memcg: remove PCG_MOVE_LOCK flag from page_cgroup
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET (1024)
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct zone_reclaim_stat reclaim_stat;
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148 };
149
150 struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157
158 /*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163 struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166 };
167
168 struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171
172 struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
178 struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181 };
182
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
186 int current_threshold;
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191 };
192
193 struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202 };
203
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208 };
209
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212
213 /*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
223 */
224 struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
257 */
258 struct mem_cgroup_lru_info info;
259 int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
264 #endif
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
269
270 bool oom_lock;
271 atomic_t under_oom;
272
273 atomic_t refcnt;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
287
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
290
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
293
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 /*
306 * percpu counter.
307 */
308 struct mem_cgroup_stat_cpu *stat;
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
315
316 #ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318 #endif
319 };
320
321 /* Stuffs for move charges at task migration. */
322 /*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326 enum move_type {
327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
329 NR_MOVE_TYPE,
330 };
331
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 spinlock_t lock; /* for from, to */
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
338 unsigned long moved_charge;
339 unsigned long moved_swap;
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342 } mc = {
343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 };
346
347 static bool move_anon(void)
348 {
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351 }
352
353 static bool move_file(void)
354 {
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357 }
358
359 /*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
366 enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
373 NR_CHARGE_TYPE,
374 };
375
376 /* for encoding cft->private value on file */
377 #define _MEM (0)
378 #define _MEMSWAP (1)
379 #define _OOM_TYPE (2)
380 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val) ((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL (0)
385
386 /*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
396
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
401
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403 void sock_update_memcg(struct sock *sk)
404 {
405 if (mem_cgroup_sockets_enabled) {
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432 }
433 EXPORT_SYMBOL(sock_update_memcg);
434
435 void sock_release_memcg(struct sock *sk)
436 {
437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443 }
444
445 #ifdef CONFIG_INET
446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447 {
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452 }
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
458
459 static struct mem_cgroup_per_zone *
460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461 {
462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 }
464
465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466 {
467 return &memcg->css;
468 }
469
470 static struct mem_cgroup_per_zone *
471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472 {
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
475
476 return mem_cgroup_zoneinfo(memcg, nid, zid);
477 }
478
479 static struct mem_cgroup_tree_per_zone *
480 soft_limit_tree_node_zone(int nid, int zid)
481 {
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 }
484
485 static struct mem_cgroup_tree_per_zone *
486 soft_limit_tree_from_page(struct page *page)
487 {
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 }
493
494 static void
495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
499 {
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526 }
527
528 static void
529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532 {
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537 }
538
539 static void
540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543 {
544 spin_lock(&mctz->lock);
545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 spin_unlock(&mctz->lock);
547 }
548
549
550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 unsigned long long excess;
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
562 */
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
570 if (excess || mz->on_tree) {
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 /*
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
578 */
579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 spin_unlock(&mctz->lock);
581 }
582 }
583 }
584
585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 {
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
591 for_each_node(node) {
592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 mctz = soft_limit_tree_node_zone(node, zone);
595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 }
597 }
598 }
599
600 static struct mem_cgroup_per_zone *
601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602 {
603 struct rb_node *rightmost = NULL;
604 struct mem_cgroup_per_zone *mz;
605
606 retry:
607 mz = NULL;
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
621 goto retry;
622 done:
623 return mz;
624 }
625
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635 }
636
637 /*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 enum mem_cgroup_stat_index idx)
658 {
659 long val = 0;
660 int cpu;
661
662 get_online_cpus();
663 for_each_online_cpu(cpu)
664 val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 put_online_cpus();
671 return val;
672 }
673
674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 bool charge)
676 {
677 int val = (charge) ? 1 : -1;
678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 }
680
681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 enum mem_cgroup_events_index idx)
683 {
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
688 val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 return val;
695 }
696
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 bool anon, int nr_pages)
699 {
700 preempt_disable();
701
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
712
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 else {
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 nr_pages = -nr_pages; /* for event */
719 }
720
721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722
723 preempt_enable();
724 }
725
726 unsigned long
727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 unsigned int lru_mask)
729 {
730 struct mem_cgroup_per_zone *mz;
731 enum lru_list lru;
732 unsigned long ret = 0;
733
734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
739 }
740 return ret;
741 }
742
743 static unsigned long
744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 int nid, unsigned int lru_mask)
746 {
747 u64 total = 0;
748 int zid;
749
750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
753
754 return total;
755 }
756
757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 unsigned int lru_mask)
759 {
760 int nid;
761 u64 total = 0;
762
763 for_each_node_state(nid, N_HIGH_MEMORY)
764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 return total;
766 }
767
768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
770 {
771 unsigned long val, next;
772
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
775 /* from time_after() in jiffies.h */
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
792 }
793 return false;
794 }
795
796 /*
797 * Check events in order.
798 *
799 */
800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801 {
802 preempt_disable();
803 /* threshold event is triggered in finer grain than soft limit */
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 preempt_enable();
816
817 mem_cgroup_threshold(memcg);
818 if (unlikely(do_softlimit))
819 mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 if (unlikely(do_numainfo))
822 atomic_inc(&memcg->numainfo_events);
823 #endif
824 } else
825 preempt_enable();
826 }
827
828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829 {
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833 }
834
835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836 {
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847 }
848
849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850 {
851 struct mem_cgroup *memcg = NULL;
852
853 if (!mm)
854 return NULL;
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
864 break;
865 } while (!css_tryget(&memcg->css));
866 rcu_read_unlock();
867 return memcg;
868 }
869
870 /**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
890 {
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
893
894 if (mem_cgroup_disabled())
895 return NULL;
896
897 if (!root)
898 root = root_mem_cgroup;
899
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
902
903 if (prev && prev != root)
904 css_put(&prev->css);
905
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
911
912 while (!memcg) {
913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 struct cgroup_subsys_state *css;
915
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
927
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
936 rcu_read_unlock();
937
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
950 }
951
952 /**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
959 {
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964 }
965
966 /*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971 #define for_each_mem_cgroup_tree(iter, root) \
972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(root, iter, NULL))
975
976 #define for_each_mem_cgroup(iter) \
977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
978 iter != NULL; \
979 iter = mem_cgroup_iter(NULL, iter, NULL))
980
981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982 {
983 return (memcg == root_mem_cgroup);
984 }
985
986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987 {
988 struct mem_cgroup *memcg;
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
996 goto out;
997
998 switch (idx) {
999 case PGFAULT:
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 break;
1005 default:
1006 BUG();
1007 }
1008 out:
1009 rcu_read_unlock();
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
1013 /**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024 {
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032 }
1033
1034 /*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
1047
1048 /**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
1062 {
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1066
1067 if (mem_cgroup_disabled())
1068 return &zone->lruvec;
1069
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1087 mz->lru_size[lru] += 1 << compound_order(page);
1088 return &mz->lruvec;
1089 }
1090
1091 /**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
1100 */
1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 {
1103 struct mem_cgroup_per_zone *mz;
1104 struct mem_cgroup *memcg;
1105 struct page_cgroup *pc;
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
1117 }
1118
1119 void mem_cgroup_lru_del(struct page *page)
1120 {
1121 mem_cgroup_lru_del_list(page, page_lru(page));
1122 }
1123
1124 /**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
1142 {
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
1146 }
1147
1148 /*
1149 * Checks whether given mem is same or in the root_mem_cgroup's
1150 * hierarchy subtree
1151 */
1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154 {
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
1158 }
1159
1160 return true;
1161 }
1162
1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 {
1165 int ret;
1166 struct mem_cgroup *curr = NULL;
1167 struct task_struct *p;
1168
1169 p = find_lock_task_mm(task);
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
1185 if (!curr)
1186 return 0;
1187 /*
1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 */
1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 css_put(&curr->css);
1195 return ret;
1196 }
1197
1198 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1199 {
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
1203 unsigned long inactive;
1204 unsigned long active;
1205 unsigned long gb;
1206
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
1211
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
1218 return inactive * inactive_ratio < active;
1219 }
1220
1221 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1222 {
1223 unsigned long active;
1224 unsigned long inactive;
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
1227
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
1232
1233 return (active > inactive);
1234 }
1235
1236 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1238 {
1239 int nid = zone_to_nid(zone);
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242
1243 return &mz->reclaim_stat;
1244 }
1245
1246 struct zone_reclaim_stat *
1247 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248 {
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1251
1252 if (mem_cgroup_disabled())
1253 return NULL;
1254
1255 pc = lookup_page_cgroup(page);
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1261 return &mz->reclaim_stat;
1262 }
1263
1264 #define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1266
1267 /**
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
1270 *
1271 * Returns the maximum amount of memory @mem can be charged with, in
1272 * pages.
1273 */
1274 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1275 {
1276 unsigned long long margin;
1277
1278 margin = res_counter_margin(&memcg->res);
1279 if (do_swap_account)
1280 margin = min(margin, res_counter_margin(&memcg->memsw));
1281 return margin >> PAGE_SHIFT;
1282 }
1283
1284 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1285 {
1286 struct cgroup *cgrp = memcg->css.cgroup;
1287
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1291
1292 return memcg->swappiness;
1293 }
1294
1295 /*
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1300 *
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1308 */
1309 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1310 {
1311 atomic_inc(&memcg->moving_account);
1312 synchronize_rcu();
1313 }
1314
1315 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1316 {
1317 /*
1318 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1319 * We check NULL in callee rather than caller.
1320 */
1321 if (memcg)
1322 atomic_dec(&memcg->moving_account);
1323 }
1324
1325 /*
1326 * 2 routines for checking "mem" is under move_account() or not.
1327 *
1328 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1329 * for avoiding race in accounting. If true,
1330 * pc->mem_cgroup may be overwritten.
1331 *
1332 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1333 * under hierarchy of moving cgroups. This is for
1334 * waiting at hith-memory prressure caused by "move".
1335 */
1336
1337 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1338 {
1339 VM_BUG_ON(!rcu_read_lock_held());
1340 return atomic_read(&memcg->moving_account) > 0;
1341 }
1342
1343 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1344 {
1345 struct mem_cgroup *from;
1346 struct mem_cgroup *to;
1347 bool ret = false;
1348 /*
1349 * Unlike task_move routines, we access mc.to, mc.from not under
1350 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1351 */
1352 spin_lock(&mc.lock);
1353 from = mc.from;
1354 to = mc.to;
1355 if (!from)
1356 goto unlock;
1357
1358 ret = mem_cgroup_same_or_subtree(memcg, from)
1359 || mem_cgroup_same_or_subtree(memcg, to);
1360 unlock:
1361 spin_unlock(&mc.lock);
1362 return ret;
1363 }
1364
1365 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1366 {
1367 if (mc.moving_task && current != mc.moving_task) {
1368 if (mem_cgroup_under_move(memcg)) {
1369 DEFINE_WAIT(wait);
1370 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1371 /* moving charge context might have finished. */
1372 if (mc.moving_task)
1373 schedule();
1374 finish_wait(&mc.waitq, &wait);
1375 return true;
1376 }
1377 }
1378 return false;
1379 }
1380
1381 /*
1382 * Take this lock when
1383 * - a code tries to modify page's memcg while it's USED.
1384 * - a code tries to modify page state accounting in a memcg.
1385 * see mem_cgroup_stealed(), too.
1386 */
1387 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1388 unsigned long *flags)
1389 {
1390 spin_lock_irqsave(&memcg->move_lock, *flags);
1391 }
1392
1393 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1394 unsigned long *flags)
1395 {
1396 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1397 }
1398
1399 /**
1400 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1401 * @memcg: The memory cgroup that went over limit
1402 * @p: Task that is going to be killed
1403 *
1404 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1405 * enabled
1406 */
1407 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1408 {
1409 struct cgroup *task_cgrp;
1410 struct cgroup *mem_cgrp;
1411 /*
1412 * Need a buffer in BSS, can't rely on allocations. The code relies
1413 * on the assumption that OOM is serialized for memory controller.
1414 * If this assumption is broken, revisit this code.
1415 */
1416 static char memcg_name[PATH_MAX];
1417 int ret;
1418
1419 if (!memcg || !p)
1420 return;
1421
1422 rcu_read_lock();
1423
1424 mem_cgrp = memcg->css.cgroup;
1425 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1426
1427 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1428 if (ret < 0) {
1429 /*
1430 * Unfortunately, we are unable to convert to a useful name
1431 * But we'll still print out the usage information
1432 */
1433 rcu_read_unlock();
1434 goto done;
1435 }
1436 rcu_read_unlock();
1437
1438 printk(KERN_INFO "Task in %s killed", memcg_name);
1439
1440 rcu_read_lock();
1441 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1442 if (ret < 0) {
1443 rcu_read_unlock();
1444 goto done;
1445 }
1446 rcu_read_unlock();
1447
1448 /*
1449 * Continues from above, so we don't need an KERN_ level
1450 */
1451 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1452 done:
1453
1454 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1455 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1456 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1457 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1458 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1459 "failcnt %llu\n",
1460 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1461 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1462 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1463 }
1464
1465 /*
1466 * This function returns the number of memcg under hierarchy tree. Returns
1467 * 1(self count) if no children.
1468 */
1469 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1470 {
1471 int num = 0;
1472 struct mem_cgroup *iter;
1473
1474 for_each_mem_cgroup_tree(iter, memcg)
1475 num++;
1476 return num;
1477 }
1478
1479 /*
1480 * Return the memory (and swap, if configured) limit for a memcg.
1481 */
1482 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1483 {
1484 u64 limit;
1485 u64 memsw;
1486
1487 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1488 limit += total_swap_pages << PAGE_SHIFT;
1489
1490 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1491 /*
1492 * If memsw is finite and limits the amount of swap space available
1493 * to this memcg, return that limit.
1494 */
1495 return min(limit, memsw);
1496 }
1497
1498 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1499 gfp_t gfp_mask,
1500 unsigned long flags)
1501 {
1502 unsigned long total = 0;
1503 bool noswap = false;
1504 int loop;
1505
1506 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1507 noswap = true;
1508 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1509 noswap = true;
1510
1511 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1512 if (loop)
1513 drain_all_stock_async(memcg);
1514 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1515 /*
1516 * Allow limit shrinkers, which are triggered directly
1517 * by userspace, to catch signals and stop reclaim
1518 * after minimal progress, regardless of the margin.
1519 */
1520 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1521 break;
1522 if (mem_cgroup_margin(memcg))
1523 break;
1524 /*
1525 * If nothing was reclaimed after two attempts, there
1526 * may be no reclaimable pages in this hierarchy.
1527 */
1528 if (loop && !total)
1529 break;
1530 }
1531 return total;
1532 }
1533
1534 /**
1535 * test_mem_cgroup_node_reclaimable
1536 * @mem: the target memcg
1537 * @nid: the node ID to be checked.
1538 * @noswap : specify true here if the user wants flle only information.
1539 *
1540 * This function returns whether the specified memcg contains any
1541 * reclaimable pages on a node. Returns true if there are any reclaimable
1542 * pages in the node.
1543 */
1544 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1545 int nid, bool noswap)
1546 {
1547 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1548 return true;
1549 if (noswap || !total_swap_pages)
1550 return false;
1551 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1552 return true;
1553 return false;
1554
1555 }
1556 #if MAX_NUMNODES > 1
1557
1558 /*
1559 * Always updating the nodemask is not very good - even if we have an empty
1560 * list or the wrong list here, we can start from some node and traverse all
1561 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1562 *
1563 */
1564 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1565 {
1566 int nid;
1567 /*
1568 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1569 * pagein/pageout changes since the last update.
1570 */
1571 if (!atomic_read(&memcg->numainfo_events))
1572 return;
1573 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1574 return;
1575
1576 /* make a nodemask where this memcg uses memory from */
1577 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1578
1579 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1580
1581 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1582 node_clear(nid, memcg->scan_nodes);
1583 }
1584
1585 atomic_set(&memcg->numainfo_events, 0);
1586 atomic_set(&memcg->numainfo_updating, 0);
1587 }
1588
1589 /*
1590 * Selecting a node where we start reclaim from. Because what we need is just
1591 * reducing usage counter, start from anywhere is O,K. Considering
1592 * memory reclaim from current node, there are pros. and cons.
1593 *
1594 * Freeing memory from current node means freeing memory from a node which
1595 * we'll use or we've used. So, it may make LRU bad. And if several threads
1596 * hit limits, it will see a contention on a node. But freeing from remote
1597 * node means more costs for memory reclaim because of memory latency.
1598 *
1599 * Now, we use round-robin. Better algorithm is welcomed.
1600 */
1601 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1602 {
1603 int node;
1604
1605 mem_cgroup_may_update_nodemask(memcg);
1606 node = memcg->last_scanned_node;
1607
1608 node = next_node(node, memcg->scan_nodes);
1609 if (node == MAX_NUMNODES)
1610 node = first_node(memcg->scan_nodes);
1611 /*
1612 * We call this when we hit limit, not when pages are added to LRU.
