memcg: mem_cgroup_charge never NULL
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33
34 #include <asm/uaccess.h>
35
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38
39 /*
40 * Statistics for memory cgroup.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50 };
51
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59
60 /*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65 {
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68 }
69
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72 {
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78 }
79
80 /*
81 * per-zone information in memory controller.
82 */
83
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89 };
90
91 struct mem_cgroup_per_zone {
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110
111 /*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
121 */
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
131 */
132 struct mem_cgroup_lru_info info;
133
134 int prev_priority; /* for recording reclaim priority */
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
139 };
140
141 /*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is at least two
144 * byte aligned (based on comments from Nick Piggin). But since
145 * bit_spin_lock doesn't actually set that lock bit in a non-debug
146 * uniprocessor kernel, we should avoid setting it here too.
147 */
148 #define PAGE_CGROUP_LOCK_BIT 0x0
149 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
150 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
151 #else
152 #define PAGE_CGROUP_LOCK 0x0
153 #endif
154
155 /*
156 * A page_cgroup page is associated with every page descriptor. The
157 * page_cgroup helps us identify information about the cgroup
158 */
159 struct page_cgroup {
160 struct list_head lru; /* per cgroup LRU list */
161 struct page *page;
162 struct mem_cgroup *mem_cgroup;
163 atomic_t ref_cnt; /* Helpful when pages move b/w */
164 /* mapped and cached states */
165 int flags;
166 };
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
169
170 static inline int page_cgroup_nid(struct page_cgroup *pc)
171 {
172 return page_to_nid(pc->page);
173 }
174
175 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
176 {
177 return page_zonenum(pc->page);
178 }
179
180 enum {
181 MEM_CGROUP_TYPE_UNSPEC = 0,
182 MEM_CGROUP_TYPE_MAPPED,
183 MEM_CGROUP_TYPE_CACHED,
184 MEM_CGROUP_TYPE_ALL,
185 MEM_CGROUP_TYPE_MAX,
186 };
187
188 enum charge_type {
189 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
190 MEM_CGROUP_CHARGE_TYPE_MAPPED,
191 };
192
193
194 /*
195 * Always modified under lru lock. Then, not necessary to preempt_disable()
196 */
197 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
198 bool charge)
199 {
200 int val = (charge)? 1 : -1;
201 struct mem_cgroup_stat *stat = &mem->stat;
202 VM_BUG_ON(!irqs_disabled());
203
204 if (flags & PAGE_CGROUP_FLAG_CACHE)
205 __mem_cgroup_stat_add_safe(stat,
206 MEM_CGROUP_STAT_CACHE, val);
207 else
208 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
209 }
210
211 static inline struct mem_cgroup_per_zone *
212 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
213 {
214 BUG_ON(!mem->info.nodeinfo[nid]);
215 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
216 }
217
218 static inline struct mem_cgroup_per_zone *
219 page_cgroup_zoneinfo(struct page_cgroup *pc)
220 {
221 struct mem_cgroup *mem = pc->mem_cgroup;
222 int nid = page_cgroup_nid(pc);
223 int zid = page_cgroup_zid(pc);
224
225 return mem_cgroup_zoneinfo(mem, nid, zid);
226 }
227
228 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
229 enum mem_cgroup_zstat_index idx)
230 {
231 int nid, zid;
232 struct mem_cgroup_per_zone *mz;
233 u64 total = 0;
234
235 for_each_online_node(nid)
236 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
237 mz = mem_cgroup_zoneinfo(mem, nid, zid);
238 total += MEM_CGROUP_ZSTAT(mz, idx);
239 }
240 return total;
241 }
242
243 static struct mem_cgroup init_mem_cgroup;
244
245 static inline
246 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
247 {
248 return container_of(cgroup_subsys_state(cont,
249 mem_cgroup_subsys_id), struct mem_cgroup,
250 css);
251 }
252
253 static inline
254 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
255 {
256 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
257 struct mem_cgroup, css);
258 }
259
260 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
261 {
262 struct mem_cgroup *mem;
263
264 mem = mem_cgroup_from_task(p);
265 css_get(&mem->css);
266 mm->mem_cgroup = mem;
267 }
268
269 void mm_free_cgroup(struct mm_struct *mm)
270 {
271 css_put(&mm->mem_cgroup->css);
272 }
273
274 static inline int page_cgroup_locked(struct page *page)
275 {
276 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
277 &page->page_cgroup);
278 }
279
280 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
281 {
282 VM_BUG_ON(!page_cgroup_locked(page));
283 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
284 }
285
286 struct page_cgroup *page_get_page_cgroup(struct page *page)
287 {
288 return (struct page_cgroup *)
289 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
290 }
291
292 static void __always_inline lock_page_cgroup(struct page *page)
293 {
294 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
295 VM_BUG_ON(!page_cgroup_locked(page));
296 }
297
298 static void __always_inline unlock_page_cgroup(struct page *page)
299 {
300 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
301 }
302
303 /*
304 * Clear page->page_cgroup member under lock_page_cgroup().
