memcg: get rid of memcg_create_cache_name
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 /*
530 * The ID of the root cgroup is 0, but memcg treat 0 as an
531 * invalid ID, so we return (cgroup_id + 1).
532 */
533 return memcg->css.cgroup->id + 1;
534 }
535
536 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
537 {
538 struct cgroup_subsys_state *css;
539
540 css = css_from_id(id - 1, &memory_cgrp_subsys);
541 return mem_cgroup_from_css(css);
542 }
543
544 /* Writing them here to avoid exposing memcg's inner layout */
545 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546
547 void sock_update_memcg(struct sock *sk)
548 {
549 if (mem_cgroup_sockets_enabled) {
550 struct mem_cgroup *memcg;
551 struct cg_proto *cg_proto;
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565 css_get(&sk->sk_cgrp->memcg->css);
566 return;
567 }
568
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 if (!mem_cgroup_is_root(memcg) &&
573 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
574 sk->sk_cgrp = cg_proto;
575 }
576 rcu_read_unlock();
577 }
578 }
579 EXPORT_SYMBOL(sock_update_memcg);
580
581 void sock_release_memcg(struct sock *sk)
582 {
583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
587 css_put(&sk->sk_cgrp->memcg->css);
588 }
589 }
590
591 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592 {
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
596 return &memcg->tcp_mem;
597 }
598 EXPORT_SYMBOL(tcp_proto_cgroup);
599
600 static void disarm_sock_keys(struct mem_cgroup *memcg)
601 {
602 if (!memcg_proto_activated(&memcg->tcp_mem))
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605 }
606 #else
607 static void disarm_sock_keys(struct mem_cgroup *memcg)
608 {
609 }
610 #endif
611
612 #ifdef CONFIG_MEMCG_KMEM
613 /*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
620 *
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
624 */
625 static DEFINE_IDA(kmem_limited_groups);
626 int memcg_limited_groups_array_size;
627
628 /*
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
633 *
634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 * increase ours as well if it increases.
639 */
640 #define MEMCG_CACHES_MIN_SIZE 4
641 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642
643 /*
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
648 */
649 struct static_key memcg_kmem_enabled_key;
650 EXPORT_SYMBOL(memcg_kmem_enabled_key);
651
652 static void disarm_kmem_keys(struct mem_cgroup *memcg)
653 {
654 if (memcg_kmem_is_active(memcg)) {
655 static_key_slow_dec(&memcg_kmem_enabled_key);
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
657 }
658 /*
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
661 */
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
663 }
664 #else
665 static void disarm_kmem_keys(struct mem_cgroup *memcg)
666 {
667 }
668 #endif /* CONFIG_MEMCG_KMEM */
669
670 static void disarm_static_keys(struct mem_cgroup *memcg)
671 {
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
674 }
675
676 static void drain_all_stock_async(struct mem_cgroup *memcg);
677
678 static struct mem_cgroup_per_zone *
679 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
680 {
681 VM_BUG_ON((unsigned)nid >= nr_node_ids);
682 return &memcg->nodeinfo[nid]->zoneinfo[zid];
683 }
684
685 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
686 {
687 return &memcg->css;
688 }
689
690 static struct mem_cgroup_per_zone *
691 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
692 {
693 int nid = page_to_nid(page);
694 int zid = page_zonenum(page);
695
696 return mem_cgroup_zoneinfo(memcg, nid, zid);
697 }
698
699 static struct mem_cgroup_tree_per_zone *
700 soft_limit_tree_node_zone(int nid, int zid)
701 {
702 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
703 }
704
705 static struct mem_cgroup_tree_per_zone *
706 soft_limit_tree_from_page(struct page *page)
707 {
708 int nid = page_to_nid(page);
709 int zid = page_zonenum(page);
710
711 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
712 }
713
714 static void
715 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
716 struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz,
718 unsigned long long new_usage_in_excess)
719 {
720 struct rb_node **p = &mctz->rb_root.rb_node;
721 struct rb_node *parent = NULL;
722 struct mem_cgroup_per_zone *mz_node;
723
724 if (mz->on_tree)
725 return;
726
727 mz->usage_in_excess = new_usage_in_excess;
728 if (!mz->usage_in_excess)
729 return;
730 while (*p) {
731 parent = *p;
732 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
733 tree_node);
734 if (mz->usage_in_excess < mz_node->usage_in_excess)
735 p = &(*p)->rb_left;
736 /*
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
739 */
740 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
741 p = &(*p)->rb_right;
742 }
743 rb_link_node(&mz->tree_node, parent, p);
744 rb_insert_color(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = true;
746 }
747
748 static void
749 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
750 struct mem_cgroup_per_zone *mz,
751 struct mem_cgroup_tree_per_zone *mctz)
752 {
753 if (!mz->on_tree)
754 return;
755 rb_erase(&mz->tree_node, &mctz->rb_root);
756 mz->on_tree = false;
757 }
758
759 static void
760 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
761 struct mem_cgroup_per_zone *mz,
762 struct mem_cgroup_tree_per_zone *mctz)
763 {
764 spin_lock(&mctz->lock);
765 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
766 spin_unlock(&mctz->lock);
767 }
768
769
770 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
771 {
772 unsigned long long excess;
773 struct mem_cgroup_per_zone *mz;
774 struct mem_cgroup_tree_per_zone *mctz;
775 int nid = page_to_nid(page);
776 int zid = page_zonenum(page);
777 mctz = soft_limit_tree_from_page(page);
778
779 /*
780 * Necessary to update all ancestors when hierarchy is used.
781 * because their event counter is not touched.
782 */
783 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
784 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
785 excess = res_counter_soft_limit_excess(&memcg->res);
786 /*
787 * We have to update the tree if mz is on RB-tree or
788 * mem is over its softlimit.
789 */
790 if (excess || mz->on_tree) {
791 spin_lock(&mctz->lock);
792 /* if on-tree, remove it */
793 if (mz->on_tree)
794 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 /*
796 * Insert again. mz->usage_in_excess will be updated.
797 * If excess is 0, no tree ops.
798 */
799 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
800 spin_unlock(&mctz->lock);
801 }
802 }
803 }
804
805 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
806 {
807 int node, zone;
808 struct mem_cgroup_per_zone *mz;
809 struct mem_cgroup_tree_per_zone *mctz;
810
811 for_each_node(node) {
812 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
813 mz = mem_cgroup_zoneinfo(memcg, node, zone);
814 mctz = soft_limit_tree_node_zone(node, zone);
815 mem_cgroup_remove_exceeded(memcg, mz, mctz);
816 }
817 }
818 }
819
820 static struct mem_cgroup_per_zone *
821 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
822 {
823 struct rb_node *rightmost = NULL;
824 struct mem_cgroup_per_zone *mz;
825
826 retry:
827 mz = NULL;
828 rightmost = rb_last(&mctz->rb_root);
829 if (!rightmost)
830 goto done; /* Nothing to reclaim from */
831
832 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
833 /*
834 * Remove the node now but someone else can add it back,
835 * we will to add it back at the end of reclaim to its correct
836 * position in the tree.
837 */
838 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
839 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
840 !css_tryget(&mz->memcg->css))
841 goto retry;
842 done:
843 return mz;
844 }
845
846 static struct mem_cgroup_per_zone *
847 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
848 {
849 struct mem_cgroup_per_zone *mz;
850
851 spin_lock(&mctz->lock);
852 mz = __mem_cgroup_largest_soft_limit_node(mctz);
853 spin_unlock(&mctz->lock);
854 return mz;
855 }
856
857 /*
858 * Implementation Note: reading percpu statistics for memcg.
859 *
860 * Both of vmstat[] and percpu_counter has threshold and do periodic
861 * synchronization to implement "quick" read. There are trade-off between
862 * reading cost and precision of value. Then, we may have a chance to implement
863 * a periodic synchronizion of counter in memcg's counter.
864 *
865 * But this _read() function is used for user interface now. The user accounts
866 * memory usage by memory cgroup and he _always_ requires exact value because
867 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
868 * have to visit all online cpus and make sum. So, for now, unnecessary
869 * synchronization is not implemented. (just implemented for cpu hotplug)
870 *
871 * If there are kernel internal actions which can make use of some not-exact
872 * value, and reading all cpu value can be performance bottleneck in some
873 * common workload, threashold and synchonization as vmstat[] should be
874 * implemented.
875 */
876 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
877 enum mem_cgroup_stat_index idx)
878 {
879 long val = 0;
880 int cpu;
881
882 get_online_cpus();
883 for_each_online_cpu(cpu)
884 val += per_cpu(memcg->stat->count[idx], cpu);
885 #ifdef CONFIG_HOTPLUG_CPU
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.count[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
889 #endif
890 put_online_cpus();
891 return val;
892 }
893
894 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
895 bool charge)
896 {
897 int val = (charge) ? 1 : -1;
898 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
899 }
900
901 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
902 enum mem_cgroup_events_index idx)
903 {
904 unsigned long val = 0;
905 int cpu;
906
907 get_online_cpus();
908 for_each_online_cpu(cpu)
909 val += per_cpu(memcg->stat->events[idx], cpu);
910 #ifdef CONFIG_HOTPLUG_CPU
911 spin_lock(&memcg->pcp_counter_lock);
912 val += memcg->nocpu_base.events[idx];
913 spin_unlock(&memcg->pcp_counter_lock);
914 #endif
915 put_online_cpus();
916 return val;
917 }
918
919 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
920 struct page *page,
921 bool anon, int nr_pages)
922 {
923 /*
924 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
925 * counted as CACHE even if it's on ANON LRU.
926 */
927 if (anon)
928 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
929 nr_pages);
930 else
931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
932 nr_pages);
933
934 if (PageTransHuge(page))
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
936 nr_pages);
937
938 /* pagein of a big page is an event. So, ignore page size */
939 if (nr_pages > 0)
940 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
941 else {
942 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
943 nr_pages = -nr_pages; /* for event */
944 }
945
946 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
947 }
948
949 unsigned long
950 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
951 {
952 struct mem_cgroup_per_zone *mz;
953
954 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
955 return mz->lru_size[lru];
956 }
957
958 static unsigned long
959 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
960 unsigned int lru_mask)
961 {
962 struct mem_cgroup_per_zone *mz;
963 enum lru_list lru;
964 unsigned long ret = 0;
965
966 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
967
968 for_each_lru(lru) {
969 if (BIT(lru) & lru_mask)
970 ret += mz->lru_size[lru];
971 }
972 return ret;
973 }
974
975 static unsigned long
976 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
977 int nid, unsigned int lru_mask)
978 {
979 u64 total = 0;
980 int zid;
981
982 for (zid = 0; zid < MAX_NR_ZONES; zid++)
983 total += mem_cgroup_zone_nr_lru_pages(memcg,
984 nid, zid, lru_mask);
985
986 return total;
987 }
988
989 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
990 unsigned int lru_mask)
991 {
992 int nid;
993 u64 total = 0;
994
995 for_each_node_state(nid, N_MEMORY)
996 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
997 return total;
998 }
999
1000 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1001 enum mem_cgroup_events_target target)
1002 {
1003 unsigned long val, next;
1004
1005 val = __this_cpu_read(memcg->stat->nr_page_events);
1006 next = __this_cpu_read(memcg->stat->targets[target]);
1007 /* from time_after() in jiffies.h */
1008 if ((long)next - (long)val < 0) {
1009 switch (target) {
1010 case MEM_CGROUP_TARGET_THRESH:
1011 next = val + THRESHOLDS_EVENTS_TARGET;
1012 break;
1013 case MEM_CGROUP_TARGET_SOFTLIMIT:
1014 next = val + SOFTLIMIT_EVENTS_TARGET;
1015 break;
1016 case MEM_CGROUP_TARGET_NUMAINFO:
1017 next = val + NUMAINFO_EVENTS_TARGET;
1018 break;
1019 default:
1020 break;
1021 }
1022 __this_cpu_write(memcg->stat->targets[target], next);
1023 return true;
1024 }
1025 return false;
1026 }
1027
1028 /*
1029 * Check events in order.
1030 *
1031 */
1032 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1033 {
1034 preempt_disable();
1035 /* threshold event is triggered in finer grain than soft limit */
1036 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1037 MEM_CGROUP_TARGET_THRESH))) {
1038 bool do_softlimit;
1039 bool do_numainfo __maybe_unused;
1040
1041 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_SOFTLIMIT);
1043 #if MAX_NUMNODES > 1
1044 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1045 MEM_CGROUP_TARGET_NUMAINFO);
1046 #endif
1047 preempt_enable();
1048
1049 mem_cgroup_threshold(memcg);
1050 if (unlikely(do_softlimit))
1051 mem_cgroup_update_tree(memcg, page);
1052 #if MAX_NUMNODES > 1
1053 if (unlikely(do_numainfo))
1054 atomic_inc(&memcg->numainfo_events);
1055 #endif
1056 } else
1057 preempt_enable();
1058 }
1059
1060 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1061 {
1062 /*
1063 * mm_update_next_owner() may clear mm->owner to NULL
1064 * if it races with swapoff, page migration, etc.
1065 * So this can be called with p == NULL.
1066 */
1067 if (unlikely(!p))
1068 return NULL;
1069
1070 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1071 }
1072
1073 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1074 {
1075 struct mem_cgroup *memcg = NULL;
1076
1077 rcu_read_lock();
1078 do {
1079 /*
1080 * Page cache insertions can happen withou an
1081 * actual mm context, e.g. during disk probing
1082 * on boot, loopback IO, acct() writes etc.
1083 */
1084 if (unlikely(!mm))
1085 memcg = root_mem_cgroup;
1086 else {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 memcg = root_mem_cgroup;
1090 }
1091 } while (!css_tryget(&memcg->css));
1092 rcu_read_unlock();
1093 return memcg;
1094 }
1095
1096 /*
1097 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1098 * ref. count) or NULL if the whole root's subtree has been visited.
1099 *
1100 * helper function to be used by mem_cgroup_iter
1101 */
1102 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1103 struct mem_cgroup *last_visited)
1104 {
1105 struct cgroup_subsys_state *prev_css, *next_css;
1106
1107 prev_css = last_visited ? &last_visited->css : NULL;
1108 skip_node:
1109 next_css = css_next_descendant_pre(prev_css, &root->css);
1110
1111 /*
1112 * Even if we found a group we have to make sure it is
1113 * alive. css && !memcg means that the groups should be
1114 * skipped and we should continue the tree walk.
1115 * last_visited css is safe to use because it is
1116 * protected by css_get and the tree walk is rcu safe.
1117 *
1118 * We do not take a reference on the root of the tree walk
1119 * because we might race with the root removal when it would
1120 * be the only node in the iterated hierarchy and mem_cgroup_iter
1121 * would end up in an endless loop because it expects that at
1122 * least one valid node will be returned. Root cannot disappear
1123 * because caller of the iterator should hold it already so
1124 * skipping css reference should be safe.
1125 */
1126 if (next_css) {
1127 if ((next_css == &root->css) ||
1128 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1129 return mem_cgroup_from_css(next_css);
1130
1131 prev_css = next_css;
1132 goto skip_node;
1133 }
1134
1135 return NULL;
1136 }
1137
1138 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1139 {
1140 /*
1141 * When a group in the hierarchy below root is destroyed, the
1142 * hierarchy iterator can no longer be trusted since it might
1143 * have pointed to the destroyed group. Invalidate it.
1144 */
1145 atomic_inc(&root->dead_count);
1146 }
1147
1148 static struct mem_cgroup *
1149 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1150 struct mem_cgroup *root,
1151 int *sequence)
1152 {
1153 struct mem_cgroup *position = NULL;
1154 /*
1155 * A cgroup destruction happens in two stages: offlining and
1156 * release. They are separated by a RCU grace period.
1157 *
1158 * If the iterator is valid, we may still race with an
1159 * offlining. The RCU lock ensures the object won't be
1160 * released, tryget will fail if we lost the race.
1161 */
1162 *sequence = atomic_read(&root->dead_count);
1163 if (iter->last_dead_count == *sequence) {
1164 smp_rmb();
1165 position = iter->last_visited;
1166
1167 /*
1168 * We cannot take a reference to root because we might race
1169 * with root removal and returning NULL would end up in
1170 * an endless loop on the iterator user level when root
1171 * would be returned all the time.
1172 */
1173 if (position && position != root &&
1174 !css_tryget(&position->css))
1175 position = NULL;
1176 }
1177 return position;
1178 }
1179
1180 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1181 struct mem_cgroup *last_visited,
1182 struct mem_cgroup *new_position,
1183 struct mem_cgroup *root,
1184 int sequence)
1185 {
1186 /* root reference counting symmetric to mem_cgroup_iter_load */
1187 if (last_visited && last_visited != root)
1188 css_put(&last_visited->css);
1189 /*
1190 * We store the sequence count from the time @last_visited was
1191 * loaded successfully instead of rereading it here so that we
1192 * don't lose destruction events in between. We could have
1193 * raced with the destruction of @new_position after all.
1194 */
1195 iter->last_visited = new_position;
1196 smp_wmb();
1197 iter->last_dead_count = sequence;
1198 }
1199
1200 /**
1201 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1202 * @root: hierarchy root
1203 * @prev: previously returned memcg, NULL on first invocation
1204 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1205 *
1206 * Returns references to children of the hierarchy below @root, or
1207 * @root itself, or %NULL after a full round-trip.
1208 *
1209 * Caller must pass the return value in @prev on subsequent
1210 * invocations for reference counting, or use mem_cgroup_iter_break()
1211 * to cancel a hierarchy walk before the round-trip is complete.
1212 *
1213 * Reclaimers can specify a zone and a priority level in @reclaim to
1214 * divide up the memcgs in the hierarchy among all concurrent
1215 * reclaimers operating on the same zone and priority.
1216 */
1217 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1218 struct mem_cgroup *prev,
1219 struct mem_cgroup_reclaim_cookie *reclaim)
1220 {
1221 struct mem_cgroup *memcg = NULL;
1222 struct mem_cgroup *last_visited = NULL;
1223
1224 if (mem_cgroup_disabled())
1225 return NULL;
1226
1227 if (!root)
1228 root = root_mem_cgroup;
1229
1230 if (prev && !reclaim)
1231 last_visited = prev;
1232
1233 if (!root->use_hierarchy && root != root_mem_cgroup) {
1234 if (prev)
1235 goto out_css_put;
1236 return root;
1237 }
1238
1239 rcu_read_lock();
1240 while (!memcg) {
1241 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1242 int uninitialized_var(seq);
1243
1244 if (reclaim) {
1245 int nid = zone_to_nid(reclaim->zone);
1246 int zid = zone_idx(reclaim->zone);
1247 struct mem_cgroup_per_zone *mz;
1248
1249 mz = mem_cgroup_zoneinfo(root, nid, zid);
1250 iter = &mz->reclaim_iter[reclaim->priority];
1251 if (prev && reclaim->generation != iter->generation) {
1252 iter->last_visited = NULL;
1253 goto out_unlock;
1254 }
1255
1256 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1257 }
1258
1259 memcg = __mem_cgroup_iter_next(root, last_visited);
1260
1261 if (reclaim) {
1262 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1263 seq);
1264
1265 if (!memcg)
1266 iter->generation++;
1267 else if (!prev && memcg)
1268 reclaim->generation = iter->generation;
1269 }
1270
1271 if (prev && !memcg)
1272 goto out_unlock;
1273 }
1274 out_unlock:
1275 rcu_read_unlock();
1276 out_css_put:
1277 if (prev && prev != root)
1278 css_put(&prev->css);
1279
1280 return memcg;
1281 }
1282
1283 /**
1284 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1285 * @root: hierarchy root
1286 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1287 */
1288 void mem_cgroup_iter_break(struct mem_cgroup *root,
1289 struct mem_cgroup *prev)
1290 {
1291 if (!root)
1292 root = root_mem_cgroup;
1293 if (prev && prev != root)
1294 css_put(&prev->css);
1295 }
1296
1297 /*
1298 * Iteration constructs for visiting all cgroups (under a tree). If
1299 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1300 * be used for reference counting.
1301 */
1302 #define for_each_mem_cgroup_tree(iter, root) \
1303 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1304 iter != NULL; \
1305 iter = mem_cgroup_iter(root, iter, NULL))
1306
1307 #define for_each_mem_cgroup(iter) \
1308 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1309 iter != NULL; \
1310 iter = mem_cgroup_iter(NULL, iter, NULL))
1311
1312 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1313 {
1314 struct mem_cgroup *memcg;
1315
1316 rcu_read_lock();
1317 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1318 if (unlikely(!memcg))
1319 goto out;
1320
1321 switch (idx) {
1322 case PGFAULT:
1323 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1324 break;
1325 case PGMAJFAULT:
1326 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1327 break;
1328 default:
1329 BUG();
1330 }
1331 out:
1332 rcu_read_unlock();
1333 }
1334 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1335
1336 /**
1337 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1338 * @zone: zone of the wanted lruvec
1339 * @memcg: memcg of the wanted lruvec
1340 *
1341 * Returns the lru list vector holding pages for the given @zone and
1342 * @mem. This can be the global zone lruvec, if the memory controller
1343 * is disabled.
1344 */
1345 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1346 struct mem_cgroup *memcg)
1347 {
1348 struct mem_cgroup_per_zone *mz;
1349 struct lruvec *lruvec;
1350
1351 if (mem_cgroup_disabled()) {
1352 lruvec = &zone->lruvec;
1353 goto out;
1354 }
1355
1356 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1357 lruvec = &mz->lruvec;
1358 out:
1359 /*
1360 * Since a node can be onlined after the mem_cgroup was created,
1361 * we have to be prepared to initialize lruvec->zone here;
1362 * and if offlined then reonlined, we need to reinitialize it.
1363 */
1364 if (unlikely(lruvec->zone != zone))
1365 lruvec->zone = zone;
1366 return lruvec;
1367 }
1368
1369 /*
1370 * Following LRU functions are allowed to be used without PCG_LOCK.
1371 * Operations are called by routine of global LRU independently from memcg.
1372 * What we have to take care of here is validness of pc->mem_cgroup.
1373 *
1374 * Changes to pc->mem_cgroup happens when
1375 * 1. charge
1376 * 2. moving account
1377 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1378 * It is added to LRU before charge.
1379 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1380 * When moving account, the page is not on LRU. It's isolated.
1381 */
1382
1383 /**
1384 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1385 * @page: the page
1386 * @zone: zone of the page
1387 */
1388 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1389 {
1390 struct mem_cgroup_per_zone *mz;
1391 struct mem_cgroup *memcg;
1392 struct page_cgroup *pc;
1393 struct lruvec *lruvec;
1394
1395 if (mem_cgroup_disabled()) {
1396 lruvec = &zone->lruvec;
1397 goto out;
1398 }
1399
1400 pc = lookup_page_cgroup(page);
1401 memcg = pc->mem_cgroup;
1402
1403 /*
1404 * Surreptitiously switch any uncharged offlist page to root:
1405 * an uncharged page off lru does nothing to secure
1406 * its former mem_cgroup from sudden removal.
1407 *
1408 * Our caller holds lru_lock, and PageCgroupUsed is updated
1409 * under page_cgroup lock: between them, they make all uses
1410 * of pc->mem_cgroup safe.
1411 */
1412 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1413 pc->mem_cgroup = memcg = root_mem_cgroup;
1414
1415 mz = page_cgroup_zoneinfo(memcg, page);
1416 lruvec = &mz->lruvec;
1417 out:
1418 /*
1419 * Since a node can be onlined after the mem_cgroup was created,
1420 * we have to be prepared to initialize lruvec->zone here;
1421 * and if offlined then reonlined, we need to reinitialize it.
1422 */
1423 if (unlikely(lruvec->zone != zone))
1424 lruvec->zone = zone;
1425 return lruvec;
1426 }
1427
1428 /**
1429 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1430 * @lruvec: mem_cgroup per zone lru vector
1431 * @lru: index of lru list the page is sitting on
1432 * @nr_pages: positive when adding or negative when removing
1433 *
1434 * This function must be called when a page is added to or removed from an
1435 * lru list.