1613 * No LRU may hold pages because all pages are UNEVICTABLE or
1614 * memcg is too small and all pages are not on LRU. In that case,
1615 * we use curret node.
1616 */
1617 if (unlikely(node == MAX_NUMNODES))
1618 node = numa_node_id();
1619
1620 memcg->last_scanned_node = node;
1621 return node;
1622 }
1623
1624 /*
1625 * Check all nodes whether it contains reclaimable pages or not.
1626 * For quick scan, we make use of scan_nodes. This will allow us to skip
1627 * unused nodes. But scan_nodes is lazily updated and may not cotain
1628 * enough new information. We need to do double check.
1629 */
1630 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1631 {
1632 int nid;
1633
1634 /*
1635 * quick check...making use of scan_node.
1636 * We can skip unused nodes.
1637 */
1638 if (!nodes_empty(memcg->scan_nodes)) {
1639 for (nid = first_node(memcg->scan_nodes);
1640 nid < MAX_NUMNODES;
1641 nid = next_node(nid, memcg->scan_nodes)) {
1642
1643 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1644 return true;
1645 }
1646 }
1647 /*
1648 * Check rest of nodes.
1649 */
1650 for_each_node_state(nid, N_HIGH_MEMORY) {
1651 if (node_isset(nid, memcg->scan_nodes))
1652 continue;
1653 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1654 return true;
1655 }
1656 return false;
1657 }
1658
1659 #else
1660 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1661 {
1662 return 0;
1663 }
1664
1665 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1666 {
1667 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1668 }
1669 #endif
1670
1671 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1672 struct zone *zone,
1673 gfp_t gfp_mask,
1674 unsigned long *total_scanned)
1675 {
1676 struct mem_cgroup *victim = NULL;
1677 int total = 0;
1678 int loop = 0;
1679 unsigned long excess;
1680 unsigned long nr_scanned;
1681 struct mem_cgroup_reclaim_cookie reclaim = {
1682 .zone = zone,
1683 .priority = 0,
1684 };
1685
1686 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1687
1688 while (1) {
1689 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1690 if (!victim) {
1691 loop++;
1692 if (loop >= 2) {
1693 /*
1694 * If we have not been able to reclaim
1695 * anything, it might because there are
1696 * no reclaimable pages under this hierarchy
1697 */
1698 if (!total)
1699 break;
1700 /*
1701 * We want to do more targeted reclaim.
1702 * excess >> 2 is not to excessive so as to
1703 * reclaim too much, nor too less that we keep
1704 * coming back to reclaim from this cgroup
1705 */
1706 if (total >= (excess >> 2) ||
1707 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1708 break;
1709 }
1710 continue;
1711 }
1712 if (!mem_cgroup_reclaimable(victim, false))
1713 continue;
1714 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1715 zone, &nr_scanned);
1716 *total_scanned += nr_scanned;
1717 if (!res_counter_soft_limit_excess(&root_memcg->res))
1718 break;
1719 }
1720 mem_cgroup_iter_break(root_memcg, victim);
1721 return total;
1722 }
1723
1724 /*
1725 * Check OOM-Killer is already running under our hierarchy.
1726 * If someone is running, return false.
1727 * Has to be called with memcg_oom_lock
1728 */
1729 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1730 {
1731 struct mem_cgroup *iter, *failed = NULL;
1732
1733 for_each_mem_cgroup_tree(iter, memcg) {
1734 if (iter->oom_lock) {
1735 /*
1736 * this subtree of our hierarchy is already locked
1737 * so we cannot give a lock.
1738 */
1739 failed = iter;
1740 mem_cgroup_iter_break(memcg, iter);
1741 break;
1742 } else
1743 iter->oom_lock = true;
1744 }
1745
1746 if (!failed)
1747 return true;
1748
1749 /*
1750 * OK, we failed to lock the whole subtree so we have to clean up
1751 * what we set up to the failing subtree
1752 */
1753 for_each_mem_cgroup_tree(iter, memcg) {
1754 if (iter == failed) {
1755 mem_cgroup_iter_break(memcg, iter);
1756 break;
1757 }
1758 iter->oom_lock = false;
1759 }
1760 return false;
1761 }
1762
1763 /*
1764 * Has to be called with memcg_oom_lock
1765 */
1766 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1767 {
1768 struct mem_cgroup *iter;
1769
1770 for_each_mem_cgroup_tree(iter, memcg)
1771 iter->oom_lock = false;
1772 return 0;
1773 }
1774
1775 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1776 {
1777 struct mem_cgroup *iter;
1778
1779 for_each_mem_cgroup_tree(iter, memcg)
1780 atomic_inc(&iter->under_oom);
1781 }
1782
1783 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1784 {
1785 struct mem_cgroup *iter;
1786
1787 /*
1788 * When a new child is created while the hierarchy is under oom,
1789 * mem_cgroup_oom_lock() may not be called. We have to use
1790 * atomic_add_unless() here.
1791 */
1792 for_each_mem_cgroup_tree(iter, memcg)
1793 atomic_add_unless(&iter->under_oom, -1, 0);
1794 }
1795
1796 static DEFINE_SPINLOCK(memcg_oom_lock);
1797 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1798
1799 struct oom_wait_info {
1800 struct mem_cgroup *memcg;
1801 wait_queue_t wait;
1802 };
1803
1804 static int memcg_oom_wake_function(wait_queue_t *wait,
1805 unsigned mode, int sync, void *arg)
1806 {
1807 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1808 struct mem_cgroup *oom_wait_memcg;
1809 struct oom_wait_info *oom_wait_info;
1810
1811 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1812 oom_wait_memcg = oom_wait_info->memcg;
1813
1814 /*
1815 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1816 * Then we can use css_is_ancestor without taking care of RCU.
1817 */
1818 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1819 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1820 return 0;
1821 return autoremove_wake_function(wait, mode, sync, arg);
1822 }
1823
1824 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1825 {
1826 /* for filtering, pass "memcg" as argument. */
1827 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1828 }
1829
1830 static void memcg_oom_recover(struct mem_cgroup *memcg)
1831 {
1832 if (memcg && atomic_read(&memcg->under_oom))
1833 memcg_wakeup_oom(memcg);
1834 }
1835
1836 /*
1837 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1838 */
1839 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1840 {
1841 struct oom_wait_info owait;
1842 bool locked, need_to_kill;
1843
1844 owait.memcg = memcg;
1845 owait.wait.flags = 0;
1846 owait.wait.func = memcg_oom_wake_function;
1847 owait.wait.private = current;
1848 INIT_LIST_HEAD(&owait.wait.task_list);
1849 need_to_kill = true;
1850 mem_cgroup_mark_under_oom(memcg);
1851
1852 /* At first, try to OOM lock hierarchy under memcg.*/
1853 spin_lock(&memcg_oom_lock);
1854 locked = mem_cgroup_oom_lock(memcg);
1855 /*
1856 * Even if signal_pending(), we can't quit charge() loop without
1857 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1858 * under OOM is always welcomed, use TASK_KILLABLE here.
1859 */
1860 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1861 if (!locked || memcg->oom_kill_disable)
1862 need_to_kill = false;
1863 if (locked)
1864 mem_cgroup_oom_notify(memcg);
1865 spin_unlock(&memcg_oom_lock);
1866
1867 if (need_to_kill) {
1868 finish_wait(&memcg_oom_waitq, &owait.wait);
1869 mem_cgroup_out_of_memory(memcg, mask, order);
1870 } else {
1871 schedule();
1872 finish_wait(&memcg_oom_waitq, &owait.wait);
1873 }
1874 spin_lock(&memcg_oom_lock);
1875 if (locked)
1876 mem_cgroup_oom_unlock(memcg);
1877 memcg_wakeup_oom(memcg);
1878 spin_unlock(&memcg_oom_lock);
1879
1880 mem_cgroup_unmark_under_oom(memcg);
1881
1882 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1883 return false;
1884 /* Give chance to dying process */
1885 schedule_timeout_uninterruptible(1);
1886 return true;
1887 }
1888
1889 /*
1890 * Currently used to update mapped file statistics, but the routine can be
1891 * generalized to update other statistics as well.
1892 *
1893 * Notes: Race condition
1894 *
1895 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1896 * it tends to be costly. But considering some conditions, we doesn't need
1897 * to do so _always_.
1898 *
1899 * Considering "charge", lock_page_cgroup() is not required because all
1900 * file-stat operations happen after a page is attached to radix-tree. There
1901 * are no race with "charge".
1902 *
1903 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1904 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1905 * if there are race with "uncharge". Statistics itself is properly handled
1906 * by flags.
1907 *
1908 * Considering "move", this is an only case we see a race. To make the race
1909 * small, we check mm->moving_account and detect there are possibility of race
1910 * If there is, we take a lock.
1911 */
1912
1913 void mem_cgroup_update_page_stat(struct page *page,
1914 enum mem_cgroup_page_stat_item idx, int val)
1915 {
1916 struct mem_cgroup *memcg;
1917 struct page_cgroup *pc = lookup_page_cgroup(page);
1918 bool need_unlock = false;
1919 unsigned long uninitialized_var(flags);
1920
1921 if (mem_cgroup_disabled())
1922 return;
1923 again:
1924 rcu_read_lock();
1925 memcg = pc->mem_cgroup;
1926 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1927 goto out;
1928 /* pc->mem_cgroup is unstable ? */
1929 if (unlikely(mem_cgroup_stealed(memcg))) {
1930 /* take a lock against to access pc->mem_cgroup */
1931 move_lock_mem_cgroup(memcg, &flags);
1932 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1933 move_unlock_mem_cgroup(memcg, &flags);
1934 rcu_read_unlock();
1935 goto again;
1936 }
1937 need_unlock = true;
1938 }
1939
1940 switch (idx) {
1941 case MEMCG_NR_FILE_MAPPED:
1942 if (val > 0)
1943 SetPageCgroupFileMapped(pc);
1944 else if (!page_mapped(page))
1945 ClearPageCgroupFileMapped(pc);
1946 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1947 break;
1948 default:
1949 BUG();
1950 }
1951
1952 this_cpu_add(memcg->stat->count[idx], val);
1953
1954 out:
1955 if (unlikely(need_unlock))
1956 move_unlock_mem_cgroup(memcg, &flags);
1957 rcu_read_unlock();
1958 }
1959
1960 /*
1961 * size of first charge trial. "32" comes from vmscan.c's magic value.
1962 * TODO: maybe necessary to use big numbers in big irons.
1963 */
1964 #define CHARGE_BATCH 32U
1965 struct memcg_stock_pcp {
1966 struct mem_cgroup *cached; /* this never be root cgroup */
1967 unsigned int nr_pages;
1968 struct work_struct work;
1969 unsigned long flags;
1970 #define FLUSHING_CACHED_CHARGE (0)
1971 };
1972 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1973 static DEFINE_MUTEX(percpu_charge_mutex);
1974
1975 /*
1976 * Try to consume stocked charge on this cpu. If success, one page is consumed
1977 * from local stock and true is returned. If the stock is 0 or charges from a
1978 * cgroup which is not current target, returns false. This stock will be
1979 * refilled.
1980 */
1981 static bool consume_stock(struct mem_cgroup *memcg)
1982 {
1983 struct memcg_stock_pcp *stock;
1984 bool ret = true;
1985
1986 stock = &get_cpu_var(memcg_stock);
1987 if (memcg == stock->cached && stock->nr_pages)
1988 stock->nr_pages--;
1989 else /* need to call res_counter_charge */
1990 ret = false;
1991 put_cpu_var(memcg_stock);
1992 return ret;
1993 }
1994
1995 /*
1996 * Returns stocks cached in percpu to res_counter and reset cached information.
1997 */
1998 static void drain_stock(struct memcg_stock_pcp *stock)
1999 {
2000 struct mem_cgroup *old = stock->cached;
2001
2002 if (stock->nr_pages) {
2003 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2004
2005 res_counter_uncharge(&old->res, bytes);
2006 if (do_swap_account)
2007 res_counter_uncharge(&old->memsw, bytes);
2008 stock->nr_pages = 0;
2009 }
2010 stock->cached = NULL;
2011 }
2012
2013 /*
2014 * This must be called under preempt disabled or must be called by
2015 * a thread which is pinned to local cpu.
2016 */
2017 static void drain_local_stock(struct work_struct *dummy)
2018 {
2019 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2020 drain_stock(stock);
2021 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2022 }
2023
2024 /*
2025 * Cache charges(val) which is from res_counter, to local per_cpu area.
2026 * This will be consumed by consume_stock() function, later.
2027 */
2028 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2029 {
2030 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2031
2032 if (stock->cached != memcg) { /* reset if necessary */
2033 drain_stock(stock);
2034 stock->cached = memcg;
2035 }
2036 stock->nr_pages += nr_pages;
2037 put_cpu_var(memcg_stock);
2038 }
2039
2040 /*
2041 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2042 * of the hierarchy under it. sync flag says whether we should block
2043 * until the work is done.
2044 */
2045 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2046 {
2047 int cpu, curcpu;
2048
2049 /* Notify other cpus that system-wide "drain" is running */
2050 get_online_cpus();
2051 curcpu = get_cpu();
2052 for_each_online_cpu(cpu) {
2053 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2054 struct mem_cgroup *memcg;
2055
2056 memcg = stock->cached;
2057 if (!memcg || !stock->nr_pages)
2058 continue;
2059 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2060 continue;
2061 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2062 if (cpu == curcpu)
2063 drain_local_stock(&stock->work);
2064 else
2065 schedule_work_on(cpu, &stock->work);
2066 }
2067 }
2068 put_cpu();
2069
2070 if (!sync)
2071 goto out;
2072
2073 for_each_online_cpu(cpu) {
2074 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2075 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2076 flush_work(&stock->work);
2077 }
2078 out:
2079 put_online_cpus();
2080 }
2081
2082 /*
2083 * Tries to drain stocked charges in other cpus. This function is asynchronous
2084 * and just put a work per cpu for draining localy on each cpu. Caller can
2085 * expects some charges will be back to res_counter later but cannot wait for
2086 * it.
2087 */
2088 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2089 {
2090 /*
2091 * If someone calls draining, avoid adding more kworker runs.
2092 */
2093 if (!mutex_trylock(&percpu_charge_mutex))
2094 return;
2095 drain_all_stock(root_memcg, false);
2096 mutex_unlock(&percpu_charge_mutex);
2097 }
2098
2099 /* This is a synchronous drain interface. */
2100 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2101 {
2102 /* called when force_empty is called */
2103 mutex_lock(&percpu_charge_mutex);
2104 drain_all_stock(root_memcg, true);
2105 mutex_unlock(&percpu_charge_mutex);
2106 }
2107
2108 /*
2109 * This function drains percpu counter value from DEAD cpu and
2110 * move it to local cpu. Note that this function can be preempted.
2111 */
2112 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2113 {
2114 int i;
2115
2116 spin_lock(&memcg->pcp_counter_lock);
2117 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2118 long x = per_cpu(memcg->stat->count[i], cpu);
2119
2120 per_cpu(memcg->stat->count[i], cpu) = 0;
2121 memcg->nocpu_base.count[i] += x;
2122 }
2123 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2124 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2125
2126 per_cpu(memcg->stat->events[i], cpu) = 0;
2127 memcg->nocpu_base.events[i] += x;
2128 }
2129 spin_unlock(&memcg->pcp_counter_lock);
2130 }
2131
2132 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2133 unsigned long action,
2134 void *hcpu)
2135 {
2136 int cpu = (unsigned long)hcpu;
2137 struct memcg_stock_pcp *stock;
2138 struct mem_cgroup *iter;
2139
2140 if (action == CPU_ONLINE)
2141 return NOTIFY_OK;
2142
2143 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2144 return NOTIFY_OK;
2145
2146 for_each_mem_cgroup(iter)
2147 mem_cgroup_drain_pcp_counter(iter, cpu);
2148
2149 stock = &per_cpu(memcg_stock, cpu);
2150 drain_stock(stock);
2151 return NOTIFY_OK;
2152 }
2153
2154
2155 /* See __mem_cgroup_try_charge() for details */
2156 enum {
2157 CHARGE_OK, /* success */
2158 CHARGE_RETRY, /* need to retry but retry is not bad */
2159 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2160 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2161 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2162 };
2163
2164 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2165 unsigned int nr_pages, bool oom_check)
2166 {
2167 unsigned long csize = nr_pages * PAGE_SIZE;
2168 struct mem_cgroup *mem_over_limit;
2169 struct res_counter *fail_res;
2170 unsigned long flags = 0;
2171 int ret;
2172
2173 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2174
2175 if (likely(!ret)) {
2176 if (!do_swap_account)
2177 return CHARGE_OK;
2178 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2179 if (likely(!ret))
2180 return CHARGE_OK;
2181
2182 res_counter_uncharge(&memcg->res, csize);
2183 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2184 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2185 } else
2186 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2187 /*
2188 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2189 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2190 *
2191 * Never reclaim on behalf of optional batching, retry with a
2192 * single page instead.
