memcg: remove check for signal_pending() during rmdir()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account 0
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99 };
100
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 /*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
131
132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138
139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144 };
145
146 /*
147 * per-zone information in memory controller.
148 */
149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161 };
162
163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170
171 /*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179 };
180
181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184
185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194 };
195
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204 };
205
206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215 };
216
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221 };
222
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226 /*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237 struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277 #endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333
334 /* Stuffs for move charges at task migration. */
335 /*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343 };
344
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359
360 static bool move_anon(void)
361 {
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364 }
365
366 static bool move_file(void)
367 {
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370 }
371
372 /*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE,
386 };
387
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
397
398 /*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408
409 /* Writing them here to avoid exposing memcg's inner layout */
410 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
411 #include <net/sock.h>
412 #include <net/ip.h>
413
414 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
415 void sock_update_memcg(struct sock *sk)
416 {
417 if (mem_cgroup_sockets_enabled) {
418 struct mem_cgroup *memcg;
419 struct cg_proto *cg_proto;
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
439 cg_proto = sk->sk_prot->proto_cgroup(memcg);
440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
441 mem_cgroup_get(memcg);
442 sk->sk_cgrp = cg_proto;
443 }
444 rcu_read_unlock();
445 }
446 }
447 EXPORT_SYMBOL(sock_update_memcg);
448
449 void sock_release_memcg(struct sock *sk)
450 {
451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
452 struct mem_cgroup *memcg;
453 WARN_ON(!sk->sk_cgrp->memcg);
454 memcg = sk->sk_cgrp->memcg;
455 mem_cgroup_put(memcg);
456 }
457 }
458
459 #ifdef CONFIG_INET
460 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
461 {
462 if (!memcg || mem_cgroup_is_root(memcg))
463 return NULL;
464
465 return &memcg->tcp_mem.cg_proto;
466 }
467 EXPORT_SYMBOL(tcp_proto_cgroup);
468 #endif /* CONFIG_INET */
469 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
470
471 #if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
472 static void disarm_sock_keys(struct mem_cgroup *memcg)
473 {
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
477 }
478 #else
479 static void disarm_sock_keys(struct mem_cgroup *memcg)
480 {
481 }
482 #endif
483
484 static void drain_all_stock_async(struct mem_cgroup *memcg);
485
486 static struct mem_cgroup_per_zone *
487 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488 {
489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 }
491
492 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493 {
494 return &memcg->css;
495 }
496
497 static struct mem_cgroup_per_zone *
498 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
502
503 return mem_cgroup_zoneinfo(memcg, nid, zid);
504 }
505
506 static struct mem_cgroup_tree_per_zone *
507 soft_limit_tree_node_zone(int nid, int zid)
508 {
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510 }
511
512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_from_page(struct page *page)
514 {
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519 }
520
521 static void
522 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523 struct mem_cgroup_per_zone *mz,
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
526 {
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
530
531 if (mz->on_tree)
532 return;
533
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
553 }
554
555 static void
556 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
559 {
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
564 }
565
566 static void
567 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
570 {
571 spin_lock(&mctz->lock);
572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 spin_unlock(&mctz->lock);
574 }
575
576
577 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578 {
579 unsigned long long excess;
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
584 mctz = soft_limit_tree_from_page(page);
585
586 /*
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
589 */
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
593 /*
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
596 */
597 if (excess || mz->on_tree) {
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
602 /*
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
605 */
606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 spin_unlock(&mctz->lock);
608 }
609 }
610 }
611
612 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 {
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
617
618 for_each_node(node) {
619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
621 mctz = soft_limit_tree_node_zone(node, zone);
622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 }
624 }
625 }
626
627 static struct mem_cgroup_per_zone *
628 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629 {
630 struct rb_node *rightmost = NULL;
631 struct mem_cgroup_per_zone *mz;
632
633 retry:
634 mz = NULL;
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /*
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
644 */
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
648 goto retry;
649 done:
650 return mz;
651 }
652
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655 {
656 struct mem_cgroup_per_zone *mz;
657
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
662 }
663
664 /*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
683 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684 enum mem_cgroup_stat_index idx)
685 {
686 long val = 0;
687 int cpu;
688
689 get_online_cpus();
690 for_each_online_cpu(cpu)
691 val += per_cpu(memcg->stat->count[idx], cpu);
692 #ifdef CONFIG_HOTPLUG_CPU
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
696 #endif
697 put_online_cpus();
698 return val;
699 }
700
701 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 bool charge)
703 {
704 int val = (charge) ? 1 : -1;
705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 }
707
708 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 enum mem_cgroup_events_index idx)
710 {
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
715 val += per_cpu(memcg->stat->events[idx], cpu);
716 #ifdef CONFIG_HOTPLUG_CPU
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
720 #endif
721 return val;
722 }
723
724 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725 bool anon, int nr_pages)
726 {
727 preempt_disable();
728
729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
732 */
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735 nr_pages);
736 else
737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738 nr_pages);
739
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743 else {
744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 nr_pages = -nr_pages; /* for event */
746 }
747
748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749
750 preempt_enable();
751 }
752
753 unsigned long
754 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 {
756 struct mem_cgroup_per_zone *mz;
757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
760 }
761
762 static unsigned long
763 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764 unsigned int lru_mask)
765 {
766 struct mem_cgroup_per_zone *mz;
767 enum lru_list lru;
768 unsigned long ret = 0;
769
770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
775 }
776 return ret;
777 }
778
779 static unsigned long
780 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 int nid, unsigned int lru_mask)
782 {
783 u64 total = 0;
784 int zid;
785
786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
789
790 return total;
791 }
792
793 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794 unsigned int lru_mask)
795 {
796 int nid;
797 u64 total = 0;
798
799 for_each_node_state(nid, N_HIGH_MEMORY)
800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801 return total;
802 }
803
804 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
806 {
807 unsigned long val, next;
808
809 val = __this_cpu_read(memcg->stat->nr_page_events);
810 next = __this_cpu_read(memcg->stat->targets[target]);
811 /* from time_after() in jiffies.h */
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
825 }
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
828 }
829 return false;
830 }
831
832 /*
833 * Check events in order.
834 *
835 */
836 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837 {
838 preempt_disable();
839 /* threshold event is triggered in finer grain than soft limit */
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847 #if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850 #endif
851 preempt_enable();
852
853 mem_cgroup_threshold(memcg);
854 if (unlikely(do_softlimit))
855 mem_cgroup_update_tree(memcg, page);
856 #if MAX_NUMNODES > 1
857 if (unlikely(do_numainfo))
858 atomic_inc(&memcg->numainfo_events);
859 #endif
860 } else
861 preempt_enable();
862 }
863
864 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
865 {
866 return container_of(cgroup_subsys_state(cont,
867 mem_cgroup_subsys_id), struct mem_cgroup,
868 css);
869 }
870
871 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
872 {
873 /*
874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL.
877 */
878 if (unlikely(!p))
879 return NULL;
880
881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
882 struct mem_cgroup, css);
883 }
884
885 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
886 {
887 struct mem_cgroup *memcg = NULL;
888
889 if (!mm)
890 return NULL;
891 /*
892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here).
895 */
896 rcu_read_lock();
897 do {
898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 if (unlikely(!memcg))
900 break;
901 } while (!css_tryget(&memcg->css));
902 rcu_read_unlock();
903 return memcg;
904 }
905
906 /**
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
911 *
912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip.
914 *
915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete.
918 *
919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority.
922 */
923 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
924 struct mem_cgroup *prev,
925 struct mem_cgroup_reclaim_cookie *reclaim)
926 {
927 struct mem_cgroup *memcg = NULL;
928 int id = 0;
929
930 if (mem_cgroup_disabled())
931 return NULL;
932
933 if (!root)
934 root = root_mem_cgroup;
935
936 if (prev && !reclaim)
937 id = css_id(&prev->css);
938
939 if (prev && prev != root)
940 css_put(&prev->css);
941
942 if (!root->use_hierarchy && root != root_mem_cgroup) {
943 if (prev)
944 return NULL;
945 return root;
946 }
947
948 while (!memcg) {
949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
950 struct cgroup_subsys_state *css;
951
952 if (reclaim) {
953 int nid = zone_to_nid(reclaim->zone);
954 int zid = zone_idx(reclaim->zone);
955 struct mem_cgroup_per_zone *mz;
956
957 mz = mem_cgroup_zoneinfo(root, nid, zid);
958 iter = &mz->reclaim_iter[reclaim->priority];
959 if (prev && reclaim->generation != iter->generation)
960 return NULL;
961 id = iter->position;
962 }
963
964 rcu_read_lock();
965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
966 if (css) {
967 if (css == &root->css || css_tryget(css))
968 memcg = container_of(css,
969 struct mem_cgroup, css);
970 } else
971 id = 0;
972 rcu_read_unlock();
973
974 if (reclaim) {
975 iter->position = id;
976 if (!css)
977 iter->generation++;
978 else if (!prev && memcg)
979 reclaim->generation = iter->generation;
980 }
981
982 if (prev && !css)
983 return NULL;
984 }
985 return memcg;
986 }
987
988 /**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993 void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
995 {
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000 }
1001
1002 /*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007 #define for_each_mem_cgroup_tree(iter, root) \
1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1009 iter != NULL; \
1010 iter = mem_cgroup_iter(root, iter, NULL))
1011
1012 #define for_each_mem_cgroup(iter) \
1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1014 iter != NULL; \
1015 iter = mem_cgroup_iter(NULL, iter, NULL))
1016
1017 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1018 {
1019 return (memcg == root_mem_cgroup);
1020 }
1021
1022 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1023 {
1024 struct mem_cgroup *memcg;
1025
1026 if (!mm)
1027 return;
1028
1029 rcu_read_lock();
1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 if (unlikely(!memcg))
1032 goto out;
1033
1034 switch (idx) {
1035 case PGFAULT:
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1037 break;
1038 case PGMAJFAULT:
1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1040 break;
1041 default:
1042 BUG();
1043 }
1044 out:
1045 rcu_read_unlock();
1046 }
1047 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1048
1049 /**
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec
1052 * @memcg: memcg of the wanted lruvec
1053 *
1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller
1056 * is disabled.
1057 */
1058 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1059 struct mem_cgroup *memcg)
1060 {
1061 struct mem_cgroup_per_zone *mz;
1062
1063 if (mem_cgroup_disabled())
1064 return &zone->lruvec;
1065
1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1067 return &mz->lruvec;
1068 }
1069
1070 /*
1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup.
1074 *
1075 * Changes to pc->mem_cgroup happens when
1076 * 1. charge
1077 * 2. moving account
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated.
1082 */
1083
1084 /**
1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1086 * @page: the page
1087 * @zone: zone of the page
1088 */
1089 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1090 {
1091 struct mem_cgroup_per_zone *mz;
1092 struct mem_cgroup *memcg;
1093 struct page_cgroup *pc;
1094
1095 if (mem_cgroup_disabled())
1096 return &zone->lruvec;
1097
1098 pc = lookup_page_cgroup(page);
1099 memcg = pc->mem_cgroup;
1100
1101 /*
1102 * Surreptitiously switch any uncharged offlist page to root:
1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal.
1105 *
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe.
1109 */
1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1111 pc->mem_cgroup = memcg = root_mem_cgroup;
1112
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 return &mz->lruvec;
1115 }
1116
1117 /**
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing
1122 *
1123 * This function must be called when a page is added to or removed from an
1124 * lru list.
1125 */
1126 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1127 int nr_pages)
1128 {
1129 struct mem_cgroup_per_zone *mz;
1130 unsigned long *lru_size;
1131
1132 if (mem_cgroup_disabled())
1133 return;
1134
1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1136 lru_size = mz->lru_size + lru;
1137 *lru_size += nr_pages;
1138 VM_BUG_ON((long)(*lru_size) < 0);
1139 }
1140
1141 /*
1142 * Checks whether given mem is same or in the root_mem_cgroup's
1143 * hierarchy subtree
1144 */
1145 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
1147 {
1148 if (root_memcg == memcg)
1149 return true;
1150 if (!root_memcg->use_hierarchy || !memcg)
1151 return false;
1152 return css_is_ancestor(&memcg->css, &root_memcg->css);
1153 }
1154
1155 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1157 {
1158 bool ret;
1159
1160 rcu_read_lock();
1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1162 rcu_read_unlock();
1163 return ret;
1164 }
1165
1166 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1167 {
1168 int ret;
1169 struct mem_cgroup *curr = NULL;
1170 struct task_struct *p;
1171
1172 p = find_lock_task_mm(task);
1173 if (p) {
1174 curr = try_get_mem_cgroup_from_mm(p->mm);
1175 task_unlock(p);
1176 } else {
1177 /*
1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks.
1181 */
1182 task_lock(task);
1183 curr = mem_cgroup_from_task(task);
1184 if (curr)
1185 css_get(&curr->css);
1186 task_unlock(task);
1187 }
1188 if (!curr)
1189 return 0;
1190 /*
1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
1195 */
1196 ret = mem_cgroup_same_or_subtree(memcg, curr);
1197 css_put(&curr->css);
1198 return ret;
1199 }
1200
1201 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1202 {
1203 unsigned long inactive_ratio;
1204 unsigned long inactive;
1205 unsigned long active;
1206 unsigned long gb;
1207
1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1210
1211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1212 if (gb)
1213 inactive_ratio = int_sqrt(10 * gb);
1214 else
1215 inactive_ratio = 1;
1216
1217 return inactive * inactive_ratio < active;
1218 }
1219
1220 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1221 {
1222 unsigned long active;
1223 unsigned long inactive;
1224
1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1227
1228 return (active > inactive);
1229 }
1230
1231 #define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member)
1233
1234 /**
1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1236 * @memcg: the memory cgroup
1237 *
1238 * Returns the maximum amount of memory @mem can be charged with, in
1239 * pages.
1240 */
1241 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1242 {
1243 unsigned long long margin;
1244
1245 margin = res_counter_margin(&memcg->res);
1246 if (do_swap_account)
1247 margin = min(margin, res_counter_margin(&memcg->memsw));
1248 return margin >> PAGE_SHIFT;
1249 }
1250
1251 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1252 {
1253 struct cgroup *cgrp = memcg->css.cgroup;
1254
1255 /* root ? */
1256 if (cgrp->parent == NULL)
1257 return vm_swappiness;
1258
1259 return memcg->swappiness;
1260 }
1261
1262 /*
1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this:
1267 *
1268 * CPU-A CPU-B
1269 * rcu_read_lock()
1270 * memcg->moving_account+1 if (memcg->mocing_account)
1271 * take heavy locks.
1272 * synchronize_rcu() update something.
1273 * rcu_read_unlock()
1274 * start move here.
1275 */
1276
1277 /* for quick checking without looking up memcg */
1278 atomic_t memcg_moving __read_mostly;
1279
1280 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1281 {
1282 atomic_inc(&memcg_moving);
1283 atomic_inc(&memcg->moving_account);
1284 synchronize_rcu();
1285 }
1286
1287 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1288 {
1289 /*
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller.
1292 */
1293 if (memcg) {
1294 atomic_dec(&memcg_moving);
1295 atomic_dec(&memcg->moving_account);
1296 }
1297 }
1298
1299 /*
1300 * 2 routines for checking "mem" is under move_account() or not.
1301 *
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true,
1304 * pc->mem_cgroup may be overwritten.
1305 *
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move".
1309 */
1310
1311 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1312 {
1313 VM_BUG_ON(!rcu_read_lock_held());
1314 return atomic_read(&memcg->moving_account) > 0;
1315 }
1316
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318 {
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
1321 bool ret = false;
1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
1331
1332 ret = mem_cgroup_same_or_subtree(memcg, from)
1333 || mem_cgroup_same_or_subtree(memcg, to);
1334 unlock:
1335 spin_unlock(&mc.lock);
1336 return ret;
1337 }
1338
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 {
1341 if (mc.moving_task && current != mc.moving_task) {
1342 if (mem_cgroup_under_move(memcg)) {
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1350 }
1351 }
1352 return false;
1353 }
1354
1355 /*
1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg.
1359 * see mem_cgroup_stolen(), too.
1360 */
1361 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1362 unsigned long *flags)
1363 {
1364 spin_lock_irqsave(&memcg->move_lock, *flags);
1365 }
1366
1367 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1368 unsigned long *flags)
1369 {
1370 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1371 }
1372
1373 /**
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1380 */
1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382 {
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1385 /*
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1389 */
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1392
1393 if (!memcg || !p)
1394 return;
1395
1396 rcu_read_lock();
1397
1398 mem_cgrp = memcg->css.cgroup;
1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1400
1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1403 /*
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1406 */
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 printk(KERN_INFO "Task in %s killed", memcg_name);
1413
1414 rcu_read_lock();
1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416 if (ret < 0) {
1417 rcu_read_unlock();
1418 goto done;
1419 }
1420 rcu_read_unlock();
1421
1422 /*
1423 * Continues from above, so we don't need an KERN_ level
1424 */
1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426 done:
1427
1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433 "failcnt %llu\n",
1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1437 }
1438
1439 /*
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1442 */
1443 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1444 {
1445 int num = 0;
1446 struct mem_cgroup *iter;
1447
1448 for_each_mem_cgroup_tree(iter, memcg)
1449 num++;
1450 return num;
1451 }
1452
1453 /*
1454 * Return the memory (and swap, if configured) limit for a memcg.
