* The corresponding put will be done in the workqueue. */
3462 if (!css_tryget(&memcg->css)) {
3463 kfree(cw);
3464 return;
3465 }
3466
3467 cw->memcg = memcg;
3468 cw->cachep = cachep;
3469
3470 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3471 schedule_work(&cw->work);
3472 }
3473
3474 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3475 struct kmem_cache *cachep)
3476 {
3477 /*
3478 * We need to stop accounting when we kmalloc, because if the
3479 * corresponding kmalloc cache is not yet created, the first allocation
3480 * in __memcg_create_cache_enqueue will recurse.
3481 *
3482 * However, it is better to enclose the whole function. Depending on
3483 * the debugging options enabled, INIT_WORK(), for instance, can
3484 * trigger an allocation. This too, will make us recurse. Because at
3485 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3486 * the safest choice is to do it like this, wrapping the whole function.
3487 */
3488 memcg_stop_kmem_account();
3489 __memcg_create_cache_enqueue(memcg, cachep);
3490 memcg_resume_kmem_account();
3491 }
3492 /*
3493 * Return the kmem_cache we're supposed to use for a slab allocation.
3494 * We try to use the current memcg's version of the cache.
3495 *
3496 * If the cache does not exist yet, if we are the first user of it,
3497 * we either create it immediately, if possible, or create it asynchronously
3498 * in a workqueue.
3499 * In the latter case, we will let the current allocation go through with
3500 * the original cache.
3501 *
3502 * Can't be called in interrupt context or from kernel threads.
3503 * This function needs to be called with rcu_read_lock() held.
3504 */
3505 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3506 gfp_t gfp)
3507 {
3508 struct mem_cgroup *memcg;
3509 int idx;
3510
3511 VM_BUG_ON(!cachep->memcg_params);
3512 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3513
3514 if (!current->mm || current->memcg_kmem_skip_account)
3515 return cachep;
3516
3517 rcu_read_lock();
3518 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3519 rcu_read_unlock();
3520
3521 if (!memcg_can_account_kmem(memcg))
3522 return cachep;
3523
3524 idx = memcg_cache_id(memcg);
3525
3526 /*
3527 * barrier to mare sure we're always seeing the up to date value. The
3528 * code updating memcg_caches will issue a write barrier to match this.
3529 */
3530 read_barrier_depends();
3531 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3532 /*
3533 * If we are in a safe context (can wait, and not in interrupt
3534 * context), we could be be predictable and return right away.
3535 * This would guarantee that the allocation being performed
3536 * already belongs in the new cache.
3537 *
3538 * However, there are some clashes that can arrive from locking.
3539 * For instance, because we acquire the slab_mutex while doing
3540 * kmem_cache_dup, this means no further allocation could happen
3541 * with the slab_mutex held.
3542 *
3543 * Also, because cache creation issue get_online_cpus(), this
3544 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3545 * that ends up reversed during cpu hotplug. (cpuset allocates
3546 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3547 * better to defer everything.
3548 */
3549 memcg_create_cache_enqueue(memcg, cachep);
3550 return cachep;
3551 }
3552
3553 return cachep->memcg_params->memcg_caches[idx];
3554 }
3555 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3556
3557 /*
3558 * We need to verify if the allocation against current->mm->owner's memcg is
3559 * possible for the given order. But the page is not allocated yet, so we'll
3560 * need a further commit step to do the final arrangements.
3561 *
3562 * It is possible for the task to switch cgroups in this mean time, so at
3563 * commit time, we can't rely on task conversion any longer. We'll then use
3564 * the handle argument to return to the caller which cgroup we should commit
3565 * against. We could also return the memcg directly and avoid the pointer
3566 * passing, but a boolean return value gives better semantics considering
3567 * the compiled-out case as well.
3568 *
3569 * Returning true means the allocation is possible.
3570 */
3571 bool
3572 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3573 {
3574 struct mem_cgroup *memcg;
3575 int ret;
3576
3577 *_memcg = NULL;
3578 memcg = try_get_mem_cgroup_from_mm(current->mm);
3579
3580 /*
3581 * very rare case described in mem_cgroup_from_task. Unfortunately there
3582 * isn't much we can do without complicating this too much, and it would
3583 * be gfp-dependent anyway. Just let it go
3584 */
3585 if (unlikely(!memcg))
3586 return true;
3587
3588 if (!memcg_can_account_kmem(memcg)) {
3589 css_put(&memcg->css);
3590 return true;
3591 }
3592
3593 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3594 if (!ret)
3595 *_memcg = memcg;
3596
3597 css_put(&memcg->css);
3598 return (ret == 0);
3599 }
3600
3601 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3602 int order)
3603 {
3604 struct page_cgroup *pc;
3605
3606 VM_BUG_ON(mem_cgroup_is_root(memcg));
3607
3608 /* The page allocation failed. Revert */
3609 if (!page) {
3610 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3611 return;
3612 }
3613
3614 pc = lookup_page_cgroup(page);
3615 lock_page_cgroup(pc);
3616 pc->mem_cgroup = memcg;
3617 SetPageCgroupUsed(pc);
3618 unlock_page_cgroup(pc);
3619 }
3620
3621 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3622 {
3623 struct mem_cgroup *memcg = NULL;
3624 struct page_cgroup *pc;
3625
3626
3627 pc = lookup_page_cgroup(page);
3628 /*
3629 * Fast unlocked return. Theoretically might have changed, have to
3630 * check again after locking.
3631 */
3632 if (!PageCgroupUsed(pc))
3633 return;
3634
3635 lock_page_cgroup(pc);
3636 if (PageCgroupUsed(pc)) {
3637 memcg = pc->mem_cgroup;
3638 ClearPageCgroupUsed(pc);
3639 }
3640 unlock_page_cgroup(pc);
3641
3642 /*
3643 * We trust that only if there is a memcg associated with the page, it
3644 * is a valid allocation
3645 */
3646 if (!memcg)
3647 return;
3648
3649 VM_BUG_ON(mem_cgroup_is_root(memcg));
3650 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3651 }
3652 #else
3653 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3654 {
3655 }
3656 #endif /* CONFIG_MEMCG_KMEM */
3657
3658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3659
3660 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3661 /*
3662 * Because tail pages are not marked as "used", set it. We're under
3663 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3664 * charge/uncharge will be never happen and move_account() is done under
3665 * compound_lock(), so we don't have to take care of races.
3666 */
3667 void mem_cgroup_split_huge_fixup(struct page *head)
3668 {
3669 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3670 struct page_cgroup *pc;
3671 int i;
3672
3673 if (mem_cgroup_disabled())
3674 return;
3675 for (i = 1; i < HPAGE_PMD_NR; i++) {
3676 pc = head_pc + i;
3677 pc->mem_cgroup = head_pc->mem_cgroup;
3678 smp_wmb();/* see __commit_charge() */
3679 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3680 }
3681 }
3682 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3683
3684 /**
3685 * mem_cgroup_move_account - move account of the page
3686 * @page: the page
3687 * @nr_pages: number of regular pages (>1 for huge pages)
3688 * @pc: page_cgroup of the page.
3689 * @from: mem_cgroup which the page is moved from.
3690 * @to: mem_cgroup which the page is moved to. @from != @to.
3691 *
3692 * The caller must confirm following.
3693 * - page is not on LRU (isolate_page() is useful.)
3694 * - compound_lock is held when nr_pages > 1
3695 *
3696 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3697 * from old cgroup.
3698 */
3699 static int mem_cgroup_move_account(struct page *page,
3700 unsigned int nr_pages,
3701 struct page_cgroup *pc,
3702 struct mem_cgroup *from,
3703 struct mem_cgroup *to)
3704 {
3705 unsigned long flags;
3706 int ret;
3707 bool anon = PageAnon(page);
3708
3709 VM_BUG_ON(from == to);
3710 VM_BUG_ON(PageLRU(page));
3711 /*
3712 * The page is isolated from LRU. So, collapse function
3713 * will not handle this page. But page splitting can happen.
3714 * Do this check under compound_page_lock(). The caller should
3715 * hold it.
3716 */
3717 ret = -EBUSY;
3718 if (nr_pages > 1 && !PageTransHuge(page))
3719 goto out;
3720
3721 lock_page_cgroup(pc);
3722
3723 ret = -EINVAL;
3724 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3725 goto unlock;
3726
3727 move_lock_mem_cgroup(from, &flags);
3728
3729 if (!anon && page_mapped(page)) {
3730 /* Update mapped_file data for mem_cgroup */
3731 preempt_disable();
3732 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3733 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3734 preempt_enable();
3735 }
3736 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3737
3738 /* caller should have done css_get */
3739 pc->mem_cgroup = to;
3740 mem_cgroup_charge_statistics(to, anon, nr_pages);
3741 move_unlock_mem_cgroup(from, &flags);
3742 ret = 0;
3743 unlock:
3744 unlock_page_cgroup(pc);
3745 /*
3746 * check events
3747 */
3748 memcg_check_events(to, page);
3749 memcg_check_events(from, page);
3750 out:
3751 return ret;
3752 }
3753
3754 /**
3755 * mem_cgroup_move_parent - moves page to the parent group
3756 * @page: the page to move
3757 * @pc: page_cgroup of the page
3758 * @child: page's cgroup
3759 *
3760 * move charges to its parent or the root cgroup if the group has no
3761 * parent (aka use_hierarchy==0).
3762 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3763 * mem_cgroup_move_account fails) the failure is always temporary and
3764 * it signals a race with a page removal/uncharge or migration. In the
3765 * first case the page is on the way out and it will vanish from the LRU
3766 * on the next attempt and the call should be retried later.
3767 * Isolation from the LRU fails only if page has been isolated from
3768 * the LRU since we looked at it and that usually means either global
3769 * reclaim or migration going on. The page will either get back to the
3770 * LRU or vanish.
3771 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3772 * (!PageCgroupUsed) or moved to a different group. The page will
3773 * disappear in the next attempt.
3774 */
3775 static int mem_cgroup_move_parent(struct page *page,
3776 struct page_cgroup *pc,
3777 struct mem_cgroup *child)
3778 {
3779 struct mem_cgroup *parent;
3780 unsigned int nr_pages;
3781 unsigned long uninitialized_var(flags);
3782 int ret;
3783
3784 VM_BUG_ON(mem_cgroup_is_root(child));
3785
3786 ret = -EBUSY;
3787 if (!get_page_unless_zero(page))
3788 goto out;
3789 if (isolate_lru_page(page))
3790 goto put;
3791
3792 nr_pages = hpage_nr_pages(page);
3793
3794 parent = parent_mem_cgroup(child);
3795 /*
3796 * If no parent, move charges to root cgroup.
3797 */
3798 if (!parent)
3799 parent = root_mem_cgroup;
3800
3801 if (nr_pages > 1) {
3802 VM_BUG_ON(!PageTransHuge(page));
3803 flags = compound_lock_irqsave(page);
3804 }
3805
3806 ret = mem_cgroup_move_account(page, nr_pages,
3807 pc, child, parent);
3808 if (!ret)
3809 __mem_cgroup_cancel_local_charge(child, nr_pages);
3810
3811 if (nr_pages > 1)
3812 compound_unlock_irqrestore(page, flags);
3813 putback_lru_page(page);
3814 put:
3815 put_page(page);
3816 out:
3817 return ret;
3818 }
3819
3820 /*
3821 * Charge the memory controller for page usage.
3822 * Return
3823 * 0 if the charge was successful
3824 * < 0 if the cgroup is over its limit
3825 */
3826 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3827 gfp_t gfp_mask, enum charge_type ctype)
3828 {
3829 struct mem_cgroup *memcg = NULL;
3830 unsigned int nr_pages = 1;
3831 bool oom = true;
3832 int ret;
3833
3834 if (PageTransHuge(page)) {
3835 nr_pages <<= compound_order(page);
3836 VM_BUG_ON(!PageTransHuge(page));
3837 /*
3838 * Never OOM-kill a process for a huge page. The
3839 * fault handler will fall back to regular pages.
3840 */
3841 oom = false;
3842 }
3843
3844 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3845 if (ret == -ENOMEM)
3846 return ret;
3847 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3848 return 0;
3849 }
3850
3851 int mem_cgroup_newpage_charge(struct page *page,
3852 struct mm_struct *mm, gfp_t gfp_mask)
3853 {
3854 if (mem_cgroup_disabled())
3855 return 0;
3856 VM_BUG_ON(page_mapped(page));
3857 VM_BUG_ON(page->mapping && !PageAnon(page));
3858 VM_BUG_ON(!mm);
3859 return mem_cgroup_charge_common(page, mm, gfp_mask,
3860 MEM_CGROUP_CHARGE_TYPE_ANON);
3861 }
3862
3863 /*
3864 * While swap-in, try_charge -> commit or cancel, the page is locked.
3865 * And when try_charge() successfully returns, one refcnt to memcg without
3866 * struct page_cgroup is acquired. This refcnt will be consumed by
3867 * "commit()" or removed by "cancel()"
3868 */
3869 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3870 struct page *page,
3871 gfp_t mask,
3872 struct mem_cgroup **memcgp)
3873 {
3874 struct mem_cgroup *memcg;
3875 struct page_cgroup *pc;
3876 int ret;
3877
3878 pc = lookup_page_cgroup(page);
3879 /*
3880 * Every swap fault against a single page tries to charge the
3881 * page, bail as early as possible. shmem_unuse() encounters
3882 * already charged pages, too. The USED bit is protected by
3883 * the page lock, which serializes swap cache removal, which
3884 * in turn serializes uncharging.
