mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 EXPORT_SYMBOL(mem_cgroup_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 unsigned long last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 };
389
390 /* We account when limit is on, but only after call sites are patched */
391 #define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393
394 #ifdef CONFIG_MEMCG_KMEM
395 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396 {
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401 {
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403 }
404
405 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406 {
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409
410 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411 {
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413 }
414
415 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416 {
417 /*
418 * Our caller must use css_get() first, because memcg_uncharge_kmem()
419 * will call css_put() if it sees the memcg is dead.
420 */
421 smp_wmb();
422 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
423 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
424 }
425
426 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
427 {
428 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
429 &memcg->kmem_account_flags);
430 }
431 #endif
432
433 /* Stuffs for move charges at task migration. */
434 /*
435 * Types of charges to be moved. "move_charge_at_immitgrate" and
436 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
437 */
438 enum move_type {
439 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
440 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
441 NR_MOVE_TYPE,
442 };
443
444 /* "mc" and its members are protected by cgroup_mutex */
445 static struct move_charge_struct {
446 spinlock_t lock; /* for from, to */
447 struct mem_cgroup *from;
448 struct mem_cgroup *to;
449 unsigned long immigrate_flags;
450 unsigned long precharge;
451 unsigned long moved_charge;
452 unsigned long moved_swap;
453 struct task_struct *moving_task; /* a task moving charges */
454 wait_queue_head_t waitq; /* a waitq for other context */
455 } mc = {
456 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
457 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
458 };
459
460 static bool move_anon(void)
461 {
462 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
463 }
464
465 static bool move_file(void)
466 {
467 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
468 }
469
470 /*
471 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
472 * limit reclaim to prevent infinite loops, if they ever occur.
473 */
474 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
475 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
476
477 enum charge_type {
478 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
479 MEM_CGROUP_CHARGE_TYPE_ANON,
480 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
481 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
482 NR_CHARGE_TYPE,
483 };
484
485 /* for encoding cft->private value on file */
486 enum res_type {
487 _MEM,
488 _MEMSWAP,
489 _OOM_TYPE,
490 _KMEM,
491 };
492
493 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
494 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
495 #define MEMFILE_ATTR(val) ((val) & 0xffff)
496 /* Used for OOM nofiier */
497 #define OOM_CONTROL (0)
498
499 /*
500 * Reclaim flags for mem_cgroup_hierarchical_reclaim
501 */
502 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
503 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
504 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
505 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
506
507 /*
508 * The memcg_create_mutex will be held whenever a new cgroup is created.
509 * As a consequence, any change that needs to protect against new child cgroups
510 * appearing has to hold it as well.
511 */
512 static DEFINE_MUTEX(memcg_create_mutex);
513
514 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
515 {
516 return s ? container_of(s, struct mem_cgroup, css) : NULL;
517 }
518
519 /* Some nice accessors for the vmpressure. */
520 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
521 {
522 if (!memcg)
523 memcg = root_mem_cgroup;
524 return &memcg->vmpressure;
525 }
526
527 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
528 {
529 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
530 }
531
532 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
533 {
534 return (memcg == root_mem_cgroup);
535 }
536
537 /*
538 * We restrict the id in the range of [1, 65535], so it can fit into
539 * an unsigned short.
540 */
541 #define MEM_CGROUP_ID_MAX USHRT_MAX
542
543 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
544 {
545 /*
546 * The ID of the root cgroup is 0, but memcg treat 0 as an
547 * invalid ID, so we return (cgroup_id + 1).
548 */
549 return memcg->css.cgroup->id + 1;
550 }
551
552 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
553 {
554 struct cgroup_subsys_state *css;
555
556 css = css_from_id(id - 1, &mem_cgroup_subsys);
557 return mem_cgroup_from_css(css);
558 }
559
560 /* Writing them here to avoid exposing memcg's inner layout */
561 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
562
563 void sock_update_memcg(struct sock *sk)
564 {
565 if (mem_cgroup_sockets_enabled) {
566 struct mem_cgroup *memcg;
567 struct cg_proto *cg_proto;
568
569 BUG_ON(!sk->sk_prot->proto_cgroup);
570
571 /* Socket cloning can throw us here with sk_cgrp already
572 * filled. It won't however, necessarily happen from
573 * process context. So the test for root memcg given
574 * the current task's memcg won't help us in this case.
575 *
576 * Respecting the original socket's memcg is a better
577 * decision in this case.
578 */
579 if (sk->sk_cgrp) {
580 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
581 css_get(&sk->sk_cgrp->memcg->css);
582 return;
583 }
584
585 rcu_read_lock();
586 memcg = mem_cgroup_from_task(current);
587 cg_proto = sk->sk_prot->proto_cgroup(memcg);
588 if (!mem_cgroup_is_root(memcg) &&
589 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
590 sk->sk_cgrp = cg_proto;
591 }
592 rcu_read_unlock();
593 }
594 }
595 EXPORT_SYMBOL(sock_update_memcg);
596
597 void sock_release_memcg(struct sock *sk)
598 {
599 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
600 struct mem_cgroup *memcg;
601 WARN_ON(!sk->sk_cgrp->memcg);
602 memcg = sk->sk_cgrp->memcg;
603 css_put(&sk->sk_cgrp->memcg->css);
604 }
605 }
606
607 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
608 {
609 if (!memcg || mem_cgroup_is_root(memcg))
610 return NULL;
611
612 return &memcg->tcp_mem;
613 }
614 EXPORT_SYMBOL(tcp_proto_cgroup);
615
616 static void disarm_sock_keys(struct mem_cgroup *memcg)
617 {
618 if (!memcg_proto_activated(&memcg->tcp_mem))
619 return;
620 static_key_slow_dec(&memcg_socket_limit_enabled);
621 }
622 #else
623 static void disarm_sock_keys(struct mem_cgroup *memcg)
624 {
625 }
626 #endif
627
628 #ifdef CONFIG_MEMCG_KMEM
629 /*
630 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
631 * The main reason for not using cgroup id for this:
632 * this works better in sparse environments, where we have a lot of memcgs,
633 * but only a few kmem-limited. Or also, if we have, for instance, 200
634 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
635 * 200 entry array for that.
636 *
637 * The current size of the caches array is stored in
638 * memcg_limited_groups_array_size. It will double each time we have to
639 * increase it.
640 */
641 static DEFINE_IDA(kmem_limited_groups);
642 int memcg_limited_groups_array_size;
643
644 /*
645 * MIN_SIZE is different than 1, because we would like to avoid going through
646 * the alloc/free process all the time. In a small machine, 4 kmem-limited
647 * cgroups is a reasonable guess. In the future, it could be a parameter or
648 * tunable, but that is strictly not necessary.
649 *
650 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
651 * this constant directly from cgroup, but it is understandable that this is
652 * better kept as an internal representation in cgroup.c. In any case, the
653 * cgrp_id space is not getting any smaller, and we don't have to necessarily
654 * increase ours as well if it increases.
655 */
656 #define MEMCG_CACHES_MIN_SIZE 4
657 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
658
659 /*
660 * A lot of the calls to the cache allocation functions are expected to be
661 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
662 * conditional to this static branch, we'll have to allow modules that does
663 * kmem_cache_alloc and the such to see this symbol as well
664 */
665 struct static_key memcg_kmem_enabled_key;
666 EXPORT_SYMBOL(memcg_kmem_enabled_key);
667
668 static void disarm_kmem_keys(struct mem_cgroup *memcg)
669 {
670 if (memcg_kmem_is_active(memcg)) {
671 static_key_slow_dec(&memcg_kmem_enabled_key);
672 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
673 }
674 /*
675 * This check can't live in kmem destruction function,
676 * since the charges will outlive the cgroup
677 */
678 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
679 }
680 #else
681 static void disarm_kmem_keys(struct mem_cgroup *memcg)
682 {
683 }
684 #endif /* CONFIG_MEMCG_KMEM */
685
686 static void disarm_static_keys(struct mem_cgroup *memcg)
687 {
688 disarm_sock_keys(memcg);
689 disarm_kmem_keys(memcg);
690 }
691
692 static void drain_all_stock_async(struct mem_cgroup *memcg);
693
694 static struct mem_cgroup_per_zone *
695 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
696 {
697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 }
700
701 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
702 {
703 return &memcg->css;
704 }
705
706 static struct mem_cgroup_per_zone *
707 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return mem_cgroup_zoneinfo(memcg, nid, zid);
713 }
714
715 static struct mem_cgroup_tree_per_zone *
716 soft_limit_tree_node_zone(int nid, int zid)
717 {
718 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
719 }
720
721 static struct mem_cgroup_tree_per_zone *
722 soft_limit_tree_from_page(struct page *page)
723 {
724 int nid = page_to_nid(page);
725 int zid = page_zonenum(page);
726
727 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
728 }
729
730 static void
731 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz,
734 unsigned long long new_usage_in_excess)
735 {
736 struct rb_node **p = &mctz->rb_root.rb_node;
737 struct rb_node *parent = NULL;
738 struct mem_cgroup_per_zone *mz_node;
739
740 if (mz->on_tree)
741 return;
742
743 mz->usage_in_excess = new_usage_in_excess;
744 if (!mz->usage_in_excess)
745 return;
746 while (*p) {
747 parent = *p;
748 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
749 tree_node);
750 if (mz->usage_in_excess < mz_node->usage_in_excess)
751 p = &(*p)->rb_left;
752 /*
753 * We can't avoid mem cgroups that are over their soft
754 * limit by the same amount
755 */
756 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
757 p = &(*p)->rb_right;
758 }
759 rb_link_node(&mz->tree_node, parent, p);
760 rb_insert_color(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = true;
762 }
763
764 static void
765 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768 {
769 if (!mz->on_tree)
770 return;
771 rb_erase(&mz->tree_node, &mctz->rb_root);
772 mz->on_tree = false;
773 }
774
775 static void
776 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
777 struct mem_cgroup_per_zone *mz,
778 struct mem_cgroup_tree_per_zone *mctz)
779 {
780 spin_lock(&mctz->lock);
781 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 spin_unlock(&mctz->lock);
783 }
784
785
786 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
787 {
788 unsigned long long excess;
789 struct mem_cgroup_per_zone *mz;
790 struct mem_cgroup_tree_per_zone *mctz;
791 int nid = page_to_nid(page);
792 int zid = page_zonenum(page);
793 mctz = soft_limit_tree_from_page(page);
794
795 /*
796 * Necessary to update all ancestors when hierarchy is used.
797 * because their event counter is not touched.
798 */
799 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
800 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
801 excess = res_counter_soft_limit_excess(&memcg->res);
802 /*
803 * We have to update the tree if mz is on RB-tree or
804 * mem is over its softlimit.
805 */
806 if (excess || mz->on_tree) {
807 spin_lock(&mctz->lock);
808 /* if on-tree, remove it */
809 if (mz->on_tree)
810 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 /*
812 * Insert again. mz->usage_in_excess will be updated.
813 * If excess is 0, no tree ops.
814 */
815 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
816 spin_unlock(&mctz->lock);
817 }
818 }
819 }
820
821 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
822 {
823 int node, zone;
824 struct mem_cgroup_per_zone *mz;
825 struct mem_cgroup_tree_per_zone *mctz;
826
827 for_each_node(node) {
828 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
829 mz = mem_cgroup_zoneinfo(memcg, node, zone);
830 mctz = soft_limit_tree_node_zone(node, zone);
831 mem_cgroup_remove_exceeded(memcg, mz, mctz);
832 }
833 }
834 }
835
836 static struct mem_cgroup_per_zone *
837 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
838 {
839 struct rb_node *rightmost = NULL;
840 struct mem_cgroup_per_zone *mz;
841
842 retry:
843 mz = NULL;
844 rightmost = rb_last(&mctz->rb_root);
845 if (!rightmost)
846 goto done; /* Nothing to reclaim from */
847
848 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
849 /*
850 * Remove the node now but someone else can add it back,
851 * we will to add it back at the end of reclaim to its correct
852 * position in the tree.
853 */
854 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
855 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
856 !css_tryget(&mz->memcg->css))
857 goto retry;
858 done:
859 return mz;
860 }
861
862 static struct mem_cgroup_per_zone *
863 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
864 {
865 struct mem_cgroup_per_zone *mz;
866
867 spin_lock(&mctz->lock);
868 mz = __mem_cgroup_largest_soft_limit_node(mctz);
869 spin_unlock(&mctz->lock);
870 return mz;
871 }
872
873 /*
874 * Implementation Note: reading percpu statistics for memcg.
875 *
876 * Both of vmstat[] and percpu_counter has threshold and do periodic
877 * synchronization to implement "quick" read. There are trade-off between
878 * reading cost and precision of value. Then, we may have a chance to implement
879 * a periodic synchronizion of counter in memcg's counter.
880 *
881 * But this _read() function is used for user interface now. The user accounts
882 * memory usage by memory cgroup and he _always_ requires exact value because
883 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
884 * have to visit all online cpus and make sum. So, for now, unnecessary
885 * synchronization is not implemented. (just implemented for cpu hotplug)
886 *
887 * If there are kernel internal actions which can make use of some not-exact
888 * value, and reading all cpu value can be performance bottleneck in some
889 * common workload, threashold and synchonization as vmstat[] should be
890 * implemented.
891 */
892 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
893 enum mem_cgroup_stat_index idx)
894 {
895 long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->count[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.count[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
911 bool charge)
912 {
913 int val = (charge) ? 1 : -1;
914 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
915 }
916
917 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
918 enum mem_cgroup_events_index idx)
919 {
920 unsigned long val = 0;
921 int cpu;
922
923 get_online_cpus();
924 for_each_online_cpu(cpu)
925 val += per_cpu(memcg->stat->events[idx], cpu);
926 #ifdef CONFIG_HOTPLUG_CPU
927 spin_lock(&memcg->pcp_counter_lock);
928 val += memcg->nocpu_base.events[idx];
929 spin_unlock(&memcg->pcp_counter_lock);
930 #endif
931 put_online_cpus();
932 return val;
933 }
934
935 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
936 struct page *page,
937 bool anon, int nr_pages)
938 {
939 preempt_disable();
940
941 /*
942 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
943 * counted as CACHE even if it's on ANON LRU.
944 */
945 if (anon)
946 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
947 nr_pages);
948 else
949 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
950 nr_pages);
951
952 if (PageTransHuge(page))
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
954 nr_pages);
955
956 /* pagein of a big page is an event. So, ignore page size */
957 if (nr_pages > 0)
958 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
959 else {
960 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
961 nr_pages = -nr_pages; /* for event */
962 }
963
964 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
965
966 preempt_enable();
967 }
968
969 unsigned long
970 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
971 {
972 struct mem_cgroup_per_zone *mz;
973
974 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
975 return mz->lru_size[lru];
976 }
977
978 static unsigned long
979 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
980 unsigned int lru_mask)
981 {
982 struct mem_cgroup_per_zone *mz;
983 enum lru_list lru;
984 unsigned long ret = 0;
985
986 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
987
988 for_each_lru(lru) {
989 if (BIT(lru) & lru_mask)
990 ret += mz->lru_size[lru];
991 }
992 return ret;
993 }
994
995 static unsigned long
996 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
997 int nid, unsigned int lru_mask)
998 {
999 u64 total = 0;
1000 int zid;
1001
1002 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1003 total += mem_cgroup_zone_nr_lru_pages(memcg,
1004 nid, zid, lru_mask);
1005
1006 return total;
1007 }
1008
1009 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1010 unsigned int lru_mask)
1011 {
1012 int nid;
1013 u64 total = 0;
1014
1015 for_each_node_state(nid, N_MEMORY)
1016 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1017 return total;
1018 }
1019
1020 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1021 enum mem_cgroup_events_target target)
1022 {
1023 unsigned long val, next;
1024
1025 val = __this_cpu_read(memcg->stat->nr_page_events);
1026 next = __this_cpu_read(memcg->stat->targets[target]);
1027 /* from time_after() in jiffies.h */
1028 if ((long)next - (long)val < 0) {
1029 switch (target) {
1030 case MEM_CGROUP_TARGET_THRESH:
1031 next = val + THRESHOLDS_EVENTS_TARGET;
1032 break;
1033 case MEM_CGROUP_TARGET_SOFTLIMIT:
1034 next = val + SOFTLIMIT_EVENTS_TARGET;
1035 break;
1036 case MEM_CGROUP_TARGET_NUMAINFO:
1037 next = val + NUMAINFO_EVENTS_TARGET;
1038 break;
1039 default:
1040 break;
1041 }
1042 __this_cpu_write(memcg->stat->targets[target], next);
1043 return true;
1044 }
1045 return false;
1046 }
1047
1048 /*
1049 * Check events in order.
1050 *
1051 */
1052 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1053 {
1054 preempt_disable();
1055 /* threshold event is triggered in finer grain than soft limit */
1056 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1057 MEM_CGROUP_TARGET_THRESH))) {
1058 bool do_softlimit;
1059 bool do_numainfo __maybe_unused;
1060
1061 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1062 MEM_CGROUP_TARGET_SOFTLIMIT);
1063 #if MAX_NUMNODES > 1
1064 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1065 MEM_CGROUP_TARGET_NUMAINFO);
1066 #endif
1067 preempt_enable();
1068
1069 mem_cgroup_threshold(memcg);
1070 if (unlikely(do_softlimit))
1071 mem_cgroup_update_tree(memcg, page);
1072 #if MAX_NUMNODES > 1
1073 if (unlikely(do_numainfo))
1074 atomic_inc(&memcg->numainfo_events);
1075 #endif
1076 } else
1077 preempt_enable();
1078 }
1079
1080 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1081 {
1082 /*
1083 * mm_update_next_owner() may clear mm->owner to NULL
1084 * if it races with swapoff, page migration, etc.
1085 * So this can be called with p == NULL.
1086 */
1087 if (unlikely(!p))
1088 return NULL;
1089
1090 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1091 }
1092
1093 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1094 {
1095 struct mem_cgroup *memcg = NULL;
1096
1097 if (!mm)
1098 return NULL;
1099 /*
1100 * Because we have no locks, mm->owner's may be being moved to other
1101 * cgroup. We use css_tryget() here even if this looks
1102 * pessimistic (rather than adding locks here).
1103 */
1104 rcu_read_lock();
1105 do {
1106 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 if (unlikely(!memcg))
1108 break;
1109 } while (!css_tryget(&memcg->css));
1110 rcu_read_unlock();
1111 return memcg;
1112 }
1113
1114 /*
1115 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1116 * ref. count) or NULL if the whole root's subtree has been visited.
1117 *
1118 * helper function to be used by mem_cgroup_iter
1119 */
1120 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1121 struct mem_cgroup *last_visited)
1122 {
1123 struct cgroup_subsys_state *prev_css, *next_css;
1124
1125 prev_css = last_visited ? &last_visited->css : NULL;
1126 skip_node:
1127 next_css = css_next_descendant_pre(prev_css, &root->css);
1128
1129 /*
1130 * Even if we found a group we have to make sure it is
1131 * alive. css && !memcg means that the groups should be
1132 * skipped and we should continue the tree walk.
1133 * last_visited css is safe to use because it is
1134 * protected by css_get and the tree walk is rcu safe.
1135 */
1136 if (next_css) {
1137 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1138
1139 if (css_tryget(&mem->css))
1140 return mem;
1141 else {
1142 prev_css = next_css;
1143 goto skip_node;
1144 }
1145 }
1146
1147 return NULL;
1148 }
1149
1150 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1151 {
1152 /*
1153 * When a group in the hierarchy below root is destroyed, the
1154 * hierarchy iterator can no longer be trusted since it might
1155 * have pointed to the destroyed group. Invalidate it.
1156 */
1157 atomic_inc(&root->dead_count);
1158 }
1159
1160 static struct mem_cgroup *
1161 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *root,
1163 int *sequence)
1164 {
1165 struct mem_cgroup *position = NULL;
1166 /*
1167 * A cgroup destruction happens in two stages: offlining and
1168 * release. They are separated by a RCU grace period.
1169 *
1170 * If the iterator is valid, we may still race with an
1171 * offlining. The RCU lock ensures the object won't be
1172 * released, tryget will fail if we lost the race.
1173 */
1174 *sequence = atomic_read(&root->dead_count);
1175 if (iter->last_dead_count == *sequence) {
1176 smp_rmb();
1177 position = iter->last_visited;
1178 if (position && !css_tryget(&position->css))
1179 position = NULL;
1180 }
1181 return position;
1182 }
1183
1184 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1185 struct mem_cgroup *last_visited,
1186 struct mem_cgroup *new_position,
1187 int sequence)
1188 {
1189 if (last_visited)
1190 css_put(&last_visited->css);
1191 /*
1192 * We store the sequence count from the time @last_visited was
1193 * loaded successfully instead of rereading it here so that we
1194 * don't lose destruction events in between. We could have
1195 * raced with the destruction of @new_position after all.
1196 */
1197 iter->last_visited = new_position;
1198 smp_wmb();
1199 iter->last_dead_count = sequence;
1200 }
1201
1202 /**
1203 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1204 * @root: hierarchy root
1205 * @prev: previously returned memcg, NULL on first invocation
1206 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1207 *
1208 * Returns references to children of the hierarchy below @root, or
1209 * @root itself, or %NULL after a full round-trip.
1210 *
1211 * Caller must pass the return value in @prev on subsequent
1212 * invocations for reference counting, or use mem_cgroup_iter_break()
1213 * to cancel a hierarchy walk before the round-trip is complete.
1214 *
1215 * Reclaimers can specify a zone and a priority level in @reclaim to
1216 * divide up the memcgs in the hierarchy among all concurrent
1217 * reclaimers operating on the same zone and priority.
1218 */
1219 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1220 struct mem_cgroup *prev,
1221 struct mem_cgroup_reclaim_cookie *reclaim)
1222 {
1223 struct mem_cgroup *memcg = NULL;
1224 struct mem_cgroup *last_visited = NULL;
1225
1226 if (mem_cgroup_disabled())
1227 return NULL;
1228
1229 if (!root)
1230 root = root_mem_cgroup;
1231
1232 if (prev && !reclaim)
1233 last_visited = prev;
1234
1235 if (!root->use_hierarchy && root != root_mem_cgroup) {
1236 if (prev)
1237 goto out_css_put;
1238 return root;
1239 }
1240
1241 rcu_read_lock();
1242 while (!memcg) {
1243 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1244 int uninitialized_var(seq);
1245
1246 if (reclaim) {
1247 int nid = zone_to_nid(reclaim->zone);
1248 int zid = zone_idx(reclaim->zone);
1249 struct mem_cgroup_per_zone *mz;
1250
1251 mz = mem_cgroup_zoneinfo(root, nid, zid);
1252 iter = &mz->reclaim_iter[reclaim->priority];
1253 if (prev && reclaim->generation != iter->generation) {
1254 iter->last_visited = NULL;
1255 goto out_unlock;
1256 }
1257
1258 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1259 }
1260
1261 memcg = __mem_cgroup_iter_next(root, last_visited);
1262
1263 if (reclaim) {
1264 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1265
1266 if (!memcg)
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
1271
1272 if (prev && !memcg)
1273 goto out_unlock;
1274 }
1275 out_unlock:
1276 rcu_read_unlock();
1277 out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
1281 return memcg;
1282 }
1283
1284 /**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289 void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
1291 {
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296 }
1297
1298 /*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303 #define for_each_mem_cgroup_tree(iter, root) \
1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1305 iter != NULL; \
1306 iter = mem_cgroup_iter(root, iter, NULL))
1307
1308 #define for_each_mem_cgroup(iter) \
1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1310 iter != NULL; \
1311 iter = mem_cgroup_iter(NULL, iter, NULL))
1312
1313 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1314 {
1315 struct mem_cgroup *memcg;
1316
1317 rcu_read_lock();
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
1320 goto out;
1321
1322 switch (idx) {
1323 case PGFAULT:
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1328 break;
1329 default:
1330 BUG();
1331 }
1332 out:
1333 rcu_read_unlock();
1334 }
1335 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1336
1337 /**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
1340 * @memcg: memcg of the wanted lruvec
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348 {
1349 struct mem_cgroup_per_zone *mz;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1358 lruvec = &mz->lruvec;
1359 out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
1368 }
1369
1370 /*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
1383
1384 /**
1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1386 * @page: the page
1387 * @zone: zone of the page
1388 */
1389 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1390 {
1391 struct mem_cgroup_per_zone *mz;
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
1394 struct lruvec *lruvec;
1395
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
1400
1401 pc = lookup_page_cgroup(page);
1402 memcg = pc->mem_cgroup;
1403
1404 /*
1405 * Surreptitiously switch any uncharged offlist page to root:
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
1416 mz = page_cgroup_zoneinfo(memcg, page);
1417 lruvec = &mz->lruvec;
1418 out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
1427 }
1428
1429 /**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
1434 *
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
1437 */
1438 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
1440 {
1441 struct mem_cgroup_per_zone *mz;
1442 unsigned long *lru_size;
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
1451 }
1452
1453 /*
1454 * Checks whether given mem is same or in the root_mem_cgroup's
1455 * hierarchy subtree
1456 */
1457 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
1459 {
1460 if (root_memcg == memcg)
1461 return true;
1462 if (!root_memcg->use_hierarchy || !memcg)
1463 return false;
1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1465 }
1466
1467 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469 {
1470 bool ret;
1471
1472 rcu_read_lock();
1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1474 rcu_read_unlock();
1475 return ret;
1476 }
1477
1478 bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *curr = NULL;
1482 struct task_struct *p;
1483 bool ret;
1484
1485 p = find_lock_task_mm(task);
1486 if (p) {
1487 curr = try_get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
1495 rcu_read_lock();
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
1499 rcu_read_unlock();
1500 }
1501 if (!curr)
1502 return false;
1503 /*
1504 * We should check use_hierarchy of "memcg" not "curr". Because checking
1505 * use_hierarchy of "curr" here make this function true if hierarchy is
1506 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1507 * hierarchy(even if use_hierarchy is disabled in "memcg").
