mm: memcg: lockdep annotation for memcg OOM lock
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62
63 #include <asm/uaccess.h>
64
65 #include <trace/events/vmscan.h>
66
67 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 EXPORT_SYMBOL(mem_cgroup_subsys);
69
70 #define MEM_CGROUP_RECLAIM_RETRIES 5
71 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72
73 #ifdef CONFIG_MEMCG_SWAP
74 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75 int do_swap_account __read_mostly;
76
77 /* for remember boot option*/
78 #ifdef CONFIG_MEMCG_SWAP_ENABLED
79 static int really_do_swap_account __initdata = 1;
80 #else
81 static int really_do_swap_account __initdata = 0;
82 #endif
83
84 #else
85 #define do_swap_account 0
86 #endif
87
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "writeback",
95 "swap",
96 };
97
98 enum mem_cgroup_events_index {
99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
103 MEM_CGROUP_EVENTS_NSTATS,
104 };
105
106 static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
111 };
112
113 static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
119 };
120
121 /*
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
126 */
127 enum mem_cgroup_events_target {
128 MEM_CGROUP_TARGET_THRESH,
129 MEM_CGROUP_TARGET_SOFTLIMIT,
130 MEM_CGROUP_TARGET_NUMAINFO,
131 MEM_CGROUP_NTARGETS,
132 };
133 #define THRESHOLDS_EVENTS_TARGET 128
134 #define SOFTLIMIT_EVENTS_TARGET 1024
135 #define NUMAINFO_EVENTS_TARGET 1024
136
137 struct mem_cgroup_stat_cpu {
138 long count[MEM_CGROUP_STAT_NSTATS];
139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140 unsigned long nr_page_events;
141 unsigned long targets[MEM_CGROUP_NTARGETS];
142 };
143
144 struct mem_cgroup_reclaim_iter {
145 /*
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
148 */
149 struct mem_cgroup *last_visited;
150 unsigned long last_dead_count;
151
152 /* scan generation, increased every round-trip */
153 unsigned int generation;
154 };
155
156 /*
157 * per-zone information in memory controller.
158 */
159 struct mem_cgroup_per_zone {
160 struct lruvec lruvec;
161 unsigned long lru_size[NR_LRU_LISTS];
162
163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164
165 struct rb_node tree_node; /* RB tree node */
166 unsigned long long usage_in_excess;/* Set to the value by which */
167 /* the soft limit is exceeded*/
168 bool on_tree;
169 struct mem_cgroup *memcg; /* Back pointer, we cannot */
170 /* use container_of */
171 };
172
173 struct mem_cgroup_per_node {
174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
175 };
176
177 /*
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
180 */
181
182 struct mem_cgroup_tree_per_zone {
183 struct rb_root rb_root;
184 spinlock_t lock;
185 };
186
187 struct mem_cgroup_tree_per_node {
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
189 };
190
191 struct mem_cgroup_tree {
192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
193 };
194
195 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196
197 struct mem_cgroup_threshold {
198 struct eventfd_ctx *eventfd;
199 u64 threshold;
200 };
201
202 /* For threshold */
203 struct mem_cgroup_threshold_ary {
204 /* An array index points to threshold just below or equal to usage. */
205 int current_threshold;
206 /* Size of entries[] */
207 unsigned int size;
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries[0];
210 };
211
212 struct mem_cgroup_thresholds {
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary *primary;
215 /*
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
219 */
220 struct mem_cgroup_threshold_ary *spare;
221 };
222
223 /* for OOM */
224 struct mem_cgroup_eventfd_list {
225 struct list_head list;
226 struct eventfd_ctx *eventfd;
227 };
228
229 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
231
232 /*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 *
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
242 */
243 struct mem_cgroup {
244 struct cgroup_subsys_state css;
245 /*
246 * the counter to account for memory usage
247 */
248 struct res_counter res;
249
250 /* vmpressure notifications */
251 struct vmpressure vmpressure;
252
253 /*
254 * the counter to account for mem+swap usage.
255 */
256 struct res_counter memsw;
257
258 /*
259 * the counter to account for kernel memory usage.
260 */
261 struct res_counter kmem;
262 /*
263 * Should the accounting and control be hierarchical, per subtree?
264 */
265 bool use_hierarchy;
266 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267
268 bool oom_lock;
269 atomic_t under_oom;
270 atomic_t oom_wakeups;
271
272 int swappiness;
273 /* OOM-Killer disable */
274 int oom_kill_disable;
275
276 /* set when res.limit == memsw.limit */
277 bool memsw_is_minimum;
278
279 /* protect arrays of thresholds */
280 struct mutex thresholds_lock;
281
282 /* thresholds for memory usage. RCU-protected */
283 struct mem_cgroup_thresholds thresholds;
284
285 /* thresholds for mem+swap usage. RCU-protected */
286 struct mem_cgroup_thresholds memsw_thresholds;
287
288 /* For oom notifier event fd */
289 struct list_head oom_notify;
290
291 /*
292 * Should we move charges of a task when a task is moved into this
293 * mem_cgroup ? And what type of charges should we move ?
294 */
295 unsigned long move_charge_at_immigrate;
296 /*
297 * set > 0 if pages under this cgroup are moving to other cgroup.
298 */
299 atomic_t moving_account;
300 /* taken only while moving_account > 0 */
301 spinlock_t move_lock;
302 /*
303 * percpu counter.
304 */
305 struct mem_cgroup_stat_cpu __percpu *stat;
306 /*
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
309 */
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
312
313 atomic_t dead_count;
314 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315 struct tcp_memcontrol tcp_mem;
316 #endif
317 #if defined(CONFIG_MEMCG_KMEM)
318 /* analogous to slab_common's slab_caches list. per-memcg */
319 struct list_head memcg_slab_caches;
320 /* Not a spinlock, we can take a lot of time walking the list */
321 struct mutex slab_caches_mutex;
322 /* Index in the kmem_cache->memcg_params->memcg_caches array */
323 int kmemcg_id;
324 #endif
325
326 int last_scanned_node;
327 #if MAX_NUMNODES > 1
328 nodemask_t scan_nodes;
329 atomic_t numainfo_events;
330 atomic_t numainfo_updating;
331 #endif
332
333 struct mem_cgroup_per_node *nodeinfo[0];
334 /* WARNING: nodeinfo must be the last member here */
335 };
336
337 static size_t memcg_size(void)
338 {
339 return sizeof(struct mem_cgroup) +
340 nr_node_ids * sizeof(struct mem_cgroup_per_node);
341 }
342
343 /* internal only representation about the status of kmem accounting. */
344 enum {
345 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
348 };
349
350 /* We account when limit is on, but only after call sites are patched */
351 #define KMEM_ACCOUNTED_MASK \
352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353
354 #ifdef CONFIG_MEMCG_KMEM
355 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356 {
357 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
358 }
359
360 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363 }
364
365 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366 {
367 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
368 }
369
370 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371 {
372 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373 }
374
375 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
376 {
377 /*
378 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 * will call css_put() if it sees the memcg is dead.
380 */
381 smp_wmb();
382 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
384 }
385
386 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387 {
388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389 &memcg->kmem_account_flags);
390 }
391 #endif
392
393 /* Stuffs for move charges at task migration. */
394 /*
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397 */
398 enum move_type {
399 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
400 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
401 NR_MOVE_TYPE,
402 };
403
404 /* "mc" and its members are protected by cgroup_mutex */
405 static struct move_charge_struct {
406 spinlock_t lock; /* for from, to */
407 struct mem_cgroup *from;
408 struct mem_cgroup *to;
409 unsigned long immigrate_flags;
410 unsigned long precharge;
411 unsigned long moved_charge;
412 unsigned long moved_swap;
413 struct task_struct *moving_task; /* a task moving charges */
414 wait_queue_head_t waitq; /* a waitq for other context */
415 } mc = {
416 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
418 };
419
420 static bool move_anon(void)
421 {
422 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
423 }
424
425 static bool move_file(void)
426 {
427 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
428 }
429
430 /*
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
433 */
434 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
435 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
436
437 enum charge_type {
438 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439 MEM_CGROUP_CHARGE_TYPE_ANON,
440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
441 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
442 NR_CHARGE_TYPE,
443 };
444
445 /* for encoding cft->private value on file */
446 enum res_type {
447 _MEM,
448 _MEMSWAP,
449 _OOM_TYPE,
450 _KMEM,
451 };
452
453 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
455 #define MEMFILE_ATTR(val) ((val) & 0xffff)
456 /* Used for OOM nofiier */
457 #define OOM_CONTROL (0)
458
459 /*
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 */
462 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
466
467 /*
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
471 */
472 static DEFINE_MUTEX(memcg_create_mutex);
473
474 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475 {
476 return s ? container_of(s, struct mem_cgroup, css) : NULL;
477 }
478
479 /* Some nice accessors for the vmpressure. */
480 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481 {
482 if (!memcg)
483 memcg = root_mem_cgroup;
484 return &memcg->vmpressure;
485 }
486
487 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488 {
489 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
490 }
491
492 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493 {
494 return &mem_cgroup_from_css(css)->vmpressure;
495 }
496
497 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498 {
499 return (memcg == root_mem_cgroup);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
532 sk->sk_cgrp = cg_proto;
533 }
534 rcu_read_unlock();
535 }
536 }
537 EXPORT_SYMBOL(sock_update_memcg);
538
539 void sock_release_memcg(struct sock *sk)
540 {
541 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
542 struct mem_cgroup *memcg;
543 WARN_ON(!sk->sk_cgrp->memcg);
544 memcg = sk->sk_cgrp->memcg;
545 css_put(&sk->sk_cgrp->memcg->css);
546 }
547 }
548
549 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
550 {
551 if (!memcg || mem_cgroup_is_root(memcg))
552 return NULL;
553
554 return &memcg->tcp_mem.cg_proto;
555 }
556 EXPORT_SYMBOL(tcp_proto_cgroup);
557
558 static void disarm_sock_keys(struct mem_cgroup *memcg)
559 {
560 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
561 return;
562 static_key_slow_dec(&memcg_socket_limit_enabled);
563 }
564 #else
565 static void disarm_sock_keys(struct mem_cgroup *memcg)
566 {
567 }
568 #endif
569
570 #ifdef CONFIG_MEMCG_KMEM
571 /*
572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573 * There are two main reasons for not using the css_id for this:
574 * 1) this works better in sparse environments, where we have a lot of memcgs,
575 * but only a few kmem-limited. Or also, if we have, for instance, 200
576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
577 * 200 entry array for that.
578 *
579 * 2) In order not to violate the cgroup API, we would like to do all memory
580 * allocation in ->create(). At that point, we haven't yet allocated the
581 * css_id. Having a separate index prevents us from messing with the cgroup
582 * core for this
583 *
584 * The current size of the caches array is stored in
585 * memcg_limited_groups_array_size. It will double each time we have to
586 * increase it.
587 */
588 static DEFINE_IDA(kmem_limited_groups);
589 int memcg_limited_groups_array_size;
590
591 /*
592 * MIN_SIZE is different than 1, because we would like to avoid going through
593 * the alloc/free process all the time. In a small machine, 4 kmem-limited
594 * cgroups is a reasonable guess. In the future, it could be a parameter or
595 * tunable, but that is strictly not necessary.
596 *
597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598 * this constant directly from cgroup, but it is understandable that this is
599 * better kept as an internal representation in cgroup.c. In any case, the
600 * css_id space is not getting any smaller, and we don't have to necessarily
601 * increase ours as well if it increases.
602 */
603 #define MEMCG_CACHES_MIN_SIZE 4
604 #define MEMCG_CACHES_MAX_SIZE 65535
605
606 /*
607 * A lot of the calls to the cache allocation functions are expected to be
608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609 * conditional to this static branch, we'll have to allow modules that does
610 * kmem_cache_alloc and the such to see this symbol as well
611 */
612 struct static_key memcg_kmem_enabled_key;
613 EXPORT_SYMBOL(memcg_kmem_enabled_key);
614
615 static void disarm_kmem_keys(struct mem_cgroup *memcg)
616 {
617 if (memcg_kmem_is_active(memcg)) {
618 static_key_slow_dec(&memcg_kmem_enabled_key);
619 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
620 }
621 /*
622 * This check can't live in kmem destruction function,
623 * since the charges will outlive the cgroup
624 */
625 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
626 }
627 #else
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
629 {
630 }
631 #endif /* CONFIG_MEMCG_KMEM */
632
633 static void disarm_static_keys(struct mem_cgroup *memcg)
634 {
635 disarm_sock_keys(memcg);
636 disarm_kmem_keys(memcg);
637 }
638
639 static void drain_all_stock_async(struct mem_cgroup *memcg);
640
641 static struct mem_cgroup_per_zone *
642 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
643 {
644 VM_BUG_ON((unsigned)nid >= nr_node_ids);
645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 }
647
648 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
649 {
650 return &memcg->css;
651 }
652
653 static struct mem_cgroup_per_zone *
654 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
655 {
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
658
659 return mem_cgroup_zoneinfo(memcg, nid, zid);
660 }
661
662 static struct mem_cgroup_tree_per_zone *
663 soft_limit_tree_node_zone(int nid, int zid)
664 {
665 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666 }
667
668 static struct mem_cgroup_tree_per_zone *
669 soft_limit_tree_from_page(struct page *page)
670 {
671 int nid = page_to_nid(page);
672 int zid = page_zonenum(page);
673
674 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675 }
676
677 static void
678 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
679 struct mem_cgroup_per_zone *mz,
680 struct mem_cgroup_tree_per_zone *mctz,
681 unsigned long long new_usage_in_excess)
682 {
683 struct rb_node **p = &mctz->rb_root.rb_node;
684 struct rb_node *parent = NULL;
685 struct mem_cgroup_per_zone *mz_node;
686
687 if (mz->on_tree)
688 return;
689
690 mz->usage_in_excess = new_usage_in_excess;
691 if (!mz->usage_in_excess)
692 return;
693 while (*p) {
694 parent = *p;
695 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
696 tree_node);
697 if (mz->usage_in_excess < mz_node->usage_in_excess)
698 p = &(*p)->rb_left;
699 /*
700 * We can't avoid mem cgroups that are over their soft
701 * limit by the same amount
702 */
703 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
704 p = &(*p)->rb_right;
705 }
706 rb_link_node(&mz->tree_node, parent, p);
707 rb_insert_color(&mz->tree_node, &mctz->rb_root);
708 mz->on_tree = true;
709 }
710
711 static void
712 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
713 struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz)
715 {
716 if (!mz->on_tree)
717 return;
718 rb_erase(&mz->tree_node, &mctz->rb_root);
719 mz->on_tree = false;
720 }
721
722 static void
723 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
724 struct mem_cgroup_per_zone *mz,
725 struct mem_cgroup_tree_per_zone *mctz)
726 {
727 spin_lock(&mctz->lock);
728 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
729 spin_unlock(&mctz->lock);
730 }
731
732
733 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
734 {
735 unsigned long long excess;
736 struct mem_cgroup_per_zone *mz;
737 struct mem_cgroup_tree_per_zone *mctz;
738 int nid = page_to_nid(page);
739 int zid = page_zonenum(page);
740 mctz = soft_limit_tree_from_page(page);
741
742 /*
743 * Necessary to update all ancestors when hierarchy is used.
744 * because their event counter is not touched.
745 */
746 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
747 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
748 excess = res_counter_soft_limit_excess(&memcg->res);
749 /*
750 * We have to update the tree if mz is on RB-tree or
751 * mem is over its softlimit.
752 */
753 if (excess || mz->on_tree) {
754 spin_lock(&mctz->lock);
755 /* if on-tree, remove it */
756 if (mz->on_tree)
757 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
758 /*
759 * Insert again. mz->usage_in_excess will be updated.
760 * If excess is 0, no tree ops.
761 */
762 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
763 spin_unlock(&mctz->lock);
764 }
765 }
766 }
767
768 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
769 {
770 int node, zone;
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
773
774 for_each_node(node) {
775 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
776 mz = mem_cgroup_zoneinfo(memcg, node, zone);
777 mctz = soft_limit_tree_node_zone(node, zone);
778 mem_cgroup_remove_exceeded(memcg, mz, mctz);
779 }
780 }
781 }
782
783 static struct mem_cgroup_per_zone *
784 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
785 {
786 struct rb_node *rightmost = NULL;
787 struct mem_cgroup_per_zone *mz;
788
789 retry:
790 mz = NULL;
791 rightmost = rb_last(&mctz->rb_root);
792 if (!rightmost)
793 goto done; /* Nothing to reclaim from */
794
795 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
796 /*
797 * Remove the node now but someone else can add it back,
798 * we will to add it back at the end of reclaim to its correct
799 * position in the tree.
800 */
801 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
802 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
803 !css_tryget(&mz->memcg->css))
804 goto retry;
805 done:
806 return mz;
807 }
808
809 static struct mem_cgroup_per_zone *
810 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 struct mem_cgroup_per_zone *mz;
813
814 spin_lock(&mctz->lock);
815 mz = __mem_cgroup_largest_soft_limit_node(mctz);
816 spin_unlock(&mctz->lock);
817 return mz;
818 }
819
820 /*
821 * Implementation Note: reading percpu statistics for memcg.
822 *
823 * Both of vmstat[] and percpu_counter has threshold and do periodic
824 * synchronization to implement "quick" read. There are trade-off between
825 * reading cost and precision of value. Then, we may have a chance to implement
826 * a periodic synchronizion of counter in memcg's counter.
827 *
828 * But this _read() function is used for user interface now. The user accounts
829 * memory usage by memory cgroup and he _always_ requires exact value because
830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831 * have to visit all online cpus and make sum. So, for now, unnecessary
832 * synchronization is not implemented. (just implemented for cpu hotplug)
833 *
834 * If there are kernel internal actions which can make use of some not-exact
835 * value, and reading all cpu value can be performance bottleneck in some
836 * common workload, threashold and synchonization as vmstat[] should be
837 * implemented.
838 */
839 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
840 enum mem_cgroup_stat_index idx)
841 {
842 long val = 0;
843 int cpu;
844
845 get_online_cpus();
846 for_each_online_cpu(cpu)
847 val += per_cpu(memcg->stat->count[idx], cpu);
848 #ifdef CONFIG_HOTPLUG_CPU
849 spin_lock(&memcg->pcp_counter_lock);
850 val += memcg->nocpu_base.count[idx];
851 spin_unlock(&memcg->pcp_counter_lock);
852 #endif
853 put_online_cpus();
854 return val;
855 }
856
857 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
858 bool charge)
859 {
860 int val = (charge) ? 1 : -1;
861 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
862 }
863
864 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_index idx)
866 {
867 unsigned long val = 0;
868 int cpu;
869
870 get_online_cpus();
871 for_each_online_cpu(cpu)
872 val += per_cpu(memcg->stat->events[idx], cpu);
873 #ifdef CONFIG_HOTPLUG_CPU
874 spin_lock(&memcg->pcp_counter_lock);
875 val += memcg->nocpu_base.events[idx];
876 spin_unlock(&memcg->pcp_counter_lock);
877 #endif
878 put_online_cpus();
879 return val;
880 }
881
882 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
883 struct page *page,
884 bool anon, int nr_pages)
885 {
886 preempt_disable();
887
888 /*
889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 * counted as CACHE even if it's on ANON LRU.
891 */
892 if (anon)
893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894 nr_pages);
895 else
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897 nr_pages);
898
899 if (PageTransHuge(page))
900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
901 nr_pages);
902
903 /* pagein of a big page is an event. So, ignore page size */
904 if (nr_pages > 0)
905 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
906 else {
907 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
908 nr_pages = -nr_pages; /* for event */
909 }
910
911 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
912
913 preempt_enable();
914 }
915
916 unsigned long
917 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
918 {
919 struct mem_cgroup_per_zone *mz;
920
921 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
922 return mz->lru_size[lru];
923 }
924
925 static unsigned long
926 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
927 unsigned int lru_mask)
928 {
929 struct mem_cgroup_per_zone *mz;
930 enum lru_list lru;
931 unsigned long ret = 0;
932
933 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
934
935 for_each_lru(lru) {
936 if (BIT(lru) & lru_mask)
937 ret += mz->lru_size[lru];
938 }
939 return ret;
940 }
941
942 static unsigned long
943 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
944 int nid, unsigned int lru_mask)
945 {
946 u64 total = 0;
947 int zid;
948
949 for (zid = 0; zid < MAX_NR_ZONES; zid++)
950 total += mem_cgroup_zone_nr_lru_pages(memcg,
951 nid, zid, lru_mask);
952
953 return total;
954 }
955
956 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
957 unsigned int lru_mask)
958 {
959 int nid;
960 u64 total = 0;
961
962 for_each_node_state(nid, N_MEMORY)
963 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
964 return total;
965 }
966
967 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
968 enum mem_cgroup_events_target target)
969 {
970 unsigned long val, next;
971
972 val = __this_cpu_read(memcg->stat->nr_page_events);
973 next = __this_cpu_read(memcg->stat->targets[target]);
974 /* from time_after() in jiffies.h */
975 if ((long)next - (long)val < 0) {
976 switch (target) {
977 case MEM_CGROUP_TARGET_THRESH:
978 next = val + THRESHOLDS_EVENTS_TARGET;
979 break;
980 case MEM_CGROUP_TARGET_SOFTLIMIT:
981 next = val + SOFTLIMIT_EVENTS_TARGET;
982 break;
983 case MEM_CGROUP_TARGET_NUMAINFO:
984 next = val + NUMAINFO_EVENTS_TARGET;
985 break;
986 default:
987 break;
988 }
989 __this_cpu_write(memcg->stat->targets[target], next);
990 return true;
991 }
992 return false;
993 }
994
995 /*
996 * Check events in order.
997 *
998 */
999 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1000 {
1001 preempt_disable();
1002 /* threshold event is triggered in finer grain than soft limit */
1003 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004 MEM_CGROUP_TARGET_THRESH))) {
1005 bool do_softlimit;
1006 bool do_numainfo __maybe_unused;
1007
1008 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_SOFTLIMIT);
1010 #if MAX_NUMNODES > 1
1011 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_NUMAINFO);
1013 #endif
1014 preempt_enable();
1015
1016 mem_cgroup_threshold(memcg);
1017 if (unlikely(do_softlimit))
1018 mem_cgroup_update_tree(memcg, page);
1019 #if MAX_NUMNODES > 1
1020 if (unlikely(do_numainfo))
1021 atomic_inc(&memcg->numainfo_events);
1022 #endif
1023 } else
1024 preempt_enable();
1025 }
1026
1027 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028 {
1029 /*
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1033 */
1034 if (unlikely(!p))
1035 return NULL;
1036
1037 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1038 }
1039
1040 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1041 {
1042 struct mem_cgroup *memcg = NULL;
1043
1044 if (!mm)
1045 return NULL;
1046 /*
1047 * Because we have no locks, mm->owner's may be being moved to other
1048 * cgroup. We use css_tryget() here even if this looks
1049 * pessimistic (rather than adding locks here).
1050 */
1051 rcu_read_lock();
1052 do {
1053 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1054 if (unlikely(!memcg))
1055 break;
1056 } while (!css_tryget(&memcg->css));
1057 rcu_read_unlock();
1058 return memcg;
1059 }
1060
1061 /*
1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063 * ref. count) or NULL if the whole root's subtree has been visited.
1064 *
1065 * helper function to be used by mem_cgroup_iter
1066 */
1067 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1068 struct mem_cgroup *last_visited)
1069 {
1070 struct cgroup_subsys_state *prev_css, *next_css;
1071
1072 prev_css = last_visited ? &last_visited->css : NULL;
1073 skip_node:
1074 next_css = css_next_descendant_pre(prev_css, &root->css);
1075
1076 /*
1077 * Even if we found a group we have to make sure it is
1078 * alive. css && !memcg means that the groups should be
1079 * skipped and we should continue the tree walk.
1080 * last_visited css is safe to use because it is
1081 * protected by css_get and the tree walk is rcu safe.
1082 */
1083 if (next_css) {
1084 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1085
1086 if (css_tryget(&mem->css))
1087 return mem;
1088 else {
1089 prev_css = next_css;
1090 goto skip_node;
1091 }
1092 }
1093
1094 return NULL;
1095 }
1096
1097 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1098 {
1099 /*
1100 * When a group in the hierarchy below root is destroyed, the
1101 * hierarchy iterator can no longer be trusted since it might
1102 * have pointed to the destroyed group. Invalidate it.
1103 */
1104 atomic_inc(&root->dead_count);
1105 }
1106
1107 static struct mem_cgroup *
1108 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1109 struct mem_cgroup *root,
1110 int *sequence)
1111 {
1112 struct mem_cgroup *position = NULL;
1113 /*
1114 * A cgroup destruction happens in two stages: offlining and
1115 * release. They are separated by a RCU grace period.
