x86: fix build on non-C locales.
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33
34 #include <asm/uaccess.h>
35
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38
39 /*
40 * Statistics for memory cgroup.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50 };
51
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59
60 /*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65 {
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68 }
69
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72 {
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78 }
79
80 /*
81 * per-zone information in memory controller.
82 */
83
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89 };
90
91 struct mem_cgroup_per_zone {
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110
111 /*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
121 */
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
131 */
132 struct mem_cgroup_lru_info info;
133
134 int prev_priority; /* for recording reclaim priority */
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
139 };
140
141 /*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is atleast two
144 * byte aligned (based on comments from Nick Piggin)
145 */
146 #define PAGE_CGROUP_LOCK_BIT 0x0
147 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
148
149 /*
150 * A page_cgroup page is associated with every page descriptor. The
151 * page_cgroup helps us identify information about the cgroup
152 */
153 struct page_cgroup {
154 struct list_head lru; /* per cgroup LRU list */
155 struct page *page;
156 struct mem_cgroup *mem_cgroup;
157 atomic_t ref_cnt; /* Helpful when pages move b/w */
158 /* mapped and cached states */
159 int flags;
160 };
161 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
162 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
163
164 static inline int page_cgroup_nid(struct page_cgroup *pc)
165 {
166 return page_to_nid(pc->page);
167 }
168
169 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
170 {
171 return page_zonenum(pc->page);
172 }
173
174 enum {
175 MEM_CGROUP_TYPE_UNSPEC = 0,
176 MEM_CGROUP_TYPE_MAPPED,
177 MEM_CGROUP_TYPE_CACHED,
178 MEM_CGROUP_TYPE_ALL,
179 MEM_CGROUP_TYPE_MAX,
180 };
181
182 enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
185 };
186
187
188 /*
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
190 */
191 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
193 {
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
196 VM_BUG_ON(!irqs_disabled());
197
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat,
200 MEM_CGROUP_STAT_CACHE, val);
201 else
202 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
203 }
204
205 static inline struct mem_cgroup_per_zone *
206 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207 {
208 BUG_ON(!mem->info.nodeinfo[nid]);
209 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
210 }
211
212 static inline struct mem_cgroup_per_zone *
213 page_cgroup_zoneinfo(struct page_cgroup *pc)
214 {
215 struct mem_cgroup *mem = pc->mem_cgroup;
216 int nid = page_cgroup_nid(pc);
217 int zid = page_cgroup_zid(pc);
218
219 return mem_cgroup_zoneinfo(mem, nid, zid);
220 }
221
222 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 enum mem_cgroup_zstat_index idx)
224 {
225 int nid, zid;
226 struct mem_cgroup_per_zone *mz;
227 u64 total = 0;
228
229 for_each_online_node(nid)
230 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 total += MEM_CGROUP_ZSTAT(mz, idx);
233 }
234 return total;
235 }
236
237 static struct mem_cgroup init_mem_cgroup;
238
239 static inline
240 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
241 {
242 return container_of(cgroup_subsys_state(cont,
243 mem_cgroup_subsys_id), struct mem_cgroup,
244 css);
245 }
246
247 static inline
248 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
249 {
250 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 struct mem_cgroup, css);
252 }
253
254 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
255 {
256 struct mem_cgroup *mem;
257
258 mem = mem_cgroup_from_task(p);
259 css_get(&mem->css);
260 mm->mem_cgroup = mem;
261 }
262
263 void mm_free_cgroup(struct mm_struct *mm)
264 {
265 css_put(&mm->mem_cgroup->css);
266 }
267
268 static inline int page_cgroup_locked(struct page *page)
269 {
270 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 &page->page_cgroup);
272 }
273
274 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
275 {
276 int locked;
277
278 /*
279 * While resetting the page_cgroup we might not hold the
280 * page_cgroup lock. free_hot_cold_page() is an example
281 * of such a scenario
282 */
283 if (pc)
284 VM_BUG_ON(!page_cgroup_locked(page));
285 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 page->page_cgroup = ((unsigned long)pc | locked);
287 }
288
289 struct page_cgroup *page_get_page_cgroup(struct page *page)
290 {
291 return (struct page_cgroup *)
292 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
293 }
294
295 static void __always_inline lock_page_cgroup(struct page *page)
296 {
297 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 VM_BUG_ON(!page_cgroup_locked(page));
299 }
300
301 static void __always_inline unlock_page_cgroup(struct page *page)
302 {
303 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
304 }
305
306 /*
307 * Tie new page_cgroup to struct page under lock_page_cgroup()
308 * This can fail if the page has been tied to a page_cgroup.