1508 */
1509 ret = mem_cgroup_same_or_subtree(memcg, curr);
1510 css_put(&curr->css);
1511 return ret;
1512 }
1513
1514 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1515 {
1516 unsigned long inactive_ratio;
1517 unsigned long inactive;
1518 unsigned long active;
1519 unsigned long gb;
1520
1521 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1522 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1523
1524 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1525 if (gb)
1526 inactive_ratio = int_sqrt(10 * gb);
1527 else
1528 inactive_ratio = 1;
1529
1530 return inactive * inactive_ratio < active;
1531 }
1532
1533 #define mem_cgroup_from_res_counter(counter, member) \
1534 container_of(counter, struct mem_cgroup, member)
1535
1536 /**
1537 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1538 * @memcg: the memory cgroup
1539 *
1540 * Returns the maximum amount of memory @mem can be charged with, in
1541 * pages.
1542 */
1543 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1544 {
1545 unsigned long long margin;
1546
1547 margin = res_counter_margin(&memcg->res);
1548 if (do_swap_account)
1549 margin = min(margin, res_counter_margin(&memcg->memsw));
1550 return margin >> PAGE_SHIFT;
1551 }
1552
1553 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1554 {
1555 /* root ? */
1556 if (!css_parent(&memcg->css))
1557 return vm_swappiness;
1558
1559 return memcg->swappiness;
1560 }
1561
1562 /*
1563 * memcg->moving_account is used for checking possibility that some thread is
1564 * calling move_account(). When a thread on CPU-A starts moving pages under
1565 * a memcg, other threads should check memcg->moving_account under
1566 * rcu_read_lock(), like this:
1567 *
1568 * CPU-A CPU-B
1569 * rcu_read_lock()
1570 * memcg->moving_account+1 if (memcg->mocing_account)
1571 * take heavy locks.
1572 * synchronize_rcu() update something.
1573 * rcu_read_unlock()
1574 * start move here.
1575 */
1576
1577 /* for quick checking without looking up memcg */
1578 atomic_t memcg_moving __read_mostly;
1579
1580 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1581 {
1582 atomic_inc(&memcg_moving);
1583 atomic_inc(&memcg->moving_account);
1584 synchronize_rcu();
1585 }
1586
1587 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1588 {
1589 /*
1590 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1591 * We check NULL in callee rather than caller.
1592 */
1593 if (memcg) {
1594 atomic_dec(&memcg_moving);
1595 atomic_dec(&memcg->moving_account);
1596 }
1597 }
1598
1599 /*
1600 * 2 routines for checking "mem" is under move_account() or not.
1601 *
1602 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1603 * is used for avoiding races in accounting. If true,
1604 * pc->mem_cgroup may be overwritten.
1605 *
1606 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1607 * under hierarchy of moving cgroups. This is for
1608 * waiting at hith-memory prressure caused by "move".
1609 */
1610
1611 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1612 {
1613 VM_BUG_ON(!rcu_read_lock_held());
1614 return atomic_read(&memcg->moving_account) > 0;
1615 }
1616
1617 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1618 {
1619 struct mem_cgroup *from;
1620 struct mem_cgroup *to;
1621 bool ret = false;
1622 /*
1623 * Unlike task_move routines, we access mc.to, mc.from not under
1624 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1625 */
1626 spin_lock(&mc.lock);
1627 from = mc.from;
1628 to = mc.to;
1629 if (!from)
1630 goto unlock;
1631
1632 ret = mem_cgroup_same_or_subtree(memcg, from)
1633 || mem_cgroup_same_or_subtree(memcg, to);
1634 unlock:
1635 spin_unlock(&mc.lock);
1636 return ret;
1637 }
1638
1639 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1640 {
1641 if (mc.moving_task && current != mc.moving_task) {
1642 if (mem_cgroup_under_move(memcg)) {
1643 DEFINE_WAIT(wait);
1644 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1645 /* moving charge context might have finished. */
1646 if (mc.moving_task)
1647 schedule();
1648 finish_wait(&mc.waitq, &wait);
1649 return true;
1650 }
1651 }
1652 return false;
1653 }
1654
1655 /*
1656 * Take this lock when
1657 * - a code tries to modify page's memcg while it's USED.
1658 * - a code tries to modify page state accounting in a memcg.
1659 * see mem_cgroup_stolen(), too.
1660 */
1661 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1662 unsigned long *flags)
1663 {
1664 spin_lock_irqsave(&memcg->move_lock, *flags);
1665 }
1666
1667 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1668 unsigned long *flags)
1669 {
1670 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1671 }
1672
1673 #define K(x) ((x) << (PAGE_SHIFT-10))
1674 /**
1675 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1676 * @memcg: The memory cgroup that went over limit
1677 * @p: Task that is going to be killed
1678 *
1679 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1680 * enabled
1681 */
1682 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1683 {
1684 /*
1685 * protects memcg_name and makes sure that parallel ooms do not
1686 * interleave
1687 */
1688 static DEFINE_SPINLOCK(oom_info_lock);
1689 struct cgroup *task_cgrp;
1690 struct cgroup *mem_cgrp;
1691 static char memcg_name[PATH_MAX];
1692 int ret;
1693 struct mem_cgroup *iter;
1694 unsigned int i;
1695
1696 if (!p)
1697 return;
1698
1699 spin_lock(&oom_info_lock);
1700 rcu_read_lock();
1701
1702 mem_cgrp = memcg->css.cgroup;
1703 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1704
1705 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1706 if (ret < 0) {
1707 /*
1708 * Unfortunately, we are unable to convert to a useful name
1709 * But we'll still print out the usage information
1710 */
1711 rcu_read_unlock();
1712 goto done;
1713 }
1714 rcu_read_unlock();
1715
1716 pr_info("Task in %s killed", memcg_name);
1717
1718 rcu_read_lock();
1719 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1720 if (ret < 0) {
1721 rcu_read_unlock();
1722 goto done;
1723 }
1724 rcu_read_unlock();
1725
1726 /*
1727 * Continues from above, so we don't need an KERN_ level
1728 */
1729 pr_cont(" as a result of limit of %s\n", memcg_name);
1730 done:
1731
1732 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1733 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1736 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1737 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1738 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1739 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1740 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1741 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1742 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1743 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1744
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 pr_info("Memory cgroup stats");
1747
1748 rcu_read_lock();
1749 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1750 if (!ret)
1751 pr_cont(" for %s", memcg_name);
1752 rcu_read_unlock();
1753 pr_cont(":");
1754
1755 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1756 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1757 continue;
1758 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1759 K(mem_cgroup_read_stat(iter, i)));
1760 }
1761
1762 for (i = 0; i < NR_LRU_LISTS; i++)
1763 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1764 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1765
1766 pr_cont("\n");
1767 }
1768 spin_unlock(&oom_info_lock);
1769 }
1770
1771 /*
1772 * This function returns the number of memcg under hierarchy tree. Returns
1773 * 1(self count) if no children.
1774 */
1775 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1776 {
1777 int num = 0;
1778 struct mem_cgroup *iter;
1779
1780 for_each_mem_cgroup_tree(iter, memcg)
1781 num++;
1782 return num;
1783 }
1784
1785 /*
1786 * Return the memory (and swap, if configured) limit for a memcg.
1787 */
1788 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1789 {
1790 u64 limit;
1791
1792 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1793
1794 /*
1795 * Do not consider swap space if we cannot swap due to swappiness
1796 */
1797 if (mem_cgroup_swappiness(memcg)) {
1798 u64 memsw;
1799
1800 limit += total_swap_pages << PAGE_SHIFT;
1801 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1802
1803 /*
1804 * If memsw is finite and limits the amount of swap space
1805 * available to this memcg, return that limit.
1806 */
1807 limit = min(limit, memsw);
1808 }
1809
1810 return limit;
1811 }
1812
1813 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1814 int order)
1815 {
1816 struct mem_cgroup *iter;
1817 unsigned long chosen_points = 0;
1818 unsigned long totalpages;
1819 unsigned int points = 0;
1820 struct task_struct *chosen = NULL;
1821
1822 /*
1823 * If current has a pending SIGKILL or is exiting, then automatically
1824 * select it. The goal is to allow it to allocate so that it may
1825 * quickly exit and free its memory.
1826 */
1827 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1828 set_thread_flag(TIF_MEMDIE);
1829 return;
1830 }
1831
1832 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1833 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1834 for_each_mem_cgroup_tree(iter, memcg) {
1835 struct css_task_iter it;
1836 struct task_struct *task;
1837
1838 css_task_iter_start(&iter->css, &it);
1839 while ((task = css_task_iter_next(&it))) {
1840 switch (oom_scan_process_thread(task, totalpages, NULL,
1841 false)) {
1842 case OOM_SCAN_SELECT:
1843 if (chosen)
1844 put_task_struct(chosen);
1845 chosen = task;
1846 chosen_points = ULONG_MAX;
1847 get_task_struct(chosen);
1848 /* fall through */
1849 case OOM_SCAN_CONTINUE:
1850 continue;
1851 case OOM_SCAN_ABORT:
1852 css_task_iter_end(&it);
1853 mem_cgroup_iter_break(memcg, iter);
1854 if (chosen)
1855 put_task_struct(chosen);
1856 return;
1857 case OOM_SCAN_OK:
1858 break;
1859 };
1860 points = oom_badness(task, memcg, NULL, totalpages);
1861 if (points > chosen_points) {
1862 if (chosen)
1863 put_task_struct(chosen);
1864 chosen = task;
1865 chosen_points = points;
1866 get_task_struct(chosen);
1867 }
1868 }
1869 css_task_iter_end(&it);
1870 }
1871
1872 if (!chosen)
1873 return;
1874 points = chosen_points * 1000 / totalpages;
1875 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1876 NULL, "Memory cgroup out of memory");
1877 }
1878
1879 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1880 gfp_t gfp_mask,
1881 unsigned long flags)
1882 {
1883 unsigned long total = 0;
1884 bool noswap = false;
1885 int loop;
1886
1887 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1888 noswap = true;
1889 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1890 noswap = true;
1891
1892 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1893 if (loop)
1894 drain_all_stock_async(memcg);
1895 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1896 /*
1897 * Allow limit shrinkers, which are triggered directly
1898 * by userspace, to catch signals and stop reclaim
1899 * after minimal progress, regardless of the margin.
1900 */
1901 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1902 break;
1903 if (mem_cgroup_margin(memcg))
1904 break;
1905 /*
1906 * If nothing was reclaimed after two attempts, there
1907 * may be no reclaimable pages in this hierarchy.
1908 */
1909 if (loop && !total)
1910 break;
1911 }
1912 return total;
1913 }
1914
1915 /**
1916 * test_mem_cgroup_node_reclaimable
1917 * @memcg: the target memcg
1918 * @nid: the node ID to be checked.
1919 * @noswap : specify true here if the user wants flle only information.
1920 *
1921 * This function returns whether the specified memcg contains any
1922 * reclaimable pages on a node. Returns true if there are any reclaimable
1923 * pages in the node.
1924 */
1925 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1926 int nid, bool noswap)
1927 {
1928 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1929 return true;
1930 if (noswap || !total_swap_pages)
1931 return false;
1932 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1933 return true;
1934 return false;
1935
1936 }
1937 #if MAX_NUMNODES > 1
1938
1939 /*
1940 * Always updating the nodemask is not very good - even if we have an empty
1941 * list or the wrong list here, we can start from some node and traverse all
1942 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1943 *
1944 */
1945 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1946 {
1947 int nid;
1948 /*
1949 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1950 * pagein/pageout changes since the last update.
1951 */
1952 if (!atomic_read(&memcg->numainfo_events))
1953 return;
1954 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1955 return;
1956
1957 /* make a nodemask where this memcg uses memory from */
1958 memcg->scan_nodes = node_states[N_MEMORY];
1959
1960 for_each_node_mask(nid, node_states[N_MEMORY]) {
1961
1962 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1963 node_clear(nid, memcg->scan_nodes);
1964 }
1965
1966 atomic_set(&memcg->numainfo_events, 0);
1967 atomic_set(&memcg->numainfo_updating, 0);
1968 }
1969
1970 /*
1971 * Selecting a node where we start reclaim from. Because what we need is just
1972 * reducing usage counter, start from anywhere is O,K. Considering
1973 * memory reclaim from current node, there are pros. and cons.
1974 *
1975 * Freeing memory from current node means freeing memory from a node which
1976 * we'll use or we've used. So, it may make LRU bad. And if several threads
1977 * hit limits, it will see a contention on a node. But freeing from remote
1978 * node means more costs for memory reclaim because of memory latency.
1979 *
1980 * Now, we use round-robin. Better algorithm is welcomed.
1981 */
1982 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1983 {
1984 int node;
1985
1986 mem_cgroup_may_update_nodemask(memcg);
1987 node = memcg->last_scanned_node;
1988
1989 node = next_node(node, memcg->scan_nodes);
1990 if (node == MAX_NUMNODES)
1991 node = first_node(memcg->scan_nodes);
1992 /*
1993 * We call this when we hit limit, not when pages are added to LRU.
1994 * No LRU may hold pages because all pages are UNEVICTABLE or
1995 * memcg is too small and all pages are not on LRU. In that case,
1996 * we use curret node.
1997 */
1998 if (unlikely(node == MAX_NUMNODES))
1999 node = numa_node_id();
2000
2001 memcg->last_scanned_node = node;
2002 return node;
2003 }
2004
2005 /*
2006 * Check all nodes whether it contains reclaimable pages or not.
2007 * For quick scan, we make use of scan_nodes. This will allow us to skip
2008 * unused nodes. But scan_nodes is lazily updated and may not cotain
2009 * enough new information. We need to do double check.
2010 */
2011 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2012 {
2013 int nid;
2014
2015 /*
2016 * quick check...making use of scan_node.
2017 * We can skip unused nodes.
2018 */
2019 if (!nodes_empty(memcg->scan_nodes)) {
2020 for (nid = first_node(memcg->scan_nodes);
2021 nid < MAX_NUMNODES;
2022 nid = next_node(nid, memcg->scan_nodes)) {
2023
2024 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2025 return true;
2026 }
2027 }
2028 /*
2029 * Check rest of nodes.
2030 */
2031 for_each_node_state(nid, N_MEMORY) {
2032 if (node_isset(nid, memcg->scan_nodes))
2033 continue;
2034 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2035 return true;
2036 }
2037 return false;
2038 }
2039
2040 #else
2041 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2042 {
2043 return 0;
2044 }
2045
2046 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2047 {
2048 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2049 }
2050 #endif
2051
2052 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2053 struct zone *zone,
2054 gfp_t gfp_mask,
2055 unsigned long *total_scanned)
2056 {
2057 struct mem_cgroup *victim = NULL;
2058 int total = 0;
2059 int loop = 0;
2060 unsigned long excess;
2061 unsigned long nr_scanned;
2062 struct mem_cgroup_reclaim_cookie reclaim = {
2063 .zone = zone,
2064 .priority = 0,
2065 };
2066
2067 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2068
2069 while (1) {
2070 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2071 if (!victim) {
2072 loop++;
2073 if (loop >= 2) {
2074 /*
2075 * If we have not been able to reclaim
2076 * anything, it might because there are
2077 * no reclaimable pages under this hierarchy
2078 */
2079 if (!total)
2080 break;
2081 /*
2082 * We want to do more targeted reclaim.
2083 * excess >> 2 is not to excessive so as to
2084 * reclaim too much, nor too less that we keep
2085 * coming back to reclaim from this cgroup
2086 */
2087 if (total >= (excess >> 2) ||
2088 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2089 break;
2090 }
2091 continue;
2092 }
2093 if (!mem_cgroup_reclaimable(victim, false))
2094 continue;
2095 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2096 zone, &nr_scanned);
2097 *total_scanned += nr_scanned;
2098 if (!res_counter_soft_limit_excess(&root_memcg->res))
2099 break;
2100 }
2101 mem_cgroup_iter_break(root_memcg, victim);
2102 return total;
2103 }
2104
2105 #ifdef CONFIG_LOCKDEP
2106 static struct lockdep_map memcg_oom_lock_dep_map = {
2107 .name = "memcg_oom_lock",
2108 };
2109 #endif
2110
2111 static DEFINE_SPINLOCK(memcg_oom_lock);
2112
2113 /*
2114 * Check OOM-Killer is already running under our hierarchy.
2115 * If someone is running, return false.
2116 */
2117 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2118 {
2119 struct mem_cgroup *iter, *failed = NULL;
2120
2121 spin_lock(&memcg_oom_lock);
2122
2123 for_each_mem_cgroup_tree(iter, memcg) {
2124 if (iter->oom_lock) {
2125 /*
2126 * this subtree of our hierarchy is already locked
2127 * so we cannot give a lock.
2128 */
2129 failed = iter;
2130 mem_cgroup_iter_break(memcg, iter);
2131 break;
2132 } else
2133 iter->oom_lock = true;
2134 }
2135
2136 if (failed) {
2137 /*
2138 * OK, we failed to lock the whole subtree so we have
2139 * to clean up what we set up to the failing subtree
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg) {
2142 if (iter == failed) {
2143 mem_cgroup_iter_break(memcg, iter);
2144 break;
2145 }
2146 iter->oom_lock = false;
2147 }
2148 } else
2149 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2150
2151 spin_unlock(&memcg_oom_lock);
2152
2153 return !failed;
2154 }
2155
2156 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2157 {
2158 struct mem_cgroup *iter;
2159
2160 spin_lock(&memcg_oom_lock);
2161 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2162 for_each_mem_cgroup_tree(iter, memcg)
2163 iter->oom_lock = false;
2164 spin_unlock(&memcg_oom_lock);
2165 }
2166
2167 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2168 {
2169 struct mem_cgroup *iter;
2170
2171 for_each_mem_cgroup_tree(iter, memcg)
2172 atomic_inc(&iter->under_oom);
2173 }
2174
2175 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2176 {
2177 struct mem_cgroup *iter;
2178
2179 /*
2180 * When a new child is created while the hierarchy is under oom,
2181 * mem_cgroup_oom_lock() may not be called. We have to use
2182 * atomic_add_unless() here.
2183 */
2184 for_each_mem_cgroup_tree(iter, memcg)
2185 atomic_add_unless(&iter->under_oom, -1, 0);
2186 }
2187
2188 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2189
2190 struct oom_wait_info {
2191 struct mem_cgroup *memcg;
2192 wait_queue_t wait;
2193 };
2194
2195 static int memcg_oom_wake_function(wait_queue_t *wait,
2196 unsigned mode, int sync, void *arg)
2197 {
2198 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2199 struct mem_cgroup *oom_wait_memcg;
2200 struct oom_wait_info *oom_wait_info;
2201
2202 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2203 oom_wait_memcg = oom_wait_info->memcg;
2204
2205 /*
2206 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2207 * Then we can use css_is_ancestor without taking care of RCU.
2208 */
2209 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2210 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2211 return 0;
2212 return autoremove_wake_function(wait, mode, sync, arg);
2213 }
2214
2215 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2216 {
2217 atomic_inc(&memcg->oom_wakeups);
2218 /* for filtering, pass "memcg" as argument. */
2219 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2220 }
2221
2222 static void memcg_oom_recover(struct mem_cgroup *memcg)
2223 {
2224 if (memcg && atomic_read(&memcg->under_oom))
2225 memcg_wakeup_oom(memcg);
2226 }
2227
2228 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2229 {
2230 if (!current->memcg_oom.may_oom)
2231 return;
2232 /*
2233 * We are in the middle of the charge context here, so we
2234 * don't want to block when potentially sitting on a callstack
2235 * that holds all kinds of filesystem and mm locks.
2236 *
2237 * Also, the caller may handle a failed allocation gracefully
2238 * (like optional page cache readahead) and so an OOM killer
2239 * invocation might not even be necessary.
2240 *
2241 * That's why we don't do anything here except remember the
2242 * OOM context and then deal with it at the end of the page
2243 * fault when the stack is unwound, the locks are released,
2244 * and when we know whether the fault was overall successful.
2245 */
2246 css_get(&memcg->css);
2247 current->memcg_oom.memcg = memcg;
2248 current->memcg_oom.gfp_mask = mask;
2249 current->memcg_oom.order = order;
2250 }
2251
2252 /**
2253 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2254 * @handle: actually kill/wait or just clean up the OOM state
2255 *
2256 * This has to be called at the end of a page fault if the memcg OOM
2257 * handler was enabled.
2258 *
2259 * Memcg supports userspace OOM handling where failed allocations must
2260 * sleep on a waitqueue until the userspace task resolves the
2261 * situation. Sleeping directly in the charge context with all kinds
2262 * of locks held is not a good idea, instead we remember an OOM state
2263 * in the task and mem_cgroup_oom_synchronize() has to be called at
2264 * the end of the page fault to complete the OOM handling.
2265 *
2266 * Returns %true if an ongoing memcg OOM situation was detected and
2267 * completed, %false otherwise.
2268 */
2269 bool mem_cgroup_oom_synchronize(bool handle)
2270 {
2271 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2272 struct oom_wait_info owait;
2273 bool locked;
2274
2275 /* OOM is global, do not handle */
2276 if (!memcg)
2277 return false;
2278
2279 if (!handle)
2280 goto cleanup;
2281
2282 owait.memcg = memcg;
2283 owait.wait.flags = 0;
2284 owait.wait.func = memcg_oom_wake_function;
2285 owait.wait.private = current;
2286 INIT_LIST_HEAD(&owait.wait.task_list);
2287
2288 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2289 mem_cgroup_mark_under_oom(memcg);
2290
2291 locked = mem_cgroup_oom_trylock(memcg);
2292
2293 if (locked)
2294 mem_cgroup_oom_notify(memcg);
2295
2296 if (locked && !memcg->oom_kill_disable) {
2297 mem_cgroup_unmark_under_oom(memcg);
2298 finish_wait(&memcg_oom_waitq, &owait.wait);
2299 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2300 current->memcg_oom.order);
2301 } else {
2302 schedule();
2303 mem_cgroup_unmark_under_oom(memcg);
2304 finish_wait(&memcg_oom_waitq, &owait.wait);
2305 }
2306
2307 if (locked) {
2308 mem_cgroup_oom_unlock(memcg);
2309 /*
2310 * There is no guarantee that an OOM-lock contender
2311 * sees the wakeups triggered by the OOM kill
2312 * uncharges. Wake any sleepers explicitely.
2313 */
2314 memcg_oom_recover(memcg);
2315 }
2316 cleanup:
2317 current->memcg_oom.memcg = NULL;
2318 css_put(&memcg->css);
2319 return true;
2320 }
2321
2322 /*
2323 * Currently used to update mapped file statistics, but the routine can be
2324 * generalized to update other statistics as well.
2325 *
2326 * Notes: Race condition
2327 *
2328 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2329 * it tends to be costly. But considering some conditions, we doesn't need
2330 * to do so _always_.
2331 *
2332 * Considering "charge", lock_page_cgroup() is not required because all
2333 * file-stat operations happen after a page is attached to radix-tree. There
2334 * are no race with "charge".
2335 *
2336 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2337 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2338 * if there are race with "uncharge". Statistics itself is properly handled
2339 * by flags.
2340 *
2341 * Considering "move", this is an only case we see a race. To make the race
2342 * small, we check mm->moving_account and detect there are possibility of race
2343 * If there is, we take a lock.