1116 *
1117 * If the iterator is valid, we may still race with an
1118 * offlining. The RCU lock ensures the object won't be
1119 * released, tryget will fail if we lost the race.
1120 */
1121 *sequence = atomic_read(&root->dead_count);
1122 if (iter->last_dead_count == *sequence) {
1123 smp_rmb();
1124 position = iter->last_visited;
1125 if (position && !css_tryget(&position->css))
1126 position = NULL;
1127 }
1128 return position;
1129 }
1130
1131 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1132 struct mem_cgroup *last_visited,
1133 struct mem_cgroup *new_position,
1134 int sequence)
1135 {
1136 if (last_visited)
1137 css_put(&last_visited->css);
1138 /*
1139 * We store the sequence count from the time @last_visited was
1140 * loaded successfully instead of rereading it here so that we
1141 * don't lose destruction events in between. We could have
1142 * raced with the destruction of @new_position after all.
1143 */
1144 iter->last_visited = new_position;
1145 smp_wmb();
1146 iter->last_dead_count = sequence;
1147 }
1148
1149 /**
1150 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1151 * @root: hierarchy root
1152 * @prev: previously returned memcg, NULL on first invocation
1153 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1154 *
1155 * Returns references to children of the hierarchy below @root, or
1156 * @root itself, or %NULL after a full round-trip.
1157 *
1158 * Caller must pass the return value in @prev on subsequent
1159 * invocations for reference counting, or use mem_cgroup_iter_break()
1160 * to cancel a hierarchy walk before the round-trip is complete.
1161 *
1162 * Reclaimers can specify a zone and a priority level in @reclaim to
1163 * divide up the memcgs in the hierarchy among all concurrent
1164 * reclaimers operating on the same zone and priority.
1165 */
1166 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1167 struct mem_cgroup *prev,
1168 struct mem_cgroup_reclaim_cookie *reclaim)
1169 {
1170 struct mem_cgroup *memcg = NULL;
1171 struct mem_cgroup *last_visited = NULL;
1172
1173 if (mem_cgroup_disabled())
1174 return NULL;
1175
1176 if (!root)
1177 root = root_mem_cgroup;
1178
1179 if (prev && !reclaim)
1180 last_visited = prev;
1181
1182 if (!root->use_hierarchy && root != root_mem_cgroup) {
1183 if (prev)
1184 goto out_css_put;
1185 return root;
1186 }
1187
1188 rcu_read_lock();
1189 while (!memcg) {
1190 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1191 int uninitialized_var(seq);
1192
1193 if (reclaim) {
1194 int nid = zone_to_nid(reclaim->zone);
1195 int zid = zone_idx(reclaim->zone);
1196 struct mem_cgroup_per_zone *mz;
1197
1198 mz = mem_cgroup_zoneinfo(root, nid, zid);
1199 iter = &mz->reclaim_iter[reclaim->priority];
1200 if (prev && reclaim->generation != iter->generation) {
1201 iter->last_visited = NULL;
1202 goto out_unlock;
1203 }
1204
1205 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1206 }
1207
1208 memcg = __mem_cgroup_iter_next(root, last_visited);
1209
1210 if (reclaim) {
1211 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1212
1213 if (!memcg)
1214 iter->generation++;
1215 else if (!prev && memcg)
1216 reclaim->generation = iter->generation;
1217 }
1218
1219 if (prev && !memcg)
1220 goto out_unlock;
1221 }
1222 out_unlock:
1223 rcu_read_unlock();
1224 out_css_put:
1225 if (prev && prev != root)
1226 css_put(&prev->css);
1227
1228 return memcg;
1229 }
1230
1231 /**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236 void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 struct mem_cgroup *prev)
1238 {
1239 if (!root)
1240 root = root_mem_cgroup;
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243 }
1244
1245 /*
1246 * Iteration constructs for visiting all cgroups (under a tree). If
1247 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1248 * be used for reference counting.
1249 */
1250 #define for_each_mem_cgroup_tree(iter, root) \
1251 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1252 iter != NULL; \
1253 iter = mem_cgroup_iter(root, iter, NULL))
1254
1255 #define for_each_mem_cgroup(iter) \
1256 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1257 iter != NULL; \
1258 iter = mem_cgroup_iter(NULL, iter, NULL))
1259
1260 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1261 {
1262 struct mem_cgroup *memcg;
1263
1264 rcu_read_lock();
1265 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1266 if (unlikely(!memcg))
1267 goto out;
1268
1269 switch (idx) {
1270 case PGFAULT:
1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1272 break;
1273 case PGMAJFAULT:
1274 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1275 break;
1276 default:
1277 BUG();
1278 }
1279 out:
1280 rcu_read_unlock();
1281 }
1282 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1283
1284 /**
1285 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1286 * @zone: zone of the wanted lruvec
1287 * @memcg: memcg of the wanted lruvec
1288 *
1289 * Returns the lru list vector holding pages for the given @zone and
1290 * @mem. This can be the global zone lruvec, if the memory controller
1291 * is disabled.
1292 */
1293 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1294 struct mem_cgroup *memcg)
1295 {
1296 struct mem_cgroup_per_zone *mz;
1297 struct lruvec *lruvec;
1298
1299 if (mem_cgroup_disabled()) {
1300 lruvec = &zone->lruvec;
1301 goto out;
1302 }
1303
1304 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1305 lruvec = &mz->lruvec;
1306 out:
1307 /*
1308 * Since a node can be onlined after the mem_cgroup was created,
1309 * we have to be prepared to initialize lruvec->zone here;
1310 * and if offlined then reonlined, we need to reinitialize it.
1311 */
1312 if (unlikely(lruvec->zone != zone))
1313 lruvec->zone = zone;
1314 return lruvec;
1315 }
1316
1317 /*
1318 * Following LRU functions are allowed to be used without PCG_LOCK.
1319 * Operations are called by routine of global LRU independently from memcg.
1320 * What we have to take care of here is validness of pc->mem_cgroup.
1321 *
1322 * Changes to pc->mem_cgroup happens when
1323 * 1. charge
1324 * 2. moving account
1325 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1326 * It is added to LRU before charge.
1327 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1328 * When moving account, the page is not on LRU. It's isolated.
1329 */
1330
1331 /**
1332 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1333 * @page: the page
1334 * @zone: zone of the page
1335 */
1336 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1337 {
1338 struct mem_cgroup_per_zone *mz;
1339 struct mem_cgroup *memcg;
1340 struct page_cgroup *pc;
1341 struct lruvec *lruvec;
1342
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
1347
1348 pc = lookup_page_cgroup(page);
1349 memcg = pc->mem_cgroup;
1350
1351 /*
1352 * Surreptitiously switch any uncharged offlist page to root:
1353 * an uncharged page off lru does nothing to secure
1354 * its former mem_cgroup from sudden removal.
1355 *
1356 * Our caller holds lru_lock, and PageCgroupUsed is updated
1357 * under page_cgroup lock: between them, they make all uses
1358 * of pc->mem_cgroup safe.
1359 */
1360 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1361 pc->mem_cgroup = memcg = root_mem_cgroup;
1362
1363 mz = page_cgroup_zoneinfo(memcg, page);
1364 lruvec = &mz->lruvec;
1365 out:
1366 /*
1367 * Since a node can be onlined after the mem_cgroup was created,
1368 * we have to be prepared to initialize lruvec->zone here;
1369 * and if offlined then reonlined, we need to reinitialize it.
1370 */
1371 if (unlikely(lruvec->zone != zone))
1372 lruvec->zone = zone;
1373 return lruvec;
1374 }
1375
1376 /**
1377 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1378 * @lruvec: mem_cgroup per zone lru vector
1379 * @lru: index of lru list the page is sitting on
1380 * @nr_pages: positive when adding or negative when removing
1381 *
1382 * This function must be called when a page is added to or removed from an
1383 * lru list.
1384 */
1385 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1386 int nr_pages)
1387 {
1388 struct mem_cgroup_per_zone *mz;
1389 unsigned long *lru_size;
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
1394 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1395 lru_size = mz->lru_size + lru;
1396 *lru_size += nr_pages;
1397 VM_BUG_ON((long)(*lru_size) < 0);
1398 }
1399
1400 /*
1401 * Checks whether given mem is same or in the root_mem_cgroup's
1402 * hierarchy subtree
1403 */
1404 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1405 struct mem_cgroup *memcg)
1406 {
1407 if (root_memcg == memcg)
1408 return true;
1409 if (!root_memcg->use_hierarchy || !memcg)
1410 return false;
1411 return css_is_ancestor(&memcg->css, &root_memcg->css);
1412 }
1413
1414 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415 struct mem_cgroup *memcg)
1416 {
1417 bool ret;
1418
1419 rcu_read_lock();
1420 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1421 rcu_read_unlock();
1422 return ret;
1423 }
1424
1425 bool task_in_mem_cgroup(struct task_struct *task,
1426 const struct mem_cgroup *memcg)
1427 {
1428 struct mem_cgroup *curr = NULL;
1429 struct task_struct *p;
1430 bool ret;
1431
1432 p = find_lock_task_mm(task);
1433 if (p) {
1434 curr = try_get_mem_cgroup_from_mm(p->mm);
1435 task_unlock(p);
1436 } else {
1437 /*
1438 * All threads may have already detached their mm's, but the oom
1439 * killer still needs to detect if they have already been oom
1440 * killed to prevent needlessly killing additional tasks.
1441 */
1442 rcu_read_lock();
1443 curr = mem_cgroup_from_task(task);
1444 if (curr)
1445 css_get(&curr->css);
1446 rcu_read_unlock();
1447 }
1448 if (!curr)
1449 return false;
1450 /*
1451 * We should check use_hierarchy of "memcg" not "curr". Because checking
1452 * use_hierarchy of "curr" here make this function true if hierarchy is
1453 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1454 * hierarchy(even if use_hierarchy is disabled in "memcg").
1455 */
1456 ret = mem_cgroup_same_or_subtree(memcg, curr);
1457 css_put(&curr->css);
1458 return ret;
1459 }
1460
1461 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1462 {
1463 unsigned long inactive_ratio;
1464 unsigned long inactive;
1465 unsigned long active;
1466 unsigned long gb;
1467
1468 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1469 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1470
1471 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1472 if (gb)
1473 inactive_ratio = int_sqrt(10 * gb);
1474 else
1475 inactive_ratio = 1;
1476
1477 return inactive * inactive_ratio < active;
1478 }
1479
1480 #define mem_cgroup_from_res_counter(counter, member) \
1481 container_of(counter, struct mem_cgroup, member)
1482
1483 /**
1484 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1485 * @memcg: the memory cgroup
1486 *
1487 * Returns the maximum amount of memory @mem can be charged with, in
1488 * pages.
1489 */
1490 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1491 {
1492 unsigned long long margin;
1493
1494 margin = res_counter_margin(&memcg->res);
1495 if (do_swap_account)
1496 margin = min(margin, res_counter_margin(&memcg->memsw));
1497 return margin >> PAGE_SHIFT;
1498 }
1499
1500 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1501 {
1502 /* root ? */
1503 if (!css_parent(&memcg->css))
1504 return vm_swappiness;
1505
1506 return memcg->swappiness;
1507 }
1508
1509 /*
1510 * memcg->moving_account is used for checking possibility that some thread is
1511 * calling move_account(). When a thread on CPU-A starts moving pages under
1512 * a memcg, other threads should check memcg->moving_account under
1513 * rcu_read_lock(), like this:
1514 *
1515 * CPU-A CPU-B
1516 * rcu_read_lock()
1517 * memcg->moving_account+1 if (memcg->mocing_account)
1518 * take heavy locks.
1519 * synchronize_rcu() update something.
1520 * rcu_read_unlock()
1521 * start move here.
1522 */
1523
1524 /* for quick checking without looking up memcg */
1525 atomic_t memcg_moving __read_mostly;
1526
1527 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1528 {
1529 atomic_inc(&memcg_moving);
1530 atomic_inc(&memcg->moving_account);
1531 synchronize_rcu();
1532 }
1533
1534 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1535 {
1536 /*
1537 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1538 * We check NULL in callee rather than caller.
1539 */
1540 if (memcg) {
1541 atomic_dec(&memcg_moving);
1542 atomic_dec(&memcg->moving_account);
1543 }
1544 }
1545
1546 /*
1547 * 2 routines for checking "mem" is under move_account() or not.
1548 *
1549 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1550 * is used for avoiding races in accounting. If true,
1551 * pc->mem_cgroup may be overwritten.
1552 *
1553 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1554 * under hierarchy of moving cgroups. This is for
1555 * waiting at hith-memory prressure caused by "move".
1556 */
1557
1558 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1559 {
1560 VM_BUG_ON(!rcu_read_lock_held());
1561 return atomic_read(&memcg->moving_account) > 0;
1562 }
1563
1564 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *from;
1567 struct mem_cgroup *to;
1568 bool ret = false;
1569 /*
1570 * Unlike task_move routines, we access mc.to, mc.from not under
1571 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572 */
1573 spin_lock(&mc.lock);
1574 from = mc.from;
1575 to = mc.to;
1576 if (!from)
1577 goto unlock;
1578
1579 ret = mem_cgroup_same_or_subtree(memcg, from)
1580 || mem_cgroup_same_or_subtree(memcg, to);
1581 unlock:
1582 spin_unlock(&mc.lock);
1583 return ret;
1584 }
1585
1586 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1587 {
1588 if (mc.moving_task && current != mc.moving_task) {
1589 if (mem_cgroup_under_move(memcg)) {
1590 DEFINE_WAIT(wait);
1591 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1592 /* moving charge context might have finished. */
1593 if (mc.moving_task)
1594 schedule();
1595 finish_wait(&mc.waitq, &wait);
1596 return true;
1597 }
1598 }
1599 return false;
1600 }
1601
1602 /*
1603 * Take this lock when
1604 * - a code tries to modify page's memcg while it's USED.
1605 * - a code tries to modify page state accounting in a memcg.
1606 * see mem_cgroup_stolen(), too.
1607 */
1608 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1609 unsigned long *flags)
1610 {
1611 spin_lock_irqsave(&memcg->move_lock, *flags);
1612 }
1613
1614 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1615 unsigned long *flags)
1616 {
1617 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1618 }
1619
1620 #define K(x) ((x) << (PAGE_SHIFT-10))
1621 /**
1622 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1623 * @memcg: The memory cgroup that went over limit
1624 * @p: Task that is going to be killed
1625 *
1626 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627 * enabled
1628 */
1629 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1630 {
1631 struct cgroup *task_cgrp;
1632 struct cgroup *mem_cgrp;
1633 /*
1634 * Need a buffer in BSS, can't rely on allocations. The code relies
1635 * on the assumption that OOM is serialized for memory controller.
1636 * If this assumption is broken, revisit this code.
1637 */
1638 static char memcg_name[PATH_MAX];
1639 int ret;
1640 struct mem_cgroup *iter;
1641 unsigned int i;
1642
1643 if (!p)
1644 return;
1645
1646 rcu_read_lock();
1647
1648 mem_cgrp = memcg->css.cgroup;
1649 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1650
1651 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1652 if (ret < 0) {
1653 /*
1654 * Unfortunately, we are unable to convert to a useful name
1655 * But we'll still print out the usage information
1656 */
1657 rcu_read_unlock();
1658 goto done;
1659 }
1660 rcu_read_unlock();
1661
1662 pr_info("Task in %s killed", memcg_name);
1663
1664 rcu_read_lock();
1665 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1666 if (ret < 0) {
1667 rcu_read_unlock();
1668 goto done;
1669 }
1670 rcu_read_unlock();
1671
1672 /*
1673 * Continues from above, so we don't need an KERN_ level
1674 */
1675 pr_cont(" as a result of limit of %s\n", memcg_name);
1676 done:
1677
1678 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1679 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1680 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1681 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1682 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1683 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1684 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1685 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1686 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1687 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1688 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1689 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1690
1691 for_each_mem_cgroup_tree(iter, memcg) {
1692 pr_info("Memory cgroup stats");
1693
1694 rcu_read_lock();
1695 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1696 if (!ret)
1697 pr_cont(" for %s", memcg_name);
1698 rcu_read_unlock();
1699 pr_cont(":");
1700
1701 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1702 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1703 continue;
1704 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1705 K(mem_cgroup_read_stat(iter, i)));
1706 }
1707
1708 for (i = 0; i < NR_LRU_LISTS; i++)
1709 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1710 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1711
1712 pr_cont("\n");
1713 }
1714 }
1715
1716 /*
1717 * This function returns the number of memcg under hierarchy tree. Returns
1718 * 1(self count) if no children.
1719 */
1720 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1721 {
1722 int num = 0;
1723 struct mem_cgroup *iter;
1724
1725 for_each_mem_cgroup_tree(iter, memcg)
1726 num++;
1727 return num;
1728 }
1729
1730 /*
1731 * Return the memory (and swap, if configured) limit for a memcg.
1732 */
1733 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1734 {
1735 u64 limit;
1736
1737 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1738
1739 /*
1740 * Do not consider swap space if we cannot swap due to swappiness
1741 */
1742 if (mem_cgroup_swappiness(memcg)) {
1743 u64 memsw;
1744
1745 limit += total_swap_pages << PAGE_SHIFT;
1746 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1747
1748 /*
1749 * If memsw is finite and limits the amount of swap space
1750 * available to this memcg, return that limit.
1751 */
1752 limit = min(limit, memsw);
1753 }
1754
1755 return limit;
1756 }
1757
1758 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1759 int order)
1760 {
1761 struct mem_cgroup *iter;
1762 unsigned long chosen_points = 0;
1763 unsigned long totalpages;
1764 unsigned int points = 0;
1765 struct task_struct *chosen = NULL;
1766
1767 /*
1768 * If current has a pending SIGKILL or is exiting, then automatically
1769 * select it. The goal is to allow it to allocate so that it may
1770 * quickly exit and free its memory.
1771 */
1772 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1773 set_thread_flag(TIF_MEMDIE);
1774 return;
1775 }
1776
1777 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1778 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 struct css_task_iter it;
1781 struct task_struct *task;
1782
1783 css_task_iter_start(&iter->css, &it);
1784 while ((task = css_task_iter_next(&it))) {
1785 switch (oom_scan_process_thread(task, totalpages, NULL,
1786 false)) {
1787 case OOM_SCAN_SELECT:
1788 if (chosen)
1789 put_task_struct(chosen);
1790 chosen = task;
1791 chosen_points = ULONG_MAX;
1792 get_task_struct(chosen);
1793 /* fall through */
1794 case OOM_SCAN_CONTINUE:
1795 continue;
1796 case OOM_SCAN_ABORT:
1797 css_task_iter_end(&it);
1798 mem_cgroup_iter_break(memcg, iter);
1799 if (chosen)
1800 put_task_struct(chosen);
1801 return;
1802 case OOM_SCAN_OK:
1803 break;
1804 };
1805 points = oom_badness(task, memcg, NULL, totalpages);
1806 if (points > chosen_points) {
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = points;
1811 get_task_struct(chosen);
1812 }
1813 }
1814 css_task_iter_end(&it);
1815 }
1816
1817 if (!chosen)
1818 return;
1819 points = chosen_points * 1000 / totalpages;
1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 NULL, "Memory cgroup out of memory");
1822 }
1823
1824 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 gfp_t gfp_mask,
1826 unsigned long flags)
1827 {
1828 unsigned long total = 0;
1829 bool noswap = false;
1830 int loop;
1831
1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 noswap = true;
1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 noswap = true;
1836
1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 if (loop)
1839 drain_all_stock_async(memcg);
1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 /*
1842 * Allow limit shrinkers, which are triggered directly
1843 * by userspace, to catch signals and stop reclaim
1844 * after minimal progress, regardless of the margin.
1845 */
1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 break;
1848 if (mem_cgroup_margin(memcg))
1849 break;
1850 /*
1851 * If nothing was reclaimed after two attempts, there
1852 * may be no reclaimable pages in this hierarchy.
1853 */
1854 if (loop && !total)
1855 break;
1856 }
1857 return total;
1858 }
1859
1860 /**
1861 * test_mem_cgroup_node_reclaimable
1862 * @memcg: the target memcg
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
1870 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 int nid, bool noswap)
1872 {
1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 return true;
1875 if (noswap || !total_swap_pages)
1876 return false;
1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 return true;
1879 return false;
1880
1881 }
1882 #if MAX_NUMNODES > 1
1883
1884 /*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
1890 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 {
1892 int nid;
1893 /*
1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 * pagein/pageout changes since the last update.
1896 */
1897 if (!atomic_read(&memcg->numainfo_events))
1898 return;
1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 return;
1901
1902 /* make a nodemask where this memcg uses memory from */
1903 memcg->scan_nodes = node_states[N_MEMORY];
1904
1905 for_each_node_mask(nid, node_states[N_MEMORY]) {
1906
1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 node_clear(nid, memcg->scan_nodes);
1909 }
1910
1911 atomic_set(&memcg->numainfo_events, 0);
1912 atomic_set(&memcg->numainfo_updating, 0);
1913 }
1914
1915 /*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
1927 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 {
1929 int node;
1930
1931 mem_cgroup_may_update_nodemask(memcg);
1932 node = memcg->last_scanned_node;
1933
1934 node = next_node(node, memcg->scan_nodes);
1935 if (node == MAX_NUMNODES)
1936 node = first_node(memcg->scan_nodes);
1937 /*
1938 * We call this when we hit limit, not when pages are added to LRU.
1939 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 * memcg is too small and all pages are not on LRU. In that case,
1941 * we use curret node.
1942 */
1943 if (unlikely(node == MAX_NUMNODES))
1944 node = numa_node_id();
1945
1946 memcg->last_scanned_node = node;
1947 return node;
1948 }
1949
1950 /*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
1956 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957 {
1958 int nid;
1959
1960 /*
1961 * quick check...making use of scan_node.
1962 * We can skip unused nodes.
1963 */
1964 if (!nodes_empty(memcg->scan_nodes)) {
1965 for (nid = first_node(memcg->scan_nodes);
1966 nid < MAX_NUMNODES;
1967 nid = next_node(nid, memcg->scan_nodes)) {
1968
1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 return true;
1971 }
1972 }
1973 /*
1974 * Check rest of nodes.
1975 */
1976 for_each_node_state(nid, N_MEMORY) {
1977 if (node_isset(nid, memcg->scan_nodes))
1978 continue;
1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 return true;
1981 }
1982 return false;
1983 }
1984
1985 #else
1986 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 {
1988 return 0;
1989 }
1990
1991 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992 {
1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994 }
1995 #endif
1996
1997 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 struct zone *zone,
1999 gfp_t gfp_mask,
2000 unsigned long *total_scanned)
2001 {
2002 struct mem_cgroup *victim = NULL;
2003 int total = 0;
2004 int loop = 0;
2005 unsigned long excess;
2006 unsigned long nr_scanned;
2007 struct mem_cgroup_reclaim_cookie reclaim = {
2008 .zone = zone,
2009 .priority = 0,
2010 };
2011
2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013
2014 while (1) {
2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016 if (!victim) {
2017 loop++;
2018 if (loop >= 2) {
2019 /*
2020 * If we have not been able to reclaim
2021 * anything, it might because there are
2022 * no reclaimable pages under this hierarchy
2023 */
2024 if (!total)
2025 break;
2026 /*
2027 * We want to do more targeted reclaim.
2028 * excess >> 2 is not to excessive so as to
2029 * reclaim too much, nor too less that we keep
2030 * coming back to reclaim from this cgroup
2031 */
2032 if (total >= (excess >> 2) ||
2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 break;
2035 }
2036 continue;
2037 }
2038 if (!mem_cgroup_reclaimable(victim, false))
2039 continue;
2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 zone, &nr_scanned);
2042 *total_scanned += nr_scanned;
2043 if (!res_counter_soft_limit_excess(&root_memcg->res))
2044 break;
2045 }
2046 mem_cgroup_iter_break(root_memcg, victim);
2047 return total;
2048 }
2049
2050 #ifdef CONFIG_LOCKDEP
2051 static struct lockdep_map memcg_oom_lock_dep_map = {
2052 .name = "memcg_oom_lock",
2053 };
2054 #endif
2055
2056 static DEFINE_SPINLOCK(memcg_oom_lock);
2057
2058 /*
2059 * Check OOM-Killer is already running under our hierarchy.
2060 * If someone is running, return false.
2061 */
2062 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2063 {
2064 struct mem_cgroup *iter, *failed = NULL;
2065
2066 spin_lock(&memcg_oom_lock);
2067
2068 for_each_mem_cgroup_tree(iter, memcg) {
2069 if (iter->oom_lock) {
2070 /*
2071 * this subtree of our hierarchy is already locked
2072 * so we cannot give a lock.