2193 */
2194 if (nr_pages == CHARGE_BATCH)
2195 return CHARGE_RETRY;
2196
2197 if (!(gfp_mask & __GFP_WAIT))
2198 return CHARGE_WOULDBLOCK;
2199
2200 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2201 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2202 return CHARGE_RETRY;
2203 /*
2204 * Even though the limit is exceeded at this point, reclaim
2205 * may have been able to free some pages. Retry the charge
2206 * before killing the task.
2207 *
2208 * Only for regular pages, though: huge pages are rather
2209 * unlikely to succeed so close to the limit, and we fall back
2210 * to regular pages anyway in case of failure.
2211 */
2212 if (nr_pages == 1 && ret)
2213 return CHARGE_RETRY;
2214
2215 /*
2216 * At task move, charge accounts can be doubly counted. So, it's
2217 * better to wait until the end of task_move if something is going on.
2218 */
2219 if (mem_cgroup_wait_acct_move(mem_over_limit))
2220 return CHARGE_RETRY;
2221
2222 /* If we don't need to call oom-killer at el, return immediately */
2223 if (!oom_check)
2224 return CHARGE_NOMEM;
2225 /* check OOM */
2226 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2227 return CHARGE_OOM_DIE;
2228
2229 return CHARGE_RETRY;
2230 }
2231
2232 /*
2233 * __mem_cgroup_try_charge() does
2234 * 1. detect memcg to be charged against from passed *mm and *ptr,
2235 * 2. update res_counter
2236 * 3. call memory reclaim if necessary.
2237 *
2238 * In some special case, if the task is fatal, fatal_signal_pending() or
2239 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2240 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2241 * as possible without any hazards. 2: all pages should have a valid
2242 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2243 * pointer, that is treated as a charge to root_mem_cgroup.
2244 *
2245 * So __mem_cgroup_try_charge() will return
2246 * 0 ... on success, filling *ptr with a valid memcg pointer.
2247 * -ENOMEM ... charge failure because of resource limits.
2248 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2249 *
2250 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2251 * the oom-killer can be invoked.
2252 */
2253 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2254 gfp_t gfp_mask,
2255 unsigned int nr_pages,
2256 struct mem_cgroup **ptr,
2257 bool oom)
2258 {
2259 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2260 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2261 struct mem_cgroup *memcg = NULL;
2262 int ret;
2263
2264 /*
2265 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2266 * in system level. So, allow to go ahead dying process in addition to
2267 * MEMDIE process.
2268 */
2269 if (unlikely(test_thread_flag(TIF_MEMDIE)
2270 || fatal_signal_pending(current)))
2271 goto bypass;
2272
2273 /*
2274 * We always charge the cgroup the mm_struct belongs to.
2275 * The mm_struct's mem_cgroup changes on task migration if the
2276 * thread group leader migrates. It's possible that mm is not
2277 * set, if so charge the init_mm (happens for pagecache usage).
2278 */
2279 if (!*ptr && !mm)
2280 *ptr = root_mem_cgroup;
2281 again:
2282 if (*ptr) { /* css should be a valid one */
2283 memcg = *ptr;
2284 VM_BUG_ON(css_is_removed(&memcg->css));
2285 if (mem_cgroup_is_root(memcg))
2286 goto done;
2287 if (nr_pages == 1 && consume_stock(memcg))
2288 goto done;
2289 css_get(&memcg->css);
2290 } else {
2291 struct task_struct *p;
2292
2293 rcu_read_lock();
2294 p = rcu_dereference(mm->owner);
2295 /*
2296 * Because we don't have task_lock(), "p" can exit.
2297 * In that case, "memcg" can point to root or p can be NULL with
2298 * race with swapoff. Then, we have small risk of mis-accouning.
2299 * But such kind of mis-account by race always happens because
2300 * we don't have cgroup_mutex(). It's overkill and we allo that
2301 * small race, here.
2302 * (*) swapoff at el will charge against mm-struct not against
2303 * task-struct. So, mm->owner can be NULL.
2304 */
2305 memcg = mem_cgroup_from_task(p);
2306 if (!memcg)
2307 memcg = root_mem_cgroup;
2308 if (mem_cgroup_is_root(memcg)) {
2309 rcu_read_unlock();
2310 goto done;
2311 }
2312 if (nr_pages == 1 && consume_stock(memcg)) {
2313 /*
2314 * It seems dagerous to access memcg without css_get().
2315 * But considering how consume_stok works, it's not
2316 * necessary. If consume_stock success, some charges
2317 * from this memcg are cached on this cpu. So, we
2318 * don't need to call css_get()/css_tryget() before
2319 * calling consume_stock().
2320 */
2321 rcu_read_unlock();
2322 goto done;
2323 }
2324 /* after here, we may be blocked. we need to get refcnt */
2325 if (!css_tryget(&memcg->css)) {
2326 rcu_read_unlock();
2327 goto again;
2328 }
2329 rcu_read_unlock();
2330 }
2331
2332 do {
2333 bool oom_check;
2334
2335 /* If killed, bypass charge */
2336 if (fatal_signal_pending(current)) {
2337 css_put(&memcg->css);
2338 goto bypass;
2339 }
2340
2341 oom_check = false;
2342 if (oom && !nr_oom_retries) {
2343 oom_check = true;
2344 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2345 }
2346
2347 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2348 switch (ret) {
2349 case CHARGE_OK:
2350 break;
2351 case CHARGE_RETRY: /* not in OOM situation but retry */
2352 batch = nr_pages;
2353 css_put(&memcg->css);
2354 memcg = NULL;
2355 goto again;
2356 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2357 css_put(&memcg->css);
2358 goto nomem;
2359 case CHARGE_NOMEM: /* OOM routine works */
2360 if (!oom) {
2361 css_put(&memcg->css);
2362 goto nomem;
2363 }
2364 /* If oom, we never return -ENOMEM */
2365 nr_oom_retries--;
2366 break;
2367 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2368 css_put(&memcg->css);
2369 goto bypass;
2370 }
2371 } while (ret != CHARGE_OK);
2372
2373 if (batch > nr_pages)
2374 refill_stock(memcg, batch - nr_pages);
2375 css_put(&memcg->css);
2376 done:
2377 *ptr = memcg;
2378 return 0;
2379 nomem:
2380 *ptr = NULL;
2381 return -ENOMEM;
2382 bypass:
2383 *ptr = root_mem_cgroup;
2384 return -EINTR;
2385 }
2386
2387 /*
2388 * Somemtimes we have to undo a charge we got by try_charge().
2389 * This function is for that and do uncharge, put css's refcnt.
2390 * gotten by try_charge().
2391 */
2392 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2393 unsigned int nr_pages)
2394 {
2395 if (!mem_cgroup_is_root(memcg)) {
2396 unsigned long bytes = nr_pages * PAGE_SIZE;
2397
2398 res_counter_uncharge(&memcg->res, bytes);
2399 if (do_swap_account)
2400 res_counter_uncharge(&memcg->memsw, bytes);
2401 }
2402 }
2403
2404 /*
2405 * A helper function to get mem_cgroup from ID. must be called under
2406 * rcu_read_lock(). The caller must check css_is_removed() or some if
2407 * it's concern. (dropping refcnt from swap can be called against removed
2408 * memcg.)
2409 */
2410 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2411 {
2412 struct cgroup_subsys_state *css;
2413
2414 /* ID 0 is unused ID */
2415 if (!id)
2416 return NULL;
2417 css = css_lookup(&mem_cgroup_subsys, id);
2418 if (!css)
2419 return NULL;
2420 return container_of(css, struct mem_cgroup, css);
2421 }
2422
2423 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2424 {
2425 struct mem_cgroup *memcg = NULL;
2426 struct page_cgroup *pc;
2427 unsigned short id;
2428 swp_entry_t ent;
2429
2430 VM_BUG_ON(!PageLocked(page));
2431
2432 pc = lookup_page_cgroup(page);
2433 lock_page_cgroup(pc);
2434 if (PageCgroupUsed(pc)) {
2435 memcg = pc->mem_cgroup;
2436 if (memcg && !css_tryget(&memcg->css))
2437 memcg = NULL;
2438 } else if (PageSwapCache(page)) {
2439 ent.val = page_private(page);
2440 id = lookup_swap_cgroup_id(ent);
2441 rcu_read_lock();
2442 memcg = mem_cgroup_lookup(id);
2443 if (memcg && !css_tryget(&memcg->css))
2444 memcg = NULL;
2445 rcu_read_unlock();
2446 }
2447 unlock_page_cgroup(pc);
2448 return memcg;
2449 }
2450
2451 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2452 struct page *page,
2453 unsigned int nr_pages,
2454 struct page_cgroup *pc,
2455 enum charge_type ctype,
2456 bool lrucare)
2457 {
2458 struct zone *uninitialized_var(zone);
2459 bool was_on_lru = false;
2460 bool anon;
2461
2462 lock_page_cgroup(pc);
2463 if (unlikely(PageCgroupUsed(pc))) {
2464 unlock_page_cgroup(pc);
2465 __mem_cgroup_cancel_charge(memcg, nr_pages);
2466 return;
2467 }
2468 /*
2469 * we don't need page_cgroup_lock about tail pages, becase they are not
2470 * accessed by any other context at this point.
2471 */
2472
2473 /*
2474 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2475 * may already be on some other mem_cgroup's LRU. Take care of it.
2476 */
2477 if (lrucare) {
2478 zone = page_zone(page);
2479 spin_lock_irq(&zone->lru_lock);
2480 if (PageLRU(page)) {
2481 ClearPageLRU(page);
2482 del_page_from_lru_list(zone, page, page_lru(page));
2483 was_on_lru = true;
2484 }
2485 }
2486
2487 pc->mem_cgroup = memcg;
2488 /*
2489 * We access a page_cgroup asynchronously without lock_page_cgroup().
2490 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2491 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2492 * before USED bit, we need memory barrier here.
2493 * See mem_cgroup_add_lru_list(), etc.
2494 */
2495 smp_wmb();
2496 SetPageCgroupUsed(pc);
2497
2498 if (lrucare) {
2499 if (was_on_lru) {
2500 VM_BUG_ON(PageLRU(page));
2501 SetPageLRU(page);
2502 add_page_to_lru_list(zone, page, page_lru(page));
2503 }
2504 spin_unlock_irq(&zone->lru_lock);
2505 }
2506
2507 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2508 anon = true;
2509 else
2510 anon = false;
2511
2512 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2513 unlock_page_cgroup(pc);
2514
2515 /*
2516 * "charge_statistics" updated event counter. Then, check it.
2517 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2518 * if they exceeds softlimit.
2519 */
2520 memcg_check_events(memcg, page);
2521 }
2522
2523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2524
2525 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2526 /*
2527 * Because tail pages are not marked as "used", set it. We're under
2528 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2529 * charge/uncharge will be never happen and move_account() is done under
2530 * compound_lock(), so we don't have to take care of races.
2531 */
2532 void mem_cgroup_split_huge_fixup(struct page *head)
2533 {
2534 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2535 struct page_cgroup *pc;
2536 int i;
2537
2538 if (mem_cgroup_disabled())
2539 return;
2540 for (i = 1; i < HPAGE_PMD_NR; i++) {
2541 pc = head_pc + i;
2542 pc->mem_cgroup = head_pc->mem_cgroup;
2543 smp_wmb();/* see __commit_charge() */
2544 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2545 }
2546 }
2547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2548
2549 /**
2550 * mem_cgroup_move_account - move account of the page
2551 * @page: the page
2552 * @nr_pages: number of regular pages (>1 for huge pages)
2553 * @pc: page_cgroup of the page.
2554 * @from: mem_cgroup which the page is moved from.
2555 * @to: mem_cgroup which the page is moved to. @from != @to.
2556 * @uncharge: whether we should call uncharge and css_put against @from.
2557 *
2558 * The caller must confirm following.
2559 * - page is not on LRU (isolate_page() is useful.)
2560 * - compound_lock is held when nr_pages > 1
2561 *
2562 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2563 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2564 * true, this function does "uncharge" from old cgroup, but it doesn't if
2565 * @uncharge is false, so a caller should do "uncharge".
2566 */
2567 static int mem_cgroup_move_account(struct page *page,
2568 unsigned int nr_pages,
2569 struct page_cgroup *pc,
2570 struct mem_cgroup *from,
2571 struct mem_cgroup *to,
2572 bool uncharge)
2573 {
2574 unsigned long flags;
2575 int ret;
2576 bool anon = PageAnon(page);
2577
2578 VM_BUG_ON(from == to);
2579 VM_BUG_ON(PageLRU(page));
2580 /*
2581 * The page is isolated from LRU. So, collapse function
2582 * will not handle this page. But page splitting can happen.
2583 * Do this check under compound_page_lock(). The caller should
2584 * hold it.
2585 */
2586 ret = -EBUSY;
2587 if (nr_pages > 1 && !PageTransHuge(page))
2588 goto out;
2589
2590 lock_page_cgroup(pc);
2591
2592 ret = -EINVAL;
2593 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594 goto unlock;
2595
2596 move_lock_mem_cgroup(from, &flags);
2597
2598 if (PageCgroupFileMapped(pc)) {
2599 /* Update mapped_file data for mem_cgroup */
2600 preempt_disable();
2601 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603 preempt_enable();
2604 }
2605 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2606 if (uncharge)
2607 /* This is not "cancel", but cancel_charge does all we need. */
2608 __mem_cgroup_cancel_charge(from, nr_pages);
2609
2610 /* caller should have done css_get */
2611 pc->mem_cgroup = to;
2612 mem_cgroup_charge_statistics(to, anon, nr_pages);
2613 /*
2614 * We charges against "to" which may not have any tasks. Then, "to"
2615 * can be under rmdir(). But in current implementation, caller of
2616 * this function is just force_empty() and move charge, so it's
2617 * guaranteed that "to" is never removed. So, we don't check rmdir
2618 * status here.
2619 */
2620 move_unlock_mem_cgroup(from, &flags);
2621 ret = 0;
2622 unlock:
2623 unlock_page_cgroup(pc);
2624 /*
2625 * check events
2626 */
2627 memcg_check_events(to, page);
2628 memcg_check_events(from, page);
2629 out:
2630 return ret;
2631 }
2632
2633 /*
2634 * move charges to its parent.
2635 */
2636
2637 static int mem_cgroup_move_parent(struct page *page,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *child,
2640 gfp_t gfp_mask)
2641 {
2642 struct cgroup *cg = child->css.cgroup;
2643 struct cgroup *pcg = cg->parent;
2644 struct mem_cgroup *parent;
2645 unsigned int nr_pages;
2646 unsigned long uninitialized_var(flags);
2647 int ret;
2648
2649 /* Is ROOT ? */
2650 if (!pcg)
2651 return -EINVAL;
2652
2653 ret = -EBUSY;
2654 if (!get_page_unless_zero(page))
2655 goto out;
2656 if (isolate_lru_page(page))
2657 goto put;
2658
2659 nr_pages = hpage_nr_pages(page);
2660
2661 parent = mem_cgroup_from_cont(pcg);
2662 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2663 if (ret)
2664 goto put_back;
2665
2666 if (nr_pages > 1)
2667 flags = compound_lock_irqsave(page);
2668
2669 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2670 if (ret)
2671 __mem_cgroup_cancel_charge(parent, nr_pages);
2672
2673 if (nr_pages > 1)
2674 compound_unlock_irqrestore(page, flags);
2675 put_back:
2676 putback_lru_page(page);
2677 put:
2678 put_page(page);
2679 out:
2680 return ret;
2681 }
2682
2683 /*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2690 gfp_t gfp_mask, enum charge_type ctype)
2691 {
2692 struct mem_cgroup *memcg = NULL;
2693 unsigned int nr_pages = 1;
2694 struct page_cgroup *pc;
2695 bool oom = true;
2696 int ret;
2697
2698 if (PageTransHuge(page)) {
2699 nr_pages <<= compound_order(page);
2700 VM_BUG_ON(!PageTransHuge(page));
2701 /*
2702 * Never OOM-kill a process for a huge page. The
2703 * fault handler will fall back to regular pages.