305 * If given "pc" value is different from one page->page_cgroup,
306 * page->cgroup is not cleared.
307 * Returns a value of page->page_cgroup at lock taken.
308 * A can can detect failure of clearing by following
309 * clear_page_cgroup(page, pc) == pc
310 */
311
312 static struct page_cgroup *clear_page_cgroup(struct page *page,
313 struct page_cgroup *pc)
314 {
315 struct page_cgroup *ret;
316 /* lock and clear */
317 lock_page_cgroup(page);
318 ret = page_get_page_cgroup(page);
319 if (likely(ret == pc))
320 page_assign_page_cgroup(page, NULL);
321 unlock_page_cgroup(page);
322 return ret;
323 }
324
325 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
326 {
327 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
328 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
329
330 if (from)
331 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
332 else
333 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
334
335 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
336 list_del_init(&pc->lru);
337 }
338
339 static void __mem_cgroup_add_list(struct page_cgroup *pc)
340 {
341 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
342 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
343
344 if (!to) {
345 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
346 list_add(&pc->lru, &mz->inactive_list);
347 } else {
348 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
349 list_add(&pc->lru, &mz->active_list);
350 }
351 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
352 }
353
354 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
355 {
356 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
357 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
358
359 if (from)
360 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
361 else
362 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
363
364 if (active) {
365 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
366 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
367 list_move(&pc->lru, &mz->active_list);
368 } else {
369 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
370 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
371 list_move(&pc->lru, &mz->inactive_list);
372 }
373 }
374
375 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
376 {
377 int ret;
378
379 task_lock(task);
380 ret = task->mm && mm_match_cgroup(task->mm, mem);
381 task_unlock(task);
382 return ret;
383 }
384
385 /*
386 * This routine assumes that the appropriate zone's lru lock is already held
387 */
388 void mem_cgroup_move_lists(struct page *page, bool active)
389 {
390 struct page_cgroup *pc;
391 struct mem_cgroup_per_zone *mz;
392 unsigned long flags;
393
394 pc = page_get_page_cgroup(page);
395 if (!pc)
396 return;
397
398 mz = page_cgroup_zoneinfo(pc);
399 spin_lock_irqsave(&mz->lru_lock, flags);
400 __mem_cgroup_move_lists(pc, active);
401 spin_unlock_irqrestore(&mz->lru_lock, flags);
402 }
403
404 /*
405 * Calculate mapped_ratio under memory controller. This will be used in
406 * vmscan.c for deteremining we have to reclaim mapped pages.
407 */
408 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
409 {
410 long total, rss;
411
412 /*
413 * usage is recorded in bytes. But, here, we assume the number of
414 * physical pages can be represented by "long" on any arch.
415 */
416 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
417 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
418 return (int)((rss * 100L) / total);
419 }
420 /*
421 * This function is called from vmscan.c. In page reclaiming loop. balance
422 * between active and inactive list is calculated. For memory controller
423 * page reclaiming, we should use using mem_cgroup's imbalance rather than
424 * zone's global lru imbalance.
425 */
426 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
427 {
428 unsigned long active, inactive;
429 /* active and inactive are the number of pages. 'long' is ok.*/
430 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
431 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
432 return (long) (active / (inactive + 1));
433 }
434
435 /*
436 * prev_priority control...this will be used in memory reclaim path.