1455 */
1456 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1457 {
1458 u64 limit;
1459 u64 memsw;
1460
1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462 limit += total_swap_pages << PAGE_SHIFT;
1463
1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465 /*
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1468 */
1469 return min(limit, memsw);
1470 }
1471
1472 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1473 gfp_t gfp_mask,
1474 unsigned long flags)
1475 {
1476 unsigned long total = 0;
1477 bool noswap = false;
1478 int loop;
1479
1480 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1481 noswap = true;
1482 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1483 noswap = true;
1484
1485 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1486 if (loop)
1487 drain_all_stock_async(memcg);
1488 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1489 /*
1490 * Allow limit shrinkers, which are triggered directly
1491 * by userspace, to catch signals and stop reclaim
1492 * after minimal progress, regardless of the margin.
1493 */
1494 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1495 break;
1496 if (mem_cgroup_margin(memcg))
1497 break;
1498 /*
1499 * If nothing was reclaimed after two attempts, there
1500 * may be no reclaimable pages in this hierarchy.
1501 */
1502 if (loop && !total)
1503 break;
1504 }
1505 return total;
1506 }
1507
1508 /**
1509 * test_mem_cgroup_node_reclaimable
1510 * @memcg: the target memcg
1511 * @nid: the node ID to be checked.
1512 * @noswap : specify true here if the user wants flle only information.
1513 *
1514 * This function returns whether the specified memcg contains any
1515 * reclaimable pages on a node. Returns true if there are any reclaimable
1516 * pages in the node.
1517 */
1518 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1519 int nid, bool noswap)
1520 {
1521 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1522 return true;
1523 if (noswap || !total_swap_pages)
1524 return false;
1525 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1526 return true;
1527 return false;
1528
1529 }
1530 #if MAX_NUMNODES > 1
1531
1532 /*
1533 * Always updating the nodemask is not very good - even if we have an empty
1534 * list or the wrong list here, we can start from some node and traverse all
1535 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1536 *
1537 */
1538 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1539 {
1540 int nid;
1541 /*
1542 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1543 * pagein/pageout changes since the last update.
1544 */
1545 if (!atomic_read(&memcg->numainfo_events))
1546 return;
1547 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1548 return;
1549
1550 /* make a nodemask where this memcg uses memory from */
1551 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1552
1553 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1554
1555 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1556 node_clear(nid, memcg->scan_nodes);
1557 }
1558
1559 atomic_set(&memcg->numainfo_events, 0);
1560 atomic_set(&memcg->numainfo_updating, 0);
1561 }
1562
1563 /*
1564 * Selecting a node where we start reclaim from. Because what we need is just
1565 * reducing usage counter, start from anywhere is O,K. Considering
1566 * memory reclaim from current node, there are pros. and cons.
1567 *
1568 * Freeing memory from current node means freeing memory from a node which
1569 * we'll use or we've used. So, it may make LRU bad. And if several threads
1570 * hit limits, it will see a contention on a node. But freeing from remote
1571 * node means more costs for memory reclaim because of memory latency.
1572 *
1573 * Now, we use round-robin. Better algorithm is welcomed.
1574 */
1575 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1576 {
1577 int node;
1578
1579 mem_cgroup_may_update_nodemask(memcg);
1580 node = memcg->last_scanned_node;
1581
1582 node = next_node(node, memcg->scan_nodes);
1583 if (node == MAX_NUMNODES)
1584 node = first_node(memcg->scan_nodes);
1585 /*
1586 * We call this when we hit limit, not when pages are added to LRU.
1587 * No LRU may hold pages because all pages are UNEVICTABLE or
1588 * memcg is too small and all pages are not on LRU. In that case,
1589 * we use curret node.
1590 */
1591 if (unlikely(node == MAX_NUMNODES))
1592 node = numa_node_id();
1593
1594 memcg->last_scanned_node = node;
1595 return node;
1596 }
1597
1598 /*
1599 * Check all nodes whether it contains reclaimable pages or not.
1600 * For quick scan, we make use of scan_nodes. This will allow us to skip
1601 * unused nodes. But scan_nodes is lazily updated and may not cotain
1602 * enough new information. We need to do double check.
1603 */
1604 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1605 {
1606 int nid;
1607
1608 /*
1609 * quick check...making use of scan_node.
1610 * We can skip unused nodes.
1611 */
1612 if (!nodes_empty(memcg->scan_nodes)) {
1613 for (nid = first_node(memcg->scan_nodes);
1614 nid < MAX_NUMNODES;
1615 nid = next_node(nid, memcg->scan_nodes)) {
1616
1617 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1618 return true;
1619 }
1620 }
1621 /*
1622 * Check rest of nodes.
1623 */
1624 for_each_node_state(nid, N_HIGH_MEMORY) {
1625 if (node_isset(nid, memcg->scan_nodes))
1626 continue;
1627 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1628 return true;
1629 }
1630 return false;
1631 }
1632
1633 #else
1634 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1635 {
1636 return 0;
1637 }
1638
1639 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1640 {
1641 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1642 }
1643 #endif
1644
1645 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1646 struct zone *zone,
1647 gfp_t gfp_mask,
1648 unsigned long *total_scanned)
1649 {
1650 struct mem_cgroup *victim = NULL;
1651 int total = 0;
1652 int loop = 0;
1653 unsigned long excess;
1654 unsigned long nr_scanned;
1655 struct mem_cgroup_reclaim_cookie reclaim = {
1656 .zone = zone,
1657 .priority = 0,
1658 };
1659
1660 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1661
1662 while (1) {
1663 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1664 if (!victim) {
1665 loop++;
1666 if (loop >= 2) {
1667 /*
1668 * If we have not been able to reclaim
1669 * anything, it might because there are
1670 * no reclaimable pages under this hierarchy
1671 */
1672 if (!total)
1673 break;
1674 /*
1675 * We want to do more targeted reclaim.
1676 * excess >> 2 is not to excessive so as to
1677 * reclaim too much, nor too less that we keep
1678 * coming back to reclaim from this cgroup
1679 */
1680 if (total >= (excess >> 2) ||
1681 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1682 break;
1683 }
1684 continue;
1685 }
1686 if (!mem_cgroup_reclaimable(victim, false))
1687 continue;
1688 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1689 zone, &nr_scanned);
1690 *total_scanned += nr_scanned;
1691 if (!res_counter_soft_limit_excess(&root_memcg->res))
1692 break;
1693 }
1694 mem_cgroup_iter_break(root_memcg, victim);
1695 return total;
1696 }
1697
1698 /*
1699 * Check OOM-Killer is already running under our hierarchy.
1700 * If someone is running, return false.
1701 * Has to be called with memcg_oom_lock
1702 */
1703 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1704 {
1705 struct mem_cgroup *iter, *failed = NULL;
1706
1707 for_each_mem_cgroup_tree(iter, memcg) {
1708 if (iter->oom_lock) {
1709 /*
1710 * this subtree of our hierarchy is already locked
1711 * so we cannot give a lock.
1712 */
1713 failed = iter;
1714 mem_cgroup_iter_break(memcg, iter);
1715 break;
1716 } else
1717 iter->oom_lock = true;
1718 }
1719
1720 if (!failed)
1721 return true;
1722
1723 /*
1724 * OK, we failed to lock the whole subtree so we have to clean up
1725 * what we set up to the failing subtree
1726 */
1727 for_each_mem_cgroup_tree(iter, memcg) {
1728 if (iter == failed) {
1729 mem_cgroup_iter_break(memcg, iter);
1730 break;
1731 }
1732 iter->oom_lock = false;
1733 }
1734 return false;
1735 }
1736
1737 /*
1738 * Has to be called with memcg_oom_lock
1739 */
1740 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1741 {
1742 struct mem_cgroup *iter;
1743
1744 for_each_mem_cgroup_tree(iter, memcg)
1745 iter->oom_lock = false;
1746 return 0;
1747 }
1748
1749 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1750 {
1751 struct mem_cgroup *iter;
1752
1753 for_each_mem_cgroup_tree(iter, memcg)
1754 atomic_inc(&iter->under_oom);
1755 }
1756
1757 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1758 {
1759 struct mem_cgroup *iter;
1760
1761 /*
1762 * When a new child is created while the hierarchy is under oom,
1763 * mem_cgroup_oom_lock() may not be called. We have to use
1764 * atomic_add_unless() here.
1765 */
1766 for_each_mem_cgroup_tree(iter, memcg)
1767 atomic_add_unless(&iter->under_oom, -1, 0);
1768 }
1769
1770 static DEFINE_SPINLOCK(memcg_oom_lock);
1771 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1772
1773 struct oom_wait_info {
1774 struct mem_cgroup *memcg;
1775 wait_queue_t wait;
1776 };
1777
1778 static int memcg_oom_wake_function(wait_queue_t *wait,
1779 unsigned mode, int sync, void *arg)
1780 {
1781 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1782 struct mem_cgroup *oom_wait_memcg;
1783 struct oom_wait_info *oom_wait_info;
1784
1785 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1786 oom_wait_memcg = oom_wait_info->memcg;
1787
1788 /*
1789 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1790 * Then we can use css_is_ancestor without taking care of RCU.
1791 */
1792 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1793 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1794 return 0;
1795 return autoremove_wake_function(wait, mode, sync, arg);
1796 }
1797
1798 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1799 {
1800 /* for filtering, pass "memcg" as argument. */
1801 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1802 }
1803
1804 static void memcg_oom_recover(struct mem_cgroup *memcg)
1805 {
1806 if (memcg && atomic_read(&memcg->under_oom))
1807 memcg_wakeup_oom(memcg);
1808 }
1809
1810 /*
1811 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1812 */
1813 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1814 int order)
1815 {
1816 struct oom_wait_info owait;
1817 bool locked, need_to_kill;
1818
1819 owait.memcg = memcg;
1820 owait.wait.flags = 0;
1821 owait.wait.func = memcg_oom_wake_function;
1822 owait.wait.private = current;
1823 INIT_LIST_HEAD(&owait.wait.task_list);
1824 need_to_kill = true;
1825 mem_cgroup_mark_under_oom(memcg);
1826
1827 /* At first, try to OOM lock hierarchy under memcg.*/
1828 spin_lock(&memcg_oom_lock);
1829 locked = mem_cgroup_oom_lock(memcg);
1830 /*
1831 * Even if signal_pending(), we can't quit charge() loop without
1832 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1833 * under OOM is always welcomed, use TASK_KILLABLE here.
1834 */
1835 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1836 if (!locked || memcg->oom_kill_disable)
1837 need_to_kill = false;
1838 if (locked)
1839 mem_cgroup_oom_notify(memcg);
1840 spin_unlock(&memcg_oom_lock);
1841
1842 if (need_to_kill) {
1843 finish_wait(&memcg_oom_waitq, &owait.wait);
1844 mem_cgroup_out_of_memory(memcg, mask, order);
1845 } else {
1846 schedule();
1847 finish_wait(&memcg_oom_waitq, &owait.wait);
1848 }
1849 spin_lock(&memcg_oom_lock);
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852 memcg_wakeup_oom(memcg);
1853 spin_unlock(&memcg_oom_lock);
1854
1855 mem_cgroup_unmark_under_oom(memcg);
1856
1857 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1858 return false;
1859 /* Give chance to dying process */
1860 schedule_timeout_uninterruptible(1);
1861 return true;
1862 }
1863
1864 /*
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
1867 *
1868 * Notes: Race condition
1869 *
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1873 *
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1877 *
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1881 * by flags.
1882 *
1883 * Considering "move", this is an only case we see a race. To make the race
1884 * small, we check mm->moving_account and detect there are possibility of race
1885 * If there is, we take a lock.
1886 */
1887
1888 void __mem_cgroup_begin_update_page_stat(struct page *page,
1889 bool *locked, unsigned long *flags)
1890 {
1891 struct mem_cgroup *memcg;
1892 struct page_cgroup *pc;
1893
1894 pc = lookup_page_cgroup(page);
1895 again:
1896 memcg = pc->mem_cgroup;
1897 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1898 return;
1899 /*
1900 * If this memory cgroup is not under account moving, we don't
1901 * need to take move_lock_page_cgroup(). Because we already hold
1902 * rcu_read_lock(), any calls to move_account will be delayed until
1903 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1904 */
1905 if (!mem_cgroup_stolen(memcg))
1906 return;
1907
1908 move_lock_mem_cgroup(memcg, flags);
1909 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1910 move_unlock_mem_cgroup(memcg, flags);
1911 goto again;
1912 }
1913 *locked = true;
1914 }
1915
1916 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1917 {
1918 struct page_cgroup *pc = lookup_page_cgroup(page);
1919
1920 /*
1921 * It's guaranteed that pc->mem_cgroup never changes while
1922 * lock is held because a routine modifies pc->mem_cgroup
1923 * should take move_lock_page_cgroup().
1924 */
1925 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1926 }
1927
1928 void mem_cgroup_update_page_stat(struct page *page,
1929 enum mem_cgroup_page_stat_item idx, int val)
1930 {
1931 struct mem_cgroup *memcg;
1932 struct page_cgroup *pc = lookup_page_cgroup(page);
1933 unsigned long uninitialized_var(flags);
1934
1935 if (mem_cgroup_disabled())
1936 return;
1937
1938 memcg = pc->mem_cgroup;
1939 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1940 return;
1941
1942 switch (idx) {
1943 case MEMCG_NR_FILE_MAPPED:
1944 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1945 break;
1946 default:
1947 BUG();
1948 }
1949
1950 this_cpu_add(memcg->stat->count[idx], val);
1951 }
1952
1953 /*
1954 * size of first charge trial. "32" comes from vmscan.c's magic value.
1955 * TODO: maybe necessary to use big numbers in big irons.
1956 */
1957 #define CHARGE_BATCH 32U
1958 struct memcg_stock_pcp {
1959 struct mem_cgroup *cached; /* this never be root cgroup */
1960 unsigned int nr_pages;
1961 struct work_struct work;
1962 unsigned long flags;
1963 #define FLUSHING_CACHED_CHARGE 0
1964 };
1965 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1966 static DEFINE_MUTEX(percpu_charge_mutex);
1967
1968 /*
1969 * Try to consume stocked charge on this cpu. If success, one page is consumed
1970 * from local stock and true is returned. If the stock is 0 or charges from a
1971 * cgroup which is not current target, returns false. This stock will be
1972 * refilled.
1973 */
1974 static bool consume_stock(struct mem_cgroup *memcg)
1975 {
1976 struct memcg_stock_pcp *stock;
1977 bool ret = true;
1978
1979 stock = &get_cpu_var(memcg_stock);
1980 if (memcg == stock->cached && stock->nr_pages)
1981 stock->nr_pages--;
1982 else /* need to call res_counter_charge */
1983 ret = false;
1984 put_cpu_var(memcg_stock);
1985 return ret;
1986 }
1987
1988 /*
1989 * Returns stocks cached in percpu to res_counter and reset cached information.
1990 */
1991 static void drain_stock(struct memcg_stock_pcp *stock)
1992 {
1993 struct mem_cgroup *old = stock->cached;
1994
1995 if (stock->nr_pages) {
1996 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1997
1998 res_counter_uncharge(&old->res, bytes);
1999 if (do_swap_account)
2000 res_counter_uncharge(&old->memsw, bytes);
2001 stock->nr_pages = 0;
2002 }
2003 stock->cached = NULL;
2004 }
2005
2006 /*
2007 * This must be called under preempt disabled or must be called by
2008 * a thread which is pinned to local cpu.
2009 */
2010 static void drain_local_stock(struct work_struct *dummy)
2011 {
2012 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2013 drain_stock(stock);
2014 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2015 }
2016
2017 /*
2018 * Cache charges(val) which is from res_counter, to local per_cpu area.
2019 * This will be consumed by consume_stock() function, later.
2020 */
2021 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2022 {
2023 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2024
2025 if (stock->cached != memcg) { /* reset if necessary */
2026 drain_stock(stock);
2027 stock->cached = memcg;
2028 }
2029 stock->nr_pages += nr_pages;
2030 put_cpu_var(memcg_stock);
2031 }
2032
2033 /*
2034 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2035 * of the hierarchy under it. sync flag says whether we should block
2036 * until the work is done.
2037 */
2038 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2039 {
2040 int cpu, curcpu;
2041
2042 /* Notify other cpus that system-wide "drain" is running */
2043 get_online_cpus();
2044 curcpu = get_cpu();
2045 for_each_online_cpu(cpu) {
2046 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2047 struct mem_cgroup *memcg;
2048
2049 memcg = stock->cached;
2050 if (!memcg || !stock->nr_pages)
2051 continue;
2052 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2053 continue;
2054 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2055 if (cpu == curcpu)
2056 drain_local_stock(&stock->work);
2057 else
2058 schedule_work_on(cpu, &stock->work);
2059 }
2060 }
2061 put_cpu();
2062
2063 if (!sync)
2064 goto out;
2065
2066 for_each_online_cpu(cpu) {
2067 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2068 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2069 flush_work(&stock->work);
2070 }
2071 out:
2072 put_online_cpus();
2073 }
2074
2075 /*
2076 * Tries to drain stocked charges in other cpus. This function is asynchronous
2077 * and just put a work per cpu for draining localy on each cpu. Caller can
2078 * expects some charges will be back to res_counter later but cannot wait for
2079 * it.