2704 */
2705 oom = false;
2706 }
2707
2708 pc = lookup_page_cgroup(page);
2709 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2710 if (ret == -ENOMEM)
2711 return ret;
2712 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2713 return 0;
2714 }
2715
2716 int mem_cgroup_newpage_charge(struct page *page,
2717 struct mm_struct *mm, gfp_t gfp_mask)
2718 {
2719 if (mem_cgroup_disabled())
2720 return 0;
2721 VM_BUG_ON(page_mapped(page));
2722 VM_BUG_ON(page->mapping && !PageAnon(page));
2723 VM_BUG_ON(!mm);
2724 return mem_cgroup_charge_common(page, mm, gfp_mask,
2725 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2726 }
2727
2728 static void
2729 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2730 enum charge_type ctype);
2731
2732 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2733 gfp_t gfp_mask)
2734 {
2735 struct mem_cgroup *memcg = NULL;
2736 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2737 int ret;
2738
2739 if (mem_cgroup_disabled())
2740 return 0;
2741 if (PageCompound(page))
2742 return 0;
2743
2744 if (unlikely(!mm))
2745 mm = &init_mm;
2746 if (!page_is_file_cache(page))
2747 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2748
2749 if (!PageSwapCache(page))
2750 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2751 else { /* page is swapcache/shmem */
2752 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2753 if (!ret)
2754 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2755 }
2756 return ret;
2757 }
2758
2759 /*
2760 * While swap-in, try_charge -> commit or cancel, the page is locked.
2761 * And when try_charge() successfully returns, one refcnt to memcg without
2762 * struct page_cgroup is acquired. This refcnt will be consumed by
2763 * "commit()" or removed by "cancel()"
2764 */
2765 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2766 struct page *page,
2767 gfp_t mask, struct mem_cgroup **memcgp)
2768 {
2769 struct mem_cgroup *memcg;
2770 int ret;
2771
2772 *memcgp = NULL;
2773
2774 if (mem_cgroup_disabled())
2775 return 0;
2776
2777 if (!do_swap_account)
2778 goto charge_cur_mm;
2779 /*
2780 * A racing thread's fault, or swapoff, may have already updated
2781 * the pte, and even removed page from swap cache: in those cases
2782 * do_swap_page()'s pte_same() test will fail; but there's also a
2783 * KSM case which does need to charge the page.
2784 */
2785 if (!PageSwapCache(page))
2786 goto charge_cur_mm;
2787 memcg = try_get_mem_cgroup_from_page(page);
2788 if (!memcg)
2789 goto charge_cur_mm;
2790 *memcgp = memcg;
2791 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2792 css_put(&memcg->css);
2793 if (ret == -EINTR)
2794 ret = 0;
2795 return ret;
2796 charge_cur_mm:
2797 if (unlikely(!mm))
2798 mm = &init_mm;
2799 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2800 if (ret == -EINTR)
2801 ret = 0;
2802 return ret;
2803 }
2804
2805 static void
2806 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2807 enum charge_type ctype)
2808 {
2809 struct page_cgroup *pc;
2810
2811 if (mem_cgroup_disabled())
2812 return;
2813 if (!memcg)
2814 return;
2815 cgroup_exclude_rmdir(&memcg->css);
2816
2817 pc = lookup_page_cgroup(page);
2818 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2819 /*
2820 * Now swap is on-memory. This means this page may be
2821 * counted both as mem and swap....double count.
2822 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2823 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2824 * may call delete_from_swap_cache() before reach here.
2825 */
2826 if (do_swap_account && PageSwapCache(page)) {
2827 swp_entry_t ent = {.val = page_private(page)};
2828 struct mem_cgroup *swap_memcg;
2829 unsigned short id;
2830
2831 id = swap_cgroup_record(ent, 0);
2832 rcu_read_lock();
2833 swap_memcg = mem_cgroup_lookup(id);
2834 if (swap_memcg) {
2835 /*
2836 * This recorded memcg can be obsolete one. So, avoid
2837 * calling css_tryget
2838 */
2839 if (!mem_cgroup_is_root(swap_memcg))
2840 res_counter_uncharge(&swap_memcg->memsw,
2841 PAGE_SIZE);
2842 mem_cgroup_swap_statistics(swap_memcg, false);
2843 mem_cgroup_put(swap_memcg);
2844 }
2845 rcu_read_unlock();
2846 }
2847 /*
2848 * At swapin, we may charge account against cgroup which has no tasks.
2849 * So, rmdir()->pre_destroy() can be called while we do this charge.
2850 * In that case, we need to call pre_destroy() again. check it here.
2851 */
2852 cgroup_release_and_wakeup_rmdir(&memcg->css);
2853 }
2854
2855 void mem_cgroup_commit_charge_swapin(struct page *page,
2856 struct mem_cgroup *memcg)
2857 {
2858 __mem_cgroup_commit_charge_swapin(page, memcg,
2859 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2860 }
2861
2862 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2863 {
2864 if (mem_cgroup_disabled())
2865 return;
2866 if (!memcg)
2867 return;
2868 __mem_cgroup_cancel_charge(memcg, 1);
2869 }
2870
2871 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2872 unsigned int nr_pages,
2873 const enum charge_type ctype)
2874 {
2875 struct memcg_batch_info *batch = NULL;
2876 bool uncharge_memsw = true;
2877
2878 /* If swapout, usage of swap doesn't decrease */
2879 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2880 uncharge_memsw = false;
2881
2882 batch = &current->memcg_batch;
2883 /*
2884 * In usual, we do css_get() when we remember memcg pointer.
2885 * But in this case, we keep res->usage until end of a series of
2886 * uncharges. Then, it's ok to ignore memcg's refcnt.
2887 */
2888 if (!batch->memcg)
2889 batch->memcg = memcg;
2890 /*
2891 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2892 * In those cases, all pages freed continuously can be expected to be in
2893 * the same cgroup and we have chance to coalesce uncharges.
2894 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2895 * because we want to do uncharge as soon as possible.
2896 */
2897
2898 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2899 goto direct_uncharge;
2900
2901 if (nr_pages > 1)
2902 goto direct_uncharge;
2903
2904 /*
2905 * In typical case, batch->memcg == mem. This means we can
2906 * merge a series of uncharges to an uncharge of res_counter.
2907 * If not, we uncharge res_counter ony by one.
2908 */
2909 if (batch->memcg != memcg)
2910 goto direct_uncharge;
2911 /* remember freed charge and uncharge it later */
2912 batch->nr_pages++;
2913 if (uncharge_memsw)
2914 batch->memsw_nr_pages++;
2915 return;
2916 direct_uncharge:
2917 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2918 if (uncharge_memsw)
2919 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2920 if (unlikely(batch->memcg != memcg))
2921 memcg_oom_recover(memcg);
2922 }
2923
2924 /*
2925 * uncharge if !page_mapped(page)
2926 */
2927 static struct mem_cgroup *
2928 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2929 {
2930 struct mem_cgroup *memcg = NULL;
2931 unsigned int nr_pages = 1;
2932 struct page_cgroup *pc;
2933 bool anon;
2934
2935 if (mem_cgroup_disabled())
2936 return NULL;
2937
2938 if (PageSwapCache(page))
2939 return NULL;
2940
2941 if (PageTransHuge(page)) {
2942 nr_pages <<= compound_order(page);
2943 VM_BUG_ON(!PageTransHuge(page));
2944 }
2945 /*
2946 * Check if our page_cgroup is valid
2947 */
2948 pc = lookup_page_cgroup(page);
2949 if (unlikely(!PageCgroupUsed(pc)))
2950 return NULL;
2951
2952 lock_page_cgroup(pc);
2953
2954 memcg = pc->mem_cgroup;
2955
2956 if (!PageCgroupUsed(pc))
2957 goto unlock_out;
2958
2959 anon = PageAnon(page);
2960
2961 switch (ctype) {
2962 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2963 anon = true;
2964 /* fallthrough */
2965 case MEM_CGROUP_CHARGE_TYPE_DROP:
2966 /* See mem_cgroup_prepare_migration() */
2967 if (page_mapped(page) || PageCgroupMigration(pc))
2968 goto unlock_out;
2969 break;
2970 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2971 if (!PageAnon(page)) { /* Shared memory */
2972 if (page->mapping && !page_is_file_cache(page))
2973 goto unlock_out;
2974 } else if (page_mapped(page)) /* Anon */
2975 goto unlock_out;
2976 break;
2977 default:
2978 break;
2979 }
2980
2981 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2982
2983 ClearPageCgroupUsed(pc);
2984 /*
2985 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2986 * freed from LRU. This is safe because uncharged page is expected not
2987 * to be reused (freed soon). Exception is SwapCache, it's handled by
2988 * special functions.
2989 */
2990
2991 unlock_page_cgroup(pc);
2992 /*
2993 * even after unlock, we have memcg->res.usage here and this memcg
2994 * will never be freed.
2995 */
2996 memcg_check_events(memcg, page);
2997 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2998 mem_cgroup_swap_statistics(memcg, true);
2999 mem_cgroup_get(memcg);
3000 }
3001 if (!mem_cgroup_is_root(memcg))
3002 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3003
3004 return memcg;
3005
3006 unlock_out:
3007 unlock_page_cgroup(pc);
3008 return NULL;
3009 }
3010
3011 void mem_cgroup_uncharge_page(struct page *page)
3012 {
3013 /* early check. */
3014 if (page_mapped(page))
3015 return;
3016 VM_BUG_ON(page->mapping && !PageAnon(page));
3017 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3018 }
3019
3020 void mem_cgroup_uncharge_cache_page(struct page *page)
3021 {
3022 VM_BUG_ON(page_mapped(page));
3023 VM_BUG_ON(page->mapping);
3024 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3025 }
3026
3027 /*
3028 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3029 * In that cases, pages are freed continuously and we can expect pages
3030 * are in the same memcg. All these calls itself limits the number of
3031 * pages freed at once, then uncharge_start/end() is called properly.
3032 * This may be called prural(2) times in a context,
3033 */
3034
3035 void mem_cgroup_uncharge_start(void)
3036 {
3037 current->memcg_batch.do_batch++;
3038 /* We can do nest. */
3039 if (current->memcg_batch.do_batch == 1) {
3040 current->memcg_batch.memcg = NULL;
3041 current->memcg_batch.nr_pages = 0;
3042 current->memcg_batch.memsw_nr_pages = 0;
3043 }
3044 }
3045
3046 void mem_cgroup_uncharge_end(void)
3047 {
3048 struct memcg_batch_info *batch = &current->memcg_batch;
3049
3050 if (!batch->do_batch)
3051 return;
3052
3053 batch->do_batch--;
3054 if (batch->do_batch) /* If stacked, do nothing. */
3055 return;
3056
3057 if (!batch->memcg)
3058 return;
3059 /*
3060 * This "batch->memcg" is valid without any css_get/put etc...
3061 * bacause we hide charges behind us.
3062 */
3063 if (batch->nr_pages)
3064 res_counter_uncharge(&batch->memcg->res,
3065 batch->nr_pages * PAGE_SIZE);
3066 if (batch->memsw_nr_pages)
3067 res_counter_uncharge(&batch->memcg->memsw,
3068 batch->memsw_nr_pages * PAGE_SIZE);
3069 memcg_oom_recover(batch->memcg);
3070 /* forget this pointer (for sanity check) */
3071 batch->memcg = NULL;
3072 }
3073
3074 #ifdef CONFIG_SWAP
3075 /*
3076 * called after __delete_from_swap_cache() and drop "page" account.
3077 * memcg information is recorded to swap_cgroup of "ent"
3078 */
3079 void
3080 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3081 {
3082 struct mem_cgroup *memcg;
3083 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3084
3085 if (!swapout) /* this was a swap cache but the swap is unused ! */
3086 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3087
3088 memcg = __mem_cgroup_uncharge_common(page, ctype);
3089
3090 /*
3091 * record memcg information, if swapout && memcg != NULL,
3092 * mem_cgroup_get() was called in uncharge().
3093 */
3094 if (do_swap_account && swapout && memcg)
3095 swap_cgroup_record(ent, css_id(&memcg->css));
3096 }
3097 #endif
3098
3099 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3100 /*
3101 * called from swap_entry_free(). remove record in swap_cgroup and
3102 * uncharge "memsw" account.
3103 */
3104 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3105 {
3106 struct mem_cgroup *memcg;
3107 unsigned short id;
3108
3109 if (!do_swap_account)
3110 return;
3111
3112 id = swap_cgroup_record(ent, 0);
3113 rcu_read_lock();
3114 memcg = mem_cgroup_lookup(id);
3115 if (memcg) {
3116 /*
3117 * We uncharge this because swap is freed.
3118 * This memcg can be obsolete one. We avoid calling css_tryget
3119 */
3120 if (!mem_cgroup_is_root(memcg))
3121 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3122 mem_cgroup_swap_statistics(memcg, false);
3123 mem_cgroup_put(memcg);
3124 }
3125 rcu_read_unlock();
3126 }
3127
3128 /**
3129 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3130 * @entry: swap entry to be moved
3131 * @from: mem_cgroup which the entry is moved from
3132 * @to: mem_cgroup which the entry is moved to
3133 * @need_fixup: whether we should fixup res_counters and refcounts.
3134 *
3135 * It succeeds only when the swap_cgroup's record for this entry is the same
3136 * as the mem_cgroup's id of @from.
3137 *
3138 * Returns 0 on success, -EINVAL on failure.
3139 *
3140 * The caller must have charged to @to, IOW, called res_counter_charge() about
3141 * both res and memsw, and called css_get().
3142 */
3143 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3144 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3145 {
3146 unsigned short old_id, new_id;
3147
3148 old_id = css_id(&from->css);
3149 new_id = css_id(&to->css);
3150
3151 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3152 mem_cgroup_swap_statistics(from, false);
3153 mem_cgroup_swap_statistics(to, true);
3154 /*
3155 * This function is only called from task migration context now.
3156 * It postpones res_counter and refcount handling till the end
3157 * of task migration(mem_cgroup_clear_mc()) for performance
3158 * improvement. But we cannot postpone mem_cgroup_get(to)
3159 * because if the process that has been moved to @to does
3160 * swap-in, the refcount of @to might be decreased to 0.
3161 */
3162 mem_cgroup_get(to);
3163 if (need_fixup) {
3164 if (!mem_cgroup_is_root(from))
3165 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3166 mem_cgroup_put(from);
3167 /*
3168 * we charged both to->res and to->memsw, so we should
3169 * uncharge to->res.
3170 */
3171 if (!mem_cgroup_is_root(to))
3172 res_counter_uncharge(&to->res, PAGE_SIZE);
3173 }
3174 return 0;
3175 }
3176 return -EINVAL;
3177 }
3178 #else
3179 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3180 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3181 {
3182 return -EINVAL;
3183 }
3184 #endif
3185
3186 /*
3187 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3188 * page belongs to.
3189 */
3190 int mem_cgroup_prepare_migration(struct page *page,
3191 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3192 {
3193 struct mem_cgroup *memcg = NULL;
3194 struct page_cgroup *pc;
3195 enum charge_type ctype;
3196 int ret = 0;
3197
3198 *memcgp = NULL;
3199
3200 VM_BUG_ON(PageTransHuge(page));
3201 if (mem_cgroup_disabled())
3202 return 0;
3203
3204 pc = lookup_page_cgroup(page);
3205 lock_page_cgroup(pc);
3206 if (PageCgroupUsed(pc)) {
3207 memcg = pc->mem_cgroup;
3208 css_get(&memcg->css);
3209 /*
3210 * At migrating an anonymous page, its mapcount goes down
3211 * to 0 and uncharge() will be called. But, even if it's fully
3212 * unmapped, migration may fail and this page has to be
3213 * charged again. We set MIGRATION flag here and delay uncharge
3214 * until end_migration() is called
3215 *
3216 * Corner Case Thinking
3217 * A)
3218 * When the old page was mapped as Anon and it's unmap-and-freed
3219 * while migration was ongoing.
3220 * If unmap finds the old page, uncharge() of it will be delayed
3221 * until end_migration(). If unmap finds a new page, it's
3222 * uncharged when it make mapcount to be 1->0. If unmap code
3223 * finds swap_migration_entry, the new page will not be mapped
3224 * and end_migration() will find it(mapcount==0).
3225 *
3226 * B)
3227 * When the old page was mapped but migraion fails, the kernel
3228 * remaps it. A charge for it is kept by MIGRATION flag even
3229 * if mapcount goes down to 0. We can do remap successfully
3230 * without charging it again.
3231 *
3232 * C)
3233 * The "old" page is under lock_page() until the end of
3234 * migration, so, the old page itself will not be swapped-out.
3235 * If the new page is swapped out before end_migraton, our
3236 * hook to usual swap-out path will catch the event.
3237 */
3238 if (PageAnon(page))
3239 SetPageCgroupMigration(pc);
3240 }
3241 unlock_page_cgroup(pc);
3242 /*
3243 * If the page is not charged at this point,
3244 * we return here.
3245 */
3246 if (!memcg)
3247 return 0;
3248
3249 *memcgp = memcg;
3250 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3251 css_put(&memcg->css);/* drop extra refcnt */
3252 if (ret) {
3253 if (PageAnon(page)) {
3254 lock_page_cgroup(pc);
3255 ClearPageCgroupMigration(pc);
3256 unlock_page_cgroup(pc);
3257 /*
3258 * The old page may be fully unmapped while we kept it.
