cgroup: replace cftype->read_seq_string() with cftype->seq_show()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmalloc.h>
53 #include <linux/vmpressure.h>
54 #include <linux/mm_inline.h>
55 #include <linux/page_cgroup.h>
56 #include <linux/cpu.h>
57 #include <linux/oom.h>
58 #include <linux/lockdep.h>
59 #include <linux/file.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include <net/tcp_memcontrol.h>
64 #include "slab.h"
65
66 #include <asm/uaccess.h>
67
68 #include <trace/events/vmscan.h>
69
70 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
71 EXPORT_SYMBOL(mem_cgroup_subsys);
72
73 #define MEM_CGROUP_RECLAIM_RETRIES 5
74 static struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #ifdef CONFIG_MEMCG_SWAP
77 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
78 int do_swap_account __read_mostly;
79
80 /* for remember boot option*/
81 #ifdef CONFIG_MEMCG_SWAP_ENABLED
82 static int really_do_swap_account __initdata = 1;
83 #else
84 static int really_do_swap_account __initdata = 0;
85 #endif
86
87 #else
88 #define do_swap_account 0
89 #endif
90
91
92 static const char * const mem_cgroup_stat_names[] = {
93 "cache",
94 "rss",
95 "rss_huge",
96 "mapped_file",
97 "writeback",
98 "swap",
99 };
100
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 /*
125 * Per memcg event counter is incremented at every pagein/pageout. With THP,
126 * it will be incremated by the number of pages. This counter is used for
127 * for trigger some periodic events. This is straightforward and better
128 * than using jiffies etc. to handle periodic memcg event.
129 */
130 enum mem_cgroup_events_target {
131 MEM_CGROUP_TARGET_THRESH,
132 MEM_CGROUP_TARGET_SOFTLIMIT,
133 MEM_CGROUP_TARGET_NUMAINFO,
134 MEM_CGROUP_NTARGETS,
135 };
136 #define THRESHOLDS_EVENTS_TARGET 128
137 #define SOFTLIMIT_EVENTS_TARGET 1024
138 #define NUMAINFO_EVENTS_TARGET 1024
139
140 struct mem_cgroup_stat_cpu {
141 long count[MEM_CGROUP_STAT_NSTATS];
142 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
143 unsigned long nr_page_events;
144 unsigned long targets[MEM_CGROUP_NTARGETS];
145 };
146
147 struct mem_cgroup_reclaim_iter {
148 /*
149 * last scanned hierarchy member. Valid only if last_dead_count
150 * matches memcg->dead_count of the hierarchy root group.
151 */
152 struct mem_cgroup *last_visited;
153 unsigned long last_dead_count;
154
155 /* scan generation, increased every round-trip */
156 unsigned int generation;
157 };
158
159 /*
160 * per-zone information in memory controller.
161 */
162 struct mem_cgroup_per_zone {
163 struct lruvec lruvec;
164 unsigned long lru_size[NR_LRU_LISTS];
165
166 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
167
168 struct rb_node tree_node; /* RB tree node */
169 unsigned long long usage_in_excess;/* Set to the value by which */
170 /* the soft limit is exceeded*/
171 bool on_tree;
172 struct mem_cgroup *memcg; /* Back pointer, we cannot */
173 /* use container_of */
174 };
175
176 struct mem_cgroup_per_node {
177 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
178 };
179
180 /*
181 * Cgroups above their limits are maintained in a RB-Tree, independent of
182 * their hierarchy representation
183 */
184
185 struct mem_cgroup_tree_per_zone {
186 struct rb_root rb_root;
187 spinlock_t lock;
188 };
189
190 struct mem_cgroup_tree_per_node {
191 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192 };
193
194 struct mem_cgroup_tree {
195 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196 };
197
198 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
199
200 struct mem_cgroup_threshold {
201 struct eventfd_ctx *eventfd;
202 u64 threshold;
203 };
204
205 /* For threshold */
206 struct mem_cgroup_threshold_ary {
207 /* An array index points to threshold just below or equal to usage. */
208 int current_threshold;
209 /* Size of entries[] */
210 unsigned int size;
211 /* Array of thresholds */
212 struct mem_cgroup_threshold entries[0];
213 };
214
215 struct mem_cgroup_thresholds {
216 /* Primary thresholds array */
217 struct mem_cgroup_threshold_ary *primary;
218 /*
219 * Spare threshold array.
220 * This is needed to make mem_cgroup_unregister_event() "never fail".
221 * It must be able to store at least primary->size - 1 entries.
222 */
223 struct mem_cgroup_threshold_ary *spare;
224 };
225
226 /* for OOM */
227 struct mem_cgroup_eventfd_list {
228 struct list_head list;
229 struct eventfd_ctx *eventfd;
230 };
231
232 /*
233 * cgroup_event represents events which userspace want to receive.
234 */
235 struct mem_cgroup_event {
236 /*
237 * memcg which the event belongs to.
238 */
239 struct mem_cgroup *memcg;
240 /*
241 * eventfd to signal userspace about the event.
242 */
243 struct eventfd_ctx *eventfd;
244 /*
245 * Each of these stored in a list by the cgroup.
246 */
247 struct list_head list;
248 /*
249 * register_event() callback will be used to add new userspace
250 * waiter for changes related to this event. Use eventfd_signal()
251 * on eventfd to send notification to userspace.
252 */
253 int (*register_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd, const char *args);
255 /*
256 * unregister_event() callback will be called when userspace closes
257 * the eventfd or on cgroup removing. This callback must be set,
258 * if you want provide notification functionality.
259 */
260 void (*unregister_event)(struct mem_cgroup *memcg,
261 struct eventfd_ctx *eventfd);
262 /*
263 * All fields below needed to unregister event when
264 * userspace closes eventfd.
265 */
266 poll_table pt;
267 wait_queue_head_t *wqh;
268 wait_queue_t wait;
269 struct work_struct remove;
270 };
271
272 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
273 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
274
275 /*
276 * The memory controller data structure. The memory controller controls both
277 * page cache and RSS per cgroup. We would eventually like to provide
278 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
279 * to help the administrator determine what knobs to tune.
280 *
281 * TODO: Add a water mark for the memory controller. Reclaim will begin when
282 * we hit the water mark. May be even add a low water mark, such that
283 * no reclaim occurs from a cgroup at it's low water mark, this is
284 * a feature that will be implemented much later in the future.
285 */
286 struct mem_cgroup {
287 struct cgroup_subsys_state css;
288 /*
289 * the counter to account for memory usage
290 */
291 struct res_counter res;
292
293 /* vmpressure notifications */
294 struct vmpressure vmpressure;
295
296 /*
297 * the counter to account for mem+swap usage.
298 */
299 struct res_counter memsw;
300
301 /*
302 * the counter to account for kernel memory usage.
303 */
304 struct res_counter kmem;
305 /*
306 * Should the accounting and control be hierarchical, per subtree?
307 */
308 bool use_hierarchy;
309 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
310
311 bool oom_lock;
312 atomic_t under_oom;
313 atomic_t oom_wakeups;
314
315 int swappiness;
316 /* OOM-Killer disable */
317 int oom_kill_disable;
318
319 /* set when res.limit == memsw.limit */
320 bool memsw_is_minimum;
321
322 /* protect arrays of thresholds */
323 struct mutex thresholds_lock;
324
325 /* thresholds for memory usage. RCU-protected */
326 struct mem_cgroup_thresholds thresholds;
327
328 /* thresholds for mem+swap usage. RCU-protected */
329 struct mem_cgroup_thresholds memsw_thresholds;
330
331 /* For oom notifier event fd */
332 struct list_head oom_notify;
333
334 /*
335 * Should we move charges of a task when a task is moved into this
336 * mem_cgroup ? And what type of charges should we move ?
337 */
338 unsigned long move_charge_at_immigrate;
339 /*
340 * set > 0 if pages under this cgroup are moving to other cgroup.
341 */
342 atomic_t moving_account;
343 /* taken only while moving_account > 0 */
344 spinlock_t move_lock;
345 /*
346 * percpu counter.
347 */
348 struct mem_cgroup_stat_cpu __percpu *stat;
349 /*
350 * used when a cpu is offlined or other synchronizations
351 * See mem_cgroup_read_stat().
352 */
353 struct mem_cgroup_stat_cpu nocpu_base;
354 spinlock_t pcp_counter_lock;
355
356 atomic_t dead_count;
357 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
358 struct cg_proto tcp_mem;
359 #endif
360 #if defined(CONFIG_MEMCG_KMEM)
361 /* analogous to slab_common's slab_caches list. per-memcg */
362 struct list_head memcg_slab_caches;
363 /* Not a spinlock, we can take a lot of time walking the list */
364 struct mutex slab_caches_mutex;
365 /* Index in the kmem_cache->memcg_params->memcg_caches array */
366 int kmemcg_id;
367 #endif
368
369 int last_scanned_node;
370 #if MAX_NUMNODES > 1
371 nodemask_t scan_nodes;
372 atomic_t numainfo_events;
373 atomic_t numainfo_updating;
374 #endif
375
376 /* List of events which userspace want to receive */
377 struct list_head event_list;
378 spinlock_t event_list_lock;
379
380 struct mem_cgroup_per_node *nodeinfo[0];
381 /* WARNING: nodeinfo must be the last member here */
382 };
383
384 static size_t memcg_size(void)
385 {
386 return sizeof(struct mem_cgroup) +
387 nr_node_ids * sizeof(struct mem_cgroup_per_node);
388 }
389
390 /* internal only representation about the status of kmem accounting. */
391 enum {
392 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
393 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
394 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
395 };
396
397 /* We account when limit is on, but only after call sites are patched */
398 #define KMEM_ACCOUNTED_MASK \
399 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
400
401 #ifdef CONFIG_MEMCG_KMEM
402 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
403 {
404 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405 }
406
407 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
408 {
409 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
410 }
411
412 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
413 {
414 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415 }
416
417 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
418 {
419 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
420 }
421
422 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
423 {
424 /*
425 * Our caller must use css_get() first, because memcg_uncharge_kmem()
426 * will call css_put() if it sees the memcg is dead.
427 */
428 smp_wmb();
429 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
430 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
431 }
432
433 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
434 {
435 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
436 &memcg->kmem_account_flags);
437 }
438 #endif
439
440 /* Stuffs for move charges at task migration. */
441 /*
442 * Types of charges to be moved. "move_charge_at_immitgrate" and
443 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
444 */
445 enum move_type {
446 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
447 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
448 NR_MOVE_TYPE,
449 };
450
451 /* "mc" and its members are protected by cgroup_mutex */
452 static struct move_charge_struct {
453 spinlock_t lock; /* for from, to */
454 struct mem_cgroup *from;
455 struct mem_cgroup *to;
456 unsigned long immigrate_flags;
457 unsigned long precharge;
458 unsigned long moved_charge;
459 unsigned long moved_swap;
460 struct task_struct *moving_task; /* a task moving charges */
461 wait_queue_head_t waitq; /* a waitq for other context */
462 } mc = {
463 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
464 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
465 };
466
467 static bool move_anon(void)
468 {
469 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
470 }
471
472 static bool move_file(void)
473 {
474 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
475 }
476
477 /*
478 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
479 * limit reclaim to prevent infinite loops, if they ever occur.
480 */
481 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
482 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
483
484 enum charge_type {
485 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
486 MEM_CGROUP_CHARGE_TYPE_ANON,
487 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
488 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
489 NR_CHARGE_TYPE,
490 };
491
492 /* for encoding cft->private value on file */
493 enum res_type {
494 _MEM,
495 _MEMSWAP,
496 _OOM_TYPE,
497 _KMEM,
498 };
499
500 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
501 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
502 #define MEMFILE_ATTR(val) ((val) & 0xffff)
503 /* Used for OOM nofiier */
504 #define OOM_CONTROL (0)
505
506 /*
507 * Reclaim flags for mem_cgroup_hierarchical_reclaim
508 */
509 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
510 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
511 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
512 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
513
514 /*
515 * The memcg_create_mutex will be held whenever a new cgroup is created.
516 * As a consequence, any change that needs to protect against new child cgroups
517 * appearing has to hold it as well.
518 */
519 static DEFINE_MUTEX(memcg_create_mutex);
520
521 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
522 {
523 return s ? container_of(s, struct mem_cgroup, css) : NULL;
524 }
525
526 /* Some nice accessors for the vmpressure. */
527 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
528 {
529 if (!memcg)
530 memcg = root_mem_cgroup;
531 return &memcg->vmpressure;
532 }
533
534 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
535 {
536 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
537 }
538
539 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540 {
541 return (memcg == root_mem_cgroup);
542 }
543
544 /*
545 * We restrict the id in the range of [1, 65535], so it can fit into
546 * an unsigned short.
547 */
548 #define MEM_CGROUP_ID_MAX USHRT_MAX
549
550 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
551 {
552 /*
553 * The ID of the root cgroup is 0, but memcg treat 0 as an
554 * invalid ID, so we return (cgroup_id + 1).
555 */
556 return memcg->css.cgroup->id + 1;
557 }
558
559 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
560 {
561 struct cgroup_subsys_state *css;
562
563 css = css_from_id(id - 1, &mem_cgroup_subsys);
564 return mem_cgroup_from_css(css);
565 }
566
567 /* Writing them here to avoid exposing memcg's inner layout */
568 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
569
570 void sock_update_memcg(struct sock *sk)
571 {
572 if (mem_cgroup_sockets_enabled) {
573 struct mem_cgroup *memcg;
574 struct cg_proto *cg_proto;
575
576 BUG_ON(!sk->sk_prot->proto_cgroup);
577
578 /* Socket cloning can throw us here with sk_cgrp already
579 * filled. It won't however, necessarily happen from
580 * process context. So the test for root memcg given
581 * the current task's memcg won't help us in this case.
582 *
583 * Respecting the original socket's memcg is a better
584 * decision in this case.
585 */
586 if (sk->sk_cgrp) {
587 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
588 css_get(&sk->sk_cgrp->memcg->css);
589 return;
590 }
591
592 rcu_read_lock();
593 memcg = mem_cgroup_from_task(current);
594 cg_proto = sk->sk_prot->proto_cgroup(memcg);
595 if (!mem_cgroup_is_root(memcg) &&
596 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
597 sk->sk_cgrp = cg_proto;
598 }
599 rcu_read_unlock();
600 }
601 }
602 EXPORT_SYMBOL(sock_update_memcg);
603
604 void sock_release_memcg(struct sock *sk)
605 {
606 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
607 struct mem_cgroup *memcg;
608 WARN_ON(!sk->sk_cgrp->memcg);
609 memcg = sk->sk_cgrp->memcg;
610 css_put(&sk->sk_cgrp->memcg->css);
611 }
612 }
613
614 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
615 {
616 if (!memcg || mem_cgroup_is_root(memcg))
617 return NULL;
618
619 return &memcg->tcp_mem;
620 }
621 EXPORT_SYMBOL(tcp_proto_cgroup);
622
623 static void disarm_sock_keys(struct mem_cgroup *memcg)
624 {
625 if (!memcg_proto_activated(&memcg->tcp_mem))
626 return;
627 static_key_slow_dec(&memcg_socket_limit_enabled);
628 }
629 #else
630 static void disarm_sock_keys(struct mem_cgroup *memcg)
631 {
632 }
633 #endif
634
635 #ifdef CONFIG_MEMCG_KMEM
636 /*
637 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
638 * The main reason for not using cgroup id for this:
639 * this works better in sparse environments, where we have a lot of memcgs,
640 * but only a few kmem-limited. Or also, if we have, for instance, 200
641 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
642 * 200 entry array for that.
643 *
644 * The current size of the caches array is stored in
645 * memcg_limited_groups_array_size. It will double each time we have to
646 * increase it.
647 */
648 static DEFINE_IDA(kmem_limited_groups);
649 int memcg_limited_groups_array_size;
650
651 /*
652 * MIN_SIZE is different than 1, because we would like to avoid going through
653 * the alloc/free process all the time. In a small machine, 4 kmem-limited
654 * cgroups is a reasonable guess. In the future, it could be a parameter or
655 * tunable, but that is strictly not necessary.
656 *
657 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
658 * this constant directly from cgroup, but it is understandable that this is
659 * better kept as an internal representation in cgroup.c. In any case, the
660 * cgrp_id space is not getting any smaller, and we don't have to necessarily
661 * increase ours as well if it increases.
662 */
663 #define MEMCG_CACHES_MIN_SIZE 4
664 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
665
666 /*
667 * A lot of the calls to the cache allocation functions are expected to be
668 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
669 * conditional to this static branch, we'll have to allow modules that does
670 * kmem_cache_alloc and the such to see this symbol as well
671 */
672 struct static_key memcg_kmem_enabled_key;
673 EXPORT_SYMBOL(memcg_kmem_enabled_key);
674
675 static void disarm_kmem_keys(struct mem_cgroup *memcg)
676 {
677 if (memcg_kmem_is_active(memcg)) {
678 static_key_slow_dec(&memcg_kmem_enabled_key);
679 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
680 }
681 /*
682 * This check can't live in kmem destruction function,
683 * since the charges will outlive the cgroup
684 */
685 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
686 }
687 #else
688 static void disarm_kmem_keys(struct mem_cgroup *memcg)
689 {
690 }
691 #endif /* CONFIG_MEMCG_KMEM */
692
693 static void disarm_static_keys(struct mem_cgroup *memcg)
694 {
695 disarm_sock_keys(memcg);
696 disarm_kmem_keys(memcg);
697 }
698
699 static void drain_all_stock_async(struct mem_cgroup *memcg);
700
701 static struct mem_cgroup_per_zone *
702 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
703 {
704 VM_BUG_ON((unsigned)nid >= nr_node_ids);
705 return &memcg->nodeinfo[nid]->zoneinfo[zid];
706 }
707
708 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
709 {
710 return &memcg->css;
711 }
712
713 static struct mem_cgroup_per_zone *
714 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
715 {
716 int nid = page_to_nid(page);
717 int zid = page_zonenum(page);
718
719 return mem_cgroup_zoneinfo(memcg, nid, zid);
720 }
721
722 static struct mem_cgroup_tree_per_zone *
723 soft_limit_tree_node_zone(int nid, int zid)
724 {
725 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
726 }
727
728 static struct mem_cgroup_tree_per_zone *
729 soft_limit_tree_from_page(struct page *page)
730 {
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
733
734 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
735 }
736
737 static void
738 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
739 struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz,
741 unsigned long long new_usage_in_excess)
742 {
743 struct rb_node **p = &mctz->rb_root.rb_node;
744 struct rb_node *parent = NULL;
745 struct mem_cgroup_per_zone *mz_node;
746
747 if (mz->on_tree)
748 return;
749
750 mz->usage_in_excess = new_usage_in_excess;
751 if (!mz->usage_in_excess)
752 return;
753 while (*p) {
754 parent = *p;
755 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
756 tree_node);
757 if (mz->usage_in_excess < mz_node->usage_in_excess)
758 p = &(*p)->rb_left;
759 /*
760 * We can't avoid mem cgroups that are over their soft
761 * limit by the same amount
762 */
763 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
764 p = &(*p)->rb_right;
765 }
766 rb_link_node(&mz->tree_node, parent, p);
767 rb_insert_color(&mz->tree_node, &mctz->rb_root);
768 mz->on_tree = true;
769 }
770
771 static void
772 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
773 struct mem_cgroup_per_zone *mz,
774 struct mem_cgroup_tree_per_zone *mctz)
775 {
776 if (!mz->on_tree)
777 return;
778 rb_erase(&mz->tree_node, &mctz->rb_root);
779 mz->on_tree = false;
780 }
781
782 static void
783 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
784 struct mem_cgroup_per_zone *mz,
785 struct mem_cgroup_tree_per_zone *mctz)
786 {
787 spin_lock(&mctz->lock);
788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 spin_unlock(&mctz->lock);
790 }
791
792
793 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
794 {
795 unsigned long long excess;
796 struct mem_cgroup_per_zone *mz;
797 struct mem_cgroup_tree_per_zone *mctz;
798 int nid = page_to_nid(page);
799 int zid = page_zonenum(page);
800 mctz = soft_limit_tree_from_page(page);
801
802 /*
803 * Necessary to update all ancestors when hierarchy is used.