309 * If success, returns 0.
310 */
311 static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 struct page_cgroup *pc)
313 {
314 int ret = 0;
315
316 lock_page_cgroup(page);
317 if (!page_get_page_cgroup(page))
318 page_assign_page_cgroup(page, pc);
319 else /* A page is tied to other pc. */
320 ret = 1;
321 unlock_page_cgroup(page);
322 return ret;
323 }
324
325 /*
326 * Clear page->page_cgroup member under lock_page_cgroup().
327 * If given "pc" value is different from one page->page_cgroup,
328 * page->cgroup is not cleared.
329 * Returns a value of page->page_cgroup at lock taken.
330 * A can can detect failure of clearing by following
331 * clear_page_cgroup(page, pc) == pc
332 */
333
334 static struct page_cgroup *clear_page_cgroup(struct page *page,
335 struct page_cgroup *pc)
336 {
337 struct page_cgroup *ret;
338 /* lock and clear */
339 lock_page_cgroup(page);
340 ret = page_get_page_cgroup(page);
341 if (likely(ret == pc))
342 page_assign_page_cgroup(page, NULL);
343 unlock_page_cgroup(page);
344 return ret;
345 }
346
347 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
348 {
349 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
351
352 if (from)
353 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 else
355 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
356
357 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 list_del_init(&pc->lru);
359 }
360
361 static void __mem_cgroup_add_list(struct page_cgroup *pc)
362 {
363 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
365
366 if (!to) {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
368 list_add(&pc->lru, &mz->inactive_list);
369 } else {
370 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
371 list_add(&pc->lru, &mz->active_list);
372 }
373 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
374 }
375
376 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
377 {
378 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
380
381 if (from)
382 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 else
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
385
386 if (active) {
387 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
388 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
389 list_move(&pc->lru, &mz->active_list);
390 } else {
391 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
392 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
393 list_move(&pc->lru, &mz->inactive_list);
394 }
395 }
396
397 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
398 {
399 int ret;
400
401 task_lock(task);
402 ret = task->mm && vm_match_cgroup(task->mm, mem);
403 task_unlock(task);
404 return ret;
405 }
406
407 /*
408 * This routine assumes that the appropriate zone's lru lock is already held
409 */
410 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
411 {
412 struct mem_cgroup_per_zone *mz;
413 unsigned long flags;
414
415 if (!pc)
416 return;
417
418 mz = page_cgroup_zoneinfo(pc);
419 spin_lock_irqsave(&mz->lru_lock, flags);
420 __mem_cgroup_move_lists(pc, active);
421 spin_unlock_irqrestore(&mz->lru_lock, flags);
422 }
423
424 /*
425 * Calculate mapped_ratio under memory controller. This will be used in
426 * vmscan.c for deteremining we have to reclaim mapped pages.
427 */
428 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
429 {
430 long total, rss;
431
432 /*
433 * usage is recorded in bytes. But, here, we assume the number of
434 * physical pages can be represented by "long" on any arch.
435 */
436 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
437 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
438 return (int)((rss * 100L) / total);
439 }
440 /*
441 * This function is called from vmscan.c. In page reclaiming loop. balance
442 * between active and inactive list is calculated. For memory controller
443 * page reclaiming, we should use using mem_cgroup's imbalance rather than
444 * zone's global lru imbalance.
445 */
446 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
447 {
448 unsigned long active, inactive;
449 /* active and inactive are the number of pages. 'long' is ok.*/
450 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
451 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
452 return (long) (active / (inactive + 1));
453 }
454
455 /*
456 * prev_priority control...this will be used in memory reclaim path.
457 */
458 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
459 {
460 return mem->prev_priority;
461 }
462
463 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
464 {
465 if (priority < mem->prev_priority)
466 mem->prev_priority = priority;
467 }
468
469 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
470 {
471 mem->prev_priority = priority;
472 }
473
474 /*
475 * Calculate # of pages to be scanned in this priority/zone.