2344 */
2345
2346 void __mem_cgroup_begin_update_page_stat(struct page *page,
2347 bool *locked, unsigned long *flags)
2348 {
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc;
2351
2352 pc = lookup_page_cgroup(page);
2353 again:
2354 memcg = pc->mem_cgroup;
2355 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2356 return;
2357 /*
2358 * If this memory cgroup is not under account moving, we don't
2359 * need to take move_lock_mem_cgroup(). Because we already hold
2360 * rcu_read_lock(), any calls to move_account will be delayed until
2361 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2362 */
2363 if (!mem_cgroup_stolen(memcg))
2364 return;
2365
2366 move_lock_mem_cgroup(memcg, flags);
2367 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2368 move_unlock_mem_cgroup(memcg, flags);
2369 goto again;
2370 }
2371 *locked = true;
2372 }
2373
2374 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2375 {
2376 struct page_cgroup *pc = lookup_page_cgroup(page);
2377
2378 /*
2379 * It's guaranteed that pc->mem_cgroup never changes while
2380 * lock is held because a routine modifies pc->mem_cgroup
2381 * should take move_lock_mem_cgroup().
2382 */
2383 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2384 }
2385
2386 void mem_cgroup_update_page_stat(struct page *page,
2387 enum mem_cgroup_stat_index idx, int val)
2388 {
2389 struct mem_cgroup *memcg;
2390 struct page_cgroup *pc = lookup_page_cgroup(page);
2391 unsigned long uninitialized_var(flags);
2392
2393 if (mem_cgroup_disabled())
2394 return;
2395
2396 VM_BUG_ON(!rcu_read_lock_held());
2397 memcg = pc->mem_cgroup;
2398 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2399 return;
2400
2401 this_cpu_add(memcg->stat->count[idx], val);
2402 }
2403
2404 /*
2405 * size of first charge trial. "32" comes from vmscan.c's magic value.
2406 * TODO: maybe necessary to use big numbers in big irons.
2407 */
2408 #define CHARGE_BATCH 32U
2409 struct memcg_stock_pcp {
2410 struct mem_cgroup *cached; /* this never be root cgroup */
2411 unsigned int nr_pages;
2412 struct work_struct work;
2413 unsigned long flags;
2414 #define FLUSHING_CACHED_CHARGE 0
2415 };
2416 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2417 static DEFINE_MUTEX(percpu_charge_mutex);
2418
2419 /**
2420 * consume_stock: Try to consume stocked charge on this cpu.
2421 * @memcg: memcg to consume from.
2422 * @nr_pages: how many pages to charge.
2423 *
2424 * The charges will only happen if @memcg matches the current cpu's memcg
2425 * stock, and at least @nr_pages are available in that stock. Failure to
2426 * service an allocation will refill the stock.
2427 *
2428 * returns true if successful, false otherwise.
2429 */
2430 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2431 {
2432 struct memcg_stock_pcp *stock;
2433 bool ret = true;
2434
2435 if (nr_pages > CHARGE_BATCH)
2436 return false;
2437
2438 stock = &get_cpu_var(memcg_stock);
2439 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2440 stock->nr_pages -= nr_pages;
2441 else /* need to call res_counter_charge */
2442 ret = false;
2443 put_cpu_var(memcg_stock);
2444 return ret;
2445 }
2446
2447 /*
2448 * Returns stocks cached in percpu to res_counter and reset cached information.
2449 */
2450 static void drain_stock(struct memcg_stock_pcp *stock)
2451 {
2452 struct mem_cgroup *old = stock->cached;
2453
2454 if (stock->nr_pages) {
2455 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2456
2457 res_counter_uncharge(&old->res, bytes);
2458 if (do_swap_account)
2459 res_counter_uncharge(&old->memsw, bytes);
2460 stock->nr_pages = 0;
2461 }
2462 stock->cached = NULL;
2463 }
2464
2465 /*
2466 * This must be called under preempt disabled or must be called by
2467 * a thread which is pinned to local cpu.
2468 */
2469 static void drain_local_stock(struct work_struct *dummy)
2470 {
2471 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2472 drain_stock(stock);
2473 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2474 }
2475
2476 static void __init memcg_stock_init(void)
2477 {
2478 int cpu;
2479
2480 for_each_possible_cpu(cpu) {
2481 struct memcg_stock_pcp *stock =
2482 &per_cpu(memcg_stock, cpu);
2483 INIT_WORK(&stock->work, drain_local_stock);
2484 }
2485 }
2486
2487 /*
2488 * Cache charges(val) which is from res_counter, to local per_cpu area.
2489 * This will be consumed by consume_stock() function, later.
2490 */
2491 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2492 {
2493 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2494
2495 if (stock->cached != memcg) { /* reset if necessary */
2496 drain_stock(stock);
2497 stock->cached = memcg;
2498 }
2499 stock->nr_pages += nr_pages;
2500 put_cpu_var(memcg_stock);
2501 }
2502
2503 /*
2504 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2505 * of the hierarchy under it. sync flag says whether we should block
2506 * until the work is done.
2507 */
2508 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2509 {
2510 int cpu, curcpu;
2511
2512 /* Notify other cpus that system-wide "drain" is running */
2513 get_online_cpus();
2514 curcpu = get_cpu();
2515 for_each_online_cpu(cpu) {
2516 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2517 struct mem_cgroup *memcg;
2518
2519 memcg = stock->cached;
2520 if (!memcg || !stock->nr_pages)
2521 continue;
2522 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2523 continue;
2524 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2525 if (cpu == curcpu)
2526 drain_local_stock(&stock->work);
2527 else
2528 schedule_work_on(cpu, &stock->work);
2529 }
2530 }
2531 put_cpu();
2532
2533 if (!sync)
2534 goto out;
2535
2536 for_each_online_cpu(cpu) {
2537 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2538 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2539 flush_work(&stock->work);
2540 }
2541 out:
2542 put_online_cpus();
2543 }
2544
2545 /*
2546 * Tries to drain stocked charges in other cpus. This function is asynchronous
2547 * and just put a work per cpu for draining localy on each cpu. Caller can
2548 * expects some charges will be back to res_counter later but cannot wait for
2549 * it.
2550 */
2551 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2552 {
2553 /*
2554 * If someone calls draining, avoid adding more kworker runs.
2555 */
2556 if (!mutex_trylock(&percpu_charge_mutex))
2557 return;
2558 drain_all_stock(root_memcg, false);
2559 mutex_unlock(&percpu_charge_mutex);
2560 }
2561
2562 /* This is a synchronous drain interface. */
2563 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2564 {
2565 /* called when force_empty is called */
2566 mutex_lock(&percpu_charge_mutex);
2567 drain_all_stock(root_memcg, true);
2568 mutex_unlock(&percpu_charge_mutex);
2569 }
2570
2571 /*
2572 * This function drains percpu counter value from DEAD cpu and
2573 * move it to local cpu. Note that this function can be preempted.
2574 */
2575 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2576 {
2577 int i;
2578
2579 spin_lock(&memcg->pcp_counter_lock);
2580 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2581 long x = per_cpu(memcg->stat->count[i], cpu);
2582
2583 per_cpu(memcg->stat->count[i], cpu) = 0;
2584 memcg->nocpu_base.count[i] += x;
2585 }
2586 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2587 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2588
2589 per_cpu(memcg->stat->events[i], cpu) = 0;
2590 memcg->nocpu_base.events[i] += x;
2591 }
2592 spin_unlock(&memcg->pcp_counter_lock);
2593 }
2594
2595 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2596 unsigned long action,
2597 void *hcpu)
2598 {
2599 int cpu = (unsigned long)hcpu;
2600 struct memcg_stock_pcp *stock;
2601 struct mem_cgroup *iter;
2602
2603 if (action == CPU_ONLINE)
2604 return NOTIFY_OK;
2605
2606 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2607 return NOTIFY_OK;
2608
2609 for_each_mem_cgroup(iter)
2610 mem_cgroup_drain_pcp_counter(iter, cpu);
2611
2612 stock = &per_cpu(memcg_stock, cpu);
2613 drain_stock(stock);
2614 return NOTIFY_OK;
2615 }
2616
2617
2618 /* See __mem_cgroup_try_charge() for details */
2619 enum {
2620 CHARGE_OK, /* success */
2621 CHARGE_RETRY, /* need to retry but retry is not bad */
2622 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2623 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2624 };
2625
2626 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2627 unsigned int nr_pages, unsigned int min_pages,
2628 bool invoke_oom)
2629 {
2630 unsigned long csize = nr_pages * PAGE_SIZE;
2631 struct mem_cgroup *mem_over_limit;
2632 struct res_counter *fail_res;
2633 unsigned long flags = 0;
2634 int ret;
2635
2636 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2637
2638 if (likely(!ret)) {
2639 if (!do_swap_account)
2640 return CHARGE_OK;
2641 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2642 if (likely(!ret))
2643 return CHARGE_OK;
2644
2645 res_counter_uncharge(&memcg->res, csize);
2646 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2647 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2648 } else
2649 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2650 /*
2651 * Never reclaim on behalf of optional batching, retry with a
2652 * single page instead.
2653 */
2654 if (nr_pages > min_pages)
2655 return CHARGE_RETRY;
2656
2657 if (!(gfp_mask & __GFP_WAIT))
2658 return CHARGE_WOULDBLOCK;
2659
2660 if (gfp_mask & __GFP_NORETRY)
2661 return CHARGE_NOMEM;
2662
2663 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2664 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2665 return CHARGE_RETRY;
2666 /*
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
2674 */
2675 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2676 return CHARGE_RETRY;
2677
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 return CHARGE_RETRY;
2684
2685 if (invoke_oom)
2686 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2687
2688 return CHARGE_NOMEM;
2689 }
2690
2691 /*
2692 * __mem_cgroup_try_charge() does
2693 * 1. detect memcg to be charged against from passed *mm and *ptr,
2694 * 2. update res_counter
2695 * 3. call memory reclaim if necessary.
2696 *
2697 * In some special case, if the task is fatal, fatal_signal_pending() or
2698 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2699 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2700 * as possible without any hazards. 2: all pages should have a valid
2701 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2702 * pointer, that is treated as a charge to root_mem_cgroup.
2703 *
2704 * So __mem_cgroup_try_charge() will return
2705 * 0 ... on success, filling *ptr with a valid memcg pointer.
2706 * -ENOMEM ... charge failure because of resource limits.
2707 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2708 *
2709 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2710 * the oom-killer can be invoked.
2711 */
2712 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2713 gfp_t gfp_mask,
2714 unsigned int nr_pages,
2715 struct mem_cgroup **ptr,
2716 bool oom)
2717 {
2718 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2719 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2720 struct mem_cgroup *memcg = NULL;
2721 int ret;
2722
2723 /*
2724 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2725 * in system level. So, allow to go ahead dying process in addition to
2726 * MEMDIE process.
2727 */
2728 if (unlikely(test_thread_flag(TIF_MEMDIE)
2729 || fatal_signal_pending(current)))
2730 goto bypass;
2731
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
2735 if (gfp_mask & __GFP_NOFAIL)
2736 oom = false;
2737
2738 /*
2739 * We always charge the cgroup the mm_struct belongs to.
2740 * The mm_struct's mem_cgroup changes on task migration if the
2741 * thread group leader migrates. It's possible that mm is not
2742 * set, if so charge the root memcg (happens for pagecache usage).
2743 */
2744 if (!*ptr && !mm)
2745 *ptr = root_mem_cgroup;
2746 again:
2747 if (*ptr) { /* css should be a valid one */
2748 memcg = *ptr;
2749 if (mem_cgroup_is_root(memcg))
2750 goto done;
2751 if (consume_stock(memcg, nr_pages))
2752 goto done;
2753 css_get(&memcg->css);
2754 } else {
2755 struct task_struct *p;
2756
2757 rcu_read_lock();
2758 p = rcu_dereference(mm->owner);
2759 /*
2760 * Because we don't have task_lock(), "p" can exit.
2761 * In that case, "memcg" can point to root or p can be NULL with
2762 * race with swapoff. Then, we have small risk of mis-accouning.
2763 * But such kind of mis-account by race always happens because
2764 * we don't have cgroup_mutex(). It's overkill and we allo that
2765 * small race, here.
2766 * (*) swapoff at el will charge against mm-struct not against
2767 * task-struct. So, mm->owner can be NULL.
2768 */
2769 memcg = mem_cgroup_from_task(p);
2770 if (!memcg)
2771 memcg = root_mem_cgroup;
2772 if (mem_cgroup_is_root(memcg)) {
2773 rcu_read_unlock();
2774 goto done;
2775 }
2776 if (consume_stock(memcg, nr_pages)) {
2777 /*
2778 * It seems dagerous to access memcg without css_get().
2779 * But considering how consume_stok works, it's not
2780 * necessary. If consume_stock success, some charges
2781 * from this memcg are cached on this cpu. So, we
2782 * don't need to call css_get()/css_tryget() before
2783 * calling consume_stock().
2784 */
2785 rcu_read_unlock();
2786 goto done;
2787 }
2788 /* after here, we may be blocked. we need to get refcnt */
2789 if (!css_tryget(&memcg->css)) {
2790 rcu_read_unlock();
2791 goto again;
2792 }
2793 rcu_read_unlock();
2794 }
2795
2796 do {
2797 bool invoke_oom = oom && !nr_oom_retries;
2798
2799 /* If killed, bypass charge */
2800 if (fatal_signal_pending(current)) {
2801 css_put(&memcg->css);
2802 goto bypass;
2803 }
2804
2805 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2806 nr_pages, invoke_oom);
2807 switch (ret) {
2808 case CHARGE_OK:
2809 break;
2810 case CHARGE_RETRY: /* not in OOM situation but retry */
2811 batch = nr_pages;
2812 css_put(&memcg->css);
2813 memcg = NULL;
2814 goto again;
2815 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2816 css_put(&memcg->css);
2817 goto nomem;
2818 case CHARGE_NOMEM: /* OOM routine works */
2819 if (!oom || invoke_oom) {
2820 css_put(&memcg->css);
2821 goto nomem;
2822 }
2823 nr_oom_retries--;
2824 break;
2825 }
2826 } while (ret != CHARGE_OK);
2827
2828 if (batch > nr_pages)
2829 refill_stock(memcg, batch - nr_pages);
2830 css_put(&memcg->css);
2831 done:
2832 *ptr = memcg;
2833 return 0;
2834 nomem:
2835 if (!(gfp_mask & __GFP_NOFAIL)) {
2836 *ptr = NULL;
2837 return -ENOMEM;
2838 }
2839 bypass:
2840 *ptr = root_mem_cgroup;
2841 return -EINTR;
2842 }
2843
2844 /*
2845 * Somemtimes we have to undo a charge we got by try_charge().
2846 * This function is for that and do uncharge, put css's refcnt.
2847 * gotten by try_charge().
2848 */
2849 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2850 unsigned int nr_pages)
2851 {
2852 if (!mem_cgroup_is_root(memcg)) {
2853 unsigned long bytes = nr_pages * PAGE_SIZE;
2854
2855 res_counter_uncharge(&memcg->res, bytes);
2856 if (do_swap_account)
2857 res_counter_uncharge(&memcg->memsw, bytes);
2858 }
2859 }
2860
2861 /*
2862 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2863 * This is useful when moving usage to parent cgroup.
2864 */
2865 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867 {
2868 unsigned long bytes = nr_pages * PAGE_SIZE;
2869
2870 if (mem_cgroup_is_root(memcg))
2871 return;
2872
2873 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2874 if (do_swap_account)
2875 res_counter_uncharge_until(&memcg->memsw,
2876 memcg->memsw.parent, bytes);
2877 }
2878
2879 /*
2880 * A helper function to get mem_cgroup from ID. must be called under
2881 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2882 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2883 * called against removed memcg.)
2884 */
2885 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2886 {
2887 /* ID 0 is unused ID */
2888 if (!id)
2889 return NULL;
2890 return mem_cgroup_from_id(id);
2891 }
2892
2893 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2894 {
2895 struct mem_cgroup *memcg = NULL;
2896 struct page_cgroup *pc;
2897 unsigned short id;
2898 swp_entry_t ent;
2899
2900 VM_BUG_ON_PAGE(!PageLocked(page), page);
2901
2902 pc = lookup_page_cgroup(page);
2903 lock_page_cgroup(pc);
2904 if (PageCgroupUsed(pc)) {
2905 memcg = pc->mem_cgroup;
2906 if (memcg && !css_tryget(&memcg->css))
2907 memcg = NULL;
2908 } else if (PageSwapCache(page)) {
2909 ent.val = page_private(page);
2910 id = lookup_swap_cgroup_id(ent);
2911 rcu_read_lock();
2912 memcg = mem_cgroup_lookup(id);
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
2915 rcu_read_unlock();
2916 }
2917 unlock_page_cgroup(pc);
2918 return memcg;
2919 }
2920
2921 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2922 struct page *page,
2923 unsigned int nr_pages,
2924 enum charge_type ctype,
2925 bool lrucare)
2926 {
2927 struct page_cgroup *pc = lookup_page_cgroup(page);
2928 struct zone *uninitialized_var(zone);
2929 struct lruvec *lruvec;
2930 bool was_on_lru = false;
2931 bool anon;
2932
2933 lock_page_cgroup(pc);
2934 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2935 /*
2936 * we don't need page_cgroup_lock about tail pages, becase they are not
2937 * accessed by any other context at this point.
2938 */
2939
2940 /*
2941 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2942 * may already be on some other mem_cgroup's LRU. Take care of it.
2943 */
2944 if (lrucare) {
2945 zone = page_zone(page);
2946 spin_lock_irq(&zone->lru_lock);
2947 if (PageLRU(page)) {
2948 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2949 ClearPageLRU(page);
2950 del_page_from_lru_list(page, lruvec, page_lru(page));
2951 was_on_lru = true;
2952 }
2953 }
2954
2955 pc->mem_cgroup = memcg;
2956 /*
2957 * We access a page_cgroup asynchronously without lock_page_cgroup().
2958 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2959 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2960 * before USED bit, we need memory barrier here.
2961 * See mem_cgroup_add_lru_list(), etc.
2962 */
2963 smp_wmb();
2964 SetPageCgroupUsed(pc);
2965
2966 if (lrucare) {
2967 if (was_on_lru) {
2968 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2969 VM_BUG_ON_PAGE(PageLRU(page), page);
2970 SetPageLRU(page);
2971 add_page_to_lru_list(page, lruvec, page_lru(page));
2972 }
2973 spin_unlock_irq(&zone->lru_lock);
2974 }
2975
2976 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2977 anon = true;
2978 else
2979 anon = false;
2980
2981 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2982 unlock_page_cgroup(pc);
2983
2984 /*
2985 * "charge_statistics" updated event counter. Then, check it.
2986 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2987 * if they exceeds softlimit.
2988 */
2989 memcg_check_events(memcg, page);
2990 }
2991
2992 static DEFINE_MUTEX(set_limit_mutex);
2993
2994 #ifdef CONFIG_MEMCG_KMEM
2995 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2996 {
2997 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2998 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
2999 KMEM_ACCOUNTED_MASK;
3000 }
3001
3002 /*
3003 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3004 * in the memcg_cache_params struct.
3005 */
3006 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3007 {
3008 struct kmem_cache *cachep;
3009
3010 VM_BUG_ON(p->is_root_cache);
3011 cachep = p->root_cache;
3012 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3013 }
3014
3015 #ifdef CONFIG_SLABINFO
3016 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3017 {
3018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3019 struct memcg_cache_params *params;
3020
3021 if (!memcg_can_account_kmem(memcg))
3022 return -EIO;
3023
3024 print_slabinfo_header(m);
3025
3026 mutex_lock(&memcg->slab_caches_mutex);
3027 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3028 cache_show(memcg_params_to_cache(params), m);
3029 mutex_unlock(&memcg->slab_caches_mutex);
3030
3031 return 0;
3032 }
3033 #endif
3034
3035 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3036 {
3037 struct res_counter *fail_res;
3038 struct mem_cgroup *_memcg;
3039 int ret = 0;
3040
3041 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3042 if (ret)
3043 return ret;
3044
3045 _memcg = memcg;
3046 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3047 &_memcg, oom_gfp_allowed(gfp));
3048
3049 if (ret == -EINTR) {
3050 /*
3051 * __mem_cgroup_try_charge() chosed to bypass to root due to
3052 * OOM kill or fatal signal. Since our only options are to
3053 * either fail the allocation or charge it to this cgroup, do
3054 * it as a temporary condition. But we can't fail. From a
3055 * kmem/slab perspective, the cache has already been selected,
3056 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3057 * our minds.
3058 *
3059 * This condition will only trigger if the task entered
3060 * memcg_charge_kmem in a sane state, but was OOM-killed during
3061 * __mem_cgroup_try_charge() above. Tasks that were already
3062 * dying when the allocation triggers should have been already
3063 * directed to the root cgroup in memcontrol.h
3064 */
3065 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3066 if (do_swap_account)
3067 res_counter_charge_nofail(&memcg->memsw, size,
3068 &fail_res);
3069 ret = 0;
3070 } else if (ret)
3071 res_counter_uncharge(&memcg->kmem, size);
3072
3073 return ret;
3074 }
3075
3076 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3077 {
3078 res_counter_uncharge(&memcg->res, size);
3079 if (do_swap_account)
3080 res_counter_uncharge(&memcg->memsw, size);
3081
3082 /* Not down to 0 */
3083 if (res_counter_uncharge(&memcg->kmem, size))
3084 return;
3085
3086 /*
3087 * Releases a reference taken in kmem_cgroup_css_offline in case
3088 * this last uncharge is racing with the offlining code or it is
3089 * outliving the memcg existence.
3090 *
3091 * The memory barrier imposed by test&clear is paired with the
3092 * explicit one in memcg_kmem_mark_dead().
3093 */
3094 if (memcg_kmem_test_and_clear_dead(memcg))
3095 css_put(&memcg->css);
3096 }
3097
3098 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3099 {
3100 if (!memcg)
3101 return;
3102
3103 mutex_lock(&memcg->slab_caches_mutex);
3104 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3105 mutex_unlock(&memcg->slab_caches_mutex);
3106 }
3107
3108 /*
3109 * helper for acessing a memcg's index. It will be used as an index in the
3110 * child cache array in kmem_cache, and also to derive its name. This function
3111 * will return -1 when this is not a kmem-limited memcg.
3112 */
3113 int memcg_cache_id(struct mem_cgroup *memcg)
3114 {
3115 return memcg ? memcg->kmemcg_id : -1;
3116 }
3117
3118 /*
3119 * This ends up being protected by the set_limit mutex, during normal
3120 * operation, because that is its main call site.
3121 *
3122 * But when we create a new cache, we can call this as well if its parent
3123 * is kmem-limited. That will have to hold set_limit_mutex as well.
3124 */
3125 static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3126 {
3127 int num, ret;
3128
3129 num = ida_simple_get(&kmem_limited_groups,
3130 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3131 if (num < 0)
3132 return num;
3133 /*
3134 * After this point, kmem_accounted (that we test atomically in
3135 * the beginning of this conditional), is no longer 0. This
3136 * guarantees only one process will set the following boolean
3137 * to true. We don't need test_and_set because we're protected
3138 * by the set_limit_mutex anyway.
3139 */
3140 memcg_kmem_set_activated(memcg);
3141
3142 ret = memcg_update_all_caches(num+1);
3143 if (ret) {
3144 ida_simple_remove(&kmem_limited_groups, num);
3145 memcg_kmem_clear_activated(memcg);
3146 return ret;
3147 }
3148
3149 memcg->kmemcg_id = num;
3150 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3151 mutex_init(&memcg->slab_caches_mutex);
3152 return 0;
3153 }
3154
3155 static size_t memcg_caches_array_size(int num_groups)
3156 {
3157 ssize_t size;
3158 if (num_groups <= 0)
3159 return 0;
3160
3161 size = 2 * num_groups;
3162 if (size < MEMCG_CACHES_MIN_SIZE)
3163 size = MEMCG_CACHES_MIN_SIZE;
3164 else if (size > MEMCG_CACHES_MAX_SIZE)
3165 size = MEMCG_CACHES_MAX_SIZE;
3166
3167 return size;
3168 }
3169
3170 /*
3171 * We should update the current array size iff all caches updates succeed. This
3172 * can only be done from the slab side. The slab mutex needs to be held when
3173 * calling this.
3174 */
3175 void memcg_update_array_size(int num)
3176 {
3177 if (num > memcg_limited_groups_array_size)
3178 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3179 }
3180
3181 static void kmem_cache_destroy_work_func(struct work_struct *w);
3182
3183 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3184 {
3185 struct memcg_cache_params *cur_params = s->memcg_params;
3186
3187 VM_BUG_ON(!is_root_cache(s));
3188
3189 if (num_groups > memcg_limited_groups_array_size) {
3190 int i;
3191 ssize_t size = memcg_caches_array_size(num_groups);
3192
3193 size *= sizeof(void *);
3194 size += offsetof(struct memcg_cache_params, memcg_caches);
3195
3196 s->memcg_params = kzalloc(size, GFP_KERNEL);
3197 if (!s->memcg_params) {
3198 s->memcg_params = cur_params;
3199 return -ENOMEM;
3200 }
3201
3202 s->memcg_params->is_root_cache = true;
3203
3204 /*
3205 * There is the chance it will be bigger than
3206 * memcg_limited_groups_array_size, if we failed an allocation
3207 * in a cache, in which case all caches updated before it, will
3208 * have a bigger array.