3885 */
3886 if (PageCgroupUsed(pc))
3887 return 0;
3888 if (!do_swap_account)
3889 goto charge_cur_mm;
3890 memcg = try_get_mem_cgroup_from_page(page);
3891 if (!memcg)
3892 goto charge_cur_mm;
3893 *memcgp = memcg;
3894 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3895 css_put(&memcg->css);
3896 if (ret == -EINTR)
3897 ret = 0;
3898 return ret;
3899 charge_cur_mm:
3900 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3901 if (ret == -EINTR)
3902 ret = 0;
3903 return ret;
3904 }
3905
3906 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3907 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3908 {
3909 *memcgp = NULL;
3910 if (mem_cgroup_disabled())
3911 return 0;
3912 /*
3913 * A racing thread's fault, or swapoff, may have already
3914 * updated the pte, and even removed page from swap cache: in
3915 * those cases unuse_pte()'s pte_same() test will fail; but
3916 * there's also a KSM case which does need to charge the page.
3917 */
3918 if (!PageSwapCache(page)) {
3919 int ret;
3920
3921 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3922 if (ret == -EINTR)
3923 ret = 0;
3924 return ret;
3925 }
3926 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3927 }
3928
3929 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3930 {
3931 if (mem_cgroup_disabled())
3932 return;
3933 if (!memcg)
3934 return;
3935 __mem_cgroup_cancel_charge(memcg, 1);
3936 }
3937
3938 static void
3939 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3940 enum charge_type ctype)
3941 {
3942 if (mem_cgroup_disabled())
3943 return;
3944 if (!memcg)
3945 return;
3946
3947 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3948 /*
3949 * Now swap is on-memory. This means this page may be
3950 * counted both as mem and swap....double count.
3951 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3952 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3953 * may call delete_from_swap_cache() before reach here.
3954 */
3955 if (do_swap_account && PageSwapCache(page)) {
3956 swp_entry_t ent = {.val = page_private(page)};
3957 mem_cgroup_uncharge_swap(ent);
3958 }
3959 }
3960
3961 void mem_cgroup_commit_charge_swapin(struct page *page,
3962 struct mem_cgroup *memcg)
3963 {
3964 __mem_cgroup_commit_charge_swapin(page, memcg,
3965 MEM_CGROUP_CHARGE_TYPE_ANON);
3966 }
3967
3968 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3969 gfp_t gfp_mask)
3970 {
3971 struct mem_cgroup *memcg = NULL;
3972 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3973 int ret;
3974
3975 if (mem_cgroup_disabled())
3976 return 0;
3977 if (PageCompound(page))
3978 return 0;
3979
3980 if (!PageSwapCache(page))
3981 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3982 else { /* page is swapcache/shmem */
3983 ret = __mem_cgroup_try_charge_swapin(mm, page,
3984 gfp_mask, &memcg);
3985 if (!ret)
3986 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3987 }
3988 return ret;
3989 }
3990
3991 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3992 unsigned int nr_pages,
3993 const enum charge_type ctype)
3994 {
3995 struct memcg_batch_info *batch = NULL;
3996 bool uncharge_memsw = true;
3997
3998 /* If swapout, usage of swap doesn't decrease */
3999 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4000 uncharge_memsw = false;
4001
4002 batch = &current->memcg_batch;
4003 /*
4004 * In usual, we do css_get() when we remember memcg pointer.
4005 * But in this case, we keep res->usage until end of a series of
4006 * uncharges. Then, it's ok to ignore memcg's refcnt.
4007 */
4008 if (!batch->memcg)
4009 batch->memcg = memcg;
4010 /*
4011 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4012 * In those cases, all pages freed continuously can be expected to be in
4013 * the same cgroup and we have chance to coalesce uncharges.
4014 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4015 * because we want to do uncharge as soon as possible.
4016 */
4017
4018 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4019 goto direct_uncharge;
4020
4021 if (nr_pages > 1)
4022 goto direct_uncharge;
4023
4024 /*
4025 * In typical case, batch->memcg == mem. This means we can
4026 * merge a series of uncharges to an uncharge of res_counter.
4027 * If not, we uncharge res_counter ony by one.
4028 */
4029 if (batch->memcg != memcg)
4030 goto direct_uncharge;
4031 /* remember freed charge and uncharge it later */
4032 batch->nr_pages++;
4033 if (uncharge_memsw)
4034 batch->memsw_nr_pages++;
4035 return;
4036 direct_uncharge:
4037 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4038 if (uncharge_memsw)
4039 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4040 if (unlikely(batch->memcg != memcg))
4041 memcg_oom_recover(memcg);
4042 }
4043
4044 /*
4045 * uncharge if !page_mapped(page)
4046 */
4047 static struct mem_cgroup *
4048 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4049 bool end_migration)
4050 {
4051 struct mem_cgroup *memcg = NULL;
4052 unsigned int nr_pages = 1;
4053 struct page_cgroup *pc;
4054 bool anon;
4055
4056 if (mem_cgroup_disabled())
4057 return NULL;
4058
4059 VM_BUG_ON(PageSwapCache(page));
4060
4061 if (PageTransHuge(page)) {
4062 nr_pages <<= compound_order(page);
4063 VM_BUG_ON(!PageTransHuge(page));
4064 }
4065 /*
4066 * Check if our page_cgroup is valid
4067 */
4068 pc = lookup_page_cgroup(page);
4069 if (unlikely(!PageCgroupUsed(pc)))
4070 return NULL;
4071
4072 lock_page_cgroup(pc);
4073
4074 memcg = pc->mem_cgroup;
4075
4076 if (!PageCgroupUsed(pc))
4077 goto unlock_out;
4078
4079 anon = PageAnon(page);
4080
4081 switch (ctype) {
4082 case MEM_CGROUP_CHARGE_TYPE_ANON:
4083 /*
4084 * Generally PageAnon tells if it's the anon statistics to be
4085 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4086 * used before page reached the stage of being marked PageAnon.
4087 */
4088 anon = true;
4089 /* fallthrough */
4090 case MEM_CGROUP_CHARGE_TYPE_DROP:
4091 /* See mem_cgroup_prepare_migration() */
4092 if (page_mapped(page))
4093 goto unlock_out;
4094 /*
4095 * Pages under migration may not be uncharged. But
4096 * end_migration() /must/ be the one uncharging the
4097 * unused post-migration page and so it has to call
4098 * here with the migration bit still set. See the
4099 * res_counter handling below.
4100 */
4101 if (!end_migration && PageCgroupMigration(pc))
4102 goto unlock_out;
4103 break;
4104 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4105 if (!PageAnon(page)) { /* Shared memory */
4106 if (page->mapping && !page_is_file_cache(page))
4107 goto unlock_out;
4108 } else if (page_mapped(page)) /* Anon */
4109 goto unlock_out;
4110 break;
4111 default:
4112 break;
4113 }
4114
4115 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4116
4117 ClearPageCgroupUsed(pc);
4118 /*
4119 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4120 * freed from LRU. This is safe because uncharged page is expected not
4121 * to be reused (freed soon). Exception is SwapCache, it's handled by
4122 * special functions.
4123 */
4124
4125 unlock_page_cgroup(pc);
4126 /*
4127 * even after unlock, we have memcg->res.usage here and this memcg
4128 * will never be freed.
4129 */
4130 memcg_check_events(memcg, page);
4131 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4132 mem_cgroup_swap_statistics(memcg, true);
4133 mem_cgroup_get(memcg);
4134 }
4135 /*
4136 * Migration does not charge the res_counter for the
4137 * replacement page, so leave it alone when phasing out the
4138 * page that is unused after the migration.
4139 */
4140 if (!end_migration && !mem_cgroup_is_root(memcg))
4141 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4142
4143 return memcg;
4144
4145 unlock_out:
4146 unlock_page_cgroup(pc);
4147 return NULL;
4148 }
4149
4150 void mem_cgroup_uncharge_page(struct page *page)
4151 {
4152 /* early check. */
4153 if (page_mapped(page))
4154 return;
4155 VM_BUG_ON(page->mapping && !PageAnon(page));
4156 if (PageSwapCache(page))
4157 return;
4158 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4159 }
4160
4161 void mem_cgroup_uncharge_cache_page(struct page *page)
4162 {
4163 VM_BUG_ON(page_mapped(page));
4164 VM_BUG_ON(page->mapping);
4165 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4166 }
4167
4168 /*
4169 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4170 * In that cases, pages are freed continuously and we can expect pages
4171 * are in the same memcg. All these calls itself limits the number of
4172 * pages freed at once, then uncharge_start/end() is called properly.
4173 * This may be called prural(2) times in a context,
4174 */
4175
4176 void mem_cgroup_uncharge_start(void)
4177 {
4178 current->memcg_batch.do_batch++;
4179 /* We can do nest. */
4180 if (current->memcg_batch.do_batch == 1) {
4181 current->memcg_batch.memcg = NULL;
4182 current->memcg_batch.nr_pages = 0;
4183 current->memcg_batch.memsw_nr_pages = 0;
4184 }
4185 }
4186
4187 void mem_cgroup_uncharge_end(void)
4188 {
4189 struct memcg_batch_info *batch = &current->memcg_batch;
4190
4191 if (!batch->do_batch)
4192 return;
4193
4194 batch->do_batch--;
4195 if (batch->do_batch) /* If stacked, do nothing. */
4196 return;
4197
4198 if (!batch->memcg)
4199 return;
4200 /*
4201 * This "batch->memcg" is valid without any css_get/put etc...
4202 * bacause we hide charges behind us.
4203 */
4204 if (batch->nr_pages)
4205 res_counter_uncharge(&batch->memcg->res,
4206 batch->nr_pages * PAGE_SIZE);
4207 if (batch->memsw_nr_pages)
4208 res_counter_uncharge(&batch->memcg->memsw,
4209 batch->memsw_nr_pages * PAGE_SIZE);
4210 memcg_oom_recover(batch->memcg);
4211 /* forget this pointer (for sanity check) */
4212 batch->memcg = NULL;
4213 }
4214
4215 #ifdef CONFIG_SWAP
4216 /*
4217 * called after __delete_from_swap_cache() and drop "page" account.
4218 * memcg information is recorded to swap_cgroup of "ent"
4219 */
4220 void
4221 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4222 {
4223 struct mem_cgroup *memcg;
4224 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4225
4226 if (!swapout) /* this was a swap cache but the swap is unused ! */
4227 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4228
4229 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4230
4231 /*
4232 * record memcg information, if swapout && memcg != NULL,
4233 * mem_cgroup_get() was called in uncharge().
4234 */
4235 if (do_swap_account && swapout && memcg)
4236 swap_cgroup_record(ent, css_id(&memcg->css));
4237 }
4238 #endif
4239
4240 #ifdef CONFIG_MEMCG_SWAP
4241 /*
4242 * called from swap_entry_free(). remove record in swap_cgroup and
4243 * uncharge "memsw" account.
4244 */
4245 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4246 {
4247 struct mem_cgroup *memcg;
4248 unsigned short id;
4249
4250 if (!do_swap_account)
4251 return;
4252
4253 id = swap_cgroup_record(ent, 0);
4254 rcu_read_lock();
4255 memcg = mem_cgroup_lookup(id);
4256 if (memcg) {
4257 /*
4258 * We uncharge this because swap is freed.
4259 * This memcg can be obsolete one. We avoid calling css_tryget
4260 */
4261 if (!mem_cgroup_is_root(memcg))
4262 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4263 mem_cgroup_swap_statistics(memcg, false);
4264 mem_cgroup_put(memcg);
4265 }
4266 rcu_read_unlock();
4267 }
4268
4269 /**
4270 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4271 * @entry: swap entry to be moved
4272 * @from: mem_cgroup which the entry is moved from
4273 * @to: mem_cgroup which the entry is moved to
4274 *
4275 * It succeeds only when the swap_cgroup's record for this entry is the same
4276 * as the mem_cgroup's id of @from.
4277 *
4278 * Returns 0 on success, -EINVAL on failure.
4279 *
4280 * The caller must have charged to @to, IOW, called res_counter_charge() about
4281 * both res and memsw, and called css_get().
4282 */
4283 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4284 struct mem_cgroup *from, struct mem_cgroup *to)
4285 {
4286 unsigned short old_id, new_id;
4287
4288 old_id = css_id(&from->css);
4289 new_id = css_id(&to->css);
4290
4291 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4292 mem_cgroup_swap_statistics(from, false);
4293 mem_cgroup_swap_statistics(to, true);
4294 /*
4295 * This function is only called from task migration context now.
4296 * It postpones res_counter and refcount handling till the end
4297 * of task migration(mem_cgroup_clear_mc()) for performance
4298 * improvement. But we cannot postpone mem_cgroup_get(to)
4299 * because if the process that has been moved to @to does
4300 * swap-in, the refcount of @to might be decreased to 0.