2080 */
2081 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2082 {
2083 /*
2084 * If someone calls draining, avoid adding more kworker runs.
2085 */
2086 if (!mutex_trylock(&percpu_charge_mutex))
2087 return;
2088 drain_all_stock(root_memcg, false);
2089 mutex_unlock(&percpu_charge_mutex);
2090 }
2091
2092 /* This is a synchronous drain interface. */
2093 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2094 {
2095 /* called when force_empty is called */
2096 mutex_lock(&percpu_charge_mutex);
2097 drain_all_stock(root_memcg, true);
2098 mutex_unlock(&percpu_charge_mutex);
2099 }
2100
2101 /*
2102 * This function drains percpu counter value from DEAD cpu and
2103 * move it to local cpu. Note that this function can be preempted.
2104 */
2105 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2106 {
2107 int i;
2108
2109 spin_lock(&memcg->pcp_counter_lock);
2110 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2111 long x = per_cpu(memcg->stat->count[i], cpu);
2112
2113 per_cpu(memcg->stat->count[i], cpu) = 0;
2114 memcg->nocpu_base.count[i] += x;
2115 }
2116 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2117 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2118
2119 per_cpu(memcg->stat->events[i], cpu) = 0;
2120 memcg->nocpu_base.events[i] += x;
2121 }
2122 spin_unlock(&memcg->pcp_counter_lock);
2123 }
2124
2125 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2126 unsigned long action,
2127 void *hcpu)
2128 {
2129 int cpu = (unsigned long)hcpu;
2130 struct memcg_stock_pcp *stock;
2131 struct mem_cgroup *iter;
2132
2133 if (action == CPU_ONLINE)
2134 return NOTIFY_OK;
2135
2136 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2137 return NOTIFY_OK;
2138
2139 for_each_mem_cgroup(iter)
2140 mem_cgroup_drain_pcp_counter(iter, cpu);
2141
2142 stock = &per_cpu(memcg_stock, cpu);
2143 drain_stock(stock);
2144 return NOTIFY_OK;
2145 }
2146
2147
2148 /* See __mem_cgroup_try_charge() for details */
2149 enum {
2150 CHARGE_OK, /* success */
2151 CHARGE_RETRY, /* need to retry but retry is not bad */
2152 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2153 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2154 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2155 };
2156
2157 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2158 unsigned int nr_pages, bool oom_check)
2159 {
2160 unsigned long csize = nr_pages * PAGE_SIZE;
2161 struct mem_cgroup *mem_over_limit;
2162 struct res_counter *fail_res;
2163 unsigned long flags = 0;
2164 int ret;
2165
2166 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2167
2168 if (likely(!ret)) {
2169 if (!do_swap_account)
2170 return CHARGE_OK;
2171 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2172 if (likely(!ret))
2173 return CHARGE_OK;
2174
2175 res_counter_uncharge(&memcg->res, csize);
2176 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2177 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2178 } else
2179 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2180 /*
2181 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2182 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2183 *
2184 * Never reclaim on behalf of optional batching, retry with a
2185 * single page instead.
2186 */
2187 if (nr_pages == CHARGE_BATCH)
2188 return CHARGE_RETRY;
2189
2190 if (!(gfp_mask & __GFP_WAIT))
2191 return CHARGE_WOULDBLOCK;
2192
2193 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2194 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2195 return CHARGE_RETRY;
2196 /*
2197 * Even though the limit is exceeded at this point, reclaim
2198 * may have been able to free some pages. Retry the charge
2199 * before killing the task.
2200 *
2201 * Only for regular pages, though: huge pages are rather
2202 * unlikely to succeed so close to the limit, and we fall back
2203 * to regular pages anyway in case of failure.
2204 */
2205 if (nr_pages == 1 && ret)
2206 return CHARGE_RETRY;
2207
2208 /*
2209 * At task move, charge accounts can be doubly counted. So, it's
2210 * better to wait until the end of task_move if something is going on.
2211 */
2212 if (mem_cgroup_wait_acct_move(mem_over_limit))
2213 return CHARGE_RETRY;
2214
2215 /* If we don't need to call oom-killer at el, return immediately */
2216 if (!oom_check)
2217 return CHARGE_NOMEM;
2218 /* check OOM */
2219 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2220 return CHARGE_OOM_DIE;
2221
2222 return CHARGE_RETRY;
2223 }
2224
2225 /*
2226 * __mem_cgroup_try_charge() does
2227 * 1. detect memcg to be charged against from passed *mm and *ptr,
2228 * 2. update res_counter
2229 * 3. call memory reclaim if necessary.
2230 *
2231 * In some special case, if the task is fatal, fatal_signal_pending() or
2232 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2233 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2234 * as possible without any hazards. 2: all pages should have a valid
2235 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2236 * pointer, that is treated as a charge to root_mem_cgroup.
2237 *
2238 * So __mem_cgroup_try_charge() will return
2239 * 0 ... on success, filling *ptr with a valid memcg pointer.
2240 * -ENOMEM ... charge failure because of resource limits.
2241 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2242 *
2243 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2244 * the oom-killer can be invoked.
2245 */
2246 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2247 gfp_t gfp_mask,
2248 unsigned int nr_pages,
2249 struct mem_cgroup **ptr,
2250 bool oom)
2251 {
2252 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2253 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2254 struct mem_cgroup *memcg = NULL;
2255 int ret;
2256
2257 /*
2258 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2259 * in system level. So, allow to go ahead dying process in addition to
2260 * MEMDIE process.
2261 */
2262 if (unlikely(test_thread_flag(TIF_MEMDIE)
2263 || fatal_signal_pending(current)))
2264 goto bypass;
2265
2266 /*
2267 * We always charge the cgroup the mm_struct belongs to.
2268 * The mm_struct's mem_cgroup changes on task migration if the
2269 * thread group leader migrates. It's possible that mm is not
2270 * set, if so charge the init_mm (happens for pagecache usage).
2271 */
2272 if (!*ptr && !mm)
2273 *ptr = root_mem_cgroup;
2274 again:
2275 if (*ptr) { /* css should be a valid one */
2276 memcg = *ptr;
2277 VM_BUG_ON(css_is_removed(&memcg->css));
2278 if (mem_cgroup_is_root(memcg))
2279 goto done;
2280 if (nr_pages == 1 && consume_stock(memcg))
2281 goto done;
2282 css_get(&memcg->css);
2283 } else {
2284 struct task_struct *p;
2285
2286 rcu_read_lock();
2287 p = rcu_dereference(mm->owner);
2288 /*
2289 * Because we don't have task_lock(), "p" can exit.
2290 * In that case, "memcg" can point to root or p can be NULL with
2291 * race with swapoff. Then, we have small risk of mis-accouning.
2292 * But such kind of mis-account by race always happens because
2293 * we don't have cgroup_mutex(). It's overkill and we allo that
2294 * small race, here.
2295 * (*) swapoff at el will charge against mm-struct not against
2296 * task-struct. So, mm->owner can be NULL.
2297 */
2298 memcg = mem_cgroup_from_task(p);
2299 if (!memcg)
2300 memcg = root_mem_cgroup;
2301 if (mem_cgroup_is_root(memcg)) {
2302 rcu_read_unlock();
2303 goto done;
2304 }
2305 if (nr_pages == 1 && consume_stock(memcg)) {
2306 /*
2307 * It seems dagerous to access memcg without css_get().
2308 * But considering how consume_stok works, it's not
2309 * necessary. If consume_stock success, some charges
2310 * from this memcg are cached on this cpu. So, we
2311 * don't need to call css_get()/css_tryget() before
2312 * calling consume_stock().
2313 */
2314 rcu_read_unlock();
2315 goto done;
2316 }
2317 /* after here, we may be blocked. we need to get refcnt */
2318 if (!css_tryget(&memcg->css)) {
2319 rcu_read_unlock();
2320 goto again;
2321 }
2322 rcu_read_unlock();
2323 }
2324
2325 do {
2326 bool oom_check;
2327
2328 /* If killed, bypass charge */
2329 if (fatal_signal_pending(current)) {
2330 css_put(&memcg->css);
2331 goto bypass;
2332 }
2333
2334 oom_check = false;
2335 if (oom && !nr_oom_retries) {
2336 oom_check = true;
2337 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2338 }
2339
2340 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2341 switch (ret) {
2342 case CHARGE_OK:
2343 break;
2344 case CHARGE_RETRY: /* not in OOM situation but retry */
2345 batch = nr_pages;
2346 css_put(&memcg->css);
2347 memcg = NULL;
2348 goto again;
2349 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2350 css_put(&memcg->css);
2351 goto nomem;
2352 case CHARGE_NOMEM: /* OOM routine works */
2353 if (!oom) {
2354 css_put(&memcg->css);
2355 goto nomem;
2356 }
2357 /* If oom, we never return -ENOMEM */
2358 nr_oom_retries--;
2359 break;
2360 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2361 css_put(&memcg->css);
2362 goto bypass;
2363 }
2364 } while (ret != CHARGE_OK);
2365
2366 if (batch > nr_pages)
2367 refill_stock(memcg, batch - nr_pages);
2368 css_put(&memcg->css);
2369 done:
2370 *ptr = memcg;
2371 return 0;
2372 nomem:
2373 *ptr = NULL;
2374 return -ENOMEM;
2375 bypass:
2376 *ptr = root_mem_cgroup;
2377 return -EINTR;
2378 }
2379
2380 /*
2381 * Somemtimes we have to undo a charge we got by try_charge().
2382 * This function is for that and do uncharge, put css's refcnt.
2383 * gotten by try_charge().
2384 */
2385 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2386 unsigned int nr_pages)
2387 {
2388 if (!mem_cgroup_is_root(memcg)) {
2389 unsigned long bytes = nr_pages * PAGE_SIZE;
2390
2391 res_counter_uncharge(&memcg->res, bytes);
2392 if (do_swap_account)
2393 res_counter_uncharge(&memcg->memsw, bytes);
2394 }
2395 }
2396
2397 /*
2398 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2399 * This is useful when moving usage to parent cgroup.
2400 */
2401 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2402 unsigned int nr_pages)
2403 {
2404 unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406 if (mem_cgroup_is_root(memcg))
2407 return;
2408
2409 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2410 if (do_swap_account)
2411 res_counter_uncharge_until(&memcg->memsw,
2412 memcg->memsw.parent, bytes);
2413 }
2414
2415 /*
2416 * A helper function to get mem_cgroup from ID. must be called under
2417 * rcu_read_lock(). The caller must check css_is_removed() or some if
2418 * it's concern. (dropping refcnt from swap can be called against removed
2419 * memcg.)
2420 */
2421 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2422 {
2423 struct cgroup_subsys_state *css;
2424
2425 /* ID 0 is unused ID */
2426 if (!id)
2427 return NULL;
2428 css = css_lookup(&mem_cgroup_subsys, id);
2429 if (!css)
2430 return NULL;
2431 return container_of(css, struct mem_cgroup, css);
2432 }
2433
2434 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2435 {
2436 struct mem_cgroup *memcg = NULL;
2437 struct page_cgroup *pc;
2438 unsigned short id;
2439 swp_entry_t ent;
2440
2441 VM_BUG_ON(!PageLocked(page));
2442
2443 pc = lookup_page_cgroup(page);
2444 lock_page_cgroup(pc);
2445 if (PageCgroupUsed(pc)) {
2446 memcg = pc->mem_cgroup;
2447 if (memcg && !css_tryget(&memcg->css))
2448 memcg = NULL;
2449 } else if (PageSwapCache(page)) {
2450 ent.val = page_private(page);
2451 id = lookup_swap_cgroup_id(ent);
2452 rcu_read_lock();
2453 memcg = mem_cgroup_lookup(id);
2454 if (memcg && !css_tryget(&memcg->css))
2455 memcg = NULL;
2456 rcu_read_unlock();
2457 }
2458 unlock_page_cgroup(pc);
2459 return memcg;
2460 }
2461
2462 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2463 struct page *page,
2464 unsigned int nr_pages,
2465 enum charge_type ctype,
2466 bool lrucare)
2467 {
2468 struct page_cgroup *pc = lookup_page_cgroup(page);
2469 struct zone *uninitialized_var(zone);
2470 struct lruvec *lruvec;
2471 bool was_on_lru = false;
2472 bool anon;
2473
2474 lock_page_cgroup(pc);
2475 if (unlikely(PageCgroupUsed(pc))) {
2476 unlock_page_cgroup(pc);
2477 __mem_cgroup_cancel_charge(memcg, nr_pages);
2478 return;
2479 }
2480 /*
2481 * we don't need page_cgroup_lock about tail pages, becase they are not
2482 * accessed by any other context at this point.
2483 */
2484
2485 /*
2486 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2487 * may already be on some other mem_cgroup's LRU. Take care of it.
2488 */
2489 if (lrucare) {
2490 zone = page_zone(page);
2491 spin_lock_irq(&zone->lru_lock);
2492 if (PageLRU(page)) {
2493 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2494 ClearPageLRU(page);
2495 del_page_from_lru_list(page, lruvec, page_lru(page));
2496 was_on_lru = true;
2497 }
2498 }
2499
2500 pc->mem_cgroup = memcg;
2501 /*
2502 * We access a page_cgroup asynchronously without lock_page_cgroup().
2503 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2504 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2505 * before USED bit, we need memory barrier here.
2506 * See mem_cgroup_add_lru_list(), etc.
2507 */
2508 smp_wmb();
2509 SetPageCgroupUsed(pc);
2510
2511 if (lrucare) {
2512 if (was_on_lru) {
2513 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2514 VM_BUG_ON(PageLRU(page));
2515 SetPageLRU(page);
2516 add_page_to_lru_list(page, lruvec, page_lru(page));
2517 }
2518 spin_unlock_irq(&zone->lru_lock);
2519 }
2520
2521 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2522 anon = true;
2523 else
2524 anon = false;
2525
2526 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2527 unlock_page_cgroup(pc);
2528
2529 /*
2530 * "charge_statistics" updated event counter. Then, check it.
2531 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2532 * if they exceeds softlimit.
2533 */
2534 memcg_check_events(memcg, page);
2535 }
2536
2537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2538
2539 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2540 /*
2541 * Because tail pages are not marked as "used", set it. We're under
2542 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2543 * charge/uncharge will be never happen and move_account() is done under
2544 * compound_lock(), so we don't have to take care of races.
2545 */
2546 void mem_cgroup_split_huge_fixup(struct page *head)
2547 {
2548 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2549 struct page_cgroup *pc;
2550 int i;
2551
2552 if (mem_cgroup_disabled())
2553 return;
2554 for (i = 1; i < HPAGE_PMD_NR; i++) {
2555 pc = head_pc + i;
2556 pc->mem_cgroup = head_pc->mem_cgroup;
2557 smp_wmb();/* see __commit_charge() */
2558 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2559 }
2560 }
2561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2562
2563 /**
2564 * mem_cgroup_move_account - move account of the page
2565 * @page: the page
2566 * @nr_pages: number of regular pages (>1 for huge pages)
2567 * @pc: page_cgroup of the page.
2568 * @from: mem_cgroup which the page is moved from.
2569 * @to: mem_cgroup which the page is moved to. @from != @to.
2570 *
2571 * The caller must confirm following.
2572 * - page is not on LRU (isolate_page() is useful.)
2573 * - compound_lock is held when nr_pages > 1
2574 *
2575 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2576 * from old cgroup.
2577 */
2578 static int mem_cgroup_move_account(struct page *page,
2579 unsigned int nr_pages,
2580 struct page_cgroup *pc,
2581 struct mem_cgroup *from,
2582 struct mem_cgroup *to)
2583 {
2584 unsigned long flags;
2585 int ret;
2586 bool anon = PageAnon(page);
2587
2588 VM_BUG_ON(from == to);
2589 VM_BUG_ON(PageLRU(page));
2590 /*
2591 * The page is isolated from LRU. So, collapse function
2592 * will not handle this page. But page splitting can happen.
2593 * Do this check under compound_page_lock(). The caller should
2594 * hold it.
2595 */
2596 ret = -EBUSY;
2597 if (nr_pages > 1 && !PageTransHuge(page))
2598 goto out;
2599
2600 lock_page_cgroup(pc);
2601
2602 ret = -EINVAL;
2603 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2604 goto unlock;
2605
2606 move_lock_mem_cgroup(from, &flags);
2607
2608 if (!anon && page_mapped(page)) {
2609 /* Update mapped_file data for mem_cgroup */
2610 preempt_disable();
2611 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2612 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613 preempt_enable();
2614 }
2615 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2616
2617 /* caller should have done css_get */
2618 pc->mem_cgroup = to;
2619 mem_cgroup_charge_statistics(to, anon, nr_pages);
2620 /*
2621 * We charges against "to" which may not have any tasks. Then, "to"
2622 * can be under rmdir(). But in current implementation, caller of
2623 * this function is just force_empty() and move charge, so it's
2624 * guaranteed that "to" is never removed. So, we don't check rmdir
2625 * status here.
2626 */
2627 move_unlock_mem_cgroup(from, &flags);
2628 ret = 0;
2629 unlock:
2630 unlock_page_cgroup(pc);
2631 /*
2632 * check events
2633 */
2634 memcg_check_events(to, page);
2635 memcg_check_events(from, page);
2636 out:
2637 return ret;
2638 }
2639
2640 /*
2641 * move charges to its parent.