3209 *
3210 * But if that is the case, the data after
3211 * memcg_limited_groups_array_size is certainly unused
3212 */
3213 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3214 if (!cur_params->memcg_caches[i])
3215 continue;
3216 s->memcg_params->memcg_caches[i] =
3217 cur_params->memcg_caches[i];
3218 }
3219
3220 /*
3221 * Ideally, we would wait until all caches succeed, and only
3222 * then free the old one. But this is not worth the extra
3223 * pointer per-cache we'd have to have for this.
3224 *
3225 * It is not a big deal if some caches are left with a size
3226 * bigger than the others. And all updates will reset this
3227 * anyway.
3228 */
3229 kfree(cur_params);
3230 }
3231 return 0;
3232 }
3233
3234 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3235 struct kmem_cache *root_cache)
3236 {
3237 size_t size;
3238
3239 if (!memcg_kmem_enabled())
3240 return 0;
3241
3242 if (!memcg) {
3243 size = offsetof(struct memcg_cache_params, memcg_caches);
3244 size += memcg_limited_groups_array_size * sizeof(void *);
3245 } else
3246 size = sizeof(struct memcg_cache_params);
3247
3248 s->memcg_params = kzalloc(size, GFP_KERNEL);
3249 if (!s->memcg_params)
3250 return -ENOMEM;
3251
3252 if (memcg) {
3253 s->memcg_params->memcg = memcg;
3254 s->memcg_params->root_cache = root_cache;
3255 INIT_WORK(&s->memcg_params->destroy,
3256 kmem_cache_destroy_work_func);
3257 } else
3258 s->memcg_params->is_root_cache = true;
3259
3260 return 0;
3261 }
3262
3263 void memcg_release_cache(struct kmem_cache *s)
3264 {
3265 struct kmem_cache *root;
3266 struct mem_cgroup *memcg;
3267 int id;
3268
3269 /*
3270 * This happens, for instance, when a root cache goes away before we
3271 * add any memcg.
3272 */
3273 if (!s->memcg_params)
3274 return;
3275
3276 if (s->memcg_params->is_root_cache)
3277 goto out;
3278
3279 memcg = s->memcg_params->memcg;
3280 id = memcg_cache_id(memcg);
3281
3282 root = s->memcg_params->root_cache;
3283 root->memcg_params->memcg_caches[id] = NULL;
3284
3285 mutex_lock(&memcg->slab_caches_mutex);
3286 list_del(&s->memcg_params->list);
3287 mutex_unlock(&memcg->slab_caches_mutex);
3288
3289 css_put(&memcg->css);
3290 out:
3291 kfree(s->memcg_params);
3292 }
3293
3294 /*
3295 * During the creation a new cache, we need to disable our accounting mechanism
3296 * altogether. This is true even if we are not creating, but rather just
3297 * enqueing new caches to be created.
3298 *
3299 * This is because that process will trigger allocations; some visible, like
3300 * explicit kmallocs to auxiliary data structures, name strings and internal
3301 * cache structures; some well concealed, like INIT_WORK() that can allocate
3302 * objects during debug.
3303 *
3304 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3305 * to it. This may not be a bounded recursion: since the first cache creation
3306 * failed to complete (waiting on the allocation), we'll just try to create the
3307 * cache again, failing at the same point.
3308 *
3309 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3310 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3311 * inside the following two functions.
3312 */
3313 static inline void memcg_stop_kmem_account(void)
3314 {
3315 VM_BUG_ON(!current->mm);
3316 current->memcg_kmem_skip_account++;
3317 }
3318
3319 static inline void memcg_resume_kmem_account(void)
3320 {
3321 VM_BUG_ON(!current->mm);
3322 current->memcg_kmem_skip_account--;
3323 }
3324
3325 static void kmem_cache_destroy_work_func(struct work_struct *w)
3326 {
3327 struct kmem_cache *cachep;
3328 struct memcg_cache_params *p;
3329
3330 p = container_of(w, struct memcg_cache_params, destroy);
3331
3332 cachep = memcg_params_to_cache(p);
3333
3334 /*
3335 * If we get down to 0 after shrink, we could delete right away.
3336 * However, memcg_release_pages() already puts us back in the workqueue
3337 * in that case. If we proceed deleting, we'll get a dangling
3338 * reference, and removing the object from the workqueue in that case
3339 * is unnecessary complication. We are not a fast path.
3340 *
3341 * Note that this case is fundamentally different from racing with
3342 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3343 * kmem_cache_shrink, not only we would be reinserting a dead cache
3344 * into the queue, but doing so from inside the worker racing to
3345 * destroy it.
3346 *
3347 * So if we aren't down to zero, we'll just schedule a worker and try
3348 * again
3349 */
3350 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3351 kmem_cache_shrink(cachep);
3352 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3353 return;
3354 } else
3355 kmem_cache_destroy(cachep);
3356 }
3357
3358 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3359 {
3360 if (!cachep->memcg_params->dead)
3361 return;
3362
3363 /*
3364 * There are many ways in which we can get here.
3365 *
3366 * We can get to a memory-pressure situation while the delayed work is
3367 * still pending to run. The vmscan shrinkers can then release all
3368 * cache memory and get us to destruction. If this is the case, we'll
3369 * be executed twice, which is a bug (the second time will execute over
3370 * bogus data). In this case, cancelling the work should be fine.
3371 *
3372 * But we can also get here from the worker itself, if
3373 * kmem_cache_shrink is enough to shake all the remaining objects and
3374 * get the page count to 0. In this case, we'll deadlock if we try to
3375 * cancel the work (the worker runs with an internal lock held, which
3376 * is the same lock we would hold for cancel_work_sync().)
3377 *
3378 * Since we can't possibly know who got us here, just refrain from
3379 * running if there is already work pending
3380 */
3381 if (work_pending(&cachep->memcg_params->destroy))
3382 return;
3383 /*
3384 * We have to defer the actual destroying to a workqueue, because
3385 * we might currently be in a context that cannot sleep.
3386 */
3387 schedule_work(&cachep->memcg_params->destroy);
3388 }
3389
3390 /*
3391 * This lock protects updaters, not readers. We want readers to be as fast as
3392 * they can, and they will either see NULL or a valid cache value. Our model
3393 * allow them to see NULL, in which case the root memcg will be selected.
3394 *
3395 * We need this lock because multiple allocations to the same cache from a non
3396 * will span more than one worker. Only one of them can create the cache.
3397 */
3398 static DEFINE_MUTEX(memcg_cache_mutex);
3399
3400 /*
3401 * Called with memcg_cache_mutex held
3402 */
3403 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3404 struct kmem_cache *s)
3405 {
3406 struct kmem_cache *new;
3407 static char *tmp_name = NULL;
3408
3409 lockdep_assert_held(&memcg_cache_mutex);
3410
3411 /*
3412 * kmem_cache_create_memcg duplicates the given name and
3413 * cgroup_name for this name requires RCU context.
3414 * This static temporary buffer is used to prevent from
3415 * pointless shortliving allocation.
3416 */
3417 if (!tmp_name) {
3418 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3419 if (!tmp_name)
3420 return NULL;
3421 }
3422
3423 rcu_read_lock();
3424 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3425 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3426 rcu_read_unlock();
3427
3428 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3429 (s->flags & ~SLAB_PANIC), s->ctor, s);
3430
3431 if (new)
3432 new->allocflags |= __GFP_KMEMCG;
3433
3434 return new;
3435 }
3436
3437 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3438 struct kmem_cache *cachep)
3439 {
3440 struct kmem_cache *new_cachep;
3441 int idx;
3442
3443 BUG_ON(!memcg_can_account_kmem(memcg));
3444
3445 idx = memcg_cache_id(memcg);
3446
3447 mutex_lock(&memcg_cache_mutex);
3448 new_cachep = cache_from_memcg_idx(cachep, idx);
3449 if (new_cachep) {
3450 css_put(&memcg->css);
3451 goto out;
3452 }
3453
3454 new_cachep = kmem_cache_dup(memcg, cachep);
3455 if (new_cachep == NULL) {
3456 new_cachep = cachep;
3457 css_put(&memcg->css);
3458 goto out;
3459 }
3460
3461 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3462
3463 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3464 /*
3465 * the readers won't lock, make sure everybody sees the updated value,
3466 * so they won't put stuff in the queue again for no reason
3467 */
3468 wmb();
3469 out:
3470 mutex_unlock(&memcg_cache_mutex);
3471 return new_cachep;
3472 }
3473
3474 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3475 {
3476 struct kmem_cache *c;
3477 int i;
3478
3479 if (!s->memcg_params)
3480 return;
3481 if (!s->memcg_params->is_root_cache)
3482 return;
3483
3484 /*
3485 * If the cache is being destroyed, we trust that there is no one else
3486 * requesting objects from it. Even if there are, the sanity checks in
3487 * kmem_cache_destroy should caught this ill-case.
3488 *
3489 * Still, we don't want anyone else freeing memcg_caches under our
3490 * noses, which can happen if a new memcg comes to life. As usual,
3491 * we'll take the set_limit_mutex to protect ourselves against this.
3492 */
3493 mutex_lock(&set_limit_mutex);
3494 for_each_memcg_cache_index(i) {
3495 c = cache_from_memcg_idx(s, i);
3496 if (!c)
3497 continue;
3498
3499 /*
3500 * We will now manually delete the caches, so to avoid races
3501 * we need to cancel all pending destruction workers and
3502 * proceed with destruction ourselves.
3503 *
3504 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3505 * and that could spawn the workers again: it is likely that
3506 * the cache still have active pages until this very moment.
3507 * This would lead us back to mem_cgroup_destroy_cache.
3508 *
3509 * But that will not execute at all if the "dead" flag is not
3510 * set, so flip it down to guarantee we are in control.
3511 */
3512 c->memcg_params->dead = false;
3513 cancel_work_sync(&c->memcg_params->destroy);
3514 kmem_cache_destroy(c);
3515 }
3516 mutex_unlock(&set_limit_mutex);
3517 }
3518
3519 struct create_work {
3520 struct mem_cgroup *memcg;
3521 struct kmem_cache *cachep;
3522 struct work_struct work;
3523 };
3524
3525 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3526 {
3527 struct kmem_cache *cachep;
3528 struct memcg_cache_params *params;
3529
3530 if (!memcg_kmem_is_active(memcg))
3531 return;
3532
3533 mutex_lock(&memcg->slab_caches_mutex);
3534 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3535 cachep = memcg_params_to_cache(params);
3536 cachep->memcg_params->dead = true;
3537 schedule_work(&cachep->memcg_params->destroy);
3538 }
3539 mutex_unlock(&memcg->slab_caches_mutex);
3540 }
3541
3542 static void memcg_create_cache_work_func(struct work_struct *w)
3543 {
3544 struct create_work *cw;
3545
3546 cw = container_of(w, struct create_work, work);
3547 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3548 kfree(cw);
3549 }
3550
3551 /*
3552 * Enqueue the creation of a per-memcg kmem_cache.
3553 */
3554 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3555 struct kmem_cache *cachep)
3556 {
3557 struct create_work *cw;
3558
3559 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3560 if (cw == NULL) {
3561 css_put(&memcg->css);
3562 return;
3563 }
3564
3565 cw->memcg = memcg;
3566 cw->cachep = cachep;
3567
3568 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3569 schedule_work(&cw->work);
3570 }
3571
3572 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3573 struct kmem_cache *cachep)
3574 {
3575 /*
3576 * We need to stop accounting when we kmalloc, because if the
3577 * corresponding kmalloc cache is not yet created, the first allocation
3578 * in __memcg_create_cache_enqueue will recurse.
3579 *
3580 * However, it is better to enclose the whole function. Depending on
3581 * the debugging options enabled, INIT_WORK(), for instance, can
3582 * trigger an allocation. This too, will make us recurse. Because at
3583 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3584 * the safest choice is to do it like this, wrapping the whole function.
3585 */
3586 memcg_stop_kmem_account();
3587 __memcg_create_cache_enqueue(memcg, cachep);
3588 memcg_resume_kmem_account();
3589 }
3590 /*
3591 * Return the kmem_cache we're supposed to use for a slab allocation.
3592 * We try to use the current memcg's version of the cache.
3593 *
3594 * If the cache does not exist yet, if we are the first user of it,
3595 * we either create it immediately, if possible, or create it asynchronously
3596 * in a workqueue.
3597 * In the latter case, we will let the current allocation go through with
3598 * the original cache.
3599 *
3600 * Can't be called in interrupt context or from kernel threads.
3601 * This function needs to be called with rcu_read_lock() held.
3602 */
3603 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3604 gfp_t gfp)
3605 {
3606 struct mem_cgroup *memcg;
3607 int idx;
3608
3609 VM_BUG_ON(!cachep->memcg_params);
3610 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3611
3612 if (!current->mm || current->memcg_kmem_skip_account)
3613 return cachep;
3614
3615 rcu_read_lock();
3616 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3617
3618 if (!memcg_can_account_kmem(memcg))
3619 goto out;
3620
3621 idx = memcg_cache_id(memcg);
3622
3623 /*
3624 * barrier to mare sure we're always seeing the up to date value. The
3625 * code updating memcg_caches will issue a write barrier to match this.
3626 */
3627 read_barrier_depends();
3628 if (likely(cache_from_memcg_idx(cachep, idx))) {
3629 cachep = cache_from_memcg_idx(cachep, idx);
3630 goto out;
3631 }
3632
3633 /* The corresponding put will be done in the workqueue. */
3634 if (!css_tryget(&memcg->css))
3635 goto out;
3636 rcu_read_unlock();
3637
3638 /*
3639 * If we are in a safe context (can wait, and not in interrupt
3640 * context), we could be be predictable and return right away.
3641 * This would guarantee that the allocation being performed
3642 * already belongs in the new cache.
3643 *
3644 * However, there are some clashes that can arrive from locking.
3645 * For instance, because we acquire the slab_mutex while doing
3646 * kmem_cache_dup, this means no further allocation could happen
3647 * with the slab_mutex held.
3648 *
3649 * Also, because cache creation issue get_online_cpus(), this
3650 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3651 * that ends up reversed during cpu hotplug. (cpuset allocates
3652 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3653 * better to defer everything.
3654 */
3655 memcg_create_cache_enqueue(memcg, cachep);
3656 return cachep;
3657 out:
3658 rcu_read_unlock();
3659 return cachep;
3660 }
3661 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3662
3663 /*
3664 * We need to verify if the allocation against current->mm->owner's memcg is
3665 * possible for the given order. But the page is not allocated yet, so we'll
3666 * need a further commit step to do the final arrangements.
3667 *
3668 * It is possible for the task to switch cgroups in this mean time, so at
3669 * commit time, we can't rely on task conversion any longer. We'll then use
3670 * the handle argument to return to the caller which cgroup we should commit
3671 * against. We could also return the memcg directly and avoid the pointer
3672 * passing, but a boolean return value gives better semantics considering
3673 * the compiled-out case as well.
3674 *
3675 * Returning true means the allocation is possible.
3676 */
3677 bool
3678 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3679 {
3680 struct mem_cgroup *memcg;
3681 int ret;
3682
3683 *_memcg = NULL;
3684
3685 /*
3686 * Disabling accounting is only relevant for some specific memcg
3687 * internal allocations. Therefore we would initially not have such
3688 * check here, since direct calls to the page allocator that are marked
3689 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3690 * concerned with cache allocations, and by having this test at
3691 * memcg_kmem_get_cache, we are already able to relay the allocation to
3692 * the root cache and bypass the memcg cache altogether.
3693 *
3694 * There is one exception, though: the SLUB allocator does not create
3695 * large order caches, but rather service large kmallocs directly from
3696 * the page allocator. Therefore, the following sequence when backed by
3697 * the SLUB allocator:
3698 *
3699 * memcg_stop_kmem_account();
3700 * kmalloc(<large_number>)
3701 * memcg_resume_kmem_account();
3702 *
3703 * would effectively ignore the fact that we should skip accounting,
3704 * since it will drive us directly to this function without passing
3705 * through the cache selector memcg_kmem_get_cache. Such large
3706 * allocations are extremely rare but can happen, for instance, for the
3707 * cache arrays. We bring this test here.
3708 */
3709 if (!current->mm || current->memcg_kmem_skip_account)
3710 return true;
3711
3712 memcg = try_get_mem_cgroup_from_mm(current->mm);
3713
3714 /*
3715 * very rare case described in mem_cgroup_from_task. Unfortunately there
3716 * isn't much we can do without complicating this too much, and it would
3717 * be gfp-dependent anyway. Just let it go
3718 */
3719 if (unlikely(!memcg))
3720 return true;
3721
3722 if (!memcg_can_account_kmem(memcg)) {
3723 css_put(&memcg->css);
3724 return true;
3725 }
3726
3727 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3728 if (!ret)
3729 *_memcg = memcg;
3730
3731 css_put(&memcg->css);
3732 return (ret == 0);
3733 }
3734
3735 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3736 int order)
3737 {
3738 struct page_cgroup *pc;
3739
3740 VM_BUG_ON(mem_cgroup_is_root(memcg));
3741
3742 /* The page allocation failed. Revert */
3743 if (!page) {
3744 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3745 return;
3746 }
3747
3748 pc = lookup_page_cgroup(page);
3749 lock_page_cgroup(pc);
3750 pc->mem_cgroup = memcg;
3751 SetPageCgroupUsed(pc);
3752 unlock_page_cgroup(pc);
3753 }
3754
3755 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3756 {
3757 struct mem_cgroup *memcg = NULL;
3758 struct page_cgroup *pc;
3759
3760
3761 pc = lookup_page_cgroup(page);
3762 /*
3763 * Fast unlocked return. Theoretically might have changed, have to
3764 * check again after locking.
3765 */
3766 if (!PageCgroupUsed(pc))
3767 return;
3768
3769 lock_page_cgroup(pc);
3770 if (PageCgroupUsed(pc)) {
3771 memcg = pc->mem_cgroup;
3772 ClearPageCgroupUsed(pc);
3773 }
3774 unlock_page_cgroup(pc);
3775
3776 /*
3777 * We trust that only if there is a memcg associated with the page, it
3778 * is a valid allocation
3779 */
3780 if (!memcg)
3781 return;
3782
3783 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3784 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3785 }
3786 #else
3787 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3788 {
3789 }
3790 #endif /* CONFIG_MEMCG_KMEM */
3791
3792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3793
3794 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3795 /*
3796 * Because tail pages are not marked as "used", set it. We're under
3797 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3798 * charge/uncharge will be never happen and move_account() is done under
3799 * compound_lock(), so we don't have to take care of races.
3800 */
3801 void mem_cgroup_split_huge_fixup(struct page *head)
3802 {
3803 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3804 struct page_cgroup *pc;
3805 struct mem_cgroup *memcg;
3806 int i;
3807
3808 if (mem_cgroup_disabled())
3809 return;
3810
3811 memcg = head_pc->mem_cgroup;
3812 for (i = 1; i < HPAGE_PMD_NR; i++) {
3813 pc = head_pc + i;
3814 pc->mem_cgroup = memcg;
3815 smp_wmb();/* see __commit_charge() */
3816 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3817 }
3818 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3819 HPAGE_PMD_NR);
3820 }
3821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3822
3823 static inline
3824 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3825 struct mem_cgroup *to,
3826 unsigned int nr_pages,
3827 enum mem_cgroup_stat_index idx)
3828 {
3829 /* Update stat data for mem_cgroup */
3830 preempt_disable();
3831 __this_cpu_sub(from->stat->count[idx], nr_pages);
3832 __this_cpu_add(to->stat->count[idx], nr_pages);
3833 preempt_enable();
3834 }
3835
3836 /**
3837 * mem_cgroup_move_account - move account of the page
3838 * @page: the page
3839 * @nr_pages: number of regular pages (>1 for huge pages)
3840 * @pc: page_cgroup of the page.
3841 * @from: mem_cgroup which the page is moved from.
3842 * @to: mem_cgroup which the page is moved to. @from != @to.
3843 *
3844 * The caller must confirm following.
3845 * - page is not on LRU (isolate_page() is useful.)
3846 * - compound_lock is held when nr_pages > 1
3847 *
3848 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3849 * from old cgroup.
3850 */
3851 static int mem_cgroup_move_account(struct page *page,
3852 unsigned int nr_pages,
3853 struct page_cgroup *pc,
3854 struct mem_cgroup *from,
3855 struct mem_cgroup *to)
3856 {
3857 unsigned long flags;
3858 int ret;
3859 bool anon = PageAnon(page);
3860
3861 VM_BUG_ON(from == to);
3862 VM_BUG_ON_PAGE(PageLRU(page), page);
3863 /*
3864 * The page is isolated from LRU. So, collapse function
3865 * will not handle this page. But page splitting can happen.
3866 * Do this check under compound_page_lock(). The caller should
3867 * hold it.
3868 */
3869 ret = -EBUSY;
3870 if (nr_pages > 1 && !PageTransHuge(page))
3871 goto out;
3872
3873 lock_page_cgroup(pc);
3874
3875 ret = -EINVAL;
3876 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3877 goto unlock;
3878
3879 move_lock_mem_cgroup(from, &flags);
3880
3881 if (!anon && page_mapped(page))
3882 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3883 MEM_CGROUP_STAT_FILE_MAPPED);
3884
3885 if (PageWriteback(page))
3886 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3887 MEM_CGROUP_STAT_WRITEBACK);
3888
3889 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3890
3891 /* caller should have done css_get */
3892 pc->mem_cgroup = to;
3893 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3894 move_unlock_mem_cgroup(from, &flags);
3895 ret = 0;
3896 unlock:
3897 unlock_page_cgroup(pc);
3898 /*
3899 * check events
3900 */
3901 memcg_check_events(to, page);
3902 memcg_check_events(from, page);
3903 out:
3904 return ret;
3905 }
3906
3907 /**
3908 * mem_cgroup_move_parent - moves page to the parent group
3909 * @page: the page to move
3910 * @pc: page_cgroup of the page
3911 * @child: page's cgroup
3912 *
3913 * move charges to its parent or the root cgroup if the group has no
3914 * parent (aka use_hierarchy==0).
3915 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3916 * mem_cgroup_move_account fails) the failure is always temporary and
3917 * it signals a race with a page removal/uncharge or migration. In the
3918 * first case the page is on the way out and it will vanish from the LRU
3919 * on the next attempt and the call should be retried later.
3920 * Isolation from the LRU fails only if page has been isolated from
3921 * the LRU since we looked at it and that usually means either global
3922 * reclaim or migration going on. The page will either get back to the
3923 * LRU or vanish.
3924 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3925 * (!PageCgroupUsed) or moved to a different group. The page will
3926 * disappear in the next attempt.
3927 */
3928 static int mem_cgroup_move_parent(struct page *page,
3929 struct page_cgroup *pc,
3930 struct mem_cgroup *child)
3931 {
3932 struct mem_cgroup *parent;
3933 unsigned int nr_pages;
3934 unsigned long uninitialized_var(flags);
3935 int ret;
3936
3937 VM_BUG_ON(mem_cgroup_is_root(child));
3938
3939 ret = -EBUSY;
3940 if (!get_page_unless_zero(page))
3941 goto out;
3942 if (isolate_lru_page(page))
3943 goto put;
3944
3945 nr_pages = hpage_nr_pages(page);
3946
3947 parent = parent_mem_cgroup(child);
3948 /*
3949 * If no parent, move charges to root cgroup.
3950 */
3951 if (!parent)
3952 parent = root_mem_cgroup;
3953
3954 if (nr_pages > 1) {
3955 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3956 flags = compound_lock_irqsave(page);
3957 }
3958
3959 ret = mem_cgroup_move_account(page, nr_pages,
3960 pc, child, parent);
3961 if (!ret)
3962 __mem_cgroup_cancel_local_charge(child, nr_pages);
3963
3964 if (nr_pages > 1)
3965 compound_unlock_irqrestore(page, flags);
3966 putback_lru_page(page);
3967 put:
3968 put_page(page);
3969 out:
3970 return ret;
3971 }
3972
3973 /*
3974 * Charge the memory controller for page usage.
3975 * Return
3976 * 0 if the charge was successful
3977 * < 0 if the cgroup is over its limit
3978 */
3979 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3980 gfp_t gfp_mask, enum charge_type ctype)
3981 {
3982 struct mem_cgroup *memcg = NULL;
3983 unsigned int nr_pages = 1;
3984 bool oom = true;
3985 int ret;
3986
3987 if (PageTransHuge(page)) {
3988 nr_pages <<= compound_order(page);
3989 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3990 /*
3991 * Never OOM-kill a process for a huge page. The
3992 * fault handler will fall back to regular pages.