804 * because their event counter is not touched.
805 */
806 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
807 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
808 excess = res_counter_soft_limit_excess(&memcg->res);
809 /*
810 * We have to update the tree if mz is on RB-tree or
811 * mem is over its softlimit.
812 */
813 if (excess || mz->on_tree) {
814 spin_lock(&mctz->lock);
815 /* if on-tree, remove it */
816 if (mz->on_tree)
817 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 /*
819 * Insert again. mz->usage_in_excess will be updated.
820 * If excess is 0, no tree ops.
821 */
822 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
823 spin_unlock(&mctz->lock);
824 }
825 }
826 }
827
828 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
829 {
830 int node, zone;
831 struct mem_cgroup_per_zone *mz;
832 struct mem_cgroup_tree_per_zone *mctz;
833
834 for_each_node(node) {
835 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
836 mz = mem_cgroup_zoneinfo(memcg, node, zone);
837 mctz = soft_limit_tree_node_zone(node, zone);
838 mem_cgroup_remove_exceeded(memcg, mz, mctz);
839 }
840 }
841 }
842
843 static struct mem_cgroup_per_zone *
844 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
845 {
846 struct rb_node *rightmost = NULL;
847 struct mem_cgroup_per_zone *mz;
848
849 retry:
850 mz = NULL;
851 rightmost = rb_last(&mctz->rb_root);
852 if (!rightmost)
853 goto done; /* Nothing to reclaim from */
854
855 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
856 /*
857 * Remove the node now but someone else can add it back,
858 * we will to add it back at the end of reclaim to its correct
859 * position in the tree.
860 */
861 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
862 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
863 !css_tryget(&mz->memcg->css))
864 goto retry;
865 done:
866 return mz;
867 }
868
869 static struct mem_cgroup_per_zone *
870 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
871 {
872 struct mem_cgroup_per_zone *mz;
873
874 spin_lock(&mctz->lock);
875 mz = __mem_cgroup_largest_soft_limit_node(mctz);
876 spin_unlock(&mctz->lock);
877 return mz;
878 }
879
880 /*
881 * Implementation Note: reading percpu statistics for memcg.
882 *
883 * Both of vmstat[] and percpu_counter has threshold and do periodic
884 * synchronization to implement "quick" read. There are trade-off between
885 * reading cost and precision of value. Then, we may have a chance to implement
886 * a periodic synchronizion of counter in memcg's counter.
887 *
888 * But this _read() function is used for user interface now. The user accounts
889 * memory usage by memory cgroup and he _always_ requires exact value because
890 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
891 * have to visit all online cpus and make sum. So, for now, unnecessary
892 * synchronization is not implemented. (just implemented for cpu hotplug)
893 *
894 * If there are kernel internal actions which can make use of some not-exact
895 * value, and reading all cpu value can be performance bottleneck in some
896 * common workload, threashold and synchonization as vmstat[] should be
897 * implemented.
898 */
899 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
900 enum mem_cgroup_stat_index idx)
901 {
902 long val = 0;
903 int cpu;
904
905 get_online_cpus();
906 for_each_online_cpu(cpu)
907 val += per_cpu(memcg->stat->count[idx], cpu);
908 #ifdef CONFIG_HOTPLUG_CPU
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.count[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
912 #endif
913 put_online_cpus();
914 return val;
915 }
916
917 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
918 bool charge)
919 {
920 int val = (charge) ? 1 : -1;
921 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
922 }
923
924 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
925 enum mem_cgroup_events_index idx)
926 {
927 unsigned long val = 0;
928 int cpu;
929
930 get_online_cpus();
931 for_each_online_cpu(cpu)
932 val += per_cpu(memcg->stat->events[idx], cpu);
933 #ifdef CONFIG_HOTPLUG_CPU
934 spin_lock(&memcg->pcp_counter_lock);
935 val += memcg->nocpu_base.events[idx];
936 spin_unlock(&memcg->pcp_counter_lock);
937 #endif
938 put_online_cpus();
939 return val;
940 }
941
942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943 struct page *page,
944 bool anon, int nr_pages)
945 {
946 preempt_disable();
947
948 /*
949 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
950 * counted as CACHE even if it's on ANON LRU.
951 */
952 if (anon)
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
954 nr_pages);
955 else
956 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
957 nr_pages);
958
959 if (PageTransHuge(page))
960 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
961 nr_pages);
962
963 /* pagein of a big page is an event. So, ignore page size */
964 if (nr_pages > 0)
965 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
966 else {
967 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
968 nr_pages = -nr_pages; /* for event */
969 }
970
971 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
972
973 preempt_enable();
974 }
975
976 unsigned long
977 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
978 {
979 struct mem_cgroup_per_zone *mz;
980
981 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
982 return mz->lru_size[lru];
983 }
984
985 static unsigned long
986 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
987 unsigned int lru_mask)
988 {
989 struct mem_cgroup_per_zone *mz;
990 enum lru_list lru;
991 unsigned long ret = 0;
992
993 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
994
995 for_each_lru(lru) {
996 if (BIT(lru) & lru_mask)
997 ret += mz->lru_size[lru];
998 }
999 return ret;
1000 }
1001
1002 static unsigned long
1003 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1004 int nid, unsigned int lru_mask)
1005 {
1006 u64 total = 0;
1007 int zid;
1008
1009 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1010 total += mem_cgroup_zone_nr_lru_pages(memcg,
1011 nid, zid, lru_mask);
1012
1013 return total;
1014 }
1015
1016 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1017 unsigned int lru_mask)
1018 {
1019 int nid;
1020 u64 total = 0;
1021
1022 for_each_node_state(nid, N_MEMORY)
1023 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1024 return total;
1025 }
1026
1027 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1028 enum mem_cgroup_events_target target)
1029 {
1030 unsigned long val, next;
1031
1032 val = __this_cpu_read(memcg->stat->nr_page_events);
1033 next = __this_cpu_read(memcg->stat->targets[target]);
1034 /* from time_after() in jiffies.h */
1035 if ((long)next - (long)val < 0) {
1036 switch (target) {
1037 case MEM_CGROUP_TARGET_THRESH:
1038 next = val + THRESHOLDS_EVENTS_TARGET;
1039 break;
1040 case MEM_CGROUP_TARGET_SOFTLIMIT:
1041 next = val + SOFTLIMIT_EVENTS_TARGET;
1042 break;
1043 case MEM_CGROUP_TARGET_NUMAINFO:
1044 next = val + NUMAINFO_EVENTS_TARGET;
1045 break;
1046 default:
1047 break;
1048 }
1049 __this_cpu_write(memcg->stat->targets[target], next);
1050 return true;
1051 }
1052 return false;
1053 }
1054
1055 /*
1056 * Check events in order.
1057 *
1058 */
1059 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1060 {
1061 preempt_disable();
1062 /* threshold event is triggered in finer grain than soft limit */
1063 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1064 MEM_CGROUP_TARGET_THRESH))) {
1065 bool do_softlimit;
1066 bool do_numainfo __maybe_unused;
1067
1068 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1069 MEM_CGROUP_TARGET_SOFTLIMIT);
1070 #if MAX_NUMNODES > 1
1071 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1072 MEM_CGROUP_TARGET_NUMAINFO);
1073 #endif
1074 preempt_enable();
1075
1076 mem_cgroup_threshold(memcg);
1077 if (unlikely(do_softlimit))
1078 mem_cgroup_update_tree(memcg, page);
1079 #if MAX_NUMNODES > 1
1080 if (unlikely(do_numainfo))
1081 atomic_inc(&memcg->numainfo_events);
1082 #endif
1083 } else
1084 preempt_enable();
1085 }
1086
1087 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1088 {
1089 /*
1090 * mm_update_next_owner() may clear mm->owner to NULL
1091 * if it races with swapoff, page migration, etc.
1092 * So this can be called with p == NULL.
1093 */
1094 if (unlikely(!p))
1095 return NULL;
1096
1097 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1098 }
1099
1100 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1101 {
1102 struct mem_cgroup *memcg = NULL;
1103
1104 if (!mm)
1105 return NULL;
1106 /*
1107 * Because we have no locks, mm->owner's may be being moved to other
1108 * cgroup. We use css_tryget() here even if this looks
1109 * pessimistic (rather than adding locks here).
1110 */
1111 rcu_read_lock();
1112 do {
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (unlikely(!memcg))
1115 break;
1116 } while (!css_tryget(&memcg->css));
1117 rcu_read_unlock();
1118 return memcg;
1119 }
1120
1121 /*
1122 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1123 * ref. count) or NULL if the whole root's subtree has been visited.
1124 *
1125 * helper function to be used by mem_cgroup_iter
1126 */
1127 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1128 struct mem_cgroup *last_visited)
1129 {
1130 struct cgroup_subsys_state *prev_css, *next_css;
1131
1132 prev_css = last_visited ? &last_visited->css : NULL;
1133 skip_node:
1134 next_css = css_next_descendant_pre(prev_css, &root->css);
1135
1136 /*
1137 * Even if we found a group we have to make sure it is
1138 * alive. css && !memcg means that the groups should be
1139 * skipped and we should continue the tree walk.
1140 * last_visited css is safe to use because it is
1141 * protected by css_get and the tree walk is rcu safe.
1142 */
1143 if (next_css) {
1144 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1145
1146 if (css_tryget(&mem->css))
1147 return mem;
1148 else {
1149 prev_css = next_css;
1150 goto skip_node;
1151 }
1152 }
1153
1154 return NULL;
1155 }
1156
1157 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1158 {
1159 /*
1160 * When a group in the hierarchy below root is destroyed, the
1161 * hierarchy iterator can no longer be trusted since it might
1162 * have pointed to the destroyed group. Invalidate it.
1163 */
1164 atomic_inc(&root->dead_count);
1165 }
1166
1167 static struct mem_cgroup *
1168 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1169 struct mem_cgroup *root,
1170 int *sequence)
1171 {
1172 struct mem_cgroup *position = NULL;
1173 /*
1174 * A cgroup destruction happens in two stages: offlining and
1175 * release. They are separated by a RCU grace period.
1176 *
1177 * If the iterator is valid, we may still race with an
1178 * offlining. The RCU lock ensures the object won't be
1179 * released, tryget will fail if we lost the race.
1180 */
1181 *sequence = atomic_read(&root->dead_count);
1182 if (iter->last_dead_count == *sequence) {
1183 smp_rmb();
1184 position = iter->last_visited;
1185 if (position && !css_tryget(&position->css))
1186 position = NULL;
1187 }
1188 return position;
1189 }
1190
1191 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1192 struct mem_cgroup *last_visited,
1193 struct mem_cgroup *new_position,
1194 int sequence)
1195 {
1196 if (last_visited)
1197 css_put(&last_visited->css);
1198 /*
1199 * We store the sequence count from the time @last_visited was
1200 * loaded successfully instead of rereading it here so that we
1201 * don't lose destruction events in between. We could have
1202 * raced with the destruction of @new_position after all.
1203 */
1204 iter->last_visited = new_position;
1205 smp_wmb();
1206 iter->last_dead_count = sequence;
1207 }
1208
1209 /**
1210 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1211 * @root: hierarchy root
1212 * @prev: previously returned memcg, NULL on first invocation
1213 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1214 *
1215 * Returns references to children of the hierarchy below @root, or
1216 * @root itself, or %NULL after a full round-trip.
1217 *
1218 * Caller must pass the return value in @prev on subsequent
1219 * invocations for reference counting, or use mem_cgroup_iter_break()
1220 * to cancel a hierarchy walk before the round-trip is complete.
1221 *
1222 * Reclaimers can specify a zone and a priority level in @reclaim to
1223 * divide up the memcgs in the hierarchy among all concurrent
1224 * reclaimers operating on the same zone and priority.
1225 */
1226 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1227 struct mem_cgroup *prev,
1228 struct mem_cgroup_reclaim_cookie *reclaim)
1229 {
1230 struct mem_cgroup *memcg = NULL;
1231 struct mem_cgroup *last_visited = NULL;
1232
1233 if (mem_cgroup_disabled())
1234 return NULL;
1235
1236 if (!root)
1237 root = root_mem_cgroup;
1238
1239 if (prev && !reclaim)
1240 last_visited = prev;
1241
1242 if (!root->use_hierarchy && root != root_mem_cgroup) {
1243 if (prev)
1244 goto out_css_put;
1245 return root;
1246 }
1247
1248 rcu_read_lock();
1249 while (!memcg) {
1250 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1251 int uninitialized_var(seq);
1252
1253 if (reclaim) {
1254 int nid = zone_to_nid(reclaim->zone);
1255 int zid = zone_idx(reclaim->zone);
1256 struct mem_cgroup_per_zone *mz;
1257
1258 mz = mem_cgroup_zoneinfo(root, nid, zid);
1259 iter = &mz->reclaim_iter[reclaim->priority];
1260 if (prev && reclaim->generation != iter->generation) {
1261 iter->last_visited = NULL;
1262 goto out_unlock;
1263 }
1264
1265 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1266 }
1267
1268 memcg = __mem_cgroup_iter_next(root, last_visited);
1269
1270 if (reclaim) {
1271 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1272
1273 if (!memcg)
1274 iter->generation++;
1275 else if (!prev && memcg)
1276 reclaim->generation = iter->generation;
1277 }
1278
1279 if (prev && !memcg)
1280 goto out_unlock;
1281 }
1282 out_unlock:
1283 rcu_read_unlock();
1284 out_css_put:
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287
1288 return memcg;
1289 }
1290
1291 /**
1292 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1293 * @root: hierarchy root
1294 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1295 */
1296 void mem_cgroup_iter_break(struct mem_cgroup *root,
1297 struct mem_cgroup *prev)
1298 {
1299 if (!root)
1300 root = root_mem_cgroup;
1301 if (prev && prev != root)
1302 css_put(&prev->css);
1303 }
1304
1305 /*
1306 * Iteration constructs for visiting all cgroups (under a tree). If
1307 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1308 * be used for reference counting.
1309 */
1310 #define for_each_mem_cgroup_tree(iter, root) \
1311 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1312 iter != NULL; \
1313 iter = mem_cgroup_iter(root, iter, NULL))
1314
1315 #define for_each_mem_cgroup(iter) \
1316 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1317 iter != NULL; \
1318 iter = mem_cgroup_iter(NULL, iter, NULL))
1319
1320 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1321 {
1322 struct mem_cgroup *memcg;
1323
1324 rcu_read_lock();
1325 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1326 if (unlikely(!memcg))
1327 goto out;
1328
1329 switch (idx) {
1330 case PGFAULT:
1331 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1332 break;
1333 case PGMAJFAULT:
1334 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1335 break;
1336 default:
1337 BUG();
1338 }
1339 out:
1340 rcu_read_unlock();
1341 }
1342 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1343
1344 /**
1345 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1346 * @zone: zone of the wanted lruvec
1347 * @memcg: memcg of the wanted lruvec
1348 *
1349 * Returns the lru list vector holding pages for the given @zone and
1350 * @mem. This can be the global zone lruvec, if the memory controller
1351 * is disabled.
1352 */
1353 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1354 struct mem_cgroup *memcg)
1355 {
1356 struct mem_cgroup_per_zone *mz;
1357 struct lruvec *lruvec;
1358
1359 if (mem_cgroup_disabled()) {
1360 lruvec = &zone->lruvec;
1361 goto out;
1362 }
1363
1364 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1365 lruvec = &mz->lruvec;
1366 out:
1367 /*
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1371 */
1372 if (unlikely(lruvec->zone != zone))
1373 lruvec->zone = zone;
1374 return lruvec;
1375 }
1376
1377 /*
1378 * Following LRU functions are allowed to be used without PCG_LOCK.
1379 * Operations are called by routine of global LRU independently from memcg.
1380 * What we have to take care of here is validness of pc->mem_cgroup.
1381 *
1382 * Changes to pc->mem_cgroup happens when
1383 * 1. charge
1384 * 2. moving account
1385 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1386 * It is added to LRU before charge.
1387 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1388 * When moving account, the page is not on LRU. It's isolated.
1389 */
1390
1391 /**
1392 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1393 * @page: the page
1394 * @zone: zone of the page
1395 */
1396 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1397 {
1398 struct mem_cgroup_per_zone *mz;
1399 struct mem_cgroup *memcg;
1400 struct page_cgroup *pc;
1401 struct lruvec *lruvec;
1402
1403 if (mem_cgroup_disabled()) {
1404 lruvec = &zone->lruvec;
1405 goto out;
1406 }
1407
1408 pc = lookup_page_cgroup(page);
1409 memcg = pc->mem_cgroup;
1410
1411 /*
1412 * Surreptitiously switch any uncharged offlist page to root:
1413 * an uncharged page off lru does nothing to secure
1414 * its former mem_cgroup from sudden removal.