2073 */
2074 failed = iter;
2075 mem_cgroup_iter_break(memcg, iter);
2076 break;
2077 } else
2078 iter->oom_lock = true;
2079 }
2080
2081 if (failed) {
2082 /*
2083 * OK, we failed to lock the whole subtree so we have
2084 * to clean up what we set up to the failing subtree
2085 */
2086 for_each_mem_cgroup_tree(iter, memcg) {
2087 if (iter == failed) {
2088 mem_cgroup_iter_break(memcg, iter);
2089 break;
2090 }
2091 iter->oom_lock = false;
2092 }
2093 } else
2094 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2095
2096 spin_unlock(&memcg_oom_lock);
2097
2098 return !failed;
2099 }
2100
2101 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2102 {
2103 struct mem_cgroup *iter;
2104
2105 spin_lock(&memcg_oom_lock);
2106 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2107 for_each_mem_cgroup_tree(iter, memcg)
2108 iter->oom_lock = false;
2109 spin_unlock(&memcg_oom_lock);
2110 }
2111
2112 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 for_each_mem_cgroup_tree(iter, memcg)
2117 atomic_inc(&iter->under_oom);
2118 }
2119
2120 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2121 {
2122 struct mem_cgroup *iter;
2123
2124 /*
2125 * When a new child is created while the hierarchy is under oom,
2126 * mem_cgroup_oom_lock() may not be called. We have to use
2127 * atomic_add_unless() here.
2128 */
2129 for_each_mem_cgroup_tree(iter, memcg)
2130 atomic_add_unless(&iter->under_oom, -1, 0);
2131 }
2132
2133 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134
2135 struct oom_wait_info {
2136 struct mem_cgroup *memcg;
2137 wait_queue_t wait;
2138 };
2139
2140 static int memcg_oom_wake_function(wait_queue_t *wait,
2141 unsigned mode, int sync, void *arg)
2142 {
2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 struct mem_cgroup *oom_wait_memcg;
2145 struct oom_wait_info *oom_wait_info;
2146
2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148 oom_wait_memcg = oom_wait_info->memcg;
2149
2150 /*
2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2152 * Then we can use css_is_ancestor without taking care of RCU.
2153 */
2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2156 return 0;
2157 return autoremove_wake_function(wait, mode, sync, arg);
2158 }
2159
2160 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2161 {
2162 atomic_inc(&memcg->oom_wakeups);
2163 /* for filtering, pass "memcg" as argument. */
2164 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2165 }
2166
2167 static void memcg_oom_recover(struct mem_cgroup *memcg)
2168 {
2169 if (memcg && atomic_read(&memcg->under_oom))
2170 memcg_wakeup_oom(memcg);
2171 }
2172
2173 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2174 {
2175 if (!current->memcg_oom.may_oom)
2176 return;
2177 /*
2178 * We are in the middle of the charge context here, so we
2179 * don't want to block when potentially sitting on a callstack
2180 * that holds all kinds of filesystem and mm locks.
2181 *
2182 * Also, the caller may handle a failed allocation gracefully
2183 * (like optional page cache readahead) and so an OOM killer
2184 * invocation might not even be necessary.
2185 *
2186 * That's why we don't do anything here except remember the
2187 * OOM context and then deal with it at the end of the page
2188 * fault when the stack is unwound, the locks are released,
2189 * and when we know whether the fault was overall successful.
2190 */
2191 css_get(&memcg->css);
2192 current->memcg_oom.memcg = memcg;
2193 current->memcg_oom.gfp_mask = mask;
2194 current->memcg_oom.order = order;
2195 }
2196
2197 /**
2198 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2199 * @handle: actually kill/wait or just clean up the OOM state
2200 *
2201 * This has to be called at the end of a page fault if the memcg OOM
2202 * handler was enabled.
2203 *
2204 * Memcg supports userspace OOM handling where failed allocations must
2205 * sleep on a waitqueue until the userspace task resolves the
2206 * situation. Sleeping directly in the charge context with all kinds
2207 * of locks held is not a good idea, instead we remember an OOM state
2208 * in the task and mem_cgroup_oom_synchronize() has to be called at
2209 * the end of the page fault to complete the OOM handling.
2210 *
2211 * Returns %true if an ongoing memcg OOM situation was detected and
2212 * completed, %false otherwise.
2213 */
2214 bool mem_cgroup_oom_synchronize(bool handle)
2215 {
2216 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2217 struct oom_wait_info owait;
2218 bool locked;
2219
2220 /* OOM is global, do not handle */
2221 if (!memcg)
2222 return false;
2223
2224 if (!handle)
2225 goto cleanup;
2226
2227 owait.memcg = memcg;
2228 owait.wait.flags = 0;
2229 owait.wait.func = memcg_oom_wake_function;
2230 owait.wait.private = current;
2231 INIT_LIST_HEAD(&owait.wait.task_list);
2232
2233 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2234 mem_cgroup_mark_under_oom(memcg);
2235
2236 locked = mem_cgroup_oom_trylock(memcg);
2237
2238 if (locked)
2239 mem_cgroup_oom_notify(memcg);
2240
2241 if (locked && !memcg->oom_kill_disable) {
2242 mem_cgroup_unmark_under_oom(memcg);
2243 finish_wait(&memcg_oom_waitq, &owait.wait);
2244 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2245 current->memcg_oom.order);
2246 } else {
2247 schedule();
2248 mem_cgroup_unmark_under_oom(memcg);
2249 finish_wait(&memcg_oom_waitq, &owait.wait);
2250 }
2251
2252 if (locked) {
2253 mem_cgroup_oom_unlock(memcg);
2254 /*
2255 * There is no guarantee that an OOM-lock contender
2256 * sees the wakeups triggered by the OOM kill
2257 * uncharges. Wake any sleepers explicitely.
2258 */
2259 memcg_oom_recover(memcg);
2260 }
2261 cleanup:
2262 current->memcg_oom.memcg = NULL;
2263 css_put(&memcg->css);
2264 return true;
2265 }
2266
2267 /*
2268 * Currently used to update mapped file statistics, but the routine can be
2269 * generalized to update other statistics as well.
2270 *
2271 * Notes: Race condition
2272 *
2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274 * it tends to be costly. But considering some conditions, we doesn't need
2275 * to do so _always_.
2276 *
2277 * Considering "charge", lock_page_cgroup() is not required because all
2278 * file-stat operations happen after a page is attached to radix-tree. There
2279 * are no race with "charge".
2280 *
2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283 * if there are race with "uncharge". Statistics itself is properly handled
2284 * by flags.
2285 *
2286 * Considering "move", this is an only case we see a race. To make the race
2287 * small, we check mm->moving_account and detect there are possibility of race
2288 * If there is, we take a lock.
2289 */
2290
2291 void __mem_cgroup_begin_update_page_stat(struct page *page,
2292 bool *locked, unsigned long *flags)
2293 {
2294 struct mem_cgroup *memcg;
2295 struct page_cgroup *pc;
2296
2297 pc = lookup_page_cgroup(page);
2298 again:
2299 memcg = pc->mem_cgroup;
2300 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301 return;
2302 /*
2303 * If this memory cgroup is not under account moving, we don't
2304 * need to take move_lock_mem_cgroup(). Because we already hold
2305 * rcu_read_lock(), any calls to move_account will be delayed until
2306 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2307 */
2308 if (!mem_cgroup_stolen(memcg))
2309 return;
2310
2311 move_lock_mem_cgroup(memcg, flags);
2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 move_unlock_mem_cgroup(memcg, flags);
2314 goto again;
2315 }
2316 *locked = true;
2317 }
2318
2319 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320 {
2321 struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323 /*
2324 * It's guaranteed that pc->mem_cgroup never changes while
2325 * lock is held because a routine modifies pc->mem_cgroup
2326 * should take move_lock_mem_cgroup().
2327 */
2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329 }
2330
2331 void mem_cgroup_update_page_stat(struct page *page,
2332 enum mem_cgroup_stat_index idx, int val)
2333 {
2334 struct mem_cgroup *memcg;
2335 struct page_cgroup *pc = lookup_page_cgroup(page);
2336 unsigned long uninitialized_var(flags);
2337
2338 if (mem_cgroup_disabled())
2339 return;
2340
2341 VM_BUG_ON(!rcu_read_lock_held());
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344 return;
2345
2346 this_cpu_add(memcg->stat->count[idx], val);
2347 }
2348
2349 /*
2350 * size of first charge trial. "32" comes from vmscan.c's magic value.
2351 * TODO: maybe necessary to use big numbers in big irons.
2352 */
2353 #define CHARGE_BATCH 32U
2354 struct memcg_stock_pcp {
2355 struct mem_cgroup *cached; /* this never be root cgroup */
2356 unsigned int nr_pages;
2357 struct work_struct work;
2358 unsigned long flags;
2359 #define FLUSHING_CACHED_CHARGE 0
2360 };
2361 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362 static DEFINE_MUTEX(percpu_charge_mutex);
2363
2364 /**
2365 * consume_stock: Try to consume stocked charge on this cpu.
2366 * @memcg: memcg to consume from.
2367 * @nr_pages: how many pages to charge.
2368 *
2369 * The charges will only happen if @memcg matches the current cpu's memcg
2370 * stock, and at least @nr_pages are available in that stock. Failure to
2371 * service an allocation will refill the stock.
2372 *
2373 * returns true if successful, false otherwise.
2374 */
2375 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 {
2377 struct memcg_stock_pcp *stock;
2378 bool ret = true;
2379
2380 if (nr_pages > CHARGE_BATCH)
2381 return false;
2382
2383 stock = &get_cpu_var(memcg_stock);
2384 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385 stock->nr_pages -= nr_pages;
2386 else /* need to call res_counter_charge */
2387 ret = false;
2388 put_cpu_var(memcg_stock);
2389 return ret;
2390 }
2391
2392 /*
2393 * Returns stocks cached in percpu to res_counter and reset cached information.
2394 */
2395 static void drain_stock(struct memcg_stock_pcp *stock)
2396 {
2397 struct mem_cgroup *old = stock->cached;
2398
2399 if (stock->nr_pages) {
2400 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401
2402 res_counter_uncharge(&old->res, bytes);
2403 if (do_swap_account)
2404 res_counter_uncharge(&old->memsw, bytes);
2405 stock->nr_pages = 0;
2406 }
2407 stock->cached = NULL;
2408 }
2409
2410 /*
2411 * This must be called under preempt disabled or must be called by
2412 * a thread which is pinned to local cpu.
2413 */
2414 static void drain_local_stock(struct work_struct *dummy)
2415 {
2416 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2417 drain_stock(stock);
2418 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419 }
2420
2421 static void __init memcg_stock_init(void)
2422 {
2423 int cpu;
2424
2425 for_each_possible_cpu(cpu) {
2426 struct memcg_stock_pcp *stock =
2427 &per_cpu(memcg_stock, cpu);
2428 INIT_WORK(&stock->work, drain_local_stock);
2429 }
2430 }
2431
2432 /*
2433 * Cache charges(val) which is from res_counter, to local per_cpu area.
2434 * This will be consumed by consume_stock() function, later.
2435 */
2436 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 {
2438 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439
2440 if (stock->cached != memcg) { /* reset if necessary */
2441 drain_stock(stock);
2442 stock->cached = memcg;
2443 }
2444 stock->nr_pages += nr_pages;
2445 put_cpu_var(memcg_stock);
2446 }
2447
2448 /*
2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450 * of the hierarchy under it. sync flag says whether we should block
2451 * until the work is done.
2452 */
2453 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454 {
2455 int cpu, curcpu;
2456
2457 /* Notify other cpus that system-wide "drain" is running */
2458 get_online_cpus();
2459 curcpu = get_cpu();
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462 struct mem_cgroup *memcg;
2463
2464 memcg = stock->cached;
2465 if (!memcg || !stock->nr_pages)
2466 continue;
2467 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468 continue;
2469 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470 if (cpu == curcpu)
2471 drain_local_stock(&stock->work);
2472 else
2473 schedule_work_on(cpu, &stock->work);
2474 }
2475 }
2476 put_cpu();
2477
2478 if (!sync)
2479 goto out;
2480
2481 for_each_online_cpu(cpu) {
2482 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484 flush_work(&stock->work);
2485 }
2486 out:
2487 put_online_cpus();
2488 }
2489
2490 /*
2491 * Tries to drain stocked charges in other cpus. This function is asynchronous
2492 * and just put a work per cpu for draining localy on each cpu. Caller can
2493 * expects some charges will be back to res_counter later but cannot wait for
2494 * it.
2495 */
2496 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497 {
2498 /*
2499 * If someone calls draining, avoid adding more kworker runs.
2500 */
2501 if (!mutex_trylock(&percpu_charge_mutex))
2502 return;
2503 drain_all_stock(root_memcg, false);
2504 mutex_unlock(&percpu_charge_mutex);
2505 }
2506
2507 /* This is a synchronous drain interface. */
2508 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509 {
2510 /* called when force_empty is called */
2511 mutex_lock(&percpu_charge_mutex);
2512 drain_all_stock(root_memcg, true);
2513 mutex_unlock(&percpu_charge_mutex);
2514 }
2515
2516 /*
2517 * This function drains percpu counter value from DEAD cpu and
2518 * move it to local cpu. Note that this function can be preempted.
2519 */
2520 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521 {
2522 int i;
2523
2524 spin_lock(&memcg->pcp_counter_lock);
2525 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526 long x = per_cpu(memcg->stat->count[i], cpu);
2527
2528 per_cpu(memcg->stat->count[i], cpu) = 0;
2529 memcg->nocpu_base.count[i] += x;
2530 }
2531 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533
2534 per_cpu(memcg->stat->events[i], cpu) = 0;
2535 memcg->nocpu_base.events[i] += x;
2536 }
2537 spin_unlock(&memcg->pcp_counter_lock);
2538 }
2539
2540 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541 unsigned long action,
2542 void *hcpu)
2543 {
2544 int cpu = (unsigned long)hcpu;
2545 struct memcg_stock_pcp *stock;
2546 struct mem_cgroup *iter;
2547
2548 if (action == CPU_ONLINE)
2549 return NOTIFY_OK;
2550
2551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552 return NOTIFY_OK;
2553
2554 for_each_mem_cgroup(iter)
2555 mem_cgroup_drain_pcp_counter(iter, cpu);
2556
2557 stock = &per_cpu(memcg_stock, cpu);
2558 drain_stock(stock);
2559 return NOTIFY_OK;
2560 }
2561
2562
2563 /* See __mem_cgroup_try_charge() for details */
2564 enum {
2565 CHARGE_OK, /* success */
2566 CHARGE_RETRY, /* need to retry but retry is not bad */
2567 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2568 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2569 };
2570
2571 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572 unsigned int nr_pages, unsigned int min_pages,
2573 bool invoke_oom)
2574 {
2575 unsigned long csize = nr_pages * PAGE_SIZE;
2576 struct mem_cgroup *mem_over_limit;
2577 struct res_counter *fail_res;
2578 unsigned long flags = 0;
2579 int ret;
2580
2581 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582
2583 if (likely(!ret)) {
2584 if (!do_swap_account)
2585 return CHARGE_OK;
2586 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587 if (likely(!ret))
2588 return CHARGE_OK;
2589
2590 res_counter_uncharge(&memcg->res, csize);
2591 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593 } else
2594 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595 /*
2596 * Never reclaim on behalf of optional batching, retry with a
2597 * single page instead.
2598 */
2599 if (nr_pages > min_pages)
2600 return CHARGE_RETRY;
2601
2602 if (!(gfp_mask & __GFP_WAIT))
2603 return CHARGE_WOULDBLOCK;
2604
2605 if (gfp_mask & __GFP_NORETRY)
2606 return CHARGE_NOMEM;
2607
2608 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610 return CHARGE_RETRY;
2611 /*
2612 * Even though the limit is exceeded at this point, reclaim
2613 * may have been able to free some pages. Retry the charge
2614 * before killing the task.
2615 *
2616 * Only for regular pages, though: huge pages are rather
2617 * unlikely to succeed so close to the limit, and we fall back
2618 * to regular pages anyway in case of failure.
2619 */
2620 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621 return CHARGE_RETRY;
2622
2623 /*
2624 * At task move, charge accounts can be doubly counted. So, it's
2625 * better to wait until the end of task_move if something is going on.
2626 */
2627 if (mem_cgroup_wait_acct_move(mem_over_limit))
2628 return CHARGE_RETRY;
2629
2630 if (invoke_oom)
2631 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632
2633 return CHARGE_NOMEM;
2634 }
2635
2636 /*
2637 * __mem_cgroup_try_charge() does
2638 * 1. detect memcg to be charged against from passed *mm and *ptr,
2639 * 2. update res_counter
2640 * 3. call memory reclaim if necessary.
2641 *
2642 * In some special case, if the task is fatal, fatal_signal_pending() or
2643 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2644 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2645 * as possible without any hazards. 2: all pages should have a valid
2646 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2647 * pointer, that is treated as a charge to root_mem_cgroup.
2648 *
2649 * So __mem_cgroup_try_charge() will return
2650 * 0 ... on success, filling *ptr with a valid memcg pointer.
2651 * -ENOMEM ... charge failure because of resource limits.
2652 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2653 *
2654 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2655 * the oom-killer can be invoked.
2656 */
2657 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2658 gfp_t gfp_mask,
2659 unsigned int nr_pages,
2660 struct mem_cgroup **ptr,
2661 bool oom)
2662 {
2663 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2665 struct mem_cgroup *memcg = NULL;
2666 int ret;
2667
2668 /*
2669 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2670 * in system level. So, allow to go ahead dying process in addition to
2671 * MEMDIE process.
2672 */
2673 if (unlikely(test_thread_flag(TIF_MEMDIE)
2674 || fatal_signal_pending(current)))
2675 goto bypass;
2676
2677 if (unlikely(task_in_memcg_oom(current)))
2678 goto bypass;
2679
2680 /*
2681 * We always charge the cgroup the mm_struct belongs to.
2682 * The mm_struct's mem_cgroup changes on task migration if the
2683 * thread group leader migrates. It's possible that mm is not
2684 * set, if so charge the root memcg (happens for pagecache usage).
2685 */
2686 if (!*ptr && !mm)
2687 *ptr = root_mem_cgroup;
2688 again:
2689 if (*ptr) { /* css should be a valid one */
2690 memcg = *ptr;
2691 if (mem_cgroup_is_root(memcg))
2692 goto done;
2693 if (consume_stock(memcg, nr_pages))
2694 goto done;
2695 css_get(&memcg->css);
2696 } else {
2697 struct task_struct *p;
2698
2699 rcu_read_lock();
2700 p = rcu_dereference(mm->owner);
2701 /*
2702 * Because we don't have task_lock(), "p" can exit.
2703 * In that case, "memcg" can point to root or p can be NULL with
2704 * race with swapoff. Then, we have small risk of mis-accouning.
2705 * But such kind of mis-account by race always happens because
2706 * we don't have cgroup_mutex(). It's overkill and we allo that
2707 * small race, here.
2708 * (*) swapoff at el will charge against mm-struct not against
2709 * task-struct. So, mm->owner can be NULL.
2710 */
2711 memcg = mem_cgroup_from_task(p);
2712 if (!memcg)
2713 memcg = root_mem_cgroup;
2714 if (mem_cgroup_is_root(memcg)) {
2715 rcu_read_unlock();
2716 goto done;
2717 }
2718 if (consume_stock(memcg, nr_pages)) {
2719 /*
2720 * It seems dagerous to access memcg without css_get().
2721 * But considering how consume_stok works, it's not
2722 * necessary. If consume_stock success, some charges
2723 * from this memcg are cached on this cpu. So, we
2724 * don't need to call css_get()/css_tryget() before
2725 * calling consume_stock().
2726 */
2727 rcu_read_unlock();
2728 goto done;
2729 }
2730 /* after here, we may be blocked. we need to get refcnt */
2731 if (!css_tryget(&memcg->css)) {
2732 rcu_read_unlock();
2733 goto again;
2734 }
2735 rcu_read_unlock();
2736 }
2737
2738 do {
2739 bool invoke_oom = oom && !nr_oom_retries;
2740
2741 /* If killed, bypass charge */
2742 if (fatal_signal_pending(current)) {
2743 css_put(&memcg->css);
2744 goto bypass;
2745 }
2746
2747 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2748 nr_pages, invoke_oom);
2749 switch (ret) {
2750 case CHARGE_OK:
2751 break;
2752 case CHARGE_RETRY: /* not in OOM situation but retry */
2753 batch = nr_pages;
2754 css_put(&memcg->css);
2755 memcg = NULL;
2756 goto again;
2757 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2758 css_put(&memcg->css);
2759 goto nomem;
2760 case CHARGE_NOMEM: /* OOM routine works */
2761 if (!oom || invoke_oom) {
2762 css_put(&memcg->css);
2763 goto nomem;
2764 }
2765 nr_oom_retries--;
2766 break;
2767 }
2768 } while (ret != CHARGE_OK);
2769
2770 if (batch > nr_pages)
2771 refill_stock(memcg, batch - nr_pages);
2772 css_put(&memcg->css);
2773 done:
2774 *ptr = memcg;
2775 return 0;
2776 nomem:
2777 if (!(gfp_mask & __GFP_NOFAIL)) {
2778 *ptr = NULL;
2779 return -ENOMEM;
2780 }
2781 bypass:
2782 *ptr = root_mem_cgroup;
2783 return -EINTR;
2784 }
2785
2786 /*
2787 * Somemtimes we have to undo a charge we got by try_charge().
2788 * This function is for that and do uncharge, put css's refcnt.
2789 * gotten by try_charge().
2790 */
2791 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2792 unsigned int nr_pages)
2793 {
2794 if (!mem_cgroup_is_root(memcg)) {
2795 unsigned long bytes = nr_pages * PAGE_SIZE;
2796
2797 res_counter_uncharge(&memcg->res, bytes);
2798 if (do_swap_account)
2799 res_counter_uncharge(&memcg->memsw, bytes);
2800 }
2801 }
2802
2803 /*
2804 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2805 * This is useful when moving usage to parent cgroup.
2806 */
2807 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2808 unsigned int nr_pages)
2809 {
2810 unsigned long bytes = nr_pages * PAGE_SIZE;
2811
2812 if (mem_cgroup_is_root(memcg))
2813 return;
2814
2815 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2816 if (do_swap_account)
2817 res_counter_uncharge_until(&memcg->memsw,
2818 memcg->memsw.parent, bytes);
2819 }
2820
2821 /*
2822 * A helper function to get mem_cgroup from ID. must be called under
2823 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2824 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2825 * called against removed memcg.)
2826 */
2827 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2828 {
2829 struct cgroup_subsys_state *css;
2830
2831 /* ID 0 is unused ID */
2832 if (!id)
2833 return NULL;
2834 css = css_lookup(&mem_cgroup_subsys, id);
2835 if (!css)
2836 return NULL;
2837 return mem_cgroup_from_css(css);
2838 }
2839
2840 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2841 {
2842 struct mem_cgroup *memcg = NULL;
2843 struct page_cgroup *pc;
2844 unsigned short id;
2845 swp_entry_t ent;
2846
2847 VM_BUG_ON(!PageLocked(page));
2848
2849 pc = lookup_page_cgroup(page);
2850 lock_page_cgroup(pc);
2851 if (PageCgroupUsed(pc)) {
2852 memcg = pc->mem_cgroup;
2853 if (memcg && !css_tryget(&memcg->css))
2854 memcg = NULL;
2855 } else if (PageSwapCache(page)) {
2856 ent.val = page_private(page);
2857 id = lookup_swap_cgroup_id(ent);
2858 rcu_read_lock();
2859 memcg = mem_cgroup_lookup(id);
2860 if (memcg && !css_tryget(&memcg->css))
2861 memcg = NULL;
2862 rcu_read_unlock();
2863 }
2864 unlock_page_cgroup(pc);
2865 return memcg;
2866 }
2867
2868 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2869 struct page *page,
2870 unsigned int nr_pages,
2871 enum charge_type ctype,
2872 bool lrucare)
2873 {
2874 struct page_cgroup *pc = lookup_page_cgroup(page);
2875 struct zone *uninitialized_var(zone);
2876 struct lruvec *lruvec;
2877 bool was_on_lru = false;
2878 bool anon;
2879
2880 lock_page_cgroup(pc);
2881 VM_BUG_ON(PageCgroupUsed(pc));
2882 /*
2883 * we don't need page_cgroup_lock about tail pages, becase they are not
2884 * accessed by any other context at this point.
2885 */
2886
2887 /*
2888 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2889 * may already be on some other mem_cgroup's LRU. Take care of it.