1436 */
1437 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1438 int nr_pages)
1439 {
1440 struct mem_cgroup_per_zone *mz;
1441 unsigned long *lru_size;
1442
1443 if (mem_cgroup_disabled())
1444 return;
1445
1446 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1447 lru_size = mz->lru_size + lru;
1448 *lru_size += nr_pages;
1449 VM_BUG_ON((long)(*lru_size) < 0);
1450 }
1451
1452 /*
1453 * Checks whether given mem is same or in the root_mem_cgroup's
1454 * hierarchy subtree
1455 */
1456 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1457 struct mem_cgroup *memcg)
1458 {
1459 if (root_memcg == memcg)
1460 return true;
1461 if (!root_memcg->use_hierarchy || !memcg)
1462 return false;
1463 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1464 }
1465
1466 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1467 struct mem_cgroup *memcg)
1468 {
1469 bool ret;
1470
1471 rcu_read_lock();
1472 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1473 rcu_read_unlock();
1474 return ret;
1475 }
1476
1477 bool task_in_mem_cgroup(struct task_struct *task,
1478 const struct mem_cgroup *memcg)
1479 {
1480 struct mem_cgroup *curr = NULL;
1481 struct task_struct *p;
1482 bool ret;
1483
1484 p = find_lock_task_mm(task);
1485 if (p) {
1486 curr = get_mem_cgroup_from_mm(p->mm);
1487 task_unlock(p);
1488 } else {
1489 /*
1490 * All threads may have already detached their mm's, but the oom
1491 * killer still needs to detect if they have already been oom
1492 * killed to prevent needlessly killing additional tasks.
1493 */
1494 rcu_read_lock();
1495 curr = mem_cgroup_from_task(task);
1496 if (curr)
1497 css_get(&curr->css);
1498 rcu_read_unlock();
1499 }
1500 /*
1501 * We should check use_hierarchy of "memcg" not "curr". Because checking
1502 * use_hierarchy of "curr" here make this function true if hierarchy is
1503 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1504 * hierarchy(even if use_hierarchy is disabled in "memcg").
1505 */
1506 ret = mem_cgroup_same_or_subtree(memcg, curr);
1507 css_put(&curr->css);
1508 return ret;
1509 }
1510
1511 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1512 {
1513 unsigned long inactive_ratio;
1514 unsigned long inactive;
1515 unsigned long active;
1516 unsigned long gb;
1517
1518 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1519 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1520
1521 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1522 if (gb)
1523 inactive_ratio = int_sqrt(10 * gb);
1524 else
1525 inactive_ratio = 1;
1526
1527 return inactive * inactive_ratio < active;
1528 }
1529
1530 #define mem_cgroup_from_res_counter(counter, member) \
1531 container_of(counter, struct mem_cgroup, member)
1532
1533 /**
1534 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1535 * @memcg: the memory cgroup
1536 *
1537 * Returns the maximum amount of memory @mem can be charged with, in
1538 * pages.
1539 */
1540 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1541 {
1542 unsigned long long margin;
1543
1544 margin = res_counter_margin(&memcg->res);
1545 if (do_swap_account)
1546 margin = min(margin, res_counter_margin(&memcg->memsw));
1547 return margin >> PAGE_SHIFT;
1548 }
1549
1550 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1551 {
1552 /* root ? */
1553 if (!css_parent(&memcg->css))
1554 return vm_swappiness;
1555
1556 return memcg->swappiness;
1557 }
1558
1559 /*
1560 * memcg->moving_account is used for checking possibility that some thread is
1561 * calling move_account(). When a thread on CPU-A starts moving pages under
1562 * a memcg, other threads should check memcg->moving_account under
1563 * rcu_read_lock(), like this:
1564 *
1565 * CPU-A CPU-B
1566 * rcu_read_lock()
1567 * memcg->moving_account+1 if (memcg->mocing_account)
1568 * take heavy locks.
1569 * synchronize_rcu() update something.
1570 * rcu_read_unlock()
1571 * start move here.
1572 */
1573
1574 /* for quick checking without looking up memcg */
1575 atomic_t memcg_moving __read_mostly;
1576
1577 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1578 {
1579 atomic_inc(&memcg_moving);
1580 atomic_inc(&memcg->moving_account);
1581 synchronize_rcu();
1582 }
1583
1584 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1585 {
1586 /*
1587 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1588 * We check NULL in callee rather than caller.
1589 */
1590 if (memcg) {
1591 atomic_dec(&memcg_moving);
1592 atomic_dec(&memcg->moving_account);
1593 }
1594 }
1595
1596 /*
1597 * A routine for checking "mem" is under move_account() or not.
1598 *
1599 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1600 * moving cgroups. This is for waiting at high-memory pressure
1601 * caused by "move".
1602 */
1603 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1604 {
1605 struct mem_cgroup *from;
1606 struct mem_cgroup *to;
1607 bool ret = false;
1608 /*
1609 * Unlike task_move routines, we access mc.to, mc.from not under
1610 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1611 */
1612 spin_lock(&mc.lock);
1613 from = mc.from;
1614 to = mc.to;
1615 if (!from)
1616 goto unlock;
1617
1618 ret = mem_cgroup_same_or_subtree(memcg, from)
1619 || mem_cgroup_same_or_subtree(memcg, to);
1620 unlock:
1621 spin_unlock(&mc.lock);
1622 return ret;
1623 }
1624
1625 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1626 {
1627 if (mc.moving_task && current != mc.moving_task) {
1628 if (mem_cgroup_under_move(memcg)) {
1629 DEFINE_WAIT(wait);
1630 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1631 /* moving charge context might have finished. */
1632 if (mc.moving_task)
1633 schedule();
1634 finish_wait(&mc.waitq, &wait);
1635 return true;
1636 }
1637 }
1638 return false;
1639 }
1640
1641 /*
1642 * Take this lock when
1643 * - a code tries to modify page's memcg while it's USED.
1644 * - a code tries to modify page state accounting in a memcg.
1645 */
1646 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1647 unsigned long *flags)
1648 {
1649 spin_lock_irqsave(&memcg->move_lock, *flags);
1650 }
1651
1652 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1653 unsigned long *flags)
1654 {
1655 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1656 }
1657
1658 #define K(x) ((x) << (PAGE_SHIFT-10))
1659 /**
1660 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1661 * @memcg: The memory cgroup that went over limit
1662 * @p: Task that is going to be killed
1663 *
1664 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1665 * enabled
1666 */
1667 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1668 {
1669 /* oom_info_lock ensures that parallel ooms do not interleave */
1670 static DEFINE_MUTEX(oom_info_lock);
1671 struct mem_cgroup *iter;
1672 unsigned int i;
1673
1674 if (!p)
1675 return;
1676
1677 mutex_lock(&oom_info_lock);
1678 rcu_read_lock();
1679
1680 pr_info("Task in ");
1681 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1682 pr_info(" killed as a result of limit of ");
1683 pr_cont_cgroup_path(memcg->css.cgroup);
1684 pr_info("\n");
1685
1686 rcu_read_unlock();
1687
1688 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1689 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1690 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1691 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1692 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1693 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1697 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1700
1701 for_each_mem_cgroup_tree(iter, memcg) {
1702 pr_info("Memory cgroup stats for ");
1703 pr_cont_cgroup_path(iter->css.cgroup);
1704 pr_cont(":");
1705
1706 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1707 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1708 continue;
1709 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1710 K(mem_cgroup_read_stat(iter, i)));
1711 }
1712
1713 for (i = 0; i < NR_LRU_LISTS; i++)
1714 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1715 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1716
1717 pr_cont("\n");
1718 }
1719 mutex_unlock(&oom_info_lock);
1720 }
1721
1722 /*
1723 * This function returns the number of memcg under hierarchy tree. Returns
1724 * 1(self count) if no children.
1725 */
1726 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1727 {
1728 int num = 0;
1729 struct mem_cgroup *iter;
1730
1731 for_each_mem_cgroup_tree(iter, memcg)
1732 num++;
1733 return num;
1734 }
1735
1736 /*
1737 * Return the memory (and swap, if configured) limit for a memcg.
1738 */
1739 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1740 {
1741 u64 limit;
1742
1743 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1744
1745 /*
1746 * Do not consider swap space if we cannot swap due to swappiness
1747 */
1748 if (mem_cgroup_swappiness(memcg)) {
1749 u64 memsw;
1750
1751 limit += total_swap_pages << PAGE_SHIFT;
1752 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1753
1754 /*
1755 * If memsw is finite and limits the amount of swap space
1756 * available to this memcg, return that limit.
1757 */
1758 limit = min(limit, memsw);
1759 }
1760
1761 return limit;
1762 }
1763
1764 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1765 int order)
1766 {
1767 struct mem_cgroup *iter;
1768 unsigned long chosen_points = 0;
1769 unsigned long totalpages;
1770 unsigned int points = 0;
1771 struct task_struct *chosen = NULL;
1772
1773 /*
1774 * If current has a pending SIGKILL or is exiting, then automatically
1775 * select it. The goal is to allow it to allocate so that it may
1776 * quickly exit and free its memory.
1777 */
1778 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1779 set_thread_flag(TIF_MEMDIE);
1780 return;
1781 }
1782
1783 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1784 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1785 for_each_mem_cgroup_tree(iter, memcg) {
1786 struct css_task_iter it;
1787 struct task_struct *task;
1788
1789 css_task_iter_start(&iter->css, &it);
1790 while ((task = css_task_iter_next(&it))) {
1791 switch (oom_scan_process_thread(task, totalpages, NULL,
1792 false)) {
1793 case OOM_SCAN_SELECT:
1794 if (chosen)
1795 put_task_struct(chosen);
1796 chosen = task;
1797 chosen_points = ULONG_MAX;
1798 get_task_struct(chosen);
1799 /* fall through */
1800 case OOM_SCAN_CONTINUE:
1801 continue;
1802 case OOM_SCAN_ABORT:
1803 css_task_iter_end(&it);
1804 mem_cgroup_iter_break(memcg, iter);
1805 if (chosen)
1806 put_task_struct(chosen);
1807 return;
1808 case OOM_SCAN_OK:
1809 break;
1810 };
1811 points = oom_badness(task, memcg, NULL, totalpages);
1812 if (!points || points < chosen_points)
1813 continue;
1814 /* Prefer thread group leaders for display purposes */
1815 if (points == chosen_points &&
1816 thread_group_leader(chosen))
1817 continue;
1818
1819 if (chosen)
1820 put_task_struct(chosen);
1821 chosen = task;
1822 chosen_points = points;
1823 get_task_struct(chosen);
1824 }
1825 css_task_iter_end(&it);
1826 }
1827
1828 if (!chosen)
1829 return;
1830 points = chosen_points * 1000 / totalpages;
1831 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1832 NULL, "Memory cgroup out of memory");
1833 }
1834
1835 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1836 gfp_t gfp_mask,
1837 unsigned long flags)
1838 {
1839 unsigned long total = 0;
1840 bool noswap = false;
1841 int loop;
1842
1843 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1844 noswap = true;
1845 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1846 noswap = true;
1847
1848 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1849 if (loop)
1850 drain_all_stock_async(memcg);
1851 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1852 /*
1853 * Allow limit shrinkers, which are triggered directly
1854 * by userspace, to catch signals and stop reclaim
1855 * after minimal progress, regardless of the margin.
1856 */
1857 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1858 break;
1859 if (mem_cgroup_margin(memcg))
1860 break;
1861 /*
1862 * If nothing was reclaimed after two attempts, there
1863 * may be no reclaimable pages in this hierarchy.
1864 */
1865 if (loop && !total)
1866 break;
1867 }
1868 return total;
1869 }
1870
1871 /**
1872 * test_mem_cgroup_node_reclaimable
1873 * @memcg: the target memcg
1874 * @nid: the node ID to be checked.
1875 * @noswap : specify true here if the user wants flle only information.
1876 *
1877 * This function returns whether the specified memcg contains any
1878 * reclaimable pages on a node. Returns true if there are any reclaimable
1879 * pages in the node.
1880 */
1881 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1882 int nid, bool noswap)
1883 {
1884 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1885 return true;
1886 if (noswap || !total_swap_pages)
1887 return false;
1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1889 return true;
1890 return false;
1891
1892 }
1893 #if MAX_NUMNODES > 1
1894
1895 /*
1896 * Always updating the nodemask is not very good - even if we have an empty
1897 * list or the wrong list here, we can start from some node and traverse all
1898 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1899 *
1900 */
1901 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1902 {
1903 int nid;
1904 /*
1905 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1906 * pagein/pageout changes since the last update.
1907 */
1908 if (!atomic_read(&memcg->numainfo_events))
1909 return;
1910 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1911 return;
1912
1913 /* make a nodemask where this memcg uses memory from */
1914 memcg->scan_nodes = node_states[N_MEMORY];
1915
1916 for_each_node_mask(nid, node_states[N_MEMORY]) {
1917
1918 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1919 node_clear(nid, memcg->scan_nodes);
1920 }
1921
1922 atomic_set(&memcg->numainfo_events, 0);
1923 atomic_set(&memcg->numainfo_updating, 0);
1924 }
1925
1926 /*
1927 * Selecting a node where we start reclaim from. Because what we need is just
1928 * reducing usage counter, start from anywhere is O,K. Considering
1929 * memory reclaim from current node, there are pros. and cons.
1930 *
1931 * Freeing memory from current node means freeing memory from a node which
1932 * we'll use or we've used. So, it may make LRU bad. And if several threads
1933 * hit limits, it will see a contention on a node. But freeing from remote
1934 * node means more costs for memory reclaim because of memory latency.
1935 *
1936 * Now, we use round-robin. Better algorithm is welcomed.
1937 */
1938 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1939 {
1940 int node;
1941
1942 mem_cgroup_may_update_nodemask(memcg);
1943 node = memcg->last_scanned_node;
1944
1945 node = next_node(node, memcg->scan_nodes);
1946 if (node == MAX_NUMNODES)
1947 node = first_node(memcg->scan_nodes);
1948 /*
1949 * We call this when we hit limit, not when pages are added to LRU.
1950 * No LRU may hold pages because all pages are UNEVICTABLE or
1951 * memcg is too small and all pages are not on LRU. In that case,
1952 * we use curret node.
1953 */
1954 if (unlikely(node == MAX_NUMNODES))
1955 node = numa_node_id();
1956
1957 memcg->last_scanned_node = node;
1958 return node;
1959 }
1960
1961 /*
1962 * Check all nodes whether it contains reclaimable pages or not.
1963 * For quick scan, we make use of scan_nodes. This will allow us to skip
1964 * unused nodes. But scan_nodes is lazily updated and may not cotain
1965 * enough new information. We need to do double check.
1966 */
1967 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1968 {
1969 int nid;
1970
1971 /*
1972 * quick check...making use of scan_node.
1973 * We can skip unused nodes.
1974 */
1975 if (!nodes_empty(memcg->scan_nodes)) {
1976 for (nid = first_node(memcg->scan_nodes);
1977 nid < MAX_NUMNODES;
1978 nid = next_node(nid, memcg->scan_nodes)) {
1979
1980 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1981 return true;
1982 }
1983 }
1984 /*
1985 * Check rest of nodes.
1986 */
1987 for_each_node_state(nid, N_MEMORY) {
1988 if (node_isset(nid, memcg->scan_nodes))
1989 continue;
1990 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1991 return true;
1992 }
1993 return false;
1994 }
1995
1996 #else
1997 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1998 {
1999 return 0;
2000 }
2001
2002 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2003 {
2004 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2005 }
2006 #endif
2007
2008 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2009 struct zone *zone,
2010 gfp_t gfp_mask,
2011 unsigned long *total_scanned)
2012 {
2013 struct mem_cgroup *victim = NULL;
2014 int total = 0;
2015 int loop = 0;
2016 unsigned long excess;
2017 unsigned long nr_scanned;
2018 struct mem_cgroup_reclaim_cookie reclaim = {
2019 .zone = zone,
2020 .priority = 0,
2021 };
2022
2023 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2024
2025 while (1) {
2026 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2027 if (!victim) {
2028 loop++;
2029 if (loop >= 2) {
2030 /*
2031 * If we have not been able to reclaim
2032 * anything, it might because there are
2033 * no reclaimable pages under this hierarchy
2034 */
2035 if (!total)
2036 break;
2037 /*
2038 * We want to do more targeted reclaim.
2039 * excess >> 2 is not to excessive so as to
2040 * reclaim too much, nor too less that we keep
2041 * coming back to reclaim from this cgroup
2042 */
2043 if (total >= (excess >> 2) ||
2044 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2045 break;
2046 }
2047 continue;
2048 }
2049 if (!mem_cgroup_reclaimable(victim, false))
2050 continue;
2051 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2052 zone, &nr_scanned);
2053 *total_scanned += nr_scanned;
2054 if (!res_counter_soft_limit_excess(&root_memcg->res))
2055 break;
2056 }
2057 mem_cgroup_iter_break(root_memcg, victim);
2058 return total;
2059 }
2060
2061 #ifdef CONFIG_LOCKDEP
2062 static struct lockdep_map memcg_oom_lock_dep_map = {
2063 .name = "memcg_oom_lock",
2064 };
2065 #endif
2066
2067 static DEFINE_SPINLOCK(memcg_oom_lock);
2068
2069 /*
2070 * Check OOM-Killer is already running under our hierarchy.
2071 * If someone is running, return false.
2072 */
2073 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2074 {
2075 struct mem_cgroup *iter, *failed = NULL;
2076
2077 spin_lock(&memcg_oom_lock);
2078
2079 for_each_mem_cgroup_tree(iter, memcg) {
2080 if (iter->oom_lock) {
2081 /*
2082 * this subtree of our hierarchy is already locked
2083 * so we cannot give a lock.
2084 */
2085 failed = iter;
2086 mem_cgroup_iter_break(memcg, iter);
2087 break;
2088 } else
2089 iter->oom_lock = true;
2090 }
2091
2092 if (failed) {
2093 /*
2094 * OK, we failed to lock the whole subtree so we have
2095 * to clean up what we set up to the failing subtree
2096 */
2097 for_each_mem_cgroup_tree(iter, memcg) {
2098 if (iter == failed) {
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
2101 }
2102 iter->oom_lock = false;
2103 }
2104 } else
2105 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2106
2107 spin_unlock(&memcg_oom_lock);
2108
2109 return !failed;
2110 }
2111
2112 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 spin_lock(&memcg_oom_lock);
2117 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2118 for_each_mem_cgroup_tree(iter, memcg)
2119 iter->oom_lock = false;
2120 spin_unlock(&memcg_oom_lock);
2121 }
2122
2123 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2124 {
2125 struct mem_cgroup *iter;
2126
2127 for_each_mem_cgroup_tree(iter, memcg)
2128 atomic_inc(&iter->under_oom);
2129 }
2130
2131 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2132 {
2133 struct mem_cgroup *iter;
2134
2135 /*
2136 * When a new child is created while the hierarchy is under oom,
2137 * mem_cgroup_oom_lock() may not be called. We have to use
2138 * atomic_add_unless() here.
2139 */
2140 for_each_mem_cgroup_tree(iter, memcg)
2141 atomic_add_unless(&iter->under_oom, -1, 0);
2142 }
2143
2144 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2145
2146 struct oom_wait_info {
2147 struct mem_cgroup *memcg;
2148 wait_queue_t wait;
2149 };
2150
2151 static int memcg_oom_wake_function(wait_queue_t *wait,
2152 unsigned mode, int sync, void *arg)
2153 {
2154 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2155 struct mem_cgroup *oom_wait_memcg;
2156 struct oom_wait_info *oom_wait_info;
2157
2158 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2159 oom_wait_memcg = oom_wait_info->memcg;
2160
2161 /*
2162 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2163 * Then we can use css_is_ancestor without taking care of RCU.
2164 */
2165 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2166 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2167 return 0;
2168 return autoremove_wake_function(wait, mode, sync, arg);
2169 }
2170
2171 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2172 {
2173 atomic_inc(&memcg->oom_wakeups);
2174 /* for filtering, pass "memcg" as argument. */
2175 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2176 }
2177
2178 static void memcg_oom_recover(struct mem_cgroup *memcg)
2179 {
2180 if (memcg && atomic_read(&memcg->under_oom))
2181 memcg_wakeup_oom(memcg);
2182 }
2183
2184 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2185 {
2186 if (!current->memcg_oom.may_oom)
2187 return;
2188 /*
2189 * We are in the middle of the charge context here, so we
2190 * don't want to block when potentially sitting on a callstack
2191 * that holds all kinds of filesystem and mm locks.
2192 *
2193 * Also, the caller may handle a failed allocation gracefully
2194 * (like optional page cache readahead) and so an OOM killer
2195 * invocation might not even be necessary.
2196 *
2197 * That's why we don't do anything here except remember the
2198 * OOM context and then deal with it at the end of the page
2199 * fault when the stack is unwound, the locks are released,
2200 * and when we know whether the fault was overall successful.
2201 */
2202 css_get(&memcg->css);
2203 current->memcg_oom.memcg = memcg;
2204 current->memcg_oom.gfp_mask = mask;
2205 current->memcg_oom.order = order;
2206 }
2207
2208 /**
2209 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2210 * @handle: actually kill/wait or just clean up the OOM state
2211 *
2212 * This has to be called at the end of a page fault if the memcg OOM
2213 * handler was enabled.
2214 *
2215 * Memcg supports userspace OOM handling where failed allocations must
2216 * sleep on a waitqueue until the userspace task resolves the
2217 * situation. Sleeping directly in the charge context with all kinds
2218 * of locks held is not a good idea, instead we remember an OOM state
2219 * in the task and mem_cgroup_oom_synchronize() has to be called at
2220 * the end of the page fault to complete the OOM handling.
2221 *
2222 * Returns %true if an ongoing memcg OOM situation was detected and
2223 * completed, %false otherwise.
2224 */
2225 bool mem_cgroup_oom_synchronize(bool handle)
2226 {
2227 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2228 struct oom_wait_info owait;
2229 bool locked;
2230
2231 /* OOM is global, do not handle */
2232 if (!memcg)
2233 return false;
2234
2235 if (!handle)
2236 goto cleanup;
2237
2238 owait.memcg = memcg;
2239 owait.wait.flags = 0;
2240 owait.wait.func = memcg_oom_wake_function;
2241 owait.wait.private = current;
2242 INIT_LIST_HEAD(&owait.wait.task_list);
2243
2244 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245 mem_cgroup_mark_under_oom(memcg);
2246
2247 locked = mem_cgroup_oom_trylock(memcg);
2248
2249 if (locked)
2250 mem_cgroup_oom_notify(memcg);
2251
2252 if (locked && !memcg->oom_kill_disable) {
2253 mem_cgroup_unmark_under_oom(memcg);
2254 finish_wait(&memcg_oom_waitq, &owait.wait);
2255 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2256 current->memcg_oom.order);
2257 } else {
2258 schedule();
2259 mem_cgroup_unmark_under_oom(memcg);
2260 finish_wait(&memcg_oom_waitq, &owait.wait);
2261 }
2262
2263 if (locked) {
2264 mem_cgroup_oom_unlock(memcg);
2265 /*
2266 * There is no guarantee that an OOM-lock contender
2267 * sees the wakeups triggered by the OOM kill
2268 * uncharges. Wake any sleepers explicitely.
2269 */
2270 memcg_oom_recover(memcg);
2271 }
2272 cleanup:
2273 current->memcg_oom.memcg = NULL;
2274 css_put(&memcg->css);
2275 return true;
2276 }
2277
2278 /*
2279 * Used to update mapped file or writeback or other statistics.