2642 */
2643
2644 static int mem_cgroup_move_parent(struct page *page,
2645 struct page_cgroup *pc,
2646 struct mem_cgroup *child,
2647 gfp_t gfp_mask)
2648 {
2649 struct mem_cgroup *parent;
2650 unsigned int nr_pages;
2651 unsigned long uninitialized_var(flags);
2652 int ret;
2653
2654 /* Is ROOT ? */
2655 if (mem_cgroup_is_root(child))
2656 return -EINVAL;
2657
2658 ret = -EBUSY;
2659 if (!get_page_unless_zero(page))
2660 goto out;
2661 if (isolate_lru_page(page))
2662 goto put;
2663
2664 nr_pages = hpage_nr_pages(page);
2665
2666 parent = parent_mem_cgroup(child);
2667 /*
2668 * If no parent, move charges to root cgroup.
2669 */
2670 if (!parent)
2671 parent = root_mem_cgroup;
2672
2673 if (nr_pages > 1)
2674 flags = compound_lock_irqsave(page);
2675
2676 ret = mem_cgroup_move_account(page, nr_pages,
2677 pc, child, parent);
2678 if (!ret)
2679 __mem_cgroup_cancel_local_charge(child, nr_pages);
2680
2681 if (nr_pages > 1)
2682 compound_unlock_irqrestore(page, flags);
2683 putback_lru_page(page);
2684 put:
2685 put_page(page);
2686 out:
2687 return ret;
2688 }
2689
2690 /*
2691 * Charge the memory controller for page usage.
2692 * Return
2693 * 0 if the charge was successful
2694 * < 0 if the cgroup is over its limit
2695 */
2696 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2697 gfp_t gfp_mask, enum charge_type ctype)
2698 {
2699 struct mem_cgroup *memcg = NULL;
2700 unsigned int nr_pages = 1;
2701 bool oom = true;
2702 int ret;
2703
2704 if (PageTransHuge(page)) {
2705 nr_pages <<= compound_order(page);
2706 VM_BUG_ON(!PageTransHuge(page));
2707 /*
2708 * Never OOM-kill a process for a huge page. The
2709 * fault handler will fall back to regular pages.
2710 */
2711 oom = false;
2712 }
2713
2714 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2715 if (ret == -ENOMEM)
2716 return ret;
2717 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2718 return 0;
2719 }
2720
2721 int mem_cgroup_newpage_charge(struct page *page,
2722 struct mm_struct *mm, gfp_t gfp_mask)
2723 {
2724 if (mem_cgroup_disabled())
2725 return 0;
2726 VM_BUG_ON(page_mapped(page));
2727 VM_BUG_ON(page->mapping && !PageAnon(page));
2728 VM_BUG_ON(!mm);
2729 return mem_cgroup_charge_common(page, mm, gfp_mask,
2730 MEM_CGROUP_CHARGE_TYPE_ANON);
2731 }
2732
2733 static void
2734 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2735 enum charge_type ctype);
2736
2737 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2738 gfp_t gfp_mask)
2739 {
2740 struct mem_cgroup *memcg = NULL;
2741 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2742 int ret;
2743
2744 if (mem_cgroup_disabled())
2745 return 0;
2746 if (PageCompound(page))
2747 return 0;
2748
2749 if (unlikely(!mm))
2750 mm = &init_mm;
2751 if (!page_is_file_cache(page))
2752 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2753
2754 if (!PageSwapCache(page))
2755 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2756 else { /* page is swapcache/shmem */
2757 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2758 if (!ret)
2759 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2760 }
2761 return ret;
2762 }
2763
2764 /*
2765 * While swap-in, try_charge -> commit or cancel, the page is locked.
2766 * And when try_charge() successfully returns, one refcnt to memcg without
2767 * struct page_cgroup is acquired. This refcnt will be consumed by
2768 * "commit()" or removed by "cancel()"
2769 */
2770 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2771 struct page *page,
2772 gfp_t mask, struct mem_cgroup **memcgp)
2773 {
2774 struct mem_cgroup *memcg;
2775 int ret;
2776
2777 *memcgp = NULL;
2778
2779 if (mem_cgroup_disabled())
2780 return 0;
2781
2782 if (!do_swap_account)
2783 goto charge_cur_mm;
2784 /*
2785 * A racing thread's fault, or swapoff, may have already updated
2786 * the pte, and even removed page from swap cache: in those cases
2787 * do_swap_page()'s pte_same() test will fail; but there's also a
2788 * KSM case which does need to charge the page.
2789 */
2790 if (!PageSwapCache(page))
2791 goto charge_cur_mm;
2792 memcg = try_get_mem_cgroup_from_page(page);
2793 if (!memcg)
2794 goto charge_cur_mm;
2795 *memcgp = memcg;
2796 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2797 css_put(&memcg->css);
2798 if (ret == -EINTR)
2799 ret = 0;
2800 return ret;
2801 charge_cur_mm:
2802 if (unlikely(!mm))
2803 mm = &init_mm;
2804 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2805 if (ret == -EINTR)
2806 ret = 0;
2807 return ret;
2808 }
2809
2810 static void
2811 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2812 enum charge_type ctype)
2813 {
2814 if (mem_cgroup_disabled())
2815 return;
2816 if (!memcg)
2817 return;
2818 cgroup_exclude_rmdir(&memcg->css);
2819
2820 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2821 /*
2822 * Now swap is on-memory. This means this page may be
2823 * counted both as mem and swap....double count.
2824 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2825 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2826 * may call delete_from_swap_cache() before reach here.
2827 */
2828 if (do_swap_account && PageSwapCache(page)) {
2829 swp_entry_t ent = {.val = page_private(page)};
2830 mem_cgroup_uncharge_swap(ent);
2831 }
2832 /*
2833 * At swapin, we may charge account against cgroup which has no tasks.
2834 * So, rmdir()->pre_destroy() can be called while we do this charge.
2835 * In that case, we need to call pre_destroy() again. check it here.
2836 */
2837 cgroup_release_and_wakeup_rmdir(&memcg->css);
2838 }
2839
2840 void mem_cgroup_commit_charge_swapin(struct page *page,
2841 struct mem_cgroup *memcg)
2842 {
2843 __mem_cgroup_commit_charge_swapin(page, memcg,
2844 MEM_CGROUP_CHARGE_TYPE_ANON);
2845 }
2846
2847 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2848 {
2849 if (mem_cgroup_disabled())
2850 return;
2851 if (!memcg)
2852 return;
2853 __mem_cgroup_cancel_charge(memcg, 1);
2854 }
2855
2856 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2857 unsigned int nr_pages,
2858 const enum charge_type ctype)
2859 {
2860 struct memcg_batch_info *batch = NULL;
2861 bool uncharge_memsw = true;
2862
2863 /* If swapout, usage of swap doesn't decrease */
2864 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2865 uncharge_memsw = false;
2866
2867 batch = &current->memcg_batch;
2868 /*
2869 * In usual, we do css_get() when we remember memcg pointer.
2870 * But in this case, we keep res->usage until end of a series of
2871 * uncharges. Then, it's ok to ignore memcg's refcnt.
2872 */
2873 if (!batch->memcg)
2874 batch->memcg = memcg;
2875 /*
2876 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2877 * In those cases, all pages freed continuously can be expected to be in
2878 * the same cgroup and we have chance to coalesce uncharges.
2879 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2880 * because we want to do uncharge as soon as possible.
2881 */
2882
2883 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2884 goto direct_uncharge;
2885
2886 if (nr_pages > 1)
2887 goto direct_uncharge;
2888
2889 /*
2890 * In typical case, batch->memcg == mem. This means we can
2891 * merge a series of uncharges to an uncharge of res_counter.
2892 * If not, we uncharge res_counter ony by one.
2893 */
2894 if (batch->memcg != memcg)
2895 goto direct_uncharge;
2896 /* remember freed charge and uncharge it later */
2897 batch->nr_pages++;
2898 if (uncharge_memsw)
2899 batch->memsw_nr_pages++;
2900 return;
2901 direct_uncharge:
2902 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2903 if (uncharge_memsw)
2904 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2905 if (unlikely(batch->memcg != memcg))
2906 memcg_oom_recover(memcg);
2907 }
2908
2909 /*
2910 * uncharge if !page_mapped(page)
2911 */
2912 static struct mem_cgroup *
2913 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2914 {
2915 struct mem_cgroup *memcg = NULL;
2916 unsigned int nr_pages = 1;
2917 struct page_cgroup *pc;
2918 bool anon;
2919
2920 if (mem_cgroup_disabled())
2921 return NULL;
2922
2923 if (PageSwapCache(page))
2924 return NULL;
2925
2926 if (PageTransHuge(page)) {
2927 nr_pages <<= compound_order(page);
2928 VM_BUG_ON(!PageTransHuge(page));
2929 }
2930 /*
2931 * Check if our page_cgroup is valid
2932 */
2933 pc = lookup_page_cgroup(page);
2934 if (unlikely(!PageCgroupUsed(pc)))
2935 return NULL;
2936
2937 lock_page_cgroup(pc);
2938
2939 memcg = pc->mem_cgroup;
2940
2941 if (!PageCgroupUsed(pc))
2942 goto unlock_out;
2943
2944 anon = PageAnon(page);
2945
2946 switch (ctype) {
2947 case MEM_CGROUP_CHARGE_TYPE_ANON:
2948 /*
2949 * Generally PageAnon tells if it's the anon statistics to be
2950 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2951 * used before page reached the stage of being marked PageAnon.
2952 */
2953 anon = true;
2954 /* fallthrough */
2955 case MEM_CGROUP_CHARGE_TYPE_DROP:
2956 /* See mem_cgroup_prepare_migration() */
2957 if (page_mapped(page) || PageCgroupMigration(pc))
2958 goto unlock_out;
2959 break;
2960 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2961 if (!PageAnon(page)) { /* Shared memory */
2962 if (page->mapping && !page_is_file_cache(page))
2963 goto unlock_out;
2964 } else if (page_mapped(page)) /* Anon */
2965 goto unlock_out;
2966 break;
2967 default:
2968 break;
2969 }
2970
2971 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2972
2973 ClearPageCgroupUsed(pc);
2974 /*
2975 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2976 * freed from LRU. This is safe because uncharged page is expected not
2977 * to be reused (freed soon). Exception is SwapCache, it's handled by
2978 * special functions.
2979 */
2980
2981 unlock_page_cgroup(pc);
2982 /*
2983 * even after unlock, we have memcg->res.usage here and this memcg
2984 * will never be freed.
2985 */
2986 memcg_check_events(memcg, page);
2987 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2988 mem_cgroup_swap_statistics(memcg, true);
2989 mem_cgroup_get(memcg);
2990 }
2991 if (!mem_cgroup_is_root(memcg))
2992 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2993
2994 return memcg;
2995
2996 unlock_out:
2997 unlock_page_cgroup(pc);
2998 return NULL;
2999 }
3000
3001 void mem_cgroup_uncharge_page(struct page *page)
3002 {
3003 /* early check. */
3004 if (page_mapped(page))
3005 return;
3006 VM_BUG_ON(page->mapping && !PageAnon(page));
3007 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON);
3008 }
3009
3010 void mem_cgroup_uncharge_cache_page(struct page *page)
3011 {
3012 VM_BUG_ON(page_mapped(page));
3013 VM_BUG_ON(page->mapping);
3014 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3015 }
3016
3017 /*
3018 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3019 * In that cases, pages are freed continuously and we can expect pages
3020 * are in the same memcg. All these calls itself limits the number of
3021 * pages freed at once, then uncharge_start/end() is called properly.
3022 * This may be called prural(2) times in a context,
3023 */
3024
3025 void mem_cgroup_uncharge_start(void)
3026 {
3027 current->memcg_batch.do_batch++;
3028 /* We can do nest. */
3029 if (current->memcg_batch.do_batch == 1) {
3030 current->memcg_batch.memcg = NULL;
3031 current->memcg_batch.nr_pages = 0;
3032 current->memcg_batch.memsw_nr_pages = 0;
3033 }
3034 }
3035
3036 void mem_cgroup_uncharge_end(void)
3037 {
3038 struct memcg_batch_info *batch = &current->memcg_batch;
3039
3040 if (!batch->do_batch)
3041 return;
3042
3043 batch->do_batch--;
3044 if (batch->do_batch) /* If stacked, do nothing. */
3045 return;
3046
3047 if (!batch->memcg)
3048 return;
3049 /*
3050 * This "batch->memcg" is valid without any css_get/put etc...
3051 * bacause we hide charges behind us.
3052 */
3053 if (batch->nr_pages)
3054 res_counter_uncharge(&batch->memcg->res,
3055 batch->nr_pages * PAGE_SIZE);
3056 if (batch->memsw_nr_pages)
3057 res_counter_uncharge(&batch->memcg->memsw,
3058 batch->memsw_nr_pages * PAGE_SIZE);
3059 memcg_oom_recover(batch->memcg);
3060 /* forget this pointer (for sanity check) */
3061 batch->memcg = NULL;
3062 }
3063
3064 #ifdef CONFIG_SWAP
3065 /*
3066 * called after __delete_from_swap_cache() and drop "page" account.
3067 * memcg information is recorded to swap_cgroup of "ent"
3068 */
3069 void
3070 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3071 {
3072 struct mem_cgroup *memcg;
3073 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3074
3075 if (!swapout) /* this was a swap cache but the swap is unused ! */
3076 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3077
3078 memcg = __mem_cgroup_uncharge_common(page, ctype);
3079
3080 /*
3081 * record memcg information, if swapout && memcg != NULL,
3082 * mem_cgroup_get() was called in uncharge().
3083 */
3084 if (do_swap_account && swapout && memcg)
3085 swap_cgroup_record(ent, css_id(&memcg->css));
3086 }
3087 #endif
3088
3089 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3090 /*
3091 * called from swap_entry_free(). remove record in swap_cgroup and
3092 * uncharge "memsw" account.
3093 */
3094 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3095 {
3096 struct mem_cgroup *memcg;
3097 unsigned short id;
3098
3099 if (!do_swap_account)
3100 return;
3101
3102 id = swap_cgroup_record(ent, 0);
3103 rcu_read_lock();
3104 memcg = mem_cgroup_lookup(id);
3105 if (memcg) {
3106 /*
3107 * We uncharge this because swap is freed.
3108 * This memcg can be obsolete one. We avoid calling css_tryget
3109 */
3110 if (!mem_cgroup_is_root(memcg))
3111 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3112 mem_cgroup_swap_statistics(memcg, false);
3113 mem_cgroup_put(memcg);
3114 }
3115 rcu_read_unlock();
3116 }
3117
3118 /**
3119 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3120 * @entry: swap entry to be moved
3121 * @from: mem_cgroup which the entry is moved from
3122 * @to: mem_cgroup which the entry is moved to
3123 *
3124 * It succeeds only when the swap_cgroup's record for this entry is the same
3125 * as the mem_cgroup's id of @from.
3126 *
3127 * Returns 0 on success, -EINVAL on failure.
3128 *
3129 * The caller must have charged to @to, IOW, called res_counter_charge() about
3130 * both res and memsw, and called css_get().
3131 */
3132 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3133 struct mem_cgroup *from, struct mem_cgroup *to)
3134 {
3135 unsigned short old_id, new_id;
3136
3137 old_id = css_id(&from->css);
3138 new_id = css_id(&to->css);
3139
3140 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3141 mem_cgroup_swap_statistics(from, false);
3142 mem_cgroup_swap_statistics(to, true);
3143 /*
3144 * This function is only called from task migration context now.
3145 * It postpones res_counter and refcount handling till the end
3146 * of task migration(mem_cgroup_clear_mc()) for performance
3147 * improvement. But we cannot postpone mem_cgroup_get(to)
3148 * because if the process that has been moved to @to does
3149 * swap-in, the refcount of @to might be decreased to 0.
3150 */
3151 mem_cgroup_get(to);
3152 return 0;
3153 }
3154 return -EINVAL;
3155 }
3156 #else
3157 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3158 struct mem_cgroup *from, struct mem_cgroup *to)
3159 {
3160 return -EINVAL;
3161 }
3162 #endif
3163
3164 /*
3165 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3166 * page belongs to.
3167 */
3168 int mem_cgroup_prepare_migration(struct page *page,
3169 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3170 {
3171 struct mem_cgroup *memcg = NULL;
3172 struct page_cgroup *pc;
3173 enum charge_type ctype;
3174 int ret = 0;
3175
3176 *memcgp = NULL;
3177
3178 VM_BUG_ON(PageTransHuge(page));
3179 if (mem_cgroup_disabled())
3180 return 0;
3181
3182 pc = lookup_page_cgroup(page);
3183 lock_page_cgroup(pc);
3184 if (PageCgroupUsed(pc)) {
3185 memcg = pc->mem_cgroup;
3186 css_get(&memcg->css);
3187 /*
3188 * At migrating an anonymous page, its mapcount goes down
3189 * to 0 and uncharge() will be called. But, even if it's fully
3190 * unmapped, migration may fail and this page has to be
3191 * charged again. We set MIGRATION flag here and delay uncharge
3192 * until end_migration() is called
3193 *
3194 * Corner Case Thinking
3195 * A)
3196 * When the old page was mapped as Anon and it's unmap-and-freed
3197 * while migration was ongoing.