476 * See also vmscan.c
477 *
478 * priority starts from "DEF_PRIORITY" and decremented in each loop.
479 * (see include/linux/mmzone.h)
480 */
481
482 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
483 struct zone *zone, int priority)
484 {
485 long nr_active;
486 int nid = zone->zone_pgdat->node_id;
487 int zid = zone_idx(zone);
488 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
489
490 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
491 return (nr_active >> priority);
492 }
493
494 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
495 struct zone *zone, int priority)
496 {
497 long nr_inactive;
498 int nid = zone->zone_pgdat->node_id;
499 int zid = zone_idx(zone);
500 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
501
502 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
503
504 return (nr_inactive >> priority);
505 }
506
507 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
508 struct list_head *dst,
509 unsigned long *scanned, int order,
510 int mode, struct zone *z,
511 struct mem_cgroup *mem_cont,
512 int active)
513 {
514 unsigned long nr_taken = 0;
515 struct page *page;
516 unsigned long scan;
517 LIST_HEAD(pc_list);
518 struct list_head *src;
519 struct page_cgroup *pc, *tmp;
520 int nid = z->zone_pgdat->node_id;
521 int zid = zone_idx(z);
522 struct mem_cgroup_per_zone *mz;
523
524 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
525 if (active)
526 src = &mz->active_list;
527 else
528 src = &mz->inactive_list;
529
530
531 spin_lock(&mz->lru_lock);
532 scan = 0;
533 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
534 if (scan >= nr_to_scan)
535 break;
536 page = pc->page;
537
538 if (unlikely(!PageLRU(page)))
539 continue;
540
541 if (PageActive(page) && !active) {
542 __mem_cgroup_move_lists(pc, true);
543 continue;
544 }
545 if (!PageActive(page) && active) {
546 __mem_cgroup_move_lists(pc, false);
547 continue;
548 }
549
550 scan++;
551 list_move(&pc->lru, &pc_list);
552
553 if (__isolate_lru_page(page, mode) == 0) {
554 list_move(&page->lru, dst);
555 nr_taken++;
556 }
557 }
558
559 list_splice(&pc_list, src);
560 spin_unlock(&mz->lru_lock);
561
562 *scanned = scan;
563 return nr_taken;
564 }
565
566 /*
567 * Charge the memory controller for page usage.
568 * Return
569 * 0 if the charge was successful
570 * < 0 if the cgroup is over its limit
571 */
572 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
573 gfp_t gfp_mask, enum charge_type ctype)
574 {
575 struct mem_cgroup *mem;
576 struct page_cgroup *pc;
577 unsigned long flags;
578 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
579 struct mem_cgroup_per_zone *mz;
580
581 /*
582 * Should page_cgroup's go to their own slab?
583 * One could optimize the performance of the charging routine
584 * by saving a bit in the page_flags and using it as a lock
585 * to see if the cgroup page already has a page_cgroup associated
586 * with it
587 */
588 retry:
589 if (page) {
590 lock_page_cgroup(page);
591 pc = page_get_page_cgroup(page);
592 /*
593 * The page_cgroup exists and
594 * the page has already been accounted.
595 */
596 if (pc) {
597 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
598 /* this page is under being uncharged ? */
599 unlock_page_cgroup(page);
600 cpu_relax();
601 goto retry;
602 } else {
603 unlock_page_cgroup(page);
604 goto done;
605 }
606 }
607 unlock_page_cgroup(page);
608 }
609
610 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
611 if (pc == NULL)
612 goto err;
613
614 /*
615 * We always charge the cgroup the mm_struct belongs to.
616 * The mm_struct's mem_cgroup changes on task migration if the
617 * thread group leader migrates. It's possible that mm is not
618 * set, if so charge the init_mm (happens for pagecache usage).
619 */
620 if (!mm)
621 mm = &init_mm;
622
623 rcu_read_lock();
624 mem = rcu_dereference(mm->mem_cgroup);
625 /*
626 * For every charge from the cgroup, increment reference
627 * count
628 */
629 css_get(&mem->css);
630 rcu_read_unlock();
631
632 /*
633 * If we created the page_cgroup, we should free it on exceeding
634 * the cgroup limit.