3993 */
3994 oom = false;
3995 }
3996
3997 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3998 if (ret == -ENOMEM)
3999 return ret;
4000 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4001 return 0;
4002 }
4003
4004 int mem_cgroup_newpage_charge(struct page *page,
4005 struct mm_struct *mm, gfp_t gfp_mask)
4006 {
4007 if (mem_cgroup_disabled())
4008 return 0;
4009 VM_BUG_ON_PAGE(page_mapped(page), page);
4010 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4011 VM_BUG_ON(!mm);
4012 return mem_cgroup_charge_common(page, mm, gfp_mask,
4013 MEM_CGROUP_CHARGE_TYPE_ANON);
4014 }
4015
4016 /*
4017 * While swap-in, try_charge -> commit or cancel, the page is locked.
4018 * And when try_charge() successfully returns, one refcnt to memcg without
4019 * struct page_cgroup is acquired. This refcnt will be consumed by
4020 * "commit()" or removed by "cancel()"
4021 */
4022 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4023 struct page *page,
4024 gfp_t mask,
4025 struct mem_cgroup **memcgp)
4026 {
4027 struct mem_cgroup *memcg;
4028 struct page_cgroup *pc;
4029 int ret;
4030
4031 pc = lookup_page_cgroup(page);
4032 /*
4033 * Every swap fault against a single page tries to charge the
4034 * page, bail as early as possible. shmem_unuse() encounters
4035 * already charged pages, too. The USED bit is protected by
4036 * the page lock, which serializes swap cache removal, which
4037 * in turn serializes uncharging.
4038 */
4039 if (PageCgroupUsed(pc))
4040 return 0;
4041 if (!do_swap_account)
4042 goto charge_cur_mm;
4043 memcg = try_get_mem_cgroup_from_page(page);
4044 if (!memcg)
4045 goto charge_cur_mm;
4046 *memcgp = memcg;
4047 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4048 css_put(&memcg->css);
4049 if (ret == -EINTR)
4050 ret = 0;
4051 return ret;
4052 charge_cur_mm:
4053 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4054 if (ret == -EINTR)
4055 ret = 0;
4056 return ret;
4057 }
4058
4059 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4060 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4061 {
4062 *memcgp = NULL;
4063 if (mem_cgroup_disabled())
4064 return 0;
4065 /*
4066 * A racing thread's fault, or swapoff, may have already
4067 * updated the pte, and even removed page from swap cache: in
4068 * those cases unuse_pte()'s pte_same() test will fail; but
4069 * there's also a KSM case which does need to charge the page.
4070 */
4071 if (!PageSwapCache(page)) {
4072 int ret;
4073
4074 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4075 if (ret == -EINTR)
4076 ret = 0;
4077 return ret;
4078 }
4079 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4080 }
4081
4082 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4083 {
4084 if (mem_cgroup_disabled())
4085 return;
4086 if (!memcg)
4087 return;
4088 __mem_cgroup_cancel_charge(memcg, 1);
4089 }
4090
4091 static void
4092 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4093 enum charge_type ctype)
4094 {
4095 if (mem_cgroup_disabled())
4096 return;
4097 if (!memcg)
4098 return;
4099
4100 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4101 /*
4102 * Now swap is on-memory. This means this page may be
4103 * counted both as mem and swap....double count.
4104 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4105 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4106 * may call delete_from_swap_cache() before reach here.
4107 */
4108 if (do_swap_account && PageSwapCache(page)) {
4109 swp_entry_t ent = {.val = page_private(page)};
4110 mem_cgroup_uncharge_swap(ent);
4111 }
4112 }
4113
4114 void mem_cgroup_commit_charge_swapin(struct page *page,
4115 struct mem_cgroup *memcg)
4116 {
4117 __mem_cgroup_commit_charge_swapin(page, memcg,
4118 MEM_CGROUP_CHARGE_TYPE_ANON);
4119 }
4120
4121 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4122 gfp_t gfp_mask)
4123 {
4124 struct mem_cgroup *memcg = NULL;
4125 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4126 int ret;
4127
4128 if (mem_cgroup_disabled())
4129 return 0;
4130 if (PageCompound(page))
4131 return 0;
4132
4133 if (!PageSwapCache(page))
4134 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4135 else { /* page is swapcache/shmem */
4136 ret = __mem_cgroup_try_charge_swapin(mm, page,
4137 gfp_mask, &memcg);
4138 if (!ret)
4139 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4140 }
4141 return ret;
4142 }
4143
4144 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4145 unsigned int nr_pages,
4146 const enum charge_type ctype)
4147 {
4148 struct memcg_batch_info *batch = NULL;
4149 bool uncharge_memsw = true;
4150
4151 /* If swapout, usage of swap doesn't decrease */
4152 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4153 uncharge_memsw = false;
4154
4155 batch = &current->memcg_batch;
4156 /*
4157 * In usual, we do css_get() when we remember memcg pointer.
4158 * But in this case, we keep res->usage until end of a series of
4159 * uncharges. Then, it's ok to ignore memcg's refcnt.
4160 */
4161 if (!batch->memcg)
4162 batch->memcg = memcg;
4163 /*
4164 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4165 * In those cases, all pages freed continuously can be expected to be in
4166 * the same cgroup and we have chance to coalesce uncharges.
4167 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4168 * because we want to do uncharge as soon as possible.
4169 */
4170
4171 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4172 goto direct_uncharge;
4173
4174 if (nr_pages > 1)
4175 goto direct_uncharge;
4176
4177 /*
4178 * In typical case, batch->memcg == mem. This means we can
4179 * merge a series of uncharges to an uncharge of res_counter.
4180 * If not, we uncharge res_counter ony by one.
4181 */
4182 if (batch->memcg != memcg)
4183 goto direct_uncharge;
4184 /* remember freed charge and uncharge it later */
4185 batch->nr_pages++;
4186 if (uncharge_memsw)
4187 batch->memsw_nr_pages++;
4188 return;
4189 direct_uncharge:
4190 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4191 if (uncharge_memsw)
4192 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4193 if (unlikely(batch->memcg != memcg))
4194 memcg_oom_recover(memcg);
4195 }
4196
4197 /*
4198 * uncharge if !page_mapped(page)
4199 */
4200 static struct mem_cgroup *
4201 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4202 bool end_migration)
4203 {
4204 struct mem_cgroup *memcg = NULL;
4205 unsigned int nr_pages = 1;
4206 struct page_cgroup *pc;
4207 bool anon;
4208
4209 if (mem_cgroup_disabled())
4210 return NULL;
4211
4212 if (PageTransHuge(page)) {
4213 nr_pages <<= compound_order(page);
4214 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4215 }
4216 /*
4217 * Check if our page_cgroup is valid
4218 */
4219 pc = lookup_page_cgroup(page);
4220 if (unlikely(!PageCgroupUsed(pc)))
4221 return NULL;
4222
4223 lock_page_cgroup(pc);
4224
4225 memcg = pc->mem_cgroup;
4226
4227 if (!PageCgroupUsed(pc))
4228 goto unlock_out;
4229
4230 anon = PageAnon(page);
4231
4232 switch (ctype) {
4233 case MEM_CGROUP_CHARGE_TYPE_ANON:
4234 /*
4235 * Generally PageAnon tells if it's the anon statistics to be
4236 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4237 * used before page reached the stage of being marked PageAnon.
4238 */
4239 anon = true;
4240 /* fallthrough */
4241 case MEM_CGROUP_CHARGE_TYPE_DROP:
4242 /* See mem_cgroup_prepare_migration() */
4243 if (page_mapped(page))
4244 goto unlock_out;
4245 /*
4246 * Pages under migration may not be uncharged. But
4247 * end_migration() /must/ be the one uncharging the
4248 * unused post-migration page and so it has to call
4249 * here with the migration bit still set. See the
4250 * res_counter handling below.
4251 */
4252 if (!end_migration && PageCgroupMigration(pc))
4253 goto unlock_out;
4254 break;
4255 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4256 if (!PageAnon(page)) { /* Shared memory */
4257 if (page->mapping && !page_is_file_cache(page))
4258 goto unlock_out;
4259 } else if (page_mapped(page)) /* Anon */
4260 goto unlock_out;
4261 break;
4262 default:
4263 break;
4264 }
4265
4266 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4267
4268 ClearPageCgroupUsed(pc);
4269 /*
4270 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4271 * freed from LRU. This is safe because uncharged page is expected not
4272 * to be reused (freed soon). Exception is SwapCache, it's handled by
4273 * special functions.
4274 */
4275
4276 unlock_page_cgroup(pc);
4277 /*
4278 * even after unlock, we have memcg->res.usage here and this memcg
4279 * will never be freed, so it's safe to call css_get().
4280 */
4281 memcg_check_events(memcg, page);
4282 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4283 mem_cgroup_swap_statistics(memcg, true);
4284 css_get(&memcg->css);
4285 }
4286 /*
4287 * Migration does not charge the res_counter for the
4288 * replacement page, so leave it alone when phasing out the
4289 * page that is unused after the migration.
4290 */
4291 if (!end_migration && !mem_cgroup_is_root(memcg))
4292 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4293
4294 return memcg;
4295
4296 unlock_out:
4297 unlock_page_cgroup(pc);
4298 return NULL;
4299 }
4300
4301 void mem_cgroup_uncharge_page(struct page *page)
4302 {
4303 /* early check. */
4304 if (page_mapped(page))
4305 return;
4306 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4307 /*
4308 * If the page is in swap cache, uncharge should be deferred
4309 * to the swap path, which also properly accounts swap usage
4310 * and handles memcg lifetime.
4311 *
4312 * Note that this check is not stable and reclaim may add the
4313 * page to swap cache at any time after this. However, if the
4314 * page is not in swap cache by the time page->mapcount hits
4315 * 0, there won't be any page table references to the swap
4316 * slot, and reclaim will free it and not actually write the
4317 * page to disk.
4318 */
4319 if (PageSwapCache(page))
4320 return;
4321 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4322 }
4323
4324 void mem_cgroup_uncharge_cache_page(struct page *page)
4325 {
4326 VM_BUG_ON_PAGE(page_mapped(page), page);
4327 VM_BUG_ON_PAGE(page->mapping, page);
4328 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4329 }
4330
4331 /*
4332 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4333 * In that cases, pages are freed continuously and we can expect pages
4334 * are in the same memcg. All these calls itself limits the number of
4335 * pages freed at once, then uncharge_start/end() is called properly.
4336 * This may be called prural(2) times in a context,
4337 */
4338
4339 void mem_cgroup_uncharge_start(void)
4340 {
4341 current->memcg_batch.do_batch++;
4342 /* We can do nest. */
4343 if (current->memcg_batch.do_batch == 1) {
4344 current->memcg_batch.memcg = NULL;
4345 current->memcg_batch.nr_pages = 0;
4346 current->memcg_batch.memsw_nr_pages = 0;
4347 }
4348 }
4349
4350 void mem_cgroup_uncharge_end(void)
4351 {
4352 struct memcg_batch_info *batch = &current->memcg_batch;
4353
4354 if (!batch->do_batch)
4355 return;
4356
4357 batch->do_batch--;
4358 if (batch->do_batch) /* If stacked, do nothing. */
4359 return;
4360
4361 if (!batch->memcg)
4362 return;
4363 /*
4364 * This "batch->memcg" is valid without any css_get/put etc...
4365 * bacause we hide charges behind us.
4366 */
4367 if (batch->nr_pages)
4368 res_counter_uncharge(&batch->memcg->res,
4369 batch->nr_pages * PAGE_SIZE);
4370 if (batch->memsw_nr_pages)
4371 res_counter_uncharge(&batch->memcg->memsw,
4372 batch->memsw_nr_pages * PAGE_SIZE);
4373 memcg_oom_recover(batch->memcg);
4374 /* forget this pointer (for sanity check) */
4375 batch->memcg = NULL;
4376 }
4377
4378 #ifdef CONFIG_SWAP
4379 /*
4380 * called after __delete_from_swap_cache() and drop "page" account.
4381 * memcg information is recorded to swap_cgroup of "ent"
4382 */
4383 void
4384 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4385 {
4386 struct mem_cgroup *memcg;
4387 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4388
4389 if (!swapout) /* this was a swap cache but the swap is unused ! */
4390 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4391
4392 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4393
4394 /*
4395 * record memcg information, if swapout && memcg != NULL,
4396 * css_get() was called in uncharge().
4397 */
4398 if (do_swap_account && swapout && memcg)
4399 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4400 }
4401 #endif
4402
4403 #ifdef CONFIG_MEMCG_SWAP
4404 /*
4405 * called from swap_entry_free(). remove record in swap_cgroup and
4406 * uncharge "memsw" account.
4407 */
4408 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4409 {
4410 struct mem_cgroup *memcg;
4411 unsigned short id;
4412
4413 if (!do_swap_account)
4414 return;
4415
4416 id = swap_cgroup_record(ent, 0);
4417 rcu_read_lock();
4418 memcg = mem_cgroup_lookup(id);
4419 if (memcg) {
4420 /*
4421 * We uncharge this because swap is freed.
4422 * This memcg can be obsolete one. We avoid calling css_tryget
4423 */
4424 if (!mem_cgroup_is_root(memcg))
4425 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4426 mem_cgroup_swap_statistics(memcg, false);
4427 css_put(&memcg->css);
4428 }
4429 rcu_read_unlock();
4430 }
4431
4432 /**
4433 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4434 * @entry: swap entry to be moved
4435 * @from: mem_cgroup which the entry is moved from
4436 * @to: mem_cgroup which the entry is moved to
4437 *
4438 * It succeeds only when the swap_cgroup's record for this entry is the same
4439 * as the mem_cgroup's id of @from.
4440 *
4441 * Returns 0 on success, -EINVAL on failure.
4442 *
4443 * The caller must have charged to @to, IOW, called res_counter_charge() about
4444 * both res and memsw, and called css_get().
4445 */
4446 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4447 struct mem_cgroup *from, struct mem_cgroup *to)
4448 {
4449 unsigned short old_id, new_id;
4450
4451 old_id = mem_cgroup_id(from);
4452 new_id = mem_cgroup_id(to);
4453
4454 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4455 mem_cgroup_swap_statistics(from, false);
4456 mem_cgroup_swap_statistics(to, true);
4457 /*
4458 * This function is only called from task migration context now.
4459 * It postpones res_counter and refcount handling till the end
4460 * of task migration(mem_cgroup_clear_mc()) for performance
4461 * improvement. But we cannot postpone css_get(to) because if
4462 * the process that has been moved to @to does swap-in, the
4463 * refcount of @to might be decreased to 0.
4464 *
4465 * We are in attach() phase, so the cgroup is guaranteed to be
4466 * alive, so we can just call css_get().
4467 */
4468 css_get(&to->css);
4469 return 0;
4470 }
4471 return -EINVAL;
4472 }
4473 #else
4474 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4475 struct mem_cgroup *from, struct mem_cgroup *to)
4476 {
4477 return -EINVAL;
4478 }
4479 #endif
4480
4481 /*
4482 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4483 * page belongs to.
4484 */
4485 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4486 struct mem_cgroup **memcgp)
4487 {
4488 struct mem_cgroup *memcg = NULL;
4489 unsigned int nr_pages = 1;
4490 struct page_cgroup *pc;
4491 enum charge_type ctype;
4492
4493 *memcgp = NULL;
4494
4495 if (mem_cgroup_disabled())
4496 return;
4497
4498 if (PageTransHuge(page))
4499 nr_pages <<= compound_order(page);
4500
4501 pc = lookup_page_cgroup(page);
4502 lock_page_cgroup(pc);
4503 if (PageCgroupUsed(pc)) {
4504 memcg = pc->mem_cgroup;
4505 css_get(&memcg->css);
4506 /*
4507 * At migrating an anonymous page, its mapcount goes down
4508 * to 0 and uncharge() will be called. But, even if it's fully
4509 * unmapped, migration may fail and this page has to be
4510 * charged again. We set MIGRATION flag here and delay uncharge
4511 * until end_migration() is called
4512 *
4513 * Corner Case Thinking
4514 * A)
4515 * When the old page was mapped as Anon and it's unmap-and-freed
4516 * while migration was ongoing.
4517 * If unmap finds the old page, uncharge() of it will be delayed
4518 * until end_migration(). If unmap finds a new page, it's
4519 * uncharged when it make mapcount to be 1->0. If unmap code
4520 * finds swap_migration_entry, the new page will not be mapped
4521 * and end_migration() will find it(mapcount==0).
4522 *
4523 * B)
4524 * When the old page was mapped but migraion fails, the kernel
4525 * remaps it. A charge for it is kept by MIGRATION flag even
4526 * if mapcount goes down to 0. We can do remap successfully
4527 * without charging it again.
4528 *
4529 * C)
4530 * The "old" page is under lock_page() until the end of
4531 * migration, so, the old page itself will not be swapped-out.
4532 * If the new page is swapped out before end_migraton, our
4533 * hook to usual swap-out path will catch the event.
4534 */
4535 if (PageAnon(page))
4536 SetPageCgroupMigration(pc);
4537 }
4538 unlock_page_cgroup(pc);
4539 /*
4540 * If the page is not charged at this point,
4541 * we return here.
4542 */
4543 if (!memcg)
4544 return;
4545
4546 *memcgp = memcg;
4547 /*
4548 * We charge new page before it's used/mapped. So, even if unlock_page()
4549 * is called before end_migration, we can catch all events on this new
4550 * page. In the case new page is migrated but not remapped, new page's
4551 * mapcount will be finally 0 and we call uncharge in end_migration().
4552 */
4553 if (PageAnon(page))
4554 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4555 else
4556 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4557 /*
4558 * The page is committed to the memcg, but it's not actually
4559 * charged to the res_counter since we plan on replacing the
4560 * old one and only one page is going to be left afterwards.
4561 */
4562 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4563 }
4564
4565 /* remove redundant charge if migration failed*/
4566 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4567 struct page *oldpage, struct page *newpage, bool migration_ok)
4568 {
4569 struct page *used, *unused;
4570 struct page_cgroup *pc;
4571 bool anon;
4572
4573 if (!memcg)
4574 return;
4575
4576 if (!migration_ok) {
4577 used = oldpage;
4578 unused = newpage;
4579 } else {
4580 used = newpage;
4581 unused = oldpage;
4582 }
4583 anon = PageAnon(used);
4584 __mem_cgroup_uncharge_common(unused,
4585 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4586 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4587 true);
4588 css_put(&memcg->css);
4589 /*
4590 * We disallowed uncharge of pages under migration because mapcount
4591 * of the page goes down to zero, temporarly.
4592 * Clear the flag and check the page should be charged.
4593 */
4594 pc = lookup_page_cgroup(oldpage);
4595 lock_page_cgroup(pc);
4596 ClearPageCgroupMigration(pc);
4597 unlock_page_cgroup(pc);
4598
4599 /*
4600 * If a page is a file cache, radix-tree replacement is very atomic
4601 * and we can skip this check. When it was an Anon page, its mapcount
4602 * goes down to 0. But because we added MIGRATION flage, it's not
4603 * uncharged yet. There are several case but page->mapcount check
4604 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4605 * check. (see prepare_charge() also)
4606 */
4607 if (anon)
4608 mem_cgroup_uncharge_page(used);
4609 }
4610
4611 /*
4612 * At replace page cache, newpage is not under any memcg but it's on
4613 * LRU. So, this function doesn't touch res_counter but handles LRU
4614 * in correct way. Both pages are locked so we cannot race with uncharge.
4615 */
4616 void mem_cgroup_replace_page_cache(struct page *oldpage,
4617 struct page *newpage)
4618 {
4619 struct mem_cgroup *memcg = NULL;
4620 struct page_cgroup *pc;
4621 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4622
4623 if (mem_cgroup_disabled())
4624 return;
4625
4626 pc = lookup_page_cgroup(oldpage);
4627 /* fix accounting on old pages */
4628 lock_page_cgroup(pc);
4629 if (PageCgroupUsed(pc)) {
4630 memcg = pc->mem_cgroup;
4631 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4632 ClearPageCgroupUsed(pc);
4633 }
4634 unlock_page_cgroup(pc);
4635
4636 /*
4637 * When called from shmem_replace_page(), in some cases the
4638 * oldpage has already been charged, and in some cases not.
4639 */
4640 if (!memcg)
4641 return;
4642 /*
4643 * Even if newpage->mapping was NULL before starting replacement,
4644 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4645 * LRU while we overwrite pc->mem_cgroup.
4646 */
4647 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4648 }
4649
4650 #ifdef CONFIG_DEBUG_VM
4651 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4652 {
4653 struct page_cgroup *pc;
4654
4655 pc = lookup_page_cgroup(page);
4656 /*
4657 * Can be NULL while feeding pages into the page allocator for
4658 * the first time, i.e. during boot or memory hotplug;
4659 * or when mem_cgroup_disabled().
4660 */
4661 if (likely(pc) && PageCgroupUsed(pc))
4662 return pc;
4663 return NULL;
4664 }
4665
4666 bool mem_cgroup_bad_page_check(struct page *page)
4667 {
4668 if (mem_cgroup_disabled())
4669 return false;
4670
4671 return lookup_page_cgroup_used(page) != NULL;
4672 }
4673
4674 void mem_cgroup_print_bad_page(struct page *page)
4675 {
4676 struct page_cgroup *pc;
4677
4678 pc = lookup_page_cgroup_used(page);
4679 if (pc) {
4680 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4681 pc, pc->flags, pc->mem_cgroup);
4682 }
4683 }
4684 #endif
4685
4686 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4687 unsigned long long val)
4688 {
4689 int retry_count;
4690 u64 memswlimit, memlimit;
4691 int ret = 0;
4692 int children = mem_cgroup_count_children(memcg);
4693 u64 curusage, oldusage;
4694 int enlarge;
4695
4696 /*
4697 * For keeping hierarchical_reclaim simple, how long we should retry
4698 * is depends on callers. We set our retry-count to be function
4699 * of # of children which we should visit in this loop.
4700 */
4701 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4702
4703 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4704
4705 enlarge = 0;
4706 while (retry_count) {
4707 if (signal_pending(current)) {
4708 ret = -EINTR;
4709 break;
4710 }
4711 /*
4712 * Rather than hide all in some function, I do this in
4713 * open coded manner. You see what this really does.
4714 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4715 */
4716 mutex_lock(&set_limit_mutex);
4717 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4718 if (memswlimit < val) {
4719 ret = -EINVAL;
4720 mutex_unlock(&set_limit_mutex);
4721 break;
4722 }
4723
4724 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4725 if (memlimit < val)
4726 enlarge = 1;
4727
4728 ret = res_counter_set_limit(&memcg->res, val);
4729 if (!ret) {
4730 if (memswlimit == val)
4731 memcg->memsw_is_minimum = true;
4732 else
4733 memcg->memsw_is_minimum = false;
4734 }
4735 mutex_unlock(&set_limit_mutex);
4736
4737 if (!ret)
4738 break;
4739
4740 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4741 MEM_CGROUP_RECLAIM_SHRINK);
4742 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4743 /* Usage is reduced ? */
4744 if (curusage >= oldusage)
4745 retry_count--;
4746 else
4747 oldusage = curusage;
4748 }
4749 if (!ret && enlarge)
4750 memcg_oom_recover(memcg);
4751
4752 return ret;
4753 }
4754
4755 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4756 unsigned long long val)
4757 {
4758 int retry_count;
4759 u64 memlimit, memswlimit, oldusage, curusage;
4760 int children = mem_cgroup_count_children(memcg);
4761 int ret = -EBUSY;
4762 int enlarge = 0;
4763
4764 /* see mem_cgroup_resize_res_limit */
4765 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4766 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4767 while (retry_count) {
4768 if (signal_pending(current)) {
4769 ret = -EINTR;
4770 break;
4771 }
4772 /*
4773 * Rather than hide all in some function, I do this in
4774 * open coded manner. You see what this really does.