1415 *
1416 * Our caller holds lru_lock, and PageCgroupUsed is updated
1417 * under page_cgroup lock: between them, they make all uses
1418 * of pc->mem_cgroup safe.
1419 */
1420 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1421 pc->mem_cgroup = memcg = root_mem_cgroup;
1422
1423 mz = page_cgroup_zoneinfo(memcg, page);
1424 lruvec = &mz->lruvec;
1425 out:
1426 /*
1427 * Since a node can be onlined after the mem_cgroup was created,
1428 * we have to be prepared to initialize lruvec->zone here;
1429 * and if offlined then reonlined, we need to reinitialize it.
1430 */
1431 if (unlikely(lruvec->zone != zone))
1432 lruvec->zone = zone;
1433 return lruvec;
1434 }
1435
1436 /**
1437 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1438 * @lruvec: mem_cgroup per zone lru vector
1439 * @lru: index of lru list the page is sitting on
1440 * @nr_pages: positive when adding or negative when removing
1441 *
1442 * This function must be called when a page is added to or removed from an
1443 * lru list.
1444 */
1445 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1446 int nr_pages)
1447 {
1448 struct mem_cgroup_per_zone *mz;
1449 unsigned long *lru_size;
1450
1451 if (mem_cgroup_disabled())
1452 return;
1453
1454 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1455 lru_size = mz->lru_size + lru;
1456 *lru_size += nr_pages;
1457 VM_BUG_ON((long)(*lru_size) < 0);
1458 }
1459
1460 /*
1461 * Checks whether given mem is same or in the root_mem_cgroup's
1462 * hierarchy subtree
1463 */
1464 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1465 struct mem_cgroup *memcg)
1466 {
1467 if (root_memcg == memcg)
1468 return true;
1469 if (!root_memcg->use_hierarchy || !memcg)
1470 return false;
1471 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1472 }
1473
1474 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1475 struct mem_cgroup *memcg)
1476 {
1477 bool ret;
1478
1479 rcu_read_lock();
1480 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1481 rcu_read_unlock();
1482 return ret;
1483 }
1484
1485 bool task_in_mem_cgroup(struct task_struct *task,
1486 const struct mem_cgroup *memcg)
1487 {
1488 struct mem_cgroup *curr = NULL;
1489 struct task_struct *p;
1490 bool ret;
1491
1492 p = find_lock_task_mm(task);
1493 if (p) {
1494 curr = try_get_mem_cgroup_from_mm(p->mm);
1495 task_unlock(p);
1496 } else {
1497 /*
1498 * All threads may have already detached their mm's, but the oom
1499 * killer still needs to detect if they have already been oom
1500 * killed to prevent needlessly killing additional tasks.
1501 */
1502 rcu_read_lock();
1503 curr = mem_cgroup_from_task(task);
1504 if (curr)
1505 css_get(&curr->css);
1506 rcu_read_unlock();
1507 }
1508 if (!curr)
1509 return false;
1510 /*
1511 * We should check use_hierarchy of "memcg" not "curr". Because checking
1512 * use_hierarchy of "curr" here make this function true if hierarchy is
1513 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1514 * hierarchy(even if use_hierarchy is disabled in "memcg").
1515 */
1516 ret = mem_cgroup_same_or_subtree(memcg, curr);
1517 css_put(&curr->css);
1518 return ret;
1519 }
1520
1521 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1522 {
1523 unsigned long inactive_ratio;
1524 unsigned long inactive;
1525 unsigned long active;
1526 unsigned long gb;
1527
1528 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1529 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1530
1531 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1532 if (gb)
1533 inactive_ratio = int_sqrt(10 * gb);
1534 else
1535 inactive_ratio = 1;
1536
1537 return inactive * inactive_ratio < active;
1538 }
1539
1540 #define mem_cgroup_from_res_counter(counter, member) \
1541 container_of(counter, struct mem_cgroup, member)
1542
1543 /**
1544 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1545 * @memcg: the memory cgroup
1546 *
1547 * Returns the maximum amount of memory @mem can be charged with, in
1548 * pages.
1549 */
1550 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1551 {
1552 unsigned long long margin;
1553
1554 margin = res_counter_margin(&memcg->res);
1555 if (do_swap_account)
1556 margin = min(margin, res_counter_margin(&memcg->memsw));
1557 return margin >> PAGE_SHIFT;
1558 }
1559
1560 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1561 {
1562 /* root ? */
1563 if (!css_parent(&memcg->css))
1564 return vm_swappiness;
1565
1566 return memcg->swappiness;
1567 }
1568
1569 /*
1570 * memcg->moving_account is used for checking possibility that some thread is
1571 * calling move_account(). When a thread on CPU-A starts moving pages under
1572 * a memcg, other threads should check memcg->moving_account under
1573 * rcu_read_lock(), like this:
1574 *
1575 * CPU-A CPU-B
1576 * rcu_read_lock()
1577 * memcg->moving_account+1 if (memcg->mocing_account)
1578 * take heavy locks.
1579 * synchronize_rcu() update something.
1580 * rcu_read_unlock()
1581 * start move here.
1582 */
1583
1584 /* for quick checking without looking up memcg */
1585 atomic_t memcg_moving __read_mostly;
1586
1587 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1588 {
1589 atomic_inc(&memcg_moving);
1590 atomic_inc(&memcg->moving_account);
1591 synchronize_rcu();
1592 }
1593
1594 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1595 {
1596 /*
1597 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1598 * We check NULL in callee rather than caller.
1599 */
1600 if (memcg) {
1601 atomic_dec(&memcg_moving);
1602 atomic_dec(&memcg->moving_account);
1603 }
1604 }
1605
1606 /*
1607 * 2 routines for checking "mem" is under move_account() or not.
1608 *
1609 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1610 * is used for avoiding races in accounting. If true,
1611 * pc->mem_cgroup may be overwritten.
1612 *
1613 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1614 * under hierarchy of moving cgroups. This is for
1615 * waiting at hith-memory prressure caused by "move".
1616 */
1617
1618 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1619 {
1620 VM_BUG_ON(!rcu_read_lock_held());
1621 return atomic_read(&memcg->moving_account) > 0;
1622 }
1623
1624 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1625 {
1626 struct mem_cgroup *from;
1627 struct mem_cgroup *to;
1628 bool ret = false;
1629 /*
1630 * Unlike task_move routines, we access mc.to, mc.from not under
1631 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1632 */
1633 spin_lock(&mc.lock);
1634 from = mc.from;
1635 to = mc.to;
1636 if (!from)
1637 goto unlock;
1638
1639 ret = mem_cgroup_same_or_subtree(memcg, from)
1640 || mem_cgroup_same_or_subtree(memcg, to);
1641 unlock:
1642 spin_unlock(&mc.lock);
1643 return ret;
1644 }
1645
1646 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1647 {
1648 if (mc.moving_task && current != mc.moving_task) {
1649 if (mem_cgroup_under_move(memcg)) {
1650 DEFINE_WAIT(wait);
1651 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1652 /* moving charge context might have finished. */
1653 if (mc.moving_task)
1654 schedule();
1655 finish_wait(&mc.waitq, &wait);
1656 return true;
1657 }
1658 }
1659 return false;
1660 }
1661
1662 /*
1663 * Take this lock when
1664 * - a code tries to modify page's memcg while it's USED.
1665 * - a code tries to modify page state accounting in a memcg.
1666 * see mem_cgroup_stolen(), too.
1667 */
1668 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1669 unsigned long *flags)
1670 {
1671 spin_lock_irqsave(&memcg->move_lock, *flags);
1672 }
1673
1674 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1675 unsigned long *flags)
1676 {
1677 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1678 }
1679
1680 #define K(x) ((x) << (PAGE_SHIFT-10))
1681 /**
1682 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
1689 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1690 {
1691 struct cgroup *task_cgrp;
1692 struct cgroup *mem_cgrp;
1693 /*
1694 * Need a buffer in BSS, can't rely on allocations. The code relies
1695 * on the assumption that OOM is serialized for memory controller.
1696 * If this assumption is broken, revisit this code.
1697 */
1698 static char memcg_name[PATH_MAX];
1699 int ret;
1700 struct mem_cgroup *iter;
1701 unsigned int i;
1702
1703 if (!p)
1704 return;
1705
1706 rcu_read_lock();
1707
1708 mem_cgrp = memcg->css.cgroup;
1709 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1710
1711 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1712 if (ret < 0) {
1713 /*
1714 * Unfortunately, we are unable to convert to a useful name
1715 * But we'll still print out the usage information
1716 */
1717 rcu_read_unlock();
1718 goto done;
1719 }
1720 rcu_read_unlock();
1721
1722 pr_info("Task in %s killed", memcg_name);
1723
1724 rcu_read_lock();
1725 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1726 if (ret < 0) {
1727 rcu_read_unlock();
1728 goto done;
1729 }
1730 rcu_read_unlock();
1731
1732 /*
1733 * Continues from above, so we don't need an KERN_ level
1734 */
1735 pr_cont(" as a result of limit of %s\n", memcg_name);
1736 done:
1737
1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1739 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1742 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1743 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1746 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1747 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1748 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1749 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1750
1751 for_each_mem_cgroup_tree(iter, memcg) {
1752 pr_info("Memory cgroup stats");
1753
1754 rcu_read_lock();
1755 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1756 if (!ret)
1757 pr_cont(" for %s", memcg_name);
1758 rcu_read_unlock();
1759 pr_cont(":");
1760
1761 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1762 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1763 continue;
1764 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1765 K(mem_cgroup_read_stat(iter, i)));
1766 }
1767
1768 for (i = 0; i < NR_LRU_LISTS; i++)
1769 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1770 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1771
1772 pr_cont("\n");
1773 }
1774 }
1775
1776 /*
1777 * This function returns the number of memcg under hierarchy tree. Returns
1778 * 1(self count) if no children.
1779 */
1780 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1781 {
1782 int num = 0;
1783 struct mem_cgroup *iter;
1784
1785 for_each_mem_cgroup_tree(iter, memcg)
1786 num++;
1787 return num;
1788 }
1789
1790 /*
1791 * Return the memory (and swap, if configured) limit for a memcg.
1792 */
1793 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1794 {
1795 u64 limit;
1796
1797 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1798
1799 /*
1800 * Do not consider swap space if we cannot swap due to swappiness
1801 */
1802 if (mem_cgroup_swappiness(memcg)) {
1803 u64 memsw;
1804
1805 limit += total_swap_pages << PAGE_SHIFT;
1806 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1807
1808 /*
1809 * If memsw is finite and limits the amount of swap space
1810 * available to this memcg, return that limit.
1811 */
1812 limit = min(limit, memsw);
1813 }
1814
1815 return limit;
1816 }
1817
1818 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1819 int order)
1820 {
1821 struct mem_cgroup *iter;
1822 unsigned long chosen_points = 0;
1823 unsigned long totalpages;
1824 unsigned int points = 0;
1825 struct task_struct *chosen = NULL;
1826
1827 /*
1828 * If current has a pending SIGKILL or is exiting, then automatically
1829 * select it. The goal is to allow it to allocate so that it may
1830 * quickly exit and free its memory.
1831 */
1832 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1833 set_thread_flag(TIF_MEMDIE);
1834 return;
1835 }
1836
1837 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1838 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1839 for_each_mem_cgroup_tree(iter, memcg) {
1840 struct css_task_iter it;
1841 struct task_struct *task;
1842
1843 css_task_iter_start(&iter->css, &it);
1844 while ((task = css_task_iter_next(&it))) {
1845 switch (oom_scan_process_thread(task, totalpages, NULL,
1846 false)) {
1847 case OOM_SCAN_SELECT:
1848 if (chosen)
1849 put_task_struct(chosen);
1850 chosen = task;
1851 chosen_points = ULONG_MAX;
1852 get_task_struct(chosen);
1853 /* fall through */
1854 case OOM_SCAN_CONTINUE:
1855 continue;
1856 case OOM_SCAN_ABORT:
1857 css_task_iter_end(&it);
1858 mem_cgroup_iter_break(memcg, iter);
1859 if (chosen)
1860 put_task_struct(chosen);
1861 return;
1862 case OOM_SCAN_OK:
1863 break;
1864 };
1865 points = oom_badness(task, memcg, NULL, totalpages);
1866 if (points > chosen_points) {
1867 if (chosen)
1868 put_task_struct(chosen);
1869 chosen = task;
1870 chosen_points = points;
1871 get_task_struct(chosen);
1872 }
1873 }
1874 css_task_iter_end(&it);
1875 }
1876
1877 if (!chosen)
1878 return;
1879 points = chosen_points * 1000 / totalpages;
1880 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1881 NULL, "Memory cgroup out of memory");
1882 }
1883
1884 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1885 gfp_t gfp_mask,
1886 unsigned long flags)
1887 {
1888 unsigned long total = 0;
1889 bool noswap = false;
1890 int loop;
1891
1892 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1893 noswap = true;
1894 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1895 noswap = true;
1896
1897 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1898 if (loop)
1899 drain_all_stock_async(memcg);
1900 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1901 /*
1902 * Allow limit shrinkers, which are triggered directly
1903 * by userspace, to catch signals and stop reclaim
1904 * after minimal progress, regardless of the margin.
1905 */
1906 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1907 break;
1908 if (mem_cgroup_margin(memcg))
1909 break;
1910 /*
1911 * If nothing was reclaimed after two attempts, there
1912 * may be no reclaimable pages in this hierarchy.
1913 */
1914 if (loop && !total)
1915 break;
1916 }
1917 return total;
1918 }
1919
1920 /**
1921 * test_mem_cgroup_node_reclaimable
1922 * @memcg: the target memcg
1923 * @nid: the node ID to be checked.
1924 * @noswap : specify true here if the user wants flle only information.
1925 *
1926 * This function returns whether the specified memcg contains any
1927 * reclaimable pages on a node. Returns true if there are any reclaimable
1928 * pages in the node.
1929 */
1930 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1931 int nid, bool noswap)
1932 {
1933 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1934 return true;
1935 if (noswap || !total_swap_pages)
1936 return false;
1937 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1938 return true;
1939 return false;
1940
1941 }
1942 #if MAX_NUMNODES > 1
1943
1944 /*
1945 * Always updating the nodemask is not very good - even if we have an empty
1946 * list or the wrong list here, we can start from some node and traverse all
1947 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1948 *
1949 */
1950 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1951 {
1952 int nid;
1953 /*
1954 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1955 * pagein/pageout changes since the last update.
1956 */
1957 if (!atomic_read(&memcg->numainfo_events))
1958 return;
1959 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1960 return;
1961
1962 /* make a nodemask where this memcg uses memory from */
1963 memcg->scan_nodes = node_states[N_MEMORY];
1964
1965 for_each_node_mask(nid, node_states[N_MEMORY]) {
1966
1967 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1968 node_clear(nid, memcg->scan_nodes);
1969 }
1970
1971 atomic_set(&memcg->numainfo_events, 0);
1972 atomic_set(&memcg->numainfo_updating, 0);
1973 }
1974
1975 /*
1976 * Selecting a node where we start reclaim from. Because what we need is just
1977 * reducing usage counter, start from anywhere is O,K. Considering
1978 * memory reclaim from current node, there are pros. and cons.
1979 *
1980 * Freeing memory from current node means freeing memory from a node which
1981 * we'll use or we've used. So, it may make LRU bad. And if several threads
1982 * hit limits, it will see a contention on a node. But freeing from remote
1983 * node means more costs for memory reclaim because of memory latency.
1984 *
1985 * Now, we use round-robin. Better algorithm is welcomed.
1986 */
1987 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1988 {
1989 int node;
1990
1991 mem_cgroup_may_update_nodemask(memcg);
1992 node = memcg->last_scanned_node;
1993
1994 node = next_node(node, memcg->scan_nodes);
1995 if (node == MAX_NUMNODES)
1996 node = first_node(memcg->scan_nodes);
1997 /*
1998 * We call this when we hit limit, not when pages are added to LRU.
1999 * No LRU may hold pages because all pages are UNEVICTABLE or
2000 * memcg is too small and all pages are not on LRU. In that case,
2001 * we use curret node.
2002 */
2003 if (unlikely(node == MAX_NUMNODES))
2004 node = numa_node_id();
2005
2006 memcg->last_scanned_node = node;
2007 return node;
2008 }
2009
2010 /*
2011 * Check all nodes whether it contains reclaimable pages or not.
2012 * For quick scan, we make use of scan_nodes. This will allow us to skip
2013 * unused nodes. But scan_nodes is lazily updated and may not cotain
2014 * enough new information. We need to do double check.
2015 */
2016 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2017 {
2018 int nid;
2019
2020 /*
2021 * quick check...making use of scan_node.
2022 * We can skip unused nodes.
2023 */
2024 if (!nodes_empty(memcg->scan_nodes)) {
2025 for (nid = first_node(memcg->scan_nodes);
2026 nid < MAX_NUMNODES;
2027 nid = next_node(nid, memcg->scan_nodes)) {
2028
2029 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2030 return true;
2031 }
2032 }
2033 /*
2034 * Check rest of nodes.
2035 */
2036 for_each_node_state(nid, N_MEMORY) {
2037 if (node_isset(nid, memcg->scan_nodes))
2038 continue;
2039 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2040 return true;
2041 }
2042 return false;
2043 }
2044
2045 #else
2046 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2047 {
2048 return 0;
2049 }
2050
2051 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2052 {
2053 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2054 }
2055 #endif
2056
2057 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2058 struct zone *zone,
2059 gfp_t gfp_mask,
2060 unsigned long *total_scanned)
2061 {
2062 struct mem_cgroup *victim = NULL;
2063 int total = 0;
2064 int loop = 0;
2065 unsigned long excess;
2066 unsigned long nr_scanned;
2067 struct mem_cgroup_reclaim_cookie reclaim = {
2068 .zone = zone,
2069 .priority = 0,
2070 };
2071
2072 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2073
2074 while (1) {
2075 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2076 if (!victim) {
2077 loop++;
2078 if (loop >= 2) {
2079 /*
2080 * If we have not been able to reclaim
2081 * anything, it might because there are
2082 * no reclaimable pages under this hierarchy
2083 */
2084 if (!total)
2085 break;
2086 /*
2087 * We want to do more targeted reclaim.