3198 * If unmap finds the old page, uncharge() of it will be delayed
3199 * until end_migration(). If unmap finds a new page, it's
3200 * uncharged when it make mapcount to be 1->0. If unmap code
3201 * finds swap_migration_entry, the new page will not be mapped
3202 * and end_migration() will find it(mapcount==0).
3203 *
3204 * B)
3205 * When the old page was mapped but migraion fails, the kernel
3206 * remaps it. A charge for it is kept by MIGRATION flag even
3207 * if mapcount goes down to 0. We can do remap successfully
3208 * without charging it again.
3209 *
3210 * C)
3211 * The "old" page is under lock_page() until the end of
3212 * migration, so, the old page itself will not be swapped-out.
3213 * If the new page is swapped out before end_migraton, our
3214 * hook to usual swap-out path will catch the event.
3215 */
3216 if (PageAnon(page))
3217 SetPageCgroupMigration(pc);
3218 }
3219 unlock_page_cgroup(pc);
3220 /*
3221 * If the page is not charged at this point,
3222 * we return here.
3223 */
3224 if (!memcg)
3225 return 0;
3226
3227 *memcgp = memcg;
3228 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3229 css_put(&memcg->css);/* drop extra refcnt */
3230 if (ret) {
3231 if (PageAnon(page)) {
3232 lock_page_cgroup(pc);
3233 ClearPageCgroupMigration(pc);
3234 unlock_page_cgroup(pc);
3235 /*
3236 * The old page may be fully unmapped while we kept it.
3237 */
3238 mem_cgroup_uncharge_page(page);
3239 }
3240 /* we'll need to revisit this error code (we have -EINTR) */
3241 return -ENOMEM;
3242 }
3243 /*
3244 * We charge new page before it's used/mapped. So, even if unlock_page()
3245 * is called before end_migration, we can catch all events on this new
3246 * page. In the case new page is migrated but not remapped, new page's
3247 * mapcount will be finally 0 and we call uncharge in end_migration().
3248 */
3249 if (PageAnon(page))
3250 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3251 else if (page_is_file_cache(page))
3252 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3253 else
3254 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3255 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3256 return ret;
3257 }
3258
3259 /* remove redundant charge if migration failed*/
3260 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3261 struct page *oldpage, struct page *newpage, bool migration_ok)
3262 {
3263 struct page *used, *unused;
3264 struct page_cgroup *pc;
3265 bool anon;
3266
3267 if (!memcg)
3268 return;
3269 /* blocks rmdir() */
3270 cgroup_exclude_rmdir(&memcg->css);
3271 if (!migration_ok) {
3272 used = oldpage;
3273 unused = newpage;
3274 } else {
3275 used = newpage;
3276 unused = oldpage;
3277 }
3278 /*
3279 * We disallowed uncharge of pages under migration because mapcount
3280 * of the page goes down to zero, temporarly.
3281 * Clear the flag and check the page should be charged.
3282 */
3283 pc = lookup_page_cgroup(oldpage);
3284 lock_page_cgroup(pc);
3285 ClearPageCgroupMigration(pc);
3286 unlock_page_cgroup(pc);
3287 anon = PageAnon(used);
3288 __mem_cgroup_uncharge_common(unused,
3289 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3290 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3291
3292 /*
3293 * If a page is a file cache, radix-tree replacement is very atomic
3294 * and we can skip this check. When it was an Anon page, its mapcount
3295 * goes down to 0. But because we added MIGRATION flage, it's not
3296 * uncharged yet. There are several case but page->mapcount check
3297 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3298 * check. (see prepare_charge() also)
3299 */
3300 if (anon)
3301 mem_cgroup_uncharge_page(used);
3302 /*
3303 * At migration, we may charge account against cgroup which has no
3304 * tasks.
3305 * So, rmdir()->pre_destroy() can be called while we do this charge.
3306 * In that case, we need to call pre_destroy() again. check it here.
3307 */
3308 cgroup_release_and_wakeup_rmdir(&memcg->css);
3309 }
3310
3311 /*
3312 * At replace page cache, newpage is not under any memcg but it's on
3313 * LRU. So, this function doesn't touch res_counter but handles LRU
3314 * in correct way. Both pages are locked so we cannot race with uncharge.
3315 */
3316 void mem_cgroup_replace_page_cache(struct page *oldpage,
3317 struct page *newpage)
3318 {
3319 struct mem_cgroup *memcg = NULL;
3320 struct page_cgroup *pc;
3321 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3322
3323 if (mem_cgroup_disabled())
3324 return;
3325
3326 pc = lookup_page_cgroup(oldpage);
3327 /* fix accounting on old pages */
3328 lock_page_cgroup(pc);
3329 if (PageCgroupUsed(pc)) {
3330 memcg = pc->mem_cgroup;
3331 mem_cgroup_charge_statistics(memcg, false, -1);
3332 ClearPageCgroupUsed(pc);
3333 }
3334 unlock_page_cgroup(pc);
3335
3336 /*
3337 * When called from shmem_replace_page(), in some cases the
3338 * oldpage has already been charged, and in some cases not.
3339 */
3340 if (!memcg)
3341 return;
3342
3343 if (PageSwapBacked(oldpage))
3344 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3345
3346 /*
3347 * Even if newpage->mapping was NULL before starting replacement,
3348 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3349 * LRU while we overwrite pc->mem_cgroup.
3350 */
3351 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3352 }
3353
3354 #ifdef CONFIG_DEBUG_VM
3355 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3356 {
3357 struct page_cgroup *pc;
3358
3359 pc = lookup_page_cgroup(page);
3360 /*
3361 * Can be NULL while feeding pages into the page allocator for
3362 * the first time, i.e. during boot or memory hotplug;
3363 * or when mem_cgroup_disabled().
3364 */
3365 if (likely(pc) && PageCgroupUsed(pc))
3366 return pc;
3367 return NULL;
3368 }
3369
3370 bool mem_cgroup_bad_page_check(struct page *page)
3371 {
3372 if (mem_cgroup_disabled())
3373 return false;
3374
3375 return lookup_page_cgroup_used(page) != NULL;
3376 }
3377
3378 void mem_cgroup_print_bad_page(struct page *page)
3379 {
3380 struct page_cgroup *pc;
3381
3382 pc = lookup_page_cgroup_used(page);
3383 if (pc) {
3384 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3385 pc, pc->flags, pc->mem_cgroup);
3386 }
3387 }
3388 #endif
3389
3390 static DEFINE_MUTEX(set_limit_mutex);
3391
3392 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3393 unsigned long long val)
3394 {
3395 int retry_count;
3396 u64 memswlimit, memlimit;
3397 int ret = 0;
3398 int children = mem_cgroup_count_children(memcg);
3399 u64 curusage, oldusage;
3400 int enlarge;
3401
3402 /*
3403 * For keeping hierarchical_reclaim simple, how long we should retry
3404 * is depends on callers. We set our retry-count to be function
3405 * of # of children which we should visit in this loop.
3406 */
3407 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3408
3409 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3410
3411 enlarge = 0;
3412 while (retry_count) {
3413 if (signal_pending(current)) {
3414 ret = -EINTR;
3415 break;
3416 }
3417 /*
3418 * Rather than hide all in some function, I do this in
3419 * open coded manner. You see what this really does.
3420 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3421 */
3422 mutex_lock(&set_limit_mutex);
3423 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3424 if (memswlimit < val) {
3425 ret = -EINVAL;
3426 mutex_unlock(&set_limit_mutex);
3427 break;
3428 }
3429
3430 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3431 if (memlimit < val)
3432 enlarge = 1;
3433
3434 ret = res_counter_set_limit(&memcg->res, val);
3435 if (!ret) {
3436 if (memswlimit == val)
3437 memcg->memsw_is_minimum = true;
3438 else
3439 memcg->memsw_is_minimum = false;
3440 }
3441 mutex_unlock(&set_limit_mutex);
3442
3443 if (!ret)
3444 break;
3445
3446 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3447 MEM_CGROUP_RECLAIM_SHRINK);
3448 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3449 /* Usage is reduced ? */
3450 if (curusage >= oldusage)
3451 retry_count--;
3452 else
3453 oldusage = curusage;
3454 }
3455 if (!ret && enlarge)
3456 memcg_oom_recover(memcg);
3457
3458 return ret;
3459 }
3460
3461 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3462 unsigned long long val)
3463 {
3464 int retry_count;
3465 u64 memlimit, memswlimit, oldusage, curusage;
3466 int children = mem_cgroup_count_children(memcg);
3467 int ret = -EBUSY;
3468 int enlarge = 0;
3469
3470 /* see mem_cgroup_resize_res_limit */
3471 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3472 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3473 while (retry_count) {
3474 if (signal_pending(current)) {
3475 ret = -EINTR;
3476 break;
3477 }
3478 /*
3479 * Rather than hide all in some function, I do this in
3480 * open coded manner. You see what this really does.
3481 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3482 */
3483 mutex_lock(&set_limit_mutex);
3484 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3485 if (memlimit > val) {
3486 ret = -EINVAL;
3487 mutex_unlock(&set_limit_mutex);
3488 break;
3489 }
3490 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3491 if (memswlimit < val)
3492 enlarge = 1;
3493 ret = res_counter_set_limit(&memcg->memsw, val);
3494 if (!ret) {
3495 if (memlimit == val)
3496 memcg->memsw_is_minimum = true;
3497 else
3498 memcg->memsw_is_minimum = false;
3499 }
3500 mutex_unlock(&set_limit_mutex);
3501
3502 if (!ret)
3503 break;
3504
3505 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3506 MEM_CGROUP_RECLAIM_NOSWAP |
3507 MEM_CGROUP_RECLAIM_SHRINK);
3508 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3509 /* Usage is reduced ? */
3510 if (curusage >= oldusage)
3511 retry_count--;
3512 else
3513 oldusage = curusage;
3514 }
3515 if (!ret && enlarge)
3516 memcg_oom_recover(memcg);
3517 return ret;
3518 }
3519
3520 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3521 gfp_t gfp_mask,
3522 unsigned long *total_scanned)
3523 {
3524 unsigned long nr_reclaimed = 0;
3525 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3526 unsigned long reclaimed;
3527 int loop = 0;
3528 struct mem_cgroup_tree_per_zone *mctz;
3529 unsigned long long excess;
3530 unsigned long nr_scanned;
3531
3532 if (order > 0)
3533 return 0;
3534
3535 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3536 /*
3537 * This loop can run a while, specially if mem_cgroup's continuously
3538 * keep exceeding their soft limit and putting the system under
3539 * pressure
3540 */
3541 do {
3542 if (next_mz)
3543 mz = next_mz;
3544 else
3545 mz = mem_cgroup_largest_soft_limit_node(mctz);
3546 if (!mz)
3547 break;
3548
3549 nr_scanned = 0;
3550 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3551 gfp_mask, &nr_scanned);
3552 nr_reclaimed += reclaimed;
3553 *total_scanned += nr_scanned;
3554 spin_lock(&mctz->lock);
3555
3556 /*
3557 * If we failed to reclaim anything from this memory cgroup
3558 * it is time to move on to the next cgroup
3559 */
3560 next_mz = NULL;
3561 if (!reclaimed) {
3562 do {
3563 /*
3564 * Loop until we find yet another one.
3565 *
3566 * By the time we get the soft_limit lock
3567 * again, someone might have aded the
3568 * group back on the RB tree. Iterate to
3569 * make sure we get a different mem.
3570 * mem_cgroup_largest_soft_limit_node returns
3571 * NULL if no other cgroup is present on
3572 * the tree
3573 */
3574 next_mz =
3575 __mem_cgroup_largest_soft_limit_node(mctz);
3576 if (next_mz == mz)
3577 css_put(&next_mz->memcg->css);
3578 else /* next_mz == NULL or other memcg */
3579 break;
3580 } while (1);
3581 }
3582 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3583 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3584 /*
3585 * One school of thought says that we should not add
3586 * back the node to the tree if reclaim returns 0.
3587 * But our reclaim could return 0, simply because due
3588 * to priority we are exposing a smaller subset of
3589 * memory to reclaim from. Consider this as a longer
3590 * term TODO.
3591 */
3592 /* If excess == 0, no tree ops */
3593 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3594 spin_unlock(&mctz->lock);
3595 css_put(&mz->memcg->css);
3596 loop++;
3597 /*
3598 * Could not reclaim anything and there are no more
3599 * mem cgroups to try or we seem to be looping without
3600 * reclaiming anything.
3601 */
3602 if (!nr_reclaimed &&
3603 (next_mz == NULL ||
3604 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3605 break;
3606 } while (!nr_reclaimed);
3607 if (next_mz)
3608 css_put(&next_mz->memcg->css);
3609 return nr_reclaimed;
3610 }
3611
3612 /*
3613 * This routine traverse page_cgroup in given list and drop them all.
3614 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3615 */
3616 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3617 int node, int zid, enum lru_list lru)
3618 {
3619 struct mem_cgroup_per_zone *mz;
3620 unsigned long flags, loop;
3621 struct list_head *list;
3622 struct page *busy;
3623 struct zone *zone;
3624 int ret = 0;
3625
3626 zone = &NODE_DATA(node)->node_zones[zid];
3627 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3628 list = &mz->lruvec.lists[lru];
3629
3630 loop = mz->lru_size[lru];
3631 /* give some margin against EBUSY etc...*/
3632 loop += 256;
3633 busy = NULL;
3634 while (loop--) {
3635 struct page_cgroup *pc;
3636 struct page *page;
3637
3638 ret = 0;
3639 spin_lock_irqsave(&zone->lru_lock, flags);
3640 if (list_empty(list)) {
3641 spin_unlock_irqrestore(&zone->lru_lock, flags);
3642 break;
3643 }
3644 page = list_entry(list->prev, struct page, lru);
3645 if (busy == page) {
3646 list_move(&page->lru, list);
3647 busy = NULL;
3648 spin_unlock_irqrestore(&zone->lru_lock, flags);
3649 continue;
3650 }
3651 spin_unlock_irqrestore(&zone->lru_lock, flags);
3652
3653 pc = lookup_page_cgroup(page);
3654
3655 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3656 if (ret == -ENOMEM || ret == -EINTR)
3657 break;
3658
3659 if (ret == -EBUSY || ret == -EINVAL) {
3660 /* found lock contention or "pc" is obsolete. */
3661 busy = page;
3662 cond_resched();
3663 } else
3664 busy = NULL;
3665 }
3666
3667 if (!ret && !list_empty(list))
3668 return -EBUSY;
3669 return ret;
3670 }
3671
3672 /*
3673 * make mem_cgroup's charge to be 0 if there is no task.
3674 * This enables deleting this mem_cgroup.
3675 */
3676 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3677 {
3678 int ret;
3679 int node, zid, shrink;
3680 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3681 struct cgroup *cgrp = memcg->css.cgroup;
3682
3683 css_get(&memcg->css);
3684
3685 shrink = 0;
3686 /* should free all ? */
3687 if (free_all)
3688 goto try_to_free;
3689 move_account:
3690 do {
3691 ret = -EBUSY;
3692 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3693 goto out;
3694 /* This is for making all *used* pages to be on LRU. */
3695 lru_add_drain_all();
3696 drain_all_stock_sync(memcg);
3697 ret = 0;
3698 mem_cgroup_start_move(memcg);
3699 for_each_node_state(node, N_HIGH_MEMORY) {
3700 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3701 enum lru_list lru;
3702 for_each_lru(lru) {
3703 ret = mem_cgroup_force_empty_list(memcg,
3704 node, zid, lru);
3705 if (ret)
3706 break;
3707 }
3708 }
3709 if (ret)
3710 break;
3711 }
3712 mem_cgroup_end_move(memcg);
3713 memcg_oom_recover(memcg);
3714 /* it seems parent cgroup doesn't have enough mem */
3715 if (ret == -ENOMEM)
3716 goto try_to_free;
3717 cond_resched();
3718 /* "ret" should also be checked to ensure all lists are empty. */
3719 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3720 out:
3721 css_put(&memcg->css);
3722 return ret;
3723
3724 try_to_free:
3725 /* returns EBUSY if there is a task or if we come here twice. */
3726 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3727 ret = -EBUSY;
3728 goto out;
3729 }
3730 /* we call try-to-free pages for make this cgroup empty */
3731 lru_add_drain_all();
3732 /* try to free all pages in this cgroup */
3733 shrink = 1;
3734 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3735 int progress;
3736
3737 if (signal_pending(current)) {
3738 ret = -EINTR;
3739 goto out;
3740 }
3741 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3742 false);
3743 if (!progress) {
3744 nr_retries--;
3745 /* maybe some writeback is necessary */
3746 congestion_wait(BLK_RW_ASYNC, HZ/10);
3747 }
3748
3749 }
3750 lru_add_drain();
3751 /* try move_account...there may be some *locked* pages. */
3752 goto move_account;
3753 }
3754
3755 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3756 {
3757 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3758 }
3759
3760
3761 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3762 {
3763 return mem_cgroup_from_cont(cont)->use_hierarchy;
3764 }
3765
3766 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3767 u64 val)
3768 {
3769 int retval = 0;
3770 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3771 struct cgroup *parent = cont->parent;
3772 struct mem_cgroup *parent_memcg = NULL;
3773
3774 if (parent)
3775 parent_memcg = mem_cgroup_from_cont(parent);
3776
3777 cgroup_lock();
3778 /*
3779 * If parent's use_hierarchy is set, we can't make any modifications
3780 * in the child subtrees. If it is unset, then the change can
3781 * occur, provided the current cgroup has no children.