437 */
438 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
439 {
440 return mem->prev_priority;
441 }
442
443 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
444 {
445 if (priority < mem->prev_priority)
446 mem->prev_priority = priority;
447 }
448
449 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
450 {
451 mem->prev_priority = priority;
452 }
453
454 /*
455 * Calculate # of pages to be scanned in this priority/zone.
456 * See also vmscan.c
457 *
458 * priority starts from "DEF_PRIORITY" and decremented in each loop.
459 * (see include/linux/mmzone.h)
460 */
461
462 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
463 struct zone *zone, int priority)
464 {
465 long nr_active;
466 int nid = zone->zone_pgdat->node_id;
467 int zid = zone_idx(zone);
468 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
469
470 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
471 return (nr_active >> priority);
472 }
473
474 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
475 struct zone *zone, int priority)
476 {
477 long nr_inactive;
478 int nid = zone->zone_pgdat->node_id;
479 int zid = zone_idx(zone);
480 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
481
482 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
483
484 return (nr_inactive >> priority);
485 }
486
487 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
488 struct list_head *dst,
489 unsigned long *scanned, int order,
490 int mode, struct zone *z,
491 struct mem_cgroup *mem_cont,
492 int active)
493 {
494 unsigned long nr_taken = 0;
495 struct page *page;
496 unsigned long scan;
497 LIST_HEAD(pc_list);
498 struct list_head *src;
499 struct page_cgroup *pc, *tmp;
500 int nid = z->zone_pgdat->node_id;
501 int zid = zone_idx(z);
502 struct mem_cgroup_per_zone *mz;
503
504 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
505 if (active)
506 src = &mz->active_list;
507 else
508 src = &mz->inactive_list;
509
510
511 spin_lock(&mz->lru_lock);
512 scan = 0;
513 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
514 if (scan >= nr_to_scan)
515 break;
516 page = pc->page;
517
518 if (unlikely(!PageLRU(page)))
519 continue;
520
521 if (PageActive(page) && !active) {
522 __mem_cgroup_move_lists(pc, true);
523 continue;
524 }
525 if (!PageActive(page) && active) {
526 __mem_cgroup_move_lists(pc, false);
527 continue;
528 }
529
530 scan++;
531 list_move(&pc->lru, &pc_list);
532
533 if (__isolate_lru_page(page, mode) == 0) {
534 list_move(&page->lru, dst);
535 nr_taken++;
536 }
537 }
538
539 list_splice(&pc_list, src);
540 spin_unlock(&mz->lru_lock);
541
542 *scanned = scan;
543 return nr_taken;
544 }
545
546 /*
547 * Charge the memory controller for page usage.
548 * Return
549 * 0 if the charge was successful
550 * < 0 if the cgroup is over its limit
551 */
552 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
553 gfp_t gfp_mask, enum charge_type ctype)
554 {
555 struct mem_cgroup *mem;
556 struct page_cgroup *pc;
557 unsigned long flags;
558 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
559 struct mem_cgroup_per_zone *mz;
560
561 /*
562 * Should page_cgroup's go to their own slab?
563 * One could optimize the performance of the charging routine
564 * by saving a bit in the page_flags and using it as a lock
565 * to see if the cgroup page already has a page_cgroup associated
566 * with it
567 */
568 retry:
569 lock_page_cgroup(page);
570 pc = page_get_page_cgroup(page);
571 /*
572 * The page_cgroup exists and
573 * the page has already been accounted.
574 */
575 if (pc) {
576 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
577 /* this page is under being uncharged ? */
578 unlock_page_cgroup(page);
579 cpu_relax();
580 goto retry;
581 } else {
582 unlock_page_cgroup(page);
583 goto done;
584 }
585 }
586 unlock_page_cgroup(page);
587
588 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
589 if (pc == NULL)
590 goto err;
591
592 /*
593 * We always charge the cgroup the mm_struct belongs to.
594 * The mm_struct's mem_cgroup changes on task migration if the
595 * thread group leader migrates. It's possible that mm is not
596 * set, if so charge the init_mm (happens for pagecache usage).
597 */
598 if (!mm)
599 mm = &init_mm;
600
601 rcu_read_lock();
602 mem = rcu_dereference(mm->mem_cgroup);
603 /*
604 * For every charge from the cgroup, increment reference
605 * count
606 */
607 css_get(&mem->css);
608 rcu_read_unlock();
609
610 /*
611 * If we created the page_cgroup, we should free it on exceeding
612 * the cgroup limit.