4301 */
4302 mem_cgroup_get(to);
4303 return 0;
4304 }
4305 return -EINVAL;
4306 }
4307 #else
4308 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4309 struct mem_cgroup *from, struct mem_cgroup *to)
4310 {
4311 return -EINVAL;
4312 }
4313 #endif
4314
4315 /*
4316 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4317 * page belongs to.
4318 */
4319 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4320 struct mem_cgroup **memcgp)
4321 {
4322 struct mem_cgroup *memcg = NULL;
4323 unsigned int nr_pages = 1;
4324 struct page_cgroup *pc;
4325 enum charge_type ctype;
4326
4327 *memcgp = NULL;
4328
4329 if (mem_cgroup_disabled())
4330 return;
4331
4332 if (PageTransHuge(page))
4333 nr_pages <<= compound_order(page);
4334
4335 pc = lookup_page_cgroup(page);
4336 lock_page_cgroup(pc);
4337 if (PageCgroupUsed(pc)) {
4338 memcg = pc->mem_cgroup;
4339 css_get(&memcg->css);
4340 /*
4341 * At migrating an anonymous page, its mapcount goes down
4342 * to 0 and uncharge() will be called. But, even if it's fully
4343 * unmapped, migration may fail and this page has to be
4344 * charged again. We set MIGRATION flag here and delay uncharge
4345 * until end_migration() is called
4346 *
4347 * Corner Case Thinking
4348 * A)
4349 * When the old page was mapped as Anon and it's unmap-and-freed
4350 * while migration was ongoing.
4351 * If unmap finds the old page, uncharge() of it will be delayed
4352 * until end_migration(). If unmap finds a new page, it's
4353 * uncharged when it make mapcount to be 1->0. If unmap code
4354 * finds swap_migration_entry, the new page will not be mapped
4355 * and end_migration() will find it(mapcount==0).
4356 *
4357 * B)
4358 * When the old page was mapped but migraion fails, the kernel
4359 * remaps it. A charge for it is kept by MIGRATION flag even
4360 * if mapcount goes down to 0. We can do remap successfully
4361 * without charging it again.
4362 *
4363 * C)
4364 * The "old" page is under lock_page() until the end of
4365 * migration, so, the old page itself will not be swapped-out.
4366 * If the new page is swapped out before end_migraton, our
4367 * hook to usual swap-out path will catch the event.
4368 */
4369 if (PageAnon(page))
4370 SetPageCgroupMigration(pc);
4371 }
4372 unlock_page_cgroup(pc);
4373 /*
4374 * If the page is not charged at this point,
4375 * we return here.
4376 */
4377 if (!memcg)
4378 return;
4379
4380 *memcgp = memcg;
4381 /*
4382 * We charge new page before it's used/mapped. So, even if unlock_page()
4383 * is called before end_migration, we can catch all events on this new
4384 * page. In the case new page is migrated but not remapped, new page's
4385 * mapcount will be finally 0 and we call uncharge in end_migration().
4386 */
4387 if (PageAnon(page))
4388 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4389 else
4390 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4391 /*
4392 * The page is committed to the memcg, but it's not actually
4393 * charged to the res_counter since we plan on replacing the
4394 * old one and only one page is going to be left afterwards.
4395 */
4396 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4397 }
4398
4399 /* remove redundant charge if migration failed*/
4400 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4401 struct page *oldpage, struct page *newpage, bool migration_ok)
4402 {
4403 struct page *used, *unused;
4404 struct page_cgroup *pc;
4405 bool anon;
4406
4407 if (!memcg)
4408 return;
4409
4410 if (!migration_ok) {
4411 used = oldpage;
4412 unused = newpage;
4413 } else {
4414 used = newpage;
4415 unused = oldpage;
4416 }
4417 anon = PageAnon(used);
4418 __mem_cgroup_uncharge_common(unused,
4419 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4420 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4421 true);
4422 css_put(&memcg->css);
4423 /*
4424 * We disallowed uncharge of pages under migration because mapcount
4425 * of the page goes down to zero, temporarly.
4426 * Clear the flag and check the page should be charged.
4427 */
4428 pc = lookup_page_cgroup(oldpage);
4429 lock_page_cgroup(pc);
4430 ClearPageCgroupMigration(pc);
4431 unlock_page_cgroup(pc);
4432
4433 /*
4434 * If a page is a file cache, radix-tree replacement is very atomic
4435 * and we can skip this check. When it was an Anon page, its mapcount
4436 * goes down to 0. But because we added MIGRATION flage, it's not
4437 * uncharged yet. There are several case but page->mapcount check
4438 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4439 * check. (see prepare_charge() also)
4440 */
4441 if (anon)
4442 mem_cgroup_uncharge_page(used);
4443 }
4444
4445 /*
4446 * At replace page cache, newpage is not under any memcg but it's on
4447 * LRU. So, this function doesn't touch res_counter but handles LRU
4448 * in correct way. Both pages are locked so we cannot race with uncharge.
4449 */
4450 void mem_cgroup_replace_page_cache(struct page *oldpage,
4451 struct page *newpage)
4452 {
4453 struct mem_cgroup *memcg = NULL;
4454 struct page_cgroup *pc;
4455 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4456
4457 if (mem_cgroup_disabled())
4458 return;
4459
4460 pc = lookup_page_cgroup(oldpage);
4461 /* fix accounting on old pages */
4462 lock_page_cgroup(pc);
4463 if (PageCgroupUsed(pc)) {
4464 memcg = pc->mem_cgroup;
4465 mem_cgroup_charge_statistics(memcg, false, -1);
4466 ClearPageCgroupUsed(pc);
4467 }
4468 unlock_page_cgroup(pc);
4469
4470 /*
4471 * When called from shmem_replace_page(), in some cases the
4472 * oldpage has already been charged, and in some cases not.
4473 */
4474 if (!memcg)
4475 return;
4476 /*
4477 * Even if newpage->mapping was NULL before starting replacement,
4478 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4479 * LRU while we overwrite pc->mem_cgroup.
4480 */
4481 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4482 }
4483
4484 #ifdef CONFIG_DEBUG_VM
4485 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4486 {
4487 struct page_cgroup *pc;
4488
4489 pc = lookup_page_cgroup(page);
4490 /*
4491 * Can be NULL while feeding pages into the page allocator for
4492 * the first time, i.e. during boot or memory hotplug;
4493 * or when mem_cgroup_disabled().
4494 */
4495 if (likely(pc) && PageCgroupUsed(pc))
4496 return pc;
4497 return NULL;
4498 }
4499
4500 bool mem_cgroup_bad_page_check(struct page *page)
4501 {
4502 if (mem_cgroup_disabled())
4503 return false;
4504
4505 return lookup_page_cgroup_used(page) != NULL;
4506 }
4507
4508 void mem_cgroup_print_bad_page(struct page *page)
4509 {
4510 struct page_cgroup *pc;
4511
4512 pc = lookup_page_cgroup_used(page);
4513 if (pc) {
4514 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4515 pc, pc->flags, pc->mem_cgroup);
4516 }
4517 }
4518 #endif
4519
4520 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4521 unsigned long long val)
4522 {
4523 int retry_count;
4524 u64 memswlimit, memlimit;
4525 int ret = 0;
4526 int children = mem_cgroup_count_children(memcg);
4527 u64 curusage, oldusage;
4528 int enlarge;
4529
4530 /*
4531 * For keeping hierarchical_reclaim simple, how long we should retry
4532 * is depends on callers. We set our retry-count to be function
4533 * of # of children which we should visit in this loop.
4534 */
4535 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4536
4537 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4538
4539 enlarge = 0;
4540 while (retry_count) {
4541 if (signal_pending(current)) {
4542 ret = -EINTR;
4543 break;
4544 }
4545 /*
4546 * Rather than hide all in some function, I do this in
4547 * open coded manner. You see what this really does.
4548 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4549 */
4550 mutex_lock(&set_limit_mutex);
4551 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4552 if (memswlimit < val) {
4553 ret = -EINVAL;
4554 mutex_unlock(&set_limit_mutex);
4555 break;
4556 }
4557
4558 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4559 if (memlimit < val)
4560 enlarge = 1;
4561
4562 ret = res_counter_set_limit(&memcg->res, val);
4563 if (!ret) {
4564 if (memswlimit == val)
4565 memcg->memsw_is_minimum = true;
4566 else
4567 memcg->memsw_is_minimum = false;
4568 }
4569 mutex_unlock(&set_limit_mutex);
4570
4571 if (!ret)
4572 break;
4573
4574 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4575 MEM_CGROUP_RECLAIM_SHRINK);
4576 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4577 /* Usage is reduced ? */
4578 if (curusage >= oldusage)
4579 retry_count--;
4580 else
4581 oldusage = curusage;
4582 }
4583 if (!ret && enlarge)
4584 memcg_oom_recover(memcg);
4585
4586 return ret;
4587 }
4588
4589 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4590 unsigned long long val)
4591 {
4592 int retry_count;
4593 u64 memlimit, memswlimit, oldusage, curusage;
4594 int children = mem_cgroup_count_children(memcg);
4595 int ret = -EBUSY;
4596 int enlarge = 0;
4597
4598 /* see mem_cgroup_resize_res_limit */
4599 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4600 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4601 while (retry_count) {
4602 if (signal_pending(current)) {
4603 ret = -EINTR;
4604 break;
4605 }
4606 /*
4607 * Rather than hide all in some function, I do this in
4608 * open coded manner. You see what this really does.
4609 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4610 */
4611 mutex_lock(&set_limit_mutex);
4612 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4613 if (memlimit > val) {
4614 ret = -EINVAL;
4615 mutex_unlock(&set_limit_mutex);
4616 break;
4617 }
4618 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4619 if (memswlimit < val)
4620 enlarge = 1;
4621 ret = res_counter_set_limit(&memcg->memsw, val);
4622 if (!ret) {
4623 if (memlimit == val)
4624 memcg->memsw_is_minimum = true;
4625 else
4626 memcg->memsw_is_minimum = false;
4627 }
4628 mutex_unlock(&set_limit_mutex);
4629
4630 if (!ret)
4631 break;
4632
4633 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4634 MEM_CGROUP_RECLAIM_NOSWAP |
4635 MEM_CGROUP_RECLAIM_SHRINK);
4636 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4637 /* Usage is reduced ? */
4638 if (curusage >= oldusage)
4639 retry_count--;
4640 else
4641 oldusage = curusage;
4642 }
4643 if (!ret && enlarge)
4644 memcg_oom_recover(memcg);
4645 return ret;
4646 }
4647
4648 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4649 gfp_t gfp_mask,
4650 unsigned long *total_scanned)
4651 {
4652 unsigned long nr_reclaimed = 0;
4653 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4654 unsigned long reclaimed;
4655 int loop = 0;
4656 struct mem_cgroup_tree_per_zone *mctz;
4657 unsigned long long excess;
4658 unsigned long nr_scanned;
4659
4660 if (order > 0)
4661 return 0;
4662
4663 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4664 /*
4665 * This loop can run a while, specially if mem_cgroup's continuously
4666 * keep exceeding their soft limit and putting the system under
4667 * pressure
4668 */
4669 do {
4670 if (next_mz)
4671 mz = next_mz;
4672 else
4673 mz = mem_cgroup_largest_soft_limit_node(mctz);
4674 if (!mz)
4675 break;
4676
4677 nr_scanned = 0;
4678 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4679 gfp_mask, &nr_scanned);
4680 nr_reclaimed += reclaimed;
4681 *total_scanned += nr_scanned;
4682 spin_lock(&mctz->lock);
4683
4684 /*
4685 * If we failed to reclaim anything from this memory cgroup
4686 * it is time to move on to the next cgroup
4687 */
4688 next_mz = NULL;
4689 if (!reclaimed) {
4690 do {
4691 /*
4692 * Loop until we find yet another one.
4693 *
4694 * By the time we get the soft_limit lock
4695 * again, someone might have aded the
4696 * group back on the RB tree. Iterate to
4697 * make sure we get a different mem.
4698 * mem_cgroup_largest_soft_limit_node returns
4699 * NULL if no other cgroup is present on
4700 * the tree
4701 */
4702 next_mz =
4703 __mem_cgroup_largest_soft_limit_node(mctz);
4704 if (next_mz == mz)
4705 css_put(&next_mz->memcg->css);
4706 else /* next_mz == NULL or other memcg */
4707 break;
4708 } while (1);
4709 }
4710 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4711 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4712 /*
4713 * One school of thought says that we should not add
4714 * back the node to the tree if reclaim returns 0.
4715 * But our reclaim could return 0, simply because due
4716 * to priority we are exposing a smaller subset of
4717 * memory to reclaim from. Consider this as a longer
4718 * term TODO.
4719 */
4720 /* If excess == 0, no tree ops */
4721 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4722 spin_unlock(&mctz->lock);
4723 css_put(&mz->memcg->css);
4724 loop++;
4725 /*
4726 * Could not reclaim anything and there are no more
4727 * mem cgroups to try or we seem to be looping without
4728 * reclaiming anything.