2088 * excess >> 2 is not to excessive so as to
2089 * reclaim too much, nor too less that we keep
2090 * coming back to reclaim from this cgroup
2091 */
2092 if (total >= (excess >> 2) ||
2093 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2094 break;
2095 }
2096 continue;
2097 }
2098 if (!mem_cgroup_reclaimable(victim, false))
2099 continue;
2100 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2101 zone, &nr_scanned);
2102 *total_scanned += nr_scanned;
2103 if (!res_counter_soft_limit_excess(&root_memcg->res))
2104 break;
2105 }
2106 mem_cgroup_iter_break(root_memcg, victim);
2107 return total;
2108 }
2109
2110 #ifdef CONFIG_LOCKDEP
2111 static struct lockdep_map memcg_oom_lock_dep_map = {
2112 .name = "memcg_oom_lock",
2113 };
2114 #endif
2115
2116 static DEFINE_SPINLOCK(memcg_oom_lock);
2117
2118 /*
2119 * Check OOM-Killer is already running under our hierarchy.
2120 * If someone is running, return false.
2121 */
2122 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2123 {
2124 struct mem_cgroup *iter, *failed = NULL;
2125
2126 spin_lock(&memcg_oom_lock);
2127
2128 for_each_mem_cgroup_tree(iter, memcg) {
2129 if (iter->oom_lock) {
2130 /*
2131 * this subtree of our hierarchy is already locked
2132 * so we cannot give a lock.
2133 */
2134 failed = iter;
2135 mem_cgroup_iter_break(memcg, iter);
2136 break;
2137 } else
2138 iter->oom_lock = true;
2139 }
2140
2141 if (failed) {
2142 /*
2143 * OK, we failed to lock the whole subtree so we have
2144 * to clean up what we set up to the failing subtree
2145 */
2146 for_each_mem_cgroup_tree(iter, memcg) {
2147 if (iter == failed) {
2148 mem_cgroup_iter_break(memcg, iter);
2149 break;
2150 }
2151 iter->oom_lock = false;
2152 }
2153 } else
2154 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2155
2156 spin_unlock(&memcg_oom_lock);
2157
2158 return !failed;
2159 }
2160
2161 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2162 {
2163 struct mem_cgroup *iter;
2164
2165 spin_lock(&memcg_oom_lock);
2166 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2167 for_each_mem_cgroup_tree(iter, memcg)
2168 iter->oom_lock = false;
2169 spin_unlock(&memcg_oom_lock);
2170 }
2171
2172 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2173 {
2174 struct mem_cgroup *iter;
2175
2176 for_each_mem_cgroup_tree(iter, memcg)
2177 atomic_inc(&iter->under_oom);
2178 }
2179
2180 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2181 {
2182 struct mem_cgroup *iter;
2183
2184 /*
2185 * When a new child is created while the hierarchy is under oom,
2186 * mem_cgroup_oom_lock() may not be called. We have to use
2187 * atomic_add_unless() here.
2188 */
2189 for_each_mem_cgroup_tree(iter, memcg)
2190 atomic_add_unless(&iter->under_oom, -1, 0);
2191 }
2192
2193 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2194
2195 struct oom_wait_info {
2196 struct mem_cgroup *memcg;
2197 wait_queue_t wait;
2198 };
2199
2200 static int memcg_oom_wake_function(wait_queue_t *wait,
2201 unsigned mode, int sync, void *arg)
2202 {
2203 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2204 struct mem_cgroup *oom_wait_memcg;
2205 struct oom_wait_info *oom_wait_info;
2206
2207 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2208 oom_wait_memcg = oom_wait_info->memcg;
2209
2210 /*
2211 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2212 * Then we can use css_is_ancestor without taking care of RCU.
2213 */
2214 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2215 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2216 return 0;
2217 return autoremove_wake_function(wait, mode, sync, arg);
2218 }
2219
2220 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2221 {
2222 atomic_inc(&memcg->oom_wakeups);
2223 /* for filtering, pass "memcg" as argument. */
2224 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2225 }
2226
2227 static void memcg_oom_recover(struct mem_cgroup *memcg)
2228 {
2229 if (memcg && atomic_read(&memcg->under_oom))
2230 memcg_wakeup_oom(memcg);
2231 }
2232
2233 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2234 {
2235 if (!current->memcg_oom.may_oom)
2236 return;
2237 /*
2238 * We are in the middle of the charge context here, so we
2239 * don't want to block when potentially sitting on a callstack
2240 * that holds all kinds of filesystem and mm locks.
2241 *
2242 * Also, the caller may handle a failed allocation gracefully
2243 * (like optional page cache readahead) and so an OOM killer
2244 * invocation might not even be necessary.
2245 *
2246 * That's why we don't do anything here except remember the
2247 * OOM context and then deal with it at the end of the page
2248 * fault when the stack is unwound, the locks are released,
2249 * and when we know whether the fault was overall successful.
2250 */
2251 css_get(&memcg->css);
2252 current->memcg_oom.memcg = memcg;
2253 current->memcg_oom.gfp_mask = mask;
2254 current->memcg_oom.order = order;
2255 }
2256
2257 /**
2258 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2259 * @handle: actually kill/wait or just clean up the OOM state
2260 *
2261 * This has to be called at the end of a page fault if the memcg OOM
2262 * handler was enabled.
2263 *
2264 * Memcg supports userspace OOM handling where failed allocations must
2265 * sleep on a waitqueue until the userspace task resolves the
2266 * situation. Sleeping directly in the charge context with all kinds
2267 * of locks held is not a good idea, instead we remember an OOM state
2268 * in the task and mem_cgroup_oom_synchronize() has to be called at
2269 * the end of the page fault to complete the OOM handling.
2270 *
2271 * Returns %true if an ongoing memcg OOM situation was detected and
2272 * completed, %false otherwise.
2273 */
2274 bool mem_cgroup_oom_synchronize(bool handle)
2275 {
2276 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2277 struct oom_wait_info owait;
2278 bool locked;
2279
2280 /* OOM is global, do not handle */
2281 if (!memcg)
2282 return false;
2283
2284 if (!handle)
2285 goto cleanup;
2286
2287 owait.memcg = memcg;
2288 owait.wait.flags = 0;
2289 owait.wait.func = memcg_oom_wake_function;
2290 owait.wait.private = current;
2291 INIT_LIST_HEAD(&owait.wait.task_list);
2292
2293 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2294 mem_cgroup_mark_under_oom(memcg);
2295
2296 locked = mem_cgroup_oom_trylock(memcg);
2297
2298 if (locked)
2299 mem_cgroup_oom_notify(memcg);
2300
2301 if (locked && !memcg->oom_kill_disable) {
2302 mem_cgroup_unmark_under_oom(memcg);
2303 finish_wait(&memcg_oom_waitq, &owait.wait);
2304 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2305 current->memcg_oom.order);
2306 } else {
2307 schedule();
2308 mem_cgroup_unmark_under_oom(memcg);
2309 finish_wait(&memcg_oom_waitq, &owait.wait);
2310 }
2311
2312 if (locked) {
2313 mem_cgroup_oom_unlock(memcg);
2314 /*
2315 * There is no guarantee that an OOM-lock contender
2316 * sees the wakeups triggered by the OOM kill
2317 * uncharges. Wake any sleepers explicitely.
2318 */
2319 memcg_oom_recover(memcg);
2320 }
2321 cleanup:
2322 current->memcg_oom.memcg = NULL;
2323 css_put(&memcg->css);
2324 return true;
2325 }
2326
2327 /*
2328 * Currently used to update mapped file statistics, but the routine can be
2329 * generalized to update other statistics as well.
2330 *
2331 * Notes: Race condition
2332 *
2333 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2334 * it tends to be costly. But considering some conditions, we doesn't need
2335 * to do so _always_.
2336 *
2337 * Considering "charge", lock_page_cgroup() is not required because all
2338 * file-stat operations happen after a page is attached to radix-tree. There
2339 * are no race with "charge".
2340 *
2341 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2342 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2343 * if there are race with "uncharge". Statistics itself is properly handled
2344 * by flags.
2345 *
2346 * Considering "move", this is an only case we see a race. To make the race
2347 * small, we check mm->moving_account and detect there are possibility of race
2348 * If there is, we take a lock.
2349 */
2350
2351 void __mem_cgroup_begin_update_page_stat(struct page *page,
2352 bool *locked, unsigned long *flags)
2353 {
2354 struct mem_cgroup *memcg;
2355 struct page_cgroup *pc;
2356
2357 pc = lookup_page_cgroup(page);
2358 again:
2359 memcg = pc->mem_cgroup;
2360 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2361 return;
2362 /*
2363 * If this memory cgroup is not under account moving, we don't
2364 * need to take move_lock_mem_cgroup(). Because we already hold
2365 * rcu_read_lock(), any calls to move_account will be delayed until
2366 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2367 */
2368 if (!mem_cgroup_stolen(memcg))
2369 return;
2370
2371 move_lock_mem_cgroup(memcg, flags);
2372 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2373 move_unlock_mem_cgroup(memcg, flags);
2374 goto again;
2375 }
2376 *locked = true;
2377 }
2378
2379 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2380 {
2381 struct page_cgroup *pc = lookup_page_cgroup(page);
2382
2383 /*
2384 * It's guaranteed that pc->mem_cgroup never changes while
2385 * lock is held because a routine modifies pc->mem_cgroup
2386 * should take move_lock_mem_cgroup().
2387 */
2388 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2389 }
2390
2391 void mem_cgroup_update_page_stat(struct page *page,
2392 enum mem_cgroup_stat_index idx, int val)
2393 {
2394 struct mem_cgroup *memcg;
2395 struct page_cgroup *pc = lookup_page_cgroup(page);
2396 unsigned long uninitialized_var(flags);
2397
2398 if (mem_cgroup_disabled())
2399 return;
2400
2401 VM_BUG_ON(!rcu_read_lock_held());
2402 memcg = pc->mem_cgroup;
2403 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2404 return;
2405
2406 this_cpu_add(memcg->stat->count[idx], val);
2407 }
2408
2409 /*
2410 * size of first charge trial. "32" comes from vmscan.c's magic value.
2411 * TODO: maybe necessary to use big numbers in big irons.
2412 */
2413 #define CHARGE_BATCH 32U
2414 struct memcg_stock_pcp {
2415 struct mem_cgroup *cached; /* this never be root cgroup */
2416 unsigned int nr_pages;
2417 struct work_struct work;
2418 unsigned long flags;
2419 #define FLUSHING_CACHED_CHARGE 0
2420 };
2421 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2422 static DEFINE_MUTEX(percpu_charge_mutex);
2423
2424 /**
2425 * consume_stock: Try to consume stocked charge on this cpu.
2426 * @memcg: memcg to consume from.
2427 * @nr_pages: how many pages to charge.
2428 *
2429 * The charges will only happen if @memcg matches the current cpu's memcg
2430 * stock, and at least @nr_pages are available in that stock. Failure to
2431 * service an allocation will refill the stock.
2432 *
2433 * returns true if successful, false otherwise.
2434 */
2435 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2436 {
2437 struct memcg_stock_pcp *stock;
2438 bool ret = true;
2439
2440 if (nr_pages > CHARGE_BATCH)
2441 return false;
2442
2443 stock = &get_cpu_var(memcg_stock);
2444 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2445 stock->nr_pages -= nr_pages;
2446 else /* need to call res_counter_charge */
2447 ret = false;
2448 put_cpu_var(memcg_stock);
2449 return ret;
2450 }
2451
2452 /*
2453 * Returns stocks cached in percpu to res_counter and reset cached information.
2454 */
2455 static void drain_stock(struct memcg_stock_pcp *stock)
2456 {
2457 struct mem_cgroup *old = stock->cached;
2458
2459 if (stock->nr_pages) {
2460 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2461
2462 res_counter_uncharge(&old->res, bytes);
2463 if (do_swap_account)
2464 res_counter_uncharge(&old->memsw, bytes);
2465 stock->nr_pages = 0;
2466 }
2467 stock->cached = NULL;
2468 }
2469
2470 /*
2471 * This must be called under preempt disabled or must be called by
2472 * a thread which is pinned to local cpu.
2473 */
2474 static void drain_local_stock(struct work_struct *dummy)
2475 {
2476 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2477 drain_stock(stock);
2478 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2479 }
2480
2481 static void __init memcg_stock_init(void)
2482 {
2483 int cpu;
2484
2485 for_each_possible_cpu(cpu) {
2486 struct memcg_stock_pcp *stock =
2487 &per_cpu(memcg_stock, cpu);
2488 INIT_WORK(&stock->work, drain_local_stock);
2489 }
2490 }
2491
2492 /*
2493 * Cache charges(val) which is from res_counter, to local per_cpu area.
2494 * This will be consumed by consume_stock() function, later.
2495 */
2496 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2497 {
2498 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2499
2500 if (stock->cached != memcg) { /* reset if necessary */
2501 drain_stock(stock);
2502 stock->cached = memcg;
2503 }
2504 stock->nr_pages += nr_pages;
2505 put_cpu_var(memcg_stock);
2506 }
2507
2508 /*
2509 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2510 * of the hierarchy under it. sync flag says whether we should block
2511 * until the work is done.
2512 */
2513 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2514 {
2515 int cpu, curcpu;
2516
2517 /* Notify other cpus that system-wide "drain" is running */
2518 get_online_cpus();
2519 curcpu = get_cpu();
2520 for_each_online_cpu(cpu) {
2521 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2522 struct mem_cgroup *memcg;
2523
2524 memcg = stock->cached;
2525 if (!memcg || !stock->nr_pages)
2526 continue;
2527 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2528 continue;
2529 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2530 if (cpu == curcpu)
2531 drain_local_stock(&stock->work);
2532 else
2533 schedule_work_on(cpu, &stock->work);
2534 }
2535 }
2536 put_cpu();
2537
2538 if (!sync)
2539 goto out;
2540
2541 for_each_online_cpu(cpu) {
2542 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2543 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2544 flush_work(&stock->work);
2545 }
2546 out:
2547 put_online_cpus();
2548 }
2549
2550 /*
2551 * Tries to drain stocked charges in other cpus. This function is asynchronous
2552 * and just put a work per cpu for draining localy on each cpu. Caller can
2553 * expects some charges will be back to res_counter later but cannot wait for
2554 * it.
2555 */
2556 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2557 {
2558 /*
2559 * If someone calls draining, avoid adding more kworker runs.
2560 */
2561 if (!mutex_trylock(&percpu_charge_mutex))
2562 return;
2563 drain_all_stock(root_memcg, false);
2564 mutex_unlock(&percpu_charge_mutex);
2565 }
2566
2567 /* This is a synchronous drain interface. */
2568 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2569 {
2570 /* called when force_empty is called */
2571 mutex_lock(&percpu_charge_mutex);
2572 drain_all_stock(root_memcg, true);
2573 mutex_unlock(&percpu_charge_mutex);
2574 }
2575
2576 /*
2577 * This function drains percpu counter value from DEAD cpu and
2578 * move it to local cpu. Note that this function can be preempted.
2579 */
2580 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2581 {
2582 int i;
2583
2584 spin_lock(&memcg->pcp_counter_lock);
2585 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2586 long x = per_cpu(memcg->stat->count[i], cpu);
2587
2588 per_cpu(memcg->stat->count[i], cpu) = 0;
2589 memcg->nocpu_base.count[i] += x;
2590 }
2591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2592 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2593
2594 per_cpu(memcg->stat->events[i], cpu) = 0;
2595 memcg->nocpu_base.events[i] += x;
2596 }
2597 spin_unlock(&memcg->pcp_counter_lock);
2598 }
2599
2600 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2601 unsigned long action,
2602 void *hcpu)
2603 {
2604 int cpu = (unsigned long)hcpu;
2605 struct memcg_stock_pcp *stock;
2606 struct mem_cgroup *iter;
2607
2608 if (action == CPU_ONLINE)
2609 return NOTIFY_OK;
2610
2611 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2612 return NOTIFY_OK;
2613
2614 for_each_mem_cgroup(iter)
2615 mem_cgroup_drain_pcp_counter(iter, cpu);
2616
2617 stock = &per_cpu(memcg_stock, cpu);
2618 drain_stock(stock);
2619 return NOTIFY_OK;
2620 }
2621
2622
2623 /* See __mem_cgroup_try_charge() for details */
2624 enum {
2625 CHARGE_OK, /* success */
2626 CHARGE_RETRY, /* need to retry but retry is not bad */
2627 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2628 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2629 };
2630
2631 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages, unsigned int min_pages,
2633 bool invoke_oom)
2634 {
2635 unsigned long csize = nr_pages * PAGE_SIZE;
2636 struct mem_cgroup *mem_over_limit;
2637 struct res_counter *fail_res;
2638 unsigned long flags = 0;
2639 int ret;
2640
2641 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2642
2643 if (likely(!ret)) {
2644 if (!do_swap_account)
2645 return CHARGE_OK;
2646 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2647 if (likely(!ret))
2648 return CHARGE_OK;
2649
2650 res_counter_uncharge(&memcg->res, csize);
2651 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2652 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2653 } else
2654 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2655 /*
2656 * Never reclaim on behalf of optional batching, retry with a
2657 * single page instead.
2658 */
2659 if (nr_pages > min_pages)
2660 return CHARGE_RETRY;
2661
2662 if (!(gfp_mask & __GFP_WAIT))
2663 return CHARGE_WOULDBLOCK;
2664
2665 if (gfp_mask & __GFP_NORETRY)
2666 return CHARGE_NOMEM;
2667
2668 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2669 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2670 return CHARGE_RETRY;
2671 /*
2672 * Even though the limit is exceeded at this point, reclaim
2673 * may have been able to free some pages. Retry the charge
2674 * before killing the task.
2675 *
2676 * Only for regular pages, though: huge pages are rather
2677 * unlikely to succeed so close to the limit, and we fall back
2678 * to regular pages anyway in case of failure.
2679 */
2680 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2681 return CHARGE_RETRY;
2682
2683 /*
2684 * At task move, charge accounts can be doubly counted. So, it's
2685 * better to wait until the end of task_move if something is going on.