613 */
614 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
615 if (!(gfp_mask & __GFP_WAIT))
616 goto out;
617
618 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
619 continue;
620
621 /*
622 * try_to_free_mem_cgroup_pages() might not give us a full
623 * picture of reclaim. Some pages are reclaimed and might be
624 * moved to swap cache or just unmapped from the cgroup.
625 * Check the limit again to see if the reclaim reduced the
626 * current usage of the cgroup before giving up
627 */
628 if (res_counter_check_under_limit(&mem->res))
629 continue;
630
631 if (!nr_retries--) {
632 mem_cgroup_out_of_memory(mem, gfp_mask);
633 goto out;
634 }
635 congestion_wait(WRITE, HZ/10);
636 }
637
638 atomic_set(&pc->ref_cnt, 1);
639 pc->mem_cgroup = mem;
640 pc->page = page;
641 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
642 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
643 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
644
645 lock_page_cgroup(page);
646 if (page_get_page_cgroup(page)) {
647 unlock_page_cgroup(page);
648 /*
649 * Another charge has been added to this page already.
650 * We take lock_page_cgroup(page) again and read
651 * page->cgroup, increment refcnt.... just retry is OK.
652 */
653 res_counter_uncharge(&mem->res, PAGE_SIZE);
654 css_put(&mem->css);
655 kfree(pc);
656 goto retry;
657 }
658 page_assign_page_cgroup(page, pc);
659 unlock_page_cgroup(page);
660
661 mz = page_cgroup_zoneinfo(pc);
662 spin_lock_irqsave(&mz->lru_lock, flags);
663 /* Update statistics vector */
664 __mem_cgroup_add_list(pc);
665 spin_unlock_irqrestore(&mz->lru_lock, flags);
666
667 done:
668 return 0;
669 out:
670 css_put(&mem->css);
671 kfree(pc);
672 err:
673 return -ENOMEM;
674 }
675
676 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
677 gfp_t gfp_mask)
678 {
679 return mem_cgroup_charge_common(page, mm, gfp_mask,
680 MEM_CGROUP_CHARGE_TYPE_MAPPED);
681 }
682
683 /*
684 * See if the cached pages should be charged at all?
685 */
686 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
687 gfp_t gfp_mask)
688 {
689 int ret = 0;
690 if (!mm)
691 mm = &init_mm;
692
693 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
694 MEM_CGROUP_CHARGE_TYPE_CACHE);
695 return ret;
696 }
697
698 /*
699 * Uncharging is always a welcome operation, we never complain, simply
700 * uncharge. This routine should be called with lock_page_cgroup held
701 */
702 void mem_cgroup_uncharge(struct page_cgroup *pc)
703 {
704 struct mem_cgroup *mem;
705 struct mem_cgroup_per_zone *mz;
706 struct page *page;
707 unsigned long flags;
708
709 /*
710 * Check if our page_cgroup is valid
711 */
712 if (!pc)
713 return;
714
715 if (atomic_dec_and_test(&pc->ref_cnt)) {
716 page = pc->page;
717 mz = page_cgroup_zoneinfo(pc);
718 /*
719 * get page->cgroup and clear it under lock.
720 * force_empty can drop page->cgroup without checking refcnt.
721 */
722 unlock_page_cgroup(page);
723 if (clear_page_cgroup(page, pc) == pc) {
724 mem = pc->mem_cgroup;
725 css_put(&mem->css);
726 res_counter_uncharge(&mem->res, PAGE_SIZE);
727 spin_lock_irqsave(&mz->lru_lock, flags);
728 __mem_cgroup_remove_list(pc);
729 spin_unlock_irqrestore(&mz->lru_lock, flags);
730 kfree(pc);
731 }
732 lock_page_cgroup(page);
733 }
734 }
735
736 void mem_cgroup_uncharge_page(struct page *page)
737 {
738 lock_page_cgroup(page);
739 mem_cgroup_uncharge(page_get_page_cgroup(page));
740 unlock_page_cgroup(page);
741 }
742
743 /*
744 * Returns non-zero if a page (under migration) has valid page_cgroup member.
745 * Refcnt of page_cgroup is incremented.