4729 */
4730 if (!nr_reclaimed &&
4731 (next_mz == NULL ||
4732 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4733 break;
4734 } while (!nr_reclaimed);
4735 if (next_mz)
4736 css_put(&next_mz->memcg->css);
4737 return nr_reclaimed;
4738 }
4739
4740 /**
4741 * mem_cgroup_force_empty_list - clears LRU of a group
4742 * @memcg: group to clear
4743 * @node: NUMA node
4744 * @zid: zone id
4745 * @lru: lru to to clear
4746 *
4747 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4748 * reclaim the pages page themselves - pages are moved to the parent (or root)
4749 * group.
4750 */
4751 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4752 int node, int zid, enum lru_list lru)
4753 {
4754 struct lruvec *lruvec;
4755 unsigned long flags;
4756 struct list_head *list;
4757 struct page *busy;
4758 struct zone *zone;
4759
4760 zone = &NODE_DATA(node)->node_zones[zid];
4761 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4762 list = &lruvec->lists[lru];
4763
4764 busy = NULL;
4765 do {
4766 struct page_cgroup *pc;
4767 struct page *page;
4768
4769 spin_lock_irqsave(&zone->lru_lock, flags);
4770 if (list_empty(list)) {
4771 spin_unlock_irqrestore(&zone->lru_lock, flags);
4772 break;
4773 }
4774 page = list_entry(list->prev, struct page, lru);
4775 if (busy == page) {
4776 list_move(&page->lru, list);
4777 busy = NULL;
4778 spin_unlock_irqrestore(&zone->lru_lock, flags);
4779 continue;
4780 }
4781 spin_unlock_irqrestore(&zone->lru_lock, flags);
4782
4783 pc = lookup_page_cgroup(page);
4784
4785 if (mem_cgroup_move_parent(page, pc, memcg)) {
4786 /* found lock contention or "pc" is obsolete. */
4787 busy = page;
4788 cond_resched();
4789 } else
4790 busy = NULL;
4791 } while (!list_empty(list));
4792 }
4793
4794 /*
4795 * make mem_cgroup's charge to be 0 if there is no task by moving
4796 * all the charges and pages to the parent.
4797 * This enables deleting this mem_cgroup.
4798 *
4799 * Caller is responsible for holding css reference on the memcg.
4800 */
4801 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4802 {
4803 int node, zid;
4804 u64 usage;
4805
4806 do {
4807 /* This is for making all *used* pages to be on LRU. */
4808 lru_add_drain_all();
4809 drain_all_stock_sync(memcg);
4810 mem_cgroup_start_move(memcg);
4811 for_each_node_state(node, N_MEMORY) {
4812 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4813 enum lru_list lru;
4814 for_each_lru(lru) {
4815 mem_cgroup_force_empty_list(memcg,
4816 node, zid, lru);
4817 }
4818 }
4819 }
4820 mem_cgroup_end_move(memcg);
4821 memcg_oom_recover(memcg);
4822 cond_resched();
4823
4824 /*
4825 * Kernel memory may not necessarily be trackable to a specific
4826 * process. So they are not migrated, and therefore we can't
4827 * expect their value to drop to 0 here.
4828 * Having res filled up with kmem only is enough.
4829 *
4830 * This is a safety check because mem_cgroup_force_empty_list
4831 * could have raced with mem_cgroup_replace_page_cache callers
4832 * so the lru seemed empty but the page could have been added
4833 * right after the check. RES_USAGE should be safe as we always
4834 * charge before adding to the LRU.
4835 */
4836 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4837 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4838 } while (usage > 0);
4839 }
4840
4841 /*
4842 * This mainly exists for tests during the setting of set of use_hierarchy.
4843 * Since this is the very setting we are changing, the current hierarchy value
4844 * is meaningless
4845 */
4846 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4847 {
4848 struct cgroup *pos;
4849
4850 /* bounce at first found */
4851 cgroup_for_each_child(pos, memcg->css.cgroup)
4852 return true;
4853 return false;
4854 }
4855
4856 /*
4857 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4858 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4859 * from mem_cgroup_count_children(), in the sense that we don't really care how
4860 * many children we have; we only need to know if we have any. It also counts
4861 * any memcg without hierarchy as infertile.
4862 */
4863 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4864 {
4865 return memcg->use_hierarchy && __memcg_has_children(memcg);
4866 }
4867
4868 /*
4869 * Reclaims as many pages from the given memcg as possible and moves
4870 * the rest to the parent.
4871 *
4872 * Caller is responsible for holding css reference for memcg.
4873 */
4874 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4875 {
4876 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4877 struct cgroup *cgrp = memcg->css.cgroup;
4878
4879 /* returns EBUSY if there is a task or if we come here twice. */
4880 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4881 return -EBUSY;
4882
4883 /* we call try-to-free pages for make this cgroup empty */
4884 lru_add_drain_all();
4885 /* try to free all pages in this cgroup */
4886 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4887 int progress;
4888
4889 if (signal_pending(current))
4890 return -EINTR;
4891
4892 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4893 false);
4894 if (!progress) {
4895 nr_retries--;
4896 /* maybe some writeback is necessary */
4897 congestion_wait(BLK_RW_ASYNC, HZ/10);
4898 }
4899
4900 }
4901 lru_add_drain();
4902 mem_cgroup_reparent_charges(memcg);
4903
4904 return 0;
4905 }
4906
4907 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4908 {
4909 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4910 int ret;
4911
4912 if (mem_cgroup_is_root(memcg))
4913 return -EINVAL;
4914 css_get(&memcg->css);
4915 ret = mem_cgroup_force_empty(memcg);
4916 css_put(&memcg->css);
4917
4918 return ret;
4919 }
4920
4921
4922 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4923 {
4924 return mem_cgroup_from_cont(cont)->use_hierarchy;
4925 }
4926
4927 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4928 u64 val)
4929 {
4930 int retval = 0;
4931 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4932 struct cgroup *parent = cont->parent;
4933 struct mem_cgroup *parent_memcg = NULL;
4934
4935 if (parent)
4936 parent_memcg = mem_cgroup_from_cont(parent);
4937
4938 mutex_lock(&memcg_create_mutex);
4939
4940 if (memcg->use_hierarchy == val)
4941 goto out;
4942
4943 /*
4944 * If parent's use_hierarchy is set, we can't make any modifications
4945 * in the child subtrees. If it is unset, then the change can
4946 * occur, provided the current cgroup has no children.
4947 *
4948 * For the root cgroup, parent_mem is NULL, we allow value to be
4949 * set if there are no children.
4950 */
4951 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4952 (val == 1 || val == 0)) {
4953 if (!__memcg_has_children(memcg))
4954 memcg->use_hierarchy = val;
4955 else
4956 retval = -EBUSY;
4957 } else
4958 retval = -EINVAL;
4959
4960 out:
4961 mutex_unlock(&memcg_create_mutex);
4962
4963 return retval;
4964 }
4965
4966
4967 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4968 enum mem_cgroup_stat_index idx)
4969 {
4970 struct mem_cgroup *iter;
4971 long val = 0;
4972
4973 /* Per-cpu values can be negative, use a signed accumulator */
4974 for_each_mem_cgroup_tree(iter, memcg)
4975 val += mem_cgroup_read_stat(iter, idx);
4976
4977 if (val < 0) /* race ? */
4978 val = 0;
4979 return val;
4980 }
4981
4982 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4983 {
4984 u64 val;
4985
4986 if (!mem_cgroup_is_root(memcg)) {
4987 if (!swap)
4988 return res_counter_read_u64(&memcg->res, RES_USAGE);
4989 else
4990 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4991 }
4992
4993 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4994 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4995
4996 if (swap)
4997 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4998
4999 return val << PAGE_SHIFT;
5000 }
5001
5002 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5003 struct file *file, char __user *buf,
5004 size_t nbytes, loff_t *ppos)
5005 {
5006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5007 char str[64];
5008 u64 val;
5009 int name, len;
5010 enum res_type type;
5011
5012 type = MEMFILE_TYPE(cft->private);
5013 name = MEMFILE_ATTR(cft->private);
5014
5015 if (!do_swap_account && type == _MEMSWAP)
5016 return -EOPNOTSUPP;
5017
5018 switch (type) {
5019 case _MEM:
5020 if (name == RES_USAGE)
5021 val = mem_cgroup_usage(memcg, false);
5022 else
5023 val = res_counter_read_u64(&memcg->res, name);
5024 break;
5025 case _MEMSWAP:
5026 if (name == RES_USAGE)
5027 val = mem_cgroup_usage(memcg, true);
5028 else
5029 val = res_counter_read_u64(&memcg->memsw, name);
5030 break;
5031 case _KMEM:
5032 val = res_counter_read_u64(&memcg->kmem, name);
5033 break;
5034 default:
5035 BUG();
5036 }
5037
5038 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5039 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5040 }
5041
5042 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5043 {
5044 int ret = -EINVAL;
5045 #ifdef CONFIG_MEMCG_KMEM
5046 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5047 /*
5048 * For simplicity, we won't allow this to be disabled. It also can't
5049 * be changed if the cgroup has children already, or if tasks had
5050 * already joined.
5051 *
5052 * If tasks join before we set the limit, a person looking at
5053 * kmem.usage_in_bytes will have no way to determine when it took
5054 * place, which makes the value quite meaningless.
5055 *
5056 * After it first became limited, changes in the value of the limit are
5057 * of course permitted.
5058 */
5059 mutex_lock(&memcg_create_mutex);
5060 mutex_lock(&set_limit_mutex);
5061 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5062 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5063 ret = -EBUSY;
5064 goto out;
5065 }
5066 ret = res_counter_set_limit(&memcg->kmem, val);
5067 VM_BUG_ON(ret);
5068
5069 ret = memcg_update_cache_sizes(memcg);
5070 if (ret) {
5071 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5072 goto out;
5073 }
5074 static_key_slow_inc(&memcg_kmem_enabled_key);
5075 /*
5076 * setting the active bit after the inc will guarantee no one
5077 * starts accounting before all call sites are patched
5078 */
5079 memcg_kmem_set_active(memcg);
5080
5081 /*
5082 * kmem charges can outlive the cgroup. In the case of slab
5083 * pages, for instance, a page contain objects from various
5084 * processes, so it is unfeasible to migrate them away. We
5085 * need to reference count the memcg because of that.
5086 */
5087 mem_cgroup_get(memcg);
5088 } else
5089 ret = res_counter_set_limit(&memcg->kmem, val);
5090 out:
5091 mutex_unlock(&set_limit_mutex);
5092 mutex_unlock(&memcg_create_mutex);
5093 #endif
5094 return ret;
5095 }
5096
5097 #ifdef CONFIG_MEMCG_KMEM
5098 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5099 {
5100 int ret = 0;
5101 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5102 if (!parent)
5103 goto out;
5104
5105 memcg->kmem_account_flags = parent->kmem_account_flags;
5106 /*
5107 * When that happen, we need to disable the static branch only on those
5108 * memcgs that enabled it. To achieve this, we would be forced to
5109 * complicate the code by keeping track of which memcgs were the ones
5110 * that actually enabled limits, and which ones got it from its
5111 * parents.
5112 *
5113 * It is a lot simpler just to do static_key_slow_inc() on every child
5114 * that is accounted.
5115 */
5116 if (!memcg_kmem_is_active(memcg))
5117 goto out;
5118
5119 /*
5120 * destroy(), called if we fail, will issue static_key_slow_inc() and
5121 * mem_cgroup_put() if kmem is enabled. We have to either call them
5122 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5123 * this more consistent, since it always leads to the same destroy path
5124 */
5125 mem_cgroup_get(memcg);
5126 static_key_slow_inc(&memcg_kmem_enabled_key);
5127
5128 mutex_lock(&set_limit_mutex);
5129 ret = memcg_update_cache_sizes(memcg);
5130 mutex_unlock(&set_limit_mutex);
5131 out:
5132 return ret;
5133 }
5134 #endif /* CONFIG_MEMCG_KMEM */
5135
5136 /*
5137 * The user of this function is...
5138 * RES_LIMIT.