3782 *
3783 * For the root cgroup, parent_mem is NULL, we allow value to be
3784 * set if there are no children.
3785 */
3786 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3787 (val == 1 || val == 0)) {
3788 if (list_empty(&cont->children))
3789 memcg->use_hierarchy = val;
3790 else
3791 retval = -EBUSY;
3792 } else
3793 retval = -EINVAL;
3794 cgroup_unlock();
3795
3796 return retval;
3797 }
3798
3799
3800 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3801 enum mem_cgroup_stat_index idx)
3802 {
3803 struct mem_cgroup *iter;
3804 long val = 0;
3805
3806 /* Per-cpu values can be negative, use a signed accumulator */
3807 for_each_mem_cgroup_tree(iter, memcg)
3808 val += mem_cgroup_read_stat(iter, idx);
3809
3810 if (val < 0) /* race ? */
3811 val = 0;
3812 return val;
3813 }
3814
3815 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3816 {
3817 u64 val;
3818
3819 if (!mem_cgroup_is_root(memcg)) {
3820 if (!swap)
3821 return res_counter_read_u64(&memcg->res, RES_USAGE);
3822 else
3823 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3824 }
3825
3826 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3827 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3828
3829 if (swap)
3830 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3831
3832 return val << PAGE_SHIFT;
3833 }
3834
3835 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3836 struct file *file, char __user *buf,
3837 size_t nbytes, loff_t *ppos)
3838 {
3839 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3840 char str[64];
3841 u64 val;
3842 int type, name, len;
3843
3844 type = MEMFILE_TYPE(cft->private);
3845 name = MEMFILE_ATTR(cft->private);
3846
3847 if (!do_swap_account && type == _MEMSWAP)
3848 return -EOPNOTSUPP;
3849
3850 switch (type) {
3851 case _MEM:
3852 if (name == RES_USAGE)
3853 val = mem_cgroup_usage(memcg, false);
3854 else
3855 val = res_counter_read_u64(&memcg->res, name);
3856 break;
3857 case _MEMSWAP:
3858 if (name == RES_USAGE)
3859 val = mem_cgroup_usage(memcg, true);
3860 else
3861 val = res_counter_read_u64(&memcg->memsw, name);
3862 break;
3863 default:
3864 BUG();
3865 }
3866
3867 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3868 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3869 }
3870 /*
3871 * The user of this function is...
3872 * RES_LIMIT.
3873 */
3874 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3875 const char *buffer)
3876 {
3877 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3878 int type, name;
3879 unsigned long long val;
3880 int ret;
3881
3882 type = MEMFILE_TYPE(cft->private);
3883 name = MEMFILE_ATTR(cft->private);
3884
3885 if (!do_swap_account && type == _MEMSWAP)
3886 return -EOPNOTSUPP;
3887
3888 switch (name) {
3889 case RES_LIMIT:
3890 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3891 ret = -EINVAL;
3892 break;
3893 }
3894 /* This function does all necessary parse...reuse it */
3895 ret = res_counter_memparse_write_strategy(buffer, &val);
3896 if (ret)
3897 break;
3898 if (type == _MEM)
3899 ret = mem_cgroup_resize_limit(memcg, val);
3900 else
3901 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3902 break;
3903 case RES_SOFT_LIMIT:
3904 ret = res_counter_memparse_write_strategy(buffer, &val);
3905 if (ret)
3906 break;
3907 /*
3908 * For memsw, soft limits are hard to implement in terms
3909 * of semantics, for now, we support soft limits for
3910 * control without swap
3911 */
3912 if (type == _MEM)
3913 ret = res_counter_set_soft_limit(&memcg->res, val);
3914 else
3915 ret = -EINVAL;
3916 break;
3917 default:
3918 ret = -EINVAL; /* should be BUG() ? */
3919 break;
3920 }
3921 return ret;
3922 }
3923
3924 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3925 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3926 {
3927 struct cgroup *cgroup;
3928 unsigned long long min_limit, min_memsw_limit, tmp;
3929
3930 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3931 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3932 cgroup = memcg->css.cgroup;
3933 if (!memcg->use_hierarchy)
3934 goto out;
3935
3936 while (cgroup->parent) {
3937 cgroup = cgroup->parent;
3938 memcg = mem_cgroup_from_cont(cgroup);
3939 if (!memcg->use_hierarchy)
3940 break;
3941 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3942 min_limit = min(min_limit, tmp);
3943 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3944 min_memsw_limit = min(min_memsw_limit, tmp);
3945 }
3946 out:
3947 *mem_limit = min_limit;
3948 *memsw_limit = min_memsw_limit;
3949 }
3950
3951 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3952 {
3953 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3954 int type, name;
3955
3956 type = MEMFILE_TYPE(event);
3957 name = MEMFILE_ATTR(event);
3958
3959 if (!do_swap_account && type == _MEMSWAP)
3960 return -EOPNOTSUPP;
3961
3962 switch (name) {
3963 case RES_MAX_USAGE:
3964 if (type == _MEM)
3965 res_counter_reset_max(&memcg->res);
3966 else
3967 res_counter_reset_max(&memcg->memsw);
3968 break;
3969 case RES_FAILCNT:
3970 if (type == _MEM)
3971 res_counter_reset_failcnt(&memcg->res);
3972 else
3973 res_counter_reset_failcnt(&memcg->memsw);
3974 break;
3975 }
3976
3977 return 0;
3978 }
3979
3980 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3981 struct cftype *cft)
3982 {
3983 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3984 }
3985
3986 #ifdef CONFIG_MMU
3987 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3988 struct cftype *cft, u64 val)
3989 {
3990 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3991
3992 if (val >= (1 << NR_MOVE_TYPE))
3993 return -EINVAL;
3994 /*
3995 * We check this value several times in both in can_attach() and
3996 * attach(), so we need cgroup lock to prevent this value from being
3997 * inconsistent.
3998 */
3999 cgroup_lock();
4000 memcg->move_charge_at_immigrate = val;
4001 cgroup_unlock();
4002
4003 return 0;
4004 }
4005 #else
4006 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4007 struct cftype *cft, u64 val)
4008 {
4009 return -ENOSYS;
4010 }
4011 #endif
4012
4013 #ifdef CONFIG_NUMA
4014 static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4015 struct seq_file *m)
4016 {
4017 int nid;
4018 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4019 unsigned long node_nr;
4020 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4021
4022 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4023 seq_printf(m, "total=%lu", total_nr);
4024 for_each_node_state(nid, N_HIGH_MEMORY) {
4025 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4026 seq_printf(m, " N%d=%lu", nid, node_nr);
4027 }
4028 seq_putc(m, '\n');
4029
4030 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4031 seq_printf(m, "file=%lu", file_nr);
4032 for_each_node_state(nid, N_HIGH_MEMORY) {
4033 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4034 LRU_ALL_FILE);
4035 seq_printf(m, " N%d=%lu", nid, node_nr);
4036 }
4037 seq_putc(m, '\n');
4038
4039 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4040 seq_printf(m, "anon=%lu", anon_nr);
4041 for_each_node_state(nid, N_HIGH_MEMORY) {
4042 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4043 LRU_ALL_ANON);
4044 seq_printf(m, " N%d=%lu", nid, node_nr);
4045 }
4046 seq_putc(m, '\n');
4047
4048 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4049 seq_printf(m, "unevictable=%lu", unevictable_nr);
4050 for_each_node_state(nid, N_HIGH_MEMORY) {
4051 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4052 BIT(LRU_UNEVICTABLE));
4053 seq_printf(m, " N%d=%lu", nid, node_nr);
4054 }
4055 seq_putc(m, '\n');
4056 return 0;
4057 }
4058 #endif /* CONFIG_NUMA */
4059
4060 static const char * const mem_cgroup_lru_names[] = {
4061 "inactive_anon",
4062 "active_anon",
4063 "inactive_file",
4064 "active_file",
4065 "unevictable",
4066 };
4067
4068 static inline void mem_cgroup_lru_names_not_uptodate(void)
4069 {
4070 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4071 }
4072
4073 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4074 struct seq_file *m)
4075 {
4076 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4077 struct mem_cgroup *mi;
4078 unsigned int i;
4079
4080 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4081 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4082 continue;
4083 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4084 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4085 }
4086
4087 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4088 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4089 mem_cgroup_read_events(memcg, i));
4090
4091 for (i = 0; i < NR_LRU_LISTS; i++)
4092 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4093 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4094
4095 /* Hierarchical information */
4096 {
4097 unsigned long long limit, memsw_limit;
4098 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4099 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4100 if (do_swap_account)
4101 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4102 memsw_limit);
4103 }
4104
4105 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4106 long long val = 0;
4107
4108 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4109 continue;
4110 for_each_mem_cgroup_tree(mi, memcg)
4111 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4112 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4113 }
4114
4115 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4116 unsigned long long val = 0;
4117
4118 for_each_mem_cgroup_tree(mi, memcg)
4119 val += mem_cgroup_read_events(mi, i);
4120 seq_printf(m, "total_%s %llu\n",
4121 mem_cgroup_events_names[i], val);
4122 }
4123
4124 for (i = 0; i < NR_LRU_LISTS; i++) {
4125 unsigned long long val = 0;
4126
4127 for_each_mem_cgroup_tree(mi, memcg)
4128 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4129 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4130 }
4131
4132 #ifdef CONFIG_DEBUG_VM
4133 {
4134 int nid, zid;
4135 struct mem_cgroup_per_zone *mz;
4136 struct zone_reclaim_stat *rstat;
4137 unsigned long recent_rotated[2] = {0, 0};
4138 unsigned long recent_scanned[2] = {0, 0};
4139
4140 for_each_online_node(nid)
4141 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4142 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4143 rstat = &mz->lruvec.reclaim_stat;
4144
4145 recent_rotated[0] += rstat->recent_rotated[0];
4146 recent_rotated[1] += rstat->recent_rotated[1];
4147 recent_scanned[0] += rstat->recent_scanned[0];
4148 recent_scanned[1] += rstat->recent_scanned[1];
4149 }
4150 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4151 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4152 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4153 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4154 }
4155 #endif
4156
4157 return 0;
4158 }
4159
4160 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4161 {
4162 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4163
4164 return mem_cgroup_swappiness(memcg);
4165 }
4166
4167 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4168 u64 val)
4169 {
4170 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4171 struct mem_cgroup *parent;
4172
4173 if (val > 100)
4174 return -EINVAL;
4175
4176 if (cgrp->parent == NULL)
4177 return -EINVAL;
4178
4179 parent = mem_cgroup_from_cont(cgrp->parent);
4180
4181 cgroup_lock();
4182
4183 /* If under hierarchy, only empty-root can set this value */
4184 if ((parent->use_hierarchy) ||
4185 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4186 cgroup_unlock();
4187 return -EINVAL;
4188 }
4189
4190 memcg->swappiness = val;
4191
4192 cgroup_unlock();
4193
4194 return 0;
4195 }
4196
4197 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4198 {
4199 struct mem_cgroup_threshold_ary *t;
4200 u64 usage;
4201 int i;
4202
4203 rcu_read_lock();
4204 if (!swap)
4205 t = rcu_dereference(memcg->thresholds.primary);
4206 else
4207 t = rcu_dereference(memcg->memsw_thresholds.primary);
4208
4209 if (!t)
4210 goto unlock;
4211
4212 usage = mem_cgroup_usage(memcg, swap);
4213
4214 /*
4215 * current_threshold points to threshold just below or equal to usage.
4216 * If it's not true, a threshold was crossed after last
4217 * call of __mem_cgroup_threshold().
4218 */
4219 i = t->current_threshold;
4220
4221 /*
4222 * Iterate backward over array of thresholds starting from
4223 * current_threshold and check if a threshold is crossed.
4224 * If none of thresholds below usage is crossed, we read
4225 * only one element of the array here.
4226 */
4227 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4228 eventfd_signal(t->entries[i].eventfd, 1);
4229
4230 /* i = current_threshold + 1 */
4231 i++;
4232
4233 /*
4234 * Iterate forward over array of thresholds starting from
4235 * current_threshold+1 and check if a threshold is crossed.
4236 * If none of thresholds above usage is crossed, we read
4237 * only one element of the array here.
4238 */
4239 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4240 eventfd_signal(t->entries[i].eventfd, 1);
4241
4242 /* Update current_threshold */
4243 t->current_threshold = i - 1;
4244 unlock:
4245 rcu_read_unlock();
4246 }
4247
4248 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4249 {
4250 while (memcg) {
4251 __mem_cgroup_threshold(memcg, false);
4252 if (do_swap_account)
4253 __mem_cgroup_threshold(memcg, true);
4254
4255 memcg = parent_mem_cgroup(memcg);
4256 }
4257 }
4258
4259 static int compare_thresholds(const void *a, const void *b)
4260 {
4261 const struct mem_cgroup_threshold *_a = a;
4262 const struct mem_cgroup_threshold *_b = b;
4263
4264 return _a->threshold - _b->threshold;
4265 }
4266
4267 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4268 {
4269 struct mem_cgroup_eventfd_list *ev;
4270
4271 list_for_each_entry(ev, &memcg->oom_notify, list)
4272 eventfd_signal(ev->eventfd, 1);
4273 return 0;
4274 }
4275
4276 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4277 {
4278 struct mem_cgroup *iter;
4279
4280 for_each_mem_cgroup_tree(iter, memcg)
4281 mem_cgroup_oom_notify_cb(iter);
4282 }
4283
4284 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4285 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4286 {
4287 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4288 struct mem_cgroup_thresholds *thresholds;
4289 struct mem_cgroup_threshold_ary *new;
4290 int type = MEMFILE_TYPE(cft->private);
4291 u64 threshold, usage;
4292 int i, size, ret;
4293
4294 ret = res_counter_memparse_write_strategy(args, &threshold);
4295 if (ret)
4296 return ret;
4297
4298 mutex_lock(&memcg->thresholds_lock);
4299
4300 if (type == _MEM)
4301 thresholds = &memcg->thresholds;
4302 else if (type == _MEMSWAP)
4303 thresholds = &memcg->memsw_thresholds;
4304 else
4305 BUG();
4306
4307 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4308
4309 /* Check if a threshold crossed before adding a new one */
4310 if (thresholds->primary)
4311 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4312
4313 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4314
4315 /* Allocate memory for new array of thresholds */
4316 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4317 GFP_KERNEL);
4318 if (!new) {
4319 ret = -ENOMEM;
4320 goto unlock;
4321 }
4322 new->size = size;
4323
4324 /* Copy thresholds (if any) to new array */
4325 if (thresholds->primary) {
4326 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4327 sizeof(struct mem_cgroup_threshold));
4328 }
4329
4330 /* Add new threshold */
4331 new->entries[size - 1].eventfd = eventfd;
4332 new->entries[size - 1].threshold = threshold;
4333
4334 /* Sort thresholds. Registering of new threshold isn't time-critical */
4335 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4336 compare_thresholds, NULL);
4337
4338 /* Find current threshold */
4339 new->current_threshold = -1;
4340 for (i = 0; i < size; i++) {
4341 if (new->entries[i].threshold <= usage) {
4342 /*
4343 * new->current_threshold will not be used until
4344 * rcu_assign_pointer(), so it's safe to increment
4345 * it here.
4346 */
4347 ++new->current_threshold;
4348 } else
4349 break;
4350 }
4351
4352 /* Free old spare buffer and save old primary buffer as spare */
4353 kfree(thresholds->spare);
4354 thresholds->spare = thresholds->primary;
4355
4356 rcu_assign_pointer(thresholds->primary, new);
4357
4358 /* To be sure that nobody uses thresholds */
4359 synchronize_rcu();
4360
4361 unlock:
4362 mutex_unlock(&memcg->thresholds_lock);
4363
4364 return ret;
4365 }
4366
4367 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4368 struct cftype *cft, struct eventfd_ctx *eventfd)
4369 {
4370 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4371 struct mem_cgroup_thresholds *thresholds;
4372 struct mem_cgroup_threshold_ary *new;
4373 int type = MEMFILE_TYPE(cft->private);
4374 u64 usage;
4375 int i, j, size;
4376
4377 mutex_lock(&memcg->thresholds_lock);
4378 if (type == _MEM)
4379 thresholds = &memcg->thresholds;
4380 else if (type == _MEMSWAP)
4381 thresholds = &memcg->memsw_thresholds;
4382 else
4383 BUG();
4384
4385 if (!thresholds->primary)
4386 goto unlock;
4387
4388 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4389
4390 /* Check if a threshold crossed before removing */
4391 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4392
4393 /* Calculate new number of threshold */
4394 size = 0;
4395 for (i = 0; i < thresholds->primary->size; i++) {
4396 if (thresholds->primary->entries[i].eventfd != eventfd)
4397 size++;
4398 }
4399
4400 new = thresholds->spare;
4401
4402 /* Set thresholds array to NULL if we don't have thresholds */
4403 if (!size) {
4404 kfree(new);
4405 new = NULL;
4406 goto swap_buffers;
4407 }
4408
4409 new->size = size;
4410
4411 /* Copy thresholds and find current threshold */
4412 new->current_threshold = -1;
4413 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4414 if (thresholds->primary->entries[i].eventfd == eventfd)
4415 continue;
4416
4417 new->entries[j] = thresholds->primary->entries[i];
4418 if (new->entries[j].threshold <= usage) {
4419 /*
4420 * new->current_threshold will not be used
4421 * until rcu_assign_pointer(), so it's safe to increment
4422 * it here.