4775 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4776 */
4777 mutex_lock(&set_limit_mutex);
4778 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4779 if (memlimit > val) {
4780 ret = -EINVAL;
4781 mutex_unlock(&set_limit_mutex);
4782 break;
4783 }
4784 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4785 if (memswlimit < val)
4786 enlarge = 1;
4787 ret = res_counter_set_limit(&memcg->memsw, val);
4788 if (!ret) {
4789 if (memlimit == val)
4790 memcg->memsw_is_minimum = true;
4791 else
4792 memcg->memsw_is_minimum = false;
4793 }
4794 mutex_unlock(&set_limit_mutex);
4795
4796 if (!ret)
4797 break;
4798
4799 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4800 MEM_CGROUP_RECLAIM_NOSWAP |
4801 MEM_CGROUP_RECLAIM_SHRINK);
4802 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4803 /* Usage is reduced ? */
4804 if (curusage >= oldusage)
4805 retry_count--;
4806 else
4807 oldusage = curusage;
4808 }
4809 if (!ret && enlarge)
4810 memcg_oom_recover(memcg);
4811 return ret;
4812 }
4813
4814 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4815 gfp_t gfp_mask,
4816 unsigned long *total_scanned)
4817 {
4818 unsigned long nr_reclaimed = 0;
4819 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4820 unsigned long reclaimed;
4821 int loop = 0;
4822 struct mem_cgroup_tree_per_zone *mctz;
4823 unsigned long long excess;
4824 unsigned long nr_scanned;
4825
4826 if (order > 0)
4827 return 0;
4828
4829 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4830 /*
4831 * This loop can run a while, specially if mem_cgroup's continuously
4832 * keep exceeding their soft limit and putting the system under
4833 * pressure
4834 */
4835 do {
4836 if (next_mz)
4837 mz = next_mz;
4838 else
4839 mz = mem_cgroup_largest_soft_limit_node(mctz);
4840 if (!mz)
4841 break;
4842
4843 nr_scanned = 0;
4844 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4845 gfp_mask, &nr_scanned);
4846 nr_reclaimed += reclaimed;
4847 *total_scanned += nr_scanned;
4848 spin_lock(&mctz->lock);
4849
4850 /*
4851 * If we failed to reclaim anything from this memory cgroup
4852 * it is time to move on to the next cgroup
4853 */
4854 next_mz = NULL;
4855 if (!reclaimed) {
4856 do {
4857 /*
4858 * Loop until we find yet another one.
4859 *
4860 * By the time we get the soft_limit lock
4861 * again, someone might have aded the
4862 * group back on the RB tree. Iterate to
4863 * make sure we get a different mem.
4864 * mem_cgroup_largest_soft_limit_node returns
4865 * NULL if no other cgroup is present on
4866 * the tree
4867 */
4868 next_mz =
4869 __mem_cgroup_largest_soft_limit_node(mctz);
4870 if (next_mz == mz)
4871 css_put(&next_mz->memcg->css);
4872 else /* next_mz == NULL or other memcg */
4873 break;
4874 } while (1);
4875 }
4876 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4877 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4878 /*
4879 * One school of thought says that we should not add
4880 * back the node to the tree if reclaim returns 0.
4881 * But our reclaim could return 0, simply because due
4882 * to priority we are exposing a smaller subset of
4883 * memory to reclaim from. Consider this as a longer
4884 * term TODO.
4885 */
4886 /* If excess == 0, no tree ops */
4887 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4888 spin_unlock(&mctz->lock);
4889 css_put(&mz->memcg->css);
4890 loop++;
4891 /*
4892 * Could not reclaim anything and there are no more
4893 * mem cgroups to try or we seem to be looping without
4894 * reclaiming anything.
4895 */
4896 if (!nr_reclaimed &&
4897 (next_mz == NULL ||
4898 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4899 break;
4900 } while (!nr_reclaimed);
4901 if (next_mz)
4902 css_put(&next_mz->memcg->css);
4903 return nr_reclaimed;
4904 }
4905
4906 /**
4907 * mem_cgroup_force_empty_list - clears LRU of a group
4908 * @memcg: group to clear
4909 * @node: NUMA node
4910 * @zid: zone id
4911 * @lru: lru to to clear
4912 *
4913 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4914 * reclaim the pages page themselves - pages are moved to the parent (or root)
4915 * group.
4916 */
4917 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4918 int node, int zid, enum lru_list lru)
4919 {
4920 struct lruvec *lruvec;
4921 unsigned long flags;
4922 struct list_head *list;
4923 struct page *busy;
4924 struct zone *zone;
4925
4926 zone = &NODE_DATA(node)->node_zones[zid];
4927 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4928 list = &lruvec->lists[lru];
4929
4930 busy = NULL;
4931 do {
4932 struct page_cgroup *pc;
4933 struct page *page;
4934
4935 spin_lock_irqsave(&zone->lru_lock, flags);
4936 if (list_empty(list)) {
4937 spin_unlock_irqrestore(&zone->lru_lock, flags);
4938 break;
4939 }
4940 page = list_entry(list->prev, struct page, lru);
4941 if (busy == page) {
4942 list_move(&page->lru, list);
4943 busy = NULL;
4944 spin_unlock_irqrestore(&zone->lru_lock, flags);
4945 continue;
4946 }
4947 spin_unlock_irqrestore(&zone->lru_lock, flags);
4948
4949 pc = lookup_page_cgroup(page);
4950
4951 if (mem_cgroup_move_parent(page, pc, memcg)) {
4952 /* found lock contention or "pc" is obsolete. */
4953 busy = page;
4954 cond_resched();
4955 } else
4956 busy = NULL;
4957 } while (!list_empty(list));
4958 }
4959
4960 /*
4961 * make mem_cgroup's charge to be 0 if there is no task by moving
4962 * all the charges and pages to the parent.
4963 * This enables deleting this mem_cgroup.
4964 *
4965 * Caller is responsible for holding css reference on the memcg.
4966 */
4967 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4968 {
4969 int node, zid;
4970 u64 usage;
4971
4972 do {
4973 /* This is for making all *used* pages to be on LRU. */
4974 lru_add_drain_all();
4975 drain_all_stock_sync(memcg);
4976 mem_cgroup_start_move(memcg);
4977 for_each_node_state(node, N_MEMORY) {
4978 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4979 enum lru_list lru;
4980 for_each_lru(lru) {
4981 mem_cgroup_force_empty_list(memcg,
4982 node, zid, lru);
4983 }
4984 }
4985 }
4986 mem_cgroup_end_move(memcg);
4987 memcg_oom_recover(memcg);
4988 cond_resched();
4989
4990 /*
4991 * Kernel memory may not necessarily be trackable to a specific
4992 * process. So they are not migrated, and therefore we can't
4993 * expect their value to drop to 0 here.
4994 * Having res filled up with kmem only is enough.
4995 *
4996 * This is a safety check because mem_cgroup_force_empty_list
4997 * could have raced with mem_cgroup_replace_page_cache callers
4998 * so the lru seemed empty but the page could have been added
4999 * right after the check. RES_USAGE should be safe as we always
5000 * charge before adding to the LRU.
5001 */
5002 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5003 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5004 } while (usage > 0);
5005 }
5006
5007 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5008 {
5009 lockdep_assert_held(&memcg_create_mutex);
5010 /*
5011 * The lock does not prevent addition or deletion to the list
5012 * of children, but it prevents a new child from being
5013 * initialized based on this parent in css_online(), so it's
5014 * enough to decide whether hierarchically inherited
5015 * attributes can still be changed or not.
5016 */
5017 return memcg->use_hierarchy &&
5018 !list_empty(&memcg->css.cgroup->children);
5019 }
5020
5021 /*
5022 * Reclaims as many pages from the given memcg as possible and moves
5023 * the rest to the parent.
5024 *
5025 * Caller is responsible for holding css reference for memcg.
5026 */
5027 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5028 {
5029 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5030 struct cgroup *cgrp = memcg->css.cgroup;
5031
5032 /* returns EBUSY if there is a task or if we come here twice. */
5033 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5034 return -EBUSY;
5035
5036 /* we call try-to-free pages for make this cgroup empty */
5037 lru_add_drain_all();
5038 /* try to free all pages in this cgroup */
5039 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5040 int progress;
5041
5042 if (signal_pending(current))
5043 return -EINTR;
5044
5045 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5046 false);
5047 if (!progress) {
5048 nr_retries--;
5049 /* maybe some writeback is necessary */
5050 congestion_wait(BLK_RW_ASYNC, HZ/10);
5051 }
5052
5053 }
5054 lru_add_drain();
5055 mem_cgroup_reparent_charges(memcg);
5056
5057 return 0;
5058 }
5059
5060 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5061 unsigned int event)
5062 {
5063 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5064
5065 if (mem_cgroup_is_root(memcg))
5066 return -EINVAL;
5067 return mem_cgroup_force_empty(memcg);
5068 }
5069
5070 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5071 struct cftype *cft)
5072 {
5073 return mem_cgroup_from_css(css)->use_hierarchy;
5074 }
5075
5076 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5077 struct cftype *cft, u64 val)
5078 {
5079 int retval = 0;
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5081 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5082
5083 mutex_lock(&memcg_create_mutex);
5084
5085 if (memcg->use_hierarchy == val)
5086 goto out;
5087
5088 /*
5089 * If parent's use_hierarchy is set, we can't make any modifications
5090 * in the child subtrees. If it is unset, then the change can
5091 * occur, provided the current cgroup has no children.
5092 *
5093 * For the root cgroup, parent_mem is NULL, we allow value to be
5094 * set if there are no children.
5095 */
5096 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5097 (val == 1 || val == 0)) {
5098 if (list_empty(&memcg->css.cgroup->children))
5099 memcg->use_hierarchy = val;
5100 else
5101 retval = -EBUSY;
5102 } else
5103 retval = -EINVAL;
5104
5105 out:
5106 mutex_unlock(&memcg_create_mutex);
5107
5108 return retval;
5109 }
5110
5111
5112 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5113 enum mem_cgroup_stat_index idx)
5114 {
5115 struct mem_cgroup *iter;
5116 long val = 0;
5117
5118 /* Per-cpu values can be negative, use a signed accumulator */
5119 for_each_mem_cgroup_tree(iter, memcg)
5120 val += mem_cgroup_read_stat(iter, idx);
5121
5122 if (val < 0) /* race ? */
5123 val = 0;
5124 return val;
5125 }
5126
5127 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5128 {
5129 u64 val;
5130
5131 if (!mem_cgroup_is_root(memcg)) {
5132 if (!swap)
5133 return res_counter_read_u64(&memcg->res, RES_USAGE);
5134 else
5135 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5136 }
5137
5138 /*
5139 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5140 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5141 */
5142 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5143 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5144
5145 if (swap)
5146 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5147
5148 return val << PAGE_SHIFT;
5149 }
5150
5151 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5152 struct cftype *cft)
5153 {
5154 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5155 u64 val;
5156 int name;
5157 enum res_type type;
5158
5159 type = MEMFILE_TYPE(cft->private);
5160 name = MEMFILE_ATTR(cft->private);
5161
5162 switch (type) {
5163 case _MEM:
5164 if (name == RES_USAGE)
5165 val = mem_cgroup_usage(memcg, false);
5166 else
5167 val = res_counter_read_u64(&memcg->res, name);
5168 break;
5169 case _MEMSWAP:
5170 if (name == RES_USAGE)
5171 val = mem_cgroup_usage(memcg, true);
5172 else
5173 val = res_counter_read_u64(&memcg->memsw, name);
5174 break;
5175 case _KMEM:
5176 val = res_counter_read_u64(&memcg->kmem, name);
5177 break;
5178 default:
5179 BUG();
5180 }
5181
5182 return val;
5183 }
5184
5185 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5186 {
5187 int ret = -EINVAL;
5188 #ifdef CONFIG_MEMCG_KMEM
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5190 /*
5191 * For simplicity, we won't allow this to be disabled. It also can't
5192 * be changed if the cgroup has children already, or if tasks had
5193 * already joined.
5194 *
5195 * If tasks join before we set the limit, a person looking at
5196 * kmem.usage_in_bytes will have no way to determine when it took
5197 * place, which makes the value quite meaningless.
5198 *
5199 * After it first became limited, changes in the value of the limit are
5200 * of course permitted.
5201 */
5202 mutex_lock(&memcg_create_mutex);
5203 mutex_lock(&set_limit_mutex);
5204 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5205 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5206 ret = -EBUSY;
5207 goto out;
5208 }
5209 ret = res_counter_set_limit(&memcg->kmem, val);
5210 VM_BUG_ON(ret);
5211
5212 ret = memcg_update_cache_sizes(memcg);
5213 if (ret) {
5214 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5215 goto out;
5216 }
5217 static_key_slow_inc(&memcg_kmem_enabled_key);
5218 /*
5219 * setting the active bit after the inc will guarantee no one
5220 * starts accounting before all call sites are patched
5221 */
5222 memcg_kmem_set_active(memcg);
5223 } else
5224 ret = res_counter_set_limit(&memcg->kmem, val);
5225 out:
5226 mutex_unlock(&set_limit_mutex);
5227 mutex_unlock(&memcg_create_mutex);
5228 #endif
5229 return ret;
5230 }
5231
5232 #ifdef CONFIG_MEMCG_KMEM
5233 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5234 {
5235 int ret = 0;
5236 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5237 if (!parent)
5238 goto out;
5239
5240 memcg->kmem_account_flags = parent->kmem_account_flags;
5241 /*
5242 * When that happen, we need to disable the static branch only on those
5243 * memcgs that enabled it. To achieve this, we would be forced to
5244 * complicate the code by keeping track of which memcgs were the ones
5245 * that actually enabled limits, and which ones got it from its
5246 * parents.
5247 *
5248 * It is a lot simpler just to do static_key_slow_inc() on every child
5249 * that is accounted.
5250 */
5251 if (!memcg_kmem_is_active(memcg))
5252 goto out;
5253
5254 /*
5255 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5256 * memcg is active already. If the later initialization fails then the
5257 * cgroup core triggers the cleanup so we do not have to do it here.
5258 */
5259 static_key_slow_inc(&memcg_kmem_enabled_key);
5260
5261 mutex_lock(&set_limit_mutex);
5262 memcg_stop_kmem_account();
5263 ret = memcg_update_cache_sizes(memcg);
5264 memcg_resume_kmem_account();
5265 mutex_unlock(&set_limit_mutex);
5266 out:
5267 return ret;
5268 }
5269 #endif /* CONFIG_MEMCG_KMEM */
5270
5271 /*
5272 * The user of this function is...
5273 * RES_LIMIT.
5274 */
5275 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5276 const char *buffer)
5277 {
5278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5279 enum res_type type;
5280 int name;
5281 unsigned long long val;
5282 int ret;
5283
5284 type = MEMFILE_TYPE(cft->private);
5285 name = MEMFILE_ATTR(cft->private);
5286
5287 switch (name) {
5288 case RES_LIMIT:
5289 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5290 ret = -EINVAL;
5291 break;
5292 }
5293 /* This function does all necessary parse...reuse it */
5294 ret = res_counter_memparse_write_strategy(buffer, &val);
5295 if (ret)
5296 break;
5297 if (type == _MEM)
5298 ret = mem_cgroup_resize_limit(memcg, val);
5299 else if (type == _MEMSWAP)
5300 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5301 else if (type == _KMEM)
5302 ret = memcg_update_kmem_limit(css, val);
5303 else
5304 return -EINVAL;
5305 break;
5306 case RES_SOFT_LIMIT:
5307 ret = res_counter_memparse_write_strategy(buffer, &val);
5308 if (ret)
5309 break;
5310 /*
5311 * For memsw, soft limits are hard to implement in terms
5312 * of semantics, for now, we support soft limits for
5313 * control without swap
5314 */
5315 if (type == _MEM)
5316 ret = res_counter_set_soft_limit(&memcg->res, val);
5317 else
5318 ret = -EINVAL;
5319 break;
5320 default:
5321 ret = -EINVAL; /* should be BUG() ? */
5322 break;
5323 }
5324 return ret;
5325 }
5326
5327 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5328 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5329 {
5330 unsigned long long min_limit, min_memsw_limit, tmp;
5331
5332 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5333 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5334 if (!memcg->use_hierarchy)
5335 goto out;
5336
5337 while (css_parent(&memcg->css)) {
5338 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5339 if (!memcg->use_hierarchy)
5340 break;
5341 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5342 min_limit = min(min_limit, tmp);
5343 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5344 min_memsw_limit = min(min_memsw_limit, tmp);
5345 }
5346 out:
5347 *mem_limit = min_limit;
5348 *memsw_limit = min_memsw_limit;
5349 }
5350
5351 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5352 {
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354 int name;
5355 enum res_type type;
5356
5357 type = MEMFILE_TYPE(event);
5358 name = MEMFILE_ATTR(event);
5359
5360 switch (name) {
5361 case RES_MAX_USAGE:
5362 if (type == _MEM)
5363 res_counter_reset_max(&memcg->res);
5364 else if (type == _MEMSWAP)
5365 res_counter_reset_max(&memcg->memsw);
5366 else if (type == _KMEM)
5367 res_counter_reset_max(&memcg->kmem);
5368 else
5369 return -EINVAL;
5370 break;
5371 case RES_FAILCNT:
5372 if (type == _MEM)
5373 res_counter_reset_failcnt(&memcg->res);
5374 else if (type == _MEMSWAP)
5375 res_counter_reset_failcnt(&memcg->memsw);
5376 else if (type == _KMEM)
5377 res_counter_reset_failcnt(&memcg->kmem);
5378 else
5379 return -EINVAL;
5380 break;
5381 }
5382
5383 return 0;
5384 }
5385
5386 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5387 struct cftype *cft)
5388 {
5389 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5390 }
5391
5392 #ifdef CONFIG_MMU
5393 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5394 struct cftype *cft, u64 val)
5395 {
5396 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5397
5398 if (val >= (1 << NR_MOVE_TYPE))
5399 return -EINVAL;
5400
5401 /*
5402 * No kind of locking is needed in here, because ->can_attach() will
5403 * check this value once in the beginning of the process, and then carry
5404 * on with stale data. This means that changes to this value will only
5405 * affect task migrations starting after the change.
5406 */
5407 memcg->move_charge_at_immigrate = val;
5408 return 0;
5409 }
5410 #else
5411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5412 struct cftype *cft, u64 val)
5413 {
5414 return -ENOSYS;
5415 }
5416 #endif
5417
5418 #ifdef CONFIG_NUMA
5419 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5420 {
5421 struct numa_stat {
5422 const char *name;
5423 unsigned int lru_mask;
5424 };
5425
5426 static const struct numa_stat stats[] = {
5427 { "total", LRU_ALL },
5428 { "file", LRU_ALL_FILE },
5429 { "anon", LRU_ALL_ANON },
5430 { "unevictable", BIT(LRU_UNEVICTABLE) },
5431 };
5432 const struct numa_stat *stat;
5433 int nid;
5434 unsigned long nr;
5435 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5436
5437 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5438 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5439 seq_printf(m, "%s=%lu", stat->name, nr);
5440 for_each_node_state(nid, N_MEMORY) {
5441 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5442 stat->lru_mask);
5443 seq_printf(m, " N%d=%lu", nid, nr);
5444 }
5445 seq_putc(m, '\n');
5446 }
5447
5448 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5449 struct mem_cgroup *iter;
5450
5451 nr = 0;
5452 for_each_mem_cgroup_tree(iter, memcg)
5453 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5454 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5455 for_each_node_state(nid, N_MEMORY) {
5456 nr = 0;
5457 for_each_mem_cgroup_tree(iter, memcg)
5458 nr += mem_cgroup_node_nr_lru_pages(
5459 iter, nid, stat->lru_mask);
5460 seq_printf(m, " N%d=%lu", nid, nr);
5461 }
5462 seq_putc(m, '\n');
5463 }
5464
5465 return 0;
5466 }
5467 #endif /* CONFIG_NUMA */
5468
5469 static inline void mem_cgroup_lru_names_not_uptodate(void)
5470 {
5471 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5472 }
5473
5474 static int memcg_stat_show(struct seq_file *m, void *v)
5475 {
5476 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5477 struct mem_cgroup *mi;
5478 unsigned int i;
5479
5480 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5481 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5482 continue;
5483 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5484 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5485 }
5486
5487 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5488 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5489 mem_cgroup_read_events(memcg, i));
5490
5491 for (i = 0; i < NR_LRU_LISTS; i++)
5492 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5493 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5494
5495 /* Hierarchical information */
5496 {
5497 unsigned long long limit, memsw_limit;
5498 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5499 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5500 if (do_swap_account)
5501 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5502 memsw_limit);
5503 }
5504
5505 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5506 long long val = 0;
5507
5508 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5509 continue;
5510 for_each_mem_cgroup_tree(mi, memcg)
5511 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5512 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5513 }
5514
5515 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5516 unsigned long long val = 0;
5517
5518 for_each_mem_cgroup_tree(mi, memcg)
5519 val += mem_cgroup_read_events(mi, i);
5520 seq_printf(m, "total_%s %llu\n",
5521 mem_cgroup_events_names[i], val);
5522 }
5523
5524 for (i = 0; i < NR_LRU_LISTS; i++) {
5525 unsigned long long val = 0;
5526
5527 for_each_mem_cgroup_tree(mi, memcg)
5528 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5529 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5530 }
5531
5532 #ifdef CONFIG_DEBUG_VM
5533 {
5534 int nid, zid;
5535 struct mem_cgroup_per_zone *mz;
5536 struct zone_reclaim_stat *rstat;
5537 unsigned long recent_rotated[2] = {0, 0};
5538 unsigned long recent_scanned[2] = {0, 0};
5539
5540 for_each_online_node(nid)
5541 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5542 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5543 rstat = &mz->lruvec.reclaim_stat;
5544
5545 recent_rotated[0] += rstat->recent_rotated[0];
5546 recent_rotated[1] += rstat->recent_rotated[1];
5547 recent_scanned[0] += rstat->recent_scanned[0];
5548 recent_scanned[1] += rstat->recent_scanned[1];
5549 }
5550 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5551 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5552 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5553 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5554 }
5555 #endif
5556
5557 return 0;
5558 }
5559
5560 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5561 struct cftype *cft)
5562 {
5563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5564
5565 return mem_cgroup_swappiness(memcg);
5566 }
5567
5568 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5569 struct cftype *cft, u64 val)
5570 {
5571 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5572 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5573
5574 if (val > 100 || !parent)
5575 return -EINVAL;
5576
5577 mutex_lock(&memcg_create_mutex);
5578
5579 /* If under hierarchy, only empty-root can set this value */
5580 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5581 mutex_unlock(&memcg_create_mutex);
5582 return -EINVAL;
5583 }
5584
5585 memcg->swappiness = val;
5586
5587 mutex_unlock(&memcg_create_mutex);
5588
5589 return 0;
5590 }
5591
5592 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5593 {
5594 struct mem_cgroup_threshold_ary *t;
5595 u64 usage;
5596 int i;
5597
5598 rcu_read_lock();
5599 if (!swap)
5600 t = rcu_dereference(memcg->thresholds.primary);
5601 else
5602 t = rcu_dereference(memcg->memsw_thresholds.primary);
5603
5604 if (!t)
5605 goto unlock;
5606
5607 usage = mem_cgroup_usage(memcg, swap);
5608
5609 /*
5610 * current_threshold points to threshold just below or equal to usage.
5611 * If it's not true, a threshold was crossed after last
5612 * call of __mem_cgroup_threshold().
5613 */
5614 i = t->current_threshold;
5615
5616 /*
5617 * Iterate backward over array of thresholds starting from
5618 * current_threshold and check if a threshold is crossed.
5619 * If none of thresholds below usage is crossed, we read
5620 * only one element of the array here.
5621 */
5622 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5623 eventfd_signal(t->entries[i].eventfd, 1);
5624
5625 /* i = current_threshold + 1 */
5626 i++;
5627
5628 /*
5629 * Iterate forward over array of thresholds starting from
5630 * current_threshold+1 and check if a threshold is crossed.
5631 * If none of thresholds above usage is crossed, we read
5632 * only one element of the array here.
5633 */
5634 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5635 eventfd_signal(t->entries[i].eventfd, 1);
5636
5637 /* Update current_threshold */
5638 t->current_threshold = i - 1;
5639 unlock:
5640 rcu_read_unlock();
5641 }
5642
5643 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5644 {
5645 while (memcg) {
5646 __mem_cgroup_threshold(memcg, false);
5647 if (do_swap_account)
5648 __mem_cgroup_threshold(memcg, true);
5649
5650 memcg = parent_mem_cgroup(memcg);
5651 }
5652 }
5653
5654 static int compare_thresholds(const void *a, const void *b)
5655 {
5656 const struct mem_cgroup_threshold *_a = a;
5657 const struct mem_cgroup_threshold *_b = b;
5658
5659 if (_a->threshold > _b->threshold)
5660 return 1;
5661
5662 if (_a->threshold < _b->threshold)
5663 return -1;
5664
5665 return 0;
5666 }
5667
5668 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5669 {
5670 struct mem_cgroup_eventfd_list *ev;
5671
5672 list_for_each_entry(ev, &memcg->oom_notify, list)
5673 eventfd_signal(ev->eventfd, 1);
5674 return 0;
5675 }
5676
5677 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5678 {
5679 struct mem_cgroup *iter;
5680
5681 for_each_mem_cgroup_tree(iter, memcg)
5682 mem_cgroup_oom_notify_cb(iter);
5683 }
5684
5685 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5686 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5687 {
5688 struct mem_cgroup_thresholds *thresholds;
5689 struct mem_cgroup_threshold_ary *new;
5690 u64 threshold, usage;
5691 int i, size, ret;
5692
5693 ret = res_counter_memparse_write_strategy(args, &threshold);
5694 if (ret)
5695 return ret;
5696
5697 mutex_lock(&memcg->thresholds_lock);
5698
5699 if (type == _MEM)
5700 thresholds = &memcg->thresholds;
5701 else if (type == _MEMSWAP)
5702 thresholds = &memcg->memsw_thresholds;
5703 else
5704 BUG();
5705
5706 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5707
5708 /* Check if a threshold crossed before adding a new one */
5709 if (thresholds->primary)
5710 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5711
5712 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5713
5714 /* Allocate memory for new array of thresholds */
5715 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5716 GFP_KERNEL);
5717 if (!new) {
5718 ret = -ENOMEM;
5719 goto unlock;
5720 }
5721 new->size = size;
5722
5723 /* Copy thresholds (if any) to new array */
5724 if (thresholds->primary) {
5725 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5726 sizeof(struct mem_cgroup_threshold));
5727 }
5728
5729 /* Add new threshold */
5730 new->entries[size - 1].eventfd = eventfd;
5731 new->entries[size - 1].threshold = threshold;
5732
5733 /* Sort thresholds. Registering of new threshold isn't time-critical */
5734 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5735 compare_thresholds, NULL);
5736
5737 /* Find current threshold */
5738 new->current_threshold = -1;
5739 for (i = 0; i < size; i++) {
5740 if (new->entries[i].threshold <= usage) {
5741 /*
5742 * new->current_threshold will not be used until
5743 * rcu_assign_pointer(), so it's safe to increment
5744 * it here.