2280 *
2281 * Notes: Race condition
2282 *
2283 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2284 * it tends to be costly. But considering some conditions, we doesn't need
2285 * to do so _always_.
2286 *
2287 * Considering "charge", lock_page_cgroup() is not required because all
2288 * file-stat operations happen after a page is attached to radix-tree. There
2289 * are no race with "charge".
2290 *
2291 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2292 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2293 * if there are race with "uncharge". Statistics itself is properly handled
2294 * by flags.
2295 *
2296 * Considering "move", this is an only case we see a race. To make the race
2297 * small, we check memcg->moving_account and detect there are possibility
2298 * of race or not. If there is, we take a lock.
2299 */
2300
2301 void __mem_cgroup_begin_update_page_stat(struct page *page,
2302 bool *locked, unsigned long *flags)
2303 {
2304 struct mem_cgroup *memcg;
2305 struct page_cgroup *pc;
2306
2307 pc = lookup_page_cgroup(page);
2308 again:
2309 memcg = pc->mem_cgroup;
2310 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2311 return;
2312 /*
2313 * If this memory cgroup is not under account moving, we don't
2314 * need to take move_lock_mem_cgroup(). Because we already hold
2315 * rcu_read_lock(), any calls to move_account will be delayed until
2316 * rcu_read_unlock().
2317 */
2318 VM_BUG_ON(!rcu_read_lock_held());
2319 if (atomic_read(&memcg->moving_account) <= 0)
2320 return;
2321
2322 move_lock_mem_cgroup(memcg, flags);
2323 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2324 move_unlock_mem_cgroup(memcg, flags);
2325 goto again;
2326 }
2327 *locked = true;
2328 }
2329
2330 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2331 {
2332 struct page_cgroup *pc = lookup_page_cgroup(page);
2333
2334 /*
2335 * It's guaranteed that pc->mem_cgroup never changes while
2336 * lock is held because a routine modifies pc->mem_cgroup
2337 * should take move_lock_mem_cgroup().
2338 */
2339 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2340 }
2341
2342 void mem_cgroup_update_page_stat(struct page *page,
2343 enum mem_cgroup_stat_index idx, int val)
2344 {
2345 struct mem_cgroup *memcg;
2346 struct page_cgroup *pc = lookup_page_cgroup(page);
2347 unsigned long uninitialized_var(flags);
2348
2349 if (mem_cgroup_disabled())
2350 return;
2351
2352 VM_BUG_ON(!rcu_read_lock_held());
2353 memcg = pc->mem_cgroup;
2354 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2355 return;
2356
2357 this_cpu_add(memcg->stat->count[idx], val);
2358 }
2359
2360 /*
2361 * size of first charge trial. "32" comes from vmscan.c's magic value.
2362 * TODO: maybe necessary to use big numbers in big irons.
2363 */
2364 #define CHARGE_BATCH 32U
2365 struct memcg_stock_pcp {
2366 struct mem_cgroup *cached; /* this never be root cgroup */
2367 unsigned int nr_pages;
2368 struct work_struct work;
2369 unsigned long flags;
2370 #define FLUSHING_CACHED_CHARGE 0
2371 };
2372 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2373 static DEFINE_MUTEX(percpu_charge_mutex);
2374
2375 /**
2376 * consume_stock: Try to consume stocked charge on this cpu.
2377 * @memcg: memcg to consume from.
2378 * @nr_pages: how many pages to charge.
2379 *
2380 * The charges will only happen if @memcg matches the current cpu's memcg
2381 * stock, and at least @nr_pages are available in that stock. Failure to
2382 * service an allocation will refill the stock.
2383 *
2384 * returns true if successful, false otherwise.
2385 */
2386 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2387 {
2388 struct memcg_stock_pcp *stock;
2389 bool ret = true;
2390
2391 if (nr_pages > CHARGE_BATCH)
2392 return false;
2393
2394 stock = &get_cpu_var(memcg_stock);
2395 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2396 stock->nr_pages -= nr_pages;
2397 else /* need to call res_counter_charge */
2398 ret = false;
2399 put_cpu_var(memcg_stock);
2400 return ret;
2401 }
2402
2403 /*
2404 * Returns stocks cached in percpu to res_counter and reset cached information.
2405 */
2406 static void drain_stock(struct memcg_stock_pcp *stock)
2407 {
2408 struct mem_cgroup *old = stock->cached;
2409
2410 if (stock->nr_pages) {
2411 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2412
2413 res_counter_uncharge(&old->res, bytes);
2414 if (do_swap_account)
2415 res_counter_uncharge(&old->memsw, bytes);
2416 stock->nr_pages = 0;
2417 }
2418 stock->cached = NULL;
2419 }
2420
2421 /*
2422 * This must be called under preempt disabled or must be called by
2423 * a thread which is pinned to local cpu.
2424 */
2425 static void drain_local_stock(struct work_struct *dummy)
2426 {
2427 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2428 drain_stock(stock);
2429 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2430 }
2431
2432 static void __init memcg_stock_init(void)
2433 {
2434 int cpu;
2435
2436 for_each_possible_cpu(cpu) {
2437 struct memcg_stock_pcp *stock =
2438 &per_cpu(memcg_stock, cpu);
2439 INIT_WORK(&stock->work, drain_local_stock);
2440 }
2441 }
2442
2443 /*
2444 * Cache charges(val) which is from res_counter, to local per_cpu area.
2445 * This will be consumed by consume_stock() function, later.
2446 */
2447 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2448 {
2449 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2450
2451 if (stock->cached != memcg) { /* reset if necessary */
2452 drain_stock(stock);
2453 stock->cached = memcg;
2454 }
2455 stock->nr_pages += nr_pages;
2456 put_cpu_var(memcg_stock);
2457 }
2458
2459 /*
2460 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2461 * of the hierarchy under it. sync flag says whether we should block
2462 * until the work is done.
2463 */
2464 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2465 {
2466 int cpu, curcpu;
2467
2468 /* Notify other cpus that system-wide "drain" is running */
2469 get_online_cpus();
2470 curcpu = get_cpu();
2471 for_each_online_cpu(cpu) {
2472 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2473 struct mem_cgroup *memcg;
2474
2475 memcg = stock->cached;
2476 if (!memcg || !stock->nr_pages)
2477 continue;
2478 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2479 continue;
2480 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2481 if (cpu == curcpu)
2482 drain_local_stock(&stock->work);
2483 else
2484 schedule_work_on(cpu, &stock->work);
2485 }
2486 }
2487 put_cpu();
2488
2489 if (!sync)
2490 goto out;
2491
2492 for_each_online_cpu(cpu) {
2493 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2494 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2495 flush_work(&stock->work);
2496 }
2497 out:
2498 put_online_cpus();
2499 }
2500
2501 /*
2502 * Tries to drain stocked charges in other cpus. This function is asynchronous
2503 * and just put a work per cpu for draining localy on each cpu. Caller can
2504 * expects some charges will be back to res_counter later but cannot wait for
2505 * it.
2506 */
2507 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2508 {
2509 /*
2510 * If someone calls draining, avoid adding more kworker runs.
2511 */
2512 if (!mutex_trylock(&percpu_charge_mutex))
2513 return;
2514 drain_all_stock(root_memcg, false);
2515 mutex_unlock(&percpu_charge_mutex);
2516 }
2517
2518 /* This is a synchronous drain interface. */
2519 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2520 {
2521 /* called when force_empty is called */
2522 mutex_lock(&percpu_charge_mutex);
2523 drain_all_stock(root_memcg, true);
2524 mutex_unlock(&percpu_charge_mutex);
2525 }
2526
2527 /*
2528 * This function drains percpu counter value from DEAD cpu and
2529 * move it to local cpu. Note that this function can be preempted.
2530 */
2531 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2532 {
2533 int i;
2534
2535 spin_lock(&memcg->pcp_counter_lock);
2536 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2537 long x = per_cpu(memcg->stat->count[i], cpu);
2538
2539 per_cpu(memcg->stat->count[i], cpu) = 0;
2540 memcg->nocpu_base.count[i] += x;
2541 }
2542 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2543 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2544
2545 per_cpu(memcg->stat->events[i], cpu) = 0;
2546 memcg->nocpu_base.events[i] += x;
2547 }
2548 spin_unlock(&memcg->pcp_counter_lock);
2549 }
2550
2551 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2552 unsigned long action,
2553 void *hcpu)
2554 {
2555 int cpu = (unsigned long)hcpu;
2556 struct memcg_stock_pcp *stock;
2557 struct mem_cgroup *iter;
2558
2559 if (action == CPU_ONLINE)
2560 return NOTIFY_OK;
2561
2562 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2563 return NOTIFY_OK;
2564
2565 for_each_mem_cgroup(iter)
2566 mem_cgroup_drain_pcp_counter(iter, cpu);
2567
2568 stock = &per_cpu(memcg_stock, cpu);
2569 drain_stock(stock);
2570 return NOTIFY_OK;
2571 }
2572
2573
2574 /* See mem_cgroup_try_charge() for details */
2575 enum {
2576 CHARGE_OK, /* success */
2577 CHARGE_RETRY, /* need to retry but retry is not bad */
2578 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2579 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2580 };
2581
2582 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages, unsigned int min_pages,
2584 bool invoke_oom)
2585 {
2586 unsigned long csize = nr_pages * PAGE_SIZE;
2587 struct mem_cgroup *mem_over_limit;
2588 struct res_counter *fail_res;
2589 unsigned long flags = 0;
2590 int ret;
2591
2592 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2593
2594 if (likely(!ret)) {
2595 if (!do_swap_account)
2596 return CHARGE_OK;
2597 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2598 if (likely(!ret))
2599 return CHARGE_OK;
2600
2601 res_counter_uncharge(&memcg->res, csize);
2602 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2603 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2604 } else
2605 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2606 /*
2607 * Never reclaim on behalf of optional batching, retry with a
2608 * single page instead.
2609 */
2610 if (nr_pages > min_pages)
2611 return CHARGE_RETRY;
2612
2613 if (!(gfp_mask & __GFP_WAIT))
2614 return CHARGE_WOULDBLOCK;
2615
2616 if (gfp_mask & __GFP_NORETRY)
2617 return CHARGE_NOMEM;
2618
2619 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2620 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2621 return CHARGE_RETRY;
2622 /*
2623 * Even though the limit is exceeded at this point, reclaim
2624 * may have been able to free some pages. Retry the charge
2625 * before killing the task.
2626 *
2627 * Only for regular pages, though: huge pages are rather
2628 * unlikely to succeed so close to the limit, and we fall back
2629 * to regular pages anyway in case of failure.
2630 */
2631 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2632 return CHARGE_RETRY;
2633
2634 /*
2635 * At task move, charge accounts can be doubly counted. So, it's
2636 * better to wait until the end of task_move if something is going on.
2637 */
2638 if (mem_cgroup_wait_acct_move(mem_over_limit))
2639 return CHARGE_RETRY;
2640
2641 if (invoke_oom)
2642 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2643
2644 return CHARGE_NOMEM;
2645 }
2646
2647 /**
2648 * mem_cgroup_try_charge - try charging a memcg
2649 * @memcg: memcg to charge
2650 * @nr_pages: number of pages to charge
2651 * @oom: trigger OOM if reclaim fails
2652 *
2653 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2654 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2655 */
2656 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2657 gfp_t gfp_mask,
2658 unsigned int nr_pages,
2659 bool oom)
2660 {
2661 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2662 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2663 int ret;
2664
2665 if (mem_cgroup_is_root(memcg))
2666 goto done;
2667 /*
2668 * Unlike in global OOM situations, memcg is not in a physical
2669 * memory shortage. Allow dying and OOM-killed tasks to
2670 * bypass the last charges so that they can exit quickly and
2671 * free their memory.
2672 */
2673 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2674 fatal_signal_pending(current) ||
2675 current->flags & PF_EXITING))
2676 goto bypass;
2677
2678 if (unlikely(task_in_memcg_oom(current)))
2679 goto nomem;
2680
2681 if (gfp_mask & __GFP_NOFAIL)
2682 oom = false;
2683 again:
2684 if (consume_stock(memcg, nr_pages))
2685 goto done;
2686
2687 do {
2688 bool invoke_oom = oom && !nr_oom_retries;
2689
2690 /* If killed, bypass charge */
2691 if (fatal_signal_pending(current))
2692 goto bypass;
2693
2694 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2695 nr_pages, invoke_oom);
2696 switch (ret) {
2697 case CHARGE_OK:
2698 break;
2699 case CHARGE_RETRY: /* not in OOM situation but retry */
2700 batch = nr_pages;
2701 goto again;
2702 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2703 goto nomem;
2704 case CHARGE_NOMEM: /* OOM routine works */
2705 if (!oom || invoke_oom)
2706 goto nomem;
2707 nr_oom_retries--;
2708 break;
2709 }
2710 } while (ret != CHARGE_OK);
2711
2712 if (batch > nr_pages)
2713 refill_stock(memcg, batch - nr_pages);
2714 done:
2715 return 0;
2716 nomem:
2717 if (!(gfp_mask & __GFP_NOFAIL))
2718 return -ENOMEM;
2719 bypass:
2720 return -EINTR;
2721 }
2722
2723 /**
2724 * mem_cgroup_try_charge_mm - try charging a mm
2725 * @mm: mm_struct to charge
2726 * @nr_pages: number of pages to charge
2727 * @oom: trigger OOM if reclaim fails
2728 *
2729 * Returns the charged mem_cgroup associated with the given mm_struct or
2730 * NULL the charge failed.
2731 */
2732 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2733 gfp_t gfp_mask,
2734 unsigned int nr_pages,
2735 bool oom)
2736
2737 {
2738 struct mem_cgroup *memcg;
2739 int ret;
2740
2741 memcg = get_mem_cgroup_from_mm(mm);
2742 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2743 css_put(&memcg->css);
2744 if (ret == -EINTR)
2745 memcg = root_mem_cgroup;
2746 else if (ret)
2747 memcg = NULL;
2748
2749 return memcg;
2750 }
2751
2752 /*
2753 * Somemtimes we have to undo a charge we got by try_charge().
2754 * This function is for that and do uncharge, put css's refcnt.
2755 * gotten by try_charge().
2756 */
2757 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2758 unsigned int nr_pages)
2759 {
2760 if (!mem_cgroup_is_root(memcg)) {
2761 unsigned long bytes = nr_pages * PAGE_SIZE;
2762
2763 res_counter_uncharge(&memcg->res, bytes);
2764 if (do_swap_account)
2765 res_counter_uncharge(&memcg->memsw, bytes);
2766 }
2767 }
2768
2769 /*
2770 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2771 * This is useful when moving usage to parent cgroup.
2772 */
2773 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2774 unsigned int nr_pages)
2775 {
2776 unsigned long bytes = nr_pages * PAGE_SIZE;
2777
2778 if (mem_cgroup_is_root(memcg))
2779 return;
2780
2781 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2782 if (do_swap_account)
2783 res_counter_uncharge_until(&memcg->memsw,
2784 memcg->memsw.parent, bytes);
2785 }
2786
2787 /*
2788 * A helper function to get mem_cgroup from ID. must be called under
2789 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2790 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2791 * called against removed memcg.)
2792 */
2793 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2794 {
2795 /* ID 0 is unused ID */
2796 if (!id)
2797 return NULL;
2798 return mem_cgroup_from_id(id);
2799 }
2800
2801 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2802 {
2803 struct mem_cgroup *memcg = NULL;
2804 struct page_cgroup *pc;
2805 unsigned short id;
2806 swp_entry_t ent;
2807
2808 VM_BUG_ON_PAGE(!PageLocked(page), page);
2809
2810 pc = lookup_page_cgroup(page);
2811 lock_page_cgroup(pc);
2812 if (PageCgroupUsed(pc)) {
2813 memcg = pc->mem_cgroup;
2814 if (memcg && !css_tryget(&memcg->css))
2815 memcg = NULL;
2816 } else if (PageSwapCache(page)) {
2817 ent.val = page_private(page);
2818 id = lookup_swap_cgroup_id(ent);
2819 rcu_read_lock();
2820 memcg = mem_cgroup_lookup(id);
2821 if (memcg && !css_tryget(&memcg->css))
2822 memcg = NULL;
2823 rcu_read_unlock();
2824 }
2825 unlock_page_cgroup(pc);
2826 return memcg;
2827 }
2828
2829 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2830 struct page *page,
2831 unsigned int nr_pages,
2832 enum charge_type ctype,
2833 bool lrucare)
2834 {
2835 struct page_cgroup *pc = lookup_page_cgroup(page);
2836 struct zone *uninitialized_var(zone);
2837 struct lruvec *lruvec;
2838 bool was_on_lru = false;
2839 bool anon;
2840
2841 lock_page_cgroup(pc);
2842 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2843 /*
2844 * we don't need page_cgroup_lock about tail pages, becase they are not
2845 * accessed by any other context at this point.
2846 */
2847
2848 /*
2849 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2850 * may already be on some other mem_cgroup's LRU. Take care of it.
2851 */
2852 if (lrucare) {
2853 zone = page_zone(page);
2854 spin_lock_irq(&zone->lru_lock);
2855 if (PageLRU(page)) {
2856 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2857 ClearPageLRU(page);
2858 del_page_from_lru_list(page, lruvec, page_lru(page));
2859 was_on_lru = true;
2860 }
2861 }
2862
2863 pc->mem_cgroup = memcg;
2864 /*
2865 * We access a page_cgroup asynchronously without lock_page_cgroup().
2866 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2867 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2868 * before USED bit, we need memory barrier here.
2869 * See mem_cgroup_add_lru_list(), etc.
2870 */
2871 smp_wmb();
2872 SetPageCgroupUsed(pc);
2873
2874 if (lrucare) {
2875 if (was_on_lru) {
2876 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2877 VM_BUG_ON_PAGE(PageLRU(page), page);
2878 SetPageLRU(page);
2879 add_page_to_lru_list(page, lruvec, page_lru(page));
2880 }
2881 spin_unlock_irq(&zone->lru_lock);
2882 }
2883
2884 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2885 anon = true;
2886 else
2887 anon = false;
2888
2889 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2890 unlock_page_cgroup(pc);
2891
2892 /*
2893 * "charge_statistics" updated event counter. Then, check it.
2894 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2895 * if they exceeds softlimit.
2896 */
2897 memcg_check_events(memcg, page);
2898 }
2899
2900 static DEFINE_MUTEX(set_limit_mutex);
2901
2902 #ifdef CONFIG_MEMCG_KMEM
2903 /*
2904 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2905 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2906 */
2907 static DEFINE_MUTEX(memcg_slab_mutex);
2908
2909 static DEFINE_MUTEX(activate_kmem_mutex);
2910
2911 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2912 {
2913 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2914 memcg_kmem_is_active(memcg);
2915 }
2916
2917 /*
2918 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2919 * in the memcg_cache_params struct.
2920 */
2921 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2922 {
2923 struct kmem_cache *cachep;
2924
2925 VM_BUG_ON(p->is_root_cache);
2926 cachep = p->root_cache;
2927 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2928 }
2929
2930 #ifdef CONFIG_SLABINFO
2931 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2932 {
2933 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2934 struct memcg_cache_params *params;
2935
2936 if (!memcg_can_account_kmem(memcg))
2937 return -EIO;
2938
2939 print_slabinfo_header(m);
2940
2941 mutex_lock(&memcg_slab_mutex);
2942 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2943 cache_show(memcg_params_to_cache(params), m);
2944 mutex_unlock(&memcg_slab_mutex);
2945
2946 return 0;
2947 }
2948 #endif
2949
2950 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2951 {
2952 struct res_counter *fail_res;
2953 int ret = 0;
2954
2955 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2956 if (ret)
2957 return ret;
2958
2959 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2960 oom_gfp_allowed(gfp));
2961 if (ret == -EINTR) {
2962 /*
2963 * mem_cgroup_try_charge() chosed to bypass to root due to
2964 * OOM kill or fatal signal. Since our only options are to
2965 * either fail the allocation or charge it to this cgroup, do
2966 * it as a temporary condition. But we can't fail. From a
2967 * kmem/slab perspective, the cache has already been selected,
2968 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2969 * our minds.
2970 *
2971 * This condition will only trigger if the task entered
2972 * memcg_charge_kmem in a sane state, but was OOM-killed during
2973 * mem_cgroup_try_charge() above. Tasks that were already
2974 * dying when the allocation triggers should have been already
2975 * directed to the root cgroup in memcontrol.h
2976 */
2977 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2978 if (do_swap_account)
2979 res_counter_charge_nofail(&memcg->memsw, size,
2980 &fail_res);
2981 ret = 0;
2982 } else if (ret)
2983 res_counter_uncharge(&memcg->kmem, size);
2984
2985 return ret;
2986 }
2987
2988 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2989 {
2990 res_counter_uncharge(&memcg->res, size);
2991 if (do_swap_account)
2992 res_counter_uncharge(&memcg->memsw, size);
2993
2994 /* Not down to 0 */
2995 if (res_counter_uncharge(&memcg->kmem, size))
2996 return;
2997
2998 /*
2999 * Releases a reference taken in kmem_cgroup_css_offline in case
3000 * this last uncharge is racing with the offlining code or it is
3001 * outliving the memcg existence.
3002 *
3003 * The memory barrier imposed by test&clear is paired with the
3004 * explicit one in memcg_kmem_mark_dead().
3005 */
3006 if (memcg_kmem_test_and_clear_dead(memcg))
3007 css_put(&memcg->css);
3008 }
3009
3010 /*
3011 * helper for acessing a memcg's index. It will be used as an index in the
3012 * child cache array in kmem_cache, and also to derive its name. This function
3013 * will return -1 when this is not a kmem-limited memcg.
3014 */
3015 int memcg_cache_id(struct mem_cgroup *memcg)
3016 {
3017 return memcg ? memcg->kmemcg_id : -1;
3018 }
3019
3020 static size_t memcg_caches_array_size(int num_groups)
3021 {
3022 ssize_t size;
3023 if (num_groups <= 0)
3024 return 0;
3025
3026 size = 2 * num_groups;
3027 if (size < MEMCG_CACHES_MIN_SIZE)
3028 size = MEMCG_CACHES_MIN_SIZE;
3029 else if (size > MEMCG_CACHES_MAX_SIZE)
3030 size = MEMCG_CACHES_MAX_SIZE;
3031
3032 return size;
3033 }
3034
3035 /*
3036 * We should update the current array size iff all caches updates succeed. This
3037 * can only be done from the slab side. The slab mutex needs to be held when
3038 * calling this.
3039 */
3040 void memcg_update_array_size(int num)
3041 {
3042 if (num > memcg_limited_groups_array_size)
3043 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3044 }
3045
3046 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3047 {
3048 struct memcg_cache_params *cur_params = s->memcg_params;
3049
3050 VM_BUG_ON(!is_root_cache(s));
3051
3052 if (num_groups > memcg_limited_groups_array_size) {
3053 int i;
3054 struct memcg_cache_params *new_params;
3055 ssize_t size = memcg_caches_array_size(num_groups);
3056
3057 size *= sizeof(void *);
3058 size += offsetof(struct memcg_cache_params, memcg_caches);
3059
3060 new_params = kzalloc(size, GFP_KERNEL);
3061 if (!new_params)
3062 return -ENOMEM;
3063
3064 new_params->is_root_cache = true;
3065
3066 /*
3067 * There is the chance it will be bigger than
3068 * memcg_limited_groups_array_size, if we failed an allocation
3069 * in a cache, in which case all caches updated before it, will
3070 * have a bigger array.
3071 *
3072 * But if that is the case, the data after
3073 * memcg_limited_groups_array_size is certainly unused
3074 */
3075 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3076 if (!cur_params->memcg_caches[i])
3077 continue;
3078 new_params->memcg_caches[i] =
3079 cur_params->memcg_caches[i];
3080 }
3081
3082 /*
3083 * Ideally, we would wait until all caches succeed, and only
3084 * then free the old one. But this is not worth the extra
3085 * pointer per-cache we'd have to have for this.