635 */
636 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
637 if (!(gfp_mask & __GFP_WAIT))
638 goto out;
639
640 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
641 continue;
642
643 /*
644 * try_to_free_mem_cgroup_pages() might not give us a full
645 * picture of reclaim. Some pages are reclaimed and might be
646 * moved to swap cache or just unmapped from the cgroup.
647 * Check the limit again to see if the reclaim reduced the
648 * current usage of the cgroup before giving up
649 */
650 if (res_counter_check_under_limit(&mem->res))
651 continue;
652
653 if (!nr_retries--) {
654 mem_cgroup_out_of_memory(mem, gfp_mask);
655 goto out;
656 }
657 congestion_wait(WRITE, HZ/10);
658 }
659
660 atomic_set(&pc->ref_cnt, 1);
661 pc->mem_cgroup = mem;
662 pc->page = page;
663 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
664 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
665 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
666
667 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
668 /*
669 * Another charge has been added to this page already.
670 * We take lock_page_cgroup(page) again and read
671 * page->cgroup, increment refcnt.... just retry is OK.
672 */
673 res_counter_uncharge(&mem->res, PAGE_SIZE);
674 css_put(&mem->css);
675 kfree(pc);
676 if (!page)
677 goto done;
678 goto retry;
679 }
680
681 mz = page_cgroup_zoneinfo(pc);
682 spin_lock_irqsave(&mz->lru_lock, flags);
683 /* Update statistics vector */
684 __mem_cgroup_add_list(pc);
685 spin_unlock_irqrestore(&mz->lru_lock, flags);
686
687 done:
688 return 0;
689 out:
690 css_put(&mem->css);
691 kfree(pc);
692 err:
693 return -ENOMEM;
694 }
695
696 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
697 gfp_t gfp_mask)
698 {
699 return mem_cgroup_charge_common(page, mm, gfp_mask,
700 MEM_CGROUP_CHARGE_TYPE_MAPPED);
701 }
702
703 /*
704 * See if the cached pages should be charged at all?
705 */
706 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
707 gfp_t gfp_mask)
708 {
709 int ret = 0;
710 if (!mm)
711 mm = &init_mm;
712
713 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
714 MEM_CGROUP_CHARGE_TYPE_CACHE);
715 return ret;
716 }
717
718 /*
719 * Uncharging is always a welcome operation, we never complain, simply
720 * uncharge. This routine should be called with lock_page_cgroup held
721 */
722 void mem_cgroup_uncharge(struct page_cgroup *pc)
723 {
724 struct mem_cgroup *mem;
725 struct mem_cgroup_per_zone *mz;
726 struct page *page;
727 unsigned long flags;
728
729 /*
730 * Check if our page_cgroup is valid
731 */
732 if (!pc)
733 return;
734
735 if (atomic_dec_and_test(&pc->ref_cnt)) {
736 page = pc->page;
737 mz = page_cgroup_zoneinfo(pc);
738 /*
739 * get page->cgroup and clear it under lock.
740 * force_empty can drop page->cgroup without checking refcnt.
741 */
742 unlock_page_cgroup(page);
743 if (clear_page_cgroup(page, pc) == pc) {
744 mem = pc->mem_cgroup;
745 css_put(&mem->css);
746 res_counter_uncharge(&mem->res, PAGE_SIZE);
747 spin_lock_irqsave(&mz->lru_lock, flags);
748 __mem_cgroup_remove_list(pc);
749 spin_unlock_irqrestore(&mz->lru_lock, flags);
750 kfree(pc);
751 }
752 lock_page_cgroup(page);
753 }
754 }
755
756 void mem_cgroup_uncharge_page(struct page *page)
757 {
758 lock_page_cgroup(page);
759 mem_cgroup_uncharge(page_get_page_cgroup(page));
760 unlock_page_cgroup(page);
761 }
762
763 /*
764 * Returns non-zero if a page (under migration) has valid page_cgroup member.
765 * Refcnt of page_cgroup is incremented.