2686 */
2687 if (mem_cgroup_wait_acct_move(mem_over_limit))
2688 return CHARGE_RETRY;
2689
2690 if (invoke_oom)
2691 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2692
2693 return CHARGE_NOMEM;
2694 }
2695
2696 /*
2697 * __mem_cgroup_try_charge() does
2698 * 1. detect memcg to be charged against from passed *mm and *ptr,
2699 * 2. update res_counter
2700 * 3. call memory reclaim if necessary.
2701 *
2702 * In some special case, if the task is fatal, fatal_signal_pending() or
2703 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2704 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2705 * as possible without any hazards. 2: all pages should have a valid
2706 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2707 * pointer, that is treated as a charge to root_mem_cgroup.
2708 *
2709 * So __mem_cgroup_try_charge() will return
2710 * 0 ... on success, filling *ptr with a valid memcg pointer.
2711 * -ENOMEM ... charge failure because of resource limits.
2712 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2713 *
2714 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2715 * the oom-killer can be invoked.
2716 */
2717 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2718 gfp_t gfp_mask,
2719 unsigned int nr_pages,
2720 struct mem_cgroup **ptr,
2721 bool oom)
2722 {
2723 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2724 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2725 struct mem_cgroup *memcg = NULL;
2726 int ret;
2727
2728 /*
2729 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2730 * in system level. So, allow to go ahead dying process in addition to
2731 * MEMDIE process.
2732 */
2733 if (unlikely(test_thread_flag(TIF_MEMDIE)
2734 || fatal_signal_pending(current)))
2735 goto bypass;
2736
2737 if (unlikely(task_in_memcg_oom(current)))
2738 goto bypass;
2739
2740 /*
2741 * We always charge the cgroup the mm_struct belongs to.
2742 * The mm_struct's mem_cgroup changes on task migration if the
2743 * thread group leader migrates. It's possible that mm is not
2744 * set, if so charge the root memcg (happens for pagecache usage).
2745 */
2746 if (!*ptr && !mm)
2747 *ptr = root_mem_cgroup;
2748 again:
2749 if (*ptr) { /* css should be a valid one */
2750 memcg = *ptr;
2751 if (mem_cgroup_is_root(memcg))
2752 goto done;
2753 if (consume_stock(memcg, nr_pages))
2754 goto done;
2755 css_get(&memcg->css);
2756 } else {
2757 struct task_struct *p;
2758
2759 rcu_read_lock();
2760 p = rcu_dereference(mm->owner);
2761 /*
2762 * Because we don't have task_lock(), "p" can exit.
2763 * In that case, "memcg" can point to root or p can be NULL with
2764 * race with swapoff. Then, we have small risk of mis-accouning.
2765 * But such kind of mis-account by race always happens because
2766 * we don't have cgroup_mutex(). It's overkill and we allo that
2767 * small race, here.
2768 * (*) swapoff at el will charge against mm-struct not against
2769 * task-struct. So, mm->owner can be NULL.
2770 */
2771 memcg = mem_cgroup_from_task(p);
2772 if (!memcg)
2773 memcg = root_mem_cgroup;
2774 if (mem_cgroup_is_root(memcg)) {
2775 rcu_read_unlock();
2776 goto done;
2777 }
2778 if (consume_stock(memcg, nr_pages)) {
2779 /*
2780 * It seems dagerous to access memcg without css_get().
2781 * But considering how consume_stok works, it's not
2782 * necessary. If consume_stock success, some charges
2783 * from this memcg are cached on this cpu. So, we
2784 * don't need to call css_get()/css_tryget() before
2785 * calling consume_stock().
2786 */
2787 rcu_read_unlock();
2788 goto done;
2789 }
2790 /* after here, we may be blocked. we need to get refcnt */
2791 if (!css_tryget(&memcg->css)) {
2792 rcu_read_unlock();
2793 goto again;
2794 }
2795 rcu_read_unlock();
2796 }
2797
2798 do {
2799 bool invoke_oom = oom && !nr_oom_retries;
2800
2801 /* If killed, bypass charge */
2802 if (fatal_signal_pending(current)) {
2803 css_put(&memcg->css);
2804 goto bypass;
2805 }
2806
2807 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2808 nr_pages, invoke_oom);
2809 switch (ret) {
2810 case CHARGE_OK:
2811 break;
2812 case CHARGE_RETRY: /* not in OOM situation but retry */
2813 batch = nr_pages;
2814 css_put(&memcg->css);
2815 memcg = NULL;
2816 goto again;
2817 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2818 css_put(&memcg->css);
2819 goto nomem;
2820 case CHARGE_NOMEM: /* OOM routine works */
2821 if (!oom || invoke_oom) {
2822 css_put(&memcg->css);
2823 goto nomem;
2824 }
2825 nr_oom_retries--;
2826 break;
2827 }
2828 } while (ret != CHARGE_OK);
2829
2830 if (batch > nr_pages)
2831 refill_stock(memcg, batch - nr_pages);
2832 css_put(&memcg->css);
2833 done:
2834 *ptr = memcg;
2835 return 0;
2836 nomem:
2837 if (!(gfp_mask & __GFP_NOFAIL)) {
2838 *ptr = NULL;
2839 return -ENOMEM;
2840 }
2841 bypass:
2842 *ptr = root_mem_cgroup;
2843 return -EINTR;
2844 }
2845
2846 /*
2847 * Somemtimes we have to undo a charge we got by try_charge().
2848 * This function is for that and do uncharge, put css's refcnt.
2849 * gotten by try_charge().
2850 */
2851 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2852 unsigned int nr_pages)
2853 {
2854 if (!mem_cgroup_is_root(memcg)) {
2855 unsigned long bytes = nr_pages * PAGE_SIZE;
2856
2857 res_counter_uncharge(&memcg->res, bytes);
2858 if (do_swap_account)
2859 res_counter_uncharge(&memcg->memsw, bytes);
2860 }
2861 }
2862
2863 /*
2864 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2865 * This is useful when moving usage to parent cgroup.
2866 */
2867 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2868 unsigned int nr_pages)
2869 {
2870 unsigned long bytes = nr_pages * PAGE_SIZE;
2871
2872 if (mem_cgroup_is_root(memcg))
2873 return;
2874
2875 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2876 if (do_swap_account)
2877 res_counter_uncharge_until(&memcg->memsw,
2878 memcg->memsw.parent, bytes);
2879 }
2880
2881 /*
2882 * A helper function to get mem_cgroup from ID. must be called under
2883 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2884 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2885 * called against removed memcg.)
2886 */
2887 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2888 {
2889 /* ID 0 is unused ID */
2890 if (!id)
2891 return NULL;
2892 return mem_cgroup_from_id(id);
2893 }
2894
2895 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2896 {
2897 struct mem_cgroup *memcg = NULL;
2898 struct page_cgroup *pc;
2899 unsigned short id;
2900 swp_entry_t ent;
2901
2902 VM_BUG_ON(!PageLocked(page));
2903
2904 pc = lookup_page_cgroup(page);
2905 lock_page_cgroup(pc);
2906 if (PageCgroupUsed(pc)) {
2907 memcg = pc->mem_cgroup;
2908 if (memcg && !css_tryget(&memcg->css))
2909 memcg = NULL;
2910 } else if (PageSwapCache(page)) {
2911 ent.val = page_private(page);
2912 id = lookup_swap_cgroup_id(ent);
2913 rcu_read_lock();
2914 memcg = mem_cgroup_lookup(id);
2915 if (memcg && !css_tryget(&memcg->css))
2916 memcg = NULL;
2917 rcu_read_unlock();
2918 }
2919 unlock_page_cgroup(pc);
2920 return memcg;
2921 }
2922
2923 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2924 struct page *page,
2925 unsigned int nr_pages,
2926 enum charge_type ctype,
2927 bool lrucare)
2928 {
2929 struct page_cgroup *pc = lookup_page_cgroup(page);
2930 struct zone *uninitialized_var(zone);
2931 struct lruvec *lruvec;
2932 bool was_on_lru = false;
2933 bool anon;
2934
2935 lock_page_cgroup(pc);
2936 VM_BUG_ON(PageCgroupUsed(pc));
2937 /*
2938 * we don't need page_cgroup_lock about tail pages, becase they are not
2939 * accessed by any other context at this point.
2940 */
2941
2942 /*
2943 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2944 * may already be on some other mem_cgroup's LRU. Take care of it.
2945 */
2946 if (lrucare) {
2947 zone = page_zone(page);
2948 spin_lock_irq(&zone->lru_lock);
2949 if (PageLRU(page)) {
2950 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2951 ClearPageLRU(page);
2952 del_page_from_lru_list(page, lruvec, page_lru(page));
2953 was_on_lru = true;
2954 }
2955 }
2956
2957 pc->mem_cgroup = memcg;
2958 /*
2959 * We access a page_cgroup asynchronously without lock_page_cgroup().
2960 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2961 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2962 * before USED bit, we need memory barrier here.
2963 * See mem_cgroup_add_lru_list(), etc.
2964 */
2965 smp_wmb();
2966 SetPageCgroupUsed(pc);
2967
2968 if (lrucare) {
2969 if (was_on_lru) {
2970 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2971 VM_BUG_ON(PageLRU(page));
2972 SetPageLRU(page);
2973 add_page_to_lru_list(page, lruvec, page_lru(page));
2974 }
2975 spin_unlock_irq(&zone->lru_lock);
2976 }
2977
2978 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2979 anon = true;
2980 else
2981 anon = false;
2982
2983 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2984 unlock_page_cgroup(pc);
2985
2986 /*
2987 * "charge_statistics" updated event counter. Then, check it.
2988 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2989 * if they exceeds softlimit.
2990 */
2991 memcg_check_events(memcg, page);
2992 }
2993
2994 static DEFINE_MUTEX(set_limit_mutex);
2995
2996 #ifdef CONFIG_MEMCG_KMEM
2997 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2998 {
2999 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3000 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
3001 }
3002
3003 /*
3004 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3005 * in the memcg_cache_params struct.
3006 */
3007 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3008 {
3009 struct kmem_cache *cachep;
3010
3011 VM_BUG_ON(p->is_root_cache);
3012 cachep = p->root_cache;
3013 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3014 }
3015
3016 #ifdef CONFIG_SLABINFO
3017 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3018 {
3019 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3020 struct memcg_cache_params *params;
3021
3022 if (!memcg_can_account_kmem(memcg))
3023 return -EIO;
3024
3025 print_slabinfo_header(m);
3026
3027 mutex_lock(&memcg->slab_caches_mutex);
3028 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3029 cache_show(memcg_params_to_cache(params), m);
3030 mutex_unlock(&memcg->slab_caches_mutex);
3031
3032 return 0;
3033 }
3034 #endif
3035
3036 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3037 {
3038 struct res_counter *fail_res;
3039 struct mem_cgroup *_memcg;
3040 int ret = 0;
3041
3042 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3043 if (ret)
3044 return ret;
3045
3046 _memcg = memcg;
3047 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3048 &_memcg, oom_gfp_allowed(gfp));
3049
3050 if (ret == -EINTR) {
3051 /*
3052 * __mem_cgroup_try_charge() chosed to bypass to root due to
3053 * OOM kill or fatal signal. Since our only options are to
3054 * either fail the allocation or charge it to this cgroup, do
3055 * it as a temporary condition. But we can't fail. From a
3056 * kmem/slab perspective, the cache has already been selected,
3057 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3058 * our minds.
3059 *
3060 * This condition will only trigger if the task entered
3061 * memcg_charge_kmem in a sane state, but was OOM-killed during
3062 * __mem_cgroup_try_charge() above. Tasks that were already
3063 * dying when the allocation triggers should have been already
3064 * directed to the root cgroup in memcontrol.h
3065 */
3066 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3067 if (do_swap_account)
3068 res_counter_charge_nofail(&memcg->memsw, size,
3069 &fail_res);
3070 ret = 0;
3071 } else if (ret)
3072 res_counter_uncharge(&memcg->kmem, size);
3073
3074 return ret;
3075 }
3076
3077 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3078 {
3079 res_counter_uncharge(&memcg->res, size);
3080 if (do_swap_account)
3081 res_counter_uncharge(&memcg->memsw, size);
3082
3083 /* Not down to 0 */
3084 if (res_counter_uncharge(&memcg->kmem, size))
3085 return;
3086
3087 /*
3088 * Releases a reference taken in kmem_cgroup_css_offline in case
3089 * this last uncharge is racing with the offlining code or it is
3090 * outliving the memcg existence.
3091 *
3092 * The memory barrier imposed by test&clear is paired with the
3093 * explicit one in memcg_kmem_mark_dead().
3094 */
3095 if (memcg_kmem_test_and_clear_dead(memcg))
3096 css_put(&memcg->css);
3097 }
3098
3099 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3100 {
3101 if (!memcg)
3102 return;
3103
3104 mutex_lock(&memcg->slab_caches_mutex);
3105 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3106 mutex_unlock(&memcg->slab_caches_mutex);
3107 }
3108
3109 /*
3110 * helper for acessing a memcg's index. It will be used as an index in the
3111 * child cache array in kmem_cache, and also to derive its name. This function
3112 * will return -1 when this is not a kmem-limited memcg.
3113 */
3114 int memcg_cache_id(struct mem_cgroup *memcg)
3115 {
3116 return memcg ? memcg->kmemcg_id : -1;
3117 }
3118
3119 /*
3120 * This ends up being protected by the set_limit mutex, during normal
3121 * operation, because that is its main call site.
3122 *
3123 * But when we create a new cache, we can call this as well if its parent
3124 * is kmem-limited. That will have to hold set_limit_mutex as well.
3125 */
3126 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3127 {
3128 int num, ret;
3129
3130 num = ida_simple_get(&kmem_limited_groups,
3131 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3132 if (num < 0)
3133 return num;
3134 /*
3135 * After this point, kmem_accounted (that we test atomically in
3136 * the beginning of this conditional), is no longer 0. This
3137 * guarantees only one process will set the following boolean
3138 * to true. We don't need test_and_set because we're protected
3139 * by the set_limit_mutex anyway.
3140 */
3141 memcg_kmem_set_activated(memcg);
3142
3143 ret = memcg_update_all_caches(num+1);
3144 if (ret) {
3145 ida_simple_remove(&kmem_limited_groups, num);
3146 memcg_kmem_clear_activated(memcg);
3147 return ret;
3148 }
3149
3150 memcg->kmemcg_id = num;
3151 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3152 mutex_init(&memcg->slab_caches_mutex);
3153 return 0;
3154 }
3155
3156 static size_t memcg_caches_array_size(int num_groups)
3157 {
3158 ssize_t size;
3159 if (num_groups <= 0)
3160 return 0;
3161
3162 size = 2 * num_groups;
3163 if (size < MEMCG_CACHES_MIN_SIZE)
3164 size = MEMCG_CACHES_MIN_SIZE;
3165 else if (size > MEMCG_CACHES_MAX_SIZE)
3166 size = MEMCG_CACHES_MAX_SIZE;
3167
3168 return size;
3169 }
3170
3171 /*
3172 * We should update the current array size iff all caches updates succeed. This
3173 * can only be done from the slab side. The slab mutex needs to be held when
3174 * calling this.
3175 */
3176 void memcg_update_array_size(int num)
3177 {
3178 if (num > memcg_limited_groups_array_size)
3179 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3180 }
3181
3182 static void kmem_cache_destroy_work_func(struct work_struct *w);
3183
3184 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3185 {
3186 struct memcg_cache_params *cur_params = s->memcg_params;
3187
3188 VM_BUG_ON(!is_root_cache(s));
3189
3190 if (num_groups > memcg_limited_groups_array_size) {
3191 int i;
3192 ssize_t size = memcg_caches_array_size(num_groups);
3193
3194 size *= sizeof(void *);
3195 size += offsetof(struct memcg_cache_params, memcg_caches);
3196
3197 s->memcg_params = kzalloc(size, GFP_KERNEL);
3198 if (!s->memcg_params) {
3199 s->memcg_params = cur_params;
3200 return -ENOMEM;
3201 }
3202
3203 s->memcg_params->is_root_cache = true;
3204
3205 /*
3206 * There is the chance it will be bigger than
3207 * memcg_limited_groups_array_size, if we failed an allocation
3208 * in a cache, in which case all caches updated before it, will
3209 * have a bigger array.
3210 *
3211 * But if that is the case, the data after
3212 * memcg_limited_groups_array_size is certainly unused
3213 */
3214 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3215 if (!cur_params->memcg_caches[i])
3216 continue;
3217 s->memcg_params->memcg_caches[i] =
3218 cur_params->memcg_caches[i];
3219 }
3220
3221 /*
3222 * Ideally, we would wait until all caches succeed, and only
3223 * then free the old one. But this is not worth the extra
3224 * pointer per-cache we'd have to have for this.
3225 *
3226 * It is not a big deal if some caches are left with a size
3227 * bigger than the others. And all updates will reset this
3228 * anyway.
3229 */
3230 kfree(cur_params);
3231 }
3232 return 0;
3233 }
3234
3235 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3236 struct kmem_cache *root_cache)
3237 {
3238 size_t size;
3239
3240 if (!memcg_kmem_enabled())
3241 return 0;
3242
3243 if (!memcg) {
3244 size = offsetof(struct memcg_cache_params, memcg_caches);
3245 size += memcg_limited_groups_array_size * sizeof(void *);
3246 } else
3247 size = sizeof(struct memcg_cache_params);
3248
3249 s->memcg_params = kzalloc(size, GFP_KERNEL);
3250 if (!s->memcg_params)
3251 return -ENOMEM;
3252
3253 if (memcg) {
3254 s->memcg_params->memcg = memcg;
3255 s->memcg_params->root_cache = root_cache;
3256 INIT_WORK(&s->memcg_params->destroy,
3257 kmem_cache_destroy_work_func);
3258 } else
3259 s->memcg_params->is_root_cache = true;
3260
3261 return 0;
3262 }
3263
3264 void memcg_release_cache(struct kmem_cache *s)
3265 {
3266 struct kmem_cache *root;
3267 struct mem_cgroup *memcg;
3268 int id;
3269
3270 /*
3271 * This happens, for instance, when a root cache goes away before we
3272 * add any memcg.