746 */
747
748 int mem_cgroup_prepare_migration(struct page *page)
749 {
750 struct page_cgroup *pc;
751 int ret = 0;
752 lock_page_cgroup(page);
753 pc = page_get_page_cgroup(page);
754 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
755 ret = 1;
756 unlock_page_cgroup(page);
757 return ret;
758 }
759
760 void mem_cgroup_end_migration(struct page *page)
761 {
762 struct page_cgroup *pc;
763
764 lock_page_cgroup(page);
765 pc = page_get_page_cgroup(page);
766 mem_cgroup_uncharge(pc);
767 unlock_page_cgroup(page);
768 }
769 /*
770 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
771 * And no race with uncharge() routines because page_cgroup for *page*
772 * has extra one reference by mem_cgroup_prepare_migration.
773 */
774
775 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
776 {
777 struct page_cgroup *pc;
778 struct mem_cgroup *mem;
779 unsigned long flags;
780 struct mem_cgroup_per_zone *mz;
781 retry:
782 pc = page_get_page_cgroup(page);
783 if (!pc)
784 return;
785 mem = pc->mem_cgroup;
786 mz = page_cgroup_zoneinfo(pc);
787 if (clear_page_cgroup(page, pc) != pc)
788 goto retry;
789 spin_lock_irqsave(&mz->lru_lock, flags);
790
791 __mem_cgroup_remove_list(pc);
792 spin_unlock_irqrestore(&mz->lru_lock, flags);
793
794 pc->page = newpage;
795 lock_page_cgroup(newpage);
796 page_assign_page_cgroup(newpage, pc);
797 unlock_page_cgroup(newpage);
798
799 mz = page_cgroup_zoneinfo(pc);
800 spin_lock_irqsave(&mz->lru_lock, flags);
801 __mem_cgroup_add_list(pc);
802 spin_unlock_irqrestore(&mz->lru_lock, flags);
803 return;
804 }
805
806 /*
807 * This routine traverse page_cgroup in given list and drop them all.
808 * This routine ignores page_cgroup->ref_cnt.
809 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
810 */
811 #define FORCE_UNCHARGE_BATCH (128)
812 static void
813 mem_cgroup_force_empty_list(struct mem_cgroup *mem,
814 struct mem_cgroup_per_zone *mz,
815 int active)
816 {
817 struct page_cgroup *pc;
818 struct page *page;
819 int count;
820 unsigned long flags;
821 struct list_head *list;
822
823 if (active)
824 list = &mz->active_list;
825 else
826 list = &mz->inactive_list;
827
828 if (list_empty(list))
829 return;
830 retry:
831 count = FORCE_UNCHARGE_BATCH;
832 spin_lock_irqsave(&mz->lru_lock, flags);
833
834 while (--count && !list_empty(list)) {
835 pc = list_entry(list->prev, struct page_cgroup, lru);
836 page = pc->page;
837 /* Avoid race with charge */
838 atomic_set(&pc->ref_cnt, 0);
839 if (clear_page_cgroup(page, pc) == pc) {
840 css_put(&mem->css);
841 res_counter_uncharge(&mem->res, PAGE_SIZE);
842 __mem_cgroup_remove_list(pc);
843 kfree(pc);
844 } else /* being uncharged ? ...do relax */
845 break;
846 }
847 spin_unlock_irqrestore(&mz->lru_lock, flags);
848 if (!list_empty(list)) {
849 cond_resched();
850 goto retry;
851 }
852 return;
853 }
854
855 /*
856 * make mem_cgroup's charge to be 0 if there is no task.
857 * This enables deleting this mem_cgroup.
858 */
859
860 int mem_cgroup_force_empty(struct mem_cgroup *mem)
861 {
862 int ret = -EBUSY;
863 int node, zid;
864 css_get(&mem->css);
865 /*
866 * page reclaim code (kswapd etc..) will move pages between
867 ` * active_list <-> inactive_list while we don't take a lock.
868 * So, we have to do loop here until all lists are empty.