2890 */
2891 if (lrucare) {
2892 zone = page_zone(page);
2893 spin_lock_irq(&zone->lru_lock);
2894 if (PageLRU(page)) {
2895 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2896 ClearPageLRU(page);
2897 del_page_from_lru_list(page, lruvec, page_lru(page));
2898 was_on_lru = true;
2899 }
2900 }
2901
2902 pc->mem_cgroup = memcg;
2903 /*
2904 * We access a page_cgroup asynchronously without lock_page_cgroup().
2905 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2906 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2907 * before USED bit, we need memory barrier here.
2908 * See mem_cgroup_add_lru_list(), etc.
2909 */
2910 smp_wmb();
2911 SetPageCgroupUsed(pc);
2912
2913 if (lrucare) {
2914 if (was_on_lru) {
2915 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2916 VM_BUG_ON(PageLRU(page));
2917 SetPageLRU(page);
2918 add_page_to_lru_list(page, lruvec, page_lru(page));
2919 }
2920 spin_unlock_irq(&zone->lru_lock);
2921 }
2922
2923 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2924 anon = true;
2925 else
2926 anon = false;
2927
2928 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2929 unlock_page_cgroup(pc);
2930
2931 /*
2932 * "charge_statistics" updated event counter. Then, check it.
2933 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2934 * if they exceeds softlimit.
2935 */
2936 memcg_check_events(memcg, page);
2937 }
2938
2939 static DEFINE_MUTEX(set_limit_mutex);
2940
2941 #ifdef CONFIG_MEMCG_KMEM
2942 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2943 {
2944 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2945 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2946 }
2947
2948 /*
2949 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2950 * in the memcg_cache_params struct.
2951 */
2952 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2953 {
2954 struct kmem_cache *cachep;
2955
2956 VM_BUG_ON(p->is_root_cache);
2957 cachep = p->root_cache;
2958 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2959 }
2960
2961 #ifdef CONFIG_SLABINFO
2962 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2963 struct cftype *cft, struct seq_file *m)
2964 {
2965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2966 struct memcg_cache_params *params;
2967
2968 if (!memcg_can_account_kmem(memcg))
2969 return -EIO;
2970
2971 print_slabinfo_header(m);
2972
2973 mutex_lock(&memcg->slab_caches_mutex);
2974 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2975 cache_show(memcg_params_to_cache(params), m);
2976 mutex_unlock(&memcg->slab_caches_mutex);
2977
2978 return 0;
2979 }
2980 #endif
2981
2982 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2983 {
2984 struct res_counter *fail_res;
2985 struct mem_cgroup *_memcg;
2986 int ret = 0;
2987 bool may_oom;
2988
2989 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2990 if (ret)
2991 return ret;
2992
2993 /*
2994 * Conditions under which we can wait for the oom_killer. Those are
2995 * the same conditions tested by the core page allocator
2996 */
2997 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2998
2999 _memcg = memcg;
3000 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3001 &_memcg, may_oom);
3002
3003 if (ret == -EINTR) {
3004 /*
3005 * __mem_cgroup_try_charge() chosed to bypass to root due to
3006 * OOM kill or fatal signal. Since our only options are to
3007 * either fail the allocation or charge it to this cgroup, do
3008 * it as a temporary condition. But we can't fail. From a
3009 * kmem/slab perspective, the cache has already been selected,
3010 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3011 * our minds.
3012 *
3013 * This condition will only trigger if the task entered
3014 * memcg_charge_kmem in a sane state, but was OOM-killed during
3015 * __mem_cgroup_try_charge() above. Tasks that were already
3016 * dying when the allocation triggers should have been already
3017 * directed to the root cgroup in memcontrol.h
3018 */
3019 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3020 if (do_swap_account)
3021 res_counter_charge_nofail(&memcg->memsw, size,
3022 &fail_res);
3023 ret = 0;
3024 } else if (ret)
3025 res_counter_uncharge(&memcg->kmem, size);
3026
3027 return ret;
3028 }
3029
3030 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3031 {
3032 res_counter_uncharge(&memcg->res, size);
3033 if (do_swap_account)
3034 res_counter_uncharge(&memcg->memsw, size);
3035
3036 /* Not down to 0 */
3037 if (res_counter_uncharge(&memcg->kmem, size))
3038 return;
3039
3040 /*
3041 * Releases a reference taken in kmem_cgroup_css_offline in case
3042 * this last uncharge is racing with the offlining code or it is
3043 * outliving the memcg existence.
3044 *
3045 * The memory barrier imposed by test&clear is paired with the
3046 * explicit one in memcg_kmem_mark_dead().
3047 */
3048 if (memcg_kmem_test_and_clear_dead(memcg))
3049 css_put(&memcg->css);
3050 }
3051
3052 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3053 {
3054 if (!memcg)
3055 return;
3056
3057 mutex_lock(&memcg->slab_caches_mutex);
3058 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3059 mutex_unlock(&memcg->slab_caches_mutex);
3060 }
3061
3062 /*
3063 * helper for acessing a memcg's index. It will be used as an index in the
3064 * child cache array in kmem_cache, and also to derive its name. This function
3065 * will return -1 when this is not a kmem-limited memcg.
3066 */
3067 int memcg_cache_id(struct mem_cgroup *memcg)
3068 {
3069 return memcg ? memcg->kmemcg_id : -1;
3070 }
3071
3072 /*
3073 * This ends up being protected by the set_limit mutex, during normal
3074 * operation, because that is its main call site.
3075 *
3076 * But when we create a new cache, we can call this as well if its parent
3077 * is kmem-limited. That will have to hold set_limit_mutex as well.
3078 */
3079 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3080 {
3081 int num, ret;
3082
3083 num = ida_simple_get(&kmem_limited_groups,
3084 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3085 if (num < 0)
3086 return num;
3087 /*
3088 * After this point, kmem_accounted (that we test atomically in
3089 * the beginning of this conditional), is no longer 0. This
3090 * guarantees only one process will set the following boolean
3091 * to true. We don't need test_and_set because we're protected
3092 * by the set_limit_mutex anyway.
3093 */
3094 memcg_kmem_set_activated(memcg);
3095
3096 ret = memcg_update_all_caches(num+1);
3097 if (ret) {
3098 ida_simple_remove(&kmem_limited_groups, num);
3099 memcg_kmem_clear_activated(memcg);
3100 return ret;
3101 }
3102
3103 memcg->kmemcg_id = num;
3104 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3105 mutex_init(&memcg->slab_caches_mutex);
3106 return 0;
3107 }
3108
3109 static size_t memcg_caches_array_size(int num_groups)
3110 {
3111 ssize_t size;
3112 if (num_groups <= 0)
3113 return 0;
3114
3115 size = 2 * num_groups;
3116 if (size < MEMCG_CACHES_MIN_SIZE)
3117 size = MEMCG_CACHES_MIN_SIZE;
3118 else if (size > MEMCG_CACHES_MAX_SIZE)
3119 size = MEMCG_CACHES_MAX_SIZE;
3120
3121 return size;
3122 }
3123
3124 /*
3125 * We should update the current array size iff all caches updates succeed. This
3126 * can only be done from the slab side. The slab mutex needs to be held when
3127 * calling this.
3128 */
3129 void memcg_update_array_size(int num)
3130 {
3131 if (num > memcg_limited_groups_array_size)
3132 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3133 }
3134
3135 static void kmem_cache_destroy_work_func(struct work_struct *w);
3136
3137 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3138 {
3139 struct memcg_cache_params *cur_params = s->memcg_params;
3140
3141 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3142
3143 if (num_groups > memcg_limited_groups_array_size) {
3144 int i;
3145 ssize_t size = memcg_caches_array_size(num_groups);
3146
3147 size *= sizeof(void *);
3148 size += offsetof(struct memcg_cache_params, memcg_caches);
3149
3150 s->memcg_params = kzalloc(size, GFP_KERNEL);
3151 if (!s->memcg_params) {
3152 s->memcg_params = cur_params;
3153 return -ENOMEM;
3154 }
3155
3156 s->memcg_params->is_root_cache = true;
3157
3158 /*
3159 * There is the chance it will be bigger than
3160 * memcg_limited_groups_array_size, if we failed an allocation
3161 * in a cache, in which case all caches updated before it, will
3162 * have a bigger array.
3163 *
3164 * But if that is the case, the data after
3165 * memcg_limited_groups_array_size is certainly unused
3166 */
3167 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3168 if (!cur_params->memcg_caches[i])
3169 continue;
3170 s->memcg_params->memcg_caches[i] =
3171 cur_params->memcg_caches[i];
3172 }
3173
3174 /*
3175 * Ideally, we would wait until all caches succeed, and only
3176 * then free the old one. But this is not worth the extra
3177 * pointer per-cache we'd have to have for this.
3178 *
3179 * It is not a big deal if some caches are left with a size
3180 * bigger than the others. And all updates will reset this
3181 * anyway.
3182 */
3183 kfree(cur_params);
3184 }
3185 return 0;
3186 }
3187
3188 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3189 struct kmem_cache *root_cache)
3190 {
3191 size_t size;
3192
3193 if (!memcg_kmem_enabled())
3194 return 0;
3195
3196 if (!memcg) {
3197 size = offsetof(struct memcg_cache_params, memcg_caches);
3198 size += memcg_limited_groups_array_size * sizeof(void *);
3199 } else
3200 size = sizeof(struct memcg_cache_params);
3201
3202 s->memcg_params = kzalloc(size, GFP_KERNEL);
3203 if (!s->memcg_params)
3204 return -ENOMEM;
3205
3206 if (memcg) {
3207 s->memcg_params->memcg = memcg;
3208 s->memcg_params->root_cache = root_cache;
3209 INIT_WORK(&s->memcg_params->destroy,
3210 kmem_cache_destroy_work_func);
3211 } else
3212 s->memcg_params->is_root_cache = true;
3213
3214 return 0;
3215 }
3216
3217 void memcg_release_cache(struct kmem_cache *s)
3218 {
3219 struct kmem_cache *root;
3220 struct mem_cgroup *memcg;
3221 int id;
3222
3223 /*
3224 * This happens, for instance, when a root cache goes away before we
3225 * add any memcg.
3226 */
3227 if (!s->memcg_params)
3228 return;
3229
3230 if (s->memcg_params->is_root_cache)
3231 goto out;
3232
3233 memcg = s->memcg_params->memcg;
3234 id = memcg_cache_id(memcg);
3235
3236 root = s->memcg_params->root_cache;
3237 root->memcg_params->memcg_caches[id] = NULL;
3238
3239 mutex_lock(&memcg->slab_caches_mutex);
3240 list_del(&s->memcg_params->list);
3241 mutex_unlock(&memcg->slab_caches_mutex);
3242
3243 css_put(&memcg->css);
3244 out:
3245 kfree(s->memcg_params);
3246 }
3247
3248 /*
3249 * During the creation a new cache, we need to disable our accounting mechanism
3250 * altogether. This is true even if we are not creating, but rather just
3251 * enqueing new caches to be created.
3252 *
3253 * This is because that process will trigger allocations; some visible, like
3254 * explicit kmallocs to auxiliary data structures, name strings and internal
3255 * cache structures; some well concealed, like INIT_WORK() that can allocate
3256 * objects during debug.
3257 *
3258 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3259 * to it. This may not be a bounded recursion: since the first cache creation
3260 * failed to complete (waiting on the allocation), we'll just try to create the
3261 * cache again, failing at the same point.
3262 *
3263 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3264 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3265 * inside the following two functions.
3266 */
3267 static inline void memcg_stop_kmem_account(void)
3268 {
3269 VM_BUG_ON(!current->mm);
3270 current->memcg_kmem_skip_account++;
3271 }
3272
3273 static inline void memcg_resume_kmem_account(void)
3274 {
3275 VM_BUG_ON(!current->mm);
3276 current->memcg_kmem_skip_account--;
3277 }
3278
3279 static void kmem_cache_destroy_work_func(struct work_struct *w)
3280 {
3281 struct kmem_cache *cachep;
3282 struct memcg_cache_params *p;
3283
3284 p = container_of(w, struct memcg_cache_params, destroy);
3285
3286 cachep = memcg_params_to_cache(p);
3287
3288 /*
3289 * If we get down to 0 after shrink, we could delete right away.
3290 * However, memcg_release_pages() already puts us back in the workqueue
3291 * in that case. If we proceed deleting, we'll get a dangling
3292 * reference, and removing the object from the workqueue in that case
3293 * is unnecessary complication. We are not a fast path.
3294 *
3295 * Note that this case is fundamentally different from racing with
3296 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3297 * kmem_cache_shrink, not only we would be reinserting a dead cache
3298 * into the queue, but doing so from inside the worker racing to
3299 * destroy it.
3300 *
3301 * So if we aren't down to zero, we'll just schedule a worker and try
3302 * again
3303 */
3304 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3305 kmem_cache_shrink(cachep);
3306 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3307 return;
3308 } else
3309 kmem_cache_destroy(cachep);
3310 }
3311
3312 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3313 {
3314 if (!cachep->memcg_params->dead)
3315 return;
3316
3317 /*
3318 * There are many ways in which we can get here.
3319 *
3320 * We can get to a memory-pressure situation while the delayed work is
3321 * still pending to run. The vmscan shrinkers can then release all
3322 * cache memory and get us to destruction. If this is the case, we'll
3323 * be executed twice, which is a bug (the second time will execute over
3324 * bogus data). In this case, cancelling the work should be fine.
3325 *
3326 * But we can also get here from the worker itself, if
3327 * kmem_cache_shrink is enough to shake all the remaining objects and
3328 * get the page count to 0. In this case, we'll deadlock if we try to
3329 * cancel the work (the worker runs with an internal lock held, which
3330 * is the same lock we would hold for cancel_work_sync().)
3331 *
3332 * Since we can't possibly know who got us here, just refrain from
3333 * running if there is already work pending
3334 */
3335 if (work_pending(&cachep->memcg_params->destroy))
3336 return;
3337 /*
3338 * We have to defer the actual destroying to a workqueue, because
3339 * we might currently be in a context that cannot sleep.
3340 */
3341 schedule_work(&cachep->memcg_params->destroy);
3342 }
3343
3344 /*
3345 * This lock protects updaters, not readers. We want readers to be as fast as
3346 * they can, and they will either see NULL or a valid cache value. Our model
3347 * allow them to see NULL, in which case the root memcg will be selected.
3348 *
3349 * We need this lock because multiple allocations to the same cache from a non
3350 * will span more than one worker. Only one of them can create the cache.
3351 */
3352 static DEFINE_MUTEX(memcg_cache_mutex);
3353
3354 /*
3355 * Called with memcg_cache_mutex held
3356 */
3357 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3358 struct kmem_cache *s)
3359 {
3360 struct kmem_cache *new;
3361 static char *tmp_name = NULL;
3362
3363 lockdep_assert_held(&memcg_cache_mutex);
3364
3365 /*
3366 * kmem_cache_create_memcg duplicates the given name and
3367 * cgroup_name for this name requires RCU context.
3368 * This static temporary buffer is used to prevent from
3369 * pointless shortliving allocation.
3370 */
3371 if (!tmp_name) {
3372 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3373 if (!tmp_name)
3374 return NULL;
3375 }
3376
3377 rcu_read_lock();
3378 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3379 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3380 rcu_read_unlock();
3381
3382 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3383 (s->flags & ~SLAB_PANIC), s->ctor, s);
3384
3385 if (new)
3386 new->allocflags |= __GFP_KMEMCG;
3387
3388 return new;
3389 }
3390
3391 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3392 struct kmem_cache *cachep)
3393 {
3394 struct kmem_cache *new_cachep;
3395 int idx;
3396
3397 BUG_ON(!memcg_can_account_kmem(memcg));
3398
3399 idx = memcg_cache_id(memcg);
3400
3401 mutex_lock(&memcg_cache_mutex);
3402 new_cachep = cachep->memcg_params->memcg_caches[idx];
3403 if (new_cachep) {
3404 css_put(&memcg->css);
3405 goto out;
3406 }
3407
3408 new_cachep = kmem_cache_dup(memcg, cachep);
3409 if (new_cachep == NULL) {
3410 new_cachep = cachep;
3411 css_put(&memcg->css);
3412 goto out;
3413 }
3414
3415 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3416
3417 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3418 /*
3419 * the readers won't lock, make sure everybody sees the updated value,
3420 * so they won't put stuff in the queue again for no reason
3421 */
3422 wmb();
3423 out:
3424 mutex_unlock(&memcg_cache_mutex);
3425 return new_cachep;
3426 }
3427
3428 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3429 {
3430 struct kmem_cache *c;
3431 int i;
3432
3433 if (!s->memcg_params)
3434 return;
3435 if (!s->memcg_params->is_root_cache)
3436 return;
3437
3438 /*
3439 * If the cache is being destroyed, we trust that there is no one else
3440 * requesting objects from it. Even if there are, the sanity checks in
3441 * kmem_cache_destroy should caught this ill-case.
3442 *
3443 * Still, we don't want anyone else freeing memcg_caches under our
3444 * noses, which can happen if a new memcg comes to life. As usual,
3445 * we'll take the set_limit_mutex to protect ourselves against this.
3446 */
3447 mutex_lock(&set_limit_mutex);
3448 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3449 c = s->memcg_params->memcg_caches[i];
3450 if (!c)
3451 continue;
3452
3453 /*
3454 * We will now manually delete the caches, so to avoid races
3455 * we need to cancel all pending destruction workers and
3456 * proceed with destruction ourselves.
3457 *
3458 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3459 * and that could spawn the workers again: it is likely that
3460 * the cache still have active pages until this very moment.
3461 * This would lead us back to mem_cgroup_destroy_cache.
3462 *
3463 * But that will not execute at all if the "dead" flag is not
3464 * set, so flip it down to guarantee we are in control.
3465 */
3466 c->memcg_params->dead = false;
3467 cancel_work_sync(&c->memcg_params->destroy);
3468 kmem_cache_destroy(c);
3469 }
3470 mutex_unlock(&set_limit_mutex);
3471 }
3472
3473 struct create_work {
3474 struct mem_cgroup *memcg;
3475 struct kmem_cache *cachep;
3476 struct work_struct work;
3477 };
3478
3479 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3480 {
3481 struct kmem_cache *cachep;
3482 struct memcg_cache_params *params;
3483
3484 if (!memcg_kmem_is_active(memcg))
3485 return;
3486
3487 mutex_lock(&memcg->slab_caches_mutex);
3488 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3489 cachep = memcg_params_to_cache(params);
3490 cachep->memcg_params->dead = true;
3491 schedule_work(&cachep->memcg_params->destroy);
3492 }
3493 mutex_unlock(&memcg->slab_caches_mutex);
3494 }
3495
3496 static void memcg_create_cache_work_func(struct work_struct *w)
3497 {
3498 struct create_work *cw;
3499
3500 cw = container_of(w, struct create_work, work);
3501 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3502 kfree(cw);
3503 }
3504
3505 /*
3506 * Enqueue the creation of a per-memcg kmem_cache.
3507 */
3508 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3509 struct kmem_cache *cachep)
3510 {
3511 struct create_work *cw;
3512
3513 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3514 if (cw == NULL) {
3515 css_put(&memcg->css);
3516 return;
3517 }
3518
3519 cw->memcg = memcg;
3520 cw->cachep = cachep;
3521
3522 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3523 schedule_work(&cw->work);
3524 }
3525
3526 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3527 struct kmem_cache *cachep)
3528 {
3529 /*
3530 * We need to stop accounting when we kmalloc, because if the
3531 * corresponding kmalloc cache is not yet created, the first allocation
3532 * in __memcg_create_cache_enqueue will recurse.
3533 *
3534 * However, it is better to enclose the whole function. Depending on
3535 * the debugging options enabled, INIT_WORK(), for instance, can
3536 * trigger an allocation. This too, will make us recurse. Because at
3537 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3538 * the safest choice is to do it like this, wrapping the whole function.
3539 */
3540 memcg_stop_kmem_account();
3541 __memcg_create_cache_enqueue(memcg, cachep);
3542 memcg_resume_kmem_account();
3543 }
3544 /*
3545 * Return the kmem_cache we're supposed to use for a slab allocation.
3546 * We try to use the current memcg's version of the cache.
3547 *
3548 * If the cache does not exist yet, if we are the first user of it,
3549 * we either create it immediately, if possible, or create it asynchronously
3550 * in a workqueue.
3551 * In the latter case, we will let the current allocation go through with
3552 * the original cache.
3553 *
3554 * Can't be called in interrupt context or from kernel threads.
3555 * This function needs to be called with rcu_read_lock() held.
3556 */
3557 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3558 gfp_t gfp)
3559 {
3560 struct mem_cgroup *memcg;
3561 int idx;
3562
3563 VM_BUG_ON(!cachep->memcg_params);
3564 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3565
3566 if (!current->mm || current->memcg_kmem_skip_account)
3567 return cachep;
3568
3569 rcu_read_lock();
3570 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3571
3572 if (!memcg_can_account_kmem(memcg))
3573 goto out;
3574
3575 idx = memcg_cache_id(memcg);
3576
3577 /*
3578 * barrier to mare sure we're always seeing the up to date value. The
3579 * code updating memcg_caches will issue a write barrier to match this.
3580 */
3581 read_barrier_depends();
3582 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3583 cachep = cachep->memcg_params->memcg_caches[idx];
3584 goto out;
3585 }
3586
3587 /* The corresponding put will be done in the workqueue. */
3588 if (!css_tryget(&memcg->css))
3589 goto out;
3590 rcu_read_unlock();
3591
3592 /*
3593 * If we are in a safe context (can wait, and not in interrupt
3594 * context), we could be be predictable and return right away.
3595 * This would guarantee that the allocation being performed
3596 * already belongs in the new cache.
3597 *
3598 * However, there are some clashes that can arrive from locking.
3599 * For instance, because we acquire the slab_mutex while doing
3600 * kmem_cache_dup, this means no further allocation could happen
3601 * with the slab_mutex held.
3602 *
3603 * Also, because cache creation issue get_online_cpus(), this
3604 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3605 * that ends up reversed during cpu hotplug. (cpuset allocates
3606 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3607 * better to defer everything.
3608 */
3609 memcg_create_cache_enqueue(memcg, cachep);
3610 return cachep;
3611 out:
3612 rcu_read_unlock();
3613 return cachep;
3614 }
3615 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3616
3617 /*
3618 * We need to verify if the allocation against current->mm->owner's memcg is
3619 * possible for the given order. But the page is not allocated yet, so we'll
3620 * need a further commit step to do the final arrangements.
3621 *
3622 * It is possible for the task to switch cgroups in this mean time, so at
3623 * commit time, we can't rely on task conversion any longer. We'll then use
3624 * the handle argument to return to the caller which cgroup we should commit
3625 * against. We could also return the memcg directly and avoid the pointer
3626 * passing, but a boolean return value gives better semantics considering
3627 * the compiled-out case as well.
3628 *
3629 * Returning true means the allocation is possible.
3630 */
3631 bool
3632 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3633 {
3634 struct mem_cgroup *memcg;
3635 int ret;
3636
3637 *_memcg = NULL;
3638
3639 /*
3640 * Disabling accounting is only relevant for some specific memcg
3641 * internal allocations. Therefore we would initially not have such
3642 * check here, since direct calls to the page allocator that are marked
3643 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3644 * concerned with cache allocations, and by having this test at
3645 * memcg_kmem_get_cache, we are already able to relay the allocation to
3646 * the root cache and bypass the memcg cache altogether.
3647 *
3648 * There is one exception, though: the SLUB allocator does not create
3649 * large order caches, but rather service large kmallocs directly from
3650 * the page allocator. Therefore, the following sequence when backed by
3651 * the SLUB allocator:
3652 *
3653 * memcg_stop_kmem_account();
3654 * kmalloc(<large_number>)
3655 * memcg_resume_kmem_account();
3656 *
3657 * would effectively ignore the fact that we should skip accounting,
3658 * since it will drive us directly to this function without passing
3659 * through the cache selector memcg_kmem_get_cache. Such large
3660 * allocations are extremely rare but can happen, for instance, for the
3661 * cache arrays. We bring this test here.
3662 */
3663 if (!current->mm || current->memcg_kmem_skip_account)
3664 return true;
3665
3666 memcg = try_get_mem_cgroup_from_mm(current->mm);
3667
3668 /*
3669 * very rare case described in mem_cgroup_from_task. Unfortunately there
3670 * isn't much we can do without complicating this too much, and it would
3671 * be gfp-dependent anyway. Just let it go
3672 */
3673 if (unlikely(!memcg))
3674 return true;
3675
3676 if (!memcg_can_account_kmem(memcg)) {
3677 css_put(&memcg->css);
3678 return true;
3679 }
3680
3681 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3682 if (!ret)
3683 *_memcg = memcg;
3684
3685 css_put(&memcg->css);
3686 return (ret == 0);
3687 }
3688
3689 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3690 int order)
3691 {
3692 struct page_cgroup *pc;
3693
3694 VM_BUG_ON(mem_cgroup_is_root(memcg));
3695
3696 /* The page allocation failed. Revert */
3697 if (!page) {
3698 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3699 return;
3700 }
3701
3702 pc = lookup_page_cgroup(page);
3703 lock_page_cgroup(pc);
3704 pc->mem_cgroup = memcg;
3705 SetPageCgroupUsed(pc);
3706 unlock_page_cgroup(pc);
3707 }
3708
3709 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3710 {
3711 struct mem_cgroup *memcg = NULL;
3712 struct page_cgroup *pc;
3713
3714
3715 pc = lookup_page_cgroup(page);
3716 /*
3717 * Fast unlocked return. Theoretically might have changed, have to
3718 * check again after locking.