3273 */
3274 if (!s->memcg_params)
3275 return;
3276
3277 if (s->memcg_params->is_root_cache)
3278 goto out;
3279
3280 memcg = s->memcg_params->memcg;
3281 id = memcg_cache_id(memcg);
3282
3283 root = s->memcg_params->root_cache;
3284 root->memcg_params->memcg_caches[id] = NULL;
3285
3286 mutex_lock(&memcg->slab_caches_mutex);
3287 list_del(&s->memcg_params->list);
3288 mutex_unlock(&memcg->slab_caches_mutex);
3289
3290 css_put(&memcg->css);
3291 out:
3292 kfree(s->memcg_params);
3293 }
3294
3295 /*
3296 * During the creation a new cache, we need to disable our accounting mechanism
3297 * altogether. This is true even if we are not creating, but rather just
3298 * enqueing new caches to be created.
3299 *
3300 * This is because that process will trigger allocations; some visible, like
3301 * explicit kmallocs to auxiliary data structures, name strings and internal
3302 * cache structures; some well concealed, like INIT_WORK() that can allocate
3303 * objects during debug.
3304 *
3305 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3306 * to it. This may not be a bounded recursion: since the first cache creation
3307 * failed to complete (waiting on the allocation), we'll just try to create the
3308 * cache again, failing at the same point.
3309 *
3310 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3311 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3312 * inside the following two functions.
3313 */
3314 static inline void memcg_stop_kmem_account(void)
3315 {
3316 VM_BUG_ON(!current->mm);
3317 current->memcg_kmem_skip_account++;
3318 }
3319
3320 static inline void memcg_resume_kmem_account(void)
3321 {
3322 VM_BUG_ON(!current->mm);
3323 current->memcg_kmem_skip_account--;
3324 }
3325
3326 static void kmem_cache_destroy_work_func(struct work_struct *w)
3327 {
3328 struct kmem_cache *cachep;
3329 struct memcg_cache_params *p;
3330
3331 p = container_of(w, struct memcg_cache_params, destroy);
3332
3333 cachep = memcg_params_to_cache(p);
3334
3335 /*
3336 * If we get down to 0 after shrink, we could delete right away.
3337 * However, memcg_release_pages() already puts us back in the workqueue
3338 * in that case. If we proceed deleting, we'll get a dangling
3339 * reference, and removing the object from the workqueue in that case
3340 * is unnecessary complication. We are not a fast path.
3341 *
3342 * Note that this case is fundamentally different from racing with
3343 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3344 * kmem_cache_shrink, not only we would be reinserting a dead cache
3345 * into the queue, but doing so from inside the worker racing to
3346 * destroy it.
3347 *
3348 * So if we aren't down to zero, we'll just schedule a worker and try
3349 * again
3350 */
3351 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3352 kmem_cache_shrink(cachep);
3353 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3354 return;
3355 } else
3356 kmem_cache_destroy(cachep);
3357 }
3358
3359 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3360 {
3361 if (!cachep->memcg_params->dead)
3362 return;
3363
3364 /*
3365 * There are many ways in which we can get here.
3366 *
3367 * We can get to a memory-pressure situation while the delayed work is
3368 * still pending to run. The vmscan shrinkers can then release all
3369 * cache memory and get us to destruction. If this is the case, we'll
3370 * be executed twice, which is a bug (the second time will execute over
3371 * bogus data). In this case, cancelling the work should be fine.
3372 *
3373 * But we can also get here from the worker itself, if
3374 * kmem_cache_shrink is enough to shake all the remaining objects and
3375 * get the page count to 0. In this case, we'll deadlock if we try to
3376 * cancel the work (the worker runs with an internal lock held, which
3377 * is the same lock we would hold for cancel_work_sync().)
3378 *
3379 * Since we can't possibly know who got us here, just refrain from
3380 * running if there is already work pending
3381 */
3382 if (work_pending(&cachep->memcg_params->destroy))
3383 return;
3384 /*
3385 * We have to defer the actual destroying to a workqueue, because
3386 * we might currently be in a context that cannot sleep.
3387 */
3388 schedule_work(&cachep->memcg_params->destroy);
3389 }
3390
3391 /*
3392 * This lock protects updaters, not readers. We want readers to be as fast as
3393 * they can, and they will either see NULL or a valid cache value. Our model
3394 * allow them to see NULL, in which case the root memcg will be selected.
3395 *
3396 * We need this lock because multiple allocations to the same cache from a non
3397 * will span more than one worker. Only one of them can create the cache.
3398 */
3399 static DEFINE_MUTEX(memcg_cache_mutex);
3400
3401 /*
3402 * Called with memcg_cache_mutex held
3403 */
3404 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3405 struct kmem_cache *s)
3406 {
3407 struct kmem_cache *new;
3408 static char *tmp_name = NULL;
3409
3410 lockdep_assert_held(&memcg_cache_mutex);
3411
3412 /*
3413 * kmem_cache_create_memcg duplicates the given name and
3414 * cgroup_name for this name requires RCU context.
3415 * This static temporary buffer is used to prevent from
3416 * pointless shortliving allocation.
3417 */
3418 if (!tmp_name) {
3419 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3420 if (!tmp_name)
3421 return NULL;
3422 }
3423
3424 rcu_read_lock();
3425 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3426 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3427 rcu_read_unlock();
3428
3429 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3430 (s->flags & ~SLAB_PANIC), s->ctor, s);
3431
3432 if (new)
3433 new->allocflags |= __GFP_KMEMCG;
3434
3435 return new;
3436 }
3437
3438 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3439 struct kmem_cache *cachep)
3440 {
3441 struct kmem_cache *new_cachep;
3442 int idx;
3443
3444 BUG_ON(!memcg_can_account_kmem(memcg));
3445
3446 idx = memcg_cache_id(memcg);
3447
3448 mutex_lock(&memcg_cache_mutex);
3449 new_cachep = cache_from_memcg_idx(cachep, idx);
3450 if (new_cachep) {
3451 css_put(&memcg->css);
3452 goto out;
3453 }
3454
3455 new_cachep = kmem_cache_dup(memcg, cachep);
3456 if (new_cachep == NULL) {
3457 new_cachep = cachep;
3458 css_put(&memcg->css);
3459 goto out;
3460 }
3461
3462 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3463
3464 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3465 /*
3466 * the readers won't lock, make sure everybody sees the updated value,
3467 * so they won't put stuff in the queue again for no reason
3468 */
3469 wmb();
3470 out:
3471 mutex_unlock(&memcg_cache_mutex);
3472 return new_cachep;
3473 }
3474
3475 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3476 {
3477 struct kmem_cache *c;
3478 int i;
3479
3480 if (!s->memcg_params)
3481 return;
3482 if (!s->memcg_params->is_root_cache)
3483 return;
3484
3485 /*
3486 * If the cache is being destroyed, we trust that there is no one else
3487 * requesting objects from it. Even if there are, the sanity checks in
3488 * kmem_cache_destroy should caught this ill-case.
3489 *
3490 * Still, we don't want anyone else freeing memcg_caches under our
3491 * noses, which can happen if a new memcg comes to life. As usual,
3492 * we'll take the set_limit_mutex to protect ourselves against this.
3493 */
3494 mutex_lock(&set_limit_mutex);
3495 for_each_memcg_cache_index(i) {
3496 c = cache_from_memcg_idx(s, i);
3497 if (!c)
3498 continue;
3499
3500 /*
3501 * We will now manually delete the caches, so to avoid races
3502 * we need to cancel all pending destruction workers and
3503 * proceed with destruction ourselves.
3504 *
3505 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3506 * and that could spawn the workers again: it is likely that
3507 * the cache still have active pages until this very moment.
3508 * This would lead us back to mem_cgroup_destroy_cache.
3509 *
3510 * But that will not execute at all if the "dead" flag is not
3511 * set, so flip it down to guarantee we are in control.
3512 */
3513 c->memcg_params->dead = false;
3514 cancel_work_sync(&c->memcg_params->destroy);
3515 kmem_cache_destroy(c);
3516 }
3517 mutex_unlock(&set_limit_mutex);
3518 }
3519
3520 struct create_work {
3521 struct mem_cgroup *memcg;
3522 struct kmem_cache *cachep;
3523 struct work_struct work;
3524 };
3525
3526 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3527 {
3528 struct kmem_cache *cachep;
3529 struct memcg_cache_params *params;
3530
3531 if (!memcg_kmem_is_active(memcg))
3532 return;
3533
3534 mutex_lock(&memcg->slab_caches_mutex);
3535 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3536 cachep = memcg_params_to_cache(params);
3537 cachep->memcg_params->dead = true;
3538 schedule_work(&cachep->memcg_params->destroy);
3539 }
3540 mutex_unlock(&memcg->slab_caches_mutex);
3541 }
3542
3543 static void memcg_create_cache_work_func(struct work_struct *w)
3544 {
3545 struct create_work *cw;
3546
3547 cw = container_of(w, struct create_work, work);
3548 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3549 kfree(cw);
3550 }
3551
3552 /*
3553 * Enqueue the creation of a per-memcg kmem_cache.
3554 */
3555 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3556 struct kmem_cache *cachep)
3557 {
3558 struct create_work *cw;
3559
3560 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3561 if (cw == NULL) {
3562 css_put(&memcg->css);
3563 return;
3564 }
3565
3566 cw->memcg = memcg;
3567 cw->cachep = cachep;
3568
3569 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3570 schedule_work(&cw->work);
3571 }
3572
3573 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3574 struct kmem_cache *cachep)
3575 {
3576 /*
3577 * We need to stop accounting when we kmalloc, because if the
3578 * corresponding kmalloc cache is not yet created, the first allocation
3579 * in __memcg_create_cache_enqueue will recurse.
3580 *
3581 * However, it is better to enclose the whole function. Depending on
3582 * the debugging options enabled, INIT_WORK(), for instance, can
3583 * trigger an allocation. This too, will make us recurse. Because at
3584 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3585 * the safest choice is to do it like this, wrapping the whole function.
3586 */
3587 memcg_stop_kmem_account();
3588 __memcg_create_cache_enqueue(memcg, cachep);
3589 memcg_resume_kmem_account();
3590 }
3591 /*
3592 * Return the kmem_cache we're supposed to use for a slab allocation.
3593 * We try to use the current memcg's version of the cache.
3594 *
3595 * If the cache does not exist yet, if we are the first user of it,
3596 * we either create it immediately, if possible, or create it asynchronously
3597 * in a workqueue.
3598 * In the latter case, we will let the current allocation go through with
3599 * the original cache.
3600 *
3601 * Can't be called in interrupt context or from kernel threads.
3602 * This function needs to be called with rcu_read_lock() held.
3603 */
3604 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3605 gfp_t gfp)
3606 {
3607 struct mem_cgroup *memcg;
3608 int idx;
3609
3610 VM_BUG_ON(!cachep->memcg_params);
3611 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3612
3613 if (!current->mm || current->memcg_kmem_skip_account)
3614 return cachep;
3615
3616 rcu_read_lock();
3617 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3618
3619 if (!memcg_can_account_kmem(memcg))
3620 goto out;
3621
3622 idx = memcg_cache_id(memcg);
3623
3624 /*
3625 * barrier to mare sure we're always seeing the up to date value. The
3626 * code updating memcg_caches will issue a write barrier to match this.
3627 */
3628 read_barrier_depends();
3629 if (likely(cache_from_memcg_idx(cachep, idx))) {
3630 cachep = cache_from_memcg_idx(cachep, idx);
3631 goto out;
3632 }
3633
3634 /* The corresponding put will be done in the workqueue. */
3635 if (!css_tryget(&memcg->css))
3636 goto out;
3637 rcu_read_unlock();
3638
3639 /*
3640 * If we are in a safe context (can wait, and not in interrupt
3641 * context), we could be be predictable and return right away.
3642 * This would guarantee that the allocation being performed
3643 * already belongs in the new cache.
3644 *
3645 * However, there are some clashes that can arrive from locking.
3646 * For instance, because we acquire the slab_mutex while doing
3647 * kmem_cache_dup, this means no further allocation could happen
3648 * with the slab_mutex held.
3649 *
3650 * Also, because cache creation issue get_online_cpus(), this
3651 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3652 * that ends up reversed during cpu hotplug. (cpuset allocates
3653 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3654 * better to defer everything.
3655 */
3656 memcg_create_cache_enqueue(memcg, cachep);
3657 return cachep;
3658 out:
3659 rcu_read_unlock();
3660 return cachep;
3661 }
3662 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3663
3664 /*
3665 * We need to verify if the allocation against current->mm->owner's memcg is
3666 * possible for the given order. But the page is not allocated yet, so we'll
3667 * need a further commit step to do the final arrangements.
3668 *
3669 * It is possible for the task to switch cgroups in this mean time, so at
3670 * commit time, we can't rely on task conversion any longer. We'll then use
3671 * the handle argument to return to the caller which cgroup we should commit
3672 * against. We could also return the memcg directly and avoid the pointer
3673 * passing, but a boolean return value gives better semantics considering
3674 * the compiled-out case as well.
3675 *
3676 * Returning true means the allocation is possible.
3677 */
3678 bool
3679 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3680 {
3681 struct mem_cgroup *memcg;
3682 int ret;
3683
3684 *_memcg = NULL;
3685
3686 /*
3687 * Disabling accounting is only relevant for some specific memcg
3688 * internal allocations. Therefore we would initially not have such
3689 * check here, since direct calls to the page allocator that are marked
3690 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3691 * concerned with cache allocations, and by having this test at
3692 * memcg_kmem_get_cache, we are already able to relay the allocation to
3693 * the root cache and bypass the memcg cache altogether.
3694 *
3695 * There is one exception, though: the SLUB allocator does not create
3696 * large order caches, but rather service large kmallocs directly from
3697 * the page allocator. Therefore, the following sequence when backed by
3698 * the SLUB allocator:
3699 *
3700 * memcg_stop_kmem_account();
3701 * kmalloc(<large_number>)
3702 * memcg_resume_kmem_account();
3703 *
3704 * would effectively ignore the fact that we should skip accounting,
3705 * since it will drive us directly to this function without passing
3706 * through the cache selector memcg_kmem_get_cache. Such large
3707 * allocations are extremely rare but can happen, for instance, for the
3708 * cache arrays. We bring this test here.
3709 */
3710 if (!current->mm || current->memcg_kmem_skip_account)
3711 return true;
3712
3713 memcg = try_get_mem_cgroup_from_mm(current->mm);
3714
3715 /*
3716 * very rare case described in mem_cgroup_from_task. Unfortunately there
3717 * isn't much we can do without complicating this too much, and it would
3718 * be gfp-dependent anyway. Just let it go
3719 */
3720 if (unlikely(!memcg))
3721 return true;
3722
3723 if (!memcg_can_account_kmem(memcg)) {
3724 css_put(&memcg->css);
3725 return true;
3726 }
3727
3728 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3729 if (!ret)
3730 *_memcg = memcg;
3731
3732 css_put(&memcg->css);
3733 return (ret == 0);
3734 }
3735
3736 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3737 int order)
3738 {
3739 struct page_cgroup *pc;
3740
3741 VM_BUG_ON(mem_cgroup_is_root(memcg));
3742
3743 /* The page allocation failed. Revert */
3744 if (!page) {
3745 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3746 return;
3747 }
3748
3749 pc = lookup_page_cgroup(page);
3750 lock_page_cgroup(pc);
3751 pc->mem_cgroup = memcg;
3752 SetPageCgroupUsed(pc);
3753 unlock_page_cgroup(pc);
3754 }
3755
3756 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3757 {
3758 struct mem_cgroup *memcg = NULL;
3759 struct page_cgroup *pc;
3760
3761
3762 pc = lookup_page_cgroup(page);
3763 /*
3764 * Fast unlocked return. Theoretically might have changed, have to
3765 * check again after locking.
3766 */
3767 if (!PageCgroupUsed(pc))
3768 return;
3769
3770 lock_page_cgroup(pc);
3771 if (PageCgroupUsed(pc)) {
3772 memcg = pc->mem_cgroup;
3773 ClearPageCgroupUsed(pc);
3774 }
3775 unlock_page_cgroup(pc);
3776
3777 /*
3778 * We trust that only if there is a memcg associated with the page, it
3779 * is a valid allocation
3780 */
3781 if (!memcg)
3782 return;
3783
3784 VM_BUG_ON(mem_cgroup_is_root(memcg));
3785 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3786 }
3787 #else
3788 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3789 {
3790 }
3791 #endif /* CONFIG_MEMCG_KMEM */
3792
3793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3794
3795 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3796 /*
3797 * Because tail pages are not marked as "used", set it. We're under
3798 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3799 * charge/uncharge will be never happen and move_account() is done under
3800 * compound_lock(), so we don't have to take care of races.
3801 */
3802 void mem_cgroup_split_huge_fixup(struct page *head)
3803 {
3804 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3805 struct page_cgroup *pc;
3806 struct mem_cgroup *memcg;
3807 int i;
3808
3809 if (mem_cgroup_disabled())
3810 return;
3811
3812 memcg = head_pc->mem_cgroup;
3813 for (i = 1; i < HPAGE_PMD_NR; i++) {
3814 pc = head_pc + i;
3815 pc->mem_cgroup = memcg;
3816 smp_wmb();/* see __commit_charge() */
3817 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3818 }
3819 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3820 HPAGE_PMD_NR);
3821 }
3822 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3823
3824 static inline
3825 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3826 struct mem_cgroup *to,
3827 unsigned int nr_pages,
3828 enum mem_cgroup_stat_index idx)
3829 {
3830 /* Update stat data for mem_cgroup */
3831 preempt_disable();
3832 __this_cpu_sub(from->stat->count[idx], nr_pages);
3833 __this_cpu_add(to->stat->count[idx], nr_pages);
3834 preempt_enable();
3835 }
3836
3837 /**
3838 * mem_cgroup_move_account - move account of the page
3839 * @page: the page
3840 * @nr_pages: number of regular pages (>1 for huge pages)
3841 * @pc: page_cgroup of the page.
3842 * @from: mem_cgroup which the page is moved from.
3843 * @to: mem_cgroup which the page is moved to. @from != @to.
3844 *
3845 * The caller must confirm following.
3846 * - page is not on LRU (isolate_page() is useful.)
3847 * - compound_lock is held when nr_pages > 1
3848 *
3849 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3850 * from old cgroup.