3259 */
3260 mem_cgroup_uncharge_page(page);
3261 }
3262 /* we'll need to revisit this error code (we have -EINTR) */
3263 return -ENOMEM;
3264 }
3265 /*
3266 * We charge new page before it's used/mapped. So, even if unlock_page()
3267 * is called before end_migration, we can catch all events on this new
3268 * page. In the case new page is migrated but not remapped, new page's
3269 * mapcount will be finally 0 and we call uncharge in end_migration().
3270 */
3271 pc = lookup_page_cgroup(newpage);
3272 if (PageAnon(page))
3273 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3274 else if (page_is_file_cache(page))
3275 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3276 else
3277 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3278 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3279 return ret;
3280 }
3281
3282 /* remove redundant charge if migration failed*/
3283 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3284 struct page *oldpage, struct page *newpage, bool migration_ok)
3285 {
3286 struct page *used, *unused;
3287 struct page_cgroup *pc;
3288 bool anon;
3289
3290 if (!memcg)
3291 return;
3292 /* blocks rmdir() */
3293 cgroup_exclude_rmdir(&memcg->css);
3294 if (!migration_ok) {
3295 used = oldpage;
3296 unused = newpage;
3297 } else {
3298 used = newpage;
3299 unused = oldpage;
3300 }
3301 /*
3302 * We disallowed uncharge of pages under migration because mapcount
3303 * of the page goes down to zero, temporarly.
3304 * Clear the flag and check the page should be charged.
3305 */
3306 pc = lookup_page_cgroup(oldpage);
3307 lock_page_cgroup(pc);
3308 ClearPageCgroupMigration(pc);
3309 unlock_page_cgroup(pc);
3310 anon = PageAnon(used);
3311 __mem_cgroup_uncharge_common(unused,
3312 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3313 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3314
3315 /*
3316 * If a page is a file cache, radix-tree replacement is very atomic
3317 * and we can skip this check. When it was an Anon page, its mapcount
3318 * goes down to 0. But because we added MIGRATION flage, it's not
3319 * uncharged yet. There are several case but page->mapcount check
3320 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3321 * check. (see prepare_charge() also)
3322 */
3323 if (anon)
3324 mem_cgroup_uncharge_page(used);
3325 /*
3326 * At migration, we may charge account against cgroup which has no
3327 * tasks.
3328 * So, rmdir()->pre_destroy() can be called while we do this charge.
3329 * In that case, we need to call pre_destroy() again. check it here.
3330 */
3331 cgroup_release_and_wakeup_rmdir(&memcg->css);
3332 }
3333
3334 /*
3335 * At replace page cache, newpage is not under any memcg but it's on
3336 * LRU. So, this function doesn't touch res_counter but handles LRU
3337 * in correct way. Both pages are locked so we cannot race with uncharge.
3338 */
3339 void mem_cgroup_replace_page_cache(struct page *oldpage,
3340 struct page *newpage)
3341 {
3342 struct mem_cgroup *memcg;
3343 struct page_cgroup *pc;
3344 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3345
3346 if (mem_cgroup_disabled())
3347 return;
3348
3349 pc = lookup_page_cgroup(oldpage);
3350 /* fix accounting on old pages */
3351 lock_page_cgroup(pc);
3352 memcg = pc->mem_cgroup;
3353 mem_cgroup_charge_statistics(memcg, false, -1);
3354 ClearPageCgroupUsed(pc);
3355 unlock_page_cgroup(pc);
3356
3357 if (PageSwapBacked(oldpage))
3358 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3359
3360 /*
3361 * Even if newpage->mapping was NULL before starting replacement,
3362 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3363 * LRU while we overwrite pc->mem_cgroup.
3364 */
3365 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3366 }
3367
3368 #ifdef CONFIG_DEBUG_VM
3369 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3370 {
3371 struct page_cgroup *pc;
3372
3373 pc = lookup_page_cgroup(page);
3374 /*
3375 * Can be NULL while feeding pages into the page allocator for
3376 * the first time, i.e. during boot or memory hotplug;
3377 * or when mem_cgroup_disabled().
3378 */
3379 if (likely(pc) && PageCgroupUsed(pc))
3380 return pc;
3381 return NULL;
3382 }
3383
3384 bool mem_cgroup_bad_page_check(struct page *page)
3385 {
3386 if (mem_cgroup_disabled())
3387 return false;
3388
3389 return lookup_page_cgroup_used(page) != NULL;
3390 }
3391
3392 void mem_cgroup_print_bad_page(struct page *page)
3393 {
3394 struct page_cgroup *pc;
3395
3396 pc = lookup_page_cgroup_used(page);
3397 if (pc) {
3398 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3399 pc, pc->flags, pc->mem_cgroup);
3400 }
3401 }
3402 #endif
3403
3404 static DEFINE_MUTEX(set_limit_mutex);
3405
3406 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3407 unsigned long long val)
3408 {
3409 int retry_count;
3410 u64 memswlimit, memlimit;
3411 int ret = 0;
3412 int children = mem_cgroup_count_children(memcg);
3413 u64 curusage, oldusage;
3414 int enlarge;
3415
3416 /*
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3420 */
3421 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422
3423 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3424
3425 enlarge = 0;
3426 while (retry_count) {
3427 if (signal_pending(current)) {
3428 ret = -EINTR;
3429 break;
3430 }
3431 /*
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3435 */
3436 mutex_lock(&set_limit_mutex);
3437 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 if (memswlimit < val) {
3439 ret = -EINVAL;
3440 mutex_unlock(&set_limit_mutex);
3441 break;
3442 }
3443
3444 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 if (memlimit < val)
3446 enlarge = 1;
3447
3448 ret = res_counter_set_limit(&memcg->res, val);
3449 if (!ret) {
3450 if (memswlimit == val)
3451 memcg->memsw_is_minimum = true;
3452 else
3453 memcg->memsw_is_minimum = false;
3454 }
3455 mutex_unlock(&set_limit_mutex);
3456
3457 if (!ret)
3458 break;
3459
3460 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3461 MEM_CGROUP_RECLAIM_SHRINK);
3462 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3463 /* Usage is reduced ? */
3464 if (curusage >= oldusage)
3465 retry_count--;
3466 else
3467 oldusage = curusage;
3468 }
3469 if (!ret && enlarge)
3470 memcg_oom_recover(memcg);
3471
3472 return ret;
3473 }
3474
3475 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3476 unsigned long long val)
3477 {
3478 int retry_count;
3479 u64 memlimit, memswlimit, oldusage, curusage;
3480 int children = mem_cgroup_count_children(memcg);
3481 int ret = -EBUSY;
3482 int enlarge = 0;
3483
3484 /* see mem_cgroup_resize_res_limit */
3485 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3486 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3487 while (retry_count) {
3488 if (signal_pending(current)) {
3489 ret = -EINTR;
3490 break;
3491 }
3492 /*
3493 * Rather than hide all in some function, I do this in
3494 * open coded manner. You see what this really does.
3495 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3496 */
3497 mutex_lock(&set_limit_mutex);
3498 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3499 if (memlimit > val) {
3500 ret = -EINVAL;
3501 mutex_unlock(&set_limit_mutex);
3502 break;
3503 }
3504 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3505 if (memswlimit < val)
3506 enlarge = 1;
3507 ret = res_counter_set_limit(&memcg->memsw, val);
3508 if (!ret) {
3509 if (memlimit == val)
3510 memcg->memsw_is_minimum = true;
3511 else
3512 memcg->memsw_is_minimum = false;
3513 }
3514 mutex_unlock(&set_limit_mutex);
3515
3516 if (!ret)
3517 break;
3518
3519 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3520 MEM_CGROUP_RECLAIM_NOSWAP |
3521 MEM_CGROUP_RECLAIM_SHRINK);
3522 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3523 /* Usage is reduced ? */
3524 if (curusage >= oldusage)
3525 retry_count--;
3526 else
3527 oldusage = curusage;
3528 }
3529 if (!ret && enlarge)
3530 memcg_oom_recover(memcg);
3531 return ret;
3532 }
3533
3534 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3535 gfp_t gfp_mask,
3536 unsigned long *total_scanned)
3537 {
3538 unsigned long nr_reclaimed = 0;
3539 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3540 unsigned long reclaimed;
3541 int loop = 0;
3542 struct mem_cgroup_tree_per_zone *mctz;
3543 unsigned long long excess;
3544 unsigned long nr_scanned;
3545
3546 if (order > 0)
3547 return 0;
3548
3549 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3550 /*
3551 * This loop can run a while, specially if mem_cgroup's continuously
3552 * keep exceeding their soft limit and putting the system under
3553 * pressure
3554 */
3555 do {
3556 if (next_mz)
3557 mz = next_mz;
3558 else
3559 mz = mem_cgroup_largest_soft_limit_node(mctz);
3560 if (!mz)
3561 break;
3562
3563 nr_scanned = 0;
3564 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3565 gfp_mask, &nr_scanned);
3566 nr_reclaimed += reclaimed;
3567 *total_scanned += nr_scanned;
3568 spin_lock(&mctz->lock);
3569
3570 /*
3571 * If we failed to reclaim anything from this memory cgroup
3572 * it is time to move on to the next cgroup
3573 */
3574 next_mz = NULL;
3575 if (!reclaimed) {
3576 do {
3577 /*
3578 * Loop until we find yet another one.
3579 *
3580 * By the time we get the soft_limit lock
3581 * again, someone might have aded the
3582 * group back on the RB tree. Iterate to
3583 * make sure we get a different mem.
3584 * mem_cgroup_largest_soft_limit_node returns
3585 * NULL if no other cgroup is present on
3586 * the tree
3587 */
3588 next_mz =
3589 __mem_cgroup_largest_soft_limit_node(mctz);
3590 if (next_mz == mz)
3591 css_put(&next_mz->memcg->css);
3592 else /* next_mz == NULL or other memcg */
3593 break;
3594 } while (1);
3595 }
3596 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3597 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3598 /*
3599 * One school of thought says that we should not add
3600 * back the node to the tree if reclaim returns 0.
3601 * But our reclaim could return 0, simply because due
3602 * to priority we are exposing a smaller subset of
3603 * memory to reclaim from. Consider this as a longer
3604 * term TODO.
3605 */
3606 /* If excess == 0, no tree ops */
3607 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3608 spin_unlock(&mctz->lock);
3609 css_put(&mz->memcg->css);
3610 loop++;
3611 /*
3612 * Could not reclaim anything and there are no more
3613 * mem cgroups to try or we seem to be looping without
3614 * reclaiming anything.
3615 */
3616 if (!nr_reclaimed &&
3617 (next_mz == NULL ||
3618 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3619 break;
3620 } while (!nr_reclaimed);
3621 if (next_mz)
3622 css_put(&next_mz->memcg->css);
3623 return nr_reclaimed;
3624 }
3625
3626 /*
3627 * This routine traverse page_cgroup in given list and drop them all.
3628 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3629 */
3630 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3631 int node, int zid, enum lru_list lru)
3632 {
3633 struct mem_cgroup_per_zone *mz;
3634 unsigned long flags, loop;
3635 struct list_head *list;
3636 struct page *busy;
3637 struct zone *zone;
3638 int ret = 0;
3639
3640 zone = &NODE_DATA(node)->node_zones[zid];
3641 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3642 list = &mz->lruvec.lists[lru];
3643
3644 loop = mz->lru_size[lru];
3645 /* give some margin against EBUSY etc...*/
3646 loop += 256;
3647 busy = NULL;
3648 while (loop--) {
3649 struct page_cgroup *pc;
3650 struct page *page;
3651
3652 ret = 0;
3653 spin_lock_irqsave(&zone->lru_lock, flags);
3654 if (list_empty(list)) {
3655 spin_unlock_irqrestore(&zone->lru_lock, flags);
3656 break;
3657 }
3658 page = list_entry(list->prev, struct page, lru);
3659 if (busy == page) {
3660 list_move(&page->lru, list);
3661 busy = NULL;
3662 spin_unlock_irqrestore(&zone->lru_lock, flags);
3663 continue;
3664 }
3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666
3667 pc = lookup_page_cgroup(page);
3668
3669 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3670 if (ret == -ENOMEM || ret == -EINTR)
3671 break;
3672
3673 if (ret == -EBUSY || ret == -EINVAL) {
3674 /* found lock contention or "pc" is obsolete. */
3675 busy = page;
3676 cond_resched();
3677 } else
3678 busy = NULL;
3679 }
3680
3681 if (!ret && !list_empty(list))
3682 return -EBUSY;
3683 return ret;
3684 }
3685
3686 /*
3687 * make mem_cgroup's charge to be 0 if there is no task.
3688 * This enables deleting this mem_cgroup.
3689 */
3690 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3691 {
3692 int ret;
3693 int node, zid, shrink;
3694 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3695 struct cgroup *cgrp = memcg->css.cgroup;
3696
3697 css_get(&memcg->css);
3698
3699 shrink = 0;
3700 /* should free all ? */
3701 if (free_all)
3702 goto try_to_free;
3703 move_account:
3704 do {
3705 ret = -EBUSY;
3706 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3707 goto out;
3708 ret = -EINTR;
3709 if (signal_pending(current))
3710 goto out;
3711 /* This is for making all *used* pages to be on LRU. */
3712 lru_add_drain_all();
3713 drain_all_stock_sync(memcg);
3714 ret = 0;
3715 mem_cgroup_start_move(memcg);
3716 for_each_node_state(node, N_HIGH_MEMORY) {
3717 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3718 enum lru_list lru;
3719 for_each_lru(lru) {
3720 ret = mem_cgroup_force_empty_list(memcg,
3721 node, zid, lru);
3722 if (ret)
3723 break;
3724 }
3725 }
3726 if (ret)
3727 break;
3728 }
3729 mem_cgroup_end_move(memcg);
3730 memcg_oom_recover(memcg);
3731 /* it seems parent cgroup doesn't have enough mem */
3732 if (ret == -ENOMEM)
3733 goto try_to_free;
3734 cond_resched();
3735 /* "ret" should also be checked to ensure all lists are empty. */
3736 } while (memcg->res.usage > 0 || ret);
3737 out:
3738 css_put(&memcg->css);
3739 return ret;
3740
3741 try_to_free:
3742 /* returns EBUSY if there is a task or if we come here twice. */
3743 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3744 ret = -EBUSY;
3745 goto out;
3746 }
3747 /* we call try-to-free pages for make this cgroup empty */
3748 lru_add_drain_all();
3749 /* try to free all pages in this cgroup */
3750 shrink = 1;
3751 while (nr_retries && memcg->res.usage > 0) {
3752 int progress;
3753
3754 if (signal_pending(current)) {
3755 ret = -EINTR;
3756 goto out;
3757 }
3758 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3759 false);
3760 if (!progress) {
3761 nr_retries--;
3762 /* maybe some writeback is necessary */
3763 congestion_wait(BLK_RW_ASYNC, HZ/10);
3764 }
3765
3766 }
3767 lru_add_drain();
3768 /* try move_account...there may be some *locked* pages. */
3769 goto move_account;
3770 }
3771
3772 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3773 {
3774 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3775 }
3776
3777
3778 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3779 {
3780 return mem_cgroup_from_cont(cont)->use_hierarchy;
3781 }
3782
3783 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3784 u64 val)
3785 {
3786 int retval = 0;
3787 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3788 struct cgroup *parent = cont->parent;
3789 struct mem_cgroup *parent_memcg = NULL;
3790
3791 if (parent)
3792 parent_memcg = mem_cgroup_from_cont(parent);
3793
3794 cgroup_lock();
3795 /*
3796 * If parent's use_hierarchy is set, we can't make any modifications
3797 * in the child subtrees. If it is unset, then the change can
3798 * occur, provided the current cgroup has no children.
3799 *
3800 * For the root cgroup, parent_mem is NULL, we allow value to be
3801 * set if there are no children.
3802 */
3803 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3804 (val == 1 || val == 0)) {
3805 if (list_empty(&cont->children))
3806 memcg->use_hierarchy = val;
3807 else
3808 retval = -EBUSY;
3809 } else
3810 retval = -EINVAL;
3811 cgroup_unlock();
3812
3813 return retval;
3814 }
3815
3816
3817 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3818 enum mem_cgroup_stat_index idx)
3819 {
3820 struct mem_cgroup *iter;
3821 long val = 0;
3822
3823 /* Per-cpu values can be negative, use a signed accumulator */
3824 for_each_mem_cgroup_tree(iter, memcg)
3825 val += mem_cgroup_read_stat(iter, idx);
3826
3827 if (val < 0) /* race ? */
3828 val = 0;
3829 return val;
3830 }
3831
3832 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3833 {
3834 u64 val;
3835
3836 if (!mem_cgroup_is_root(memcg)) {
3837 if (!swap)
3838 return res_counter_read_u64(&memcg->res, RES_USAGE);
3839 else
3840 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3841 }
3842
3843 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3844 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3845
3846 if (swap)
3847 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3848
3849 return val << PAGE_SHIFT;
3850 }
3851
3852 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3853 {
3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3855 u64 val;
3856 int type, name;
3857
3858 type = MEMFILE_TYPE(cft->private);
3859 name = MEMFILE_ATTR(cft->private);
3860 switch (type) {
3861 case _MEM:
3862 if (name == RES_USAGE)
3863 val = mem_cgroup_usage(memcg, false);
3864 else
3865 val = res_counter_read_u64(&memcg->res, name);
3866 break;
3867 case _MEMSWAP:
3868 if (name == RES_USAGE)
3869 val = mem_cgroup_usage(memcg, true);
3870 else
3871 val = res_counter_read_u64(&memcg->memsw, name);
3872 break;
3873 default:
3874 BUG();
3875 break;
3876 }
3877 return val;
3878 }
3879 /*
3880 * The user of this function is...