3719 */
3720 if (!PageCgroupUsed(pc))
3721 return;
3722
3723 lock_page_cgroup(pc);
3724 if (PageCgroupUsed(pc)) {
3725 memcg = pc->mem_cgroup;
3726 ClearPageCgroupUsed(pc);
3727 }
3728 unlock_page_cgroup(pc);
3729
3730 /*
3731 * We trust that only if there is a memcg associated with the page, it
3732 * is a valid allocation
3733 */
3734 if (!memcg)
3735 return;
3736
3737 VM_BUG_ON(mem_cgroup_is_root(memcg));
3738 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3739 }
3740 #else
3741 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3742 {
3743 }
3744 #endif /* CONFIG_MEMCG_KMEM */
3745
3746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3747
3748 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3749 /*
3750 * Because tail pages are not marked as "used", set it. We're under
3751 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3752 * charge/uncharge will be never happen and move_account() is done under
3753 * compound_lock(), so we don't have to take care of races.
3754 */
3755 void mem_cgroup_split_huge_fixup(struct page *head)
3756 {
3757 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3758 struct page_cgroup *pc;
3759 struct mem_cgroup *memcg;
3760 int i;
3761
3762 if (mem_cgroup_disabled())
3763 return;
3764
3765 memcg = head_pc->mem_cgroup;
3766 for (i = 1; i < HPAGE_PMD_NR; i++) {
3767 pc = head_pc + i;
3768 pc->mem_cgroup = memcg;
3769 smp_wmb();/* see __commit_charge() */
3770 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3771 }
3772 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3773 HPAGE_PMD_NR);
3774 }
3775 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3776
3777 static inline
3778 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3779 struct mem_cgroup *to,
3780 unsigned int nr_pages,
3781 enum mem_cgroup_stat_index idx)
3782 {
3783 /* Update stat data for mem_cgroup */
3784 preempt_disable();
3785 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3786 __this_cpu_sub(from->stat->count[idx], nr_pages);
3787 __this_cpu_add(to->stat->count[idx], nr_pages);
3788 preempt_enable();
3789 }
3790
3791 /**
3792 * mem_cgroup_move_account - move account of the page
3793 * @page: the page
3794 * @nr_pages: number of regular pages (>1 for huge pages)
3795 * @pc: page_cgroup of the page.
3796 * @from: mem_cgroup which the page is moved from.
3797 * @to: mem_cgroup which the page is moved to. @from != @to.
3798 *
3799 * The caller must confirm following.
3800 * - page is not on LRU (isolate_page() is useful.)
3801 * - compound_lock is held when nr_pages > 1
3802 *
3803 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3804 * from old cgroup.
3805 */
3806 static int mem_cgroup_move_account(struct page *page,
3807 unsigned int nr_pages,
3808 struct page_cgroup *pc,
3809 struct mem_cgroup *from,
3810 struct mem_cgroup *to)
3811 {
3812 unsigned long flags;
3813 int ret;
3814 bool anon = PageAnon(page);
3815
3816 VM_BUG_ON(from == to);
3817 VM_BUG_ON(PageLRU(page));
3818 /*
3819 * The page is isolated from LRU. So, collapse function
3820 * will not handle this page. But page splitting can happen.
3821 * Do this check under compound_page_lock(). The caller should
3822 * hold it.
3823 */
3824 ret = -EBUSY;
3825 if (nr_pages > 1 && !PageTransHuge(page))
3826 goto out;
3827
3828 lock_page_cgroup(pc);
3829
3830 ret = -EINVAL;
3831 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3832 goto unlock;
3833
3834 move_lock_mem_cgroup(from, &flags);
3835
3836 if (!anon && page_mapped(page))
3837 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3838 MEM_CGROUP_STAT_FILE_MAPPED);
3839
3840 if (PageWriteback(page))
3841 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3842 MEM_CGROUP_STAT_WRITEBACK);
3843
3844 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3845
3846 /* caller should have done css_get */
3847 pc->mem_cgroup = to;
3848 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3849 move_unlock_mem_cgroup(from, &flags);
3850 ret = 0;
3851 unlock:
3852 unlock_page_cgroup(pc);
3853 /*
3854 * check events
3855 */
3856 memcg_check_events(to, page);
3857 memcg_check_events(from, page);
3858 out:
3859 return ret;
3860 }
3861
3862 /**
3863 * mem_cgroup_move_parent - moves page to the parent group
3864 * @page: the page to move
3865 * @pc: page_cgroup of the page
3866 * @child: page's cgroup
3867 *
3868 * move charges to its parent or the root cgroup if the group has no
3869 * parent (aka use_hierarchy==0).
3870 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3871 * mem_cgroup_move_account fails) the failure is always temporary and
3872 * it signals a race with a page removal/uncharge or migration. In the
3873 * first case the page is on the way out and it will vanish from the LRU
3874 * on the next attempt and the call should be retried later.
3875 * Isolation from the LRU fails only if page has been isolated from
3876 * the LRU since we looked at it and that usually means either global
3877 * reclaim or migration going on. The page will either get back to the
3878 * LRU or vanish.
3879 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3880 * (!PageCgroupUsed) or moved to a different group. The page will
3881 * disappear in the next attempt.
3882 */
3883 static int mem_cgroup_move_parent(struct page *page,
3884 struct page_cgroup *pc,
3885 struct mem_cgroup *child)
3886 {
3887 struct mem_cgroup *parent;
3888 unsigned int nr_pages;
3889 unsigned long uninitialized_var(flags);
3890 int ret;
3891
3892 VM_BUG_ON(mem_cgroup_is_root(child));
3893
3894 ret = -EBUSY;
3895 if (!get_page_unless_zero(page))
3896 goto out;
3897 if (isolate_lru_page(page))
3898 goto put;
3899
3900 nr_pages = hpage_nr_pages(page);
3901
3902 parent = parent_mem_cgroup(child);
3903 /*
3904 * If no parent, move charges to root cgroup.
3905 */
3906 if (!parent)
3907 parent = root_mem_cgroup;
3908
3909 if (nr_pages > 1) {
3910 VM_BUG_ON(!PageTransHuge(page));
3911 flags = compound_lock_irqsave(page);
3912 }
3913
3914 ret = mem_cgroup_move_account(page, nr_pages,
3915 pc, child, parent);
3916 if (!ret)
3917 __mem_cgroup_cancel_local_charge(child, nr_pages);
3918
3919 if (nr_pages > 1)
3920 compound_unlock_irqrestore(page, flags);
3921 putback_lru_page(page);
3922 put:
3923 put_page(page);
3924 out:
3925 return ret;
3926 }
3927
3928 /*
3929 * Charge the memory controller for page usage.
3930 * Return
3931 * 0 if the charge was successful
3932 * < 0 if the cgroup is over its limit
3933 */
3934 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3935 gfp_t gfp_mask, enum charge_type ctype)
3936 {
3937 struct mem_cgroup *memcg = NULL;
3938 unsigned int nr_pages = 1;
3939 bool oom = true;
3940 int ret;
3941
3942 if (PageTransHuge(page)) {
3943 nr_pages <<= compound_order(page);
3944 VM_BUG_ON(!PageTransHuge(page));
3945 /*
3946 * Never OOM-kill a process for a huge page. The
3947 * fault handler will fall back to regular pages.
3948 */
3949 oom = false;
3950 }
3951
3952 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3953 if (ret == -ENOMEM)
3954 return ret;
3955 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3956 return 0;
3957 }
3958
3959 int mem_cgroup_newpage_charge(struct page *page,
3960 struct mm_struct *mm, gfp_t gfp_mask)
3961 {
3962 if (mem_cgroup_disabled())
3963 return 0;
3964 VM_BUG_ON(page_mapped(page));
3965 VM_BUG_ON(page->mapping && !PageAnon(page));
3966 VM_BUG_ON(!mm);
3967 return mem_cgroup_charge_common(page, mm, gfp_mask,
3968 MEM_CGROUP_CHARGE_TYPE_ANON);
3969 }
3970
3971 /*
3972 * While swap-in, try_charge -> commit or cancel, the page is locked.
3973 * And when try_charge() successfully returns, one refcnt to memcg without
3974 * struct page_cgroup is acquired. This refcnt will be consumed by
3975 * "commit()" or removed by "cancel()"
3976 */
3977 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3978 struct page *page,
3979 gfp_t mask,
3980 struct mem_cgroup **memcgp)
3981 {
3982 struct mem_cgroup *memcg;
3983 struct page_cgroup *pc;
3984 int ret;
3985
3986 pc = lookup_page_cgroup(page);
3987 /*
3988 * Every swap fault against a single page tries to charge the
3989 * page, bail as early as possible. shmem_unuse() encounters
3990 * already charged pages, too. The USED bit is protected by
3991 * the page lock, which serializes swap cache removal, which
3992 * in turn serializes uncharging.
3993 */
3994 if (PageCgroupUsed(pc))
3995 return 0;
3996 if (!do_swap_account)
3997 goto charge_cur_mm;
3998 memcg = try_get_mem_cgroup_from_page(page);
3999 if (!memcg)
4000 goto charge_cur_mm;
4001 *memcgp = memcg;
4002 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4003 css_put(&memcg->css);
4004 if (ret == -EINTR)
4005 ret = 0;
4006 return ret;
4007 charge_cur_mm:
4008 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4009 if (ret == -EINTR)
4010 ret = 0;
4011 return ret;
4012 }
4013
4014 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4015 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4016 {
4017 *memcgp = NULL;
4018 if (mem_cgroup_disabled())
4019 return 0;
4020 /*
4021 * A racing thread's fault, or swapoff, may have already
4022 * updated the pte, and even removed page from swap cache: in
4023 * those cases unuse_pte()'s pte_same() test will fail; but
4024 * there's also a KSM case which does need to charge the page.
4025 */
4026 if (!PageSwapCache(page)) {
4027 int ret;
4028
4029 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4030 if (ret == -EINTR)
4031 ret = 0;
4032 return ret;
4033 }
4034 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4035 }
4036
4037 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4038 {
4039 if (mem_cgroup_disabled())
4040 return;
4041 if (!memcg)
4042 return;
4043 __mem_cgroup_cancel_charge(memcg, 1);
4044 }
4045
4046 static void
4047 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4048 enum charge_type ctype)
4049 {
4050 if (mem_cgroup_disabled())
4051 return;
4052 if (!memcg)
4053 return;
4054
4055 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4056 /*
4057 * Now swap is on-memory. This means this page may be
4058 * counted both as mem and swap....double count.
4059 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4060 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4061 * may call delete_from_swap_cache() before reach here.
4062 */
4063 if (do_swap_account && PageSwapCache(page)) {
4064 swp_entry_t ent = {.val = page_private(page)};
4065 mem_cgroup_uncharge_swap(ent);
4066 }
4067 }
4068
4069 void mem_cgroup_commit_charge_swapin(struct page *page,
4070 struct mem_cgroup *memcg)
4071 {
4072 __mem_cgroup_commit_charge_swapin(page, memcg,
4073 MEM_CGROUP_CHARGE_TYPE_ANON);
4074 }
4075
4076 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4077 gfp_t gfp_mask)
4078 {
4079 struct mem_cgroup *memcg = NULL;
4080 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4081 int ret;
4082
4083 if (mem_cgroup_disabled())
4084 return 0;
4085 if (PageCompound(page))
4086 return 0;
4087
4088 if (!PageSwapCache(page))
4089 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4090 else { /* page is swapcache/shmem */
4091 ret = __mem_cgroup_try_charge_swapin(mm, page,
4092 gfp_mask, &memcg);
4093 if (!ret)
4094 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4095 }
4096 return ret;
4097 }
4098
4099 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4100 unsigned int nr_pages,
4101 const enum charge_type ctype)
4102 {
4103 struct memcg_batch_info *batch = NULL;
4104 bool uncharge_memsw = true;
4105
4106 /* If swapout, usage of swap doesn't decrease */
4107 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4108 uncharge_memsw = false;
4109
4110 batch = &current->memcg_batch;
4111 /*
4112 * In usual, we do css_get() when we remember memcg pointer.
4113 * But in this case, we keep res->usage until end of a series of
4114 * uncharges. Then, it's ok to ignore memcg's refcnt.
4115 */
4116 if (!batch->memcg)
4117 batch->memcg = memcg;
4118 /*
4119 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4120 * In those cases, all pages freed continuously can be expected to be in
4121 * the same cgroup and we have chance to coalesce uncharges.
4122 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4123 * because we want to do uncharge as soon as possible.
4124 */
4125
4126 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4127 goto direct_uncharge;
4128
4129 if (nr_pages > 1)
4130 goto direct_uncharge;
4131
4132 /*
4133 * In typical case, batch->memcg == mem. This means we can
4134 * merge a series of uncharges to an uncharge of res_counter.
4135 * If not, we uncharge res_counter ony by one.
4136 */
4137 if (batch->memcg != memcg)
4138 goto direct_uncharge;
4139 /* remember freed charge and uncharge it later */
4140 batch->nr_pages++;
4141 if (uncharge_memsw)
4142 batch->memsw_nr_pages++;
4143 return;
4144 direct_uncharge:
4145 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4146 if (uncharge_memsw)
4147 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4148 if (unlikely(batch->memcg != memcg))
4149 memcg_oom_recover(memcg);
4150 }
4151
4152 /*
4153 * uncharge if !page_mapped(page)
4154 */
4155 static struct mem_cgroup *
4156 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4157 bool end_migration)
4158 {
4159 struct mem_cgroup *memcg = NULL;
4160 unsigned int nr_pages = 1;
4161 struct page_cgroup *pc;
4162 bool anon;
4163
4164 if (mem_cgroup_disabled())
4165 return NULL;
4166
4167 if (PageTransHuge(page)) {
4168 nr_pages <<= compound_order(page);
4169 VM_BUG_ON(!PageTransHuge(page));
4170 }
4171 /*
4172 * Check if our page_cgroup is valid
4173 */
4174 pc = lookup_page_cgroup(page);
4175 if (unlikely(!PageCgroupUsed(pc)))
4176 return NULL;
4177
4178 lock_page_cgroup(pc);
4179
4180 memcg = pc->mem_cgroup;
4181
4182 if (!PageCgroupUsed(pc))
4183 goto unlock_out;
4184
4185 anon = PageAnon(page);
4186
4187 switch (ctype) {
4188 case MEM_CGROUP_CHARGE_TYPE_ANON:
4189 /*
4190 * Generally PageAnon tells if it's the anon statistics to be
4191 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4192 * used before page reached the stage of being marked PageAnon.
4193 */
4194 anon = true;
4195 /* fallthrough */
4196 case MEM_CGROUP_CHARGE_TYPE_DROP:
4197 /* See mem_cgroup_prepare_migration() */
4198 if (page_mapped(page))
4199 goto unlock_out;
4200 /*
4201 * Pages under migration may not be uncharged. But
4202 * end_migration() /must/ be the one uncharging the
4203 * unused post-migration page and so it has to call
4204 * here with the migration bit still set. See the
4205 * res_counter handling below.
4206 */
4207 if (!end_migration && PageCgroupMigration(pc))
4208 goto unlock_out;
4209 break;
4210 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4211 if (!PageAnon(page)) { /* Shared memory */
4212 if (page->mapping && !page_is_file_cache(page))
4213 goto unlock_out;
4214 } else if (page_mapped(page)) /* Anon */
4215 goto unlock_out;
4216 break;
4217 default:
4218 break;
4219 }
4220
4221 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4222
4223 ClearPageCgroupUsed(pc);
4224 /*
4225 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4226 * freed from LRU. This is safe because uncharged page is expected not
4227 * to be reused (freed soon). Exception is SwapCache, it's handled by
4228 * special functions.
4229 */
4230
4231 unlock_page_cgroup(pc);
4232 /*
4233 * even after unlock, we have memcg->res.usage here and this memcg
4234 * will never be freed, so it's safe to call css_get().
4235 */
4236 memcg_check_events(memcg, page);
4237 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4238 mem_cgroup_swap_statistics(memcg, true);
4239 css_get(&memcg->css);
4240 }
4241 /*
4242 * Migration does not charge the res_counter for the
4243 * replacement page, so leave it alone when phasing out the
4244 * page that is unused after the migration.
4245 */
4246 if (!end_migration && !mem_cgroup_is_root(memcg))
4247 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4248
4249 return memcg;
4250
4251 unlock_out:
4252 unlock_page_cgroup(pc);
4253 return NULL;
4254 }
4255
4256 void mem_cgroup_uncharge_page(struct page *page)
4257 {
4258 /* early check. */
4259 if (page_mapped(page))
4260 return;
4261 VM_BUG_ON(page->mapping && !PageAnon(page));
4262 /*
4263 * If the page is in swap cache, uncharge should be deferred
4264 * to the swap path, which also properly accounts swap usage
4265 * and handles memcg lifetime.
4266 *
4267 * Note that this check is not stable and reclaim may add the
4268 * page to swap cache at any time after this. However, if the
4269 * page is not in swap cache by the time page->mapcount hits
4270 * 0, there won't be any page table references to the swap
4271 * slot, and reclaim will free it and not actually write the
4272 * page to disk.
4273 */
4274 if (PageSwapCache(page))
4275 return;
4276 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4277 }
4278
4279 void mem_cgroup_uncharge_cache_page(struct page *page)
4280 {
4281 VM_BUG_ON(page_mapped(page));
4282 VM_BUG_ON(page->mapping);
4283 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4284 }
4285
4286 /*
4287 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4288 * In that cases, pages are freed continuously and we can expect pages
4289 * are in the same memcg. All these calls itself limits the number of
4290 * pages freed at once, then uncharge_start/end() is called properly.
4291 * This may be called prural(2) times in a context,
4292 */
4293
4294 void mem_cgroup_uncharge_start(void)
4295 {
4296 current->memcg_batch.do_batch++;
4297 /* We can do nest. */
4298 if (current->memcg_batch.do_batch == 1) {
4299 current->memcg_batch.memcg = NULL;
4300 current->memcg_batch.nr_pages = 0;
4301 current->memcg_batch.memsw_nr_pages = 0;
4302 }
4303 }
4304
4305 void mem_cgroup_uncharge_end(void)
4306 {
4307 struct memcg_batch_info *batch = &current->memcg_batch;
4308
4309 if (!batch->do_batch)
4310 return;
4311
4312 batch->do_batch--;
4313 if (batch->do_batch) /* If stacked, do nothing. */
4314 return;
4315
4316 if (!batch->memcg)
4317 return;
4318 /*
4319 * This "batch->memcg" is valid without any css_get/put etc...
4320 * bacause we hide charges behind us.
4321 */
4322 if (batch->nr_pages)
4323 res_counter_uncharge(&batch->memcg->res,
4324 batch->nr_pages * PAGE_SIZE);
4325 if (batch->memsw_nr_pages)
4326 res_counter_uncharge(&batch->memcg->memsw,
4327 batch->memsw_nr_pages * PAGE_SIZE);
4328 memcg_oom_recover(batch->memcg);
4329 /* forget this pointer (for sanity check) */
4330 batch->memcg = NULL;
4331 }
4332
4333 #ifdef CONFIG_SWAP
4334 /*
4335 * called after __delete_from_swap_cache() and drop "page" account.
4336 * memcg information is recorded to swap_cgroup of "ent"
4337 */
4338 void
4339 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4340 {
4341 struct mem_cgroup *memcg;
4342 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4343
4344 if (!swapout) /* this was a swap cache but the swap is unused ! */
4345 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4346
4347 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4348
4349 /*
4350 * record memcg information, if swapout && memcg != NULL,
4351 * css_get() was called in uncharge().
4352 */
4353 if (do_swap_account && swapout && memcg)
4354 swap_cgroup_record(ent, css_id(&memcg->css));
4355 }
4356 #endif
4357
4358 #ifdef CONFIG_MEMCG_SWAP
4359 /*
4360 * called from swap_entry_free(). remove record in swap_cgroup and
4361 * uncharge "memsw" account.
4362 */
4363 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4364 {
4365 struct mem_cgroup *memcg;
4366 unsigned short id;
4367
4368 if (!do_swap_account)
4369 return;
4370
4371 id = swap_cgroup_record(ent, 0);
4372 rcu_read_lock();
4373 memcg = mem_cgroup_lookup(id);
4374 if (memcg) {
4375 /*
4376 * We uncharge this because swap is freed.
4377 * This memcg can be obsolete one. We avoid calling css_tryget
4378 */
4379 if (!mem_cgroup_is_root(memcg))
4380 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4381 mem_cgroup_swap_statistics(memcg, false);
4382 css_put(&memcg->css);
4383 }
4384 rcu_read_unlock();
4385 }
4386
4387 /**
4388 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4389 * @entry: swap entry to be moved
4390 * @from: mem_cgroup which the entry is moved from
4391 * @to: mem_cgroup which the entry is moved to
4392 *
4393 * It succeeds only when the swap_cgroup's record for this entry is the same
4394 * as the mem_cgroup's id of @from.
4395 *
4396 * Returns 0 on success, -EINVAL on failure.
4397 *
4398 * The caller must have charged to @to, IOW, called res_counter_charge() about
4399 * both res and memsw, and called css_get().
4400 */
4401 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4402 struct mem_cgroup *from, struct mem_cgroup *to)
4403 {
4404 unsigned short old_id, new_id;
4405
4406 old_id = css_id(&from->css);
4407 new_id = css_id(&to->css);
4408
4409 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4410 mem_cgroup_swap_statistics(from, false);
4411 mem_cgroup_swap_statistics(to, true);
4412 /*
4413 * This function is only called from task migration context now.
4414 * It postpones res_counter and refcount handling till the end
4415 * of task migration(mem_cgroup_clear_mc()) for performance
4416 * improvement. But we cannot postpone css_get(to) because if
4417 * the process that has been moved to @to does swap-in, the
4418 * refcount of @to might be decreased to 0.
4419 *
4420 * We are in attach() phase, so the cgroup is guaranteed to be
4421 * alive, so we can just call css_get().
4422 */
4423 css_get(&to->css);
4424 return 0;
4425 }
4426 return -EINVAL;
4427 }
4428 #else
4429 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4430 struct mem_cgroup *from, struct mem_cgroup *to)
4431 {
4432 return -EINVAL;
4433 }
4434 #endif
4435
4436 /*
4437 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4438 * page belongs to.
4439 */
4440 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4441 struct mem_cgroup **memcgp)
4442 {
4443 struct mem_cgroup *memcg = NULL;
4444 unsigned int nr_pages = 1;
4445 struct page_cgroup *pc;
4446 enum charge_type ctype;
4447
4448 *memcgp = NULL;
4449
4450 if (mem_cgroup_disabled())
4451 return;
4452
4453 if (PageTransHuge(page))
4454 nr_pages <<= compound_order(page);
4455
4456 pc = lookup_page_cgroup(page);
4457 lock_page_cgroup(pc);
4458 if (PageCgroupUsed(pc)) {
4459 memcg = pc->mem_cgroup;
4460 css_get(&memcg->css);
4461 /*
4462 * At migrating an anonymous page, its mapcount goes down
4463 * to 0 and uncharge() will be called. But, even if it's fully
4464 * unmapped, migration may fail and this page has to be
4465 * charged again. We set MIGRATION flag here and delay uncharge
4466 * until end_migration() is called
4467 *
4468 * Corner Case Thinking
4469 * A)
4470 * When the old page was mapped as Anon and it's unmap-and-freed
4471 * while migration was ongoing.
4472 * If unmap finds the old page, uncharge() of it will be delayed
4473 * until end_migration(). If unmap finds a new page, it's
4474 * uncharged when it make mapcount to be 1->0. If unmap code
4475 * finds swap_migration_entry, the new page will not be mapped
4476 * and end_migration() will find it(mapcount==0).
4477 *
4478 * B)
4479 * When the old page was mapped but migraion fails, the kernel
4480 * remaps it. A charge for it is kept by MIGRATION flag even
4481 * if mapcount goes down to 0. We can do remap successfully
4482 * without charging it again.
4483 *
4484 * C)
4485 * The "old" page is under lock_page() until the end of
4486 * migration, so, the old page itself will not be swapped-out.