869 */
870 while (mem->res.usage > 0) {
871 if (atomic_read(&mem->css.cgroup->count) > 0)
872 goto out;
873 for_each_node_state(node, N_POSSIBLE)
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct mem_cgroup_per_zone *mz;
876 mz = mem_cgroup_zoneinfo(mem, node, zid);
877 /* drop all page_cgroup in active_list */
878 mem_cgroup_force_empty_list(mem, mz, 1);
879 /* drop all page_cgroup in inactive_list */
880 mem_cgroup_force_empty_list(mem, mz, 0);
881 }
882 }
883 ret = 0;
884 out:
885 css_put(&mem->css);
886 return ret;
887 }
888
889
890
891 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
892 {
893 *tmp = memparse(buf, &buf);
894 if (*buf != '\0')
895 return -EINVAL;
896
897 /*
898 * Round up the value to the closest page size
899 */
900 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
901 return 0;
902 }
903
904 static ssize_t mem_cgroup_read(struct cgroup *cont,
905 struct cftype *cft, struct file *file,
906 char __user *userbuf, size_t nbytes, loff_t *ppos)
907 {
908 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
909 cft->private, userbuf, nbytes, ppos,
910 NULL);
911 }
912
913 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
914 struct file *file, const char __user *userbuf,
915 size_t nbytes, loff_t *ppos)
916 {
917 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
918 cft->private, userbuf, nbytes, ppos,
919 mem_cgroup_write_strategy);
920 }
921
922 static ssize_t mem_force_empty_write(struct cgroup *cont,
923 struct cftype *cft, struct file *file,
924 const char __user *userbuf,
925 size_t nbytes, loff_t *ppos)
926 {
927 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
928 int ret;
929 ret = mem_cgroup_force_empty(mem);
930 if (!ret)
931 ret = nbytes;
932 return ret;
933 }
934
935 /*
936 * Note: This should be removed if cgroup supports write-only file.
937 */
938
939 static ssize_t mem_force_empty_read(struct cgroup *cont,
940 struct cftype *cft,
941 struct file *file, char __user *userbuf,
942 size_t nbytes, loff_t *ppos)
943 {
944 return -EINVAL;
945 }
946
947
948 static const struct mem_cgroup_stat_desc {
949 const char *msg;
950 u64 unit;
951 } mem_cgroup_stat_desc[] = {
952 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
953 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
954 };
955
956 static int mem_control_stat_show(struct seq_file *m, void *arg)
957 {
958 struct cgroup *cont = m->private;
959 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
960 struct mem_cgroup_stat *stat = &mem_cont->stat;
961 int i;
962
963 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
964 s64 val;
965
966 val = mem_cgroup_read_stat(stat, i);
967 val *= mem_cgroup_stat_desc[i].unit;
968 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
969 (long long)val);
970 }
971 /* showing # of active pages */
972 {
973 unsigned long active, inactive;
974
975 inactive = mem_cgroup_get_all_zonestat(mem_cont,
976 MEM_CGROUP_ZSTAT_INACTIVE);
977 active = mem_cgroup_get_all_zonestat(mem_cont,
978 MEM_CGROUP_ZSTAT_ACTIVE);
979 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
980 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
981 }
982 return 0;
983 }
984
985 static const struct file_operations mem_control_stat_file_operations = {
986 .read = seq_read,
987 .llseek = seq_lseek,
988 .release = single_release,
989 };
990
991 static int mem_control_stat_open(struct inode *unused, struct file *file)
992 {
993 /* XXX __d_cont */
994 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
995
996 file->f_op = &mem_control_stat_file_operations;
997 return single_open(file, mem_control_stat_show, cont);
998 }
999
1000
1001
1002 static struct cftype mem_cgroup_files[] = {
1003 {
1004 .name = "usage_in_bytes",
1005 .private = RES_USAGE,
1006 .read = mem_cgroup_read,
1007 },
1008 {
1009 .name = "limit_in_bytes",
1010 .private = RES_LIMIT,
1011 .write = mem_cgroup_write,
1012 .read = mem_cgroup_read,
1013 },
1014 {
1015 .name = "failcnt",
1016 .private = RES_FAILCNT,
1017 .read = mem_cgroup_read,
1018 },
1019 {
1020 .name = "force_empty",
1021 .write = mem_force_empty_write,
1022 .read = mem_force_empty_read,
1023 },
1024 {
1025 .name = "stat",
1026 .open = mem_control_stat_open,
1027 },
1028 };
1029
1030 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1031 {
1032 struct mem_cgroup_per_node *pn;
1033 struct mem_cgroup_per_zone *mz;
1034 int zone;
1035 /*
1036 * This routine is called against possible nodes.