4423 */
4424 ++new->current_threshold;
4425 }
4426 j++;
4427 }
4428
4429 swap_buffers:
4430 /* Swap primary and spare array */
4431 thresholds->spare = thresholds->primary;
4432 /* If all events are unregistered, free the spare array */
4433 if (!new) {
4434 kfree(thresholds->spare);
4435 thresholds->spare = NULL;
4436 }
4437
4438 rcu_assign_pointer(thresholds->primary, new);
4439
4440 /* To be sure that nobody uses thresholds */
4441 synchronize_rcu();
4442 unlock:
4443 mutex_unlock(&memcg->thresholds_lock);
4444 }
4445
4446 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4447 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4448 {
4449 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4450 struct mem_cgroup_eventfd_list *event;
4451 int type = MEMFILE_TYPE(cft->private);
4452
4453 BUG_ON(type != _OOM_TYPE);
4454 event = kmalloc(sizeof(*event), GFP_KERNEL);
4455 if (!event)
4456 return -ENOMEM;
4457
4458 spin_lock(&memcg_oom_lock);
4459
4460 event->eventfd = eventfd;
4461 list_add(&event->list, &memcg->oom_notify);
4462
4463 /* already in OOM ? */
4464 if (atomic_read(&memcg->under_oom))
4465 eventfd_signal(eventfd, 1);
4466 spin_unlock(&memcg_oom_lock);
4467
4468 return 0;
4469 }
4470
4471 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4472 struct cftype *cft, struct eventfd_ctx *eventfd)
4473 {
4474 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4475 struct mem_cgroup_eventfd_list *ev, *tmp;
4476 int type = MEMFILE_TYPE(cft->private);
4477
4478 BUG_ON(type != _OOM_TYPE);
4479
4480 spin_lock(&memcg_oom_lock);
4481
4482 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4483 if (ev->eventfd == eventfd) {
4484 list_del(&ev->list);
4485 kfree(ev);
4486 }
4487 }
4488
4489 spin_unlock(&memcg_oom_lock);
4490 }
4491
4492 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4493 struct cftype *cft, struct cgroup_map_cb *cb)
4494 {
4495 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4496
4497 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4498
4499 if (atomic_read(&memcg->under_oom))
4500 cb->fill(cb, "under_oom", 1);
4501 else
4502 cb->fill(cb, "under_oom", 0);
4503 return 0;
4504 }
4505
4506 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4507 struct cftype *cft, u64 val)
4508 {
4509 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4510 struct mem_cgroup *parent;
4511
4512 /* cannot set to root cgroup and only 0 and 1 are allowed */
4513 if (!cgrp->parent || !((val == 0) || (val == 1)))
4514 return -EINVAL;
4515
4516 parent = mem_cgroup_from_cont(cgrp->parent);
4517
4518 cgroup_lock();
4519 /* oom-kill-disable is a flag for subhierarchy. */
4520 if ((parent->use_hierarchy) ||
4521 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4522 cgroup_unlock();
4523 return -EINVAL;
4524 }
4525 memcg->oom_kill_disable = val;
4526 if (!val)
4527 memcg_oom_recover(memcg);
4528 cgroup_unlock();
4529 return 0;
4530 }
4531
4532 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4533 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4534 {
4535 return mem_cgroup_sockets_init(memcg, ss);
4536 };
4537
4538 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4539 {
4540 mem_cgroup_sockets_destroy(memcg);
4541 }
4542 #else
4543 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4544 {
4545 return 0;
4546 }
4547
4548 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4549 {
4550 }
4551 #endif
4552
4553 static struct cftype mem_cgroup_files[] = {
4554 {
4555 .name = "usage_in_bytes",
4556 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4557 .read = mem_cgroup_read,
4558 .register_event = mem_cgroup_usage_register_event,
4559 .unregister_event = mem_cgroup_usage_unregister_event,
4560 },
4561 {
4562 .name = "max_usage_in_bytes",
4563 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4564 .trigger = mem_cgroup_reset,
4565 .read = mem_cgroup_read,
4566 },
4567 {
4568 .name = "limit_in_bytes",
4569 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4570 .write_string = mem_cgroup_write,
4571 .read = mem_cgroup_read,
4572 },
4573 {
4574 .name = "soft_limit_in_bytes",
4575 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4576 .write_string = mem_cgroup_write,
4577 .read = mem_cgroup_read,
4578 },
4579 {
4580 .name = "failcnt",
4581 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4582 .trigger = mem_cgroup_reset,
4583 .read = mem_cgroup_read,
4584 },
4585 {
4586 .name = "stat",
4587 .read_seq_string = mem_control_stat_show,
4588 },
4589 {
4590 .name = "force_empty",
4591 .trigger = mem_cgroup_force_empty_write,
4592 },
4593 {
4594 .name = "use_hierarchy",
4595 .write_u64 = mem_cgroup_hierarchy_write,
4596 .read_u64 = mem_cgroup_hierarchy_read,
4597 },
4598 {
4599 .name = "swappiness",
4600 .read_u64 = mem_cgroup_swappiness_read,
4601 .write_u64 = mem_cgroup_swappiness_write,
4602 },
4603 {
4604 .name = "move_charge_at_immigrate",
4605 .read_u64 = mem_cgroup_move_charge_read,
4606 .write_u64 = mem_cgroup_move_charge_write,
4607 },
4608 {
4609 .name = "oom_control",
4610 .read_map = mem_cgroup_oom_control_read,
4611 .write_u64 = mem_cgroup_oom_control_write,
4612 .register_event = mem_cgroup_oom_register_event,
4613 .unregister_event = mem_cgroup_oom_unregister_event,
4614 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4615 },
4616 #ifdef CONFIG_NUMA
4617 {
4618 .name = "numa_stat",
4619 .read_seq_string = mem_control_numa_stat_show,
4620 },
4621 #endif
4622 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4623 {
4624 .name = "memsw.usage_in_bytes",
4625 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4626 .read = mem_cgroup_read,
4627 .register_event = mem_cgroup_usage_register_event,
4628 .unregister_event = mem_cgroup_usage_unregister_event,
4629 },
4630 {
4631 .name = "memsw.max_usage_in_bytes",
4632 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4633 .trigger = mem_cgroup_reset,
4634 .read = mem_cgroup_read,
4635 },
4636 {
4637 .name = "memsw.limit_in_bytes",
4638 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4639 .write_string = mem_cgroup_write,
4640 .read = mem_cgroup_read,
4641 },
4642 {
4643 .name = "memsw.failcnt",
4644 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4645 .trigger = mem_cgroup_reset,
4646 .read = mem_cgroup_read,
4647 },
4648 #endif
4649 { }, /* terminate */
4650 };
4651
4652 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4653 {
4654 struct mem_cgroup_per_node *pn;
4655 struct mem_cgroup_per_zone *mz;
4656 int zone, tmp = node;
4657 /*
4658 * This routine is called against possible nodes.
4659 * But it's BUG to call kmalloc() against offline node.
4660 *
4661 * TODO: this routine can waste much memory for nodes which will
4662 * never be onlined. It's better to use memory hotplug callback
4663 * function.
4664 */
4665 if (!node_state(node, N_NORMAL_MEMORY))
4666 tmp = -1;
4667 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4668 if (!pn)
4669 return 1;
4670
4671 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4672 mz = &pn->zoneinfo[zone];
4673 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4674 mz->usage_in_excess = 0;
4675 mz->on_tree = false;
4676 mz->memcg = memcg;
4677 }
4678 memcg->info.nodeinfo[node] = pn;
4679 return 0;
4680 }
4681
4682 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4683 {
4684 kfree(memcg->info.nodeinfo[node]);
4685 }
4686
4687 static struct mem_cgroup *mem_cgroup_alloc(void)
4688 {
4689 struct mem_cgroup *memcg;
4690 int size = sizeof(struct mem_cgroup);
4691
4692 /* Can be very big if MAX_NUMNODES is very big */
4693 if (size < PAGE_SIZE)
4694 memcg = kzalloc(size, GFP_KERNEL);
4695 else
4696 memcg = vzalloc(size);
4697
4698 if (!memcg)
4699 return NULL;
4700
4701 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4702 if (!memcg->stat)
4703 goto out_free;
4704 spin_lock_init(&memcg->pcp_counter_lock);
4705 return memcg;
4706
4707 out_free:
4708 if (size < PAGE_SIZE)
4709 kfree(memcg);
4710 else
4711 vfree(memcg);
4712 return NULL;
4713 }
4714
4715 /*
4716 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4717 * but in process context. The work_freeing structure is overlaid
4718 * on the rcu_freeing structure, which itself is overlaid on memsw.
4719 */
4720 static void free_work(struct work_struct *work)
4721 {
4722 struct mem_cgroup *memcg;
4723 int size = sizeof(struct mem_cgroup);
4724
4725 memcg = container_of(work, struct mem_cgroup, work_freeing);
4726 /*
4727 * We need to make sure that (at least for now), the jump label
4728 * destruction code runs outside of the cgroup lock. This is because
4729 * get_online_cpus(), which is called from the static_branch update,
4730 * can't be called inside the cgroup_lock. cpusets are the ones
4731 * enforcing this dependency, so if they ever change, we might as well.
4732 *
4733 * schedule_work() will guarantee this happens. Be careful if you need
4734 * to move this code around, and make sure it is outside
4735 * the cgroup_lock.
4736 */
4737 disarm_sock_keys(memcg);
4738 if (size < PAGE_SIZE)
4739 kfree(memcg);
4740 else
4741 vfree(memcg);
4742 }
4743
4744 static void free_rcu(struct rcu_head *rcu_head)
4745 {
4746 struct mem_cgroup *memcg;
4747
4748 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4749 INIT_WORK(&memcg->work_freeing, free_work);
4750 schedule_work(&memcg->work_freeing);
4751 }
4752
4753 /*
4754 * At destroying mem_cgroup, references from swap_cgroup can remain.
4755 * (scanning all at force_empty is too costly...)
4756 *
4757 * Instead of clearing all references at force_empty, we remember
4758 * the number of reference from swap_cgroup and free mem_cgroup when
4759 * it goes down to 0.
4760 *
4761 * Removal of cgroup itself succeeds regardless of refs from swap.
4762 */
4763
4764 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4765 {
4766 int node;
4767
4768 mem_cgroup_remove_from_trees(memcg);
4769 free_css_id(&mem_cgroup_subsys, &memcg->css);
4770
4771 for_each_node(node)
4772 free_mem_cgroup_per_zone_info(memcg, node);
4773
4774 free_percpu(memcg->stat);
4775 call_rcu(&memcg->rcu_freeing, free_rcu);
4776 }
4777
4778 static void mem_cgroup_get(struct mem_cgroup *memcg)
4779 {
4780 atomic_inc(&memcg->refcnt);
4781 }
4782
4783 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4784 {
4785 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4786 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4787 __mem_cgroup_free(memcg);
4788 if (parent)
4789 mem_cgroup_put(parent);
4790 }
4791 }
4792
4793 static void mem_cgroup_put(struct mem_cgroup *memcg)
4794 {
4795 __mem_cgroup_put(memcg, 1);
4796 }
4797
4798 /*
4799 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4800 */
4801 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4802 {
4803 if (!memcg->res.parent)
4804 return NULL;
4805 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4806 }
4807 EXPORT_SYMBOL(parent_mem_cgroup);
4808
4809 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4810 static void __init enable_swap_cgroup(void)
4811 {
4812 if (!mem_cgroup_disabled() && really_do_swap_account)
4813 do_swap_account = 1;
4814 }
4815 #else
4816 static void __init enable_swap_cgroup(void)
4817 {
4818 }
4819 #endif
4820
4821 static int mem_cgroup_soft_limit_tree_init(void)
4822 {
4823 struct mem_cgroup_tree_per_node *rtpn;
4824 struct mem_cgroup_tree_per_zone *rtpz;
4825 int tmp, node, zone;
4826
4827 for_each_node(node) {
4828 tmp = node;
4829 if (!node_state(node, N_NORMAL_MEMORY))
4830 tmp = -1;
4831 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4832 if (!rtpn)
4833 goto err_cleanup;
4834
4835 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4836
4837 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4838 rtpz = &rtpn->rb_tree_per_zone[zone];
4839 rtpz->rb_root = RB_ROOT;
4840 spin_lock_init(&rtpz->lock);
4841 }
4842 }
4843 return 0;
4844
4845 err_cleanup:
4846 for_each_node(node) {
4847 if (!soft_limit_tree.rb_tree_per_node[node])
4848 break;
4849 kfree(soft_limit_tree.rb_tree_per_node[node]);
4850 soft_limit_tree.rb_tree_per_node[node] = NULL;
4851 }
4852 return 1;
4853
4854 }
4855
4856 static struct cgroup_subsys_state * __ref
4857 mem_cgroup_create(struct cgroup *cont)
4858 {
4859 struct mem_cgroup *memcg, *parent;
4860 long error = -ENOMEM;
4861 int node;
4862
4863 memcg = mem_cgroup_alloc();
4864 if (!memcg)
4865 return ERR_PTR(error);
4866
4867 for_each_node(node)
4868 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4869 goto free_out;
4870
4871 /* root ? */
4872 if (cont->parent == NULL) {
4873 int cpu;
4874 enable_swap_cgroup();
4875 parent = NULL;
4876 if (mem_cgroup_soft_limit_tree_init())
4877 goto free_out;
4878 root_mem_cgroup = memcg;
4879 for_each_possible_cpu(cpu) {
4880 struct memcg_stock_pcp *stock =
4881 &per_cpu(memcg_stock, cpu);
4882 INIT_WORK(&stock->work, drain_local_stock);
4883 }
4884 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4885 } else {
4886 parent = mem_cgroup_from_cont(cont->parent);
4887 memcg->use_hierarchy = parent->use_hierarchy;
4888 memcg->oom_kill_disable = parent->oom_kill_disable;
4889 }
4890
4891 if (parent && parent->use_hierarchy) {
4892 res_counter_init(&memcg->res, &parent->res);
4893 res_counter_init(&memcg->memsw, &parent->memsw);
4894 /*
4895 * We increment refcnt of the parent to ensure that we can
4896 * safely access it on res_counter_charge/uncharge.
4897 * This refcnt will be decremented when freeing this
4898 * mem_cgroup(see mem_cgroup_put).
4899 */
4900 mem_cgroup_get(parent);
4901 } else {
4902 res_counter_init(&memcg->res, NULL);
4903 res_counter_init(&memcg->memsw, NULL);
4904 }
4905 memcg->last_scanned_node = MAX_NUMNODES;
4906 INIT_LIST_HEAD(&memcg->oom_notify);
4907
4908 if (parent)
4909 memcg->swappiness = mem_cgroup_swappiness(parent);
4910 atomic_set(&memcg->refcnt, 1);
4911 memcg->move_charge_at_immigrate = 0;
4912 mutex_init(&memcg->thresholds_lock);
4913 spin_lock_init(&memcg->move_lock);
4914
4915 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4916 if (error) {
4917 /*
4918 * We call put now because our (and parent's) refcnts
4919 * are already in place. mem_cgroup_put() will internally
4920 * call __mem_cgroup_free, so return directly
4921 */
4922 mem_cgroup_put(memcg);
4923 return ERR_PTR(error);
4924 }
4925 return &memcg->css;
4926 free_out:
4927 __mem_cgroup_free(memcg);
4928 return ERR_PTR(error);
4929 }
4930
4931 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4932 {
4933 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4934
4935 return mem_cgroup_force_empty(memcg, false);
4936 }
4937
4938 static void mem_cgroup_destroy(struct cgroup *cont)
4939 {
4940 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4941
4942 kmem_cgroup_destroy(memcg);
4943
4944 mem_cgroup_put(memcg);
4945 }
4946
4947 #ifdef CONFIG_MMU
4948 /* Handlers for move charge at task migration. */
4949 #define PRECHARGE_COUNT_AT_ONCE 256
4950 static int mem_cgroup_do_precharge(unsigned long count)
4951 {
4952 int ret = 0;
4953 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4954 struct mem_cgroup *memcg = mc.to;
4955
4956 if (mem_cgroup_is_root(memcg)) {
4957 mc.precharge += count;
4958 /* we don't need css_get for root */
4959 return ret;
4960 }
4961 /* try to charge at once */
4962 if (count > 1) {
4963 struct res_counter *dummy;
4964 /*
4965 * "memcg" cannot be under rmdir() because we've already checked
4966 * by cgroup_lock_live_cgroup() that it is not removed and we
4967 * are still under the same cgroup_mutex. So we can postpone
4968 * css_get().