5139 */
5140 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5141 const char *buffer)
5142 {
5143 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5144 enum res_type type;
5145 int name;
5146 unsigned long long val;
5147 int ret;
5148
5149 type = MEMFILE_TYPE(cft->private);
5150 name = MEMFILE_ATTR(cft->private);
5151
5152 if (!do_swap_account && type == _MEMSWAP)
5153 return -EOPNOTSUPP;
5154
5155 switch (name) {
5156 case RES_LIMIT:
5157 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5158 ret = -EINVAL;
5159 break;
5160 }
5161 /* This function does all necessary parse...reuse it */
5162 ret = res_counter_memparse_write_strategy(buffer, &val);
5163 if (ret)
5164 break;
5165 if (type == _MEM)
5166 ret = mem_cgroup_resize_limit(memcg, val);
5167 else if (type == _MEMSWAP)
5168 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5169 else if (type == _KMEM)
5170 ret = memcg_update_kmem_limit(cont, val);
5171 else
5172 return -EINVAL;
5173 break;
5174 case RES_SOFT_LIMIT:
5175 ret = res_counter_memparse_write_strategy(buffer, &val);
5176 if (ret)
5177 break;
5178 /*
5179 * For memsw, soft limits are hard to implement in terms
5180 * of semantics, for now, we support soft limits for
5181 * control without swap
5182 */
5183 if (type == _MEM)
5184 ret = res_counter_set_soft_limit(&memcg->res, val);
5185 else
5186 ret = -EINVAL;
5187 break;
5188 default:
5189 ret = -EINVAL; /* should be BUG() ? */
5190 break;
5191 }
5192 return ret;
5193 }
5194
5195 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5196 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5197 {
5198 struct cgroup *cgroup;
5199 unsigned long long min_limit, min_memsw_limit, tmp;
5200
5201 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5202 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5203 cgroup = memcg->css.cgroup;
5204 if (!memcg->use_hierarchy)
5205 goto out;
5206
5207 while (cgroup->parent) {
5208 cgroup = cgroup->parent;
5209 memcg = mem_cgroup_from_cont(cgroup);
5210 if (!memcg->use_hierarchy)
5211 break;
5212 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5213 min_limit = min(min_limit, tmp);
5214 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5215 min_memsw_limit = min(min_memsw_limit, tmp);
5216 }
5217 out:
5218 *mem_limit = min_limit;
5219 *memsw_limit = min_memsw_limit;
5220 }
5221
5222 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5223 {
5224 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5225 int name;
5226 enum res_type type;
5227
5228 type = MEMFILE_TYPE(event);
5229 name = MEMFILE_ATTR(event);
5230
5231 if (!do_swap_account && type == _MEMSWAP)
5232 return -EOPNOTSUPP;
5233
5234 switch (name) {
5235 case RES_MAX_USAGE:
5236 if (type == _MEM)
5237 res_counter_reset_max(&memcg->res);
5238 else if (type == _MEMSWAP)
5239 res_counter_reset_max(&memcg->memsw);
5240 else if (type == _KMEM)
5241 res_counter_reset_max(&memcg->kmem);
5242 else
5243 return -EINVAL;
5244 break;
5245 case RES_FAILCNT:
5246 if (type == _MEM)
5247 res_counter_reset_failcnt(&memcg->res);
5248 else if (type == _MEMSWAP)
5249 res_counter_reset_failcnt(&memcg->memsw);
5250 else if (type == _KMEM)
5251 res_counter_reset_failcnt(&memcg->kmem);
5252 else
5253 return -EINVAL;
5254 break;
5255 }
5256
5257 return 0;
5258 }
5259
5260 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5261 struct cftype *cft)
5262 {
5263 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5264 }
5265
5266 #ifdef CONFIG_MMU
5267 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5268 struct cftype *cft, u64 val)
5269 {
5270 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5271
5272 if (val >= (1 << NR_MOVE_TYPE))
5273 return -EINVAL;
5274
5275 /*
5276 * No kind of locking is needed in here, because ->can_attach() will
5277 * check this value once in the beginning of the process, and then carry
5278 * on with stale data. This means that changes to this value will only
5279 * affect task migrations starting after the change.
5280 */
5281 memcg->move_charge_at_immigrate = val;
5282 return 0;
5283 }
5284 #else
5285 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5286 struct cftype *cft, u64 val)
5287 {
5288 return -ENOSYS;
5289 }
5290 #endif
5291
5292 #ifdef CONFIG_NUMA
5293 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5294 struct seq_file *m)
5295 {
5296 int nid;
5297 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5298 unsigned long node_nr;
5299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5300
5301 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5302 seq_printf(m, "total=%lu", total_nr);
5303 for_each_node_state(nid, N_MEMORY) {
5304 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5305 seq_printf(m, " N%d=%lu", nid, node_nr);
5306 }
5307 seq_putc(m, '\n');
5308
5309 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5310 seq_printf(m, "file=%lu", file_nr);
5311 for_each_node_state(nid, N_MEMORY) {
5312 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5313 LRU_ALL_FILE);
5314 seq_printf(m, " N%d=%lu", nid, node_nr);
5315 }
5316 seq_putc(m, '\n');
5317
5318 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5319 seq_printf(m, "anon=%lu", anon_nr);
5320 for_each_node_state(nid, N_MEMORY) {
5321 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5322 LRU_ALL_ANON);
5323 seq_printf(m, " N%d=%lu", nid, node_nr);
5324 }
5325 seq_putc(m, '\n');
5326
5327 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5328 seq_printf(m, "unevictable=%lu", unevictable_nr);
5329 for_each_node_state(nid, N_MEMORY) {
5330 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5331 BIT(LRU_UNEVICTABLE));
5332 seq_printf(m, " N%d=%lu", nid, node_nr);
5333 }
5334 seq_putc(m, '\n');
5335 return 0;
5336 }
5337 #endif /* CONFIG_NUMA */
5338
5339 static inline void mem_cgroup_lru_names_not_uptodate(void)
5340 {
5341 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5342 }
5343
5344 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5345 struct seq_file *m)
5346 {
5347 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5348 struct mem_cgroup *mi;
5349 unsigned int i;
5350
5351 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5352 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5353 continue;
5354 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5355 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5356 }
5357
5358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5359 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5360 mem_cgroup_read_events(memcg, i));
5361
5362 for (i = 0; i < NR_LRU_LISTS; i++)
5363 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5364 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5365
5366 /* Hierarchical information */
5367 {
5368 unsigned long long limit, memsw_limit;
5369 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5370 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5371 if (do_swap_account)
5372 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5373 memsw_limit);
5374 }
5375
5376 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5377 long long val = 0;
5378
5379 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5380 continue;
5381 for_each_mem_cgroup_tree(mi, memcg)
5382 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5383 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5384 }
5385
5386 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5387 unsigned long long val = 0;
5388
5389 for_each_mem_cgroup_tree(mi, memcg)
5390 val += mem_cgroup_read_events(mi, i);
5391 seq_printf(m, "total_%s %llu\n",
5392 mem_cgroup_events_names[i], val);
5393 }
5394
5395 for (i = 0; i < NR_LRU_LISTS; i++) {
5396 unsigned long long val = 0;
5397
5398 for_each_mem_cgroup_tree(mi, memcg)
5399 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5400 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5401 }
5402
5403 #ifdef CONFIG_DEBUG_VM
5404 {
5405 int nid, zid;
5406 struct mem_cgroup_per_zone *mz;
5407 struct zone_reclaim_stat *rstat;
5408 unsigned long recent_rotated[2] = {0, 0};
5409 unsigned long recent_scanned[2] = {0, 0};
5410
5411 for_each_online_node(nid)
5412 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5413 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5414 rstat = &mz->lruvec.reclaim_stat;
5415
5416 recent_rotated[0] += rstat->recent_rotated[0];
5417 recent_rotated[1] += rstat->recent_rotated[1];
5418 recent_scanned[0] += rstat->recent_scanned[0];
5419 recent_scanned[1] += rstat->recent_scanned[1];
5420 }
5421 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5422 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5423 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5424 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5425 }
5426 #endif
5427
5428 return 0;
5429 }
5430
5431 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5432 {
5433 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5434
5435 return mem_cgroup_swappiness(memcg);
5436 }
5437
5438 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5439 u64 val)
5440 {
5441 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5442 struct mem_cgroup *parent;
5443
5444 if (val > 100)
5445 return -EINVAL;
5446
5447 if (cgrp->parent == NULL)
5448 return -EINVAL;
5449
5450 parent = mem_cgroup_from_cont(cgrp->parent);
5451
5452 mutex_lock(&memcg_create_mutex);
5453
5454 /* If under hierarchy, only empty-root can set this value */
5455 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5456 mutex_unlock(&memcg_create_mutex);
5457 return -EINVAL;
5458 }
5459
5460 memcg->swappiness = val;
5461
5462 mutex_unlock(&memcg_create_mutex);
5463
5464 return 0;
5465 }
5466
5467 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5468 {
5469 struct mem_cgroup_threshold_ary *t;
5470 u64 usage;
5471 int i;
5472
5473 rcu_read_lock();
5474 if (!swap)
5475 t = rcu_dereference(memcg->thresholds.primary);
5476 else
5477 t = rcu_dereference(memcg->memsw_thresholds.primary);
5478
5479 if (!t)
5480 goto unlock;
5481
5482 usage = mem_cgroup_usage(memcg, swap);
5483
5484 /*
5485 * current_threshold points to threshold just below or equal to usage.
5486 * If it's not true, a threshold was crossed after last
5487 * call of __mem_cgroup_threshold().
5488 */
5489 i = t->current_threshold;
5490
5491 /*
5492 * Iterate backward over array of thresholds starting from
5493 * current_threshold and check if a threshold is crossed.
5494 * If none of thresholds below usage is crossed, we read
5495 * only one element of the array here.
5496 */
5497 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5498 eventfd_signal(t->entries[i].eventfd, 1);
5499
5500 /* i = current_threshold + 1 */
5501 i++;
5502
5503 /*
5504 * Iterate forward over array of thresholds starting from
5505 * current_threshold+1 and check if a threshold is crossed.
5506 * If none of thresholds above usage is crossed, we read
5507 * only one element of the array here.
5508 */
5509 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5510 eventfd_signal(t->entries[i].eventfd, 1);
5511
5512 /* Update current_threshold */
5513 t->current_threshold = i - 1;
5514 unlock:
5515 rcu_read_unlock();
5516 }
5517
5518 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5519 {
5520 while (memcg) {
5521 __mem_cgroup_threshold(memcg, false);
5522 if (do_swap_account)
5523 __mem_cgroup_threshold(memcg, true);
5524
5525 memcg = parent_mem_cgroup(memcg);
5526 }
5527 }
5528
5529 static int compare_thresholds(const void *a, const void *b)
5530 {
5531 const struct mem_cgroup_threshold *_a = a;
5532 const struct mem_cgroup_threshold *_b = b;
5533
5534 return _a->threshold - _b->threshold;
5535 }
5536
5537 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5538 {
5539 struct mem_cgroup_eventfd_list *ev;
5540
5541 list_for_each_entry(ev, &memcg->oom_notify, list)
5542 eventfd_signal(ev->eventfd, 1);
5543 return 0;
5544 }
5545
5546 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5547 {
5548 struct mem_cgroup *iter;
5549
5550 for_each_mem_cgroup_tree(iter, memcg)
5551 mem_cgroup_oom_notify_cb(iter);
5552 }
5553
5554 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5555 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5556 {
5557 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5558 struct mem_cgroup_thresholds *thresholds;
5559 struct mem_cgroup_threshold_ary *new;
5560 enum res_type type = MEMFILE_TYPE(cft->private);
5561 u64 threshold, usage;
5562 int i, size, ret;
5563
5564 ret = res_counter_memparse_write_strategy(args, &threshold);
5565 if (ret)
5566 return ret;
5567
5568 mutex_lock(&memcg->thresholds_lock);
5569
5570 if (type == _MEM)
5571 thresholds = &memcg->thresholds;
5572 else if (type == _MEMSWAP)
5573 thresholds = &memcg->memsw_thresholds;
5574 else
5575 BUG();
5576
5577 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5578
5579 /* Check if a threshold crossed before adding a new one */
5580 if (thresholds->primary)
5581 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5582
5583 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5584
5585 /* Allocate memory for new array of thresholds */
5586 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5587 GFP_KERNEL);
5588 if (!new) {
5589 ret = -ENOMEM;
5590 goto unlock;
5591 }
5592 new->size = size;
5593
5594 /* Copy thresholds (if any) to new array */
5595 if (thresholds->primary) {
5596 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5597 sizeof(struct mem_cgroup_threshold));
5598 }
5599
5600 /* Add new threshold */
5601 new->entries[size - 1].eventfd = eventfd;
5602 new->entries[size - 1].threshold = threshold;
5603
5604 /* Sort thresholds. Registering of new threshold isn't time-critical */
5605 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5606 compare_thresholds, NULL);
5607
5608 /* Find current threshold */
5609 new->current_threshold = -1;
5610 for (i = 0; i < size; i++) {
5611 if (new->entries[i].threshold <= usage) {
5612 /*
5613 * new->current_threshold will not be used until
5614 * rcu_assign_pointer(), so it's safe to increment
5615 * it here.
5616 */
5617 ++new->current_threshold;
5618 } else
5619 break;
5620 }
5621
5622 /* Free old spare buffer and save old primary buffer as spare */
5623 kfree(thresholds->spare);
5624 thresholds->spare = thresholds->primary;
5625
5626 rcu_assign_pointer(thresholds->primary, new);
5627
5628 /* To be sure that nobody uses thresholds */
5629 synchronize_rcu();
5630
5631 unlock:
5632 mutex_unlock(&memcg->thresholds_lock);
5633
5634 return ret;
5635 }
5636
5637 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5638 struct cftype *cft, struct eventfd_ctx *eventfd)
5639 {
5640 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5641 struct mem_cgroup_thresholds *thresholds;
5642 struct mem_cgroup_threshold_ary *new;
5643 enum res_type type = MEMFILE_TYPE(cft->private);
5644 u64 usage;
5645 int i, j, size;
5646
5647 mutex_lock(&memcg->thresholds_lock);
5648 if (type == _MEM)
5649 thresholds = &memcg->thresholds;
5650 else if (type == _MEMSWAP)
5651 thresholds = &memcg->memsw_thresholds;
5652 else
5653 BUG();
5654
5655 if (!thresholds->primary)
5656 goto unlock;
5657
5658 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5659
5660 /* Check if a threshold crossed before removing */
5661 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5662
5663 /* Calculate new number of threshold */
5664 size = 0;
5665 for (i = 0; i < thresholds->primary->size; i++) {
5666 if (thresholds->primary->entries[i].eventfd != eventfd)
5667 size++;
5668 }
5669
5670 new = thresholds->spare;
5671
5672 /* Set thresholds array to NULL if we don't have thresholds */
5673 if (!size) {
5674 kfree(new);
5675 new = NULL;
5676 goto swap_buffers;
5677 }
5678
5679 new->size = size;
5680
5681 /* Copy thresholds and find current threshold */
5682 new->current_threshold = -1;
5683 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5684 if (thresholds->primary->entries[i].eventfd == eventfd)
5685 continue;
5686
5687 new->entries[j] = thresholds->primary->entries[i];
5688 if (new->entries[j].threshold <= usage) {
5689 /*
5690 * new->current_threshold will not be used
5691 * until rcu_assign_pointer(), so it's safe to increment
5692 * it here.