3086 *
3087 * It is not a big deal if some caches are left with a size
3088 * bigger than the others. And all updates will reset this
3089 * anyway.
3090 */
3091 rcu_assign_pointer(s->memcg_params, new_params);
3092 if (cur_params)
3093 kfree_rcu(cur_params, rcu_head);
3094 }
3095 return 0;
3096 }
3097
3098 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3099 struct kmem_cache *root_cache)
3100 {
3101 size_t size;
3102
3103 if (!memcg_kmem_enabled())
3104 return 0;
3105
3106 if (!memcg) {
3107 size = offsetof(struct memcg_cache_params, memcg_caches);
3108 size += memcg_limited_groups_array_size * sizeof(void *);
3109 } else
3110 size = sizeof(struct memcg_cache_params);
3111
3112 s->memcg_params = kzalloc(size, GFP_KERNEL);
3113 if (!s->memcg_params)
3114 return -ENOMEM;
3115
3116 if (memcg) {
3117 s->memcg_params->memcg = memcg;
3118 s->memcg_params->root_cache = root_cache;
3119 css_get(&memcg->css);
3120 } else
3121 s->memcg_params->is_root_cache = true;
3122
3123 return 0;
3124 }
3125
3126 void memcg_free_cache_params(struct kmem_cache *s)
3127 {
3128 if (!s->memcg_params)
3129 return;
3130 if (!s->memcg_params->is_root_cache)
3131 css_put(&s->memcg_params->memcg->css);
3132 kfree(s->memcg_params);
3133 }
3134
3135 static void memcg_kmem_create_cache(struct mem_cgroup *memcg,
3136 struct kmem_cache *root_cache)
3137 {
3138 static char *memcg_name_buf; /* protected by memcg_slab_mutex */
3139 struct kmem_cache *cachep;
3140 int id;
3141
3142 lockdep_assert_held(&memcg_slab_mutex);
3143
3144 id = memcg_cache_id(memcg);
3145
3146 /*
3147 * Since per-memcg caches are created asynchronously on first
3148 * allocation (see memcg_kmem_get_cache()), several threads can try to
3149 * create the same cache, but only one of them may succeed.
3150 */
3151 if (cache_from_memcg_idx(root_cache, id))
3152 return;
3153
3154 if (!memcg_name_buf) {
3155 memcg_name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3156 if (!memcg_name_buf)
3157 return;
3158 }
3159
3160 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3161 cachep = kmem_cache_create_memcg(memcg, root_cache, memcg_name_buf);
3162 /*
3163 * If we could not create a memcg cache, do not complain, because
3164 * that's not critical at all as we can always proceed with the root
3165 * cache.
3166 */
3167 if (!cachep)
3168 return;
3169
3170 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3171
3172 /*
3173 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3174 * barrier here to ensure nobody will see the kmem_cache partially
3175 * initialized.
3176 */
3177 smp_wmb();
3178
3179 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3180 root_cache->memcg_params->memcg_caches[id] = cachep;
3181 }
3182
3183 static void memcg_kmem_destroy_cache(struct kmem_cache *cachep)
3184 {
3185 struct kmem_cache *root_cache;
3186 struct mem_cgroup *memcg;
3187 int id;
3188
3189 lockdep_assert_held(&memcg_slab_mutex);
3190
3191 BUG_ON(is_root_cache(cachep));
3192
3193 root_cache = cachep->memcg_params->root_cache;
3194 memcg = cachep->memcg_params->memcg;
3195 id = memcg_cache_id(memcg);
3196
3197 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3198 root_cache->memcg_params->memcg_caches[id] = NULL;
3199
3200 list_del(&cachep->memcg_params->list);
3201
3202 kmem_cache_destroy(cachep);
3203 }
3204
3205 /*
3206 * During the creation a new cache, we need to disable our accounting mechanism
3207 * altogether. This is true even if we are not creating, but rather just
3208 * enqueing new caches to be created.
3209 *
3210 * This is because that process will trigger allocations; some visible, like
3211 * explicit kmallocs to auxiliary data structures, name strings and internal
3212 * cache structures; some well concealed, like INIT_WORK() that can allocate
3213 * objects during debug.
3214 *
3215 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3216 * to it. This may not be a bounded recursion: since the first cache creation
3217 * failed to complete (waiting on the allocation), we'll just try to create the
3218 * cache again, failing at the same point.
3219 *
3220 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3221 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3222 * inside the following two functions.
3223 */
3224 static inline void memcg_stop_kmem_account(void)
3225 {
3226 VM_BUG_ON(!current->mm);
3227 current->memcg_kmem_skip_account++;
3228 }
3229
3230 static inline void memcg_resume_kmem_account(void)
3231 {
3232 VM_BUG_ON(!current->mm);
3233 current->memcg_kmem_skip_account--;
3234 }
3235
3236 int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3237 {
3238 struct kmem_cache *c;
3239 int i, failed = 0;
3240
3241 mutex_lock(&memcg_slab_mutex);
3242 for_each_memcg_cache_index(i) {
3243 c = cache_from_memcg_idx(s, i);
3244 if (!c)
3245 continue;
3246
3247 memcg_kmem_destroy_cache(c);
3248
3249 if (cache_from_memcg_idx(s, i))
3250 failed++;
3251 }
3252 mutex_unlock(&memcg_slab_mutex);
3253 return failed;
3254 }
3255
3256 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3257 {
3258 struct kmem_cache *cachep;
3259 struct memcg_cache_params *params, *tmp;
3260
3261 if (!memcg_kmem_is_active(memcg))
3262 return;
3263
3264 mutex_lock(&memcg_slab_mutex);
3265 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3266 cachep = memcg_params_to_cache(params);
3267 kmem_cache_shrink(cachep);
3268 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3269 memcg_kmem_destroy_cache(cachep);
3270 }
3271 mutex_unlock(&memcg_slab_mutex);
3272 }
3273
3274 struct create_work {
3275 struct mem_cgroup *memcg;
3276 struct kmem_cache *cachep;
3277 struct work_struct work;
3278 };
3279
3280 static void memcg_create_cache_work_func(struct work_struct *w)
3281 {
3282 struct create_work *cw = container_of(w, struct create_work, work);
3283 struct mem_cgroup *memcg = cw->memcg;
3284 struct kmem_cache *cachep = cw->cachep;
3285
3286 mutex_lock(&memcg_slab_mutex);
3287 memcg_kmem_create_cache(memcg, cachep);
3288 mutex_unlock(&memcg_slab_mutex);
3289
3290 css_put(&memcg->css);
3291 kfree(cw);
3292 }
3293
3294 /*
3295 * Enqueue the creation of a per-memcg kmem_cache.
3296 */
3297 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3298 struct kmem_cache *cachep)
3299 {
3300 struct create_work *cw;
3301
3302 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3303 if (cw == NULL) {
3304 css_put(&memcg->css);
3305 return;
3306 }
3307
3308 cw->memcg = memcg;
3309 cw->cachep = cachep;
3310
3311 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3312 schedule_work(&cw->work);
3313 }
3314
3315 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3316 struct kmem_cache *cachep)
3317 {
3318 /*
3319 * We need to stop accounting when we kmalloc, because if the
3320 * corresponding kmalloc cache is not yet created, the first allocation
3321 * in __memcg_create_cache_enqueue will recurse.
3322 *
3323 * However, it is better to enclose the whole function. Depending on
3324 * the debugging options enabled, INIT_WORK(), for instance, can
3325 * trigger an allocation. This too, will make us recurse. Because at
3326 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3327 * the safest choice is to do it like this, wrapping the whole function.
3328 */
3329 memcg_stop_kmem_account();
3330 __memcg_create_cache_enqueue(memcg, cachep);
3331 memcg_resume_kmem_account();
3332 }
3333
3334 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3335 {
3336 int res;
3337
3338 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3339 PAGE_SIZE << order);
3340 if (!res)
3341 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3342 return res;
3343 }
3344
3345 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3346 {
3347 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3348 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3349 }
3350
3351 /*
3352 * Return the kmem_cache we're supposed to use for a slab allocation.
3353 * We try to use the current memcg's version of the cache.
3354 *
3355 * If the cache does not exist yet, if we are the first user of it,
3356 * we either create it immediately, if possible, or create it asynchronously
3357 * in a workqueue.
3358 * In the latter case, we will let the current allocation go through with
3359 * the original cache.
3360 *
3361 * Can't be called in interrupt context or from kernel threads.
3362 * This function needs to be called with rcu_read_lock() held.
3363 */
3364 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3365 gfp_t gfp)
3366 {
3367 struct mem_cgroup *memcg;
3368 struct kmem_cache *memcg_cachep;
3369
3370 VM_BUG_ON(!cachep->memcg_params);
3371 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3372
3373 if (!current->mm || current->memcg_kmem_skip_account)
3374 return cachep;
3375
3376 rcu_read_lock();
3377 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3378
3379 if (!memcg_can_account_kmem(memcg))
3380 goto out;
3381
3382 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3383 if (likely(memcg_cachep)) {
3384 cachep = memcg_cachep;
3385 goto out;
3386 }
3387
3388 /* The corresponding put will be done in the workqueue. */
3389 if (!css_tryget(&memcg->css))
3390 goto out;
3391 rcu_read_unlock();
3392
3393 /*
3394 * If we are in a safe context (can wait, and not in interrupt
3395 * context), we could be be predictable and return right away.
3396 * This would guarantee that the allocation being performed
3397 * already belongs in the new cache.
3398 *
3399 * However, there are some clashes that can arrive from locking.
3400 * For instance, because we acquire the slab_mutex while doing
3401 * kmem_cache_dup, this means no further allocation could happen
3402 * with the slab_mutex held.
3403 *
3404 * Also, because cache creation issue get_online_cpus(), this
3405 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3406 * that ends up reversed during cpu hotplug. (cpuset allocates
3407 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3408 * better to defer everything.
3409 */
3410 memcg_create_cache_enqueue(memcg, cachep);
3411 return cachep;
3412 out:
3413 rcu_read_unlock();
3414 return cachep;
3415 }
3416
3417 /*
3418 * We need to verify if the allocation against current->mm->owner's memcg is
3419 * possible for the given order. But the page is not allocated yet, so we'll
3420 * need a further commit step to do the final arrangements.
3421 *
3422 * It is possible for the task to switch cgroups in this mean time, so at
3423 * commit time, we can't rely on task conversion any longer. We'll then use
3424 * the handle argument to return to the caller which cgroup we should commit
3425 * against. We could also return the memcg directly and avoid the pointer
3426 * passing, but a boolean return value gives better semantics considering
3427 * the compiled-out case as well.
3428 *
3429 * Returning true means the allocation is possible.
3430 */
3431 bool
3432 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3433 {
3434 struct mem_cgroup *memcg;
3435 int ret;
3436
3437 *_memcg = NULL;
3438
3439 /*
3440 * Disabling accounting is only relevant for some specific memcg
3441 * internal allocations. Therefore we would initially not have such
3442 * check here, since direct calls to the page allocator that are
3443 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3444 * outside memcg core. We are mostly concerned with cache allocations,
3445 * and by having this test at memcg_kmem_get_cache, we are already able
3446 * to relay the allocation to the root cache and bypass the memcg cache
3447 * altogether.
3448 *
3449 * There is one exception, though: the SLUB allocator does not create
3450 * large order caches, but rather service large kmallocs directly from
3451 * the page allocator. Therefore, the following sequence when backed by
3452 * the SLUB allocator:
3453 *
3454 * memcg_stop_kmem_account();
3455 * kmalloc(<large_number>)
3456 * memcg_resume_kmem_account();
3457 *
3458 * would effectively ignore the fact that we should skip accounting,
3459 * since it will drive us directly to this function without passing
3460 * through the cache selector memcg_kmem_get_cache. Such large
3461 * allocations are extremely rare but can happen, for instance, for the
3462 * cache arrays. We bring this test here.
3463 */
3464 if (!current->mm || current->memcg_kmem_skip_account)
3465 return true;
3466
3467 memcg = get_mem_cgroup_from_mm(current->mm);
3468
3469 if (!memcg_can_account_kmem(memcg)) {
3470 css_put(&memcg->css);
3471 return true;
3472 }
3473
3474 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3475 if (!ret)
3476 *_memcg = memcg;
3477
3478 css_put(&memcg->css);
3479 return (ret == 0);
3480 }
3481
3482 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3483 int order)
3484 {
3485 struct page_cgroup *pc;
3486
3487 VM_BUG_ON(mem_cgroup_is_root(memcg));
3488
3489 /* The page allocation failed. Revert */
3490 if (!page) {
3491 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3492 return;
3493 }
3494
3495 pc = lookup_page_cgroup(page);
3496 lock_page_cgroup(pc);
3497 pc->mem_cgroup = memcg;
3498 SetPageCgroupUsed(pc);
3499 unlock_page_cgroup(pc);
3500 }
3501
3502 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3503 {
3504 struct mem_cgroup *memcg = NULL;
3505 struct page_cgroup *pc;
3506
3507
3508 pc = lookup_page_cgroup(page);
3509 /*
3510 * Fast unlocked return. Theoretically might have changed, have to
3511 * check again after locking.
3512 */
3513 if (!PageCgroupUsed(pc))
3514 return;
3515
3516 lock_page_cgroup(pc);
3517 if (PageCgroupUsed(pc)) {
3518 memcg = pc->mem_cgroup;
3519 ClearPageCgroupUsed(pc);
3520 }
3521 unlock_page_cgroup(pc);
3522
3523 /*
3524 * We trust that only if there is a memcg associated with the page, it
3525 * is a valid allocation
3526 */
3527 if (!memcg)
3528 return;
3529
3530 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3531 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3532 }
3533 #else
3534 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3535 {
3536 }
3537 #endif /* CONFIG_MEMCG_KMEM */
3538
3539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3540
3541 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3542 /*
3543 * Because tail pages are not marked as "used", set it. We're under
3544 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3545 * charge/uncharge will be never happen and move_account() is done under
3546 * compound_lock(), so we don't have to take care of races.
3547 */
3548 void mem_cgroup_split_huge_fixup(struct page *head)
3549 {
3550 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3551 struct page_cgroup *pc;
3552 struct mem_cgroup *memcg;
3553 int i;
3554
3555 if (mem_cgroup_disabled())
3556 return;
3557
3558 memcg = head_pc->mem_cgroup;
3559 for (i = 1; i < HPAGE_PMD_NR; i++) {
3560 pc = head_pc + i;
3561 pc->mem_cgroup = memcg;
3562 smp_wmb();/* see __commit_charge() */
3563 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3564 }
3565 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3566 HPAGE_PMD_NR);
3567 }
3568 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3569
3570 /**
3571 * mem_cgroup_move_account - move account of the page
3572 * @page: the page
3573 * @nr_pages: number of regular pages (>1 for huge pages)
3574 * @pc: page_cgroup of the page.
3575 * @from: mem_cgroup which the page is moved from.
3576 * @to: mem_cgroup which the page is moved to. @from != @to.
3577 *
3578 * The caller must confirm following.
3579 * - page is not on LRU (isolate_page() is useful.)
3580 * - compound_lock is held when nr_pages > 1
3581 *
3582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3583 * from old cgroup.
3584 */
3585 static int mem_cgroup_move_account(struct page *page,
3586 unsigned int nr_pages,
3587 struct page_cgroup *pc,
3588 struct mem_cgroup *from,
3589 struct mem_cgroup *to)
3590 {
3591 unsigned long flags;
3592 int ret;
3593 bool anon = PageAnon(page);
3594
3595 VM_BUG_ON(from == to);
3596 VM_BUG_ON_PAGE(PageLRU(page), page);
3597 /*
3598 * The page is isolated from LRU. So, collapse function
3599 * will not handle this page. But page splitting can happen.
3600 * Do this check under compound_page_lock(). The caller should
3601 * hold it.
3602 */
3603 ret = -EBUSY;
3604 if (nr_pages > 1 && !PageTransHuge(page))
3605 goto out;
3606
3607 lock_page_cgroup(pc);
3608
3609 ret = -EINVAL;
3610 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3611 goto unlock;
3612
3613 move_lock_mem_cgroup(from, &flags);
3614
3615 if (!anon && page_mapped(page)) {
3616 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3617 nr_pages);
3618 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3619 nr_pages);
3620 }
3621
3622 if (PageWriteback(page)) {
3623 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3624 nr_pages);
3625 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3626 nr_pages);
3627 }
3628
3629 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3630
3631 /* caller should have done css_get */
3632 pc->mem_cgroup = to;
3633 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3634 move_unlock_mem_cgroup(from, &flags);
3635 ret = 0;
3636 unlock:
3637 unlock_page_cgroup(pc);
3638 /*
3639 * check events
3640 */
3641 memcg_check_events(to, page);
3642 memcg_check_events(from, page);
3643 out:
3644 return ret;
3645 }
3646
3647 /**
3648 * mem_cgroup_move_parent - moves page to the parent group
3649 * @page: the page to move
3650 * @pc: page_cgroup of the page
3651 * @child: page's cgroup
3652 *
3653 * move charges to its parent or the root cgroup if the group has no
3654 * parent (aka use_hierarchy==0).
3655 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3656 * mem_cgroup_move_account fails) the failure is always temporary and
3657 * it signals a race with a page removal/uncharge or migration. In the
3658 * first case the page is on the way out and it will vanish from the LRU
3659 * on the next attempt and the call should be retried later.
3660 * Isolation from the LRU fails only if page has been isolated from
3661 * the LRU since we looked at it and that usually means either global
3662 * reclaim or migration going on. The page will either get back to the
3663 * LRU or vanish.
3664 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3665 * (!PageCgroupUsed) or moved to a different group. The page will
3666 * disappear in the next attempt.
3667 */
3668 static int mem_cgroup_move_parent(struct page *page,
3669 struct page_cgroup *pc,
3670 struct mem_cgroup *child)
3671 {
3672 struct mem_cgroup *parent;
3673 unsigned int nr_pages;
3674 unsigned long uninitialized_var(flags);
3675 int ret;
3676
3677 VM_BUG_ON(mem_cgroup_is_root(child));
3678
3679 ret = -EBUSY;
3680 if (!get_page_unless_zero(page))
3681 goto out;
3682 if (isolate_lru_page(page))
3683 goto put;
3684
3685 nr_pages = hpage_nr_pages(page);
3686
3687 parent = parent_mem_cgroup(child);
3688 /*
3689 * If no parent, move charges to root cgroup.
3690 */
3691 if (!parent)
3692 parent = root_mem_cgroup;
3693
3694 if (nr_pages > 1) {
3695 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3696 flags = compound_lock_irqsave(page);
3697 }
3698
3699 ret = mem_cgroup_move_account(page, nr_pages,
3700 pc, child, parent);
3701 if (!ret)
3702 __mem_cgroup_cancel_local_charge(child, nr_pages);
3703
3704 if (nr_pages > 1)
3705 compound_unlock_irqrestore(page, flags);
3706 putback_lru_page(page);
3707 put:
3708 put_page(page);
3709 out:
3710 return ret;
3711 }
3712
3713 int mem_cgroup_charge_anon(struct page *page,
3714 struct mm_struct *mm, gfp_t gfp_mask)
3715 {
3716 unsigned int nr_pages = 1;
3717 struct mem_cgroup *memcg;
3718 bool oom = true;
3719
3720 if (mem_cgroup_disabled())
3721 return 0;
3722
3723 VM_BUG_ON_PAGE(page_mapped(page), page);
3724 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3725 VM_BUG_ON(!mm);
3726
3727 if (PageTransHuge(page)) {
3728 nr_pages <<= compound_order(page);
3729 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3730 /*
3731 * Never OOM-kill a process for a huge page. The
3732 * fault handler will fall back to regular pages.
3733 */
3734 oom = false;
3735 }
3736
3737 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3738 if (!memcg)
3739 return -ENOMEM;
3740 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3741 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3742 return 0;
3743 }
3744
3745 /*
3746 * While swap-in, try_charge -> commit or cancel, the page is locked.
3747 * And when try_charge() successfully returns, one refcnt to memcg without
3748 * struct page_cgroup is acquired. This refcnt will be consumed by
3749 * "commit()" or removed by "cancel()"
3750 */
3751 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3752 struct page *page,
3753 gfp_t mask,
3754 struct mem_cgroup **memcgp)
3755 {
3756 struct mem_cgroup *memcg = NULL;
3757 struct page_cgroup *pc;
3758 int ret;
3759
3760 pc = lookup_page_cgroup(page);
3761 /*
3762 * Every swap fault against a single page tries to charge the
3763 * page, bail as early as possible. shmem_unuse() encounters
3764 * already charged pages, too. The USED bit is protected by
3765 * the page lock, which serializes swap cache removal, which
3766 * in turn serializes uncharging.
3767 */
3768 if (PageCgroupUsed(pc))
3769 goto out;
3770 if (do_swap_account)
3771 memcg = try_get_mem_cgroup_from_page(page);
3772 if (!memcg)
3773 memcg = get_mem_cgroup_from_mm(mm);
3774 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3775 css_put(&memcg->css);
3776 if (ret == -EINTR)
3777 memcg = root_mem_cgroup;
3778 else if (ret)
3779 return ret;
3780 out:
3781 *memcgp = memcg;
3782 return 0;
3783 }
3784
3785 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3786 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3787 {
3788 if (mem_cgroup_disabled()) {
3789 *memcgp = NULL;
3790 return 0;
3791 }
3792 /*
3793 * A racing thread's fault, or swapoff, may have already
3794 * updated the pte, and even removed page from swap cache: in
3795 * those cases unuse_pte()'s pte_same() test will fail; but
3796 * there's also a KSM case which does need to charge the page.
3797 */
3798 if (!PageSwapCache(page)) {
3799 struct mem_cgroup *memcg;
3800
3801 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3802 if (!memcg)
3803 return -ENOMEM;
3804 *memcgp = memcg;
3805 return 0;
3806 }
3807 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3808 }
3809
3810 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3811 {
3812 if (mem_cgroup_disabled())
3813 return;
3814 if (!memcg)
3815 return;
3816 __mem_cgroup_cancel_charge(memcg, 1);
3817 }
3818
3819 static void
3820 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3821 enum charge_type ctype)
3822 {
3823 if (mem_cgroup_disabled())
3824 return;
3825 if (!memcg)
3826 return;
3827
3828 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3829 /*
3830 * Now swap is on-memory. This means this page may be
3831 * counted both as mem and swap....double count.
3832 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3833 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3834 * may call delete_from_swap_cache() before reach here.
3835 */
3836 if (do_swap_account && PageSwapCache(page)) {
3837 swp_entry_t ent = {.val = page_private(page)};
3838 mem_cgroup_uncharge_swap(ent);
3839 }
3840 }
3841
3842 void mem_cgroup_commit_charge_swapin(struct page *page,
3843 struct mem_cgroup *memcg)
3844 {
3845 __mem_cgroup_commit_charge_swapin(page, memcg,
3846 MEM_CGROUP_CHARGE_TYPE_ANON);
3847 }
3848
3849 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3850 gfp_t gfp_mask)
3851 {
3852 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3853 struct mem_cgroup *memcg;
3854 int ret;
3855
3856 if (mem_cgroup_disabled())
3857 return 0;
3858 if (PageCompound(page))
3859 return 0;
3860
3861 if (PageSwapCache(page)) { /* shmem */
3862 ret = __mem_cgroup_try_charge_swapin(mm, page,
3863 gfp_mask, &memcg);
3864 if (ret)
3865 return ret;
3866 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3867 return 0;
3868 }
3869
3870 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3871 if (!memcg)
3872 return -ENOMEM;
3873 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3874 return 0;
3875 }
3876
3877 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3878 unsigned int nr_pages,
3879 const enum charge_type ctype)
3880 {
3881 struct memcg_batch_info *batch = NULL;
3882 bool uncharge_memsw = true;
3883
3884 /* If swapout, usage of swap doesn't decrease */
3885 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3886 uncharge_memsw = false;
3887
3888 batch = &current->memcg_batch;
3889 /*
3890 * In usual, we do css_get() when we remember memcg pointer.