766 */
767
768 int mem_cgroup_prepare_migration(struct page *page)
769 {
770 struct page_cgroup *pc;
771 int ret = 0;
772 lock_page_cgroup(page);
773 pc = page_get_page_cgroup(page);
774 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
775 ret = 1;
776 unlock_page_cgroup(page);
777 return ret;
778 }
779
780 void mem_cgroup_end_migration(struct page *page)
781 {
782 struct page_cgroup *pc;
783
784 lock_page_cgroup(page);
785 pc = page_get_page_cgroup(page);
786 mem_cgroup_uncharge(pc);
787 unlock_page_cgroup(page);
788 }
789 /*
790 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
791 * And no race with uncharge() routines because page_cgroup for *page*
792 * has extra one reference by mem_cgroup_prepare_migration.
793 */
794
795 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
796 {
797 struct page_cgroup *pc;
798 struct mem_cgroup *mem;
799 unsigned long flags;
800 struct mem_cgroup_per_zone *mz;
801 retry:
802 pc = page_get_page_cgroup(page);
803 if (!pc)
804 return;
805 mem = pc->mem_cgroup;
806 mz = page_cgroup_zoneinfo(pc);
807 if (clear_page_cgroup(page, pc) != pc)
808 goto retry;
809 spin_lock_irqsave(&mz->lru_lock, flags);
810
811 __mem_cgroup_remove_list(pc);
812 spin_unlock_irqrestore(&mz->lru_lock, flags);
813
814 pc->page = newpage;
815 lock_page_cgroup(newpage);
816 page_assign_page_cgroup(newpage, pc);
817 unlock_page_cgroup(newpage);
818
819 mz = page_cgroup_zoneinfo(pc);
820 spin_lock_irqsave(&mz->lru_lock, flags);
821 __mem_cgroup_add_list(pc);
822 spin_unlock_irqrestore(&mz->lru_lock, flags);
823 return;
824 }
825
826 /*
827 * This routine traverse page_cgroup in given list and drop them all.
828 * This routine ignores page_cgroup->ref_cnt.
829 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
830 */
831 #define FORCE_UNCHARGE_BATCH (128)
832 static void
833 mem_cgroup_force_empty_list(struct mem_cgroup *mem,
834 struct mem_cgroup_per_zone *mz,
835 int active)
836 {
837 struct page_cgroup *pc;
838 struct page *page;
839 int count;
840 unsigned long flags;
841 struct list_head *list;
842
843 if (active)
844 list = &mz->active_list;
845 else
846 list = &mz->inactive_list;
847
848 if (list_empty(list))
849 return;
850 retry:
851 count = FORCE_UNCHARGE_BATCH;
852 spin_lock_irqsave(&mz->lru_lock, flags);
853
854 while (--count && !list_empty(list)) {
855 pc = list_entry(list->prev, struct page_cgroup, lru);
856 page = pc->page;
857 /* Avoid race with charge */
858 atomic_set(&pc->ref_cnt, 0);
859 if (clear_page_cgroup(page, pc) == pc) {
860 css_put(&mem->css);
861 res_counter_uncharge(&mem->res, PAGE_SIZE);
862 __mem_cgroup_remove_list(pc);
863 kfree(pc);
864 } else /* being uncharged ? ...do relax */
865 break;
866 }
867 spin_unlock_irqrestore(&mz->lru_lock, flags);
868 if (!list_empty(list)) {
869 cond_resched();
870 goto retry;
871 }
872 return;
873 }
874
875 /*
876 * make mem_cgroup's charge to be 0 if there is no task.
877 * This enables deleting this mem_cgroup.
878 */
879
880 int mem_cgroup_force_empty(struct mem_cgroup *mem)
881 {
882 int ret = -EBUSY;
883 int node, zid;
884 css_get(&mem->css);
885 /*
886 * page reclaim code (kswapd etc..) will move pages between
887 ` * active_list <-> inactive_list while we don't take a lock.
888 * So, we have to do loop here until all lists are empty.