3851 */
3852 static int mem_cgroup_move_account(struct page *page,
3853 unsigned int nr_pages,
3854 struct page_cgroup *pc,
3855 struct mem_cgroup *from,
3856 struct mem_cgroup *to)
3857 {
3858 unsigned long flags;
3859 int ret;
3860 bool anon = PageAnon(page);
3861
3862 VM_BUG_ON(from == to);
3863 VM_BUG_ON(PageLRU(page));
3864 /*
3865 * The page is isolated from LRU. So, collapse function
3866 * will not handle this page. But page splitting can happen.
3867 * Do this check under compound_page_lock(). The caller should
3868 * hold it.
3869 */
3870 ret = -EBUSY;
3871 if (nr_pages > 1 && !PageTransHuge(page))
3872 goto out;
3873
3874 lock_page_cgroup(pc);
3875
3876 ret = -EINVAL;
3877 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3878 goto unlock;
3879
3880 move_lock_mem_cgroup(from, &flags);
3881
3882 if (!anon && page_mapped(page))
3883 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3884 MEM_CGROUP_STAT_FILE_MAPPED);
3885
3886 if (PageWriteback(page))
3887 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3888 MEM_CGROUP_STAT_WRITEBACK);
3889
3890 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3891
3892 /* caller should have done css_get */
3893 pc->mem_cgroup = to;
3894 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3895 move_unlock_mem_cgroup(from, &flags);
3896 ret = 0;
3897 unlock:
3898 unlock_page_cgroup(pc);
3899 /*
3900 * check events
3901 */
3902 memcg_check_events(to, page);
3903 memcg_check_events(from, page);
3904 out:
3905 return ret;
3906 }
3907
3908 /**
3909 * mem_cgroup_move_parent - moves page to the parent group
3910 * @page: the page to move
3911 * @pc: page_cgroup of the page
3912 * @child: page's cgroup
3913 *
3914 * move charges to its parent or the root cgroup if the group has no
3915 * parent (aka use_hierarchy==0).
3916 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3917 * mem_cgroup_move_account fails) the failure is always temporary and
3918 * it signals a race with a page removal/uncharge or migration. In the
3919 * first case the page is on the way out and it will vanish from the LRU
3920 * on the next attempt and the call should be retried later.
3921 * Isolation from the LRU fails only if page has been isolated from
3922 * the LRU since we looked at it and that usually means either global
3923 * reclaim or migration going on. The page will either get back to the
3924 * LRU or vanish.
3925 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3926 * (!PageCgroupUsed) or moved to a different group. The page will
3927 * disappear in the next attempt.
3928 */
3929 static int mem_cgroup_move_parent(struct page *page,
3930 struct page_cgroup *pc,
3931 struct mem_cgroup *child)
3932 {
3933 struct mem_cgroup *parent;
3934 unsigned int nr_pages;
3935 unsigned long uninitialized_var(flags);
3936 int ret;
3937
3938 VM_BUG_ON(mem_cgroup_is_root(child));
3939
3940 ret = -EBUSY;
3941 if (!get_page_unless_zero(page))
3942 goto out;
3943 if (isolate_lru_page(page))
3944 goto put;
3945
3946 nr_pages = hpage_nr_pages(page);
3947
3948 parent = parent_mem_cgroup(child);
3949 /*
3950 * If no parent, move charges to root cgroup.
3951 */
3952 if (!parent)
3953 parent = root_mem_cgroup;
3954
3955 if (nr_pages > 1) {
3956 VM_BUG_ON(!PageTransHuge(page));
3957 flags = compound_lock_irqsave(page);
3958 }
3959
3960 ret = mem_cgroup_move_account(page, nr_pages,
3961 pc, child, parent);
3962 if (!ret)
3963 __mem_cgroup_cancel_local_charge(child, nr_pages);
3964
3965 if (nr_pages > 1)
3966 compound_unlock_irqrestore(page, flags);
3967 putback_lru_page(page);
3968 put:
3969 put_page(page);
3970 out:
3971 return ret;
3972 }
3973
3974 /*
3975 * Charge the memory controller for page usage.
3976 * Return
3977 * 0 if the charge was successful
3978 * < 0 if the cgroup is over its limit
3979 */
3980 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3981 gfp_t gfp_mask, enum charge_type ctype)
3982 {
3983 struct mem_cgroup *memcg = NULL;
3984 unsigned int nr_pages = 1;
3985 bool oom = true;
3986 int ret;
3987
3988 if (PageTransHuge(page)) {
3989 nr_pages <<= compound_order(page);
3990 VM_BUG_ON(!PageTransHuge(page));
3991 /*
3992 * Never OOM-kill a process for a huge page. The
3993 * fault handler will fall back to regular pages.
3994 */
3995 oom = false;
3996 }
3997
3998 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3999 if (ret == -ENOMEM)
4000 return ret;
4001 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4002 return 0;
4003 }
4004
4005 int mem_cgroup_newpage_charge(struct page *page,
4006 struct mm_struct *mm, gfp_t gfp_mask)
4007 {
4008 if (mem_cgroup_disabled())
4009 return 0;
4010 VM_BUG_ON(page_mapped(page));
4011 VM_BUG_ON(page->mapping && !PageAnon(page));
4012 VM_BUG_ON(!mm);
4013 return mem_cgroup_charge_common(page, mm, gfp_mask,
4014 MEM_CGROUP_CHARGE_TYPE_ANON);
4015 }
4016
4017 /*
4018 * While swap-in, try_charge -> commit or cancel, the page is locked.
4019 * And when try_charge() successfully returns, one refcnt to memcg without
4020 * struct page_cgroup is acquired. This refcnt will be consumed by
4021 * "commit()" or removed by "cancel()"
4022 */
4023 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4024 struct page *page,
4025 gfp_t mask,
4026 struct mem_cgroup **memcgp)
4027 {
4028 struct mem_cgroup *memcg;
4029 struct page_cgroup *pc;
4030 int ret;
4031
4032 pc = lookup_page_cgroup(page);
4033 /*
4034 * Every swap fault against a single page tries to charge the
4035 * page, bail as early as possible. shmem_unuse() encounters
4036 * already charged pages, too. The USED bit is protected by
4037 * the page lock, which serializes swap cache removal, which
4038 * in turn serializes uncharging.
4039 */
4040 if (PageCgroupUsed(pc))
4041 return 0;
4042 if (!do_swap_account)
4043 goto charge_cur_mm;
4044 memcg = try_get_mem_cgroup_from_page(page);
4045 if (!memcg)
4046 goto charge_cur_mm;
4047 *memcgp = memcg;
4048 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4049 css_put(&memcg->css);
4050 if (ret == -EINTR)
4051 ret = 0;
4052 return ret;
4053 charge_cur_mm:
4054 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4055 if (ret == -EINTR)
4056 ret = 0;
4057 return ret;
4058 }
4059
4060 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4061 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4062 {
4063 *memcgp = NULL;
4064 if (mem_cgroup_disabled())
4065 return 0;
4066 /*
4067 * A racing thread's fault, or swapoff, may have already
4068 * updated the pte, and even removed page from swap cache: in
4069 * those cases unuse_pte()'s pte_same() test will fail; but
4070 * there's also a KSM case which does need to charge the page.
4071 */
4072 if (!PageSwapCache(page)) {
4073 int ret;
4074
4075 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4076 if (ret == -EINTR)
4077 ret = 0;
4078 return ret;
4079 }
4080 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4081 }
4082
4083 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4084 {
4085 if (mem_cgroup_disabled())
4086 return;
4087 if (!memcg)
4088 return;
4089 __mem_cgroup_cancel_charge(memcg, 1);
4090 }
4091
4092 static void
4093 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4094 enum charge_type ctype)
4095 {
4096 if (mem_cgroup_disabled())
4097 return;
4098 if (!memcg)
4099 return;
4100
4101 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4102 /*
4103 * Now swap is on-memory. This means this page may be
4104 * counted both as mem and swap....double count.
4105 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4106 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4107 * may call delete_from_swap_cache() before reach here.
4108 */
4109 if (do_swap_account && PageSwapCache(page)) {
4110 swp_entry_t ent = {.val = page_private(page)};
4111 mem_cgroup_uncharge_swap(ent);
4112 }
4113 }
4114
4115 void mem_cgroup_commit_charge_swapin(struct page *page,
4116 struct mem_cgroup *memcg)
4117 {
4118 __mem_cgroup_commit_charge_swapin(page, memcg,
4119 MEM_CGROUP_CHARGE_TYPE_ANON);
4120 }
4121
4122 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4123 gfp_t gfp_mask)
4124 {
4125 struct mem_cgroup *memcg = NULL;
4126 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4127 int ret;
4128
4129 if (mem_cgroup_disabled())
4130 return 0;
4131 if (PageCompound(page))
4132 return 0;
4133
4134 if (!PageSwapCache(page))
4135 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4136 else { /* page is swapcache/shmem */
4137 ret = __mem_cgroup_try_charge_swapin(mm, page,
4138 gfp_mask, &memcg);
4139 if (!ret)
4140 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4141 }
4142 return ret;
4143 }
4144
4145 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4146 unsigned int nr_pages,
4147 const enum charge_type ctype)
4148 {
4149 struct memcg_batch_info *batch = NULL;
4150 bool uncharge_memsw = true;
4151
4152 /* If swapout, usage of swap doesn't decrease */
4153 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4154 uncharge_memsw = false;
4155
4156 batch = &current->memcg_batch;
4157 /*
4158 * In usual, we do css_get() when we remember memcg pointer.
4159 * But in this case, we keep res->usage until end of a series of
4160 * uncharges. Then, it's ok to ignore memcg's refcnt.
4161 */
4162 if (!batch->memcg)
4163 batch->memcg = memcg;
4164 /*
4165 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4166 * In those cases, all pages freed continuously can be expected to be in
4167 * the same cgroup and we have chance to coalesce uncharges.
4168 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4169 * because we want to do uncharge as soon as possible.
4170 */
4171
4172 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4173 goto direct_uncharge;
4174
4175 if (nr_pages > 1)
4176 goto direct_uncharge;
4177
4178 /*
4179 * In typical case, batch->memcg == mem. This means we can
4180 * merge a series of uncharges to an uncharge of res_counter.
4181 * If not, we uncharge res_counter ony by one.
4182 */
4183 if (batch->memcg != memcg)
4184 goto direct_uncharge;
4185 /* remember freed charge and uncharge it later */
4186 batch->nr_pages++;
4187 if (uncharge_memsw)
4188 batch->memsw_nr_pages++;
4189 return;
4190 direct_uncharge:
4191 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4192 if (uncharge_memsw)
4193 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4194 if (unlikely(batch->memcg != memcg))
4195 memcg_oom_recover(memcg);
4196 }
4197
4198 /*
4199 * uncharge if !page_mapped(page)
4200 */
4201 static struct mem_cgroup *
4202 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4203 bool end_migration)
4204 {
4205 struct mem_cgroup *memcg = NULL;
4206 unsigned int nr_pages = 1;
4207 struct page_cgroup *pc;
4208 bool anon;
4209
4210 if (mem_cgroup_disabled())
4211 return NULL;
4212
4213 if (PageTransHuge(page)) {
4214 nr_pages <<= compound_order(page);
4215 VM_BUG_ON(!PageTransHuge(page));
4216 }
4217 /*
4218 * Check if our page_cgroup is valid
4219 */
4220 pc = lookup_page_cgroup(page);
4221 if (unlikely(!PageCgroupUsed(pc)))
4222 return NULL;
4223
4224 lock_page_cgroup(pc);
4225
4226 memcg = pc->mem_cgroup;
4227
4228 if (!PageCgroupUsed(pc))
4229 goto unlock_out;
4230
4231 anon = PageAnon(page);
4232
4233 switch (ctype) {
4234 case MEM_CGROUP_CHARGE_TYPE_ANON:
4235 /*
4236 * Generally PageAnon tells if it's the anon statistics to be
4237 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4238 * used before page reached the stage of being marked PageAnon.
4239 */
4240 anon = true;
4241 /* fallthrough */
4242 case MEM_CGROUP_CHARGE_TYPE_DROP:
4243 /* See mem_cgroup_prepare_migration() */
4244 if (page_mapped(page))
4245 goto unlock_out;
4246 /*
4247 * Pages under migration may not be uncharged. But
4248 * end_migration() /must/ be the one uncharging the
4249 * unused post-migration page and so it has to call
4250 * here with the migration bit still set. See the
4251 * res_counter handling below.
4252 */
4253 if (!end_migration && PageCgroupMigration(pc))
4254 goto unlock_out;
4255 break;
4256 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4257 if (!PageAnon(page)) { /* Shared memory */
4258 if (page->mapping && !page_is_file_cache(page))
4259 goto unlock_out;
4260 } else if (page_mapped(page)) /* Anon */
4261 goto unlock_out;
4262 break;
4263 default:
4264 break;
4265 }
4266
4267 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4268
4269 ClearPageCgroupUsed(pc);
4270 /*
4271 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4272 * freed from LRU. This is safe because uncharged page is expected not
4273 * to be reused (freed soon). Exception is SwapCache, it's handled by
4274 * special functions.
4275 */
4276
4277 unlock_page_cgroup(pc);
4278 /*
4279 * even after unlock, we have memcg->res.usage here and this memcg
4280 * will never be freed, so it's safe to call css_get().
4281 */
4282 memcg_check_events(memcg, page);
4283 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4284 mem_cgroup_swap_statistics(memcg, true);
4285 css_get(&memcg->css);
4286 }
4287 /*
4288 * Migration does not charge the res_counter for the
4289 * replacement page, so leave it alone when phasing out the
4290 * page that is unused after the migration.
4291 */
4292 if (!end_migration && !mem_cgroup_is_root(memcg))
4293 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4294
4295 return memcg;
4296
4297 unlock_out:
4298 unlock_page_cgroup(pc);
4299 return NULL;
4300 }
4301
4302 void mem_cgroup_uncharge_page(struct page *page)
4303 {
4304 /* early check. */
4305 if (page_mapped(page))
4306 return;
4307 VM_BUG_ON(page->mapping && !PageAnon(page));
4308 /*
4309 * If the page is in swap cache, uncharge should be deferred
4310 * to the swap path, which also properly accounts swap usage
4311 * and handles memcg lifetime.
4312 *
4313 * Note that this check is not stable and reclaim may add the
4314 * page to swap cache at any time after this. However, if the
4315 * page is not in swap cache by the time page->mapcount hits
4316 * 0, there won't be any page table references to the swap
4317 * slot, and reclaim will free it and not actually write the
4318 * page to disk.
4319 */
4320 if (PageSwapCache(page))
4321 return;
4322 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4323 }
4324
4325 void mem_cgroup_uncharge_cache_page(struct page *page)
4326 {
4327 VM_BUG_ON(page_mapped(page));
4328 VM_BUG_ON(page->mapping);
4329 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4330 }
4331
4332 /*
4333 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4334 * In that cases, pages are freed continuously and we can expect pages
4335 * are in the same memcg. All these calls itself limits the number of
4336 * pages freed at once, then uncharge_start/end() is called properly.
4337 * This may be called prural(2) times in a context,
4338 */
4339
4340 void mem_cgroup_uncharge_start(void)
4341 {
4342 current->memcg_batch.do_batch++;
4343 /* We can do nest. */
4344 if (current->memcg_batch.do_batch == 1) {
4345 current->memcg_batch.memcg = NULL;
4346 current->memcg_batch.nr_pages = 0;
4347 current->memcg_batch.memsw_nr_pages = 0;
4348 }
4349 }
4350
4351 void mem_cgroup_uncharge_end(void)
4352 {
4353 struct memcg_batch_info *batch = &current->memcg_batch;
4354
4355 if (!batch->do_batch)
4356 return;
4357
4358 batch->do_batch--;
4359 if (batch->do_batch) /* If stacked, do nothing. */
4360 return;
4361
4362 if (!batch->memcg)
4363 return;
4364 /*
4365 * This "batch->memcg" is valid without any css_get/put etc...
4366 * bacause we hide charges behind us.
4367 */
4368 if (batch->nr_pages)
4369 res_counter_uncharge(&batch->memcg->res,
4370 batch->nr_pages * PAGE_SIZE);
4371 if (batch->memsw_nr_pages)
4372 res_counter_uncharge(&batch->memcg->memsw,
4373 batch->memsw_nr_pages * PAGE_SIZE);
4374 memcg_oom_recover(batch->memcg);
4375 /* forget this pointer (for sanity check) */
4376 batch->memcg = NULL;
4377 }
4378
4379 #ifdef CONFIG_SWAP
4380 /*
4381 * called after __delete_from_swap_cache() and drop "page" account.
4382 * memcg information is recorded to swap_cgroup of "ent"
4383 */
4384 void
4385 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4386 {
4387 struct mem_cgroup *memcg;
4388 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4389
4390 if (!swapout) /* this was a swap cache but the swap is unused ! */
4391 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4392
4393 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4394
4395 /*
4396 * record memcg information, if swapout && memcg != NULL,
4397 * css_get() was called in uncharge().
4398 */
4399 if (do_swap_account && swapout && memcg)
4400 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4401 }
4402 #endif
4403
4404 #ifdef CONFIG_MEMCG_SWAP
4405 /*
4406 * called from swap_entry_free(). remove record in swap_cgroup and
4407 * uncharge "memsw" account.
4408 */
4409 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4410 {
4411 struct mem_cgroup *memcg;
4412 unsigned short id;
4413
4414 if (!do_swap_account)
4415 return;
4416
4417 id = swap_cgroup_record(ent, 0);
4418 rcu_read_lock();
4419 memcg = mem_cgroup_lookup(id);
4420 if (memcg) {
4421 /*
4422 * We uncharge this because swap is freed.
4423 * This memcg can be obsolete one. We avoid calling css_tryget
4424 */
4425 if (!mem_cgroup_is_root(memcg))
4426 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4427 mem_cgroup_swap_statistics(memcg, false);
4428 css_put(&memcg->css);
4429 }
4430 rcu_read_unlock();
4431 }
4432
4433 /**
4434 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4435 * @entry: swap entry to be moved
4436 * @from: mem_cgroup which the entry is moved from
4437 * @to: mem_cgroup which the entry is moved to
4438 *
4439 * It succeeds only when the swap_cgroup's record for this entry is the same
4440 * as the mem_cgroup's id of @from.