3891 * But in this case, we keep res->usage until end of a series of
3892 * uncharges. Then, it's ok to ignore memcg's refcnt.
3893 */
3894 if (!batch->memcg)
3895 batch->memcg = memcg;
3896 /*
3897 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3898 * In those cases, all pages freed continuously can be expected to be in
3899 * the same cgroup and we have chance to coalesce uncharges.
3900 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3901 * because we want to do uncharge as soon as possible.
3902 */
3903
3904 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3905 goto direct_uncharge;
3906
3907 if (nr_pages > 1)
3908 goto direct_uncharge;
3909
3910 /*
3911 * In typical case, batch->memcg == mem. This means we can
3912 * merge a series of uncharges to an uncharge of res_counter.
3913 * If not, we uncharge res_counter ony by one.
3914 */
3915 if (batch->memcg != memcg)
3916 goto direct_uncharge;
3917 /* remember freed charge and uncharge it later */
3918 batch->nr_pages++;
3919 if (uncharge_memsw)
3920 batch->memsw_nr_pages++;
3921 return;
3922 direct_uncharge:
3923 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3924 if (uncharge_memsw)
3925 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3926 if (unlikely(batch->memcg != memcg))
3927 memcg_oom_recover(memcg);
3928 }
3929
3930 /*
3931 * uncharge if !page_mapped(page)
3932 */
3933 static struct mem_cgroup *
3934 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3935 bool end_migration)
3936 {
3937 struct mem_cgroup *memcg = NULL;
3938 unsigned int nr_pages = 1;
3939 struct page_cgroup *pc;
3940 bool anon;
3941
3942 if (mem_cgroup_disabled())
3943 return NULL;
3944
3945 if (PageTransHuge(page)) {
3946 nr_pages <<= compound_order(page);
3947 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3948 }
3949 /*
3950 * Check if our page_cgroup is valid
3951 */
3952 pc = lookup_page_cgroup(page);
3953 if (unlikely(!PageCgroupUsed(pc)))
3954 return NULL;
3955
3956 lock_page_cgroup(pc);
3957
3958 memcg = pc->mem_cgroup;
3959
3960 if (!PageCgroupUsed(pc))
3961 goto unlock_out;
3962
3963 anon = PageAnon(page);
3964
3965 switch (ctype) {
3966 case MEM_CGROUP_CHARGE_TYPE_ANON:
3967 /*
3968 * Generally PageAnon tells if it's the anon statistics to be
3969 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3970 * used before page reached the stage of being marked PageAnon.
3971 */
3972 anon = true;
3973 /* fallthrough */
3974 case MEM_CGROUP_CHARGE_TYPE_DROP:
3975 /* See mem_cgroup_prepare_migration() */
3976 if (page_mapped(page))
3977 goto unlock_out;
3978 /*
3979 * Pages under migration may not be uncharged. But
3980 * end_migration() /must/ be the one uncharging the
3981 * unused post-migration page and so it has to call
3982 * here with the migration bit still set. See the
3983 * res_counter handling below.
3984 */
3985 if (!end_migration && PageCgroupMigration(pc))
3986 goto unlock_out;
3987 break;
3988 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3989 if (!PageAnon(page)) { /* Shared memory */
3990 if (page->mapping && !page_is_file_cache(page))
3991 goto unlock_out;
3992 } else if (page_mapped(page)) /* Anon */
3993 goto unlock_out;
3994 break;
3995 default:
3996 break;
3997 }
3998
3999 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4000
4001 ClearPageCgroupUsed(pc);
4002 /*
4003 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4004 * freed from LRU. This is safe because uncharged page is expected not
4005 * to be reused (freed soon). Exception is SwapCache, it's handled by
4006 * special functions.
4007 */
4008
4009 unlock_page_cgroup(pc);
4010 /*
4011 * even after unlock, we have memcg->res.usage here and this memcg
4012 * will never be freed, so it's safe to call css_get().
4013 */
4014 memcg_check_events(memcg, page);
4015 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4016 mem_cgroup_swap_statistics(memcg, true);
4017 css_get(&memcg->css);
4018 }
4019 /*
4020 * Migration does not charge the res_counter for the
4021 * replacement page, so leave it alone when phasing out the
4022 * page that is unused after the migration.
4023 */
4024 if (!end_migration && !mem_cgroup_is_root(memcg))
4025 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4026
4027 return memcg;
4028
4029 unlock_out:
4030 unlock_page_cgroup(pc);
4031 return NULL;
4032 }
4033
4034 void mem_cgroup_uncharge_page(struct page *page)
4035 {
4036 /* early check. */
4037 if (page_mapped(page))
4038 return;
4039 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4040 /*
4041 * If the page is in swap cache, uncharge should be deferred
4042 * to the swap path, which also properly accounts swap usage
4043 * and handles memcg lifetime.
4044 *
4045 * Note that this check is not stable and reclaim may add the
4046 * page to swap cache at any time after this. However, if the
4047 * page is not in swap cache by the time page->mapcount hits
4048 * 0, there won't be any page table references to the swap
4049 * slot, and reclaim will free it and not actually write the
4050 * page to disk.
4051 */
4052 if (PageSwapCache(page))
4053 return;
4054 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4055 }
4056
4057 void mem_cgroup_uncharge_cache_page(struct page *page)
4058 {
4059 VM_BUG_ON_PAGE(page_mapped(page), page);
4060 VM_BUG_ON_PAGE(page->mapping, page);
4061 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4062 }
4063
4064 /*
4065 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4066 * In that cases, pages are freed continuously and we can expect pages
4067 * are in the same memcg. All these calls itself limits the number of
4068 * pages freed at once, then uncharge_start/end() is called properly.
4069 * This may be called prural(2) times in a context,
4070 */
4071
4072 void mem_cgroup_uncharge_start(void)
4073 {
4074 current->memcg_batch.do_batch++;
4075 /* We can do nest. */
4076 if (current->memcg_batch.do_batch == 1) {
4077 current->memcg_batch.memcg = NULL;
4078 current->memcg_batch.nr_pages = 0;
4079 current->memcg_batch.memsw_nr_pages = 0;
4080 }
4081 }
4082
4083 void mem_cgroup_uncharge_end(void)
4084 {
4085 struct memcg_batch_info *batch = &current->memcg_batch;
4086
4087 if (!batch->do_batch)
4088 return;
4089
4090 batch->do_batch--;
4091 if (batch->do_batch) /* If stacked, do nothing. */
4092 return;
4093
4094 if (!batch->memcg)
4095 return;
4096 /*
4097 * This "batch->memcg" is valid without any css_get/put etc...
4098 * bacause we hide charges behind us.
4099 */
4100 if (batch->nr_pages)
4101 res_counter_uncharge(&batch->memcg->res,
4102 batch->nr_pages * PAGE_SIZE);
4103 if (batch->memsw_nr_pages)
4104 res_counter_uncharge(&batch->memcg->memsw,
4105 batch->memsw_nr_pages * PAGE_SIZE);
4106 memcg_oom_recover(batch->memcg);
4107 /* forget this pointer (for sanity check) */
4108 batch->memcg = NULL;
4109 }
4110
4111 #ifdef CONFIG_SWAP
4112 /*
4113 * called after __delete_from_swap_cache() and drop "page" account.
4114 * memcg information is recorded to swap_cgroup of "ent"
4115 */
4116 void
4117 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4118 {
4119 struct mem_cgroup *memcg;
4120 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4121
4122 if (!swapout) /* this was a swap cache but the swap is unused ! */
4123 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4124
4125 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4126
4127 /*
4128 * record memcg information, if swapout && memcg != NULL,
4129 * css_get() was called in uncharge().
4130 */
4131 if (do_swap_account && swapout && memcg)
4132 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4133 }
4134 #endif
4135
4136 #ifdef CONFIG_MEMCG_SWAP
4137 /*
4138 * called from swap_entry_free(). remove record in swap_cgroup and
4139 * uncharge "memsw" account.
4140 */
4141 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4142 {
4143 struct mem_cgroup *memcg;
4144 unsigned short id;
4145
4146 if (!do_swap_account)
4147 return;
4148
4149 id = swap_cgroup_record(ent, 0);
4150 rcu_read_lock();
4151 memcg = mem_cgroup_lookup(id);
4152 if (memcg) {
4153 /*
4154 * We uncharge this because swap is freed.
4155 * This memcg can be obsolete one. We avoid calling css_tryget
4156 */
4157 if (!mem_cgroup_is_root(memcg))
4158 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4159 mem_cgroup_swap_statistics(memcg, false);
4160 css_put(&memcg->css);
4161 }
4162 rcu_read_unlock();
4163 }
4164
4165 /**
4166 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4167 * @entry: swap entry to be moved
4168 * @from: mem_cgroup which the entry is moved from
4169 * @to: mem_cgroup which the entry is moved to
4170 *
4171 * It succeeds only when the swap_cgroup's record for this entry is the same
4172 * as the mem_cgroup's id of @from.
4173 *
4174 * Returns 0 on success, -EINVAL on failure.
4175 *
4176 * The caller must have charged to @to, IOW, called res_counter_charge() about
4177 * both res and memsw, and called css_get().
4178 */
4179 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4180 struct mem_cgroup *from, struct mem_cgroup *to)
4181 {
4182 unsigned short old_id, new_id;
4183
4184 old_id = mem_cgroup_id(from);
4185 new_id = mem_cgroup_id(to);
4186
4187 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4188 mem_cgroup_swap_statistics(from, false);
4189 mem_cgroup_swap_statistics(to, true);
4190 /*
4191 * This function is only called from task migration context now.
4192 * It postpones res_counter and refcount handling till the end
4193 * of task migration(mem_cgroup_clear_mc()) for performance
4194 * improvement. But we cannot postpone css_get(to) because if
4195 * the process that has been moved to @to does swap-in, the
4196 * refcount of @to might be decreased to 0.
4197 *
4198 * We are in attach() phase, so the cgroup is guaranteed to be
4199 * alive, so we can just call css_get().
4200 */
4201 css_get(&to->css);
4202 return 0;
4203 }
4204 return -EINVAL;
4205 }
4206 #else
4207 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4208 struct mem_cgroup *from, struct mem_cgroup *to)
4209 {
4210 return -EINVAL;
4211 }
4212 #endif
4213
4214 /*
4215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4216 * page belongs to.
4217 */
4218 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4219 struct mem_cgroup **memcgp)
4220 {
4221 struct mem_cgroup *memcg = NULL;
4222 unsigned int nr_pages = 1;
4223 struct page_cgroup *pc;
4224 enum charge_type ctype;
4225
4226 *memcgp = NULL;
4227
4228 if (mem_cgroup_disabled())
4229 return;
4230
4231 if (PageTransHuge(page))
4232 nr_pages <<= compound_order(page);
4233
4234 pc = lookup_page_cgroup(page);
4235 lock_page_cgroup(pc);
4236 if (PageCgroupUsed(pc)) {
4237 memcg = pc->mem_cgroup;
4238 css_get(&memcg->css);
4239 /*
4240 * At migrating an anonymous page, its mapcount goes down
4241 * to 0 and uncharge() will be called. But, even if it's fully
4242 * unmapped, migration may fail and this page has to be
4243 * charged again. We set MIGRATION flag here and delay uncharge
4244 * until end_migration() is called
4245 *
4246 * Corner Case Thinking
4247 * A)
4248 * When the old page was mapped as Anon and it's unmap-and-freed
4249 * while migration was ongoing.
4250 * If unmap finds the old page, uncharge() of it will be delayed
4251 * until end_migration(). If unmap finds a new page, it's
4252 * uncharged when it make mapcount to be 1->0. If unmap code
4253 * finds swap_migration_entry, the new page will not be mapped
4254 * and end_migration() will find it(mapcount==0).
4255 *
4256 * B)
4257 * When the old page was mapped but migraion fails, the kernel
4258 * remaps it. A charge for it is kept by MIGRATION flag even
4259 * if mapcount goes down to 0. We can do remap successfully
4260 * without charging it again.
4261 *
4262 * C)
4263 * The "old" page is under lock_page() until the end of
4264 * migration, so, the old page itself will not be swapped-out.
4265 * If the new page is swapped out before end_migraton, our
4266 * hook to usual swap-out path will catch the event.
4267 */
4268 if (PageAnon(page))
4269 SetPageCgroupMigration(pc);
4270 }
4271 unlock_page_cgroup(pc);
4272 /*
4273 * If the page is not charged at this point,
4274 * we return here.
4275 */
4276 if (!memcg)
4277 return;
4278
4279 *memcgp = memcg;
4280 /*
4281 * We charge new page before it's used/mapped. So, even if unlock_page()
4282 * is called before end_migration, we can catch all events on this new
4283 * page. In the case new page is migrated but not remapped, new page's
4284 * mapcount will be finally 0 and we call uncharge in end_migration().
4285 */
4286 if (PageAnon(page))
4287 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4288 else
4289 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4290 /*
4291 * The page is committed to the memcg, but it's not actually
4292 * charged to the res_counter since we plan on replacing the
4293 * old one and only one page is going to be left afterwards.
4294 */
4295 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4296 }
4297
4298 /* remove redundant charge if migration failed*/
4299 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4300 struct page *oldpage, struct page *newpage, bool migration_ok)
4301 {
4302 struct page *used, *unused;
4303 struct page_cgroup *pc;
4304 bool anon;
4305
4306 if (!memcg)
4307 return;
4308
4309 if (!migration_ok) {
4310 used = oldpage;
4311 unused = newpage;
4312 } else {
4313 used = newpage;
4314 unused = oldpage;
4315 }
4316 anon = PageAnon(used);
4317 __mem_cgroup_uncharge_common(unused,
4318 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4319 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4320 true);
4321 css_put(&memcg->css);
4322 /*
4323 * We disallowed uncharge of pages under migration because mapcount
4324 * of the page goes down to zero, temporarly.
4325 * Clear the flag and check the page should be charged.
4326 */
4327 pc = lookup_page_cgroup(oldpage);
4328 lock_page_cgroup(pc);
4329 ClearPageCgroupMigration(pc);
4330 unlock_page_cgroup(pc);
4331
4332 /*
4333 * If a page is a file cache, radix-tree replacement is very atomic
4334 * and we can skip this check. When it was an Anon page, its mapcount
4335 * goes down to 0. But because we added MIGRATION flage, it's not
4336 * uncharged yet. There are several case but page->mapcount check
4337 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4338 * check. (see prepare_charge() also)
4339 */
4340 if (anon)
4341 mem_cgroup_uncharge_page(used);
4342 }
4343
4344 /*
4345 * At replace page cache, newpage is not under any memcg but it's on
4346 * LRU. So, this function doesn't touch res_counter but handles LRU
4347 * in correct way. Both pages are locked so we cannot race with uncharge.
4348 */
4349 void mem_cgroup_replace_page_cache(struct page *oldpage,
4350 struct page *newpage)
4351 {
4352 struct mem_cgroup *memcg = NULL;
4353 struct page_cgroup *pc;
4354 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4355
4356 if (mem_cgroup_disabled())
4357 return;
4358
4359 pc = lookup_page_cgroup(oldpage);
4360 /* fix accounting on old pages */
4361 lock_page_cgroup(pc);
4362 if (PageCgroupUsed(pc)) {
4363 memcg = pc->mem_cgroup;
4364 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4365 ClearPageCgroupUsed(pc);
4366 }
4367 unlock_page_cgroup(pc);
4368
4369 /*
4370 * When called from shmem_replace_page(), in some cases the
4371 * oldpage has already been charged, and in some cases not.
4372 */
4373 if (!memcg)
4374 return;
4375 /*
4376 * Even if newpage->mapping was NULL before starting replacement,
4377 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4378 * LRU while we overwrite pc->mem_cgroup.
4379 */
4380 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4381 }
4382
4383 #ifdef CONFIG_DEBUG_VM
4384 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4385 {
4386 struct page_cgroup *pc;
4387
4388 pc = lookup_page_cgroup(page);
4389 /*
4390 * Can be NULL while feeding pages into the page allocator for
4391 * the first time, i.e. during boot or memory hotplug;
4392 * or when mem_cgroup_disabled().
4393 */
4394 if (likely(pc) && PageCgroupUsed(pc))
4395 return pc;
4396 return NULL;
4397 }
4398
4399 bool mem_cgroup_bad_page_check(struct page *page)
4400 {
4401 if (mem_cgroup_disabled())
4402 return false;
4403
4404 return lookup_page_cgroup_used(page) != NULL;
4405 }
4406
4407 void mem_cgroup_print_bad_page(struct page *page)
4408 {
4409 struct page_cgroup *pc;
4410
4411 pc = lookup_page_cgroup_used(page);
4412 if (pc) {
4413 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4414 pc, pc->flags, pc->mem_cgroup);
4415 }
4416 }
4417 #endif
4418
4419 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4420 unsigned long long val)
4421 {
4422 int retry_count;
4423 u64 memswlimit, memlimit;
4424 int ret = 0;
4425 int children = mem_cgroup_count_children(memcg);
4426 u64 curusage, oldusage;
4427 int enlarge;
4428
4429 /*
4430 * For keeping hierarchical_reclaim simple, how long we should retry
4431 * is depends on callers. We set our retry-count to be function
4432 * of # of children which we should visit in this loop.
4433 */
4434 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4435
4436 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4437
4438 enlarge = 0;
4439 while (retry_count) {
4440 if (signal_pending(current)) {
4441 ret = -EINTR;
4442 break;
4443 }
4444 /*
4445 * Rather than hide all in some function, I do this in
4446 * open coded manner. You see what this really does.
4447 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4448 */
4449 mutex_lock(&set_limit_mutex);
4450 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4451 if (memswlimit < val) {
4452 ret = -EINVAL;
4453 mutex_unlock(&set_limit_mutex);
4454 break;
4455 }
4456
4457 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4458 if (memlimit < val)
4459 enlarge = 1;
4460
4461 ret = res_counter_set_limit(&memcg->res, val);
4462 if (!ret) {
4463 if (memswlimit == val)
4464 memcg->memsw_is_minimum = true;
4465 else
4466 memcg->memsw_is_minimum = false;
4467 }
4468 mutex_unlock(&set_limit_mutex);
4469
4470 if (!ret)
4471 break;
4472
4473 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4474 MEM_CGROUP_RECLAIM_SHRINK);
4475 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4476 /* Usage is reduced ? */
4477 if (curusage >= oldusage)
4478 retry_count--;
4479 else
4480 oldusage = curusage;
4481 }
4482 if (!ret && enlarge)
4483 memcg_oom_recover(memcg);
4484
4485 return ret;
4486 }
4487
4488 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4489 unsigned long long val)
4490 {
4491 int retry_count;
4492 u64 memlimit, memswlimit, oldusage, curusage;
4493 int children = mem_cgroup_count_children(memcg);
4494 int ret = -EBUSY;
4495 int enlarge = 0;
4496
4497 /* see mem_cgroup_resize_res_limit */
4498 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4499 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4500 while (retry_count) {
4501 if (signal_pending(current)) {
4502 ret = -EINTR;
4503 break;
4504 }
4505 /*
4506 * Rather than hide all in some function, I do this in
4507 * open coded manner. You see what this really does.
4508 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4509 */
4510 mutex_lock(&set_limit_mutex);
4511 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4512 if (memlimit > val) {
4513 ret = -EINVAL;
4514 mutex_unlock(&set_limit_mutex);
4515 break;
4516 }
4517 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4518 if (memswlimit < val)
4519 enlarge = 1;
4520 ret = res_counter_set_limit(&memcg->memsw, val);
4521 if (!ret) {
4522 if (memlimit == val)
4523 memcg->memsw_is_minimum = true;
4524 else
4525 memcg->memsw_is_minimum = false;
4526 }
4527 mutex_unlock(&set_limit_mutex);
4528
4529 if (!ret)
4530 break;
4531
4532 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4533 MEM_CGROUP_RECLAIM_NOSWAP |
4534 MEM_CGROUP_RECLAIM_SHRINK);
4535 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4536 /* Usage is reduced ? */
4537 if (curusage >= oldusage)
4538 retry_count--;
4539 else
4540 oldusage = curusage;
4541 }
4542 if (!ret && enlarge)
4543 memcg_oom_recover(memcg);
4544 return ret;
4545 }
4546
4547 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4548 gfp_t gfp_mask,
4549 unsigned long *total_scanned)
4550 {
4551 unsigned long nr_reclaimed = 0;
4552 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4553 unsigned long reclaimed;
4554 int loop = 0;
4555 struct mem_cgroup_tree_per_zone *mctz;
4556 unsigned long long excess;
4557 unsigned long nr_scanned;
4558
4559 if (order > 0)
4560 return 0;
4561
4562 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4563 /*
4564 * This loop can run a while, specially if mem_cgroup's continuously
4565 * keep exceeding their soft limit and putting the system under
4566 * pressure
4567 */
4568 do {
4569 if (next_mz)
4570 mz = next_mz;
4571 else
4572 mz = mem_cgroup_largest_soft_limit_node(mctz);
4573 if (!mz)
4574 break;
4575
4576 nr_scanned = 0;
4577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4578 gfp_mask, &nr_scanned);
4579 nr_reclaimed += reclaimed;
4580 *total_scanned += nr_scanned;
4581 spin_lock(&mctz->lock);
4582
4583 /*
4584 * If we failed to reclaim anything from this memory cgroup
4585 * it is time to move on to the next cgroup
4586 */
4587 next_mz = NULL;
4588 if (!reclaimed) {
4589 do {
4590 /*
4591 * Loop until we find yet another one.
4592 *
4593 * By the time we get the soft_limit lock
4594 * again, someone might have aded the
4595 * group back on the RB tree. Iterate to
4596 * make sure we get a different mem.
4597 * mem_cgroup_largest_soft_limit_node returns
4598 * NULL if no other cgroup is present on
4599 * the tree
4600 */
4601 next_mz =
4602 __mem_cgroup_largest_soft_limit_node(mctz);
4603 if (next_mz == mz)
4604 css_put(&next_mz->memcg->css);
4605 else /* next_mz == NULL or other memcg */
4606 break;
4607 } while (1);
4608 }
4609 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4610 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4611 /*
4612 * One school of thought says that we should not add
4613 * back the node to the tree if reclaim returns 0.
4614 * But our reclaim could return 0, simply because due
4615 * to priority we are exposing a smaller subset of
4616 * memory to reclaim from. Consider this as a longer
4617 * term TODO.
4618 */
4619 /* If excess == 0, no tree ops */
4620 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4621 spin_unlock(&mctz->lock);
4622 css_put(&mz->memcg->css);
4623 loop++;
4624 /*
4625 * Could not reclaim anything and there are no more
4626 * mem cgroups to try or we seem to be looping without
4627 * reclaiming anything.
4628 */
4629 if (!nr_reclaimed &&
4630 (next_mz == NULL ||
4631 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4632 break;
4633 } while (!nr_reclaimed);
4634 if (next_mz)
4635 css_put(&next_mz->memcg->css);
4636 return nr_reclaimed;
4637 }
4638
4639 /**
4640 * mem_cgroup_force_empty_list - clears LRU of a group
4641 * @memcg: group to clear
4642 * @node: NUMA node
4643 * @zid: zone id
4644 * @lru: lru to to clear
4645 *
4646 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4647 * reclaim the pages page themselves - pages are moved to the parent (or root)
4648 * group.