889 */
890 while (mem->res.usage > 0) {
891 if (atomic_read(&mem->css.cgroup->count) > 0)
892 goto out;
893 for_each_node_state(node, N_POSSIBLE)
894 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
895 struct mem_cgroup_per_zone *mz;
896 mz = mem_cgroup_zoneinfo(mem, node, zid);
897 /* drop all page_cgroup in active_list */
898 mem_cgroup_force_empty_list(mem, mz, 1);
899 /* drop all page_cgroup in inactive_list */
900 mem_cgroup_force_empty_list(mem, mz, 0);
901 }
902 }
903 ret = 0;
904 out:
905 css_put(&mem->css);
906 return ret;
907 }
908
909
910
911 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
912 {
913 *tmp = memparse(buf, &buf);
914 if (*buf != '\0')
915 return -EINVAL;
916
917 /*
918 * Round up the value to the closest page size
919 */
920 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
921 return 0;
922 }
923
924 static ssize_t mem_cgroup_read(struct cgroup *cont,
925 struct cftype *cft, struct file *file,
926 char __user *userbuf, size_t nbytes, loff_t *ppos)
927 {
928 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
929 cft->private, userbuf, nbytes, ppos,
930 NULL);
931 }
932
933 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
934 struct file *file, const char __user *userbuf,
935 size_t nbytes, loff_t *ppos)
936 {
937 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
938 cft->private, userbuf, nbytes, ppos,
939 mem_cgroup_write_strategy);
940 }
941
942 static ssize_t mem_force_empty_write(struct cgroup *cont,
943 struct cftype *cft, struct file *file,
944 const char __user *userbuf,
945 size_t nbytes, loff_t *ppos)
946 {
947 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
948 int ret;
949 ret = mem_cgroup_force_empty(mem);
950 if (!ret)
951 ret = nbytes;
952 return ret;
953 }
954
955 /*
956 * Note: This should be removed if cgroup supports write-only file.
957 */
958
959 static ssize_t mem_force_empty_read(struct cgroup *cont,
960 struct cftype *cft,
961 struct file *file, char __user *userbuf,
962 size_t nbytes, loff_t *ppos)
963 {
964 return -EINVAL;
965 }
966
967
968 static const struct mem_cgroup_stat_desc {
969 const char *msg;
970 u64 unit;
971 } mem_cgroup_stat_desc[] = {
972 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
973 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
974 };
975
976 static int mem_control_stat_show(struct seq_file *m, void *arg)
977 {
978 struct cgroup *cont = m->private;
979 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
980 struct mem_cgroup_stat *stat = &mem_cont->stat;
981 int i;
982
983 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
984 s64 val;
985
986 val = mem_cgroup_read_stat(stat, i);
987 val *= mem_cgroup_stat_desc[i].unit;
988 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
989 (long long)val);
990 }
991 /* showing # of active pages */
992 {
993 unsigned long active, inactive;
994
995 inactive = mem_cgroup_get_all_zonestat(mem_cont,
996 MEM_CGROUP_ZSTAT_INACTIVE);
997 active = mem_cgroup_get_all_zonestat(mem_cont,
998 MEM_CGROUP_ZSTAT_ACTIVE);
999 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
1000 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1001 }
1002 return 0;
1003 }
1004
1005 static const struct file_operations mem_control_stat_file_operations = {
1006 .read = seq_read,
1007 .llseek = seq_lseek,
1008 .release = single_release,
1009 };
1010
1011 static int mem_control_stat_open(struct inode *unused, struct file *file)
1012 {
1013 /* XXX __d_cont */
1014 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1015
1016 file->f_op = &mem_control_stat_file_operations;
1017 return single_open(file, mem_control_stat_show, cont);
1018 }
1019
1020
1021
1022 static struct cftype mem_cgroup_files[] = {
1023 {
1024 .name = "usage_in_bytes",
1025 .private = RES_USAGE,
1026 .read = mem_cgroup_read,
1027 },
1028 {
1029 .name = "limit_in_bytes",
1030 .private = RES_LIMIT,
1031 .write = mem_cgroup_write,
1032 .read = mem_cgroup_read,
1033 },
1034 {
1035 .name = "failcnt",
1036 .private = RES_FAILCNT,
1037 .read = mem_cgroup_read,
1038 },
1039 {
1040 .name = "force_empty",
1041 .write = mem_force_empty_write,
1042 .read = mem_force_empty_read,
1043 },
1044 {
1045 .name = "stat",
1046 .open = mem_control_stat_open,
1047 },
1048 };
1049
1050 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1051 {
1052 struct mem_cgroup_per_node *pn;
1053 struct mem_cgroup_per_zone *mz;
1054 int zone;
1055 /*
1056 * This routine is called against possible nodes.