3881 * RES_LIMIT.
3882 */
3883 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3884 const char *buffer)
3885 {
3886 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3887 int type, name;
3888 unsigned long long val;
3889 int ret;
3890
3891 type = MEMFILE_TYPE(cft->private);
3892 name = MEMFILE_ATTR(cft->private);
3893 switch (name) {
3894 case RES_LIMIT:
3895 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3896 ret = -EINVAL;
3897 break;
3898 }
3899 /* This function does all necessary parse...reuse it */
3900 ret = res_counter_memparse_write_strategy(buffer, &val);
3901 if (ret)
3902 break;
3903 if (type == _MEM)
3904 ret = mem_cgroup_resize_limit(memcg, val);
3905 else
3906 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3907 break;
3908 case RES_SOFT_LIMIT:
3909 ret = res_counter_memparse_write_strategy(buffer, &val);
3910 if (ret)
3911 break;
3912 /*
3913 * For memsw, soft limits are hard to implement in terms
3914 * of semantics, for now, we support soft limits for
3915 * control without swap
3916 */
3917 if (type == _MEM)
3918 ret = res_counter_set_soft_limit(&memcg->res, val);
3919 else
3920 ret = -EINVAL;
3921 break;
3922 default:
3923 ret = -EINVAL; /* should be BUG() ? */
3924 break;
3925 }
3926 return ret;
3927 }
3928
3929 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3930 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3931 {
3932 struct cgroup *cgroup;
3933 unsigned long long min_limit, min_memsw_limit, tmp;
3934
3935 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3936 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3937 cgroup = memcg->css.cgroup;
3938 if (!memcg->use_hierarchy)
3939 goto out;
3940
3941 while (cgroup->parent) {
3942 cgroup = cgroup->parent;
3943 memcg = mem_cgroup_from_cont(cgroup);
3944 if (!memcg->use_hierarchy)
3945 break;
3946 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3947 min_limit = min(min_limit, tmp);
3948 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3949 min_memsw_limit = min(min_memsw_limit, tmp);
3950 }
3951 out:
3952 *mem_limit = min_limit;
3953 *memsw_limit = min_memsw_limit;
3954 }
3955
3956 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3957 {
3958 struct mem_cgroup *memcg;
3959 int type, name;
3960
3961 memcg = mem_cgroup_from_cont(cont);
3962 type = MEMFILE_TYPE(event);
3963 name = MEMFILE_ATTR(event);
3964 switch (name) {
3965 case RES_MAX_USAGE:
3966 if (type == _MEM)
3967 res_counter_reset_max(&memcg->res);
3968 else
3969 res_counter_reset_max(&memcg->memsw);
3970 break;
3971 case RES_FAILCNT:
3972 if (type == _MEM)
3973 res_counter_reset_failcnt(&memcg->res);
3974 else
3975 res_counter_reset_failcnt(&memcg->memsw);
3976 break;
3977 }
3978
3979 return 0;
3980 }
3981
3982 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3983 struct cftype *cft)
3984 {
3985 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3986 }
3987
3988 #ifdef CONFIG_MMU
3989 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3990 struct cftype *cft, u64 val)
3991 {
3992 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3993
3994 if (val >= (1 << NR_MOVE_TYPE))
3995 return -EINVAL;
3996 /*
3997 * We check this value several times in both in can_attach() and
3998 * attach(), so we need cgroup lock to prevent this value from being
3999 * inconsistent.
4000 */
4001 cgroup_lock();
4002 memcg->move_charge_at_immigrate = val;
4003 cgroup_unlock();
4004
4005 return 0;
4006 }
4007 #else
4008 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4009 struct cftype *cft, u64 val)
4010 {
4011 return -ENOSYS;
4012 }
4013 #endif
4014
4015
4016 /* For read statistics */
4017 enum {
4018 MCS_CACHE,
4019 MCS_RSS,
4020 MCS_FILE_MAPPED,
4021 MCS_PGPGIN,
4022 MCS_PGPGOUT,
4023 MCS_SWAP,
4024 MCS_PGFAULT,
4025 MCS_PGMAJFAULT,
4026 MCS_INACTIVE_ANON,
4027 MCS_ACTIVE_ANON,
4028 MCS_INACTIVE_FILE,
4029 MCS_ACTIVE_FILE,
4030 MCS_UNEVICTABLE,
4031 NR_MCS_STAT,
4032 };
4033
4034 struct mcs_total_stat {
4035 s64 stat[NR_MCS_STAT];
4036 };
4037
4038 struct {
4039 char *local_name;
4040 char *total_name;
4041 } memcg_stat_strings[NR_MCS_STAT] = {
4042 {"cache", "total_cache"},
4043 {"rss", "total_rss"},
4044 {"mapped_file", "total_mapped_file"},
4045 {"pgpgin", "total_pgpgin"},
4046 {"pgpgout", "total_pgpgout"},
4047 {"swap", "total_swap"},
4048 {"pgfault", "total_pgfault"},
4049 {"pgmajfault", "total_pgmajfault"},
4050 {"inactive_anon", "total_inactive_anon"},
4051 {"active_anon", "total_active_anon"},
4052 {"inactive_file", "total_inactive_file"},
4053 {"active_file", "total_active_file"},
4054 {"unevictable", "total_unevictable"}
4055 };
4056
4057
4058 static void
4059 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4060 {
4061 s64 val;
4062
4063 /* per cpu stat */
4064 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4065 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4066 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4067 s->stat[MCS_RSS] += val * PAGE_SIZE;
4068 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4069 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4070 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4071 s->stat[MCS_PGPGIN] += val;
4072 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4073 s->stat[MCS_PGPGOUT] += val;
4074 if (do_swap_account) {
4075 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4076 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4077 }
4078 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4079 s->stat[MCS_PGFAULT] += val;
4080 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4081 s->stat[MCS_PGMAJFAULT] += val;
4082
4083 /* per zone stat */
4084 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4085 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4086 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4087 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4088 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4089 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4090 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4091 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4092 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4093 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4094 }
4095
4096 static void
4097 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4098 {
4099 struct mem_cgroup *iter;
4100
4101 for_each_mem_cgroup_tree(iter, memcg)
4102 mem_cgroup_get_local_stat(iter, s);
4103 }
4104
4105 #ifdef CONFIG_NUMA
4106 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4107 {
4108 int nid;
4109 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4110 unsigned long node_nr;
4111 struct cgroup *cont = m->private;
4112 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4113
4114 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4115 seq_printf(m, "total=%lu", total_nr);
4116 for_each_node_state(nid, N_HIGH_MEMORY) {
4117 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4118 seq_printf(m, " N%d=%lu", nid, node_nr);
4119 }
4120 seq_putc(m, '\n');
4121
4122 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4123 seq_printf(m, "file=%lu", file_nr);
4124 for_each_node_state(nid, N_HIGH_MEMORY) {
4125 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4126 LRU_ALL_FILE);
4127 seq_printf(m, " N%d=%lu", nid, node_nr);
4128 }
4129 seq_putc(m, '\n');
4130
4131 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4132 seq_printf(m, "anon=%lu", anon_nr);
4133 for_each_node_state(nid, N_HIGH_MEMORY) {
4134 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4135 LRU_ALL_ANON);
4136 seq_printf(m, " N%d=%lu", nid, node_nr);
4137 }
4138 seq_putc(m, '\n');
4139
4140 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4141 seq_printf(m, "unevictable=%lu", unevictable_nr);
4142 for_each_node_state(nid, N_HIGH_MEMORY) {
4143 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4144 BIT(LRU_UNEVICTABLE));
4145 seq_printf(m, " N%d=%lu", nid, node_nr);
4146 }
4147 seq_putc(m, '\n');
4148 return 0;
4149 }
4150 #endif /* CONFIG_NUMA */
4151
4152 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4153 struct cgroup_map_cb *cb)
4154 {
4155 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4156 struct mcs_total_stat mystat;
4157 int i;
4158
4159 memset(&mystat, 0, sizeof(mystat));
4160 mem_cgroup_get_local_stat(memcg, &mystat);
4161
4162
4163 for (i = 0; i < NR_MCS_STAT; i++) {
4164 if (i == MCS_SWAP && !do_swap_account)
4165 continue;
4166 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4167 }
4168
4169 /* Hierarchical information */
4170 {
4171 unsigned long long limit, memsw_limit;
4172 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4173 cb->fill(cb, "hierarchical_memory_limit", limit);
4174 if (do_swap_account)
4175 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4176 }
4177
4178 memset(&mystat, 0, sizeof(mystat));
4179 mem_cgroup_get_total_stat(memcg, &mystat);
4180 for (i = 0; i < NR_MCS_STAT; i++) {
4181 if (i == MCS_SWAP && !do_swap_account)
4182 continue;
4183 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4184 }
4185
4186 #ifdef CONFIG_DEBUG_VM
4187 {
4188 int nid, zid;
4189 struct mem_cgroup_per_zone *mz;
4190 unsigned long recent_rotated[2] = {0, 0};
4191 unsigned long recent_scanned[2] = {0, 0};
4192
4193 for_each_online_node(nid)
4194 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4195 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4196
4197 recent_rotated[0] +=
4198 mz->reclaim_stat.recent_rotated[0];
4199 recent_rotated[1] +=
4200 mz->reclaim_stat.recent_rotated[1];
4201 recent_scanned[0] +=
4202 mz->reclaim_stat.recent_scanned[0];
4203 recent_scanned[1] +=
4204 mz->reclaim_stat.recent_scanned[1];
4205 }
4206 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4207 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4208 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4209 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4210 }
4211 #endif
4212
4213 return 0;
4214 }
4215
4216 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4217 {
4218 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4219
4220 return mem_cgroup_swappiness(memcg);
4221 }
4222
4223 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4224 u64 val)
4225 {
4226 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4227 struct mem_cgroup *parent;
4228
4229 if (val > 100)
4230 return -EINVAL;
4231
4232 if (cgrp->parent == NULL)
4233 return -EINVAL;
4234
4235 parent = mem_cgroup_from_cont(cgrp->parent);
4236
4237 cgroup_lock();
4238
4239 /* If under hierarchy, only empty-root can set this value */
4240 if ((parent->use_hierarchy) ||
4241 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4242 cgroup_unlock();
4243 return -EINVAL;
4244 }
4245
4246 memcg->swappiness = val;
4247
4248 cgroup_unlock();
4249
4250 return 0;
4251 }
4252
4253 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4254 {
4255 struct mem_cgroup_threshold_ary *t;
4256 u64 usage;
4257 int i;
4258
4259 rcu_read_lock();
4260 if (!swap)
4261 t = rcu_dereference(memcg->thresholds.primary);
4262 else
4263 t = rcu_dereference(memcg->memsw_thresholds.primary);
4264
4265 if (!t)
4266 goto unlock;
4267
4268 usage = mem_cgroup_usage(memcg, swap);
4269
4270 /*
4271 * current_threshold points to threshold just below usage.
4272 * If it's not true, a threshold was crossed after last
4273 * call of __mem_cgroup_threshold().
4274 */
4275 i = t->current_threshold;
4276
4277 /*
4278 * Iterate backward over array of thresholds starting from
4279 * current_threshold and check if a threshold is crossed.
4280 * If none of thresholds below usage is crossed, we read
4281 * only one element of the array here.
4282 */
4283 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4284 eventfd_signal(t->entries[i].eventfd, 1);
4285
4286 /* i = current_threshold + 1 */
4287 i++;
4288
4289 /*
4290 * Iterate forward over array of thresholds starting from
4291 * current_threshold+1 and check if a threshold is crossed.
4292 * If none of thresholds above usage is crossed, we read
4293 * only one element of the array here.
4294 */
4295 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4296 eventfd_signal(t->entries[i].eventfd, 1);
4297
4298 /* Update current_threshold */
4299 t->current_threshold = i - 1;
4300 unlock:
4301 rcu_read_unlock();
4302 }
4303
4304 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4305 {
4306 while (memcg) {
4307 __mem_cgroup_threshold(memcg, false);
4308 if (do_swap_account)
4309 __mem_cgroup_threshold(memcg, true);
4310
4311 memcg = parent_mem_cgroup(memcg);
4312 }
4313 }
4314
4315 static int compare_thresholds(const void *a, const void *b)
4316 {
4317 const struct mem_cgroup_threshold *_a = a;
4318 const struct mem_cgroup_threshold *_b = b;
4319
4320 return _a->threshold - _b->threshold;
4321 }
4322
4323 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4324 {
4325 struct mem_cgroup_eventfd_list *ev;
4326
4327 list_for_each_entry(ev, &memcg->oom_notify, list)
4328 eventfd_signal(ev->eventfd, 1);
4329 return 0;
4330 }
4331
4332 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4333 {
4334 struct mem_cgroup *iter;
4335
4336 for_each_mem_cgroup_tree(iter, memcg)
4337 mem_cgroup_oom_notify_cb(iter);
4338 }
4339
4340 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4341 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4342 {
4343 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4344 struct mem_cgroup_thresholds *thresholds;
4345 struct mem_cgroup_threshold_ary *new;
4346 int type = MEMFILE_TYPE(cft->private);
4347 u64 threshold, usage;
4348 int i, size, ret;
4349
4350 ret = res_counter_memparse_write_strategy(args, &threshold);
4351 if (ret)
4352 return ret;
4353
4354 mutex_lock(&memcg->thresholds_lock);
4355
4356 if (type == _MEM)
4357 thresholds = &memcg->thresholds;
4358 else if (type == _MEMSWAP)
4359 thresholds = &memcg->memsw_thresholds;
4360 else
4361 BUG();
4362
4363 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4364
4365 /* Check if a threshold crossed before adding a new one */
4366 if (thresholds->primary)
4367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4368
4369 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4370
4371 /* Allocate memory for new array of thresholds */
4372 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4373 GFP_KERNEL);
4374 if (!new) {
4375 ret = -ENOMEM;
4376 goto unlock;
4377 }
4378 new->size = size;
4379
4380 /* Copy thresholds (if any) to new array */
4381 if (thresholds->primary) {
4382 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4383 sizeof(struct mem_cgroup_threshold));
4384 }
4385
4386 /* Add new threshold */
4387 new->entries[size - 1].eventfd = eventfd;
4388 new->entries[size - 1].threshold = threshold;
4389
4390 /* Sort thresholds. Registering of new threshold isn't time-critical */
4391 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4392 compare_thresholds, NULL);
4393
4394 /* Find current threshold */
4395 new->current_threshold = -1;
4396 for (i = 0; i < size; i++) {
4397 if (new->entries[i].threshold < usage) {
4398 /*
4399 * new->current_threshold will not be used until
4400 * rcu_assign_pointer(), so it's safe to increment
4401 * it here.
4402 */
4403 ++new->current_threshold;
4404 }
4405 }
4406
4407 /* Free old spare buffer and save old primary buffer as spare */
4408 kfree(thresholds->spare);
4409 thresholds->spare = thresholds->primary;
4410
4411 rcu_assign_pointer(thresholds->primary, new);
4412
4413 /* To be sure that nobody uses thresholds */
4414 synchronize_rcu();
4415
4416 unlock:
4417 mutex_unlock(&memcg->thresholds_lock);
4418
4419 return ret;
4420 }
4421
4422 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4423 struct cftype *cft, struct eventfd_ctx *eventfd)
4424 {
4425 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4426 struct mem_cgroup_thresholds *thresholds;
4427 struct mem_cgroup_threshold_ary *new;
4428 int type = MEMFILE_TYPE(cft->private);
4429 u64 usage;
4430 int i, j, size;
4431
4432 mutex_lock(&memcg->thresholds_lock);
4433 if (type == _MEM)
4434 thresholds = &memcg->thresholds;
4435 else if (type == _MEMSWAP)
4436 thresholds = &memcg->memsw_thresholds;
4437 else
4438 BUG();
4439
4440 /*
4441 * Something went wrong if we trying to unregister a threshold
4442 * if we don't have thresholds
4443 */
4444 BUG_ON(!thresholds);
4445
4446 if (!thresholds->primary)
4447 goto unlock;
4448
4449 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4450
4451 /* Check if a threshold crossed before removing */
4452 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4453
4454 /* Calculate new number of threshold */
4455 size = 0;
4456 for (i = 0; i < thresholds->primary->size; i++) {
4457 if (thresholds->primary->entries[i].eventfd != eventfd)
4458 size++;
4459 }
4460
4461 new = thresholds->spare;
4462
4463 /* Set thresholds array to NULL if we don't have thresholds */
4464 if (!size) {
4465 kfree(new);
4466 new = NULL;
4467 goto swap_buffers;
4468 }
4469
4470 new->size = size;
4471
4472 /* Copy thresholds and find current threshold */
4473 new->current_threshold = -1;
4474 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4475 if (thresholds->primary->entries[i].eventfd == eventfd)
4476 continue;
4477
4478 new->entries[j] = thresholds->primary->entries[i];
4479 if (new->entries[j].threshold < usage) {
4480 /*
4481 * new->current_threshold will not be used
4482 * until rcu_assign_pointer(), so it's safe to increment
4483 * it here.