4649 */
4650 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4651 int node, int zid, enum lru_list lru)
4652 {
4653 struct lruvec *lruvec;
4654 unsigned long flags;
4655 struct list_head *list;
4656 struct page *busy;
4657 struct zone *zone;
4658
4659 zone = &NODE_DATA(node)->node_zones[zid];
4660 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4661 list = &lruvec->lists[lru];
4662
4663 busy = NULL;
4664 do {
4665 struct page_cgroup *pc;
4666 struct page *page;
4667
4668 spin_lock_irqsave(&zone->lru_lock, flags);
4669 if (list_empty(list)) {
4670 spin_unlock_irqrestore(&zone->lru_lock, flags);
4671 break;
4672 }
4673 page = list_entry(list->prev, struct page, lru);
4674 if (busy == page) {
4675 list_move(&page->lru, list);
4676 busy = NULL;
4677 spin_unlock_irqrestore(&zone->lru_lock, flags);
4678 continue;
4679 }
4680 spin_unlock_irqrestore(&zone->lru_lock, flags);
4681
4682 pc = lookup_page_cgroup(page);
4683
4684 if (mem_cgroup_move_parent(page, pc, memcg)) {
4685 /* found lock contention or "pc" is obsolete. */
4686 busy = page;
4687 cond_resched();
4688 } else
4689 busy = NULL;
4690 } while (!list_empty(list));
4691 }
4692
4693 /*
4694 * make mem_cgroup's charge to be 0 if there is no task by moving
4695 * all the charges and pages to the parent.
4696 * This enables deleting this mem_cgroup.
4697 *
4698 * Caller is responsible for holding css reference on the memcg.
4699 */
4700 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4701 {
4702 int node, zid;
4703 u64 usage;
4704
4705 do {
4706 /* This is for making all *used* pages to be on LRU. */
4707 lru_add_drain_all();
4708 drain_all_stock_sync(memcg);
4709 mem_cgroup_start_move(memcg);
4710 for_each_node_state(node, N_MEMORY) {
4711 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4712 enum lru_list lru;
4713 for_each_lru(lru) {
4714 mem_cgroup_force_empty_list(memcg,
4715 node, zid, lru);
4716 }
4717 }
4718 }
4719 mem_cgroup_end_move(memcg);
4720 memcg_oom_recover(memcg);
4721 cond_resched();
4722
4723 /*
4724 * Kernel memory may not necessarily be trackable to a specific
4725 * process. So they are not migrated, and therefore we can't
4726 * expect their value to drop to 0 here.
4727 * Having res filled up with kmem only is enough.
4728 *
4729 * This is a safety check because mem_cgroup_force_empty_list
4730 * could have raced with mem_cgroup_replace_page_cache callers
4731 * so the lru seemed empty but the page could have been added
4732 * right after the check. RES_USAGE should be safe as we always
4733 * charge before adding to the LRU.
4734 */
4735 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4736 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4737 } while (usage > 0);
4738 }
4739
4740 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4741 {
4742 lockdep_assert_held(&memcg_create_mutex);
4743 /*
4744 * The lock does not prevent addition or deletion to the list
4745 * of children, but it prevents a new child from being
4746 * initialized based on this parent in css_online(), so it's
4747 * enough to decide whether hierarchically inherited
4748 * attributes can still be changed or not.
4749 */
4750 return memcg->use_hierarchy &&
4751 !list_empty(&memcg->css.cgroup->children);
4752 }
4753
4754 /*
4755 * Reclaims as many pages from the given memcg as possible and moves
4756 * the rest to the parent.
4757 *
4758 * Caller is responsible for holding css reference for memcg.
4759 */
4760 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4761 {
4762 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4763 struct cgroup *cgrp = memcg->css.cgroup;
4764
4765 /* returns EBUSY if there is a task or if we come here twice. */
4766 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4767 return -EBUSY;
4768
4769 /* we call try-to-free pages for make this cgroup empty */
4770 lru_add_drain_all();
4771 /* try to free all pages in this cgroup */
4772 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4773 int progress;
4774
4775 if (signal_pending(current))
4776 return -EINTR;
4777
4778 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4779 false);
4780 if (!progress) {
4781 nr_retries--;
4782 /* maybe some writeback is necessary */
4783 congestion_wait(BLK_RW_ASYNC, HZ/10);
4784 }
4785
4786 }
4787 lru_add_drain();
4788 mem_cgroup_reparent_charges(memcg);
4789
4790 return 0;
4791 }
4792
4793 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4794 unsigned int event)
4795 {
4796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4797
4798 if (mem_cgroup_is_root(memcg))
4799 return -EINVAL;
4800 return mem_cgroup_force_empty(memcg);
4801 }
4802
4803 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4804 struct cftype *cft)
4805 {
4806 return mem_cgroup_from_css(css)->use_hierarchy;
4807 }
4808
4809 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4810 struct cftype *cft, u64 val)
4811 {
4812 int retval = 0;
4813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4814 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4815
4816 mutex_lock(&memcg_create_mutex);
4817
4818 if (memcg->use_hierarchy == val)
4819 goto out;
4820
4821 /*
4822 * If parent's use_hierarchy is set, we can't make any modifications
4823 * in the child subtrees. If it is unset, then the change can
4824 * occur, provided the current cgroup has no children.
4825 *
4826 * For the root cgroup, parent_mem is NULL, we allow value to be
4827 * set if there are no children.
4828 */
4829 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4830 (val == 1 || val == 0)) {
4831 if (list_empty(&memcg->css.cgroup->children))
4832 memcg->use_hierarchy = val;
4833 else
4834 retval = -EBUSY;
4835 } else
4836 retval = -EINVAL;
4837
4838 out:
4839 mutex_unlock(&memcg_create_mutex);
4840
4841 return retval;
4842 }
4843
4844
4845 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4846 enum mem_cgroup_stat_index idx)
4847 {
4848 struct mem_cgroup *iter;
4849 long val = 0;
4850
4851 /* Per-cpu values can be negative, use a signed accumulator */
4852 for_each_mem_cgroup_tree(iter, memcg)
4853 val += mem_cgroup_read_stat(iter, idx);
4854
4855 if (val < 0) /* race ? */
4856 val = 0;
4857 return val;
4858 }
4859
4860 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4861 {
4862 u64 val;
4863
4864 if (!mem_cgroup_is_root(memcg)) {
4865 if (!swap)
4866 return res_counter_read_u64(&memcg->res, RES_USAGE);
4867 else
4868 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4869 }
4870
4871 /*
4872 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4873 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4874 */
4875 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4876 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4877
4878 if (swap)
4879 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4880
4881 return val << PAGE_SHIFT;
4882 }
4883
4884 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4885 struct cftype *cft)
4886 {
4887 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4888 u64 val;
4889 int name;
4890 enum res_type type;
4891
4892 type = MEMFILE_TYPE(cft->private);
4893 name = MEMFILE_ATTR(cft->private);
4894
4895 switch (type) {
4896 case _MEM:
4897 if (name == RES_USAGE)
4898 val = mem_cgroup_usage(memcg, false);
4899 else
4900 val = res_counter_read_u64(&memcg->res, name);
4901 break;
4902 case _MEMSWAP:
4903 if (name == RES_USAGE)
4904 val = mem_cgroup_usage(memcg, true);
4905 else
4906 val = res_counter_read_u64(&memcg->memsw, name);
4907 break;
4908 case _KMEM:
4909 val = res_counter_read_u64(&memcg->kmem, name);
4910 break;
4911 default:
4912 BUG();
4913 }
4914
4915 return val;
4916 }
4917
4918 #ifdef CONFIG_MEMCG_KMEM
4919 /* should be called with activate_kmem_mutex held */
4920 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4921 unsigned long long limit)
4922 {
4923 int err = 0;
4924 int memcg_id;
4925
4926 if (memcg_kmem_is_active(memcg))
4927 return 0;
4928
4929 /*
4930 * We are going to allocate memory for data shared by all memory
4931 * cgroups so let's stop accounting here.
4932 */
4933 memcg_stop_kmem_account();
4934
4935 /*
4936 * For simplicity, we won't allow this to be disabled. It also can't
4937 * be changed if the cgroup has children already, or if tasks had
4938 * already joined.
4939 *
4940 * If tasks join before we set the limit, a person looking at
4941 * kmem.usage_in_bytes will have no way to determine when it took
4942 * place, which makes the value quite meaningless.
4943 *
4944 * After it first became limited, changes in the value of the limit are
4945 * of course permitted.
4946 */
4947 mutex_lock(&memcg_create_mutex);
4948 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
4949 err = -EBUSY;
4950 mutex_unlock(&memcg_create_mutex);
4951 if (err)
4952 goto out;
4953
4954 memcg_id = ida_simple_get(&kmem_limited_groups,
4955 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4956 if (memcg_id < 0) {
4957 err = memcg_id;
4958 goto out;
4959 }
4960
4961 /*
4962 * Make sure we have enough space for this cgroup in each root cache's
4963 * memcg_params.
4964 */
4965 mutex_lock(&memcg_slab_mutex);
4966 err = memcg_update_all_caches(memcg_id + 1);
4967 mutex_unlock(&memcg_slab_mutex);
4968 if (err)
4969 goto out_rmid;
4970
4971 memcg->kmemcg_id = memcg_id;
4972 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4973
4974 /*
4975 * We couldn't have accounted to this cgroup, because it hasn't got the
4976 * active bit set yet, so this should succeed.
4977 */
4978 err = res_counter_set_limit(&memcg->kmem, limit);
4979 VM_BUG_ON(err);
4980
4981 static_key_slow_inc(&memcg_kmem_enabled_key);
4982 /*
4983 * Setting the active bit after enabling static branching will
4984 * guarantee no one starts accounting before all call sites are
4985 * patched.
4986 */
4987 memcg_kmem_set_active(memcg);
4988 out:
4989 memcg_resume_kmem_account();
4990 return err;
4991
4992 out_rmid:
4993 ida_simple_remove(&kmem_limited_groups, memcg_id);
4994 goto out;
4995 }
4996
4997 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4998 unsigned long long limit)
4999 {
5000 int ret;
5001
5002 mutex_lock(&activate_kmem_mutex);
5003 ret = __memcg_activate_kmem(memcg, limit);
5004 mutex_unlock(&activate_kmem_mutex);
5005 return ret;
5006 }
5007
5008 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5009 unsigned long long val)
5010 {
5011 int ret;
5012
5013 if (!memcg_kmem_is_active(memcg))
5014 ret = memcg_activate_kmem(memcg, val);
5015 else
5016 ret = res_counter_set_limit(&memcg->kmem, val);
5017 return ret;
5018 }
5019
5020 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5021 {
5022 int ret = 0;
5023 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5024
5025 if (!parent)
5026 return 0;
5027
5028 mutex_lock(&activate_kmem_mutex);
5029 /*
5030 * If the parent cgroup is not kmem-active now, it cannot be activated
5031 * after this point, because it has at least one child already.
5032 */
5033 if (memcg_kmem_is_active(parent))
5034 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5035 mutex_unlock(&activate_kmem_mutex);
5036 return ret;
5037 }
5038 #else
5039 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5040 unsigned long long val)
5041 {
5042 return -EINVAL;
5043 }
5044 #endif /* CONFIG_MEMCG_KMEM */
5045
5046 /*
5047 * The user of this function is...
5048 * RES_LIMIT.
5049 */
5050 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5051 char *buffer)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5054 enum res_type type;
5055 int name;
5056 unsigned long long val;
5057 int ret;
5058
5059 type = MEMFILE_TYPE(cft->private);
5060 name = MEMFILE_ATTR(cft->private);
5061
5062 switch (name) {
5063 case RES_LIMIT:
5064 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5065 ret = -EINVAL;
5066 break;
5067 }
5068 /* This function does all necessary parse...reuse it */
5069 ret = res_counter_memparse_write_strategy(buffer, &val);
5070 if (ret)
5071 break;
5072 if (type == _MEM)
5073 ret = mem_cgroup_resize_limit(memcg, val);
5074 else if (type == _MEMSWAP)
5075 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5076 else if (type == _KMEM)
5077 ret = memcg_update_kmem_limit(memcg, val);
5078 else
5079 return -EINVAL;
5080 break;
5081 case RES_SOFT_LIMIT:
5082 ret = res_counter_memparse_write_strategy(buffer, &val);
5083 if (ret)
5084 break;
5085 /*
5086 * For memsw, soft limits are hard to implement in terms
5087 * of semantics, for now, we support soft limits for
5088 * control without swap
5089 */
5090 if (type == _MEM)
5091 ret = res_counter_set_soft_limit(&memcg->res, val);
5092 else
5093 ret = -EINVAL;
5094 break;
5095 default:
5096 ret = -EINVAL; /* should be BUG() ? */
5097 break;
5098 }
5099 return ret;
5100 }
5101
5102 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5103 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5104 {
5105 unsigned long long min_limit, min_memsw_limit, tmp;
5106
5107 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5108 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5109 if (!memcg->use_hierarchy)
5110 goto out;
5111
5112 while (css_parent(&memcg->css)) {
5113 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5114 if (!memcg->use_hierarchy)
5115 break;
5116 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5117 min_limit = min(min_limit, tmp);
5118 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5119 min_memsw_limit = min(min_memsw_limit, tmp);
5120 }
5121 out:
5122 *mem_limit = min_limit;
5123 *memsw_limit = min_memsw_limit;
5124 }
5125
5126 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129 int name;
5130 enum res_type type;
5131
5132 type = MEMFILE_TYPE(event);
5133 name = MEMFILE_ATTR(event);
5134
5135 switch (name) {
5136 case RES_MAX_USAGE:
5137 if (type == _MEM)
5138 res_counter_reset_max(&memcg->res);
5139 else if (type == _MEMSWAP)
5140 res_counter_reset_max(&memcg->memsw);
5141 else if (type == _KMEM)
5142 res_counter_reset_max(&memcg->kmem);
5143 else
5144 return -EINVAL;
5145 break;
5146 case RES_FAILCNT:
5147 if (type == _MEM)
5148 res_counter_reset_failcnt(&memcg->res);
5149 else if (type == _MEMSWAP)
5150 res_counter_reset_failcnt(&memcg->memsw);
5151 else if (type == _KMEM)
5152 res_counter_reset_failcnt(&memcg->kmem);
5153 else
5154 return -EINVAL;
5155 break;
5156 }
5157
5158 return 0;
5159 }
5160
5161 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5162 struct cftype *cft)
5163 {
5164 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5165 }
5166
5167 #ifdef CONFIG_MMU
5168 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5169 struct cftype *cft, u64 val)
5170 {
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172
5173 if (val >= (1 << NR_MOVE_TYPE))
5174 return -EINVAL;
5175
5176 /*
5177 * No kind of locking is needed in here, because ->can_attach() will
5178 * check this value once in the beginning of the process, and then carry
5179 * on with stale data. This means that changes to this value will only
5180 * affect task migrations starting after the change.
5181 */
5182 memcg->move_charge_at_immigrate = val;
5183 return 0;
5184 }
5185 #else
5186 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5187 struct cftype *cft, u64 val)
5188 {
5189 return -ENOSYS;
5190 }
5191 #endif
5192
5193 #ifdef CONFIG_NUMA
5194 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5195 {
5196 struct numa_stat {
5197 const char *name;
5198 unsigned int lru_mask;
5199 };
5200
5201 static const struct numa_stat stats[] = {
5202 { "total", LRU_ALL },
5203 { "file", LRU_ALL_FILE },
5204 { "anon", LRU_ALL_ANON },
5205 { "unevictable", BIT(LRU_UNEVICTABLE) },
5206 };
5207 const struct numa_stat *stat;
5208 int nid;
5209 unsigned long nr;
5210 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5211
5212 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5213 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5214 seq_printf(m, "%s=%lu", stat->name, nr);
5215 for_each_node_state(nid, N_MEMORY) {
5216 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5217 stat->lru_mask);
5218 seq_printf(m, " N%d=%lu", nid, nr);
5219 }
5220 seq_putc(m, '\n');
5221 }
5222
5223 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5224 struct mem_cgroup *iter;
5225
5226 nr = 0;
5227 for_each_mem_cgroup_tree(iter, memcg)
5228 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5229 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5230 for_each_node_state(nid, N_MEMORY) {
5231 nr = 0;
5232 for_each_mem_cgroup_tree(iter, memcg)
5233 nr += mem_cgroup_node_nr_lru_pages(
5234 iter, nid, stat->lru_mask);
5235 seq_printf(m, " N%d=%lu", nid, nr);
5236 }
5237 seq_putc(m, '\n');
5238 }
5239
5240 return 0;
5241 }
5242 #endif /* CONFIG_NUMA */
5243
5244 static inline void mem_cgroup_lru_names_not_uptodate(void)
5245 {
5246 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5247 }
5248
5249 static int memcg_stat_show(struct seq_file *m, void *v)
5250 {
5251 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5252 struct mem_cgroup *mi;
5253 unsigned int i;
5254
5255 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5256 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5257 continue;
5258 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5259 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5260 }
5261
5262 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5263 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5264 mem_cgroup_read_events(memcg, i));
5265
5266 for (i = 0; i < NR_LRU_LISTS; i++)
5267 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5268 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5269
5270 /* Hierarchical information */
5271 {
5272 unsigned long long limit, memsw_limit;
5273 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5274 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5275 if (do_swap_account)
5276 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5277 memsw_limit);
5278 }
5279
5280 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5281 long long val = 0;
5282
5283 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5284 continue;
5285 for_each_mem_cgroup_tree(mi, memcg)
5286 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5287 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5288 }
5289
5290 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5291 unsigned long long val = 0;
5292
5293 for_each_mem_cgroup_tree(mi, memcg)
5294 val += mem_cgroup_read_events(mi, i);
5295 seq_printf(m, "total_%s %llu\n",
5296 mem_cgroup_events_names[i], val);
5297 }
5298
5299 for (i = 0; i < NR_LRU_LISTS; i++) {
5300 unsigned long long val = 0;
5301
5302 for_each_mem_cgroup_tree(mi, memcg)
5303 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5304 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5305 }
5306
5307 #ifdef CONFIG_DEBUG_VM
5308 {
5309 int nid, zid;
5310 struct mem_cgroup_per_zone *mz;
5311 struct zone_reclaim_stat *rstat;
5312 unsigned long recent_rotated[2] = {0, 0};
5313 unsigned long recent_scanned[2] = {0, 0};
5314
5315 for_each_online_node(nid)
5316 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5317 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5318 rstat = &mz->lruvec.reclaim_stat;
5319
5320 recent_rotated[0] += rstat->recent_rotated[0];
5321 recent_rotated[1] += rstat->recent_rotated[1];
5322 recent_scanned[0] += rstat->recent_scanned[0];
5323 recent_scanned[1] += rstat->recent_scanned[1];
5324 }
5325 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5326 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5327 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5328 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5329 }
5330 #endif
5331
5332 return 0;
5333 }
5334
5335 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5336 struct cftype *cft)
5337 {
5338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5339
5340 return mem_cgroup_swappiness(memcg);
5341 }
5342
5343 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5344 struct cftype *cft, u64 val)
5345 {
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347
5348 if (val > 100)
5349 return -EINVAL;
5350
5351 if (css_parent(css))
5352 memcg->swappiness = val;
5353 else
5354 vm_swappiness = val;
5355
5356 return 0;
5357 }
5358
5359 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5360 {
5361 struct mem_cgroup_threshold_ary *t;
5362 u64 usage;
5363 int i;
5364
5365 rcu_read_lock();
5366 if (!swap)
5367 t = rcu_dereference(memcg->thresholds.primary);
5368 else
5369 t = rcu_dereference(memcg->memsw_thresholds.primary);
5370
5371 if (!t)
5372 goto unlock;
5373
5374 usage = mem_cgroup_usage(memcg, swap);
5375
5376 /*
5377 * current_threshold points to threshold just below or equal to usage.
5378 * If it's not true, a threshold was crossed after last
5379 * call of __mem_cgroup_threshold().
5380 */
5381 i = t->current_threshold;
5382
5383 /*
5384 * Iterate backward over array of thresholds starting from
5385 * current_threshold and check if a threshold is crossed.
5386 * If none of thresholds below usage is crossed, we read
5387 * only one element of the array here.
5388 */
5389 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5390 eventfd_signal(t->entries[i].eventfd, 1);
5391
5392 /* i = current_threshold + 1 */
5393 i++;
5394
5395 /*
5396 * Iterate forward over array of thresholds starting from
5397 * current_threshold+1 and check if a threshold is crossed.
5398 * If none of thresholds above usage is crossed, we read
5399 * only one element of the array here.
5400 */
5401 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5402 eventfd_signal(t->entries[i].eventfd, 1);
5403
5404 /* Update current_threshold */
5405 t->current_threshold = i - 1;
5406 unlock:
5407 rcu_read_unlock();
5408 }
5409
5410 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5411 {
5412 while (memcg) {
5413 __mem_cgroup_threshold(memcg, false);
5414 if (do_swap_account)
5415 __mem_cgroup_threshold(memcg, true);
5416
5417 memcg = parent_mem_cgroup(memcg);
5418 }
5419 }
5420
5421 static int compare_thresholds(const void *a, const void *b)
5422 {
5423 const struct mem_cgroup_threshold *_a = a;
5424 const struct mem_cgroup_threshold *_b = b;
5425
5426 if (_a->threshold > _b->threshold)
5427 return 1;
5428
5429 if (_a->threshold < _b->threshold)
5430 return -1;
5431
5432 return 0;
5433 }
5434
5435 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5436 {
5437 struct mem_cgroup_eventfd_list *ev;
5438
5439 list_for_each_entry(ev, &memcg->oom_notify, list)
5440 eventfd_signal(ev->eventfd, 1);
5441 return 0;
5442 }
5443
5444 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5445 {
5446 struct mem_cgroup *iter;
5447
5448 for_each_mem_cgroup_tree(iter, memcg)
5449 mem_cgroup_oom_notify_cb(iter);
5450 }
5451
5452 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5453 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5454 {
5455 struct mem_cgroup_thresholds *thresholds;
5456 struct mem_cgroup_threshold_ary *new;
5457 u64 threshold, usage;
5458 int i, size, ret;
5459
5460 ret = res_counter_memparse_write_strategy(args, &threshold);
5461 if (ret)
5462 return ret;
5463
5464 mutex_lock(&memcg->thresholds_lock);
5465
5466 if (type == _MEM)
5467 thresholds = &memcg->thresholds;
5468 else if (type == _MEMSWAP)
5469 thresholds = &memcg->memsw_thresholds;
5470 else
5471 BUG();
5472
5473 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5474
5475 /* Check if a threshold crossed before adding a new one */
5476 if (thresholds->primary)
5477 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5478
5479 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5480
5481 /* Allocate memory for new array of thresholds */
5482 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5483 GFP_KERNEL);
5484 if (!new) {
5485 ret = -ENOMEM;
5486 goto unlock;
5487 }
5488 new->size = size;
5489
5490 /* Copy thresholds (if any) to new array */
5491 if (thresholds->primary) {
5492 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5493 sizeof(struct mem_cgroup_threshold));
5494 }
5495
5496 /* Add new threshold */
5497 new->entries[size - 1].eventfd = eventfd;
5498 new->entries[size - 1].threshold = threshold;
5499
5500 /* Sort thresholds. Registering of new threshold isn't time-critical */
5501 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5502 compare_thresholds, NULL);
5503
5504 /* Find current threshold */
5505 new->current_threshold = -1;
5506 for (i = 0; i < size; i++) {
5507 if (new->entries[i].threshold <= usage) {
5508 /*
5509 * new->current_threshold will not be used until
5510 * rcu_assign_pointer(), so it's safe to increment
5511 * it here.