1057 * But it's BUG to call kmalloc() against offline node.
1058 *
1059 * TODO: this routine can waste much memory for nodes which will
1060 * never be onlined. It's better to use memory hotplug callback
1061 * function.
1062 */
1063 if (node_state(node, N_HIGH_MEMORY))
1064 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1065 else
1066 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1067 if (!pn)
1068 return 1;
1069
1070 mem->info.nodeinfo[node] = pn;
1071 memset(pn, 0, sizeof(*pn));
1072
1073 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1074 mz = &pn->zoneinfo[zone];
1075 INIT_LIST_HEAD(&mz->active_list);
1076 INIT_LIST_HEAD(&mz->inactive_list);
1077 spin_lock_init(&mz->lru_lock);
1078 }
1079 return 0;
1080 }
1081
1082 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1083 {
1084 kfree(mem->info.nodeinfo[node]);
1085 }
1086
1087
1088 static struct mem_cgroup init_mem_cgroup;
1089
1090 static struct cgroup_subsys_state *
1091 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1092 {
1093 struct mem_cgroup *mem;
1094 int node;
1095
1096 if (unlikely((cont->parent) == NULL)) {
1097 mem = &init_mem_cgroup;
1098 init_mm.mem_cgroup = mem;
1099 } else
1100 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1101
1102 if (mem == NULL)
1103 return ERR_PTR(-ENOMEM);
1104
1105 res_counter_init(&mem->res);
1106
1107 memset(&mem->info, 0, sizeof(mem->info));
1108
1109 for_each_node_state(node, N_POSSIBLE)
1110 if (alloc_mem_cgroup_per_zone_info(mem, node))
1111 goto free_out;
1112
1113 return &mem->css;
1114 free_out:
1115 for_each_node_state(node, N_POSSIBLE)
1116 free_mem_cgroup_per_zone_info(mem, node);
1117 if (cont->parent != NULL)
1118 kfree(mem);
1119 return ERR_PTR(-ENOMEM);
1120 }
1121
1122 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1123 struct cgroup *cont)
1124 {
1125 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1126 mem_cgroup_force_empty(mem);
1127 }
1128
1129 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1130 struct cgroup *cont)
1131 {
1132 int node;
1133 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1134
1135 for_each_node_state(node, N_POSSIBLE)
1136 free_mem_cgroup_per_zone_info(mem, node);
1137
1138 kfree(mem_cgroup_from_cont(cont));
1139 }
1140
1141 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1142 struct cgroup *cont)
1143 {
1144 return cgroup_add_files(cont, ss, mem_cgroup_files,
1145 ARRAY_SIZE(mem_cgroup_files));
1146 }
1147
1148 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1149 struct cgroup *cont,
1150 struct cgroup *old_cont,
1151 struct task_struct *p)
1152 {
1153 struct mm_struct *mm;
1154 struct mem_cgroup *mem, *old_mem;
1155
1156 mm = get_task_mm(p);
1157 if (mm == NULL)
1158 return;
1159
1160 mem = mem_cgroup_from_cont(cont);
1161 old_mem = mem_cgroup_from_cont(old_cont);
1162
1163 if (mem == old_mem)
1164 goto out;
1165
1166 /*
1167 * Only thread group leaders are allowed to migrate, the mm_struct is
1168 * in effect owned by the leader
1169 */
1170 if (p->tgid != p->pid)
1171 goto out;
1172
1173 css_get(&mem->css);
1174 rcu_assign_pointer(mm->mem_cgroup, mem);
1175 css_put(&old_mem->css);
1176
1177 out:
1178 mmput(mm);
1179 return;
1180 }
1181
1182 struct cgroup_subsys mem_cgroup_subsys = {
1183 .name = "memory",
1184 .subsys_id = mem_cgroup_subsys_id,
1185 .create = mem_cgroup_create,
1186 .pre_destroy = mem_cgroup_pre_destroy,
1187 .destroy = mem_cgroup_destroy,
1188 .populate = mem_cgroup_populate,
1189 .attach = mem_cgroup_move_task,
1190 .early_init = 0,
1191 };
This page took 0.088662 seconds and 5 git commands to generate.