4487 * If the new page is swapped out before end_migraton, our
4488 * hook to usual swap-out path will catch the event.
4489 */
4490 if (PageAnon(page))
4491 SetPageCgroupMigration(pc);
4492 }
4493 unlock_page_cgroup(pc);
4494 /*
4495 * If the page is not charged at this point,
4496 * we return here.
4497 */
4498 if (!memcg)
4499 return;
4500
4501 *memcgp = memcg;
4502 /*
4503 * We charge new page before it's used/mapped. So, even if unlock_page()
4504 * is called before end_migration, we can catch all events on this new
4505 * page. In the case new page is migrated but not remapped, new page's
4506 * mapcount will be finally 0 and we call uncharge in end_migration().
4507 */
4508 if (PageAnon(page))
4509 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4510 else
4511 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4512 /*
4513 * The page is committed to the memcg, but it's not actually
4514 * charged to the res_counter since we plan on replacing the
4515 * old one and only one page is going to be left afterwards.
4516 */
4517 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4518 }
4519
4520 /* remove redundant charge if migration failed*/
4521 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4522 struct page *oldpage, struct page *newpage, bool migration_ok)
4523 {
4524 struct page *used, *unused;
4525 struct page_cgroup *pc;
4526 bool anon;
4527
4528 if (!memcg)
4529 return;
4530
4531 if (!migration_ok) {
4532 used = oldpage;
4533 unused = newpage;
4534 } else {
4535 used = newpage;
4536 unused = oldpage;
4537 }
4538 anon = PageAnon(used);
4539 __mem_cgroup_uncharge_common(unused,
4540 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4541 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4542 true);
4543 css_put(&memcg->css);
4544 /*
4545 * We disallowed uncharge of pages under migration because mapcount
4546 * of the page goes down to zero, temporarly.
4547 * Clear the flag and check the page should be charged.
4548 */
4549 pc = lookup_page_cgroup(oldpage);
4550 lock_page_cgroup(pc);
4551 ClearPageCgroupMigration(pc);
4552 unlock_page_cgroup(pc);
4553
4554 /*
4555 * If a page is a file cache, radix-tree replacement is very atomic
4556 * and we can skip this check. When it was an Anon page, its mapcount
4557 * goes down to 0. But because we added MIGRATION flage, it's not
4558 * uncharged yet. There are several case but page->mapcount check
4559 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4560 * check. (see prepare_charge() also)
4561 */
4562 if (anon)
4563 mem_cgroup_uncharge_page(used);
4564 }
4565
4566 /*
4567 * At replace page cache, newpage is not under any memcg but it's on
4568 * LRU. So, this function doesn't touch res_counter but handles LRU
4569 * in correct way. Both pages are locked so we cannot race with uncharge.
4570 */
4571 void mem_cgroup_replace_page_cache(struct page *oldpage,
4572 struct page *newpage)
4573 {
4574 struct mem_cgroup *memcg = NULL;
4575 struct page_cgroup *pc;
4576 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4577
4578 if (mem_cgroup_disabled())
4579 return;
4580
4581 pc = lookup_page_cgroup(oldpage);
4582 /* fix accounting on old pages */
4583 lock_page_cgroup(pc);
4584 if (PageCgroupUsed(pc)) {
4585 memcg = pc->mem_cgroup;
4586 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4587 ClearPageCgroupUsed(pc);
4588 }
4589 unlock_page_cgroup(pc);
4590
4591 /*
4592 * When called from shmem_replace_page(), in some cases the
4593 * oldpage has already been charged, and in some cases not.
4594 */
4595 if (!memcg)
4596 return;
4597 /*
4598 * Even if newpage->mapping was NULL before starting replacement,
4599 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4600 * LRU while we overwrite pc->mem_cgroup.
4601 */
4602 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4603 }
4604
4605 #ifdef CONFIG_DEBUG_VM
4606 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4607 {
4608 struct page_cgroup *pc;
4609
4610 pc = lookup_page_cgroup(page);
4611 /*
4612 * Can be NULL while feeding pages into the page allocator for
4613 * the first time, i.e. during boot or memory hotplug;
4614 * or when mem_cgroup_disabled().
4615 */
4616 if (likely(pc) && PageCgroupUsed(pc))
4617 return pc;
4618 return NULL;
4619 }
4620
4621 bool mem_cgroup_bad_page_check(struct page *page)
4622 {
4623 if (mem_cgroup_disabled())
4624 return false;
4625
4626 return lookup_page_cgroup_used(page) != NULL;
4627 }
4628
4629 void mem_cgroup_print_bad_page(struct page *page)
4630 {
4631 struct page_cgroup *pc;
4632
4633 pc = lookup_page_cgroup_used(page);
4634 if (pc) {
4635 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4636 pc, pc->flags, pc->mem_cgroup);
4637 }
4638 }
4639 #endif
4640
4641 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4642 unsigned long long val)
4643 {
4644 int retry_count;
4645 u64 memswlimit, memlimit;
4646 int ret = 0;
4647 int children = mem_cgroup_count_children(memcg);
4648 u64 curusage, oldusage;
4649 int enlarge;
4650
4651 /*
4652 * For keeping hierarchical_reclaim simple, how long we should retry
4653 * is depends on callers. We set our retry-count to be function
4654 * of # of children which we should visit in this loop.
4655 */
4656 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4657
4658 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4659
4660 enlarge = 0;
4661 while (retry_count) {
4662 if (signal_pending(current)) {
4663 ret = -EINTR;
4664 break;
4665 }
4666 /*
4667 * Rather than hide all in some function, I do this in
4668 * open coded manner. You see what this really does.
4669 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4670 */
4671 mutex_lock(&set_limit_mutex);
4672 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4673 if (memswlimit < val) {
4674 ret = -EINVAL;
4675 mutex_unlock(&set_limit_mutex);
4676 break;
4677 }
4678
4679 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4680 if (memlimit < val)
4681 enlarge = 1;
4682
4683 ret = res_counter_set_limit(&memcg->res, val);
4684 if (!ret) {
4685 if (memswlimit == val)
4686 memcg->memsw_is_minimum = true;
4687 else
4688 memcg->memsw_is_minimum = false;
4689 }
4690 mutex_unlock(&set_limit_mutex);
4691
4692 if (!ret)
4693 break;
4694
4695 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4696 MEM_CGROUP_RECLAIM_SHRINK);
4697 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4698 /* Usage is reduced ? */
4699 if (curusage >= oldusage)
4700 retry_count--;
4701 else
4702 oldusage = curusage;
4703 }
4704 if (!ret && enlarge)
4705 memcg_oom_recover(memcg);
4706
4707 return ret;
4708 }
4709
4710 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4711 unsigned long long val)
4712 {
4713 int retry_count;
4714 u64 memlimit, memswlimit, oldusage, curusage;
4715 int children = mem_cgroup_count_children(memcg);
4716 int ret = -EBUSY;
4717 int enlarge = 0;
4718
4719 /* see mem_cgroup_resize_res_limit */
4720 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4721 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4722 while (retry_count) {
4723 if (signal_pending(current)) {
4724 ret = -EINTR;
4725 break;
4726 }
4727 /*
4728 * Rather than hide all in some function, I do this in
4729 * open coded manner. You see what this really does.
4730 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4731 */
4732 mutex_lock(&set_limit_mutex);
4733 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4734 if (memlimit > val) {
4735 ret = -EINVAL;
4736 mutex_unlock(&set_limit_mutex);
4737 break;
4738 }
4739 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4740 if (memswlimit < val)
4741 enlarge = 1;
4742 ret = res_counter_set_limit(&memcg->memsw, val);
4743 if (!ret) {
4744 if (memlimit == val)
4745 memcg->memsw_is_minimum = true;
4746 else
4747 memcg->memsw_is_minimum = false;
4748 }
4749 mutex_unlock(&set_limit_mutex);
4750
4751 if (!ret)
4752 break;
4753
4754 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4755 MEM_CGROUP_RECLAIM_NOSWAP |
4756 MEM_CGROUP_RECLAIM_SHRINK);
4757 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4758 /* Usage is reduced ? */
4759 if (curusage >= oldusage)
4760 retry_count--;
4761 else
4762 oldusage = curusage;
4763 }
4764 if (!ret && enlarge)
4765 memcg_oom_recover(memcg);
4766 return ret;
4767 }
4768
4769 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4770 gfp_t gfp_mask,
4771 unsigned long *total_scanned)
4772 {
4773 unsigned long nr_reclaimed = 0;
4774 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4775 unsigned long reclaimed;
4776 int loop = 0;
4777 struct mem_cgroup_tree_per_zone *mctz;
4778 unsigned long long excess;
4779 unsigned long nr_scanned;
4780
4781 if (order > 0)
4782 return 0;
4783
4784 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4785 /*
4786 * This loop can run a while, specially if mem_cgroup's continuously
4787 * keep exceeding their soft limit and putting the system under
4788 * pressure
4789 */
4790 do {
4791 if (next_mz)
4792 mz = next_mz;
4793 else
4794 mz = mem_cgroup_largest_soft_limit_node(mctz);
4795 if (!mz)
4796 break;
4797
4798 nr_scanned = 0;
4799 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4800 gfp_mask, &nr_scanned);
4801 nr_reclaimed += reclaimed;
4802 *total_scanned += nr_scanned;
4803 spin_lock(&mctz->lock);
4804
4805 /*
4806 * If we failed to reclaim anything from this memory cgroup
4807 * it is time to move on to the next cgroup
4808 */
4809 next_mz = NULL;
4810 if (!reclaimed) {
4811 do {
4812 /*
4813 * Loop until we find yet another one.
4814 *
4815 * By the time we get the soft_limit lock
4816 * again, someone might have aded the
4817 * group back on the RB tree. Iterate to
4818 * make sure we get a different mem.
4819 * mem_cgroup_largest_soft_limit_node returns
4820 * NULL if no other cgroup is present on
4821 * the tree
4822 */
4823 next_mz =
4824 __mem_cgroup_largest_soft_limit_node(mctz);
4825 if (next_mz == mz)
4826 css_put(&next_mz->memcg->css);
4827 else /* next_mz == NULL or other memcg */
4828 break;
4829 } while (1);
4830 }
4831 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4832 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4833 /*
4834 * One school of thought says that we should not add
4835 * back the node to the tree if reclaim returns 0.
4836 * But our reclaim could return 0, simply because due
4837 * to priority we are exposing a smaller subset of
4838 * memory to reclaim from. Consider this as a longer
4839 * term TODO.
4840 */
4841 /* If excess == 0, no tree ops */
4842 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4843 spin_unlock(&mctz->lock);
4844 css_put(&mz->memcg->css);
4845 loop++;
4846 /*
4847 * Could not reclaim anything and there are no more
4848 * mem cgroups to try or we seem to be looping without
4849 * reclaiming anything.
4850 */
4851 if (!nr_reclaimed &&
4852 (next_mz == NULL ||
4853 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4854 break;
4855 } while (!nr_reclaimed);
4856 if (next_mz)
4857 css_put(&next_mz->memcg->css);
4858 return nr_reclaimed;
4859 }
4860
4861 /**
4862 * mem_cgroup_force_empty_list - clears LRU of a group
4863 * @memcg: group to clear
4864 * @node: NUMA node
4865 * @zid: zone id
4866 * @lru: lru to to clear
4867 *
4868 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4869 * reclaim the pages page themselves - pages are moved to the parent (or root)
4870 * group.
4871 */
4872 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4873 int node, int zid, enum lru_list lru)
4874 {
4875 struct lruvec *lruvec;
4876 unsigned long flags;
4877 struct list_head *list;
4878 struct page *busy;
4879 struct zone *zone;
4880
4881 zone = &NODE_DATA(node)->node_zones[zid];
4882 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4883 list = &lruvec->lists[lru];
4884
4885 busy = NULL;
4886 do {
4887 struct page_cgroup *pc;
4888 struct page *page;
4889
4890 spin_lock_irqsave(&zone->lru_lock, flags);
4891 if (list_empty(list)) {
4892 spin_unlock_irqrestore(&zone->lru_lock, flags);
4893 break;
4894 }
4895 page = list_entry(list->prev, struct page, lru);
4896 if (busy == page) {
4897 list_move(&page->lru, list);
4898 busy = NULL;
4899 spin_unlock_irqrestore(&zone->lru_lock, flags);
4900 continue;
4901 }
4902 spin_unlock_irqrestore(&zone->lru_lock, flags);
4903
4904 pc = lookup_page_cgroup(page);
4905
4906 if (mem_cgroup_move_parent(page, pc, memcg)) {
4907 /* found lock contention or "pc" is obsolete. */
4908 busy = page;
4909 cond_resched();
4910 } else
4911 busy = NULL;
4912 } while (!list_empty(list));
4913 }
4914
4915 /*
4916 * make mem_cgroup's charge to be 0 if there is no task by moving
4917 * all the charges and pages to the parent.
4918 * This enables deleting this mem_cgroup.
4919 *
4920 * Caller is responsible for holding css reference on the memcg.
4921 */
4922 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4923 {
4924 int node, zid;
4925 u64 usage;
4926
4927 do {
4928 /* This is for making all *used* pages to be on LRU. */
4929 lru_add_drain_all();
4930 drain_all_stock_sync(memcg);
4931 mem_cgroup_start_move(memcg);
4932 for_each_node_state(node, N_MEMORY) {
4933 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4934 enum lru_list lru;
4935 for_each_lru(lru) {
4936 mem_cgroup_force_empty_list(memcg,
4937 node, zid, lru);
4938 }
4939 }
4940 }
4941 mem_cgroup_end_move(memcg);
4942 memcg_oom_recover(memcg);
4943 cond_resched();
4944
4945 /*
4946 * Kernel memory may not necessarily be trackable to a specific
4947 * process. So they are not migrated, and therefore we can't
4948 * expect their value to drop to 0 here.
4949 * Having res filled up with kmem only is enough.
4950 *
4951 * This is a safety check because mem_cgroup_force_empty_list
4952 * could have raced with mem_cgroup_replace_page_cache callers
4953 * so the lru seemed empty but the page could have been added
4954 * right after the check. RES_USAGE should be safe as we always
4955 * charge before adding to the LRU.
4956 */
4957 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4958 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4959 } while (usage > 0);
4960 }
4961
4962 /*
4963 * This mainly exists for tests during the setting of set of use_hierarchy.
4964 * Since this is the very setting we are changing, the current hierarchy value
4965 * is meaningless
4966 */
4967 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4968 {
4969 struct cgroup_subsys_state *pos;
4970
4971 /* bounce at first found */
4972 css_for_each_child(pos, &memcg->css)
4973 return true;
4974 return false;
4975 }
4976
4977 /*
4978 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4979 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4980 * from mem_cgroup_count_children(), in the sense that we don't really care how
4981 * many children we have; we only need to know if we have any. It also counts
4982 * any memcg without hierarchy as infertile.
4983 */
4984 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4985 {
4986 return memcg->use_hierarchy && __memcg_has_children(memcg);
4987 }
4988
4989 /*
4990 * Reclaims as many pages from the given memcg as possible and moves
4991 * the rest to the parent.
4992 *
4993 * Caller is responsible for holding css reference for memcg.
4994 */
4995 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4996 {
4997 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4998 struct cgroup *cgrp = memcg->css.cgroup;
4999
5000 /* returns EBUSY if there is a task or if we come here twice. */
5001 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5002 return -EBUSY;
5003
5004 /* we call try-to-free pages for make this cgroup empty */
5005 lru_add_drain_all();
5006 /* try to free all pages in this cgroup */
5007 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5008 int progress;
5009
5010 if (signal_pending(current))
5011 return -EINTR;
5012
5013 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5014 false);
5015 if (!progress) {
5016 nr_retries--;
5017 /* maybe some writeback is necessary */
5018 congestion_wait(BLK_RW_ASYNC, HZ/10);
5019 }
5020
5021 }
5022 lru_add_drain();
5023 mem_cgroup_reparent_charges(memcg);
5024
5025 return 0;
5026 }
5027
5028 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5029 unsigned int event)
5030 {
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5032
5033 if (mem_cgroup_is_root(memcg))
5034 return -EINVAL;
5035 return mem_cgroup_force_empty(memcg);
5036 }
5037
5038 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5039 struct cftype *cft)
5040 {
5041 return mem_cgroup_from_css(css)->use_hierarchy;
5042 }
5043
5044 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5045 struct cftype *cft, u64 val)
5046 {
5047 int retval = 0;
5048 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5049 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5050
5051 mutex_lock(&memcg_create_mutex);
5052
5053 if (memcg->use_hierarchy == val)
5054 goto out;
5055
5056 /*
5057 * If parent's use_hierarchy is set, we can't make any modifications
5058 * in the child subtrees. If it is unset, then the change can
5059 * occur, provided the current cgroup has no children.
5060 *
5061 * For the root cgroup, parent_mem is NULL, we allow value to be
5062 * set if there are no children.
5063 */
5064 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5065 (val == 1 || val == 0)) {
5066 if (!__memcg_has_children(memcg))
5067 memcg->use_hierarchy = val;
5068 else
5069 retval = -EBUSY;
5070 } else
5071 retval = -EINVAL;
5072
5073 out:
5074 mutex_unlock(&memcg_create_mutex);
5075
5076 return retval;
5077 }
5078
5079
5080 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5081 enum mem_cgroup_stat_index idx)
5082 {
5083 struct mem_cgroup *iter;
5084 long val = 0;
5085
5086 /* Per-cpu values can be negative, use a signed accumulator */
5087 for_each_mem_cgroup_tree(iter, memcg)
5088 val += mem_cgroup_read_stat(iter, idx);
5089
5090 if (val < 0) /* race ? */
5091 val = 0;
5092 return val;
5093 }
5094
5095 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5096 {
5097 u64 val;
5098
5099 if (!mem_cgroup_is_root(memcg)) {
5100 if (!swap)
5101 return res_counter_read_u64(&memcg->res, RES_USAGE);
5102 else
5103 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5104 }
5105
5106 /*
5107 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5108 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5109 */
5110 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5111 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5112
5113 if (swap)
5114 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5115
5116 return val << PAGE_SHIFT;
5117 }
5118
5119 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5120 struct cftype *cft, struct file *file,
5121 char __user *buf, size_t nbytes, loff_t *ppos)
5122 {
5123 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5124 char str[64];
5125 u64 val;
5126 int name, len;
5127 enum res_type type;
5128
5129 type = MEMFILE_TYPE(cft->private);
5130 name = MEMFILE_ATTR(cft->private);
5131
5132 switch (type) {
5133 case _MEM:
5134 if (name == RES_USAGE)
5135 val = mem_cgroup_usage(memcg, false);
5136 else
5137 val = res_counter_read_u64(&memcg->res, name);
5138 break;
5139 case _MEMSWAP:
5140 if (name == RES_USAGE)
5141 val = mem_cgroup_usage(memcg, true);
5142 else
5143 val = res_counter_read_u64(&memcg->memsw, name);
5144 break;
5145 case _KMEM:
5146 val = res_counter_read_u64(&memcg->kmem, name);
5147 break;
5148 default:
5149 BUG();
5150 }
5151
5152 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5153 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5154 }
5155
5156 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5157 {
5158 int ret = -EINVAL;
5159 #ifdef CONFIG_MEMCG_KMEM
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161 /*
5162 * For simplicity, we won't allow this to be disabled. It also can't
5163 * be changed if the cgroup has children already, or if tasks had
5164 * already joined.
5165 *
5166 * If tasks join before we set the limit, a person looking at
5167 * kmem.usage_in_bytes will have no way to determine when it took
5168 * place, which makes the value quite meaningless.
5169 *
5170 * After it first became limited, changes in the value of the limit are
5171 * of course permitted.
5172 */
5173 mutex_lock(&memcg_create_mutex);
5174 mutex_lock(&set_limit_mutex);
5175 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5176 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5177 ret = -EBUSY;
5178 goto out;
5179 }
5180 ret = res_counter_set_limit(&memcg->kmem, val);
5181 VM_BUG_ON(ret);
5182
5183 ret = memcg_update_cache_sizes(memcg);
5184 if (ret) {
5185 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5186 goto out;
5187 }
5188 static_key_slow_inc(&memcg_kmem_enabled_key);
5189 /*
5190 * setting the active bit after the inc will guarantee no one
5191 * starts accounting before all call sites are patched
5192 */
5193 memcg_kmem_set_active(memcg);
5194 } else
5195 ret = res_counter_set_limit(&memcg->kmem, val);
5196 out:
5197 mutex_unlock(&set_limit_mutex);
5198 mutex_unlock(&memcg_create_mutex);
5199 #endif
5200 return ret;
5201 }
5202
5203 #ifdef CONFIG_MEMCG_KMEM
5204 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5205 {
5206 int ret = 0;
5207 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5208 if (!parent)
5209 goto out;
5210
5211 memcg->kmem_account_flags = parent->kmem_account_flags;
5212 /*
5213 * When that happen, we need to disable the static branch only on those
5214 * memcgs that enabled it. To achieve this, we would be forced to
5215 * complicate the code by keeping track of which memcgs were the ones
5216 * that actually enabled limits, and which ones got it from its
5217 * parents.
5218 *
5219 * It is a lot simpler just to do static_key_slow_inc() on every child
5220 * that is accounted.
5221 */
5222 if (!memcg_kmem_is_active(memcg))
5223 goto out;
5224
5225 /*
5226 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5227 * memcg is active already. If the later initialization fails then the
5228 * cgroup core triggers the cleanup so we do not have to do it here.
5229 */
5230 static_key_slow_inc(&memcg_kmem_enabled_key);
5231
5232 mutex_lock(&set_limit_mutex);
5233 memcg_stop_kmem_account();
5234 ret = memcg_update_cache_sizes(memcg);
5235 memcg_resume_kmem_account();
5236 mutex_unlock(&set_limit_mutex);
5237 out:
5238 return ret;
5239 }
5240 #endif /* CONFIG_MEMCG_KMEM */
5241
5242 /*
5243 * The user of this function is...
5244 * RES_LIMIT.
5245 */
5246 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5247 const char *buffer)
5248 {
5249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5250 enum res_type type;
5251 int name;
5252 unsigned long long val;
5253 int ret;
5254
5255 type = MEMFILE_TYPE(cft->private);
5256 name = MEMFILE_ATTR(cft->private);
5257
5258 switch (name) {
5259 case RES_LIMIT:
5260 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5261 ret = -EINVAL;
5262 break;
5263 }
5264 /* This function does all necessary parse...reuse it */
5265 ret = res_counter_memparse_write_strategy(buffer, &val);
5266 if (ret)
5267 break;
5268 if (type == _MEM)
5269 ret = mem_cgroup_resize_limit(memcg, val);
5270 else if (type == _MEMSWAP)
5271 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5272 else if (type == _KMEM)
5273 ret = memcg_update_kmem_limit(css, val);
5274 else
5275 return -EINVAL;
5276 break;
5277 case RES_SOFT_LIMIT:
5278 ret = res_counter_memparse_write_strategy(buffer, &val);
5279 if (ret)
5280 break;
5281 /*
5282 * For memsw, soft limits are hard to implement in terms
5283 * of semantics, for now, we support soft limits for
5284 * control without swap
5285 */
5286 if (type == _MEM)
5287 ret = res_counter_set_soft_limit(&memcg->res, val);
5288 else
5289 ret = -EINVAL;
5290 break;
5291 default:
5292 ret = -EINVAL; /* should be BUG() ? */
5293 break;
5294 }
5295 return ret;
5296 }
5297
5298 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5299 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5300 {
5301 unsigned long long min_limit, min_memsw_limit, tmp;
5302
5303 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5304 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5305 if (!memcg->use_hierarchy)
5306 goto out;
5307
5308 while (css_parent(&memcg->css)) {
5309 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5310 if (!memcg->use_hierarchy)
5311 break;
5312 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5313 min_limit = min(min_limit, tmp);
5314 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5315 min_memsw_limit = min(min_memsw_limit, tmp);
5316 }
5317 out:
5318 *mem_limit = min_limit;
5319 *memsw_limit = min_memsw_limit;
5320 }
5321
5322 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5323 {
5324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5325 int name;
5326 enum res_type type;
5327
5328 type = MEMFILE_TYPE(event);
5329 name = MEMFILE_ATTR(event);
5330
5331 switch (name) {
5332 case RES_MAX_USAGE:
5333 if (type == _MEM)
5334 res_counter_reset_max(&memcg->res);
5335 else if (type == _MEMSWAP)
5336 res_counter_reset_max(&memcg->memsw);
5337 else if (type == _KMEM)
5338 res_counter_reset_max(&memcg->kmem);
5339 else
5340 return -EINVAL;
5341 break;
5342 case RES_FAILCNT:
5343 if (type == _MEM)
5344 res_counter_reset_failcnt(&memcg->res);
5345 else if (type == _MEMSWAP)
5346 res_counter_reset_failcnt(&memcg->memsw);
5347 else if (type == _KMEM)
5348 res_counter_reset_failcnt(&memcg->kmem);
5349 else
5350 return -EINVAL;
5351 break;
5352 }
5353
5354 return 0;
5355 }
5356
5357 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5358 struct cftype *cft)
5359 {
5360 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5361 }
5362
5363 #ifdef CONFIG_MMU
5364 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5365 struct cftype *cft, u64 val)
5366 {
5367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5368
5369 if (val >= (1 << NR_MOVE_TYPE))
5370 return -EINVAL;
5371
5372 /*
5373 * No kind of locking is needed in here, because ->can_attach() will
5374 * check this value once in the beginning of the process, and then carry
5375 * on with stale data. This means that changes to this value will only
5376 * affect task migrations starting after the change.