5512 */
5513 ++new->current_threshold;
5514 } else
5515 break;
5516 }
5517
5518 /* Free old spare buffer and save old primary buffer as spare */
5519 kfree(thresholds->spare);
5520 thresholds->spare = thresholds->primary;
5521
5522 rcu_assign_pointer(thresholds->primary, new);
5523
5524 /* To be sure that nobody uses thresholds */
5525 synchronize_rcu();
5526
5527 unlock:
5528 mutex_unlock(&memcg->thresholds_lock);
5529
5530 return ret;
5531 }
5532
5533 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5534 struct eventfd_ctx *eventfd, const char *args)
5535 {
5536 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5537 }
5538
5539 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5540 struct eventfd_ctx *eventfd, const char *args)
5541 {
5542 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5543 }
5544
5545 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5546 struct eventfd_ctx *eventfd, enum res_type type)
5547 {
5548 struct mem_cgroup_thresholds *thresholds;
5549 struct mem_cgroup_threshold_ary *new;
5550 u64 usage;
5551 int i, j, size;
5552
5553 mutex_lock(&memcg->thresholds_lock);
5554 if (type == _MEM)
5555 thresholds = &memcg->thresholds;
5556 else if (type == _MEMSWAP)
5557 thresholds = &memcg->memsw_thresholds;
5558 else
5559 BUG();
5560
5561 if (!thresholds->primary)
5562 goto unlock;
5563
5564 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5565
5566 /* Check if a threshold crossed before removing */
5567 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5568
5569 /* Calculate new number of threshold */
5570 size = 0;
5571 for (i = 0; i < thresholds->primary->size; i++) {
5572 if (thresholds->primary->entries[i].eventfd != eventfd)
5573 size++;
5574 }
5575
5576 new = thresholds->spare;
5577
5578 /* Set thresholds array to NULL if we don't have thresholds */
5579 if (!size) {
5580 kfree(new);
5581 new = NULL;
5582 goto swap_buffers;
5583 }
5584
5585 new->size = size;
5586
5587 /* Copy thresholds and find current threshold */
5588 new->current_threshold = -1;
5589 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5590 if (thresholds->primary->entries[i].eventfd == eventfd)
5591 continue;
5592
5593 new->entries[j] = thresholds->primary->entries[i];
5594 if (new->entries[j].threshold <= usage) {
5595 /*
5596 * new->current_threshold will not be used
5597 * until rcu_assign_pointer(), so it's safe to increment
5598 * it here.
5599 */
5600 ++new->current_threshold;
5601 }
5602 j++;
5603 }
5604
5605 swap_buffers:
5606 /* Swap primary and spare array */
5607 thresholds->spare = thresholds->primary;
5608 /* If all events are unregistered, free the spare array */
5609 if (!new) {
5610 kfree(thresholds->spare);
5611 thresholds->spare = NULL;
5612 }
5613
5614 rcu_assign_pointer(thresholds->primary, new);
5615
5616 /* To be sure that nobody uses thresholds */
5617 synchronize_rcu();
5618 unlock:
5619 mutex_unlock(&memcg->thresholds_lock);
5620 }
5621
5622 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5623 struct eventfd_ctx *eventfd)
5624 {
5625 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5626 }
5627
5628 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5629 struct eventfd_ctx *eventfd)
5630 {
5631 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5632 }
5633
5634 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5635 struct eventfd_ctx *eventfd, const char *args)
5636 {
5637 struct mem_cgroup_eventfd_list *event;
5638
5639 event = kmalloc(sizeof(*event), GFP_KERNEL);
5640 if (!event)
5641 return -ENOMEM;
5642
5643 spin_lock(&memcg_oom_lock);
5644
5645 event->eventfd = eventfd;
5646 list_add(&event->list, &memcg->oom_notify);
5647
5648 /* already in OOM ? */
5649 if (atomic_read(&memcg->under_oom))
5650 eventfd_signal(eventfd, 1);
5651 spin_unlock(&memcg_oom_lock);
5652
5653 return 0;
5654 }
5655
5656 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5657 struct eventfd_ctx *eventfd)
5658 {
5659 struct mem_cgroup_eventfd_list *ev, *tmp;
5660
5661 spin_lock(&memcg_oom_lock);
5662
5663 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5664 if (ev->eventfd == eventfd) {
5665 list_del(&ev->list);
5666 kfree(ev);
5667 }
5668 }
5669
5670 spin_unlock(&memcg_oom_lock);
5671 }
5672
5673 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5674 {
5675 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5676
5677 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5678 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5679 return 0;
5680 }
5681
5682 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5683 struct cftype *cft, u64 val)
5684 {
5685 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5686
5687 /* cannot set to root cgroup and only 0 and 1 are allowed */
5688 if (!css_parent(css) || !((val == 0) || (val == 1)))
5689 return -EINVAL;
5690
5691 memcg->oom_kill_disable = val;
5692 if (!val)
5693 memcg_oom_recover(memcg);
5694
5695 return 0;
5696 }
5697
5698 #ifdef CONFIG_MEMCG_KMEM
5699 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5700 {
5701 int ret;
5702
5703 memcg->kmemcg_id = -1;
5704 ret = memcg_propagate_kmem(memcg);
5705 if (ret)
5706 return ret;
5707
5708 return mem_cgroup_sockets_init(memcg, ss);
5709 }
5710
5711 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5712 {
5713 mem_cgroup_sockets_destroy(memcg);
5714 }
5715
5716 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5717 {
5718 if (!memcg_kmem_is_active(memcg))
5719 return;
5720
5721 /*
5722 * kmem charges can outlive the cgroup. In the case of slab
5723 * pages, for instance, a page contain objects from various
5724 * processes. As we prevent from taking a reference for every
5725 * such allocation we have to be careful when doing uncharge
5726 * (see memcg_uncharge_kmem) and here during offlining.
5727 *
5728 * The idea is that that only the _last_ uncharge which sees
5729 * the dead memcg will drop the last reference. An additional
5730 * reference is taken here before the group is marked dead
5731 * which is then paired with css_put during uncharge resp. here.
5732 *
5733 * Although this might sound strange as this path is called from
5734 * css_offline() when the referencemight have dropped down to 0
5735 * and shouldn't be incremented anymore (css_tryget would fail)
5736 * we do not have other options because of the kmem allocations
5737 * lifetime.
5738 */
5739 css_get(&memcg->css);
5740
5741 memcg_kmem_mark_dead(memcg);
5742
5743 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5744 return;
5745
5746 if (memcg_kmem_test_and_clear_dead(memcg))
5747 css_put(&memcg->css);
5748 }
5749 #else
5750 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5751 {
5752 return 0;
5753 }
5754
5755 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5756 {
5757 }
5758
5759 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5760 {
5761 }
5762 #endif
5763
5764 /*
5765 * DO NOT USE IN NEW FILES.
5766 *
5767 * "cgroup.event_control" implementation.
5768 *
5769 * This is way over-engineered. It tries to support fully configurable
5770 * events for each user. Such level of flexibility is completely
5771 * unnecessary especially in the light of the planned unified hierarchy.
5772 *
5773 * Please deprecate this and replace with something simpler if at all
5774 * possible.
5775 */
5776
5777 /*
5778 * Unregister event and free resources.
5779 *
5780 * Gets called from workqueue.
5781 */
5782 static void memcg_event_remove(struct work_struct *work)
5783 {
5784 struct mem_cgroup_event *event =
5785 container_of(work, struct mem_cgroup_event, remove);
5786 struct mem_cgroup *memcg = event->memcg;
5787
5788 remove_wait_queue(event->wqh, &event->wait);
5789
5790 event->unregister_event(memcg, event->eventfd);
5791
5792 /* Notify userspace the event is going away. */
5793 eventfd_signal(event->eventfd, 1);
5794
5795 eventfd_ctx_put(event->eventfd);
5796 kfree(event);
5797 css_put(&memcg->css);
5798 }
5799
5800 /*
5801 * Gets called on POLLHUP on eventfd when user closes it.
5802 *
5803 * Called with wqh->lock held and interrupts disabled.
5804 */
5805 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5806 int sync, void *key)
5807 {
5808 struct mem_cgroup_event *event =
5809 container_of(wait, struct mem_cgroup_event, wait);
5810 struct mem_cgroup *memcg = event->memcg;
5811 unsigned long flags = (unsigned long)key;
5812
5813 if (flags & POLLHUP) {
5814 /*
5815 * If the event has been detached at cgroup removal, we
5816 * can simply return knowing the other side will cleanup
5817 * for us.
5818 *
5819 * We can't race against event freeing since the other
5820 * side will require wqh->lock via remove_wait_queue(),
5821 * which we hold.
5822 */
5823 spin_lock(&memcg->event_list_lock);
5824 if (!list_empty(&event->list)) {
5825 list_del_init(&event->list);
5826 /*
5827 * We are in atomic context, but cgroup_event_remove()
5828 * may sleep, so we have to call it in workqueue.
5829 */
5830 schedule_work(&event->remove);
5831 }
5832 spin_unlock(&memcg->event_list_lock);
5833 }
5834
5835 return 0;
5836 }
5837
5838 static void memcg_event_ptable_queue_proc(struct file *file,
5839 wait_queue_head_t *wqh, poll_table *pt)
5840 {
5841 struct mem_cgroup_event *event =
5842 container_of(pt, struct mem_cgroup_event, pt);
5843
5844 event->wqh = wqh;
5845 add_wait_queue(wqh, &event->wait);
5846 }
5847
5848 /*
5849 * DO NOT USE IN NEW FILES.
5850 *
5851 * Parse input and register new cgroup event handler.
5852 *
5853 * Input must be in format '<event_fd> <control_fd> <args>'.
5854 * Interpretation of args is defined by control file implementation.
5855 */
5856 static int memcg_write_event_control(struct cgroup_subsys_state *css,
5857 struct cftype *cft, char *buffer)
5858 {
5859 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5860 struct mem_cgroup_event *event;
5861 struct cgroup_subsys_state *cfile_css;
5862 unsigned int efd, cfd;
5863 struct fd efile;
5864 struct fd cfile;
5865 const char *name;
5866 char *endp;
5867 int ret;
5868
5869 efd = simple_strtoul(buffer, &endp, 10);
5870 if (*endp != ' ')
5871 return -EINVAL;
5872 buffer = endp + 1;
5873
5874 cfd = simple_strtoul(buffer, &endp, 10);
5875 if ((*endp != ' ') && (*endp != '\0'))
5876 return -EINVAL;
5877 buffer = endp + 1;
5878
5879 event = kzalloc(sizeof(*event), GFP_KERNEL);
5880 if (!event)
5881 return -ENOMEM;
5882
5883 event->memcg = memcg;
5884 INIT_LIST_HEAD(&event->list);
5885 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5886 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5887 INIT_WORK(&event->remove, memcg_event_remove);
5888
5889 efile = fdget(efd);
5890 if (!efile.file) {
5891 ret = -EBADF;
5892 goto out_kfree;
5893 }
5894
5895 event->eventfd = eventfd_ctx_fileget(efile.file);
5896 if (IS_ERR(event->eventfd)) {
5897 ret = PTR_ERR(event->eventfd);
5898 goto out_put_efile;
5899 }
5900
5901 cfile = fdget(cfd);
5902 if (!cfile.file) {
5903 ret = -EBADF;
5904 goto out_put_eventfd;
5905 }
5906
5907 /* the process need read permission on control file */
5908 /* AV: shouldn't we check that it's been opened for read instead? */
5909 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5910 if (ret < 0)
5911 goto out_put_cfile;
5912
5913 /*
5914 * Determine the event callbacks and set them in @event. This used
5915 * to be done via struct cftype but cgroup core no longer knows
5916 * about these events. The following is crude but the whole thing
5917 * is for compatibility anyway.
5918 *
5919 * DO NOT ADD NEW FILES.
5920 */
5921 name = cfile.file->f_dentry->d_name.name;
5922
5923 if (!strcmp(name, "memory.usage_in_bytes")) {
5924 event->register_event = mem_cgroup_usage_register_event;
5925 event->unregister_event = mem_cgroup_usage_unregister_event;
5926 } else if (!strcmp(name, "memory.oom_control")) {
5927 event->register_event = mem_cgroup_oom_register_event;
5928 event->unregister_event = mem_cgroup_oom_unregister_event;
5929 } else if (!strcmp(name, "memory.pressure_level")) {
5930 event->register_event = vmpressure_register_event;
5931 event->unregister_event = vmpressure_unregister_event;
5932 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5933 event->register_event = memsw_cgroup_usage_register_event;
5934 event->unregister_event = memsw_cgroup_usage_unregister_event;
5935 } else {
5936 ret = -EINVAL;
5937 goto out_put_cfile;
5938 }
5939
5940 /*
5941 * Verify @cfile should belong to @css. Also, remaining events are
5942 * automatically removed on cgroup destruction but the removal is
5943 * asynchronous, so take an extra ref on @css.
5944 */
5945 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
5946 &memory_cgrp_subsys);
5947 ret = -EINVAL;
5948 if (IS_ERR(cfile_css))
5949 goto out_put_cfile;
5950 if (cfile_css != css) {
5951 css_put(cfile_css);
5952 goto out_put_cfile;
5953 }
5954
5955 ret = event->register_event(memcg, event->eventfd, buffer);
5956 if (ret)
5957 goto out_put_css;
5958
5959 efile.file->f_op->poll(efile.file, &event->pt);
5960
5961 spin_lock(&memcg->event_list_lock);
5962 list_add(&event->list, &memcg->event_list);
5963 spin_unlock(&memcg->event_list_lock);
5964
5965 fdput(cfile);
5966 fdput(efile);
5967
5968 return 0;
5969
5970 out_put_css:
5971 css_put(css);
5972 out_put_cfile:
5973 fdput(cfile);
5974 out_put_eventfd:
5975 eventfd_ctx_put(event->eventfd);
5976 out_put_efile:
5977 fdput(efile);
5978 out_kfree:
5979 kfree(event);
5980
5981 return ret;
5982 }
5983
5984 static struct cftype mem_cgroup_files[] = {
5985 {
5986 .name = "usage_in_bytes",
5987 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5988 .read_u64 = mem_cgroup_read_u64,
5989 },
5990 {
5991 .name = "max_usage_in_bytes",
5992 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5993 .trigger = mem_cgroup_reset,
5994 .read_u64 = mem_cgroup_read_u64,
5995 },
5996 {
5997 .name = "limit_in_bytes",
5998 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5999 .write_string = mem_cgroup_write,
6000 .read_u64 = mem_cgroup_read_u64,
6001 },
6002 {
6003 .name = "soft_limit_in_bytes",
6004 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6005 .write_string = mem_cgroup_write,
6006 .read_u64 = mem_cgroup_read_u64,
6007 },
6008 {
6009 .name = "failcnt",
6010 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6011 .trigger = mem_cgroup_reset,
6012 .read_u64 = mem_cgroup_read_u64,
6013 },
6014 {
6015 .name = "stat",
6016 .seq_show = memcg_stat_show,
6017 },
6018 {
6019 .name = "force_empty",
6020 .trigger = mem_cgroup_force_empty_write,
6021 },
6022 {
6023 .name = "use_hierarchy",
6024 .flags = CFTYPE_INSANE,
6025 .write_u64 = mem_cgroup_hierarchy_write,
6026 .read_u64 = mem_cgroup_hierarchy_read,
6027 },
6028 {
6029 .name = "cgroup.event_control", /* XXX: for compat */
6030 .write_string = memcg_write_event_control,
6031 .flags = CFTYPE_NO_PREFIX,
6032 .mode = S_IWUGO,
6033 },
6034 {
6035 .name = "swappiness",
6036 .read_u64 = mem_cgroup_swappiness_read,
6037 .write_u64 = mem_cgroup_swappiness_write,
6038 },
6039 {
6040 .name = "move_charge_at_immigrate",
6041 .read_u64 = mem_cgroup_move_charge_read,
6042 .write_u64 = mem_cgroup_move_charge_write,
6043 },
6044 {
6045 .name = "oom_control",
6046 .seq_show = mem_cgroup_oom_control_read,
6047 .write_u64 = mem_cgroup_oom_control_write,
6048 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6049 },
6050 {
6051 .name = "pressure_level",
6052 },
6053 #ifdef CONFIG_NUMA
6054 {
6055 .name = "numa_stat",
6056 .seq_show = memcg_numa_stat_show,
6057 },
6058 #endif
6059 #ifdef CONFIG_MEMCG_KMEM
6060 {
6061 .name = "kmem.limit_in_bytes",
6062 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6063 .write_string = mem_cgroup_write,
6064 .read_u64 = mem_cgroup_read_u64,
6065 },
6066 {
6067 .name = "kmem.usage_in_bytes",
6068 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6069 .read_u64 = mem_cgroup_read_u64,
6070 },
6071 {
6072 .name = "kmem.failcnt",
6073 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6074 .trigger = mem_cgroup_reset,
6075 .read_u64 = mem_cgroup_read_u64,
6076 },
6077 {
6078 .name = "kmem.max_usage_in_bytes",
6079 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6080 .trigger = mem_cgroup_reset,
6081 .read_u64 = mem_cgroup_read_u64,
6082 },
6083 #ifdef CONFIG_SLABINFO
6084 {
6085 .name = "kmem.slabinfo",
6086 .seq_show = mem_cgroup_slabinfo_read,
6087 },
6088 #endif
6089 #endif
6090 { }, /* terminate */
6091 };
6092
6093 #ifdef CONFIG_MEMCG_SWAP
6094 static struct cftype memsw_cgroup_files[] = {
6095 {
6096 .name = "memsw.usage_in_bytes",
6097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6098 .read_u64 = mem_cgroup_read_u64,
6099 },
6100 {
6101 .name = "memsw.max_usage_in_bytes",
6102 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6103 .trigger = mem_cgroup_reset,
6104 .read_u64 = mem_cgroup_read_u64,
6105 },
6106 {
6107 .name = "memsw.limit_in_bytes",
6108 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6109 .write_string = mem_cgroup_write,
6110 .read_u64 = mem_cgroup_read_u64,
6111 },
6112 {
6113 .name = "memsw.failcnt",
6114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6115 .trigger = mem_cgroup_reset,
6116 .read_u64 = mem_cgroup_read_u64,
6117 },
6118 { }, /* terminate */
6119 };
6120 #endif
6121 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6122 {
6123 struct mem_cgroup_per_node *pn;
6124 struct mem_cgroup_per_zone *mz;
6125 int zone, tmp = node;
6126 /*
6127 * This routine is called against possible nodes.
6128 * But it's BUG to call kmalloc() against offline node.
6129 *
6130 * TODO: this routine can waste much memory for nodes which will
6131 * never be onlined. It's better to use memory hotplug callback
6132 * function.
6133 */
6134 if (!node_state(node, N_NORMAL_MEMORY))
6135 tmp = -1;
6136 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6137 if (!pn)
6138 return 1;
6139
6140 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6141 mz = &pn->zoneinfo[zone];
6142 lruvec_init(&mz->lruvec);
6143 mz->usage_in_excess = 0;
6144 mz->on_tree = false;
6145 mz->memcg = memcg;
6146 }
6147 memcg->nodeinfo[node] = pn;
6148 return 0;
6149 }
6150
6151 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6152 {
6153 kfree(memcg->nodeinfo[node]);
6154 }
6155
6156 static struct mem_cgroup *mem_cgroup_alloc(void)
6157 {
6158 struct mem_cgroup *memcg;
6159 size_t size;
6160
6161 size = sizeof(struct mem_cgroup);
6162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6163
6164 memcg = kzalloc(size, GFP_KERNEL);
6165 if (!memcg)
6166 return NULL;
6167
6168 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6169 if (!memcg->stat)
6170 goto out_free;
6171 spin_lock_init(&memcg->pcp_counter_lock);
6172 return memcg;
6173
6174 out_free:
6175 kfree(memcg);
6176 return NULL;
6177 }
6178
6179 /*
6180 * At destroying mem_cgroup, references from swap_cgroup can remain.
6181 * (scanning all at force_empty is too costly...)
6182 *
6183 * Instead of clearing all references at force_empty, we remember
6184 * the number of reference from swap_cgroup and free mem_cgroup when
6185 * it goes down to 0.
6186 *
6187 * Removal of cgroup itself succeeds regardless of refs from swap.
6188 */
6189
6190 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6191 {
6192 int node;
6193
6194 mem_cgroup_remove_from_trees(memcg);
6195
6196 for_each_node(node)
6197 free_mem_cgroup_per_zone_info(memcg, node);
6198
6199 free_percpu(memcg->stat);
6200
6201 /*
6202 * We need to make sure that (at least for now), the jump label
6203 * destruction code runs outside of the cgroup lock. This is because
6204 * get_online_cpus(), which is called from the static_branch update,
6205 * can't be called inside the cgroup_lock. cpusets are the ones
6206 * enforcing this dependency, so if they ever change, we might as well.
6207 *
6208 * schedule_work() will guarantee this happens. Be careful if you need
6209 * to move this code around, and make sure it is outside
6210 * the cgroup_lock.
6211 */
6212 disarm_static_keys(memcg);
6213 kfree(memcg);
6214 }
6215
6216 /*
6217 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6218 */
6219 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6220 {
6221 if (!memcg->res.parent)
6222 return NULL;
6223 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6224 }
6225 EXPORT_SYMBOL(parent_mem_cgroup);
6226
6227 static void __init mem_cgroup_soft_limit_tree_init(void)
6228 {
6229 struct mem_cgroup_tree_per_node *rtpn;
6230 struct mem_cgroup_tree_per_zone *rtpz;
6231 int tmp, node, zone;
6232
6233 for_each_node(node) {
6234 tmp = node;
6235 if (!node_state(node, N_NORMAL_MEMORY))
6236 tmp = -1;
6237 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6238 BUG_ON(!rtpn);
6239
6240 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6241
6242 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6243 rtpz = &rtpn->rb_tree_per_zone[zone];
6244 rtpz->rb_root = RB_ROOT;
6245 spin_lock_init(&rtpz->lock);
6246 }
6247 }
6248 }
6249
6250 static struct cgroup_subsys_state * __ref
6251 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6252 {
6253 struct mem_cgroup *memcg;
6254 long error = -ENOMEM;
6255 int node;
6256
6257 memcg = mem_cgroup_alloc();
6258 if (!memcg)
6259 return ERR_PTR(error);
6260
6261 for_each_node(node)
6262 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6263 goto free_out;
6264
6265 /* root ? */
6266 if (parent_css == NULL) {
6267 root_mem_cgroup = memcg;
6268 res_counter_init(&memcg->res, NULL);
6269 res_counter_init(&memcg->memsw, NULL);
6270 res_counter_init(&memcg->kmem, NULL);
6271 }
6272
6273 memcg->last_scanned_node = MAX_NUMNODES;
6274 INIT_LIST_HEAD(&memcg->oom_notify);
6275 memcg->move_charge_at_immigrate = 0;
6276 mutex_init(&memcg->thresholds_lock);
6277 spin_lock_init(&memcg->move_lock);
6278 vmpressure_init(&memcg->vmpressure);
6279 INIT_LIST_HEAD(&memcg->event_list);
6280 spin_lock_init(&memcg->event_list_lock);
6281
6282 return &memcg->css;
6283
6284 free_out:
6285 __mem_cgroup_free(memcg);
6286 return ERR_PTR(error);
6287 }
6288
6289 static int
6290 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6291 {
6292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6293 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6294
6295 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6296 return -ENOSPC;
6297
6298 if (!parent)
6299 return 0;
6300
6301 mutex_lock(&memcg_create_mutex);
6302
6303 memcg->use_hierarchy = parent->use_hierarchy;
6304 memcg->oom_kill_disable = parent->oom_kill_disable;
6305 memcg->swappiness = mem_cgroup_swappiness(parent);
6306
6307 if (parent->use_hierarchy) {
6308 res_counter_init(&memcg->res, &parent->res);
6309 res_counter_init(&memcg->memsw, &parent->memsw);
6310 res_counter_init(&memcg->kmem, &parent->kmem);
6311
6312 /*
6313 * No need to take a reference to the parent because cgroup
6314 * core guarantees its existence.