5693 */
5694 ++new->current_threshold;
5695 }
5696 j++;
5697 }
5698
5699 swap_buffers:
5700 /* Swap primary and spare array */
5701 thresholds->spare = thresholds->primary;
5702 /* If all events are unregistered, free the spare array */
5703 if (!new) {
5704 kfree(thresholds->spare);
5705 thresholds->spare = NULL;
5706 }
5707
5708 rcu_assign_pointer(thresholds->primary, new);
5709
5710 /* To be sure that nobody uses thresholds */
5711 synchronize_rcu();
5712 unlock:
5713 mutex_unlock(&memcg->thresholds_lock);
5714 }
5715
5716 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5717 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5718 {
5719 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5720 struct mem_cgroup_eventfd_list *event;
5721 enum res_type type = MEMFILE_TYPE(cft->private);
5722
5723 BUG_ON(type != _OOM_TYPE);
5724 event = kmalloc(sizeof(*event), GFP_KERNEL);
5725 if (!event)
5726 return -ENOMEM;
5727
5728 spin_lock(&memcg_oom_lock);
5729
5730 event->eventfd = eventfd;
5731 list_add(&event->list, &memcg->oom_notify);
5732
5733 /* already in OOM ? */
5734 if (atomic_read(&memcg->under_oom))
5735 eventfd_signal(eventfd, 1);
5736 spin_unlock(&memcg_oom_lock);
5737
5738 return 0;
5739 }
5740
5741 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5742 struct cftype *cft, struct eventfd_ctx *eventfd)
5743 {
5744 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5745 struct mem_cgroup_eventfd_list *ev, *tmp;
5746 enum res_type type = MEMFILE_TYPE(cft->private);
5747
5748 BUG_ON(type != _OOM_TYPE);
5749
5750 spin_lock(&memcg_oom_lock);
5751
5752 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5753 if (ev->eventfd == eventfd) {
5754 list_del(&ev->list);
5755 kfree(ev);
5756 }
5757 }
5758
5759 spin_unlock(&memcg_oom_lock);
5760 }
5761
5762 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5763 struct cftype *cft, struct cgroup_map_cb *cb)
5764 {
5765 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5766
5767 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5768
5769 if (atomic_read(&memcg->under_oom))
5770 cb->fill(cb, "under_oom", 1);
5771 else
5772 cb->fill(cb, "under_oom", 0);
5773 return 0;
5774 }
5775
5776 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5777 struct cftype *cft, u64 val)
5778 {
5779 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5780 struct mem_cgroup *parent;
5781
5782 /* cannot set to root cgroup and only 0 and 1 are allowed */
5783 if (!cgrp->parent || !((val == 0) || (val == 1)))
5784 return -EINVAL;
5785
5786 parent = mem_cgroup_from_cont(cgrp->parent);
5787
5788 mutex_lock(&memcg_create_mutex);
5789 /* oom-kill-disable is a flag for subhierarchy. */
5790 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5791 mutex_unlock(&memcg_create_mutex);
5792 return -EINVAL;
5793 }
5794 memcg->oom_kill_disable = val;
5795 if (!val)
5796 memcg_oom_recover(memcg);
5797 mutex_unlock(&memcg_create_mutex);
5798 return 0;
5799 }
5800
5801 #ifdef CONFIG_MEMCG_KMEM
5802 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5803 {
5804 int ret;
5805
5806 memcg->kmemcg_id = -1;
5807 ret = memcg_propagate_kmem(memcg);
5808 if (ret)
5809 return ret;
5810
5811 return mem_cgroup_sockets_init(memcg, ss);
5812 };
5813
5814 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5815 {
5816 mem_cgroup_sockets_destroy(memcg);
5817
5818 memcg_kmem_mark_dead(memcg);
5819
5820 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5821 return;
5822
5823 /*
5824 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5825 * path here, being careful not to race with memcg_uncharge_kmem: it is
5826 * possible that the charges went down to 0 between mark_dead and the
5827 * res_counter read, so in that case, we don't need the put
5828 */
5829 if (memcg_kmem_test_and_clear_dead(memcg))
5830 mem_cgroup_put(memcg);
5831 }
5832 #else
5833 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5834 {
5835 return 0;
5836 }
5837
5838 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5839 {
5840 }
5841 #endif
5842
5843 static struct cftype mem_cgroup_files[] = {
5844 {
5845 .name = "usage_in_bytes",
5846 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5847 .read = mem_cgroup_read,
5848 .register_event = mem_cgroup_usage_register_event,
5849 .unregister_event = mem_cgroup_usage_unregister_event,
5850 },
5851 {
5852 .name = "max_usage_in_bytes",
5853 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5854 .trigger = mem_cgroup_reset,
5855 .read = mem_cgroup_read,
5856 },
5857 {
5858 .name = "limit_in_bytes",
5859 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5860 .write_string = mem_cgroup_write,
5861 .read = mem_cgroup_read,
5862 },
5863 {
5864 .name = "soft_limit_in_bytes",
5865 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5866 .write_string = mem_cgroup_write,
5867 .read = mem_cgroup_read,
5868 },
5869 {
5870 .name = "failcnt",
5871 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5872 .trigger = mem_cgroup_reset,
5873 .read = mem_cgroup_read,
5874 },
5875 {
5876 .name = "stat",
5877 .read_seq_string = memcg_stat_show,
5878 },
5879 {
5880 .name = "force_empty",
5881 .trigger = mem_cgroup_force_empty_write,
5882 },
5883 {
5884 .name = "use_hierarchy",
5885 .write_u64 = mem_cgroup_hierarchy_write,
5886 .read_u64 = mem_cgroup_hierarchy_read,
5887 },
5888 {
5889 .name = "swappiness",
5890 .read_u64 = mem_cgroup_swappiness_read,
5891 .write_u64 = mem_cgroup_swappiness_write,
5892 },
5893 {
5894 .name = "move_charge_at_immigrate",
5895 .read_u64 = mem_cgroup_move_charge_read,
5896 .write_u64 = mem_cgroup_move_charge_write,
5897 },
5898 {
5899 .name = "oom_control",
5900 .read_map = mem_cgroup_oom_control_read,
5901 .write_u64 = mem_cgroup_oom_control_write,
5902 .register_event = mem_cgroup_oom_register_event,
5903 .unregister_event = mem_cgroup_oom_unregister_event,
5904 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5905 },
5906 #ifdef CONFIG_NUMA
5907 {
5908 .name = "numa_stat",
5909 .read_seq_string = memcg_numa_stat_show,
5910 },
5911 #endif
5912 #ifdef CONFIG_MEMCG_KMEM
5913 {
5914 .name = "kmem.limit_in_bytes",
5915 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5916 .write_string = mem_cgroup_write,
5917 .read = mem_cgroup_read,
5918 },
5919 {
5920 .name = "kmem.usage_in_bytes",
5921 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5922 .read = mem_cgroup_read,
5923 },
5924 {
5925 .name = "kmem.failcnt",
5926 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5927 .trigger = mem_cgroup_reset,
5928 .read = mem_cgroup_read,
5929 },
5930 {
5931 .name = "kmem.max_usage_in_bytes",
5932 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5933 .trigger = mem_cgroup_reset,
5934 .read = mem_cgroup_read,
5935 },
5936 #ifdef CONFIG_SLABINFO
5937 {
5938 .name = "kmem.slabinfo",
5939 .read_seq_string = mem_cgroup_slabinfo_read,
5940 },
5941 #endif
5942 #endif
5943 { }, /* terminate */
5944 };
5945
5946 #ifdef CONFIG_MEMCG_SWAP
5947 static struct cftype memsw_cgroup_files[] = {
5948 {
5949 .name = "memsw.usage_in_bytes",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5951 .read = mem_cgroup_read,
5952 .register_event = mem_cgroup_usage_register_event,
5953 .unregister_event = mem_cgroup_usage_unregister_event,
5954 },
5955 {
5956 .name = "memsw.max_usage_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5958 .trigger = mem_cgroup_reset,
5959 .read = mem_cgroup_read,
5960 },
5961 {
5962 .name = "memsw.limit_in_bytes",
5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5964 .write_string = mem_cgroup_write,
5965 .read = mem_cgroup_read,
5966 },
5967 {
5968 .name = "memsw.failcnt",
5969 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5970 .trigger = mem_cgroup_reset,
5971 .read = mem_cgroup_read,
5972 },
5973 { }, /* terminate */
5974 };
5975 #endif
5976 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5977 {
5978 struct mem_cgroup_per_node *pn;
5979 struct mem_cgroup_per_zone *mz;
5980 int zone, tmp = node;
5981 /*
5982 * This routine is called against possible nodes.
5983 * But it's BUG to call kmalloc() against offline node.
5984 *
5985 * TODO: this routine can waste much memory for nodes which will
5986 * never be onlined. It's better to use memory hotplug callback
5987 * function.
5988 */
5989 if (!node_state(node, N_NORMAL_MEMORY))
5990 tmp = -1;
5991 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5992 if (!pn)
5993 return 1;
5994
5995 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5996 mz = &pn->zoneinfo[zone];
5997 lruvec_init(&mz->lruvec);
5998 mz->usage_in_excess = 0;
5999 mz->on_tree = false;
6000 mz->memcg = memcg;
6001 }
6002 memcg->info.nodeinfo[node] = pn;
6003 return 0;
6004 }
6005
6006 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6007 {
6008 kfree(memcg->info.nodeinfo[node]);
6009 }
6010
6011 static struct mem_cgroup *mem_cgroup_alloc(void)
6012 {
6013 struct mem_cgroup *memcg;
6014 size_t size = memcg_size();
6015
6016 /* Can be very big if nr_node_ids is very big */
6017 if (size < PAGE_SIZE)
6018 memcg = kzalloc(size, GFP_KERNEL);
6019 else
6020 memcg = vzalloc(size);
6021
6022 if (!memcg)
6023 return NULL;
6024
6025 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6026 if (!memcg->stat)
6027 goto out_free;
6028 spin_lock_init(&memcg->pcp_counter_lock);
6029 return memcg;
6030
6031 out_free:
6032 if (size < PAGE_SIZE)
6033 kfree(memcg);
6034 else
6035 vfree(memcg);
6036 return NULL;
6037 }
6038
6039 /*
6040 * At destroying mem_cgroup, references from swap_cgroup can remain.
6041 * (scanning all at force_empty is too costly...)
6042 *
6043 * Instead of clearing all references at force_empty, we remember
6044 * the number of reference from swap_cgroup and free mem_cgroup when
6045 * it goes down to 0.
6046 *
6047 * Removal of cgroup itself succeeds regardless of refs from swap.
6048 */
6049
6050 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6051 {
6052 int node;
6053 size_t size = memcg_size();
6054
6055 mem_cgroup_remove_from_trees(memcg);
6056 free_css_id(&mem_cgroup_subsys, &memcg->css);
6057
6058 for_each_node(node)
6059 free_mem_cgroup_per_zone_info(memcg, node);
6060
6061 free_percpu(memcg->stat);
6062
6063 /*
6064 * We need to make sure that (at least for now), the jump label
6065 * destruction code runs outside of the cgroup lock. This is because
6066 * get_online_cpus(), which is called from the static_branch update,
6067 * can't be called inside the cgroup_lock. cpusets are the ones
6068 * enforcing this dependency, so if they ever change, we might as well.
6069 *
6070 * schedule_work() will guarantee this happens. Be careful if you need
6071 * to move this code around, and make sure it is outside
6072 * the cgroup_lock.
6073 */
6074 disarm_static_keys(memcg);
6075 if (size < PAGE_SIZE)
6076 kfree(memcg);
6077 else
6078 vfree(memcg);
6079 }
6080
6081
6082 /*
6083 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6084 * but in process context. The work_freeing structure is overlaid
6085 * on the rcu_freeing structure, which itself is overlaid on memsw.