4484 */
4485 ++new->current_threshold;
4486 }
4487 j++;
4488 }
4489
4490 swap_buffers:
4491 /* Swap primary and spare array */
4492 thresholds->spare = thresholds->primary;
4493 rcu_assign_pointer(thresholds->primary, new);
4494
4495 /* To be sure that nobody uses thresholds */
4496 synchronize_rcu();
4497 unlock:
4498 mutex_unlock(&memcg->thresholds_lock);
4499 }
4500
4501 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4502 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4503 {
4504 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4505 struct mem_cgroup_eventfd_list *event;
4506 int type = MEMFILE_TYPE(cft->private);
4507
4508 BUG_ON(type != _OOM_TYPE);
4509 event = kmalloc(sizeof(*event), GFP_KERNEL);
4510 if (!event)
4511 return -ENOMEM;
4512
4513 spin_lock(&memcg_oom_lock);
4514
4515 event->eventfd = eventfd;
4516 list_add(&event->list, &memcg->oom_notify);
4517
4518 /* already in OOM ? */
4519 if (atomic_read(&memcg->under_oom))
4520 eventfd_signal(eventfd, 1);
4521 spin_unlock(&memcg_oom_lock);
4522
4523 return 0;
4524 }
4525
4526 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4527 struct cftype *cft, struct eventfd_ctx *eventfd)
4528 {
4529 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4530 struct mem_cgroup_eventfd_list *ev, *tmp;
4531 int type = MEMFILE_TYPE(cft->private);
4532
4533 BUG_ON(type != _OOM_TYPE);
4534
4535 spin_lock(&memcg_oom_lock);
4536
4537 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4538 if (ev->eventfd == eventfd) {
4539 list_del(&ev->list);
4540 kfree(ev);
4541 }
4542 }
4543
4544 spin_unlock(&memcg_oom_lock);
4545 }
4546
4547 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4548 struct cftype *cft, struct cgroup_map_cb *cb)
4549 {
4550 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4551
4552 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4553
4554 if (atomic_read(&memcg->under_oom))
4555 cb->fill(cb, "under_oom", 1);
4556 else
4557 cb->fill(cb, "under_oom", 0);
4558 return 0;
4559 }
4560
4561 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4562 struct cftype *cft, u64 val)
4563 {
4564 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4565 struct mem_cgroup *parent;
4566
4567 /* cannot set to root cgroup and only 0 and 1 are allowed */
4568 if (!cgrp->parent || !((val == 0) || (val == 1)))
4569 return -EINVAL;
4570
4571 parent = mem_cgroup_from_cont(cgrp->parent);
4572
4573 cgroup_lock();
4574 /* oom-kill-disable is a flag for subhierarchy. */
4575 if ((parent->use_hierarchy) ||
4576 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4577 cgroup_unlock();
4578 return -EINVAL;
4579 }
4580 memcg->oom_kill_disable = val;
4581 if (!val)
4582 memcg_oom_recover(memcg);
4583 cgroup_unlock();
4584 return 0;
4585 }
4586
4587 #ifdef CONFIG_NUMA
4588 static const struct file_operations mem_control_numa_stat_file_operations = {
4589 .read = seq_read,
4590 .llseek = seq_lseek,
4591 .release = single_release,
4592 };
4593
4594 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4595 {
4596 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4597
4598 file->f_op = &mem_control_numa_stat_file_operations;
4599 return single_open(file, mem_control_numa_stat_show, cont);
4600 }
4601 #endif /* CONFIG_NUMA */
4602
4603 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4604 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4605 {
4606 /*
4607 * Part of this would be better living in a separate allocation
4608 * function, leaving us with just the cgroup tree population work.
4609 * We, however, depend on state such as network's proto_list that
4610 * is only initialized after cgroup creation. I found the less
4611 * cumbersome way to deal with it to defer it all to populate time
4612 */
4613 return mem_cgroup_sockets_init(cont, ss);
4614 };
4615
4616 static void kmem_cgroup_destroy(struct cgroup *cont)
4617 {
4618 mem_cgroup_sockets_destroy(cont);
4619 }
4620 #else
4621 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4622 {
4623 return 0;
4624 }
4625
4626 static void kmem_cgroup_destroy(struct cgroup *cont)
4627 {
4628 }
4629 #endif
4630
4631 static struct cftype mem_cgroup_files[] = {
4632 {
4633 .name = "usage_in_bytes",
4634 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4635 .read_u64 = mem_cgroup_read,
4636 .register_event = mem_cgroup_usage_register_event,
4637 .unregister_event = mem_cgroup_usage_unregister_event,
4638 },
4639 {
4640 .name = "max_usage_in_bytes",
4641 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4642 .trigger = mem_cgroup_reset,
4643 .read_u64 = mem_cgroup_read,
4644 },
4645 {
4646 .name = "limit_in_bytes",
4647 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4648 .write_string = mem_cgroup_write,
4649 .read_u64 = mem_cgroup_read,
4650 },
4651 {
4652 .name = "soft_limit_in_bytes",
4653 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4654 .write_string = mem_cgroup_write,
4655 .read_u64 = mem_cgroup_read,
4656 },
4657 {
4658 .name = "failcnt",
4659 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4660 .trigger = mem_cgroup_reset,
4661 .read_u64 = mem_cgroup_read,
4662 },
4663 {
4664 .name = "stat",
4665 .read_map = mem_control_stat_show,
4666 },
4667 {
4668 .name = "force_empty",
4669 .trigger = mem_cgroup_force_empty_write,
4670 },
4671 {
4672 .name = "use_hierarchy",
4673 .write_u64 = mem_cgroup_hierarchy_write,
4674 .read_u64 = mem_cgroup_hierarchy_read,
4675 },
4676 {
4677 .name = "swappiness",
4678 .read_u64 = mem_cgroup_swappiness_read,
4679 .write_u64 = mem_cgroup_swappiness_write,
4680 },
4681 {
4682 .name = "move_charge_at_immigrate",
4683 .read_u64 = mem_cgroup_move_charge_read,
4684 .write_u64 = mem_cgroup_move_charge_write,
4685 },
4686 {
4687 .name = "oom_control",
4688 .read_map = mem_cgroup_oom_control_read,
4689 .write_u64 = mem_cgroup_oom_control_write,
4690 .register_event = mem_cgroup_oom_register_event,
4691 .unregister_event = mem_cgroup_oom_unregister_event,
4692 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4693 },
4694 #ifdef CONFIG_NUMA
4695 {
4696 .name = "numa_stat",
4697 .open = mem_control_numa_stat_open,
4698 .mode = S_IRUGO,
4699 },
4700 #endif
4701 };
4702
4703 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4704 static struct cftype memsw_cgroup_files[] = {
4705 {
4706 .name = "memsw.usage_in_bytes",
4707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4708 .read_u64 = mem_cgroup_read,
4709 .register_event = mem_cgroup_usage_register_event,
4710 .unregister_event = mem_cgroup_usage_unregister_event,
4711 },
4712 {
4713 .name = "memsw.max_usage_in_bytes",
4714 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4715 .trigger = mem_cgroup_reset,
4716 .read_u64 = mem_cgroup_read,
4717 },
4718 {
4719 .name = "memsw.limit_in_bytes",
4720 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4721 .write_string = mem_cgroup_write,
4722 .read_u64 = mem_cgroup_read,
4723 },
4724 {
4725 .name = "memsw.failcnt",
4726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4727 .trigger = mem_cgroup_reset,
4728 .read_u64 = mem_cgroup_read,
4729 },
4730 };
4731
4732 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4733 {
4734 if (!do_swap_account)
4735 return 0;
4736 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4737 ARRAY_SIZE(memsw_cgroup_files));
4738 };
4739 #else
4740 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4741 {
4742 return 0;
4743 }
4744 #endif
4745
4746 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4747 {
4748 struct mem_cgroup_per_node *pn;
4749 struct mem_cgroup_per_zone *mz;
4750 enum lru_list lru;
4751 int zone, tmp = node;
4752 /*
4753 * This routine is called against possible nodes.
4754 * But it's BUG to call kmalloc() against offline node.
4755 *
4756 * TODO: this routine can waste much memory for nodes which will
4757 * never be onlined. It's better to use memory hotplug callback
4758 * function.
4759 */
4760 if (!node_state(node, N_NORMAL_MEMORY))
4761 tmp = -1;
4762 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4763 if (!pn)
4764 return 1;
4765
4766 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4767 mz = &pn->zoneinfo[zone];
4768 for_each_lru(lru)
4769 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4770 mz->usage_in_excess = 0;
4771 mz->on_tree = false;
4772 mz->memcg = memcg;
4773 }
4774 memcg->info.nodeinfo[node] = pn;
4775 return 0;
4776 }
4777
4778 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4779 {
4780 kfree(memcg->info.nodeinfo[node]);
4781 }
4782
4783 static struct mem_cgroup *mem_cgroup_alloc(void)
4784 {
4785 struct mem_cgroup *memcg;
4786 int size = sizeof(struct mem_cgroup);
4787
4788 /* Can be very big if MAX_NUMNODES is very big */
4789 if (size < PAGE_SIZE)
4790 memcg = kzalloc(size, GFP_KERNEL);
4791 else
4792 memcg = vzalloc(size);
4793
4794 if (!memcg)
4795 return NULL;
4796
4797 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4798 if (!memcg->stat)
4799 goto out_free;
4800 spin_lock_init(&memcg->pcp_counter_lock);
4801 return memcg;
4802
4803 out_free:
4804 if (size < PAGE_SIZE)
4805 kfree(memcg);
4806 else
4807 vfree(memcg);
4808 return NULL;
4809 }
4810
4811 /*
4812 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4813 * but in process context. The work_freeing structure is overlaid
4814 * on the rcu_freeing structure, which itself is overlaid on memsw.
4815 */
4816 static void vfree_work(struct work_struct *work)
4817 {
4818 struct mem_cgroup *memcg;
4819
4820 memcg = container_of(work, struct mem_cgroup, work_freeing);
4821 vfree(memcg);
4822 }
4823 static void vfree_rcu(struct rcu_head *rcu_head)
4824 {
4825 struct mem_cgroup *memcg;
4826
4827 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4828 INIT_WORK(&memcg->work_freeing, vfree_work);
4829 schedule_work(&memcg->work_freeing);
4830 }
4831
4832 /*
4833 * At destroying mem_cgroup, references from swap_cgroup can remain.
4834 * (scanning all at force_empty is too costly...)
4835 *
4836 * Instead of clearing all references at force_empty, we remember
4837 * the number of reference from swap_cgroup and free mem_cgroup when
4838 * it goes down to 0.
4839 *
4840 * Removal of cgroup itself succeeds regardless of refs from swap.
4841 */
4842
4843 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4844 {
4845 int node;
4846
4847 mem_cgroup_remove_from_trees(memcg);
4848 free_css_id(&mem_cgroup_subsys, &memcg->css);
4849
4850 for_each_node(node)
4851 free_mem_cgroup_per_zone_info(memcg, node);
4852
4853 free_percpu(memcg->stat);
4854 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4855 kfree_rcu(memcg, rcu_freeing);
4856 else
4857 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4858 }
4859
4860 static void mem_cgroup_get(struct mem_cgroup *memcg)
4861 {
4862 atomic_inc(&memcg->refcnt);
4863 }
4864
4865 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4866 {
4867 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4868 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4869 __mem_cgroup_free(memcg);
4870 if (parent)
4871 mem_cgroup_put(parent);
4872 }
4873 }
4874
4875 static void mem_cgroup_put(struct mem_cgroup *memcg)
4876 {
4877 __mem_cgroup_put(memcg, 1);
4878 }
4879
4880 /*
4881 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4882 */
4883 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4884 {
4885 if (!memcg->res.parent)
4886 return NULL;
4887 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4888 }
4889 EXPORT_SYMBOL(parent_mem_cgroup);
4890
4891 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4892 static void __init enable_swap_cgroup(void)
4893 {
4894 if (!mem_cgroup_disabled() && really_do_swap_account)
4895 do_swap_account = 1;
4896 }
4897 #else
4898 static void __init enable_swap_cgroup(void)
4899 {
4900 }
4901 #endif
4902
4903 static int mem_cgroup_soft_limit_tree_init(void)
4904 {
4905 struct mem_cgroup_tree_per_node *rtpn;
4906 struct mem_cgroup_tree_per_zone *rtpz;
4907 int tmp, node, zone;
4908
4909 for_each_node(node) {
4910 tmp = node;
4911 if (!node_state(node, N_NORMAL_MEMORY))
4912 tmp = -1;
4913 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4914 if (!rtpn)
4915 goto err_cleanup;
4916
4917 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4918
4919 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4920 rtpz = &rtpn->rb_tree_per_zone[zone];
4921 rtpz->rb_root = RB_ROOT;
4922 spin_lock_init(&rtpz->lock);
4923 }
4924 }
4925 return 0;
4926
4927 err_cleanup:
4928 for_each_node(node) {
4929 if (!soft_limit_tree.rb_tree_per_node[node])
4930 break;
4931 kfree(soft_limit_tree.rb_tree_per_node[node]);
4932 soft_limit_tree.rb_tree_per_node[node] = NULL;
4933 }
4934 return 1;
4935
4936 }
4937
4938 static struct cgroup_subsys_state * __ref
4939 mem_cgroup_create(struct cgroup *cont)
4940 {
4941 struct mem_cgroup *memcg, *parent;
4942 long error = -ENOMEM;
4943 int node;
4944
4945 memcg = mem_cgroup_alloc();
4946 if (!memcg)
4947 return ERR_PTR(error);
4948
4949 for_each_node(node)
4950 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4951 goto free_out;
4952
4953 /* root ? */
4954 if (cont->parent == NULL) {
4955 int cpu;
4956 enable_swap_cgroup();
4957 parent = NULL;
4958 if (mem_cgroup_soft_limit_tree_init())
4959 goto free_out;
4960 root_mem_cgroup = memcg;
4961 for_each_possible_cpu(cpu) {
4962 struct memcg_stock_pcp *stock =
4963 &per_cpu(memcg_stock, cpu);
4964 INIT_WORK(&stock->work, drain_local_stock);
4965 }
4966 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4967 } else {
4968 parent = mem_cgroup_from_cont(cont->parent);
4969 memcg->use_hierarchy = parent->use_hierarchy;
4970 memcg->oom_kill_disable = parent->oom_kill_disable;
4971 }
4972
4973 if (parent && parent->use_hierarchy) {
4974 res_counter_init(&memcg->res, &parent->res);
4975 res_counter_init(&memcg->memsw, &parent->memsw);
4976 /*
4977 * We increment refcnt of the parent to ensure that we can
4978 * safely access it on res_counter_charge/uncharge.
4979 * This refcnt will be decremented when freeing this
4980 * mem_cgroup(see mem_cgroup_put).
4981 */
4982 mem_cgroup_get(parent);
4983 } else {
4984 res_counter_init(&memcg->res, NULL);
4985 res_counter_init(&memcg->memsw, NULL);
4986 }
4987 memcg->last_scanned_node = MAX_NUMNODES;
4988 INIT_LIST_HEAD(&memcg->oom_notify);
4989
4990 if (parent)
4991 memcg->swappiness = mem_cgroup_swappiness(parent);
4992 atomic_set(&memcg->refcnt, 1);
4993 memcg->move_charge_at_immigrate = 0;
4994 mutex_init(&memcg->thresholds_lock);
4995 spin_lock_init(&memcg->move_lock);
4996 return &memcg->css;
4997 free_out:
4998 __mem_cgroup_free(memcg);
4999 return ERR_PTR(error);
5000 }
5001
5002 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5003 {
5004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5005
5006 return mem_cgroup_force_empty(memcg, false);
5007 }
5008
5009 static void mem_cgroup_destroy(struct cgroup *cont)
5010 {
5011 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5012
5013 kmem_cgroup_destroy(cont);
5014
5015 mem_cgroup_put(memcg);
5016 }
5017
5018 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5019 struct cgroup *cont)
5020 {
5021 int ret;
5022
5023 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5024 ARRAY_SIZE(mem_cgroup_files));
5025
5026 if (!ret)
5027 ret = register_memsw_files(cont, ss);
5028
5029 if (!ret)
5030 ret = register_kmem_files(cont, ss);
5031
5032 return ret;
5033 }
5034
5035 #ifdef CONFIG_MMU
5036 /* Handlers for move charge at task migration. */
5037 #define PRECHARGE_COUNT_AT_ONCE 256
5038 static int mem_cgroup_do_precharge(unsigned long count)
5039 {
5040 int ret = 0;
5041 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5042 struct mem_cgroup *memcg = mc.to;
5043
5044 if (mem_cgroup_is_root(memcg)) {
5045 mc.precharge += count;
5046 /* we don't need css_get for root */
5047 return ret;
5048 }
5049 /* try to charge at once */
5050 if (count > 1) {
5051 struct res_counter *dummy;
5052 /*
5053 * "memcg" cannot be under rmdir() because we've already checked
5054 * by cgroup_lock_live_cgroup() that it is not removed and we
5055 * are still under the same cgroup_mutex. So we can postpone
5056 * css_get().