6315 */
6316 } else {
6317 res_counter_init(&memcg->res, NULL);
6318 res_counter_init(&memcg->memsw, NULL);
6319 res_counter_init(&memcg->kmem, NULL);
6320 /*
6321 * Deeper hierachy with use_hierarchy == false doesn't make
6322 * much sense so let cgroup subsystem know about this
6323 * unfortunate state in our controller.
6324 */
6325 if (parent != root_mem_cgroup)
6326 memory_cgrp_subsys.broken_hierarchy = true;
6327 }
6328 mutex_unlock(&memcg_create_mutex);
6329
6330 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6331 }
6332
6333 /*
6334 * Announce all parents that a group from their hierarchy is gone.
6335 */
6336 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6337 {
6338 struct mem_cgroup *parent = memcg;
6339
6340 while ((parent = parent_mem_cgroup(parent)))
6341 mem_cgroup_iter_invalidate(parent);
6342
6343 /*
6344 * if the root memcg is not hierarchical we have to check it
6345 * explicitely.
6346 */
6347 if (!root_mem_cgroup->use_hierarchy)
6348 mem_cgroup_iter_invalidate(root_mem_cgroup);
6349 }
6350
6351 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6352 {
6353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6354 struct mem_cgroup_event *event, *tmp;
6355 struct cgroup_subsys_state *iter;
6356
6357 /*
6358 * Unregister events and notify userspace.
6359 * Notify userspace about cgroup removing only after rmdir of cgroup
6360 * directory to avoid race between userspace and kernelspace.
6361 */
6362 spin_lock(&memcg->event_list_lock);
6363 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6364 list_del_init(&event->list);
6365 schedule_work(&event->remove);
6366 }
6367 spin_unlock(&memcg->event_list_lock);
6368
6369 kmem_cgroup_css_offline(memcg);
6370
6371 mem_cgroup_invalidate_reclaim_iterators(memcg);
6372
6373 /*
6374 * This requires that offlining is serialized. Right now that is
6375 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6376 */
6377 css_for_each_descendant_post(iter, css)
6378 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6379
6380 mem_cgroup_destroy_all_caches(memcg);
6381 vmpressure_cleanup(&memcg->vmpressure);
6382 }
6383
6384 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6385 {
6386 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6387 /*
6388 * XXX: css_offline() would be where we should reparent all
6389 * memory to prepare the cgroup for destruction. However,
6390 * memcg does not do css_tryget() and res_counter charging
6391 * under the same RCU lock region, which means that charging
6392 * could race with offlining. Offlining only happens to
6393 * cgroups with no tasks in them but charges can show up
6394 * without any tasks from the swapin path when the target
6395 * memcg is looked up from the swapout record and not from the
6396 * current task as it usually is. A race like this can leak
6397 * charges and put pages with stale cgroup pointers into
6398 * circulation:
6399 *
6400 * #0 #1
6401 * lookup_swap_cgroup_id()
6402 * rcu_read_lock()
6403 * mem_cgroup_lookup()
6404 * css_tryget()
6405 * rcu_read_unlock()
6406 * disable css_tryget()
6407 * call_rcu()
6408 * offline_css()
6409 * reparent_charges()
6410 * res_counter_charge()
6411 * css_put()
6412 * css_free()
6413 * pc->mem_cgroup = dead memcg
6414 * add page to lru
6415 *
6416 * The bulk of the charges are still moved in offline_css() to
6417 * avoid pinning a lot of pages in case a long-term reference
6418 * like a swapout record is deferring the css_free() to long
6419 * after offlining. But this makes sure we catch any charges
6420 * made after offlining:
6421 */
6422 mem_cgroup_reparent_charges(memcg);
6423
6424 memcg_destroy_kmem(memcg);
6425 __mem_cgroup_free(memcg);
6426 }
6427
6428 #ifdef CONFIG_MMU
6429 /* Handlers for move charge at task migration. */
6430 #define PRECHARGE_COUNT_AT_ONCE 256
6431 static int mem_cgroup_do_precharge(unsigned long count)
6432 {
6433 int ret = 0;
6434 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6435 struct mem_cgroup *memcg = mc.to;
6436
6437 if (mem_cgroup_is_root(memcg)) {
6438 mc.precharge += count;
6439 /* we don't need css_get for root */
6440 return ret;
6441 }
6442 /* try to charge at once */
6443 if (count > 1) {
6444 struct res_counter *dummy;
6445 /*
6446 * "memcg" cannot be under rmdir() because we've already checked
6447 * by cgroup_lock_live_cgroup() that it is not removed and we
6448 * are still under the same cgroup_mutex. So we can postpone
6449 * css_get().
6450 */
6451 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6452 goto one_by_one;
6453 if (do_swap_account && res_counter_charge(&memcg->memsw,
6454 PAGE_SIZE * count, &dummy)) {
6455 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6456 goto one_by_one;
6457 }
6458 mc.precharge += count;
6459 return ret;
6460 }
6461 one_by_one:
6462 /* fall back to one by one charge */
6463 while (count--) {
6464 if (signal_pending(current)) {
6465 ret = -EINTR;
6466 break;
6467 }
6468 if (!batch_count--) {
6469 batch_count = PRECHARGE_COUNT_AT_ONCE;
6470 cond_resched();
6471 }
6472 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6473 if (ret)
6474 /* mem_cgroup_clear_mc() will do uncharge later */
6475 return ret;
6476 mc.precharge++;
6477 }
6478 return ret;
6479 }
6480
6481 /**
6482 * get_mctgt_type - get target type of moving charge
6483 * @vma: the vma the pte to be checked belongs
6484 * @addr: the address corresponding to the pte to be checked
6485 * @ptent: the pte to be checked
6486 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6487 *
6488 * Returns
6489 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6490 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6491 * move charge. if @target is not NULL, the page is stored in target->page
6492 * with extra refcnt got(Callers should handle it).
6493 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6494 * target for charge migration. if @target is not NULL, the entry is stored
6495 * in target->ent.
6496 *
6497 * Called with pte lock held.
6498 */
6499 union mc_target {
6500 struct page *page;
6501 swp_entry_t ent;
6502 };
6503
6504 enum mc_target_type {
6505 MC_TARGET_NONE = 0,
6506 MC_TARGET_PAGE,
6507 MC_TARGET_SWAP,
6508 };
6509
6510 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6511 unsigned long addr, pte_t ptent)
6512 {
6513 struct page *page = vm_normal_page(vma, addr, ptent);
6514
6515 if (!page || !page_mapped(page))
6516 return NULL;
6517 if (PageAnon(page)) {
6518 /* we don't move shared anon */
6519 if (!move_anon())
6520 return NULL;
6521 } else if (!move_file())
6522 /* we ignore mapcount for file pages */
6523 return NULL;
6524 if (!get_page_unless_zero(page))
6525 return NULL;
6526
6527 return page;
6528 }
6529
6530 #ifdef CONFIG_SWAP
6531 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6532 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6533 {
6534 struct page *page = NULL;
6535 swp_entry_t ent = pte_to_swp_entry(ptent);
6536
6537 if (!move_anon() || non_swap_entry(ent))
6538 return NULL;
6539 /*
6540 * Because lookup_swap_cache() updates some statistics counter,
6541 * we call find_get_page() with swapper_space directly.
6542 */
6543 page = find_get_page(swap_address_space(ent), ent.val);
6544 if (do_swap_account)
6545 entry->val = ent.val;
6546
6547 return page;
6548 }
6549 #else
6550 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6551 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6552 {
6553 return NULL;
6554 }
6555 #endif
6556
6557 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6558 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6559 {
6560 struct page *page = NULL;
6561 struct address_space *mapping;
6562 pgoff_t pgoff;
6563
6564 if (!vma->vm_file) /* anonymous vma */
6565 return NULL;
6566 if (!move_file())
6567 return NULL;
6568
6569 mapping = vma->vm_file->f_mapping;
6570 if (pte_none(ptent))
6571 pgoff = linear_page_index(vma, addr);
6572 else /* pte_file(ptent) is true */
6573 pgoff = pte_to_pgoff(ptent);
6574
6575 /* page is moved even if it's not RSS of this task(page-faulted). */
6576 #ifdef CONFIG_SWAP
6577 /* shmem/tmpfs may report page out on swap: account for that too. */
6578 if (shmem_mapping(mapping)) {
6579 page = find_get_entry(mapping, pgoff);
6580 if (radix_tree_exceptional_entry(page)) {
6581 swp_entry_t swp = radix_to_swp_entry(page);
6582 if (do_swap_account)
6583 *entry = swp;
6584 page = find_get_page(swap_address_space(swp), swp.val);
6585 }
6586 } else
6587 page = find_get_page(mapping, pgoff);
6588 #else
6589 page = find_get_page(mapping, pgoff);
6590 #endif
6591 return page;
6592 }
6593
6594 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6595 unsigned long addr, pte_t ptent, union mc_target *target)
6596 {
6597 struct page *page = NULL;
6598 struct page_cgroup *pc;
6599 enum mc_target_type ret = MC_TARGET_NONE;
6600 swp_entry_t ent = { .val = 0 };
6601
6602 if (pte_present(ptent))
6603 page = mc_handle_present_pte(vma, addr, ptent);
6604 else if (is_swap_pte(ptent))
6605 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6606 else if (pte_none(ptent) || pte_file(ptent))
6607 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6608
6609 if (!page && !ent.val)
6610 return ret;
6611 if (page) {
6612 pc = lookup_page_cgroup(page);
6613 /*
6614 * Do only loose check w/o page_cgroup lock.
6615 * mem_cgroup_move_account() checks the pc is valid or not under
6616 * the lock.
6617 */
6618 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6619 ret = MC_TARGET_PAGE;
6620 if (target)
6621 target->page = page;
6622 }
6623 if (!ret || !target)
6624 put_page(page);
6625 }
6626 /* There is a swap entry and a page doesn't exist or isn't charged */
6627 if (ent.val && !ret &&
6628 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6629 ret = MC_TARGET_SWAP;
6630 if (target)
6631 target->ent = ent;
6632 }
6633 return ret;
6634 }
6635
6636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6637 /*
6638 * We don't consider swapping or file mapped pages because THP does not
6639 * support them for now.
6640 * Caller should make sure that pmd_trans_huge(pmd) is true.
6641 */
6642 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6643 unsigned long addr, pmd_t pmd, union mc_target *target)
6644 {
6645 struct page *page = NULL;
6646 struct page_cgroup *pc;
6647 enum mc_target_type ret = MC_TARGET_NONE;
6648
6649 page = pmd_page(pmd);
6650 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6651 if (!move_anon())
6652 return ret;
6653 pc = lookup_page_cgroup(page);
6654 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6655 ret = MC_TARGET_PAGE;
6656 if (target) {
6657 get_page(page);
6658 target->page = page;
6659 }
6660 }
6661 return ret;
6662 }
6663 #else
6664 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6665 unsigned long addr, pmd_t pmd, union mc_target *target)
6666 {
6667 return MC_TARGET_NONE;
6668 }
6669 #endif
6670
6671 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6672 unsigned long addr, unsigned long end,
6673 struct mm_walk *walk)
6674 {
6675 struct vm_area_struct *vma = walk->private;
6676 pte_t *pte;
6677 spinlock_t *ptl;
6678
6679 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6680 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6681 mc.precharge += HPAGE_PMD_NR;
6682 spin_unlock(ptl);
6683 return 0;
6684 }
6685
6686 if (pmd_trans_unstable(pmd))
6687 return 0;
6688 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6689 for (; addr != end; pte++, addr += PAGE_SIZE)
6690 if (get_mctgt_type(vma, addr, *pte, NULL))
6691 mc.precharge++; /* increment precharge temporarily */
6692 pte_unmap_unlock(pte - 1, ptl);
6693 cond_resched();
6694
6695 return 0;
6696 }
6697
6698 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6699 {
6700 unsigned long precharge;
6701 struct vm_area_struct *vma;
6702
6703 down_read(&mm->mmap_sem);
6704 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6705 struct mm_walk mem_cgroup_count_precharge_walk = {
6706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6707 .mm = mm,
6708 .private = vma,
6709 };
6710 if (is_vm_hugetlb_page(vma))
6711 continue;
6712 walk_page_range(vma->vm_start, vma->vm_end,
6713 &mem_cgroup_count_precharge_walk);
6714 }
6715 up_read(&mm->mmap_sem);
6716
6717 precharge = mc.precharge;
6718 mc.precharge = 0;
6719
6720 return precharge;
6721 }
6722
6723 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6724 {
6725 unsigned long precharge = mem_cgroup_count_precharge(mm);
6726
6727 VM_BUG_ON(mc.moving_task);
6728 mc.moving_task = current;
6729 return mem_cgroup_do_precharge(precharge);
6730 }
6731
6732 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6733 static void __mem_cgroup_clear_mc(void)
6734 {
6735 struct mem_cgroup *from = mc.from;
6736 struct mem_cgroup *to = mc.to;
6737 int i;
6738
6739 /* we must uncharge all the leftover precharges from mc.to */
6740 if (mc.precharge) {
6741 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6742 mc.precharge = 0;
6743 }
6744 /*
6745 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6746 * we must uncharge here.
6747 */
6748 if (mc.moved_charge) {
6749 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6750 mc.moved_charge = 0;
6751 }
6752 /* we must fixup refcnts and charges */
6753 if (mc.moved_swap) {
6754 /* uncharge swap account from the old cgroup */
6755 if (!mem_cgroup_is_root(mc.from))
6756 res_counter_uncharge(&mc.from->memsw,
6757 PAGE_SIZE * mc.moved_swap);
6758
6759 for (i = 0; i < mc.moved_swap; i++)
6760 css_put(&mc.from->css);
6761
6762 if (!mem_cgroup_is_root(mc.to)) {
6763 /*
6764 * we charged both to->res and to->memsw, so we should
6765 * uncharge to->res.
6766 */
6767 res_counter_uncharge(&mc.to->res,
6768 PAGE_SIZE * mc.moved_swap);
6769 }
6770 /* we've already done css_get(mc.to) */
6771 mc.moved_swap = 0;
6772 }
6773 memcg_oom_recover(from);
6774 memcg_oom_recover(to);
6775 wake_up_all(&mc.waitq);
6776 }
6777
6778 static void mem_cgroup_clear_mc(void)
6779 {
6780 struct mem_cgroup *from = mc.from;
6781
6782 /*
6783 * we must clear moving_task before waking up waiters at the end of
6784 * task migration.
6785 */
6786 mc.moving_task = NULL;
6787 __mem_cgroup_clear_mc();
6788 spin_lock(&mc.lock);
6789 mc.from = NULL;
6790 mc.to = NULL;
6791 spin_unlock(&mc.lock);
6792 mem_cgroup_end_move(from);
6793 }
6794
6795 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6796 struct cgroup_taskset *tset)
6797 {
6798 struct task_struct *p = cgroup_taskset_first(tset);
6799 int ret = 0;
6800 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6801 unsigned long move_charge_at_immigrate;
6802
6803 /*
6804 * We are now commited to this value whatever it is. Changes in this
6805 * tunable will only affect upcoming migrations, not the current one.
6806 * So we need to save it, and keep it going.
6807 */
6808 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6809 if (move_charge_at_immigrate) {
6810 struct mm_struct *mm;
6811 struct mem_cgroup *from = mem_cgroup_from_task(p);
6812
6813 VM_BUG_ON(from == memcg);
6814
6815 mm = get_task_mm(p);
6816 if (!mm)
6817 return 0;
6818 /* We move charges only when we move a owner of the mm */
6819 if (mm->owner == p) {
6820 VM_BUG_ON(mc.from);
6821 VM_BUG_ON(mc.to);
6822 VM_BUG_ON(mc.precharge);
6823 VM_BUG_ON(mc.moved_charge);
6824 VM_BUG_ON(mc.moved_swap);
6825 mem_cgroup_start_move(from);
6826 spin_lock(&mc.lock);
6827 mc.from = from;
6828 mc.to = memcg;
6829 mc.immigrate_flags = move_charge_at_immigrate;
6830 spin_unlock(&mc.lock);
6831 /* We set mc.moving_task later */
6832
6833 ret = mem_cgroup_precharge_mc(mm);
6834 if (ret)
6835 mem_cgroup_clear_mc();
6836 }
6837 mmput(mm);
6838 }
6839 return ret;
6840 }
6841
6842 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6843 struct cgroup_taskset *tset)
6844 {
6845 mem_cgroup_clear_mc();
6846 }
6847
6848 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6849 unsigned long addr, unsigned long end,
6850 struct mm_walk *walk)
6851 {
6852 int ret = 0;
6853 struct vm_area_struct *vma = walk->private;
6854 pte_t *pte;
6855 spinlock_t *ptl;
6856 enum mc_target_type target_type;
6857 union mc_target target;
6858 struct page *page;
6859 struct page_cgroup *pc;
6860
6861 /*
6862 * We don't take compound_lock() here but no race with splitting thp
6863 * happens because:
6864 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6865 * under splitting, which means there's no concurrent thp split,
6866 * - if another thread runs into split_huge_page() just after we
6867 * entered this if-block, the thread must wait for page table lock
6868 * to be unlocked in __split_huge_page_splitting(), where the main
6869 * part of thp split is not executed yet.
6870 */
6871 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6872 if (mc.precharge < HPAGE_PMD_NR) {
6873 spin_unlock(ptl);
6874 return 0;
6875 }
6876 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6877 if (target_type == MC_TARGET_PAGE) {
6878 page = target.page;
6879 if (!isolate_lru_page(page)) {
6880 pc = lookup_page_cgroup(page);
6881 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6882 pc, mc.from, mc.to)) {
6883 mc.precharge -= HPAGE_PMD_NR;
6884 mc.moved_charge += HPAGE_PMD_NR;
6885 }
6886 putback_lru_page(page);
6887 }
6888 put_page(page);
6889 }
6890 spin_unlock(ptl);
6891 return 0;
6892 }
6893
6894 if (pmd_trans_unstable(pmd))
6895 return 0;
6896 retry:
6897 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6898 for (; addr != end; addr += PAGE_SIZE) {
6899 pte_t ptent = *(pte++);
6900 swp_entry_t ent;
6901
6902 if (!mc.precharge)
6903 break;
6904
6905 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6906 case MC_TARGET_PAGE:
6907 page = target.page;
6908 if (isolate_lru_page(page))
6909 goto put;
6910 pc = lookup_page_cgroup(page);
6911 if (!mem_cgroup_move_account(page, 1, pc,
6912 mc.from, mc.to)) {
6913 mc.precharge--;
6914 /* we uncharge from mc.from later. */
6915 mc.moved_charge++;
6916 }
6917 putback_lru_page(page);
6918 put: /* get_mctgt_type() gets the page */
6919 put_page(page);
6920 break;
6921 case MC_TARGET_SWAP:
6922 ent = target.ent;
6923 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6924 mc.precharge--;
6925 /* we fixup refcnts and charges later. */
6926 mc.moved_swap++;
6927 }
6928 break;
6929 default:
6930 break;
6931 }
6932 }
6933 pte_unmap_unlock(pte - 1, ptl);
6934 cond_resched();
6935
6936 if (addr != end) {
6937 /*
6938 * We have consumed all precharges we got in can_attach().
6939 * We try charge one by one, but don't do any additional
6940 * charges to mc.to if we have failed in charge once in attach()
6941 * phase.
6942 */
6943 ret = mem_cgroup_do_precharge(1);
6944 if (!ret)
6945 goto retry;
6946 }
6947
6948 return ret;
6949 }
6950
6951 static void mem_cgroup_move_charge(struct mm_struct *mm)
6952 {
6953 struct vm_area_struct *vma;
6954
6955 lru_add_drain_all();
6956 retry:
6957 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6958 /*
6959 * Someone who are holding the mmap_sem might be waiting in
6960 * waitq. So we cancel all extra charges, wake up all waiters,
6961 * and retry. Because we cancel precharges, we might not be able
6962 * to move enough charges, but moving charge is a best-effort
6963 * feature anyway, so it wouldn't be a big problem.
6964 */
6965 __mem_cgroup_clear_mc();
6966 cond_resched();
6967 goto retry;
6968 }
6969 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6970 int ret;
6971 struct mm_walk mem_cgroup_move_charge_walk = {
6972 .pmd_entry = mem_cgroup_move_charge_pte_range,
6973 .mm = mm,
6974 .private = vma,
6975 };
6976 if (is_vm_hugetlb_page(vma))
6977 continue;
6978 ret = walk_page_range(vma->vm_start, vma->vm_end,
6979 &mem_cgroup_move_charge_walk);
6980 if (ret)
6981 /*
6982 * means we have consumed all precharges and failed in
6983 * doing additional charge. Just abandon here.
6984 */
6985 break;
6986 }
6987 up_read(&mm->mmap_sem);
6988 }
6989
6990 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6991 struct cgroup_taskset *tset)
6992 {
6993 struct task_struct *p = cgroup_taskset_first(tset);
6994 struct mm_struct *mm = get_task_mm(p);
6995
6996 if (mm) {
6997 if (mc.to)
6998 mem_cgroup_move_charge(mm);
6999 mmput(mm);
7000 }
7001 if (mc.to)
7002 mem_cgroup_clear_mc();
7003 }
7004 #else /* !CONFIG_MMU */
7005 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7006 struct cgroup_taskset *tset)
7007 {
7008 return 0;
7009 }
7010 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7011 struct cgroup_taskset *tset)
7012 {
7013 }
7014 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7015 struct cgroup_taskset *tset)
7016 {
7017 }
7018 #endif
7019
7020 /*
7021 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7022 * to verify sane_behavior flag on each mount attempt.
7023 */
7024 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7025 {
7026 /*
7027 * use_hierarchy is forced with sane_behavior. cgroup core
7028 * guarantees that @root doesn't have any children, so turning it
7029 * on for the root memcg is enough.
7030 */
7031 if (cgroup_sane_behavior(root_css->cgroup))
7032 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7033 }
7034
7035 struct cgroup_subsys memory_cgrp_subsys = {
7036 .css_alloc = mem_cgroup_css_alloc,
7037 .css_online = mem_cgroup_css_online,
7038 .css_offline = mem_cgroup_css_offline,
7039 .css_free = mem_cgroup_css_free,
7040 .can_attach = mem_cgroup_can_attach,
7041 .cancel_attach = mem_cgroup_cancel_attach,
7042 .attach = mem_cgroup_move_task,
7043 .bind = mem_cgroup_bind,
7044 .base_cftypes = mem_cgroup_files,
7045 .early_init = 0,
7046 };
7047
7048 #ifdef CONFIG_MEMCG_SWAP
7049 static int __init enable_swap_account(char *s)
7050 {
7051 if (!strcmp(s, "1"))
7052 really_do_swap_account = 1;
7053 else if (!strcmp(s, "0"))
7054 really_do_swap_account = 0;
7055 return 1;
7056 }
7057 __setup("swapaccount=", enable_swap_account);
7058
7059 static void __init memsw_file_init(void)
7060 {
7061 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7062 }
7063
7064 static void __init enable_swap_cgroup(void)
7065 {
7066 if (!mem_cgroup_disabled() && really_do_swap_account) {
7067 do_swap_account = 1;
7068 memsw_file_init();
7069 }
7070 }
7071
7072 #else
7073 static void __init enable_swap_cgroup(void)
7074 {
7075 }
7076 #endif
7077
7078 /*
7079 * subsys_initcall() for memory controller.
7080 *
7081 * Some parts like hotcpu_notifier() have to be initialized from this context
7082 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7083 * everything that doesn't depend on a specific mem_cgroup structure should
7084 * be initialized from here.
7085 */
7086 static int __init mem_cgroup_init(void)
7087 {
7088 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7089 enable_swap_cgroup();
7090 mem_cgroup_soft_limit_tree_init();
7091 memcg_stock_init();
7092 return 0;
7093 }
7094 subsys_initcall(mem_cgroup_init);
This page took 0.196628 seconds and 5 git commands to generate.