5745 */
5746 ++new->current_threshold;
5747 } else
5748 break;
5749 }
5750
5751 /* Free old spare buffer and save old primary buffer as spare */
5752 kfree(thresholds->spare);
5753 thresholds->spare = thresholds->primary;
5754
5755 rcu_assign_pointer(thresholds->primary, new);
5756
5757 /* To be sure that nobody uses thresholds */
5758 synchronize_rcu();
5759
5760 unlock:
5761 mutex_unlock(&memcg->thresholds_lock);
5762
5763 return ret;
5764 }
5765
5766 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5767 struct eventfd_ctx *eventfd, const char *args)
5768 {
5769 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5770 }
5771
5772 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5773 struct eventfd_ctx *eventfd, const char *args)
5774 {
5775 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5776 }
5777
5778 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5779 struct eventfd_ctx *eventfd, enum res_type type)
5780 {
5781 struct mem_cgroup_thresholds *thresholds;
5782 struct mem_cgroup_threshold_ary *new;
5783 u64 usage;
5784 int i, j, size;
5785
5786 mutex_lock(&memcg->thresholds_lock);
5787 if (type == _MEM)
5788 thresholds = &memcg->thresholds;
5789 else if (type == _MEMSWAP)
5790 thresholds = &memcg->memsw_thresholds;
5791 else
5792 BUG();
5793
5794 if (!thresholds->primary)
5795 goto unlock;
5796
5797 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5798
5799 /* Check if a threshold crossed before removing */
5800 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5801
5802 /* Calculate new number of threshold */
5803 size = 0;
5804 for (i = 0; i < thresholds->primary->size; i++) {
5805 if (thresholds->primary->entries[i].eventfd != eventfd)
5806 size++;
5807 }
5808
5809 new = thresholds->spare;
5810
5811 /* Set thresholds array to NULL if we don't have thresholds */
5812 if (!size) {
5813 kfree(new);
5814 new = NULL;
5815 goto swap_buffers;
5816 }
5817
5818 new->size = size;
5819
5820 /* Copy thresholds and find current threshold */
5821 new->current_threshold = -1;
5822 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5823 if (thresholds->primary->entries[i].eventfd == eventfd)
5824 continue;
5825
5826 new->entries[j] = thresholds->primary->entries[i];
5827 if (new->entries[j].threshold <= usage) {
5828 /*
5829 * new->current_threshold will not be used
5830 * until rcu_assign_pointer(), so it's safe to increment
5831 * it here.
5832 */
5833 ++new->current_threshold;
5834 }
5835 j++;
5836 }
5837
5838 swap_buffers:
5839 /* Swap primary and spare array */
5840 thresholds->spare = thresholds->primary;
5841 /* If all events are unregistered, free the spare array */
5842 if (!new) {
5843 kfree(thresholds->spare);
5844 thresholds->spare = NULL;
5845 }
5846
5847 rcu_assign_pointer(thresholds->primary, new);
5848
5849 /* To be sure that nobody uses thresholds */
5850 synchronize_rcu();
5851 unlock:
5852 mutex_unlock(&memcg->thresholds_lock);
5853 }
5854
5855 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5856 struct eventfd_ctx *eventfd)
5857 {
5858 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5859 }
5860
5861 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5862 struct eventfd_ctx *eventfd)
5863 {
5864 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5865 }
5866
5867 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5868 struct eventfd_ctx *eventfd, const char *args)
5869 {
5870 struct mem_cgroup_eventfd_list *event;
5871
5872 event = kmalloc(sizeof(*event), GFP_KERNEL);
5873 if (!event)
5874 return -ENOMEM;
5875
5876 spin_lock(&memcg_oom_lock);
5877
5878 event->eventfd = eventfd;
5879 list_add(&event->list, &memcg->oom_notify);
5880
5881 /* already in OOM ? */
5882 if (atomic_read(&memcg->under_oom))
5883 eventfd_signal(eventfd, 1);
5884 spin_unlock(&memcg_oom_lock);
5885
5886 return 0;
5887 }
5888
5889 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5890 struct eventfd_ctx *eventfd)
5891 {
5892 struct mem_cgroup_eventfd_list *ev, *tmp;
5893
5894 spin_lock(&memcg_oom_lock);
5895
5896 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5897 if (ev->eventfd == eventfd) {
5898 list_del(&ev->list);
5899 kfree(ev);
5900 }
5901 }
5902
5903 spin_unlock(&memcg_oom_lock);
5904 }
5905
5906 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5907 {
5908 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5909
5910 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5911 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5912 return 0;
5913 }
5914
5915 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5916 struct cftype *cft, u64 val)
5917 {
5918 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5919 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5920
5921 /* cannot set to root cgroup and only 0 and 1 are allowed */
5922 if (!parent || !((val == 0) || (val == 1)))
5923 return -EINVAL;
5924
5925 mutex_lock(&memcg_create_mutex);
5926 /* oom-kill-disable is a flag for subhierarchy. */
5927 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5928 mutex_unlock(&memcg_create_mutex);
5929 return -EINVAL;
5930 }
5931 memcg->oom_kill_disable = val;
5932 if (!val)
5933 memcg_oom_recover(memcg);
5934 mutex_unlock(&memcg_create_mutex);
5935 return 0;
5936 }
5937
5938 #ifdef CONFIG_MEMCG_KMEM
5939 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5940 {
5941 int ret;
5942
5943 memcg->kmemcg_id = -1;
5944 ret = memcg_propagate_kmem(memcg);
5945 if (ret)
5946 return ret;
5947
5948 return mem_cgroup_sockets_init(memcg, ss);
5949 }
5950
5951 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5952 {
5953 mem_cgroup_sockets_destroy(memcg);
5954 }
5955
5956 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5957 {
5958 if (!memcg_kmem_is_active(memcg))
5959 return;
5960
5961 /*
5962 * kmem charges can outlive the cgroup. In the case of slab
5963 * pages, for instance, a page contain objects from various
5964 * processes. As we prevent from taking a reference for every
5965 * such allocation we have to be careful when doing uncharge
5966 * (see memcg_uncharge_kmem) and here during offlining.
5967 *
5968 * The idea is that that only the _last_ uncharge which sees
5969 * the dead memcg will drop the last reference. An additional
5970 * reference is taken here before the group is marked dead
5971 * which is then paired with css_put during uncharge resp. here.
5972 *
5973 * Although this might sound strange as this path is called from
5974 * css_offline() when the referencemight have dropped down to 0
5975 * and shouldn't be incremented anymore (css_tryget would fail)
5976 * we do not have other options because of the kmem allocations
5977 * lifetime.
5978 */
5979 css_get(&memcg->css);
5980
5981 memcg_kmem_mark_dead(memcg);
5982
5983 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5984 return;
5985
5986 if (memcg_kmem_test_and_clear_dead(memcg))
5987 css_put(&memcg->css);
5988 }
5989 #else
5990 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5991 {
5992 return 0;
5993 }
5994
5995 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5996 {
5997 }
5998
5999 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6000 {
6001 }
6002 #endif
6003
6004 /*
6005 * DO NOT USE IN NEW FILES.
6006 *
6007 * "cgroup.event_control" implementation.
6008 *
6009 * This is way over-engineered. It tries to support fully configurable
6010 * events for each user. Such level of flexibility is completely
6011 * unnecessary especially in the light of the planned unified hierarchy.
6012 *
6013 * Please deprecate this and replace with something simpler if at all
6014 * possible.
6015 */
6016
6017 /*
6018 * Unregister event and free resources.
6019 *
6020 * Gets called from workqueue.
6021 */
6022 static void memcg_event_remove(struct work_struct *work)
6023 {
6024 struct mem_cgroup_event *event =
6025 container_of(work, struct mem_cgroup_event, remove);
6026 struct mem_cgroup *memcg = event->memcg;
6027
6028 remove_wait_queue(event->wqh, &event->wait);
6029
6030 event->unregister_event(memcg, event->eventfd);
6031
6032 /* Notify userspace the event is going away. */
6033 eventfd_signal(event->eventfd, 1);
6034
6035 eventfd_ctx_put(event->eventfd);
6036 kfree(event);
6037 css_put(&memcg->css);
6038 }
6039
6040 /*
6041 * Gets called on POLLHUP on eventfd when user closes it.
6042 *
6043 * Called with wqh->lock held and interrupts disabled.
6044 */
6045 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6046 int sync, void *key)
6047 {
6048 struct mem_cgroup_event *event =
6049 container_of(wait, struct mem_cgroup_event, wait);
6050 struct mem_cgroup *memcg = event->memcg;
6051 unsigned long flags = (unsigned long)key;
6052
6053 if (flags & POLLHUP) {
6054 /*
6055 * If the event has been detached at cgroup removal, we
6056 * can simply return knowing the other side will cleanup
6057 * for us.
6058 *
6059 * We can't race against event freeing since the other
6060 * side will require wqh->lock via remove_wait_queue(),
6061 * which we hold.
6062 */
6063 spin_lock(&memcg->event_list_lock);
6064 if (!list_empty(&event->list)) {
6065 list_del_init(&event->list);
6066 /*
6067 * We are in atomic context, but cgroup_event_remove()
6068 * may sleep, so we have to call it in workqueue.
6069 */
6070 schedule_work(&event->remove);
6071 }
6072 spin_unlock(&memcg->event_list_lock);
6073 }
6074
6075 return 0;
6076 }
6077
6078 static void memcg_event_ptable_queue_proc(struct file *file,
6079 wait_queue_head_t *wqh, poll_table *pt)
6080 {
6081 struct mem_cgroup_event *event =
6082 container_of(pt, struct mem_cgroup_event, pt);
6083
6084 event->wqh = wqh;
6085 add_wait_queue(wqh, &event->wait);
6086 }
6087
6088 /*
6089 * DO NOT USE IN NEW FILES.
6090 *
6091 * Parse input and register new cgroup event handler.
6092 *
6093 * Input must be in format '<event_fd> <control_fd> <args>'.
6094 * Interpretation of args is defined by control file implementation.
6095 */
6096 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6097 struct cftype *cft, const char *buffer)
6098 {
6099 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6100 struct mem_cgroup_event *event;
6101 struct cgroup_subsys_state *cfile_css;
6102 unsigned int efd, cfd;
6103 struct fd efile;
6104 struct fd cfile;
6105 const char *name;
6106 char *endp;
6107 int ret;
6108
6109 efd = simple_strtoul(buffer, &endp, 10);
6110 if (*endp != ' ')
6111 return -EINVAL;
6112 buffer = endp + 1;
6113
6114 cfd = simple_strtoul(buffer, &endp, 10);
6115 if ((*endp != ' ') && (*endp != '\0'))
6116 return -EINVAL;
6117 buffer = endp + 1;
6118
6119 event = kzalloc(sizeof(*event), GFP_KERNEL);
6120 if (!event)
6121 return -ENOMEM;
6122
6123 event->memcg = memcg;
6124 INIT_LIST_HEAD(&event->list);
6125 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6126 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6127 INIT_WORK(&event->remove, memcg_event_remove);
6128
6129 efile = fdget(efd);
6130 if (!efile.file) {
6131 ret = -EBADF;
6132 goto out_kfree;
6133 }
6134
6135 event->eventfd = eventfd_ctx_fileget(efile.file);
6136 if (IS_ERR(event->eventfd)) {
6137 ret = PTR_ERR(event->eventfd);
6138 goto out_put_efile;
6139 }
6140
6141 cfile = fdget(cfd);
6142 if (!cfile.file) {
6143 ret = -EBADF;
6144 goto out_put_eventfd;
6145 }
6146
6147 /* the process need read permission on control file */
6148 /* AV: shouldn't we check that it's been opened for read instead? */
6149 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6150 if (ret < 0)
6151 goto out_put_cfile;
6152
6153 /*
6154 * Determine the event callbacks and set them in @event. This used
6155 * to be done via struct cftype but cgroup core no longer knows
6156 * about these events. The following is crude but the whole thing
6157 * is for compatibility anyway.
6158 *
6159 * DO NOT ADD NEW FILES.
6160 */
6161 name = cfile.file->f_dentry->d_name.name;
6162
6163 if (!strcmp(name, "memory.usage_in_bytes")) {
6164 event->register_event = mem_cgroup_usage_register_event;
6165 event->unregister_event = mem_cgroup_usage_unregister_event;
6166 } else if (!strcmp(name, "memory.oom_control")) {
6167 event->register_event = mem_cgroup_oom_register_event;
6168 event->unregister_event = mem_cgroup_oom_unregister_event;
6169 } else if (!strcmp(name, "memory.pressure_level")) {
6170 event->register_event = vmpressure_register_event;
6171 event->unregister_event = vmpressure_unregister_event;
6172 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6173 event->register_event = memsw_cgroup_usage_register_event;
6174 event->unregister_event = memsw_cgroup_usage_unregister_event;
6175 } else {
6176 ret = -EINVAL;
6177 goto out_put_cfile;
6178 }
6179
6180 /*
6181 * Verify @cfile should belong to @css. Also, remaining events are
6182 * automatically removed on cgroup destruction but the removal is
6183 * asynchronous, so take an extra ref on @css.
6184 */
6185 rcu_read_lock();
6186
6187 ret = -EINVAL;
6188 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6189 &mem_cgroup_subsys);
6190 if (cfile_css == css && css_tryget(css))
6191 ret = 0;
6192
6193 rcu_read_unlock();
6194 if (ret)
6195 goto out_put_cfile;
6196
6197 ret = event->register_event(memcg, event->eventfd, buffer);
6198 if (ret)
6199 goto out_put_css;
6200
6201 efile.file->f_op->poll(efile.file, &event->pt);
6202
6203 spin_lock(&memcg->event_list_lock);
6204 list_add(&event->list, &memcg->event_list);
6205 spin_unlock(&memcg->event_list_lock);
6206
6207 fdput(cfile);
6208 fdput(efile);
6209
6210 return 0;
6211
6212 out_put_css:
6213 css_put(css);
6214 out_put_cfile:
6215 fdput(cfile);
6216 out_put_eventfd:
6217 eventfd_ctx_put(event->eventfd);
6218 out_put_efile:
6219 fdput(efile);
6220 out_kfree:
6221 kfree(event);
6222
6223 return ret;
6224 }
6225
6226 static struct cftype mem_cgroup_files[] = {
6227 {
6228 .name = "usage_in_bytes",
6229 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6230 .read_u64 = mem_cgroup_read_u64,
6231 },
6232 {
6233 .name = "max_usage_in_bytes",
6234 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6235 .trigger = mem_cgroup_reset,
6236 .read_u64 = mem_cgroup_read_u64,
6237 },
6238 {
6239 .name = "limit_in_bytes",
6240 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6241 .write_string = mem_cgroup_write,
6242 .read_u64 = mem_cgroup_read_u64,
6243 },
6244 {
6245 .name = "soft_limit_in_bytes",
6246 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6247 .write_string = mem_cgroup_write,
6248 .read_u64 = mem_cgroup_read_u64,
6249 },
6250 {
6251 .name = "failcnt",
6252 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6253 .trigger = mem_cgroup_reset,
6254 .read_u64 = mem_cgroup_read_u64,
6255 },
6256 {
6257 .name = "stat",
6258 .seq_show = memcg_stat_show,
6259 },
6260 {
6261 .name = "force_empty",
6262 .trigger = mem_cgroup_force_empty_write,
6263 },
6264 {
6265 .name = "use_hierarchy",
6266 .flags = CFTYPE_INSANE,
6267 .write_u64 = mem_cgroup_hierarchy_write,
6268 .read_u64 = mem_cgroup_hierarchy_read,
6269 },
6270 {
6271 .name = "cgroup.event_control", /* XXX: for compat */
6272 .write_string = memcg_write_event_control,
6273 .flags = CFTYPE_NO_PREFIX,
6274 .mode = S_IWUGO,
6275 },
6276 {
6277 .name = "swappiness",
6278 .read_u64 = mem_cgroup_swappiness_read,
6279 .write_u64 = mem_cgroup_swappiness_write,
6280 },
6281 {
6282 .name = "move_charge_at_immigrate",
6283 .read_u64 = mem_cgroup_move_charge_read,
6284 .write_u64 = mem_cgroup_move_charge_write,
6285 },
6286 {
6287 .name = "oom_control",
6288 .seq_show = mem_cgroup_oom_control_read,
6289 .write_u64 = mem_cgroup_oom_control_write,
6290 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6291 },
6292 {
6293 .name = "pressure_level",
6294 },
6295 #ifdef CONFIG_NUMA
6296 {
6297 .name = "numa_stat",
6298 .seq_show = memcg_numa_stat_show,
6299 },
6300 #endif
6301 #ifdef CONFIG_MEMCG_KMEM
6302 {
6303 .name = "kmem.limit_in_bytes",
6304 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6305 .write_string = mem_cgroup_write,
6306 .read_u64 = mem_cgroup_read_u64,
6307 },
6308 {
6309 .name = "kmem.usage_in_bytes",
6310 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6311 .read_u64 = mem_cgroup_read_u64,
6312 },
6313 {
6314 .name = "kmem.failcnt",
6315 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6316 .trigger = mem_cgroup_reset,
6317 .read_u64 = mem_cgroup_read_u64,
6318 },
6319 {
6320 .name = "kmem.max_usage_in_bytes",
6321 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6322 .trigger = mem_cgroup_reset,
6323 .read_u64 = mem_cgroup_read_u64,
6324 },
6325 #ifdef CONFIG_SLABINFO
6326 {
6327 .name = "kmem.slabinfo",
6328 .seq_show = mem_cgroup_slabinfo_read,
6329 },
6330 #endif
6331 #endif
6332 { }, /* terminate */
6333 };
6334
6335 #ifdef CONFIG_MEMCG_SWAP
6336 static struct cftype memsw_cgroup_files[] = {
6337 {
6338 .name = "memsw.usage_in_bytes",
6339 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6340 .read_u64 = mem_cgroup_read_u64,
6341 },
6342 {
6343 .name = "memsw.max_usage_in_bytes",
6344 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6345 .trigger = mem_cgroup_reset,
6346 .read_u64 = mem_cgroup_read_u64,
6347 },
6348 {
6349 .name = "memsw.limit_in_bytes",
6350 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6351 .write_string = mem_cgroup_write,
6352 .read_u64 = mem_cgroup_read_u64,
6353 },
6354 {
6355 .name = "memsw.failcnt",
6356 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6357 .trigger = mem_cgroup_reset,
6358 .read_u64 = mem_cgroup_read_u64,
6359 },
6360 { }, /* terminate */
6361 };
6362 #endif
6363 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6364 {
6365 struct mem_cgroup_per_node *pn;
6366 struct mem_cgroup_per_zone *mz;
6367 int zone, tmp = node;
6368 /*
6369 * This routine is called against possible nodes.
6370 * But it's BUG to call kmalloc() against offline node.
6371 *
6372 * TODO: this routine can waste much memory for nodes which will
6373 * never be onlined. It's better to use memory hotplug callback
6374 * function.
6375 */
6376 if (!node_state(node, N_NORMAL_MEMORY))
6377 tmp = -1;
6378 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6379 if (!pn)
6380 return 1;
6381
6382 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6383 mz = &pn->zoneinfo[zone];
6384 lruvec_init(&mz->lruvec);
6385 mz->usage_in_excess = 0;
6386 mz->on_tree = false;
6387 mz->memcg = memcg;
6388 }
6389 memcg->nodeinfo[node] = pn;
6390 return 0;
6391 }
6392
6393 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6394 {
6395 kfree(memcg->nodeinfo[node]);
6396 }
6397
6398 static struct mem_cgroup *mem_cgroup_alloc(void)
6399 {
6400 struct mem_cgroup *memcg;
6401 size_t size;
6402
6403 size = sizeof(struct mem_cgroup);
6404 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6405
6406 memcg = kzalloc(size, GFP_KERNEL);
6407 if (!memcg)
6408 return NULL;
6409
6410 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6411 if (!memcg->stat)
6412 goto out_free;
6413 spin_lock_init(&memcg->pcp_counter_lock);
6414 return memcg;
6415
6416 out_free:
6417 kfree(memcg);
6418 return NULL;
6419 }
6420
6421 /*
6422 * At destroying mem_cgroup, references from swap_cgroup can remain.
6423 * (scanning all at force_empty is too costly...)
6424 *
6425 * Instead of clearing all references at force_empty, we remember
6426 * the number of reference from swap_cgroup and free mem_cgroup when
6427 * it goes down to 0.
6428 *
6429 * Removal of cgroup itself succeeds regardless of refs from swap.
6430 */
6431
6432 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6433 {
6434 int node;
6435
6436 mem_cgroup_remove_from_trees(memcg);
6437
6438 for_each_node(node)
6439 free_mem_cgroup_per_zone_info(memcg, node);
6440
6441 free_percpu(memcg->stat);
6442
6443 /*
6444 * We need to make sure that (at least for now), the jump label
6445 * destruction code runs outside of the cgroup lock. This is because
6446 * get_online_cpus(), which is called from the static_branch update,
6447 * can't be called inside the cgroup_lock. cpusets are the ones
6448 * enforcing this dependency, so if they ever change, we might as well.
6449 *
6450 * schedule_work() will guarantee this happens. Be careful if you need
6451 * to move this code around, and make sure it is outside
6452 * the cgroup_lock.
6453 */
6454 disarm_static_keys(memcg);
6455 kfree(memcg);
6456 }
6457
6458 /*
6459 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6460 */
6461 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6462 {
6463 if (!memcg->res.parent)
6464 return NULL;
6465 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6466 }
6467 EXPORT_SYMBOL(parent_mem_cgroup);
6468
6469 static void __init mem_cgroup_soft_limit_tree_init(void)
6470 {
6471 struct mem_cgroup_tree_per_node *rtpn;
6472 struct mem_cgroup_tree_per_zone *rtpz;
6473 int tmp, node, zone;
6474
6475 for_each_node(node) {
6476 tmp = node;
6477 if (!node_state(node, N_NORMAL_MEMORY))
6478 tmp = -1;
6479 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6480 BUG_ON(!rtpn);
6481
6482 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6483
6484 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6485 rtpz = &rtpn->rb_tree_per_zone[zone];
6486 rtpz->rb_root = RB_ROOT;
6487 spin_lock_init(&rtpz->lock);
6488 }
6489 }
6490 }
6491
6492 static struct cgroup_subsys_state * __ref
6493 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6494 {
6495 struct mem_cgroup *memcg;
6496 long error = -ENOMEM;
6497 int node;
6498
6499 memcg = mem_cgroup_alloc();
6500 if (!memcg)
6501 return ERR_PTR(error);
6502
6503 for_each_node(node)
6504 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6505 goto free_out;
6506
6507 /* root ? */
6508 if (parent_css == NULL) {
6509 root_mem_cgroup = memcg;
6510 res_counter_init(&memcg->res, NULL);
6511 res_counter_init(&memcg->memsw, NULL);
6512 res_counter_init(&memcg->kmem, NULL);
6513 }
6514
6515 memcg->last_scanned_node = MAX_NUMNODES;
6516 INIT_LIST_HEAD(&memcg->oom_notify);
6517 memcg->move_charge_at_immigrate = 0;
6518 mutex_init(&memcg->thresholds_lock);
6519 spin_lock_init(&memcg->move_lock);
6520 vmpressure_init(&memcg->vmpressure);
6521 INIT_LIST_HEAD(&memcg->event_list);
6522 spin_lock_init(&memcg->event_list_lock);
6523
6524 return &memcg->css;
6525
6526 free_out:
6527 __mem_cgroup_free(memcg);
6528 return ERR_PTR(error);
6529 }
6530
6531 static int
6532 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6533 {
6534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6535 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6536 int error = 0;
6537
6538 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6539 return -ENOSPC;
6540
6541 if (!parent)
6542 return 0;
6543
6544 mutex_lock(&memcg_create_mutex);
6545
6546 memcg->use_hierarchy = parent->use_hierarchy;
6547 memcg->oom_kill_disable = parent->oom_kill_disable;
6548 memcg->swappiness = mem_cgroup_swappiness(parent);
6549
6550 if (parent->use_hierarchy) {
6551 res_counter_init(&memcg->res, &parent->res);
6552 res_counter_init(&memcg->memsw, &parent->memsw);
6553 res_counter_init(&memcg->kmem, &parent->kmem);
6554
6555 /*
6556 * No need to take a reference to the parent because cgroup
6557 * core guarantees its existence.