5377 */
5378 memcg->move_charge_at_immigrate = val;
5379 return 0;
5380 }
5381 #else
5382 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5383 struct cftype *cft, u64 val)
5384 {
5385 return -ENOSYS;
5386 }
5387 #endif
5388
5389 #ifdef CONFIG_NUMA
5390 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5391 struct cftype *cft, struct seq_file *m)
5392 {
5393 int nid;
5394 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5395 unsigned long node_nr;
5396 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5397
5398 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5399 seq_printf(m, "total=%lu", total_nr);
5400 for_each_node_state(nid, N_MEMORY) {
5401 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5402 seq_printf(m, " N%d=%lu", nid, node_nr);
5403 }
5404 seq_putc(m, '\n');
5405
5406 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5407 seq_printf(m, "file=%lu", file_nr);
5408 for_each_node_state(nid, N_MEMORY) {
5409 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5410 LRU_ALL_FILE);
5411 seq_printf(m, " N%d=%lu", nid, node_nr);
5412 }
5413 seq_putc(m, '\n');
5414
5415 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5416 seq_printf(m, "anon=%lu", anon_nr);
5417 for_each_node_state(nid, N_MEMORY) {
5418 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5419 LRU_ALL_ANON);
5420 seq_printf(m, " N%d=%lu", nid, node_nr);
5421 }
5422 seq_putc(m, '\n');
5423
5424 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5425 seq_printf(m, "unevictable=%lu", unevictable_nr);
5426 for_each_node_state(nid, N_MEMORY) {
5427 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5428 BIT(LRU_UNEVICTABLE));
5429 seq_printf(m, " N%d=%lu", nid, node_nr);
5430 }
5431 seq_putc(m, '\n');
5432 return 0;
5433 }
5434 #endif /* CONFIG_NUMA */
5435
5436 static inline void mem_cgroup_lru_names_not_uptodate(void)
5437 {
5438 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5439 }
5440
5441 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5442 struct seq_file *m)
5443 {
5444 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5445 struct mem_cgroup *mi;
5446 unsigned int i;
5447
5448 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5449 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5450 continue;
5451 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5452 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5453 }
5454
5455 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5456 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5457 mem_cgroup_read_events(memcg, i));
5458
5459 for (i = 0; i < NR_LRU_LISTS; i++)
5460 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5461 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5462
5463 /* Hierarchical information */
5464 {
5465 unsigned long long limit, memsw_limit;
5466 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5467 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5468 if (do_swap_account)
5469 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5470 memsw_limit);
5471 }
5472
5473 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5474 long long val = 0;
5475
5476 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5477 continue;
5478 for_each_mem_cgroup_tree(mi, memcg)
5479 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5480 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5481 }
5482
5483 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5484 unsigned long long val = 0;
5485
5486 for_each_mem_cgroup_tree(mi, memcg)
5487 val += mem_cgroup_read_events(mi, i);
5488 seq_printf(m, "total_%s %llu\n",
5489 mem_cgroup_events_names[i], val);
5490 }
5491
5492 for (i = 0; i < NR_LRU_LISTS; i++) {
5493 unsigned long long val = 0;
5494
5495 for_each_mem_cgroup_tree(mi, memcg)
5496 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5497 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5498 }
5499
5500 #ifdef CONFIG_DEBUG_VM
5501 {
5502 int nid, zid;
5503 struct mem_cgroup_per_zone *mz;
5504 struct zone_reclaim_stat *rstat;
5505 unsigned long recent_rotated[2] = {0, 0};
5506 unsigned long recent_scanned[2] = {0, 0};
5507
5508 for_each_online_node(nid)
5509 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5510 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5511 rstat = &mz->lruvec.reclaim_stat;
5512
5513 recent_rotated[0] += rstat->recent_rotated[0];
5514 recent_rotated[1] += rstat->recent_rotated[1];
5515 recent_scanned[0] += rstat->recent_scanned[0];
5516 recent_scanned[1] += rstat->recent_scanned[1];
5517 }
5518 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5519 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5520 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5521 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5522 }
5523 #endif
5524
5525 return 0;
5526 }
5527
5528 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5529 struct cftype *cft)
5530 {
5531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5532
5533 return mem_cgroup_swappiness(memcg);
5534 }
5535
5536 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5537 struct cftype *cft, u64 val)
5538 {
5539 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5540 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5541
5542 if (val > 100 || !parent)
5543 return -EINVAL;
5544
5545 mutex_lock(&memcg_create_mutex);
5546
5547 /* If under hierarchy, only empty-root can set this value */
5548 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5549 mutex_unlock(&memcg_create_mutex);
5550 return -EINVAL;
5551 }
5552
5553 memcg->swappiness = val;
5554
5555 mutex_unlock(&memcg_create_mutex);
5556
5557 return 0;
5558 }
5559
5560 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5561 {
5562 struct mem_cgroup_threshold_ary *t;
5563 u64 usage;
5564 int i;
5565
5566 rcu_read_lock();
5567 if (!swap)
5568 t = rcu_dereference(memcg->thresholds.primary);
5569 else
5570 t = rcu_dereference(memcg->memsw_thresholds.primary);
5571
5572 if (!t)
5573 goto unlock;
5574
5575 usage = mem_cgroup_usage(memcg, swap);
5576
5577 /*
5578 * current_threshold points to threshold just below or equal to usage.
5579 * If it's not true, a threshold was crossed after last
5580 * call of __mem_cgroup_threshold().
5581 */
5582 i = t->current_threshold;
5583
5584 /*
5585 * Iterate backward over array of thresholds starting from
5586 * current_threshold and check if a threshold is crossed.
5587 * If none of thresholds below usage is crossed, we read
5588 * only one element of the array here.
5589 */
5590 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5591 eventfd_signal(t->entries[i].eventfd, 1);
5592
5593 /* i = current_threshold + 1 */
5594 i++;
5595
5596 /*
5597 * Iterate forward over array of thresholds starting from
5598 * current_threshold+1 and check if a threshold is crossed.
5599 * If none of thresholds above usage is crossed, we read
5600 * only one element of the array here.
5601 */
5602 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5603 eventfd_signal(t->entries[i].eventfd, 1);
5604
5605 /* Update current_threshold */
5606 t->current_threshold = i - 1;
5607 unlock:
5608 rcu_read_unlock();
5609 }
5610
5611 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5612 {
5613 while (memcg) {
5614 __mem_cgroup_threshold(memcg, false);
5615 if (do_swap_account)
5616 __mem_cgroup_threshold(memcg, true);
5617
5618 memcg = parent_mem_cgroup(memcg);
5619 }
5620 }
5621
5622 static int compare_thresholds(const void *a, const void *b)
5623 {
5624 const struct mem_cgroup_threshold *_a = a;
5625 const struct mem_cgroup_threshold *_b = b;
5626
5627 if (_a->threshold > _b->threshold)
5628 return 1;
5629
5630 if (_a->threshold < _b->threshold)
5631 return -1;
5632
5633 return 0;
5634 }
5635
5636 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5637 {
5638 struct mem_cgroup_eventfd_list *ev;
5639
5640 list_for_each_entry(ev, &memcg->oom_notify, list)
5641 eventfd_signal(ev->eventfd, 1);
5642 return 0;
5643 }
5644
5645 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5646 {
5647 struct mem_cgroup *iter;
5648
5649 for_each_mem_cgroup_tree(iter, memcg)
5650 mem_cgroup_oom_notify_cb(iter);
5651 }
5652
5653 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5654 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5655 {
5656 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5657 struct mem_cgroup_thresholds *thresholds;
5658 struct mem_cgroup_threshold_ary *new;
5659 enum res_type type = MEMFILE_TYPE(cft->private);
5660 u64 threshold, usage;
5661 int i, size, ret;
5662
5663 ret = res_counter_memparse_write_strategy(args, &threshold);
5664 if (ret)
5665 return ret;
5666
5667 mutex_lock(&memcg->thresholds_lock);
5668
5669 if (type == _MEM)
5670 thresholds = &memcg->thresholds;
5671 else if (type == _MEMSWAP)
5672 thresholds = &memcg->memsw_thresholds;
5673 else
5674 BUG();
5675
5676 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5677
5678 /* Check if a threshold crossed before adding a new one */
5679 if (thresholds->primary)
5680 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5681
5682 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5683
5684 /* Allocate memory for new array of thresholds */
5685 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5686 GFP_KERNEL);
5687 if (!new) {
5688 ret = -ENOMEM;
5689 goto unlock;
5690 }
5691 new->size = size;
5692
5693 /* Copy thresholds (if any) to new array */
5694 if (thresholds->primary) {
5695 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5696 sizeof(struct mem_cgroup_threshold));
5697 }
5698
5699 /* Add new threshold */
5700 new->entries[size - 1].eventfd = eventfd;
5701 new->entries[size - 1].threshold = threshold;
5702
5703 /* Sort thresholds. Registering of new threshold isn't time-critical */
5704 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5705 compare_thresholds, NULL);
5706
5707 /* Find current threshold */
5708 new->current_threshold = -1;
5709 for (i = 0; i < size; i++) {
5710 if (new->entries[i].threshold <= usage) {
5711 /*
5712 * new->current_threshold will not be used until
5713 * rcu_assign_pointer(), so it's safe to increment
5714 * it here.
5715 */
5716 ++new->current_threshold;
5717 } else
5718 break;
5719 }
5720
5721 /* Free old spare buffer and save old primary buffer as spare */
5722 kfree(thresholds->spare);
5723 thresholds->spare = thresholds->primary;
5724
5725 rcu_assign_pointer(thresholds->primary, new);
5726
5727 /* To be sure that nobody uses thresholds */
5728 synchronize_rcu();
5729
5730 unlock:
5731 mutex_unlock(&memcg->thresholds_lock);
5732
5733 return ret;
5734 }
5735
5736 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5737 struct cftype *cft, struct eventfd_ctx *eventfd)
5738 {
5739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5740 struct mem_cgroup_thresholds *thresholds;
5741 struct mem_cgroup_threshold_ary *new;
5742 enum res_type type = MEMFILE_TYPE(cft->private);
5743 u64 usage;
5744 int i, j, size;
5745
5746 mutex_lock(&memcg->thresholds_lock);
5747 if (type == _MEM)
5748 thresholds = &memcg->thresholds;
5749 else if (type == _MEMSWAP)
5750 thresholds = &memcg->memsw_thresholds;
5751 else
5752 BUG();
5753
5754 if (!thresholds->primary)
5755 goto unlock;
5756
5757 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5758
5759 /* Check if a threshold crossed before removing */
5760 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5761
5762 /* Calculate new number of threshold */
5763 size = 0;
5764 for (i = 0; i < thresholds->primary->size; i++) {
5765 if (thresholds->primary->entries[i].eventfd != eventfd)
5766 size++;
5767 }
5768
5769 new = thresholds->spare;
5770
5771 /* Set thresholds array to NULL if we don't have thresholds */
5772 if (!size) {
5773 kfree(new);
5774 new = NULL;
5775 goto swap_buffers;
5776 }
5777
5778 new->size = size;
5779
5780 /* Copy thresholds and find current threshold */
5781 new->current_threshold = -1;
5782 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5783 if (thresholds->primary->entries[i].eventfd == eventfd)
5784 continue;
5785
5786 new->entries[j] = thresholds->primary->entries[i];
5787 if (new->entries[j].threshold <= usage) {
5788 /*
5789 * new->current_threshold will not be used
5790 * until rcu_assign_pointer(), so it's safe to increment
5791 * it here.
5792 */
5793 ++new->current_threshold;
5794 }
5795 j++;
5796 }
5797
5798 swap_buffers:
5799 /* Swap primary and spare array */
5800 thresholds->spare = thresholds->primary;
5801 /* If all events are unregistered, free the spare array */
5802 if (!new) {
5803 kfree(thresholds->spare);
5804 thresholds->spare = NULL;
5805 }
5806
5807 rcu_assign_pointer(thresholds->primary, new);
5808
5809 /* To be sure that nobody uses thresholds */
5810 synchronize_rcu();
5811 unlock:
5812 mutex_unlock(&memcg->thresholds_lock);
5813 }
5814
5815 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5816 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5817 {
5818 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5819 struct mem_cgroup_eventfd_list *event;
5820 enum res_type type = MEMFILE_TYPE(cft->private);
5821
5822 BUG_ON(type != _OOM_TYPE);
5823 event = kmalloc(sizeof(*event), GFP_KERNEL);
5824 if (!event)
5825 return -ENOMEM;
5826
5827 spin_lock(&memcg_oom_lock);
5828
5829 event->eventfd = eventfd;
5830 list_add(&event->list, &memcg->oom_notify);
5831
5832 /* already in OOM ? */
5833 if (atomic_read(&memcg->under_oom))
5834 eventfd_signal(eventfd, 1);
5835 spin_unlock(&memcg_oom_lock);
5836
5837 return 0;
5838 }
5839
5840 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5841 struct cftype *cft, struct eventfd_ctx *eventfd)
5842 {
5843 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5844 struct mem_cgroup_eventfd_list *ev, *tmp;
5845 enum res_type type = MEMFILE_TYPE(cft->private);
5846
5847 BUG_ON(type != _OOM_TYPE);
5848
5849 spin_lock(&memcg_oom_lock);
5850
5851 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5852 if (ev->eventfd == eventfd) {
5853 list_del(&ev->list);
5854 kfree(ev);
5855 }
5856 }
5857
5858 spin_unlock(&memcg_oom_lock);
5859 }
5860
5861 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5862 struct cftype *cft, struct cgroup_map_cb *cb)
5863 {
5864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5865
5866 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5867
5868 if (atomic_read(&memcg->under_oom))
5869 cb->fill(cb, "under_oom", 1);
5870 else
5871 cb->fill(cb, "under_oom", 0);
5872 return 0;
5873 }
5874
5875 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5876 struct cftype *cft, u64 val)
5877 {
5878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5879 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5880
5881 /* cannot set to root cgroup and only 0 and 1 are allowed */
5882 if (!parent || !((val == 0) || (val == 1)))
5883 return -EINVAL;
5884
5885 mutex_lock(&memcg_create_mutex);
5886 /* oom-kill-disable is a flag for subhierarchy. */
5887 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5888 mutex_unlock(&memcg_create_mutex);
5889 return -EINVAL;
5890 }
5891 memcg->oom_kill_disable = val;
5892 if (!val)
5893 memcg_oom_recover(memcg);
5894 mutex_unlock(&memcg_create_mutex);
5895 return 0;
5896 }
5897
5898 #ifdef CONFIG_MEMCG_KMEM
5899 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5900 {
5901 int ret;
5902
5903 memcg->kmemcg_id = -1;
5904 ret = memcg_propagate_kmem(memcg);
5905 if (ret)
5906 return ret;
5907
5908 return mem_cgroup_sockets_init(memcg, ss);
5909 }
5910
5911 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5912 {
5913 mem_cgroup_sockets_destroy(memcg);
5914 }
5915
5916 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5917 {
5918 if (!memcg_kmem_is_active(memcg))
5919 return;
5920
5921 /*
5922 * kmem charges can outlive the cgroup. In the case of slab
5923 * pages, for instance, a page contain objects from various
5924 * processes. As we prevent from taking a reference for every
5925 * such allocation we have to be careful when doing uncharge
5926 * (see memcg_uncharge_kmem) and here during offlining.
5927 *
5928 * The idea is that that only the _last_ uncharge which sees
5929 * the dead memcg will drop the last reference. An additional
5930 * reference is taken here before the group is marked dead
5931 * which is then paired with css_put during uncharge resp. here.
5932 *
5933 * Although this might sound strange as this path is called from
5934 * css_offline() when the referencemight have dropped down to 0
5935 * and shouldn't be incremented anymore (css_tryget would fail)
5936 * we do not have other options because of the kmem allocations
5937 * lifetime.
5938 */
5939 css_get(&memcg->css);
5940
5941 memcg_kmem_mark_dead(memcg);
5942
5943 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5944 return;
5945
5946 if (memcg_kmem_test_and_clear_dead(memcg))
5947 css_put(&memcg->css);
5948 }
5949 #else
5950 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5951 {
5952 return 0;
5953 }
5954
5955 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5956 {
5957 }
5958
5959 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5960 {
5961 }
5962 #endif
5963
5964 static struct cftype mem_cgroup_files[] = {
5965 {
5966 .name = "usage_in_bytes",
5967 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5968 .read = mem_cgroup_read,
5969 .register_event = mem_cgroup_usage_register_event,
5970 .unregister_event = mem_cgroup_usage_unregister_event,
5971 },
5972 {
5973 .name = "max_usage_in_bytes",
5974 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5975 .trigger = mem_cgroup_reset,
5976 .read = mem_cgroup_read,
5977 },
5978 {
5979 .name = "limit_in_bytes",
5980 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5981 .write_string = mem_cgroup_write,
5982 .read = mem_cgroup_read,
5983 },
5984 {
5985 .name = "soft_limit_in_bytes",
5986 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5987 .write_string = mem_cgroup_write,
5988 .read = mem_cgroup_read,
5989 },
5990 {
5991 .name = "failcnt",
5992 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5993 .trigger = mem_cgroup_reset,
5994 .read = mem_cgroup_read,
5995 },
5996 {
5997 .name = "stat",
5998 .read_seq_string = memcg_stat_show,
5999 },
6000 {
6001 .name = "force_empty",
6002 .trigger = mem_cgroup_force_empty_write,
6003 },
6004 {
6005 .name = "use_hierarchy",
6006 .flags = CFTYPE_INSANE,
6007 .write_u64 = mem_cgroup_hierarchy_write,
6008 .read_u64 = mem_cgroup_hierarchy_read,
6009 },
6010 {
6011 .name = "swappiness",
6012 .read_u64 = mem_cgroup_swappiness_read,
6013 .write_u64 = mem_cgroup_swappiness_write,
6014 },
6015 {
6016 .name = "move_charge_at_immigrate",
6017 .read_u64 = mem_cgroup_move_charge_read,
6018 .write_u64 = mem_cgroup_move_charge_write,
6019 },
6020 {
6021 .name = "oom_control",
6022 .read_map = mem_cgroup_oom_control_read,
6023 .write_u64 = mem_cgroup_oom_control_write,
6024 .register_event = mem_cgroup_oom_register_event,
6025 .unregister_event = mem_cgroup_oom_unregister_event,
6026 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6027 },
6028 {
6029 .name = "pressure_level",
6030 .register_event = vmpressure_register_event,
6031 .unregister_event = vmpressure_unregister_event,
6032 },
6033 #ifdef CONFIG_NUMA
6034 {
6035 .name = "numa_stat",
6036 .read_seq_string = memcg_numa_stat_show,
6037 },
6038 #endif
6039 #ifdef CONFIG_MEMCG_KMEM
6040 {
6041 .name = "kmem.limit_in_bytes",
6042 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6043 .write_string = mem_cgroup_write,
6044 .read = mem_cgroup_read,
6045 },
6046 {
6047 .name = "kmem.usage_in_bytes",
6048 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6049 .read = mem_cgroup_read,
6050 },
6051 {
6052 .name = "kmem.failcnt",
6053 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6054 .trigger = mem_cgroup_reset,
6055 .read = mem_cgroup_read,
6056 },
6057 {
6058 .name = "kmem.max_usage_in_bytes",
6059 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6060 .trigger = mem_cgroup_reset,
6061 .read = mem_cgroup_read,
6062 },
6063 #ifdef CONFIG_SLABINFO
6064 {
6065 .name = "kmem.slabinfo",
6066 .read_seq_string = mem_cgroup_slabinfo_read,
6067 },
6068 #endif
6069 #endif
6070 { }, /* terminate */
6071 };
6072
6073 #ifdef CONFIG_MEMCG_SWAP
6074 static struct cftype memsw_cgroup_files[] = {
6075 {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 .read = mem_cgroup_read,
6079 .register_event = mem_cgroup_usage_register_event,
6080 .unregister_event = mem_cgroup_usage_unregister_event,
6081 },
6082 {
6083 .name = "memsw.max_usage_in_bytes",
6084 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6085 .trigger = mem_cgroup_reset,
6086 .read = mem_cgroup_read,
6087 },
6088 {
6089 .name = "memsw.limit_in_bytes",
6090 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6091 .write_string = mem_cgroup_write,
6092 .read = mem_cgroup_read,
6093 },
6094 {
6095 .name = "memsw.failcnt",
6096 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6097 .trigger = mem_cgroup_reset,
6098 .read = mem_cgroup_read,
6099 },
6100 { }, /* terminate */
6101 };
6102 #endif
6103 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6104 {
6105 struct mem_cgroup_per_node *pn;
6106 struct mem_cgroup_per_zone *mz;
6107 int zone, tmp = node;
6108 /*
6109 * This routine is called against possible nodes.
6110 * But it's BUG to call kmalloc() against offline node.
6111 *
6112 * TODO: this routine can waste much memory for nodes which will
6113 * never be onlined. It's better to use memory hotplug callback
6114 * function.
6115 */
6116 if (!node_state(node, N_NORMAL_MEMORY))
6117 tmp = -1;
6118 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6119 if (!pn)
6120 return 1;
6121
6122 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6123 mz = &pn->zoneinfo[zone];
6124 lruvec_init(&mz->lruvec);
6125 mz->usage_in_excess = 0;
6126 mz->on_tree = false;
6127 mz->memcg = memcg;
6128 }
6129 memcg->nodeinfo[node] = pn;
6130 return 0;
6131 }
6132
6133 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6134 {
6135 kfree(memcg->nodeinfo[node]);
6136 }
6137
6138 static struct mem_cgroup *mem_cgroup_alloc(void)
6139 {
6140 struct mem_cgroup *memcg;
6141 size_t size = memcg_size();
6142
6143 /* Can be very big if nr_node_ids is very big */
6144 if (size < PAGE_SIZE)
6145 memcg = kzalloc(size, GFP_KERNEL);
6146 else
6147 memcg = vzalloc(size);
6148
6149 if (!memcg)
6150 return NULL;
6151
6152 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6153 if (!memcg->stat)
6154 goto out_free;
6155 spin_lock_init(&memcg->pcp_counter_lock);
6156 return memcg;
6157
6158 out_free:
6159 if (size < PAGE_SIZE)
6160 kfree(memcg);
6161 else
6162 vfree(memcg);
6163 return NULL;
6164 }
6165
6166 /*
6167 * At destroying mem_cgroup, references from swap_cgroup can remain.
6168 * (scanning all at force_empty is too costly...)
6169 *
6170 * Instead of clearing all references at force_empty, we remember
6171 * the number of reference from swap_cgroup and free mem_cgroup when
6172 * it goes down to 0.
6173 *
6174 * Removal of cgroup itself succeeds regardless of refs from swap.
6175 */
6176
6177 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6178 {
6179 int node;
6180 size_t size = memcg_size();
6181
6182 mem_cgroup_remove_from_trees(memcg);
6183 free_css_id(&mem_cgroup_subsys, &memcg->css);
6184
6185 for_each_node(node)
6186 free_mem_cgroup_per_zone_info(memcg, node);
6187
6188 free_percpu(memcg->stat);
6189
6190 /*
6191 * We need to make sure that (at least for now), the jump label
6192 * destruction code runs outside of the cgroup lock. This is because
6193 * get_online_cpus(), which is called from the static_branch update,
6194 * can't be called inside the cgroup_lock. cpusets are the ones
6195 * enforcing this dependency, so if they ever change, we might as well.
6196 *
6197 * schedule_work() will guarantee this happens. Be careful if you need
6198 * to move this code around, and make sure it is outside
6199 * the cgroup_lock.