5057 */
5058 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5059 goto one_by_one;
5060 if (do_swap_account && res_counter_charge(&memcg->memsw,
5061 PAGE_SIZE * count, &dummy)) {
5062 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5063 goto one_by_one;
5064 }
5065 mc.precharge += count;
5066 return ret;
5067 }
5068 one_by_one:
5069 /* fall back to one by one charge */
5070 while (count--) {
5071 if (signal_pending(current)) {
5072 ret = -EINTR;
5073 break;
5074 }
5075 if (!batch_count--) {
5076 batch_count = PRECHARGE_COUNT_AT_ONCE;
5077 cond_resched();
5078 }
5079 ret = __mem_cgroup_try_charge(NULL,
5080 GFP_KERNEL, 1, &memcg, false);
5081 if (ret)
5082 /* mem_cgroup_clear_mc() will do uncharge later */
5083 return ret;
5084 mc.precharge++;
5085 }
5086 return ret;
5087 }
5088
5089 /**
5090 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5091 * @vma: the vma the pte to be checked belongs
5092 * @addr: the address corresponding to the pte to be checked
5093 * @ptent: the pte to be checked
5094 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5095 *
5096 * Returns
5097 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5098 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5099 * move charge. if @target is not NULL, the page is stored in target->page
5100 * with extra refcnt got(Callers should handle it).
5101 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5102 * target for charge migration. if @target is not NULL, the entry is stored
5103 * in target->ent.
5104 *
5105 * Called with pte lock held.
5106 */
5107 union mc_target {
5108 struct page *page;
5109 swp_entry_t ent;
5110 };
5111
5112 enum mc_target_type {
5113 MC_TARGET_NONE, /* not used */
5114 MC_TARGET_PAGE,
5115 MC_TARGET_SWAP,
5116 };
5117
5118 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5119 unsigned long addr, pte_t ptent)
5120 {
5121 struct page *page = vm_normal_page(vma, addr, ptent);
5122
5123 if (!page || !page_mapped(page))
5124 return NULL;
5125 if (PageAnon(page)) {
5126 /* we don't move shared anon */
5127 if (!move_anon() || page_mapcount(page) > 2)
5128 return NULL;
5129 } else if (!move_file())
5130 /* we ignore mapcount for file pages */
5131 return NULL;
5132 if (!get_page_unless_zero(page))
5133 return NULL;
5134
5135 return page;
5136 }
5137
5138 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5139 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5140 {
5141 int usage_count;
5142 struct page *page = NULL;
5143 swp_entry_t ent = pte_to_swp_entry(ptent);
5144
5145 if (!move_anon() || non_swap_entry(ent))
5146 return NULL;
5147 usage_count = mem_cgroup_count_swap_user(ent, &page);
5148 if (usage_count > 1) { /* we don't move shared anon */
5149 if (page)
5150 put_page(page);
5151 return NULL;
5152 }
5153 if (do_swap_account)
5154 entry->val = ent.val;
5155
5156 return page;
5157 }
5158
5159 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5160 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5161 {
5162 struct page *page = NULL;
5163 struct inode *inode;
5164 struct address_space *mapping;
5165 pgoff_t pgoff;
5166
5167 if (!vma->vm_file) /* anonymous vma */
5168 return NULL;
5169 if (!move_file())
5170 return NULL;
5171
5172 inode = vma->vm_file->f_path.dentry->d_inode;
5173 mapping = vma->vm_file->f_mapping;
5174 if (pte_none(ptent))
5175 pgoff = linear_page_index(vma, addr);
5176 else /* pte_file(ptent) is true */
5177 pgoff = pte_to_pgoff(ptent);
5178
5179 /* page is moved even if it's not RSS of this task(page-faulted). */
5180 page = find_get_page(mapping, pgoff);
5181
5182 #ifdef CONFIG_SWAP
5183 /* shmem/tmpfs may report page out on swap: account for that too. */
5184 if (radix_tree_exceptional_entry(page)) {
5185 swp_entry_t swap = radix_to_swp_entry(page);
5186 if (do_swap_account)
5187 *entry = swap;
5188 page = find_get_page(&swapper_space, swap.val);
5189 }
5190 #endif
5191 return page;
5192 }
5193
5194 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5195 unsigned long addr, pte_t ptent, union mc_target *target)
5196 {
5197 struct page *page = NULL;
5198 struct page_cgroup *pc;
5199 int ret = 0;
5200 swp_entry_t ent = { .val = 0 };
5201
5202 if (pte_present(ptent))
5203 page = mc_handle_present_pte(vma, addr, ptent);
5204 else if (is_swap_pte(ptent))
5205 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5206 else if (pte_none(ptent) || pte_file(ptent))
5207 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5208
5209 if (!page && !ent.val)
5210 return 0;
5211 if (page) {
5212 pc = lookup_page_cgroup(page);
5213 /*
5214 * Do only loose check w/o page_cgroup lock.
5215 * mem_cgroup_move_account() checks the pc is valid or not under
5216 * the lock.
5217 */
5218 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5219 ret = MC_TARGET_PAGE;
5220 if (target)
5221 target->page = page;
5222 }
5223 if (!ret || !target)
5224 put_page(page);
5225 }
5226 /* There is a swap entry and a page doesn't exist or isn't charged */
5227 if (ent.val && !ret &&
5228 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5229 ret = MC_TARGET_SWAP;
5230 if (target)
5231 target->ent = ent;
5232 }
5233 return ret;
5234 }
5235
5236 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5237 unsigned long addr, unsigned long end,
5238 struct mm_walk *walk)
5239 {
5240 struct vm_area_struct *vma = walk->private;
5241 pte_t *pte;
5242 spinlock_t *ptl;
5243
5244 split_huge_page_pmd(walk->mm, pmd);
5245 if (pmd_trans_unstable(pmd))
5246 return 0;
5247
5248 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5249 for (; addr != end; pte++, addr += PAGE_SIZE)
5250 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5251 mc.precharge++; /* increment precharge temporarily */
5252 pte_unmap_unlock(pte - 1, ptl);
5253 cond_resched();
5254
5255 return 0;
5256 }
5257
5258 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5259 {
5260 unsigned long precharge;
5261 struct vm_area_struct *vma;
5262
5263 down_read(&mm->mmap_sem);
5264 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5265 struct mm_walk mem_cgroup_count_precharge_walk = {
5266 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5267 .mm = mm,
5268 .private = vma,
5269 };
5270 if (is_vm_hugetlb_page(vma))
5271 continue;
5272 walk_page_range(vma->vm_start, vma->vm_end,
5273 &mem_cgroup_count_precharge_walk);
5274 }
5275 up_read(&mm->mmap_sem);
5276
5277 precharge = mc.precharge;
5278 mc.precharge = 0;
5279
5280 return precharge;
5281 }
5282
5283 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5284 {
5285 unsigned long precharge = mem_cgroup_count_precharge(mm);
5286
5287 VM_BUG_ON(mc.moving_task);
5288 mc.moving_task = current;
5289 return mem_cgroup_do_precharge(precharge);
5290 }
5291
5292 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5293 static void __mem_cgroup_clear_mc(void)
5294 {
5295 struct mem_cgroup *from = mc.from;
5296 struct mem_cgroup *to = mc.to;
5297
5298 /* we must uncharge all the leftover precharges from mc.to */
5299 if (mc.precharge) {
5300 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5301 mc.precharge = 0;
5302 }
5303 /*
5304 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5305 * we must uncharge here.
5306 */
5307 if (mc.moved_charge) {
5308 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5309 mc.moved_charge = 0;
5310 }
5311 /* we must fixup refcnts and charges */
5312 if (mc.moved_swap) {
5313 /* uncharge swap account from the old cgroup */
5314 if (!mem_cgroup_is_root(mc.from))
5315 res_counter_uncharge(&mc.from->memsw,
5316 PAGE_SIZE * mc.moved_swap);
5317 __mem_cgroup_put(mc.from, mc.moved_swap);
5318
5319 if (!mem_cgroup_is_root(mc.to)) {
5320 /*
5321 * we charged both to->res and to->memsw, so we should
5322 * uncharge to->res.
5323 */
5324 res_counter_uncharge(&mc.to->res,
5325 PAGE_SIZE * mc.moved_swap);
5326 }
5327 /* we've already done mem_cgroup_get(mc.to) */
5328 mc.moved_swap = 0;
5329 }
5330 memcg_oom_recover(from);
5331 memcg_oom_recover(to);
5332 wake_up_all(&mc.waitq);
5333 }
5334
5335 static void mem_cgroup_clear_mc(void)
5336 {
5337 struct mem_cgroup *from = mc.from;
5338
5339 /*
5340 * we must clear moving_task before waking up waiters at the end of
5341 * task migration.
5342 */
5343 mc.moving_task = NULL;
5344 __mem_cgroup_clear_mc();
5345 spin_lock(&mc.lock);
5346 mc.from = NULL;
5347 mc.to = NULL;
5348 spin_unlock(&mc.lock);
5349 mem_cgroup_end_move(from);
5350 }
5351
5352 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5353 struct cgroup_taskset *tset)
5354 {
5355 struct task_struct *p = cgroup_taskset_first(tset);
5356 int ret = 0;
5357 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5358
5359 if (memcg->move_charge_at_immigrate) {
5360 struct mm_struct *mm;
5361 struct mem_cgroup *from = mem_cgroup_from_task(p);
5362
5363 VM_BUG_ON(from == memcg);
5364
5365 mm = get_task_mm(p);
5366 if (!mm)
5367 return 0;
5368 /* We move charges only when we move a owner of the mm */
5369 if (mm->owner == p) {
5370 VM_BUG_ON(mc.from);
5371 VM_BUG_ON(mc.to);
5372 VM_BUG_ON(mc.precharge);
5373 VM_BUG_ON(mc.moved_charge);
5374 VM_BUG_ON(mc.moved_swap);
5375 mem_cgroup_start_move(from);
5376 spin_lock(&mc.lock);
5377 mc.from = from;
5378 mc.to = memcg;
5379 spin_unlock(&mc.lock);
5380 /* We set mc.moving_task later */
5381
5382 ret = mem_cgroup_precharge_mc(mm);
5383 if (ret)
5384 mem_cgroup_clear_mc();
5385 }
5386 mmput(mm);
5387 }
5388 return ret;
5389 }
5390
5391 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5392 struct cgroup_taskset *tset)
5393 {
5394 mem_cgroup_clear_mc();
5395 }
5396
5397 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5398 unsigned long addr, unsigned long end,
5399 struct mm_walk *walk)
5400 {
5401 int ret = 0;
5402 struct vm_area_struct *vma = walk->private;
5403 pte_t *pte;
5404 spinlock_t *ptl;
5405
5406 split_huge_page_pmd(walk->mm, pmd);
5407 if (pmd_trans_unstable(pmd))
5408 return 0;
5409 retry:
5410 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5411 for (; addr != end; addr += PAGE_SIZE) {
5412 pte_t ptent = *(pte++);
5413 union mc_target target;
5414 int type;
5415 struct page *page;
5416 struct page_cgroup *pc;
5417 swp_entry_t ent;
5418
5419 if (!mc.precharge)
5420 break;
5421
5422 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5423 switch (type) {
5424 case MC_TARGET_PAGE:
5425 page = target.page;
5426 if (isolate_lru_page(page))
5427 goto put;
5428 pc = lookup_page_cgroup(page);
5429 if (!mem_cgroup_move_account(page, 1, pc,
5430 mc.from, mc.to, false)) {
5431 mc.precharge--;
5432 /* we uncharge from mc.from later. */
5433 mc.moved_charge++;
5434 }
5435 putback_lru_page(page);
5436 put: /* is_target_pte_for_mc() gets the page */
5437 put_page(page);
5438 break;
5439 case MC_TARGET_SWAP:
5440 ent = target.ent;
5441 if (!mem_cgroup_move_swap_account(ent,
5442 mc.from, mc.to, false)) {
5443 mc.precharge--;
5444 /* we fixup refcnts and charges later. */
5445 mc.moved_swap++;
5446 }
5447 break;
5448 default:
5449 break;
5450 }
5451 }
5452 pte_unmap_unlock(pte - 1, ptl);
5453 cond_resched();
5454
5455 if (addr != end) {
5456 /*
5457 * We have consumed all precharges we got in can_attach().
5458 * We try charge one by one, but don't do any additional
5459 * charges to mc.to if we have failed in charge once in attach()
5460 * phase.
5461 */
5462 ret = mem_cgroup_do_precharge(1);
5463 if (!ret)
5464 goto retry;
5465 }
5466
5467 return ret;
5468 }
5469
5470 static void mem_cgroup_move_charge(struct mm_struct *mm)
5471 {
5472 struct vm_area_struct *vma;
5473
5474 lru_add_drain_all();
5475 retry:
5476 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5477 /*
5478 * Someone who are holding the mmap_sem might be waiting in
5479 * waitq. So we cancel all extra charges, wake up all waiters,
5480 * and retry. Because we cancel precharges, we might not be able
5481 * to move enough charges, but moving charge is a best-effort
5482 * feature anyway, so it wouldn't be a big problem.
5483 */
5484 __mem_cgroup_clear_mc();
5485 cond_resched();
5486 goto retry;
5487 }
5488 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5489 int ret;
5490 struct mm_walk mem_cgroup_move_charge_walk = {
5491 .pmd_entry = mem_cgroup_move_charge_pte_range,
5492 .mm = mm,
5493 .private = vma,
5494 };
5495 if (is_vm_hugetlb_page(vma))
5496 continue;
5497 ret = walk_page_range(vma->vm_start, vma->vm_end,
5498 &mem_cgroup_move_charge_walk);
5499 if (ret)
5500 /*
5501 * means we have consumed all precharges and failed in
5502 * doing additional charge. Just abandon here.
5503 */
5504 break;
5505 }
5506 up_read(&mm->mmap_sem);
5507 }
5508
5509 static void mem_cgroup_move_task(struct cgroup *cont,
5510 struct cgroup_taskset *tset)
5511 {
5512 struct task_struct *p = cgroup_taskset_first(tset);
5513 struct mm_struct *mm = get_task_mm(p);
5514
5515 if (mm) {
5516 if (mc.to)
5517 mem_cgroup_move_charge(mm);
5518 put_swap_token(mm);
5519 mmput(mm);
5520 }
5521 if (mc.to)
5522 mem_cgroup_clear_mc();
5523 }
5524 #else /* !CONFIG_MMU */
5525 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5526 struct cgroup_taskset *tset)
5527 {
5528 return 0;
5529 }
5530 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5531 struct cgroup_taskset *tset)
5532 {
5533 }
5534 static void mem_cgroup_move_task(struct cgroup *cont,
5535 struct cgroup_taskset *tset)
5536 {
5537 }
5538 #endif
5539
5540 struct cgroup_subsys mem_cgroup_subsys = {
5541 .name = "memory",
5542 .subsys_id = mem_cgroup_subsys_id,
5543 .create = mem_cgroup_create,
5544 .pre_destroy = mem_cgroup_pre_destroy,
5545 .destroy = mem_cgroup_destroy,
5546 .populate = mem_cgroup_populate,
5547 .can_attach = mem_cgroup_can_attach,
5548 .cancel_attach = mem_cgroup_cancel_attach,
5549 .attach = mem_cgroup_move_task,
5550 .early_init = 0,
5551 .use_id = 1,
5552 };
5553
5554 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5555 static int __init enable_swap_account(char *s)
5556 {
5557 /* consider enabled if no parameter or 1 is given */
5558 if (!strcmp(s, "1"))
5559 really_do_swap_account = 1;
5560 else if (!strcmp(s, "0"))
5561 really_do_swap_account = 0;
5562 return 1;
5563 }
5564 __setup("swapaccount=", enable_swap_account);
5565
5566 #endif
This page took 0.178043 seconds and 5 git commands to generate.