1037 * But it's BUG to call kmalloc() against offline node.
1038 *
1039 * TODO: this routine can waste much memory for nodes which will
1040 * never be onlined. It's better to use memory hotplug callback
1041 * function.
1042 */
1043 if (node_state(node, N_HIGH_MEMORY))
1044 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1045 else
1046 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1047 if (!pn)
1048 return 1;
1049
1050 mem->info.nodeinfo[node] = pn;
1051 memset(pn, 0, sizeof(*pn));
1052
1053 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1054 mz = &pn->zoneinfo[zone];
1055 INIT_LIST_HEAD(&mz->active_list);
1056 INIT_LIST_HEAD(&mz->inactive_list);
1057 spin_lock_init(&mz->lru_lock);
1058 }
1059 return 0;
1060 }
1061
1062 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1063 {
1064 kfree(mem->info.nodeinfo[node]);
1065 }
1066
1067
1068 static struct mem_cgroup init_mem_cgroup;
1069
1070 static struct cgroup_subsys_state *
1071 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1072 {
1073 struct mem_cgroup *mem;
1074 int node;
1075
1076 if (unlikely((cont->parent) == NULL)) {
1077 mem = &init_mem_cgroup;
1078 init_mm.mem_cgroup = mem;
1079 } else
1080 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1081
1082 if (mem == NULL)
1083 return ERR_PTR(-ENOMEM);
1084
1085 res_counter_init(&mem->res);
1086
1087 memset(&mem->info, 0, sizeof(mem->info));
1088
1089 for_each_node_state(node, N_POSSIBLE)
1090 if (alloc_mem_cgroup_per_zone_info(mem, node))
1091 goto free_out;
1092
1093 return &mem->css;
1094 free_out:
1095 for_each_node_state(node, N_POSSIBLE)
1096 free_mem_cgroup_per_zone_info(mem, node);
1097 if (cont->parent != NULL)
1098 kfree(mem);
1099 return ERR_PTR(-ENOMEM);
1100 }
1101
1102 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1103 struct cgroup *cont)
1104 {
1105 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1106 mem_cgroup_force_empty(mem);
1107 }
1108
1109 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1110 struct cgroup *cont)
1111 {
1112 int node;
1113 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1114
1115 for_each_node_state(node, N_POSSIBLE)
1116 free_mem_cgroup_per_zone_info(mem, node);
1117
1118 kfree(mem_cgroup_from_cont(cont));
1119 }
1120
1121 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1122 struct cgroup *cont)
1123 {
1124 return cgroup_add_files(cont, ss, mem_cgroup_files,
1125 ARRAY_SIZE(mem_cgroup_files));
1126 }
1127
1128 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1129 struct cgroup *cont,
1130 struct cgroup *old_cont,
1131 struct task_struct *p)
1132 {
1133 struct mm_struct *mm;
1134 struct mem_cgroup *mem, *old_mem;
1135
1136 mm = get_task_mm(p);
1137 if (mm == NULL)
1138 return;
1139
1140 mem = mem_cgroup_from_cont(cont);
1141 old_mem = mem_cgroup_from_cont(old_cont);
1142
1143 if (mem == old_mem)
1144 goto out;
1145
1146 /*
1147 * Only thread group leaders are allowed to migrate, the mm_struct is
1148 * in effect owned by the leader
1149 */
1150 if (p->tgid != p->pid)
1151 goto out;
1152
1153 css_get(&mem->css);
1154 rcu_assign_pointer(mm->mem_cgroup, mem);
1155 css_put(&old_mem->css);
1156
1157 out:
1158 mmput(mm);
1159 return;
1160 }
1161
1162 struct cgroup_subsys mem_cgroup_subsys = {
1163 .name = "memory",
1164 .subsys_id = mem_cgroup_subsys_id,
1165 .create = mem_cgroup_create,
1166 .pre_destroy = mem_cgroup_pre_destroy,
1167 .destroy = mem_cgroup_destroy,
1168 .populate = mem_cgroup_populate,
1169 .attach = mem_cgroup_move_task,
1170 .early_init = 0,
1171 };
This page took 0.107773 seconds and 5 git commands to generate.