4969 */
4970 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4971 goto one_by_one;
4972 if (do_swap_account && res_counter_charge(&memcg->memsw,
4973 PAGE_SIZE * count, &dummy)) {
4974 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4975 goto one_by_one;
4976 }
4977 mc.precharge += count;
4978 return ret;
4979 }
4980 one_by_one:
4981 /* fall back to one by one charge */
4982 while (count--) {
4983 if (signal_pending(current)) {
4984 ret = -EINTR;
4985 break;
4986 }
4987 if (!batch_count--) {
4988 batch_count = PRECHARGE_COUNT_AT_ONCE;
4989 cond_resched();
4990 }
4991 ret = __mem_cgroup_try_charge(NULL,
4992 GFP_KERNEL, 1, &memcg, false);
4993 if (ret)
4994 /* mem_cgroup_clear_mc() will do uncharge later */
4995 return ret;
4996 mc.precharge++;
4997 }
4998 return ret;
4999 }
5000
5001 /**
5002 * get_mctgt_type - get target type of moving charge
5003 * @vma: the vma the pte to be checked belongs
5004 * @addr: the address corresponding to the pte to be checked
5005 * @ptent: the pte to be checked
5006 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5007 *
5008 * Returns
5009 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5010 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5011 * move charge. if @target is not NULL, the page is stored in target->page
5012 * with extra refcnt got(Callers should handle it).
5013 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5014 * target for charge migration. if @target is not NULL, the entry is stored
5015 * in target->ent.
5016 *
5017 * Called with pte lock held.
5018 */
5019 union mc_target {
5020 struct page *page;
5021 swp_entry_t ent;
5022 };
5023
5024 enum mc_target_type {
5025 MC_TARGET_NONE = 0,
5026 MC_TARGET_PAGE,
5027 MC_TARGET_SWAP,
5028 };
5029
5030 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5031 unsigned long addr, pte_t ptent)
5032 {
5033 struct page *page = vm_normal_page(vma, addr, ptent);
5034
5035 if (!page || !page_mapped(page))
5036 return NULL;
5037 if (PageAnon(page)) {
5038 /* we don't move shared anon */
5039 if (!move_anon())
5040 return NULL;
5041 } else if (!move_file())
5042 /* we ignore mapcount for file pages */
5043 return NULL;
5044 if (!get_page_unless_zero(page))
5045 return NULL;
5046
5047 return page;
5048 }
5049
5050 #ifdef CONFIG_SWAP
5051 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5052 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5053 {
5054 struct page *page = NULL;
5055 swp_entry_t ent = pte_to_swp_entry(ptent);
5056
5057 if (!move_anon() || non_swap_entry(ent))
5058 return NULL;
5059 /*
5060 * Because lookup_swap_cache() updates some statistics counter,
5061 * we call find_get_page() with swapper_space directly.
5062 */
5063 page = find_get_page(&swapper_space, ent.val);
5064 if (do_swap_account)
5065 entry->val = ent.val;
5066
5067 return page;
5068 }
5069 #else
5070 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5071 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5072 {
5073 return NULL;
5074 }
5075 #endif
5076
5077 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5078 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079 {
5080 struct page *page = NULL;
5081 struct address_space *mapping;
5082 pgoff_t pgoff;
5083
5084 if (!vma->vm_file) /* anonymous vma */
5085 return NULL;
5086 if (!move_file())
5087 return NULL;
5088
5089 mapping = vma->vm_file->f_mapping;
5090 if (pte_none(ptent))
5091 pgoff = linear_page_index(vma, addr);
5092 else /* pte_file(ptent) is true */
5093 pgoff = pte_to_pgoff(ptent);
5094
5095 /* page is moved even if it's not RSS of this task(page-faulted). */
5096 page = find_get_page(mapping, pgoff);
5097
5098 #ifdef CONFIG_SWAP
5099 /* shmem/tmpfs may report page out on swap: account for that too. */
5100 if (radix_tree_exceptional_entry(page)) {
5101 swp_entry_t swap = radix_to_swp_entry(page);
5102 if (do_swap_account)
5103 *entry = swap;
5104 page = find_get_page(&swapper_space, swap.val);
5105 }
5106 #endif
5107 return page;
5108 }
5109
5110 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent, union mc_target *target)
5112 {
5113 struct page *page = NULL;
5114 struct page_cgroup *pc;
5115 enum mc_target_type ret = MC_TARGET_NONE;
5116 swp_entry_t ent = { .val = 0 };
5117
5118 if (pte_present(ptent))
5119 page = mc_handle_present_pte(vma, addr, ptent);
5120 else if (is_swap_pte(ptent))
5121 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5122 else if (pte_none(ptent) || pte_file(ptent))
5123 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5124
5125 if (!page && !ent.val)
5126 return ret;
5127 if (page) {
5128 pc = lookup_page_cgroup(page);
5129 /*
5130 * Do only loose check w/o page_cgroup lock.
5131 * mem_cgroup_move_account() checks the pc is valid or not under
5132 * the lock.
5133 */
5134 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5135 ret = MC_TARGET_PAGE;
5136 if (target)
5137 target->page = page;
5138 }
5139 if (!ret || !target)
5140 put_page(page);
5141 }
5142 /* There is a swap entry and a page doesn't exist or isn't charged */
5143 if (ent.val && !ret &&
5144 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5145 ret = MC_TARGET_SWAP;
5146 if (target)
5147 target->ent = ent;
5148 }
5149 return ret;
5150 }
5151
5152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5153 /*
5154 * We don't consider swapping or file mapped pages because THP does not
5155 * support them for now.
5156 * Caller should make sure that pmd_trans_huge(pmd) is true.
5157 */
5158 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5159 unsigned long addr, pmd_t pmd, union mc_target *target)
5160 {
5161 struct page *page = NULL;
5162 struct page_cgroup *pc;
5163 enum mc_target_type ret = MC_TARGET_NONE;
5164
5165 page = pmd_page(pmd);
5166 VM_BUG_ON(!page || !PageHead(page));
5167 if (!move_anon())
5168 return ret;
5169 pc = lookup_page_cgroup(page);
5170 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5171 ret = MC_TARGET_PAGE;
5172 if (target) {
5173 get_page(page);
5174 target->page = page;
5175 }
5176 }
5177 return ret;
5178 }
5179 #else
5180 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5181 unsigned long addr, pmd_t pmd, union mc_target *target)
5182 {
5183 return MC_TARGET_NONE;
5184 }
5185 #endif
5186
5187 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5188 unsigned long addr, unsigned long end,
5189 struct mm_walk *walk)
5190 {
5191 struct vm_area_struct *vma = walk->private;
5192 pte_t *pte;
5193 spinlock_t *ptl;
5194
5195 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5196 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5197 mc.precharge += HPAGE_PMD_NR;
5198 spin_unlock(&vma->vm_mm->page_table_lock);
5199 return 0;
5200 }
5201
5202 if (pmd_trans_unstable(pmd))
5203 return 0;
5204 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5205 for (; addr != end; pte++, addr += PAGE_SIZE)
5206 if (get_mctgt_type(vma, addr, *pte, NULL))
5207 mc.precharge++; /* increment precharge temporarily */
5208 pte_unmap_unlock(pte - 1, ptl);
5209 cond_resched();
5210
5211 return 0;
5212 }
5213
5214 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5215 {
5216 unsigned long precharge;
5217 struct vm_area_struct *vma;
5218
5219 down_read(&mm->mmap_sem);
5220 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5221 struct mm_walk mem_cgroup_count_precharge_walk = {
5222 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5223 .mm = mm,
5224 .private = vma,
5225 };
5226 if (is_vm_hugetlb_page(vma))
5227 continue;
5228 walk_page_range(vma->vm_start, vma->vm_end,
5229 &mem_cgroup_count_precharge_walk);
5230 }
5231 up_read(&mm->mmap_sem);
5232
5233 precharge = mc.precharge;
5234 mc.precharge = 0;
5235
5236 return precharge;
5237 }
5238
5239 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5240 {
5241 unsigned long precharge = mem_cgroup_count_precharge(mm);
5242
5243 VM_BUG_ON(mc.moving_task);
5244 mc.moving_task = current;
5245 return mem_cgroup_do_precharge(precharge);
5246 }
5247
5248 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5249 static void __mem_cgroup_clear_mc(void)
5250 {
5251 struct mem_cgroup *from = mc.from;
5252 struct mem_cgroup *to = mc.to;
5253
5254 /* we must uncharge all the leftover precharges from mc.to */
5255 if (mc.precharge) {
5256 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5257 mc.precharge = 0;
5258 }
5259 /*
5260 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5261 * we must uncharge here.
5262 */
5263 if (mc.moved_charge) {
5264 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5265 mc.moved_charge = 0;
5266 }
5267 /* we must fixup refcnts and charges */
5268 if (mc.moved_swap) {
5269 /* uncharge swap account from the old cgroup */
5270 if (!mem_cgroup_is_root(mc.from))
5271 res_counter_uncharge(&mc.from->memsw,
5272 PAGE_SIZE * mc.moved_swap);
5273 __mem_cgroup_put(mc.from, mc.moved_swap);
5274
5275 if (!mem_cgroup_is_root(mc.to)) {
5276 /*
5277 * we charged both to->res and to->memsw, so we should
5278 * uncharge to->res.
5279 */
5280 res_counter_uncharge(&mc.to->res,
5281 PAGE_SIZE * mc.moved_swap);
5282 }
5283 /* we've already done mem_cgroup_get(mc.to) */
5284 mc.moved_swap = 0;
5285 }
5286 memcg_oom_recover(from);
5287 memcg_oom_recover(to);
5288 wake_up_all(&mc.waitq);
5289 }
5290
5291 static void mem_cgroup_clear_mc(void)
5292 {
5293 struct mem_cgroup *from = mc.from;
5294
5295 /*
5296 * we must clear moving_task before waking up waiters at the end of
5297 * task migration.
5298 */
5299 mc.moving_task = NULL;
5300 __mem_cgroup_clear_mc();
5301 spin_lock(&mc.lock);
5302 mc.from = NULL;
5303 mc.to = NULL;
5304 spin_unlock(&mc.lock);
5305 mem_cgroup_end_move(from);
5306 }
5307
5308 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5309 struct cgroup_taskset *tset)
5310 {
5311 struct task_struct *p = cgroup_taskset_first(tset);
5312 int ret = 0;
5313 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5314
5315 if (memcg->move_charge_at_immigrate) {
5316 struct mm_struct *mm;
5317 struct mem_cgroup *from = mem_cgroup_from_task(p);
5318
5319 VM_BUG_ON(from == memcg);
5320
5321 mm = get_task_mm(p);
5322 if (!mm)
5323 return 0;
5324 /* We move charges only when we move a owner of the mm */
5325 if (mm->owner == p) {
5326 VM_BUG_ON(mc.from);
5327 VM_BUG_ON(mc.to);
5328 VM_BUG_ON(mc.precharge);
5329 VM_BUG_ON(mc.moved_charge);
5330 VM_BUG_ON(mc.moved_swap);
5331 mem_cgroup_start_move(from);
5332 spin_lock(&mc.lock);
5333 mc.from = from;
5334 mc.to = memcg;
5335 spin_unlock(&mc.lock);
5336 /* We set mc.moving_task later */
5337
5338 ret = mem_cgroup_precharge_mc(mm);
5339 if (ret)
5340 mem_cgroup_clear_mc();
5341 }
5342 mmput(mm);
5343 }
5344 return ret;
5345 }
5346
5347 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5348 struct cgroup_taskset *tset)
5349 {
5350 mem_cgroup_clear_mc();
5351 }
5352
5353 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5354 unsigned long addr, unsigned long end,
5355 struct mm_walk *walk)
5356 {
5357 int ret = 0;
5358 struct vm_area_struct *vma = walk->private;
5359 pte_t *pte;
5360 spinlock_t *ptl;
5361 enum mc_target_type target_type;
5362 union mc_target target;
5363 struct page *page;
5364 struct page_cgroup *pc;
5365
5366 /*
5367 * We don't take compound_lock() here but no race with splitting thp
5368 * happens because:
5369 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5370 * under splitting, which means there's no concurrent thp split,
5371 * - if another thread runs into split_huge_page() just after we
5372 * entered this if-block, the thread must wait for page table lock
5373 * to be unlocked in __split_huge_page_splitting(), where the main
5374 * part of thp split is not executed yet.
5375 */
5376 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5377 if (mc.precharge < HPAGE_PMD_NR) {
5378 spin_unlock(&vma->vm_mm->page_table_lock);
5379 return 0;
5380 }
5381 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5382 if (target_type == MC_TARGET_PAGE) {
5383 page = target.page;
5384 if (!isolate_lru_page(page)) {
5385 pc = lookup_page_cgroup(page);
5386 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5387 pc, mc.from, mc.to)) {
5388 mc.precharge -= HPAGE_PMD_NR;
5389 mc.moved_charge += HPAGE_PMD_NR;
5390 }
5391 putback_lru_page(page);
5392 }
5393 put_page(page);
5394 }
5395 spin_unlock(&vma->vm_mm->page_table_lock);
5396 return 0;
5397 }
5398
5399 if (pmd_trans_unstable(pmd))
5400 return 0;
5401 retry:
5402 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5403 for (; addr != end; addr += PAGE_SIZE) {
5404 pte_t ptent = *(pte++);
5405 swp_entry_t ent;
5406
5407 if (!mc.precharge)
5408 break;
5409
5410 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5411 case MC_TARGET_PAGE:
5412 page = target.page;
5413 if (isolate_lru_page(page))
5414 goto put;
5415 pc = lookup_page_cgroup(page);
5416 if (!mem_cgroup_move_account(page, 1, pc,
5417 mc.from, mc.to)) {
5418 mc.precharge--;
5419 /* we uncharge from mc.from later. */
5420 mc.moved_charge++;
5421 }
5422 putback_lru_page(page);
5423 put: /* get_mctgt_type() gets the page */
5424 put_page(page);
5425 break;
5426 case MC_TARGET_SWAP:
5427 ent = target.ent;
5428 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5429 mc.precharge--;
5430 /* we fixup refcnts and charges later. */
5431 mc.moved_swap++;
5432 }
5433 break;
5434 default:
5435 break;
5436 }
5437 }
5438 pte_unmap_unlock(pte - 1, ptl);
5439 cond_resched();
5440
5441 if (addr != end) {
5442 /*
5443 * We have consumed all precharges we got in can_attach().
5444 * We try charge one by one, but don't do any additional
5445 * charges to mc.to if we have failed in charge once in attach()
5446 * phase.
5447 */
5448 ret = mem_cgroup_do_precharge(1);
5449 if (!ret)
5450 goto retry;
5451 }
5452
5453 return ret;
5454 }
5455
5456 static void mem_cgroup_move_charge(struct mm_struct *mm)
5457 {
5458 struct vm_area_struct *vma;
5459
5460 lru_add_drain_all();
5461 retry:
5462 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5463 /*
5464 * Someone who are holding the mmap_sem might be waiting in
5465 * waitq. So we cancel all extra charges, wake up all waiters,
5466 * and retry. Because we cancel precharges, we might not be able
5467 * to move enough charges, but moving charge is a best-effort
5468 * feature anyway, so it wouldn't be a big problem.
5469 */
5470 __mem_cgroup_clear_mc();
5471 cond_resched();
5472 goto retry;
5473 }
5474 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5475 int ret;
5476 struct mm_walk mem_cgroup_move_charge_walk = {
5477 .pmd_entry = mem_cgroup_move_charge_pte_range,
5478 .mm = mm,
5479 .private = vma,
5480 };
5481 if (is_vm_hugetlb_page(vma))
5482 continue;
5483 ret = walk_page_range(vma->vm_start, vma->vm_end,
5484 &mem_cgroup_move_charge_walk);
5485 if (ret)
5486 /*
5487 * means we have consumed all precharges and failed in
5488 * doing additional charge. Just abandon here.
5489 */
5490 break;
5491 }
5492 up_read(&mm->mmap_sem);
5493 }
5494
5495 static void mem_cgroup_move_task(struct cgroup *cont,
5496 struct cgroup_taskset *tset)
5497 {
5498 struct task_struct *p = cgroup_taskset_first(tset);
5499 struct mm_struct *mm = get_task_mm(p);
5500
5501 if (mm) {
5502 if (mc.to)
5503 mem_cgroup_move_charge(mm);
5504 mmput(mm);
5505 }
5506 if (mc.to)
5507 mem_cgroup_clear_mc();
5508 }
5509 #else /* !CONFIG_MMU */
5510 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5511 struct cgroup_taskset *tset)
5512 {
5513 return 0;
5514 }
5515 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5516 struct cgroup_taskset *tset)
5517 {
5518 }
5519 static void mem_cgroup_move_task(struct cgroup *cont,
5520 struct cgroup_taskset *tset)
5521 {
5522 }
5523 #endif
5524
5525 struct cgroup_subsys mem_cgroup_subsys = {
5526 .name = "memory",
5527 .subsys_id = mem_cgroup_subsys_id,
5528 .create = mem_cgroup_create,
5529 .pre_destroy = mem_cgroup_pre_destroy,
5530 .destroy = mem_cgroup_destroy,
5531 .can_attach = mem_cgroup_can_attach,
5532 .cancel_attach = mem_cgroup_cancel_attach,
5533 .attach = mem_cgroup_move_task,
5534 .base_cftypes = mem_cgroup_files,
5535 .early_init = 0,
5536 .use_id = 1,
5537 .__DEPRECATED_clear_css_refs = true,
5538 };
5539
5540 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5541 static int __init enable_swap_account(char *s)
5542 {
5543 /* consider enabled if no parameter or 1 is given */
5544 if (!strcmp(s, "1"))
5545 really_do_swap_account = 1;
5546 else if (!strcmp(s, "0"))
5547 really_do_swap_account = 0;
5548 return 1;
5549 }
5550 __setup("swapaccount=", enable_swap_account);
5551
5552 #endif
This page took 0.28658 seconds and 5 git commands to generate.