6086 */
6087 static void free_work(struct work_struct *work)
6088 {
6089 struct mem_cgroup *memcg;
6090
6091 memcg = container_of(work, struct mem_cgroup, work_freeing);
6092 __mem_cgroup_free(memcg);
6093 }
6094
6095 static void free_rcu(struct rcu_head *rcu_head)
6096 {
6097 struct mem_cgroup *memcg;
6098
6099 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6100 INIT_WORK(&memcg->work_freeing, free_work);
6101 schedule_work(&memcg->work_freeing);
6102 }
6103
6104 static void mem_cgroup_get(struct mem_cgroup *memcg)
6105 {
6106 atomic_inc(&memcg->refcnt);
6107 }
6108
6109 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6110 {
6111 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6112 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6113 call_rcu(&memcg->rcu_freeing, free_rcu);
6114 if (parent)
6115 mem_cgroup_put(parent);
6116 }
6117 }
6118
6119 static void mem_cgroup_put(struct mem_cgroup *memcg)
6120 {
6121 __mem_cgroup_put(memcg, 1);
6122 }
6123
6124 /*
6125 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6126 */
6127 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6128 {
6129 if (!memcg->res.parent)
6130 return NULL;
6131 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6132 }
6133 EXPORT_SYMBOL(parent_mem_cgroup);
6134
6135 static void __init mem_cgroup_soft_limit_tree_init(void)
6136 {
6137 struct mem_cgroup_tree_per_node *rtpn;
6138 struct mem_cgroup_tree_per_zone *rtpz;
6139 int tmp, node, zone;
6140
6141 for_each_node(node) {
6142 tmp = node;
6143 if (!node_state(node, N_NORMAL_MEMORY))
6144 tmp = -1;
6145 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6146 BUG_ON(!rtpn);
6147
6148 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6149
6150 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6151 rtpz = &rtpn->rb_tree_per_zone[zone];
6152 rtpz->rb_root = RB_ROOT;
6153 spin_lock_init(&rtpz->lock);
6154 }
6155 }
6156 }
6157
6158 static struct cgroup_subsys_state * __ref
6159 mem_cgroup_css_alloc(struct cgroup *cont)
6160 {
6161 struct mem_cgroup *memcg;
6162 long error = -ENOMEM;
6163 int node;
6164
6165 memcg = mem_cgroup_alloc();
6166 if (!memcg)
6167 return ERR_PTR(error);
6168
6169 for_each_node(node)
6170 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6171 goto free_out;
6172
6173 /* root ? */
6174 if (cont->parent == NULL) {
6175 root_mem_cgroup = memcg;
6176 res_counter_init(&memcg->res, NULL);
6177 res_counter_init(&memcg->memsw, NULL);
6178 res_counter_init(&memcg->kmem, NULL);
6179 }
6180
6181 memcg->last_scanned_node = MAX_NUMNODES;
6182 INIT_LIST_HEAD(&memcg->oom_notify);
6183 atomic_set(&memcg->refcnt, 1);
6184 memcg->move_charge_at_immigrate = 0;
6185 mutex_init(&memcg->thresholds_lock);
6186 spin_lock_init(&memcg->move_lock);
6187
6188 return &memcg->css;
6189
6190 free_out:
6191 __mem_cgroup_free(memcg);
6192 return ERR_PTR(error);
6193 }
6194
6195 static int
6196 mem_cgroup_css_online(struct cgroup *cont)
6197 {
6198 struct mem_cgroup *memcg, *parent;
6199 int error = 0;
6200
6201 if (!cont->parent)
6202 return 0;
6203
6204 mutex_lock(&memcg_create_mutex);
6205 memcg = mem_cgroup_from_cont(cont);
6206 parent = mem_cgroup_from_cont(cont->parent);
6207
6208 memcg->use_hierarchy = parent->use_hierarchy;
6209 memcg->oom_kill_disable = parent->oom_kill_disable;
6210 memcg->swappiness = mem_cgroup_swappiness(parent);
6211
6212 if (parent->use_hierarchy) {
6213 res_counter_init(&memcg->res, &parent->res);
6214 res_counter_init(&memcg->memsw, &parent->memsw);
6215 res_counter_init(&memcg->kmem, &parent->kmem);
6216
6217 /*
6218 * We increment refcnt of the parent to ensure that we can
6219 * safely access it on res_counter_charge/uncharge.
6220 * This refcnt will be decremented when freeing this
6221 * mem_cgroup(see mem_cgroup_put).
6222 */
6223 mem_cgroup_get(parent);
6224 } else {
6225 res_counter_init(&memcg->res, NULL);
6226 res_counter_init(&memcg->memsw, NULL);
6227 res_counter_init(&memcg->kmem, NULL);
6228 /*
6229 * Deeper hierachy with use_hierarchy == false doesn't make
6230 * much sense so let cgroup subsystem know about this
6231 * unfortunate state in our controller.
6232 */
6233 if (parent != root_mem_cgroup)
6234 mem_cgroup_subsys.broken_hierarchy = true;
6235 }
6236
6237 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6238 mutex_unlock(&memcg_create_mutex);
6239 if (error) {
6240 /*
6241 * We call put now because our (and parent's) refcnts
6242 * are already in place. mem_cgroup_put() will internally
6243 * call __mem_cgroup_free, so return directly
6244 */
6245 mem_cgroup_put(memcg);
6246 if (parent->use_hierarchy)
6247 mem_cgroup_put(parent);
6248 }
6249 return error;
6250 }
6251
6252 /*
6253 * Announce all parents that a group from their hierarchy is gone.
6254 */
6255 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6256 {
6257 struct mem_cgroup *parent = memcg;
6258
6259 while ((parent = parent_mem_cgroup(parent)))
6260 atomic_inc(&parent->dead_count);
6261
6262 /*
6263 * if the root memcg is not hierarchical we have to check it
6264 * explicitely.
6265 */
6266 if (!root_mem_cgroup->use_hierarchy)
6267 atomic_inc(&root_mem_cgroup->dead_count);
6268 }
6269
6270 static void mem_cgroup_css_offline(struct cgroup *cont)
6271 {
6272 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6273
6274 mem_cgroup_invalidate_reclaim_iterators(memcg);
6275 mem_cgroup_reparent_charges(memcg);
6276 mem_cgroup_destroy_all_caches(memcg);
6277 }
6278
6279 static void mem_cgroup_css_free(struct cgroup *cont)
6280 {
6281 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6282
6283 kmem_cgroup_destroy(memcg);
6284
6285 mem_cgroup_put(memcg);
6286 }
6287
6288 #ifdef CONFIG_MMU
6289 /* Handlers for move charge at task migration. */
6290 #define PRECHARGE_COUNT_AT_ONCE 256
6291 static int mem_cgroup_do_precharge(unsigned long count)
6292 {
6293 int ret = 0;
6294 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6295 struct mem_cgroup *memcg = mc.to;
6296
6297 if (mem_cgroup_is_root(memcg)) {
6298 mc.precharge += count;
6299 /* we don't need css_get for root */
6300 return ret;
6301 }
6302 /* try to charge at once */
6303 if (count > 1) {
6304 struct res_counter *dummy;
6305 /*
6306 * "memcg" cannot be under rmdir() because we've already checked
6307 * by cgroup_lock_live_cgroup() that it is not removed and we
6308 * are still under the same cgroup_mutex. So we can postpone
6309 * css_get().
6310 */
6311 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6312 goto one_by_one;
6313 if (do_swap_account && res_counter_charge(&memcg->memsw,
6314 PAGE_SIZE * count, &dummy)) {
6315 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6316 goto one_by_one;
6317 }
6318 mc.precharge += count;
6319 return ret;
6320 }
6321 one_by_one:
6322 /* fall back to one by one charge */
6323 while (count--) {
6324 if (signal_pending(current)) {
6325 ret = -EINTR;
6326 break;
6327 }
6328 if (!batch_count--) {
6329 batch_count = PRECHARGE_COUNT_AT_ONCE;
6330 cond_resched();
6331 }
6332 ret = __mem_cgroup_try_charge(NULL,
6333 GFP_KERNEL, 1, &memcg, false);
6334 if (ret)
6335 /* mem_cgroup_clear_mc() will do uncharge later */
6336 return ret;
6337 mc.precharge++;
6338 }
6339 return ret;
6340 }
6341
6342 /**
6343 * get_mctgt_type - get target type of moving charge
6344 * @vma: the vma the pte to be checked belongs
6345 * @addr: the address corresponding to the pte to be checked
6346 * @ptent: the pte to be checked
6347 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6348 *
6349 * Returns
6350 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6351 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6352 * move charge. if @target is not NULL, the page is stored in target->page
6353 * with extra refcnt got(Callers should handle it).
6354 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6355 * target for charge migration. if @target is not NULL, the entry is stored
6356 * in target->ent.
6357 *
6358 * Called with pte lock held.
6359 */
6360 union mc_target {
6361 struct page *page;
6362 swp_entry_t ent;
6363 };
6364
6365 enum mc_target_type {
6366 MC_TARGET_NONE = 0,
6367 MC_TARGET_PAGE,
6368 MC_TARGET_SWAP,
6369 };
6370
6371 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6372 unsigned long addr, pte_t ptent)
6373 {
6374 struct page *page = vm_normal_page(vma, addr, ptent);
6375
6376 if (!page || !page_mapped(page))
6377 return NULL;
6378 if (PageAnon(page)) {
6379 /* we don't move shared anon */
6380 if (!move_anon())
6381 return NULL;
6382 } else if (!move_file())
6383 /* we ignore mapcount for file pages */
6384 return NULL;
6385 if (!get_page_unless_zero(page))
6386 return NULL;
6387
6388 return page;
6389 }
6390
6391 #ifdef CONFIG_SWAP
6392 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6393 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6394 {
6395 struct page *page = NULL;
6396 swp_entry_t ent = pte_to_swp_entry(ptent);
6397
6398 if (!move_anon() || non_swap_entry(ent))
6399 return NULL;
6400 /*
6401 * Because lookup_swap_cache() updates some statistics counter,
6402 * we call find_get_page() with swapper_space directly.
6403 */
6404 page = find_get_page(swap_address_space(ent), ent.val);
6405 if (do_swap_account)
6406 entry->val = ent.val;
6407
6408 return page;
6409 }
6410 #else
6411 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6412 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6413 {
6414 return NULL;
6415 }
6416 #endif
6417
6418 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6419 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6420 {
6421 struct page *page = NULL;
6422 struct address_space *mapping;
6423 pgoff_t pgoff;
6424
6425 if (!vma->vm_file) /* anonymous vma */
6426 return NULL;
6427 if (!move_file())
6428 return NULL;
6429
6430 mapping = vma->vm_file->f_mapping;
6431 if (pte_none(ptent))
6432 pgoff = linear_page_index(vma, addr);
6433 else /* pte_file(ptent) is true */
6434 pgoff = pte_to_pgoff(ptent);
6435
6436 /* page is moved even if it's not RSS of this task(page-faulted). */
6437 page = find_get_page(mapping, pgoff);
6438
6439 #ifdef CONFIG_SWAP
6440 /* shmem/tmpfs may report page out on swap: account for that too. */
6441 if (radix_tree_exceptional_entry(page)) {
6442 swp_entry_t swap = radix_to_swp_entry(page);
6443 if (do_swap_account)
6444 *entry = swap;
6445 page = find_get_page(swap_address_space(swap), swap.val);
6446 }
6447 #endif
6448 return page;
6449 }
6450
6451 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6452 unsigned long addr, pte_t ptent, union mc_target *target)
6453 {
6454 struct page *page = NULL;
6455 struct page_cgroup *pc;
6456 enum mc_target_type ret = MC_TARGET_NONE;
6457 swp_entry_t ent = { .val = 0 };
6458
6459 if (pte_present(ptent))
6460 page = mc_handle_present_pte(vma, addr, ptent);
6461 else if (is_swap_pte(ptent))
6462 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6463 else if (pte_none(ptent) || pte_file(ptent))
6464 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6465
6466 if (!page && !ent.val)
6467 return ret;
6468 if (page) {
6469 pc = lookup_page_cgroup(page);
6470 /*
6471 * Do only loose check w/o page_cgroup lock.
6472 * mem_cgroup_move_account() checks the pc is valid or not under
6473 * the lock.
6474 */
6475 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6476 ret = MC_TARGET_PAGE;
6477 if (target)
6478 target->page = page;
6479 }
6480 if (!ret || !target)
6481 put_page(page);
6482 }
6483 /* There is a swap entry and a page doesn't exist or isn't charged */
6484 if (ent.val && !ret &&
6485 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6486 ret = MC_TARGET_SWAP;
6487 if (target)
6488 target->ent = ent;
6489 }
6490 return ret;
6491 }
6492
6493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6494 /*
6495 * We don't consider swapping or file mapped pages because THP does not
6496 * support them for now.
6497 * Caller should make sure that pmd_trans_huge(pmd) is true.