6558 */
6559 } else {
6560 res_counter_init(&memcg->res, NULL);
6561 res_counter_init(&memcg->memsw, NULL);
6562 res_counter_init(&memcg->kmem, NULL);
6563 /*
6564 * Deeper hierachy with use_hierarchy == false doesn't make
6565 * much sense so let cgroup subsystem know about this
6566 * unfortunate state in our controller.
6567 */
6568 if (parent != root_mem_cgroup)
6569 mem_cgroup_subsys.broken_hierarchy = true;
6570 }
6571
6572 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6573 mutex_unlock(&memcg_create_mutex);
6574 return error;
6575 }
6576
6577 /*
6578 * Announce all parents that a group from their hierarchy is gone.
6579 */
6580 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6581 {
6582 struct mem_cgroup *parent = memcg;
6583
6584 while ((parent = parent_mem_cgroup(parent)))
6585 mem_cgroup_iter_invalidate(parent);
6586
6587 /*
6588 * if the root memcg is not hierarchical we have to check it
6589 * explicitely.
6590 */
6591 if (!root_mem_cgroup->use_hierarchy)
6592 mem_cgroup_iter_invalidate(root_mem_cgroup);
6593 }
6594
6595 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6596 {
6597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6598 struct mem_cgroup_event *event, *tmp;
6599
6600 /*
6601 * Unregister events and notify userspace.
6602 * Notify userspace about cgroup removing only after rmdir of cgroup
6603 * directory to avoid race between userspace and kernelspace.
6604 */
6605 spin_lock(&memcg->event_list_lock);
6606 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6607 list_del_init(&event->list);
6608 schedule_work(&event->remove);
6609 }
6610 spin_unlock(&memcg->event_list_lock);
6611
6612 kmem_cgroup_css_offline(memcg);
6613
6614 mem_cgroup_invalidate_reclaim_iterators(memcg);
6615 mem_cgroup_reparent_charges(memcg);
6616 mem_cgroup_destroy_all_caches(memcg);
6617 vmpressure_cleanup(&memcg->vmpressure);
6618 }
6619
6620 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6621 {
6622 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6623 /*
6624 * XXX: css_offline() would be where we should reparent all
6625 * memory to prepare the cgroup for destruction. However,
6626 * memcg does not do css_tryget() and res_counter charging
6627 * under the same RCU lock region, which means that charging
6628 * could race with offlining. Offlining only happens to
6629 * cgroups with no tasks in them but charges can show up
6630 * without any tasks from the swapin path when the target
6631 * memcg is looked up from the swapout record and not from the
6632 * current task as it usually is. A race like this can leak
6633 * charges and put pages with stale cgroup pointers into
6634 * circulation:
6635 *
6636 * #0 #1
6637 * lookup_swap_cgroup_id()
6638 * rcu_read_lock()
6639 * mem_cgroup_lookup()
6640 * css_tryget()
6641 * rcu_read_unlock()
6642 * disable css_tryget()
6643 * call_rcu()
6644 * offline_css()
6645 * reparent_charges()
6646 * res_counter_charge()
6647 * css_put()
6648 * css_free()
6649 * pc->mem_cgroup = dead memcg
6650 * add page to lru
6651 *
6652 * The bulk of the charges are still moved in offline_css() to
6653 * avoid pinning a lot of pages in case a long-term reference
6654 * like a swapout record is deferring the css_free() to long
6655 * after offlining. But this makes sure we catch any charges
6656 * made after offlining:
6657 */
6658 mem_cgroup_reparent_charges(memcg);
6659
6660 memcg_destroy_kmem(memcg);
6661 __mem_cgroup_free(memcg);
6662 }
6663
6664 #ifdef CONFIG_MMU
6665 /* Handlers for move charge at task migration. */
6666 #define PRECHARGE_COUNT_AT_ONCE 256
6667 static int mem_cgroup_do_precharge(unsigned long count)
6668 {
6669 int ret = 0;
6670 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6671 struct mem_cgroup *memcg = mc.to;
6672
6673 if (mem_cgroup_is_root(memcg)) {
6674 mc.precharge += count;
6675 /* we don't need css_get for root */
6676 return ret;
6677 }
6678 /* try to charge at once */
6679 if (count > 1) {
6680 struct res_counter *dummy;
6681 /*
6682 * "memcg" cannot be under rmdir() because we've already checked
6683 * by cgroup_lock_live_cgroup() that it is not removed and we
6684 * are still under the same cgroup_mutex. So we can postpone
6685 * css_get().
6686 */
6687 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6688 goto one_by_one;
6689 if (do_swap_account && res_counter_charge(&memcg->memsw,
6690 PAGE_SIZE * count, &dummy)) {
6691 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6692 goto one_by_one;
6693 }
6694 mc.precharge += count;
6695 return ret;
6696 }
6697 one_by_one:
6698 /* fall back to one by one charge */
6699 while (count--) {
6700 if (signal_pending(current)) {
6701 ret = -EINTR;
6702 break;
6703 }
6704 if (!batch_count--) {
6705 batch_count = PRECHARGE_COUNT_AT_ONCE;
6706 cond_resched();
6707 }
6708 ret = __mem_cgroup_try_charge(NULL,
6709 GFP_KERNEL, 1, &memcg, false);
6710 if (ret)
6711 /* mem_cgroup_clear_mc() will do uncharge later */
6712 return ret;
6713 mc.precharge++;
6714 }
6715 return ret;
6716 }
6717
6718 /**
6719 * get_mctgt_type - get target type of moving charge
6720 * @vma: the vma the pte to be checked belongs
6721 * @addr: the address corresponding to the pte to be checked
6722 * @ptent: the pte to be checked
6723 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6724 *
6725 * Returns
6726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6728 * move charge. if @target is not NULL, the page is stored in target->page
6729 * with extra refcnt got(Callers should handle it).
6730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6731 * target for charge migration. if @target is not NULL, the entry is stored
6732 * in target->ent.
6733 *
6734 * Called with pte lock held.
6735 */
6736 union mc_target {
6737 struct page *page;
6738 swp_entry_t ent;
6739 };
6740
6741 enum mc_target_type {
6742 MC_TARGET_NONE = 0,
6743 MC_TARGET_PAGE,
6744 MC_TARGET_SWAP,
6745 };
6746
6747 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6748 unsigned long addr, pte_t ptent)
6749 {
6750 struct page *page = vm_normal_page(vma, addr, ptent);
6751
6752 if (!page || !page_mapped(page))
6753 return NULL;
6754 if (PageAnon(page)) {
6755 /* we don't move shared anon */
6756 if (!move_anon())
6757 return NULL;
6758 } else if (!move_file())
6759 /* we ignore mapcount for file pages */
6760 return NULL;
6761 if (!get_page_unless_zero(page))
6762 return NULL;
6763
6764 return page;
6765 }
6766
6767 #ifdef CONFIG_SWAP
6768 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6769 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6770 {
6771 struct page *page = NULL;
6772 swp_entry_t ent = pte_to_swp_entry(ptent);
6773
6774 if (!move_anon() || non_swap_entry(ent))
6775 return NULL;
6776 /*
6777 * Because lookup_swap_cache() updates some statistics counter,
6778 * we call find_get_page() with swapper_space directly.
6779 */
6780 page = find_get_page(swap_address_space(ent), ent.val);
6781 if (do_swap_account)
6782 entry->val = ent.val;
6783
6784 return page;
6785 }
6786 #else
6787 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6788 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6789 {
6790 return NULL;
6791 }
6792 #endif
6793
6794 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6795 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6796 {
6797 struct page *page = NULL;
6798 struct address_space *mapping;
6799 pgoff_t pgoff;
6800
6801 if (!vma->vm_file) /* anonymous vma */
6802 return NULL;
6803 if (!move_file())
6804 return NULL;
6805
6806 mapping = vma->vm_file->f_mapping;
6807 if (pte_none(ptent))
6808 pgoff = linear_page_index(vma, addr);
6809 else /* pte_file(ptent) is true */
6810 pgoff = pte_to_pgoff(ptent);
6811
6812 /* page is moved even if it's not RSS of this task(page-faulted). */
6813 page = find_get_page(mapping, pgoff);
6814
6815 #ifdef CONFIG_SWAP
6816 /* shmem/tmpfs may report page out on swap: account for that too. */
6817 if (radix_tree_exceptional_entry(page)) {
6818 swp_entry_t swap = radix_to_swp_entry(page);
6819 if (do_swap_account)
6820 *entry = swap;
6821 page = find_get_page(swap_address_space(swap), swap.val);
6822 }
6823 #endif
6824 return page;
6825 }
6826
6827 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6828 unsigned long addr, pte_t ptent, union mc_target *target)
6829 {
6830 struct page *page = NULL;
6831 struct page_cgroup *pc;
6832 enum mc_target_type ret = MC_TARGET_NONE;
6833 swp_entry_t ent = { .val = 0 };
6834
6835 if (pte_present(ptent))
6836 page = mc_handle_present_pte(vma, addr, ptent);
6837 else if (is_swap_pte(ptent))
6838 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6839 else if (pte_none(ptent) || pte_file(ptent))
6840 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6841
6842 if (!page && !ent.val)
6843 return ret;
6844 if (page) {
6845 pc = lookup_page_cgroup(page);
6846 /*
6847 * Do only loose check w/o page_cgroup lock.
6848 * mem_cgroup_move_account() checks the pc is valid or not under
6849 * the lock.
6850 */
6851 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6852 ret = MC_TARGET_PAGE;
6853 if (target)
6854 target->page = page;
6855 }
6856 if (!ret || !target)
6857 put_page(page);
6858 }
6859 /* There is a swap entry and a page doesn't exist or isn't charged */
6860 if (ent.val && !ret &&
6861 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6862 ret = MC_TARGET_SWAP;
6863 if (target)
6864 target->ent = ent;
6865 }
6866 return ret;
6867 }
6868
6869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6870 /*
6871 * We don't consider swapping or file mapped pages because THP does not
6872 * support them for now.
6873 * Caller should make sure that pmd_trans_huge(pmd) is true.
6874 */
6875 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6876 unsigned long addr, pmd_t pmd, union mc_target *target)
6877 {
6878 struct page *page = NULL;
6879 struct page_cgroup *pc;
6880 enum mc_target_type ret = MC_TARGET_NONE;
6881
6882 page = pmd_page(pmd);
6883 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6884 if (!move_anon())
6885 return ret;
6886 pc = lookup_page_cgroup(page);
6887 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6888 ret = MC_TARGET_PAGE;
6889 if (target) {
6890 get_page(page);
6891 target->page = page;
6892 }
6893 }
6894 return ret;
6895 }
6896 #else
6897 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6898 unsigned long addr, pmd_t pmd, union mc_target *target)
6899 {
6900 return MC_TARGET_NONE;
6901 }
6902 #endif
6903
6904 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6905 unsigned long addr, unsigned long end,
6906 struct mm_walk *walk)
6907 {
6908 struct vm_area_struct *vma = walk->private;
6909 pte_t *pte;
6910 spinlock_t *ptl;
6911
6912 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6913 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6914 mc.precharge += HPAGE_PMD_NR;
6915 spin_unlock(ptl);
6916 return 0;
6917 }
6918
6919 if (pmd_trans_unstable(pmd))
6920 return 0;
6921 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6922 for (; addr != end; pte++, addr += PAGE_SIZE)
6923 if (get_mctgt_type(vma, addr, *pte, NULL))
6924 mc.precharge++; /* increment precharge temporarily */
6925 pte_unmap_unlock(pte - 1, ptl);
6926 cond_resched();
6927
6928 return 0;
6929 }
6930
6931 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6932 {
6933 unsigned long precharge;
6934 struct vm_area_struct *vma;
6935
6936 down_read(&mm->mmap_sem);
6937 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6938 struct mm_walk mem_cgroup_count_precharge_walk = {
6939 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6940 .mm = mm,
6941 .private = vma,
6942 };
6943 if (is_vm_hugetlb_page(vma))
6944 continue;
6945 walk_page_range(vma->vm_start, vma->vm_end,
6946 &mem_cgroup_count_precharge_walk);
6947 }
6948 up_read(&mm->mmap_sem);
6949
6950 precharge = mc.precharge;
6951 mc.precharge = 0;
6952
6953 return precharge;
6954 }
6955
6956 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6957 {
6958 unsigned long precharge = mem_cgroup_count_precharge(mm);
6959
6960 VM_BUG_ON(mc.moving_task);
6961 mc.moving_task = current;
6962 return mem_cgroup_do_precharge(precharge);
6963 }
6964
6965 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6966 static void __mem_cgroup_clear_mc(void)
6967 {
6968 struct mem_cgroup *from = mc.from;
6969 struct mem_cgroup *to = mc.to;
6970 int i;
6971
6972 /* we must uncharge all the leftover precharges from mc.to */
6973 if (mc.precharge) {
6974 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6975 mc.precharge = 0;
6976 }
6977 /*
6978 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6979 * we must uncharge here.
6980 */
6981 if (mc.moved_charge) {
6982 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6983 mc.moved_charge = 0;
6984 }
6985 /* we must fixup refcnts and charges */
6986 if (mc.moved_swap) {
6987 /* uncharge swap account from the old cgroup */
6988 if (!mem_cgroup_is_root(mc.from))
6989 res_counter_uncharge(&mc.from->memsw,
6990 PAGE_SIZE * mc.moved_swap);
6991
6992 for (i = 0; i < mc.moved_swap; i++)
6993 css_put(&mc.from->css);
6994
6995 if (!mem_cgroup_is_root(mc.to)) {
6996 /*
6997 * we charged both to->res and to->memsw, so we should
6998 * uncharge to->res.
6999 */
7000 res_counter_uncharge(&mc.to->res,
7001 PAGE_SIZE * mc.moved_swap);
7002 }
7003 /* we've already done css_get(mc.to) */
7004 mc.moved_swap = 0;
7005 }
7006 memcg_oom_recover(from);
7007 memcg_oom_recover(to);
7008 wake_up_all(&mc.waitq);
7009 }
7010
7011 static void mem_cgroup_clear_mc(void)
7012 {
7013 struct mem_cgroup *from = mc.from;
7014
7015 /*
7016 * we must clear moving_task before waking up waiters at the end of
7017 * task migration.
7018 */
7019 mc.moving_task = NULL;
7020 __mem_cgroup_clear_mc();
7021 spin_lock(&mc.lock);
7022 mc.from = NULL;
7023 mc.to = NULL;
7024 spin_unlock(&mc.lock);
7025 mem_cgroup_end_move(from);
7026 }
7027
7028 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7029 struct cgroup_taskset *tset)
7030 {
7031 struct task_struct *p = cgroup_taskset_first(tset);
7032 int ret = 0;
7033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7034 unsigned long move_charge_at_immigrate;
7035
7036 /*
7037 * We are now commited to this value whatever it is. Changes in this
7038 * tunable will only affect upcoming migrations, not the current one.
7039 * So we need to save it, and keep it going.
7040 */
7041 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7042 if (move_charge_at_immigrate) {
7043 struct mm_struct *mm;
7044 struct mem_cgroup *from = mem_cgroup_from_task(p);
7045
7046 VM_BUG_ON(from == memcg);
7047
7048 mm = get_task_mm(p);
7049 if (!mm)
7050 return 0;
7051 /* We move charges only when we move a owner of the mm */
7052 if (mm->owner == p) {
7053 VM_BUG_ON(mc.from);
7054 VM_BUG_ON(mc.to);
7055 VM_BUG_ON(mc.precharge);
7056 VM_BUG_ON(mc.moved_charge);
7057 VM_BUG_ON(mc.moved_swap);
7058 mem_cgroup_start_move(from);
7059 spin_lock(&mc.lock);
7060 mc.from = from;
7061 mc.to = memcg;
7062 mc.immigrate_flags = move_charge_at_immigrate;
7063 spin_unlock(&mc.lock);
7064 /* We set mc.moving_task later */
7065
7066 ret = mem_cgroup_precharge_mc(mm);
7067 if (ret)
7068 mem_cgroup_clear_mc();
7069 }
7070 mmput(mm);
7071 }
7072 return ret;
7073 }
7074
7075 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7076 struct cgroup_taskset *tset)
7077 {
7078 mem_cgroup_clear_mc();
7079 }
7080
7081 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7082 unsigned long addr, unsigned long end,
7083 struct mm_walk *walk)
7084 {
7085 int ret = 0;
7086 struct vm_area_struct *vma = walk->private;
7087 pte_t *pte;
7088 spinlock_t *ptl;
7089 enum mc_target_type target_type;
7090 union mc_target target;
7091 struct page *page;
7092 struct page_cgroup *pc;
7093
7094 /*
7095 * We don't take compound_lock() here but no race with splitting thp
7096 * happens because:
7097 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7098 * under splitting, which means there's no concurrent thp split,
7099 * - if another thread runs into split_huge_page() just after we
7100 * entered this if-block, the thread must wait for page table lock
7101 * to be unlocked in __split_huge_page_splitting(), where the main
7102 * part of thp split is not executed yet.
7103 */
7104 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7105 if (mc.precharge < HPAGE_PMD_NR) {
7106 spin_unlock(ptl);
7107 return 0;
7108 }
7109 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7110 if (target_type == MC_TARGET_PAGE) {
7111 page = target.page;
7112 if (!isolate_lru_page(page)) {
7113 pc = lookup_page_cgroup(page);
7114 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7115 pc, mc.from, mc.to)) {
7116 mc.precharge -= HPAGE_PMD_NR;
7117 mc.moved_charge += HPAGE_PMD_NR;
7118 }
7119 putback_lru_page(page);
7120 }
7121 put_page(page);
7122 }
7123 spin_unlock(ptl);
7124 return 0;
7125 }
7126
7127 if (pmd_trans_unstable(pmd))
7128 return 0;
7129 retry:
7130 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7131 for (; addr != end; addr += PAGE_SIZE) {
7132 pte_t ptent = *(pte++);
7133 swp_entry_t ent;
7134
7135 if (!mc.precharge)
7136 break;
7137
7138 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7139 case MC_TARGET_PAGE:
7140 page = target.page;
7141 if (isolate_lru_page(page))
7142 goto put;
7143 pc = lookup_page_cgroup(page);
7144 if (!mem_cgroup_move_account(page, 1, pc,
7145 mc.from, mc.to)) {
7146 mc.precharge--;
7147 /* we uncharge from mc.from later. */
7148 mc.moved_charge++;
7149 }
7150 putback_lru_page(page);
7151 put: /* get_mctgt_type() gets the page */
7152 put_page(page);
7153 break;
7154 case MC_TARGET_SWAP:
7155 ent = target.ent;
7156 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7157 mc.precharge--;
7158 /* we fixup refcnts and charges later. */
7159 mc.moved_swap++;
7160 }
7161 break;
7162 default:
7163 break;
7164 }
7165 }
7166 pte_unmap_unlock(pte - 1, ptl);
7167 cond_resched();
7168
7169 if (addr != end) {
7170 /*
7171 * We have consumed all precharges we got in can_attach().
7172 * We try charge one by one, but don't do any additional
7173 * charges to mc.to if we have failed in charge once in attach()
7174 * phase.
7175 */
7176 ret = mem_cgroup_do_precharge(1);
7177 if (!ret)
7178 goto retry;
7179 }
7180
7181 return ret;
7182 }
7183
7184 static void mem_cgroup_move_charge(struct mm_struct *mm)
7185 {
7186 struct vm_area_struct *vma;
7187
7188 lru_add_drain_all();
7189 retry:
7190 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7191 /*
7192 * Someone who are holding the mmap_sem might be waiting in
7193 * waitq. So we cancel all extra charges, wake up all waiters,
7194 * and retry. Because we cancel precharges, we might not be able
7195 * to move enough charges, but moving charge is a best-effort
7196 * feature anyway, so it wouldn't be a big problem.
7197 */
7198 __mem_cgroup_clear_mc();
7199 cond_resched();
7200 goto retry;
7201 }
7202 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7203 int ret;
7204 struct mm_walk mem_cgroup_move_charge_walk = {
7205 .pmd_entry = mem_cgroup_move_charge_pte_range,
7206 .mm = mm,
7207 .private = vma,
7208 };
7209 if (is_vm_hugetlb_page(vma))
7210 continue;
7211 ret = walk_page_range(vma->vm_start, vma->vm_end,
7212 &mem_cgroup_move_charge_walk);
7213 if (ret)
7214 /*
7215 * means we have consumed all precharges and failed in
7216 * doing additional charge. Just abandon here.
7217 */
7218 break;
7219 }
7220 up_read(&mm->mmap_sem);
7221 }
7222
7223 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7224 struct cgroup_taskset *tset)
7225 {
7226 struct task_struct *p = cgroup_taskset_first(tset);
7227 struct mm_struct *mm = get_task_mm(p);
7228
7229 if (mm) {
7230 if (mc.to)
7231 mem_cgroup_move_charge(mm);
7232 mmput(mm);
7233 }
7234 if (mc.to)
7235 mem_cgroup_clear_mc();
7236 }
7237 #else /* !CONFIG_MMU */
7238 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7239 struct cgroup_taskset *tset)
7240 {
7241 return 0;
7242 }
7243 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7244 struct cgroup_taskset *tset)
7245 {
7246 }
7247 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7248 struct cgroup_taskset *tset)
7249 {
7250 }
7251 #endif
7252
7253 /*
7254 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7255 * to verify sane_behavior flag on each mount attempt.
7256 */
7257 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7258 {
7259 /*
7260 * use_hierarchy is forced with sane_behavior. cgroup core
7261 * guarantees that @root doesn't have any children, so turning it
7262 * on for the root memcg is enough.
7263 */
7264 if (cgroup_sane_behavior(root_css->cgroup))
7265 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7266 }
7267
7268 struct cgroup_subsys mem_cgroup_subsys = {
7269 .name = "memory",
7270 .subsys_id = mem_cgroup_subsys_id,
7271 .css_alloc = mem_cgroup_css_alloc,
7272 .css_online = mem_cgroup_css_online,
7273 .css_offline = mem_cgroup_css_offline,
7274 .css_free = mem_cgroup_css_free,
7275 .can_attach = mem_cgroup_can_attach,
7276 .cancel_attach = mem_cgroup_cancel_attach,
7277 .attach = mem_cgroup_move_task,
7278 .bind = mem_cgroup_bind,
7279 .base_cftypes = mem_cgroup_files,
7280 .early_init = 0,
7281 };
7282
7283 #ifdef CONFIG_MEMCG_SWAP
7284 static int __init enable_swap_account(char *s)
7285 {
7286 if (!strcmp(s, "1"))
7287 really_do_swap_account = 1;
7288 else if (!strcmp(s, "0"))
7289 really_do_swap_account = 0;
7290 return 1;
7291 }
7292 __setup("swapaccount=", enable_swap_account);
7293
7294 static void __init memsw_file_init(void)
7295 {
7296 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7297 }
7298
7299 static void __init enable_swap_cgroup(void)
7300 {
7301 if (!mem_cgroup_disabled() && really_do_swap_account) {
7302 do_swap_account = 1;
7303 memsw_file_init();
7304 }
7305 }
7306
7307 #else
7308 static void __init enable_swap_cgroup(void)
7309 {
7310 }
7311 #endif
7312
7313 /*
7314 * subsys_initcall() for memory controller.
7315 *
7316 * Some parts like hotcpu_notifier() have to be initialized from this context
7317 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7318 * everything that doesn't depend on a specific mem_cgroup structure should
7319 * be initialized from here.
7320 */
7321 static int __init mem_cgroup_init(void)
7322 {
7323 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7324 enable_swap_cgroup();
7325 mem_cgroup_soft_limit_tree_init();
7326 memcg_stock_init();
7327 return 0;
7328 }
7329 subsys_initcall(mem_cgroup_init);
This page took 0.25982 seconds and 5 git commands to generate.