6200 */
6201 disarm_static_keys(memcg);
6202 if (size < PAGE_SIZE)
6203 kfree(memcg);
6204 else
6205 vfree(memcg);
6206 }
6207
6208 /*
6209 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6210 */
6211 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6212 {
6213 if (!memcg->res.parent)
6214 return NULL;
6215 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6216 }
6217 EXPORT_SYMBOL(parent_mem_cgroup);
6218
6219 static void __init mem_cgroup_soft_limit_tree_init(void)
6220 {
6221 struct mem_cgroup_tree_per_node *rtpn;
6222 struct mem_cgroup_tree_per_zone *rtpz;
6223 int tmp, node, zone;
6224
6225 for_each_node(node) {
6226 tmp = node;
6227 if (!node_state(node, N_NORMAL_MEMORY))
6228 tmp = -1;
6229 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6230 BUG_ON(!rtpn);
6231
6232 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6233
6234 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6235 rtpz = &rtpn->rb_tree_per_zone[zone];
6236 rtpz->rb_root = RB_ROOT;
6237 spin_lock_init(&rtpz->lock);
6238 }
6239 }
6240 }
6241
6242 static struct cgroup_subsys_state * __ref
6243 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6244 {
6245 struct mem_cgroup *memcg;
6246 long error = -ENOMEM;
6247 int node;
6248
6249 memcg = mem_cgroup_alloc();
6250 if (!memcg)
6251 return ERR_PTR(error);
6252
6253 for_each_node(node)
6254 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6255 goto free_out;
6256
6257 /* root ? */
6258 if (parent_css == NULL) {
6259 root_mem_cgroup = memcg;
6260 res_counter_init(&memcg->res, NULL);
6261 res_counter_init(&memcg->memsw, NULL);
6262 res_counter_init(&memcg->kmem, NULL);
6263 }
6264
6265 memcg->last_scanned_node = MAX_NUMNODES;
6266 INIT_LIST_HEAD(&memcg->oom_notify);
6267 memcg->move_charge_at_immigrate = 0;
6268 mutex_init(&memcg->thresholds_lock);
6269 spin_lock_init(&memcg->move_lock);
6270 vmpressure_init(&memcg->vmpressure);
6271
6272 return &memcg->css;
6273
6274 free_out:
6275 __mem_cgroup_free(memcg);
6276 return ERR_PTR(error);
6277 }
6278
6279 static int
6280 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6281 {
6282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6283 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6284 int error = 0;
6285
6286 if (!parent)
6287 return 0;
6288
6289 mutex_lock(&memcg_create_mutex);
6290
6291 memcg->use_hierarchy = parent->use_hierarchy;
6292 memcg->oom_kill_disable = parent->oom_kill_disable;
6293 memcg->swappiness = mem_cgroup_swappiness(parent);
6294
6295 if (parent->use_hierarchy) {
6296 res_counter_init(&memcg->res, &parent->res);
6297 res_counter_init(&memcg->memsw, &parent->memsw);
6298 res_counter_init(&memcg->kmem, &parent->kmem);
6299
6300 /*
6301 * No need to take a reference to the parent because cgroup
6302 * core guarantees its existence.
6303 */
6304 } else {
6305 res_counter_init(&memcg->res, NULL);
6306 res_counter_init(&memcg->memsw, NULL);
6307 res_counter_init(&memcg->kmem, NULL);
6308 /*
6309 * Deeper hierachy with use_hierarchy == false doesn't make
6310 * much sense so let cgroup subsystem know about this
6311 * unfortunate state in our controller.
6312 */
6313 if (parent != root_mem_cgroup)
6314 mem_cgroup_subsys.broken_hierarchy = true;
6315 }
6316
6317 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6318 mutex_unlock(&memcg_create_mutex);
6319 return error;
6320 }
6321
6322 /*
6323 * Announce all parents that a group from their hierarchy is gone.
6324 */
6325 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6326 {
6327 struct mem_cgroup *parent = memcg;
6328
6329 while ((parent = parent_mem_cgroup(parent)))
6330 mem_cgroup_iter_invalidate(parent);
6331
6332 /*
6333 * if the root memcg is not hierarchical we have to check it
6334 * explicitely.
6335 */
6336 if (!root_mem_cgroup->use_hierarchy)
6337 mem_cgroup_iter_invalidate(root_mem_cgroup);
6338 }
6339
6340 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6341 {
6342 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6343
6344 kmem_cgroup_css_offline(memcg);
6345
6346 mem_cgroup_invalidate_reclaim_iterators(memcg);
6347 mem_cgroup_reparent_charges(memcg);
6348 mem_cgroup_destroy_all_caches(memcg);
6349 vmpressure_cleanup(&memcg->vmpressure);
6350 }
6351
6352 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6353 {
6354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6355
6356 memcg_destroy_kmem(memcg);
6357 __mem_cgroup_free(memcg);
6358 }
6359
6360 #ifdef CONFIG_MMU
6361 /* Handlers for move charge at task migration. */
6362 #define PRECHARGE_COUNT_AT_ONCE 256
6363 static int mem_cgroup_do_precharge(unsigned long count)
6364 {
6365 int ret = 0;
6366 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6367 struct mem_cgroup *memcg = mc.to;
6368
6369 if (mem_cgroup_is_root(memcg)) {
6370 mc.precharge += count;
6371 /* we don't need css_get for root */
6372 return ret;
6373 }
6374 /* try to charge at once */
6375 if (count > 1) {
6376 struct res_counter *dummy;
6377 /*
6378 * "memcg" cannot be under rmdir() because we've already checked
6379 * by cgroup_lock_live_cgroup() that it is not removed and we
6380 * are still under the same cgroup_mutex. So we can postpone
6381 * css_get().
6382 */
6383 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6384 goto one_by_one;
6385 if (do_swap_account && res_counter_charge(&memcg->memsw,
6386 PAGE_SIZE * count, &dummy)) {
6387 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6388 goto one_by_one;
6389 }
6390 mc.precharge += count;
6391 return ret;
6392 }
6393 one_by_one:
6394 /* fall back to one by one charge */
6395 while (count--) {
6396 if (signal_pending(current)) {
6397 ret = -EINTR;
6398 break;
6399 }
6400 if (!batch_count--) {
6401 batch_count = PRECHARGE_COUNT_AT_ONCE;
6402 cond_resched();
6403 }
6404 ret = __mem_cgroup_try_charge(NULL,
6405 GFP_KERNEL, 1, &memcg, false);
6406 if (ret)
6407 /* mem_cgroup_clear_mc() will do uncharge later */
6408 return ret;
6409 mc.precharge++;
6410 }
6411 return ret;
6412 }
6413
6414 /**
6415 * get_mctgt_type - get target type of moving charge
6416 * @vma: the vma the pte to be checked belongs
6417 * @addr: the address corresponding to the pte to be checked
6418 * @ptent: the pte to be checked
6419 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6420 *
6421 * Returns
6422 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6423 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6424 * move charge. if @target is not NULL, the page is stored in target->page
6425 * with extra refcnt got(Callers should handle it).
6426 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6427 * target for charge migration. if @target is not NULL, the entry is stored
6428 * in target->ent.
6429 *
6430 * Called with pte lock held.
6431 */
6432 union mc_target {
6433 struct page *page;
6434 swp_entry_t ent;
6435 };
6436
6437 enum mc_target_type {
6438 MC_TARGET_NONE = 0,
6439 MC_TARGET_PAGE,
6440 MC_TARGET_SWAP,
6441 };
6442
6443 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6444 unsigned long addr, pte_t ptent)
6445 {
6446 struct page *page = vm_normal_page(vma, addr, ptent);
6447
6448 if (!page || !page_mapped(page))
6449 return NULL;
6450 if (PageAnon(page)) {
6451 /* we don't move shared anon */
6452 if (!move_anon())
6453 return NULL;
6454 } else if (!move_file())
6455 /* we ignore mapcount for file pages */
6456 return NULL;
6457 if (!get_page_unless_zero(page))
6458 return NULL;
6459
6460 return page;
6461 }
6462
6463 #ifdef CONFIG_SWAP
6464 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6465 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6466 {
6467 struct page *page = NULL;
6468 swp_entry_t ent = pte_to_swp_entry(ptent);
6469
6470 if (!move_anon() || non_swap_entry(ent))
6471 return NULL;
6472 /*
6473 * Because lookup_swap_cache() updates some statistics counter,
6474 * we call find_get_page() with swapper_space directly.
6475 */
6476 page = find_get_page(swap_address_space(ent), ent.val);
6477 if (do_swap_account)
6478 entry->val = ent.val;
6479
6480 return page;
6481 }
6482 #else
6483 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6484 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6485 {
6486 return NULL;
6487 }
6488 #endif
6489
6490 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6491 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6492 {
6493 struct page *page = NULL;
6494 struct address_space *mapping;
6495 pgoff_t pgoff;
6496
6497 if (!vma->vm_file) /* anonymous vma */
6498 return NULL;
6499 if (!move_file())
6500 return NULL;
6501
6502 mapping = vma->vm_file->f_mapping;
6503 if (pte_none(ptent))
6504 pgoff = linear_page_index(vma, addr);
6505 else /* pte_file(ptent) is true */
6506 pgoff = pte_to_pgoff(ptent);
6507
6508 /* page is moved even if it's not RSS of this task(page-faulted). */
6509 page = find_get_page(mapping, pgoff);
6510
6511 #ifdef CONFIG_SWAP
6512 /* shmem/tmpfs may report page out on swap: account for that too. */
6513 if (radix_tree_exceptional_entry(page)) {
6514 swp_entry_t swap = radix_to_swp_entry(page);
6515 if (do_swap_account)
6516 *entry = swap;
6517 page = find_get_page(swap_address_space(swap), swap.val);
6518 }
6519 #endif
6520 return page;
6521 }
6522
6523 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6524 unsigned long addr, pte_t ptent, union mc_target *target)
6525 {
6526 struct page *page = NULL;
6527 struct page_cgroup *pc;
6528 enum mc_target_type ret = MC_TARGET_NONE;
6529 swp_entry_t ent = { .val = 0 };
6530
6531 if (pte_present(ptent))
6532 page = mc_handle_present_pte(vma, addr, ptent);
6533 else if (is_swap_pte(ptent))
6534 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6535 else if (pte_none(ptent) || pte_file(ptent))
6536 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6537
6538 if (!page && !ent.val)
6539 return ret;
6540 if (page) {
6541 pc = lookup_page_cgroup(page);
6542 /*
6543 * Do only loose check w/o page_cgroup lock.
6544 * mem_cgroup_move_account() checks the pc is valid or not under
6545 * the lock.
6546 */
6547 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6548 ret = MC_TARGET_PAGE;
6549 if (target)
6550 target->page = page;
6551 }
6552 if (!ret || !target)
6553 put_page(page);
6554 }
6555 /* There is a swap entry and a page doesn't exist or isn't charged */
6556 if (ent.val && !ret &&
6557 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6558 ret = MC_TARGET_SWAP;
6559 if (target)
6560 target->ent = ent;
6561 }
6562 return ret;
6563 }
6564
6565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6566 /*
6567 * We don't consider swapping or file mapped pages because THP does not
6568 * support them for now.
6569 * Caller should make sure that pmd_trans_huge(pmd) is true.
6570 */
6571 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6572 unsigned long addr, pmd_t pmd, union mc_target *target)
6573 {
6574 struct page *page = NULL;
6575 struct page_cgroup *pc;
6576 enum mc_target_type ret = MC_TARGET_NONE;
6577
6578 page = pmd_page(pmd);
6579 VM_BUG_ON(!page || !PageHead(page));
6580 if (!move_anon())
6581 return ret;
6582 pc = lookup_page_cgroup(page);
6583 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6584 ret = MC_TARGET_PAGE;
6585 if (target) {
6586 get_page(page);
6587 target->page = page;
6588 }
6589 }
6590 return ret;
6591 }
6592 #else
6593 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6594 unsigned long addr, pmd_t pmd, union mc_target *target)
6595 {
6596 return MC_TARGET_NONE;
6597 }
6598 #endif
6599
6600 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6601 unsigned long addr, unsigned long end,
6602 struct mm_walk *walk)
6603 {
6604 struct vm_area_struct *vma = walk->private;
6605 pte_t *pte;
6606 spinlock_t *ptl;
6607
6608 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6609 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6610 mc.precharge += HPAGE_PMD_NR;
6611 spin_unlock(&vma->vm_mm->page_table_lock);
6612 return 0;
6613 }
6614
6615 if (pmd_trans_unstable(pmd))
6616 return 0;
6617 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6618 for (; addr != end; pte++, addr += PAGE_SIZE)
6619 if (get_mctgt_type(vma, addr, *pte, NULL))
6620 mc.precharge++; /* increment precharge temporarily */
6621 pte_unmap_unlock(pte - 1, ptl);
6622 cond_resched();
6623
6624 return 0;
6625 }
6626
6627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6628 {
6629 unsigned long precharge;
6630 struct vm_area_struct *vma;
6631
6632 down_read(&mm->mmap_sem);
6633 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6634 struct mm_walk mem_cgroup_count_precharge_walk = {
6635 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6636 .mm = mm,
6637 .private = vma,
6638 };
6639 if (is_vm_hugetlb_page(vma))
6640 continue;
6641 walk_page_range(vma->vm_start, vma->vm_end,
6642 &mem_cgroup_count_precharge_walk);
6643 }
6644 up_read(&mm->mmap_sem);
6645
6646 precharge = mc.precharge;
6647 mc.precharge = 0;
6648
6649 return precharge;
6650 }
6651
6652 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6653 {
6654 unsigned long precharge = mem_cgroup_count_precharge(mm);
6655
6656 VM_BUG_ON(mc.moving_task);
6657 mc.moving_task = current;
6658 return mem_cgroup_do_precharge(precharge);
6659 }
6660
6661 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6662 static void __mem_cgroup_clear_mc(void)
6663 {
6664 struct mem_cgroup *from = mc.from;
6665 struct mem_cgroup *to = mc.to;
6666 int i;
6667
6668 /* we must uncharge all the leftover precharges from mc.to */
6669 if (mc.precharge) {
6670 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6671 mc.precharge = 0;
6672 }
6673 /*
6674 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6675 * we must uncharge here.
6676 */
6677 if (mc.moved_charge) {
6678 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6679 mc.moved_charge = 0;
6680 }
6681 /* we must fixup refcnts and charges */
6682 if (mc.moved_swap) {
6683 /* uncharge swap account from the old cgroup */
6684 if (!mem_cgroup_is_root(mc.from))
6685 res_counter_uncharge(&mc.from->memsw,
6686 PAGE_SIZE * mc.moved_swap);
6687
6688 for (i = 0; i < mc.moved_swap; i++)
6689 css_put(&mc.from->css);
6690
6691 if (!mem_cgroup_is_root(mc.to)) {
6692 /*
6693 * we charged both to->res and to->memsw, so we should
6694 * uncharge to->res.
6695 */
6696 res_counter_uncharge(&mc.to->res,
6697 PAGE_SIZE * mc.moved_swap);
6698 }
6699 /* we've already done css_get(mc.to) */
6700 mc.moved_swap = 0;
6701 }
6702 memcg_oom_recover(from);
6703 memcg_oom_recover(to);
6704 wake_up_all(&mc.waitq);
6705 }
6706
6707 static void mem_cgroup_clear_mc(void)
6708 {
6709 struct mem_cgroup *from = mc.from;
6710
6711 /*
6712 * we must clear moving_task before waking up waiters at the end of
6713 * task migration.
6714 */
6715 mc.moving_task = NULL;
6716 __mem_cgroup_clear_mc();
6717 spin_lock(&mc.lock);
6718 mc.from = NULL;
6719 mc.to = NULL;
6720 spin_unlock(&mc.lock);
6721 mem_cgroup_end_move(from);
6722 }
6723
6724 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6725 struct cgroup_taskset *tset)
6726 {
6727 struct task_struct *p = cgroup_taskset_first(tset);
6728 int ret = 0;
6729 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6730 unsigned long move_charge_at_immigrate;
6731
6732 /*
6733 * We are now commited to this value whatever it is. Changes in this
6734 * tunable will only affect upcoming migrations, not the current one.
6735 * So we need to save it, and keep it going.
6736 */
6737 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6738 if (move_charge_at_immigrate) {
6739 struct mm_struct *mm;
6740 struct mem_cgroup *from = mem_cgroup_from_task(p);
6741
6742 VM_BUG_ON(from == memcg);
6743
6744 mm = get_task_mm(p);
6745 if (!mm)
6746 return 0;
6747 /* We move charges only when we move a owner of the mm */
6748 if (mm->owner == p) {
6749 VM_BUG_ON(mc.from);
6750 VM_BUG_ON(mc.to);
6751 VM_BUG_ON(mc.precharge);
6752 VM_BUG_ON(mc.moved_charge);
6753 VM_BUG_ON(mc.moved_swap);
6754 mem_cgroup_start_move(from);
6755 spin_lock(&mc.lock);
6756 mc.from = from;
6757 mc.to = memcg;
6758 mc.immigrate_flags = move_charge_at_immigrate;
6759 spin_unlock(&mc.lock);
6760 /* We set mc.moving_task later */
6761
6762 ret = mem_cgroup_precharge_mc(mm);
6763 if (ret)
6764 mem_cgroup_clear_mc();
6765 }
6766 mmput(mm);
6767 }
6768 return ret;
6769 }
6770
6771 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6772 struct cgroup_taskset *tset)
6773 {
6774 mem_cgroup_clear_mc();
6775 }
6776
6777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6778 unsigned long addr, unsigned long end,
6779 struct mm_walk *walk)
6780 {
6781 int ret = 0;
6782 struct vm_area_struct *vma = walk->private;
6783 pte_t *pte;
6784 spinlock_t *ptl;
6785 enum mc_target_type target_type;
6786 union mc_target target;
6787 struct page *page;
6788 struct page_cgroup *pc;
6789
6790 /*
6791 * We don't take compound_lock() here but no race with splitting thp
6792 * happens because:
6793 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6794 * under splitting, which means there's no concurrent thp split,
6795 * - if another thread runs into split_huge_page() just after we
6796 * entered this if-block, the thread must wait for page table lock
6797 * to be unlocked in __split_huge_page_splitting(), where the main
6798 * part of thp split is not executed yet.
6799 */
6800 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6801 if (mc.precharge < HPAGE_PMD_NR) {
6802 spin_unlock(&vma->vm_mm->page_table_lock);
6803 return 0;
6804 }
6805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6806 if (target_type == MC_TARGET_PAGE) {
6807 page = target.page;
6808 if (!isolate_lru_page(page)) {
6809 pc = lookup_page_cgroup(page);
6810 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6811 pc, mc.from, mc.to)) {
6812 mc.precharge -= HPAGE_PMD_NR;
6813 mc.moved_charge += HPAGE_PMD_NR;
6814 }
6815 putback_lru_page(page);
6816 }
6817 put_page(page);
6818 }
6819 spin_unlock(&vma->vm_mm->page_table_lock);
6820 return 0;
6821 }
6822
6823 if (pmd_trans_unstable(pmd))
6824 return 0;
6825 retry:
6826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6827 for (; addr != end; addr += PAGE_SIZE) {
6828 pte_t ptent = *(pte++);
6829 swp_entry_t ent;
6830
6831 if (!mc.precharge)
6832 break;
6833
6834 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6835 case MC_TARGET_PAGE:
6836 page = target.page;
6837 if (isolate_lru_page(page))
6838 goto put;
6839 pc = lookup_page_cgroup(page);
6840 if (!mem_cgroup_move_account(page, 1, pc,
6841 mc.from, mc.to)) {
6842 mc.precharge--;
6843 /* we uncharge from mc.from later. */
6844 mc.moved_charge++;
6845 }
6846 putback_lru_page(page);
6847 put: /* get_mctgt_type() gets the page */
6848 put_page(page);
6849 break;
6850 case MC_TARGET_SWAP:
6851 ent = target.ent;
6852 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6853 mc.precharge--;
6854 /* we fixup refcnts and charges later. */
6855 mc.moved_swap++;
6856 }
6857 break;
6858 default:
6859 break;
6860 }
6861 }
6862 pte_unmap_unlock(pte - 1, ptl);
6863 cond_resched();
6864
6865 if (addr != end) {
6866 /*
6867 * We have consumed all precharges we got in can_attach().
6868 * We try charge one by one, but don't do any additional
6869 * charges to mc.to if we have failed in charge once in attach()
6870 * phase.
6871 */
6872 ret = mem_cgroup_do_precharge(1);
6873 if (!ret)
6874 goto retry;
6875 }
6876
6877 return ret;
6878 }
6879
6880 static void mem_cgroup_move_charge(struct mm_struct *mm)
6881 {
6882 struct vm_area_struct *vma;
6883
6884 lru_add_drain_all();
6885 retry:
6886 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6887 /*
6888 * Someone who are holding the mmap_sem might be waiting in
6889 * waitq. So we cancel all extra charges, wake up all waiters,
6890 * and retry. Because we cancel precharges, we might not be able
6891 * to move enough charges, but moving charge is a best-effort
6892 * feature anyway, so it wouldn't be a big problem.
6893 */
6894 __mem_cgroup_clear_mc();
6895 cond_resched();
6896 goto retry;
6897 }
6898 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6899 int ret;
6900 struct mm_walk mem_cgroup_move_charge_walk = {
6901 .pmd_entry = mem_cgroup_move_charge_pte_range,
6902 .mm = mm,
6903 .private = vma,
6904 };
6905 if (is_vm_hugetlb_page(vma))
6906 continue;
6907 ret = walk_page_range(vma->vm_start, vma->vm_end,
6908 &mem_cgroup_move_charge_walk);
6909 if (ret)
6910 /*
6911 * means we have consumed all precharges and failed in
6912 * doing additional charge. Just abandon here.
6913 */
6914 break;
6915 }
6916 up_read(&mm->mmap_sem);
6917 }
6918
6919 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6920 struct cgroup_taskset *tset)
6921 {
6922 struct task_struct *p = cgroup_taskset_first(tset);
6923 struct mm_struct *mm = get_task_mm(p);
6924
6925 if (mm) {
6926 if (mc.to)
6927 mem_cgroup_move_charge(mm);
6928 mmput(mm);
6929 }
6930 if (mc.to)
6931 mem_cgroup_clear_mc();
6932 }
6933 #else /* !CONFIG_MMU */
6934 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6935 struct cgroup_taskset *tset)
6936 {
6937 return 0;
6938 }
6939 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6940 struct cgroup_taskset *tset)
6941 {
6942 }
6943 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6944 struct cgroup_taskset *tset)
6945 {
6946 }
6947 #endif
6948
6949 /*
6950 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6951 * to verify sane_behavior flag on each mount attempt.
6952 */
6953 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6954 {
6955 /*
6956 * use_hierarchy is forced with sane_behavior. cgroup core
6957 * guarantees that @root doesn't have any children, so turning it
6958 * on for the root memcg is enough.
6959 */
6960 if (cgroup_sane_behavior(root_css->cgroup))
6961 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6962 }
6963
6964 struct cgroup_subsys mem_cgroup_subsys = {
6965 .name = "memory",
6966 .subsys_id = mem_cgroup_subsys_id,
6967 .css_alloc = mem_cgroup_css_alloc,
6968 .css_online = mem_cgroup_css_online,
6969 .css_offline = mem_cgroup_css_offline,
6970 .css_free = mem_cgroup_css_free,
6971 .can_attach = mem_cgroup_can_attach,
6972 .cancel_attach = mem_cgroup_cancel_attach,
6973 .attach = mem_cgroup_move_task,
6974 .bind = mem_cgroup_bind,
6975 .base_cftypes = mem_cgroup_files,
6976 .early_init = 0,
6977 .use_id = 1,
6978 };
6979
6980 #ifdef CONFIG_MEMCG_SWAP
6981 static int __init enable_swap_account(char *s)
6982 {
6983 if (!strcmp(s, "1"))
6984 really_do_swap_account = 1;
6985 else if (!strcmp(s, "0"))
6986 really_do_swap_account = 0;
6987 return 1;
6988 }
6989 __setup("swapaccount=", enable_swap_account);
6990
6991 static void __init memsw_file_init(void)
6992 {
6993 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6994 }
6995
6996 static void __init enable_swap_cgroup(void)
6997 {
6998 if (!mem_cgroup_disabled() && really_do_swap_account) {
6999 do_swap_account = 1;
7000 memsw_file_init();
7001 }
7002 }
7003
7004 #else
7005 static void __init enable_swap_cgroup(void)
7006 {
7007 }
7008 #endif
7009
7010 /*
7011 * subsys_initcall() for memory controller.
7012 *
7013 * Some parts like hotcpu_notifier() have to be initialized from this context
7014 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7015 * everything that doesn't depend on a specific mem_cgroup structure should
7016 * be initialized from here.
7017 */
7018 static int __init mem_cgroup_init(void)
7019 {
7020 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7021 enable_swap_cgroup();
7022 mem_cgroup_soft_limit_tree_init();
7023 memcg_stock_init();
7024 return 0;
7025 }
7026 subsys_initcall(mem_cgroup_init);
This page took 0.176582 seconds and 5 git commands to generate.