6498 */
6499 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6500 unsigned long addr, pmd_t pmd, union mc_target *target)
6501 {
6502 struct page *page = NULL;
6503 struct page_cgroup *pc;
6504 enum mc_target_type ret = MC_TARGET_NONE;
6505
6506 page = pmd_page(pmd);
6507 VM_BUG_ON(!page || !PageHead(page));
6508 if (!move_anon())
6509 return ret;
6510 pc = lookup_page_cgroup(page);
6511 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6512 ret = MC_TARGET_PAGE;
6513 if (target) {
6514 get_page(page);
6515 target->page = page;
6516 }
6517 }
6518 return ret;
6519 }
6520 #else
6521 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6522 unsigned long addr, pmd_t pmd, union mc_target *target)
6523 {
6524 return MC_TARGET_NONE;
6525 }
6526 #endif
6527
6528 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6529 unsigned long addr, unsigned long end,
6530 struct mm_walk *walk)
6531 {
6532 struct vm_area_struct *vma = walk->private;
6533 pte_t *pte;
6534 spinlock_t *ptl;
6535
6536 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6537 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6538 mc.precharge += HPAGE_PMD_NR;
6539 spin_unlock(&vma->vm_mm->page_table_lock);
6540 return 0;
6541 }
6542
6543 if (pmd_trans_unstable(pmd))
6544 return 0;
6545 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6546 for (; addr != end; pte++, addr += PAGE_SIZE)
6547 if (get_mctgt_type(vma, addr, *pte, NULL))
6548 mc.precharge++; /* increment precharge temporarily */
6549 pte_unmap_unlock(pte - 1, ptl);
6550 cond_resched();
6551
6552 return 0;
6553 }
6554
6555 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6556 {
6557 unsigned long precharge;
6558 struct vm_area_struct *vma;
6559
6560 down_read(&mm->mmap_sem);
6561 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6562 struct mm_walk mem_cgroup_count_precharge_walk = {
6563 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6564 .mm = mm,
6565 .private = vma,
6566 };
6567 if (is_vm_hugetlb_page(vma))
6568 continue;
6569 walk_page_range(vma->vm_start, vma->vm_end,
6570 &mem_cgroup_count_precharge_walk);
6571 }
6572 up_read(&mm->mmap_sem);
6573
6574 precharge = mc.precharge;
6575 mc.precharge = 0;
6576
6577 return precharge;
6578 }
6579
6580 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6581 {
6582 unsigned long precharge = mem_cgroup_count_precharge(mm);
6583
6584 VM_BUG_ON(mc.moving_task);
6585 mc.moving_task = current;
6586 return mem_cgroup_do_precharge(precharge);
6587 }
6588
6589 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6590 static void __mem_cgroup_clear_mc(void)
6591 {
6592 struct mem_cgroup *from = mc.from;
6593 struct mem_cgroup *to = mc.to;
6594
6595 /* we must uncharge all the leftover precharges from mc.to */
6596 if (mc.precharge) {
6597 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6598 mc.precharge = 0;
6599 }
6600 /*
6601 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6602 * we must uncharge here.
6603 */
6604 if (mc.moved_charge) {
6605 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6606 mc.moved_charge = 0;
6607 }
6608 /* we must fixup refcnts and charges */
6609 if (mc.moved_swap) {
6610 /* uncharge swap account from the old cgroup */
6611 if (!mem_cgroup_is_root(mc.from))
6612 res_counter_uncharge(&mc.from->memsw,
6613 PAGE_SIZE * mc.moved_swap);
6614 __mem_cgroup_put(mc.from, mc.moved_swap);
6615
6616 if (!mem_cgroup_is_root(mc.to)) {
6617 /*
6618 * we charged both to->res and to->memsw, so we should
6619 * uncharge to->res.
6620 */
6621 res_counter_uncharge(&mc.to->res,
6622 PAGE_SIZE * mc.moved_swap);
6623 }
6624 /* we've already done mem_cgroup_get(mc.to) */
6625 mc.moved_swap = 0;
6626 }
6627 memcg_oom_recover(from);
6628 memcg_oom_recover(to);
6629 wake_up_all(&mc.waitq);
6630 }
6631
6632 static void mem_cgroup_clear_mc(void)
6633 {
6634 struct mem_cgroup *from = mc.from;
6635
6636 /*
6637 * we must clear moving_task before waking up waiters at the end of
6638 * task migration.
6639 */
6640 mc.moving_task = NULL;
6641 __mem_cgroup_clear_mc();
6642 spin_lock(&mc.lock);
6643 mc.from = NULL;
6644 mc.to = NULL;
6645 spin_unlock(&mc.lock);
6646 mem_cgroup_end_move(from);
6647 }
6648
6649 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6650 struct cgroup_taskset *tset)
6651 {
6652 struct task_struct *p = cgroup_taskset_first(tset);
6653 int ret = 0;
6654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6655 unsigned long move_charge_at_immigrate;
6656
6657 /*
6658 * We are now commited to this value whatever it is. Changes in this
6659 * tunable will only affect upcoming migrations, not the current one.
6660 * So we need to save it, and keep it going.
6661 */
6662 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6663 if (move_charge_at_immigrate) {
6664 struct mm_struct *mm;
6665 struct mem_cgroup *from = mem_cgroup_from_task(p);
6666
6667 VM_BUG_ON(from == memcg);
6668
6669 mm = get_task_mm(p);
6670 if (!mm)
6671 return 0;
6672 /* We move charges only when we move a owner of the mm */
6673 if (mm->owner == p) {
6674 VM_BUG_ON(mc.from);
6675 VM_BUG_ON(mc.to);
6676 VM_BUG_ON(mc.precharge);
6677 VM_BUG_ON(mc.moved_charge);
6678 VM_BUG_ON(mc.moved_swap);
6679 mem_cgroup_start_move(from);
6680 spin_lock(&mc.lock);
6681 mc.from = from;
6682 mc.to = memcg;
6683 mc.immigrate_flags = move_charge_at_immigrate;
6684 spin_unlock(&mc.lock);
6685 /* We set mc.moving_task later */
6686
6687 ret = mem_cgroup_precharge_mc(mm);
6688 if (ret)
6689 mem_cgroup_clear_mc();
6690 }
6691 mmput(mm);
6692 }
6693 return ret;
6694 }
6695
6696 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6697 struct cgroup_taskset *tset)
6698 {
6699 mem_cgroup_clear_mc();
6700 }
6701
6702 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6703 unsigned long addr, unsigned long end,
6704 struct mm_walk *walk)
6705 {
6706 int ret = 0;
6707 struct vm_area_struct *vma = walk->private;
6708 pte_t *pte;
6709 spinlock_t *ptl;
6710 enum mc_target_type target_type;
6711 union mc_target target;
6712 struct page *page;
6713 struct page_cgroup *pc;
6714
6715 /*
6716 * We don't take compound_lock() here but no race with splitting thp
6717 * happens because:
6718 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6719 * under splitting, which means there's no concurrent thp split,
6720 * - if another thread runs into split_huge_page() just after we
6721 * entered this if-block, the thread must wait for page table lock
6722 * to be unlocked in __split_huge_page_splitting(), where the main
6723 * part of thp split is not executed yet.
6724 */
6725 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6726 if (mc.precharge < HPAGE_PMD_NR) {
6727 spin_unlock(&vma->vm_mm->page_table_lock);
6728 return 0;
6729 }
6730 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6731 if (target_type == MC_TARGET_PAGE) {
6732 page = target.page;
6733 if (!isolate_lru_page(page)) {
6734 pc = lookup_page_cgroup(page);
6735 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6736 pc, mc.from, mc.to)) {
6737 mc.precharge -= HPAGE_PMD_NR;
6738 mc.moved_charge += HPAGE_PMD_NR;
6739 }
6740 putback_lru_page(page);
6741 }
6742 put_page(page);
6743 }
6744 spin_unlock(&vma->vm_mm->page_table_lock);
6745 return 0;
6746 }
6747
6748 if (pmd_trans_unstable(pmd))
6749 return 0;
6750 retry:
6751 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6752 for (; addr != end; addr += PAGE_SIZE) {
6753 pte_t ptent = *(pte++);
6754 swp_entry_t ent;
6755
6756 if (!mc.precharge)
6757 break;
6758
6759 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6760 case MC_TARGET_PAGE:
6761 page = target.page;
6762 if (isolate_lru_page(page))
6763 goto put;
6764 pc = lookup_page_cgroup(page);
6765 if (!mem_cgroup_move_account(page, 1, pc,
6766 mc.from, mc.to)) {
6767 mc.precharge--;
6768 /* we uncharge from mc.from later. */
6769 mc.moved_charge++;
6770 }
6771 putback_lru_page(page);
6772 put: /* get_mctgt_type() gets the page */
6773 put_page(page);
6774 break;
6775 case MC_TARGET_SWAP:
6776 ent = target.ent;
6777 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6778 mc.precharge--;
6779 /* we fixup refcnts and charges later. */
6780 mc.moved_swap++;
6781 }
6782 break;
6783 default:
6784 break;
6785 }
6786 }
6787 pte_unmap_unlock(pte - 1, ptl);
6788 cond_resched();
6789
6790 if (addr != end) {
6791 /*
6792 * We have consumed all precharges we got in can_attach().
6793 * We try charge one by one, but don't do any additional
6794 * charges to mc.to if we have failed in charge once in attach()
6795 * phase.
6796 */
6797 ret = mem_cgroup_do_precharge(1);
6798 if (!ret)
6799 goto retry;
6800 }
6801
6802 return ret;
6803 }
6804
6805 static void mem_cgroup_move_charge(struct mm_struct *mm)
6806 {
6807 struct vm_area_struct *vma;
6808
6809 lru_add_drain_all();
6810 retry:
6811 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6812 /*
6813 * Someone who are holding the mmap_sem might be waiting in
6814 * waitq. So we cancel all extra charges, wake up all waiters,
6815 * and retry. Because we cancel precharges, we might not be able
6816 * to move enough charges, but moving charge is a best-effort
6817 * feature anyway, so it wouldn't be a big problem.
6818 */
6819 __mem_cgroup_clear_mc();
6820 cond_resched();
6821 goto retry;
6822 }
6823 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6824 int ret;
6825 struct mm_walk mem_cgroup_move_charge_walk = {
6826 .pmd_entry = mem_cgroup_move_charge_pte_range,
6827 .mm = mm,
6828 .private = vma,
6829 };
6830 if (is_vm_hugetlb_page(vma))
6831 continue;
6832 ret = walk_page_range(vma->vm_start, vma->vm_end,
6833 &mem_cgroup_move_charge_walk);
6834 if (ret)
6835 /*
6836 * means we have consumed all precharges and failed in
6837 * doing additional charge. Just abandon here.
6838 */
6839 break;
6840 }
6841 up_read(&mm->mmap_sem);
6842 }
6843
6844 static void mem_cgroup_move_task(struct cgroup *cont,
6845 struct cgroup_taskset *tset)
6846 {
6847 struct task_struct *p = cgroup_taskset_first(tset);
6848 struct mm_struct *mm = get_task_mm(p);
6849
6850 if (mm) {
6851 if (mc.to)
6852 mem_cgroup_move_charge(mm);
6853 mmput(mm);
6854 }
6855 if (mc.to)
6856 mem_cgroup_clear_mc();
6857 }
6858 #else /* !CONFIG_MMU */
6859 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6860 struct cgroup_taskset *tset)
6861 {
6862 return 0;
6863 }
6864 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6865 struct cgroup_taskset *tset)
6866 {
6867 }
6868 static void mem_cgroup_move_task(struct cgroup *cont,
6869 struct cgroup_taskset *tset)
6870 {
6871 }
6872 #endif
6873
6874 struct cgroup_subsys mem_cgroup_subsys = {
6875 .name = "memory",
6876 .subsys_id = mem_cgroup_subsys_id,
6877 .css_alloc = mem_cgroup_css_alloc,
6878 .css_online = mem_cgroup_css_online,
6879 .css_offline = mem_cgroup_css_offline,
6880 .css_free = mem_cgroup_css_free,
6881 .can_attach = mem_cgroup_can_attach,
6882 .cancel_attach = mem_cgroup_cancel_attach,
6883 .attach = mem_cgroup_move_task,
6884 .base_cftypes = mem_cgroup_files,
6885 .early_init = 0,
6886 .use_id = 1,
6887 };
6888
6889 #ifdef CONFIG_MEMCG_SWAP
6890 static int __init enable_swap_account(char *s)
6891 {
6892 /* consider enabled if no parameter or 1 is given */
6893 if (!strcmp(s, "1"))
6894 really_do_swap_account = 1;
6895 else if (!strcmp(s, "0"))
6896 really_do_swap_account = 0;
6897 return 1;
6898 }
6899 __setup("swapaccount=", enable_swap_account);
6900
6901 static void __init memsw_file_init(void)
6902 {
6903 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6904 }
6905
6906 static void __init enable_swap_cgroup(void)
6907 {
6908 if (!mem_cgroup_disabled() && really_do_swap_account) {
6909 do_swap_account = 1;
6910 memsw_file_init();
6911 }
6912 }
6913
6914 #else
6915 static void __init enable_swap_cgroup(void)
6916 {
6917 }
6918 #endif
6919
6920 /*
6921 * subsys_initcall() for memory controller.
6922 *
6923 * Some parts like hotcpu_notifier() have to be initialized from this context
6924 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6925 * everything that doesn't depend on a specific mem_cgroup structure should
6926 * be initialized from here.
6927 */
6928 static int __init mem_cgroup_init(void)
6929 {
6930 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6931 enable_swap_cgroup();
6932 mem_cgroup_soft_limit_tree_init();
6933 memcg_stock_init();
6934 return 0;
6935 }
6936 subsys_initcall(mem_cgroup_init);
This page took 0.263055 seconds and 5 git commands to generate.