4441 *
4442 * Returns 0 on success, -EINVAL on failure.
4443 *
4444 * The caller must have charged to @to, IOW, called res_counter_charge() about
4445 * both res and memsw, and called css_get().
4446 */
4447 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4448 struct mem_cgroup *from, struct mem_cgroup *to)
4449 {
4450 unsigned short old_id, new_id;
4451
4452 old_id = mem_cgroup_id(from);
4453 new_id = mem_cgroup_id(to);
4454
4455 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4456 mem_cgroup_swap_statistics(from, false);
4457 mem_cgroup_swap_statistics(to, true);
4458 /*
4459 * This function is only called from task migration context now.
4460 * It postpones res_counter and refcount handling till the end
4461 * of task migration(mem_cgroup_clear_mc()) for performance
4462 * improvement. But we cannot postpone css_get(to) because if
4463 * the process that has been moved to @to does swap-in, the
4464 * refcount of @to might be decreased to 0.
4465 *
4466 * We are in attach() phase, so the cgroup is guaranteed to be
4467 * alive, so we can just call css_get().
4468 */
4469 css_get(&to->css);
4470 return 0;
4471 }
4472 return -EINVAL;
4473 }
4474 #else
4475 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4476 struct mem_cgroup *from, struct mem_cgroup *to)
4477 {
4478 return -EINVAL;
4479 }
4480 #endif
4481
4482 /*
4483 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4484 * page belongs to.
4485 */
4486 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4487 struct mem_cgroup **memcgp)
4488 {
4489 struct mem_cgroup *memcg = NULL;
4490 unsigned int nr_pages = 1;
4491 struct page_cgroup *pc;
4492 enum charge_type ctype;
4493
4494 *memcgp = NULL;
4495
4496 if (mem_cgroup_disabled())
4497 return;
4498
4499 if (PageTransHuge(page))
4500 nr_pages <<= compound_order(page);
4501
4502 pc = lookup_page_cgroup(page);
4503 lock_page_cgroup(pc);
4504 if (PageCgroupUsed(pc)) {
4505 memcg = pc->mem_cgroup;
4506 css_get(&memcg->css);
4507 /*
4508 * At migrating an anonymous page, its mapcount goes down
4509 * to 0 and uncharge() will be called. But, even if it's fully
4510 * unmapped, migration may fail and this page has to be
4511 * charged again. We set MIGRATION flag here and delay uncharge
4512 * until end_migration() is called
4513 *
4514 * Corner Case Thinking
4515 * A)
4516 * When the old page was mapped as Anon and it's unmap-and-freed
4517 * while migration was ongoing.
4518 * If unmap finds the old page, uncharge() of it will be delayed
4519 * until end_migration(). If unmap finds a new page, it's
4520 * uncharged when it make mapcount to be 1->0. If unmap code
4521 * finds swap_migration_entry, the new page will not be mapped
4522 * and end_migration() will find it(mapcount==0).
4523 *
4524 * B)
4525 * When the old page was mapped but migraion fails, the kernel
4526 * remaps it. A charge for it is kept by MIGRATION flag even
4527 * if mapcount goes down to 0. We can do remap successfully
4528 * without charging it again.
4529 *
4530 * C)
4531 * The "old" page is under lock_page() until the end of
4532 * migration, so, the old page itself will not be swapped-out.
4533 * If the new page is swapped out before end_migraton, our
4534 * hook to usual swap-out path will catch the event.
4535 */
4536 if (PageAnon(page))
4537 SetPageCgroupMigration(pc);
4538 }
4539 unlock_page_cgroup(pc);
4540 /*
4541 * If the page is not charged at this point,
4542 * we return here.
4543 */
4544 if (!memcg)
4545 return;
4546
4547 *memcgp = memcg;
4548 /*
4549 * We charge new page before it's used/mapped. So, even if unlock_page()
4550 * is called before end_migration, we can catch all events on this new
4551 * page. In the case new page is migrated but not remapped, new page's
4552 * mapcount will be finally 0 and we call uncharge in end_migration().
4553 */
4554 if (PageAnon(page))
4555 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4556 else
4557 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4558 /*
4559 * The page is committed to the memcg, but it's not actually
4560 * charged to the res_counter since we plan on replacing the
4561 * old one and only one page is going to be left afterwards.
4562 */
4563 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4564 }
4565
4566 /* remove redundant charge if migration failed*/
4567 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4568 struct page *oldpage, struct page *newpage, bool migration_ok)
4569 {
4570 struct page *used, *unused;
4571 struct page_cgroup *pc;
4572 bool anon;
4573
4574 if (!memcg)
4575 return;
4576
4577 if (!migration_ok) {
4578 used = oldpage;
4579 unused = newpage;
4580 } else {
4581 used = newpage;
4582 unused = oldpage;
4583 }
4584 anon = PageAnon(used);
4585 __mem_cgroup_uncharge_common(unused,
4586 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4587 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4588 true);
4589 css_put(&memcg->css);
4590 /*
4591 * We disallowed uncharge of pages under migration because mapcount
4592 * of the page goes down to zero, temporarly.
4593 * Clear the flag and check the page should be charged.
4594 */
4595 pc = lookup_page_cgroup(oldpage);
4596 lock_page_cgroup(pc);
4597 ClearPageCgroupMigration(pc);
4598 unlock_page_cgroup(pc);
4599
4600 /*
4601 * If a page is a file cache, radix-tree replacement is very atomic
4602 * and we can skip this check. When it was an Anon page, its mapcount
4603 * goes down to 0. But because we added MIGRATION flage, it's not
4604 * uncharged yet. There are several case but page->mapcount check
4605 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4606 * check. (see prepare_charge() also)
4607 */
4608 if (anon)
4609 mem_cgroup_uncharge_page(used);
4610 }
4611
4612 /*
4613 * At replace page cache, newpage is not under any memcg but it's on
4614 * LRU. So, this function doesn't touch res_counter but handles LRU
4615 * in correct way. Both pages are locked so we cannot race with uncharge.
4616 */
4617 void mem_cgroup_replace_page_cache(struct page *oldpage,
4618 struct page *newpage)
4619 {
4620 struct mem_cgroup *memcg = NULL;
4621 struct page_cgroup *pc;
4622 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4623
4624 if (mem_cgroup_disabled())
4625 return;
4626
4627 pc = lookup_page_cgroup(oldpage);
4628 /* fix accounting on old pages */
4629 lock_page_cgroup(pc);
4630 if (PageCgroupUsed(pc)) {
4631 memcg = pc->mem_cgroup;
4632 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4633 ClearPageCgroupUsed(pc);
4634 }
4635 unlock_page_cgroup(pc);
4636
4637 /*
4638 * When called from shmem_replace_page(), in some cases the
4639 * oldpage has already been charged, and in some cases not.
4640 */
4641 if (!memcg)
4642 return;
4643 /*
4644 * Even if newpage->mapping was NULL before starting replacement,
4645 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4646 * LRU while we overwrite pc->mem_cgroup.
4647 */
4648 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4649 }
4650
4651 #ifdef CONFIG_DEBUG_VM
4652 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4653 {
4654 struct page_cgroup *pc;
4655
4656 pc = lookup_page_cgroup(page);
4657 /*
4658 * Can be NULL while feeding pages into the page allocator for
4659 * the first time, i.e. during boot or memory hotplug;
4660 * or when mem_cgroup_disabled().
4661 */
4662 if (likely(pc) && PageCgroupUsed(pc))
4663 return pc;
4664 return NULL;
4665 }
4666
4667 bool mem_cgroup_bad_page_check(struct page *page)
4668 {
4669 if (mem_cgroup_disabled())
4670 return false;
4671
4672 return lookup_page_cgroup_used(page) != NULL;
4673 }
4674
4675 void mem_cgroup_print_bad_page(struct page *page)
4676 {
4677 struct page_cgroup *pc;
4678
4679 pc = lookup_page_cgroup_used(page);
4680 if (pc) {
4681 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4682 pc, pc->flags, pc->mem_cgroup);
4683 }
4684 }
4685 #endif
4686
4687 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4688 unsigned long long val)
4689 {
4690 int retry_count;
4691 u64 memswlimit, memlimit;
4692 int ret = 0;
4693 int children = mem_cgroup_count_children(memcg);
4694 u64 curusage, oldusage;
4695 int enlarge;
4696
4697 /*
4698 * For keeping hierarchical_reclaim simple, how long we should retry
4699 * is depends on callers. We set our retry-count to be function
4700 * of # of children which we should visit in this loop.
4701 */
4702 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4703
4704 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4705
4706 enlarge = 0;
4707 while (retry_count) {
4708 if (signal_pending(current)) {
4709 ret = -EINTR;
4710 break;
4711 }
4712 /*
4713 * Rather than hide all in some function, I do this in
4714 * open coded manner. You see what this really does.
4715 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4716 */
4717 mutex_lock(&set_limit_mutex);
4718 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4719 if (memswlimit < val) {
4720 ret = -EINVAL;
4721 mutex_unlock(&set_limit_mutex);
4722 break;
4723 }
4724
4725 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4726 if (memlimit < val)
4727 enlarge = 1;
4728
4729 ret = res_counter_set_limit(&memcg->res, val);
4730 if (!ret) {
4731 if (memswlimit == val)
4732 memcg->memsw_is_minimum = true;
4733 else
4734 memcg->memsw_is_minimum = false;
4735 }
4736 mutex_unlock(&set_limit_mutex);
4737
4738 if (!ret)
4739 break;
4740
4741 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4742 MEM_CGROUP_RECLAIM_SHRINK);
4743 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4744 /* Usage is reduced ? */
4745 if (curusage >= oldusage)
4746 retry_count--;
4747 else
4748 oldusage = curusage;
4749 }
4750 if (!ret && enlarge)
4751 memcg_oom_recover(memcg);
4752
4753 return ret;
4754 }
4755
4756 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4757 unsigned long long val)
4758 {
4759 int retry_count;
4760 u64 memlimit, memswlimit, oldusage, curusage;
4761 int children = mem_cgroup_count_children(memcg);
4762 int ret = -EBUSY;
4763 int enlarge = 0;
4764
4765 /* see mem_cgroup_resize_res_limit */
4766 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4767 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4768 while (retry_count) {
4769 if (signal_pending(current)) {
4770 ret = -EINTR;
4771 break;
4772 }
4773 /*
4774 * Rather than hide all in some function, I do this in
4775 * open coded manner. You see what this really does.
4776 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4777 */
4778 mutex_lock(&set_limit_mutex);
4779 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4780 if (memlimit > val) {
4781 ret = -EINVAL;
4782 mutex_unlock(&set_limit_mutex);
4783 break;
4784 }
4785 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4786 if (memswlimit < val)
4787 enlarge = 1;
4788 ret = res_counter_set_limit(&memcg->memsw, val);
4789 if (!ret) {
4790 if (memlimit == val)
4791 memcg->memsw_is_minimum = true;
4792 else
4793 memcg->memsw_is_minimum = false;
4794 }
4795 mutex_unlock(&set_limit_mutex);
4796
4797 if (!ret)
4798 break;
4799
4800 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4801 MEM_CGROUP_RECLAIM_NOSWAP |
4802 MEM_CGROUP_RECLAIM_SHRINK);
4803 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4804 /* Usage is reduced ? */
4805 if (curusage >= oldusage)
4806 retry_count--;
4807 else
4808 oldusage = curusage;
4809 }
4810 if (!ret && enlarge)
4811 memcg_oom_recover(memcg);
4812 return ret;
4813 }
4814
4815 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4816 gfp_t gfp_mask,
4817 unsigned long *total_scanned)
4818 {
4819 unsigned long nr_reclaimed = 0;
4820 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4821 unsigned long reclaimed;
4822 int loop = 0;
4823 struct mem_cgroup_tree_per_zone *mctz;
4824 unsigned long long excess;
4825 unsigned long nr_scanned;
4826
4827 if (order > 0)
4828 return 0;
4829
4830 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4831 /*
4832 * This loop can run a while, specially if mem_cgroup's continuously
4833 * keep exceeding their soft limit and putting the system under
4834 * pressure
4835 */
4836 do {
4837 if (next_mz)
4838 mz = next_mz;
4839 else
4840 mz = mem_cgroup_largest_soft_limit_node(mctz);
4841 if (!mz)
4842 break;
4843
4844 nr_scanned = 0;
4845 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4846 gfp_mask, &nr_scanned);
4847 nr_reclaimed += reclaimed;
4848 *total_scanned += nr_scanned;
4849 spin_lock(&mctz->lock);
4850
4851 /*
4852 * If we failed to reclaim anything from this memory cgroup
4853 * it is time to move on to the next cgroup
4854 */
4855 next_mz = NULL;
4856 if (!reclaimed) {
4857 do {
4858 /*
4859 * Loop until we find yet another one.
4860 *
4861 * By the time we get the soft_limit lock
4862 * again, someone might have aded the
4863 * group back on the RB tree. Iterate to
4864 * make sure we get a different mem.
4865 * mem_cgroup_largest_soft_limit_node returns
4866 * NULL if no other cgroup is present on
4867 * the tree
4868 */
4869 next_mz =
4870 __mem_cgroup_largest_soft_limit_node(mctz);
4871 if (next_mz == mz)
4872 css_put(&next_mz->memcg->css);
4873 else /* next_mz == NULL or other memcg */
4874 break;
4875 } while (1);
4876 }
4877 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4878 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4879 /*
4880 * One school of thought says that we should not add
4881 * back the node to the tree if reclaim returns 0.
4882 * But our reclaim could return 0, simply because due
4883 * to priority we are exposing a smaller subset of
4884 * memory to reclaim from. Consider this as a longer
4885 * term TODO.
4886 */
4887 /* If excess == 0, no tree ops */
4888 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4889 spin_unlock(&mctz->lock);
4890 css_put(&mz->memcg->css);
4891 loop++;
4892 /*
4893 * Could not reclaim anything and there are no more
4894 * mem cgroups to try or we seem to be looping without
4895 * reclaiming anything.
4896 */
4897 if (!nr_reclaimed &&
4898 (next_mz == NULL ||
4899 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4900 break;
4901 } while (!nr_reclaimed);
4902 if (next_mz)
4903 css_put(&next_mz->memcg->css);
4904 return nr_reclaimed;
4905 }
4906
4907 /**
4908 * mem_cgroup_force_empty_list - clears LRU of a group
4909 * @memcg: group to clear
4910 * @node: NUMA node
4911 * @zid: zone id
4912 * @lru: lru to to clear
4913 *
4914 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4915 * reclaim the pages page themselves - pages are moved to the parent (or root)
4916 * group.
4917 */
4918 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4919 int node, int zid, enum lru_list lru)
4920 {
4921 struct lruvec *lruvec;
4922 unsigned long flags;
4923 struct list_head *list;
4924 struct page *busy;
4925 struct zone *zone;
4926
4927 zone = &NODE_DATA(node)->node_zones[zid];
4928 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4929 list = &lruvec->lists[lru];
4930
4931 busy = NULL;
4932 do {
4933 struct page_cgroup *pc;
4934 struct page *page;
4935
4936 spin_lock_irqsave(&zone->lru_lock, flags);
4937 if (list_empty(list)) {
4938 spin_unlock_irqrestore(&zone->lru_lock, flags);
4939 break;
4940 }
4941 page = list_entry(list->prev, struct page, lru);
4942 if (busy == page) {
4943 list_move(&page->lru, list);
4944 busy = NULL;
4945 spin_unlock_irqrestore(&zone->lru_lock, flags);
4946 continue;
4947 }
4948 spin_unlock_irqrestore(&zone->lru_lock, flags);
4949
4950 pc = lookup_page_cgroup(page);
4951
4952 if (mem_cgroup_move_parent(page, pc, memcg)) {
4953 /* found lock contention or "pc" is obsolete. */
4954 busy = page;
4955 cond_resched();
4956 } else
4957 busy = NULL;
4958 } while (!list_empty(list));
4959 }
4960
4961 /*
4962 * make mem_cgroup's charge to be 0 if there is no task by moving
4963 * all the charges and pages to the parent.
4964 * This enables deleting this mem_cgroup.
4965 *
4966 * Caller is responsible for holding css reference on the memcg.
4967 */
4968 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4969 {
4970 int node, zid;
4971 u64 usage;
4972
4973 do {
4974 /* This is for making all *used* pages to be on LRU. */
4975 lru_add_drain_all();
4976 drain_all_stock_sync(memcg);
4977 mem_cgroup_start_move(memcg);
4978 for_each_node_state(node, N_MEMORY) {
4979 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4980 enum lru_list lru;
4981 for_each_lru(lru) {
4982 mem_cgroup_force_empty_list(memcg,
4983 node, zid, lru);
4984 }
4985 }
4986 }
4987 mem_cgroup_end_move(memcg);
4988 memcg_oom_recover(memcg);
4989 cond_resched();
4990
4991 /*
4992 * Kernel memory may not necessarily be trackable to a specific
4993 * process. So they are not migrated, and therefore we can't
4994 * expect their value to drop to 0 here.
4995 * Having res filled up with kmem only is enough.
4996 *
4997 * This is a safety check because mem_cgroup_force_empty_list
4998 * could have raced with mem_cgroup_replace_page_cache callers
4999 * so the lru seemed empty but the page could have been added
5000 * right after the check. RES_USAGE should be safe as we always
5001 * charge before adding to the LRU.
5002 */
5003 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5004 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5005 } while (usage > 0);
5006 }
5007
5008 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5009 {
5010 lockdep_assert_held(&memcg_create_mutex);
5011 /*
5012 * The lock does not prevent addition or deletion to the list
5013 * of children, but it prevents a new child from being
5014 * initialized based on this parent in css_online(), so it's
5015 * enough to decide whether hierarchically inherited
5016 * attributes can still be changed or not.
5017 */
5018 return memcg->use_hierarchy &&
5019 !list_empty(&memcg->css.cgroup->children);
5020 }
5021
5022 /*
5023 * Reclaims as many pages from the given memcg as possible and moves
5024 * the rest to the parent.
5025 *
5026 * Caller is responsible for holding css reference for memcg.
5027 */
5028 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5029 {
5030 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5031 struct cgroup *cgrp = memcg->css.cgroup;
5032
5033 /* returns EBUSY if there is a task or if we come here twice. */
5034 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5035 return -EBUSY;
5036
5037 /* we call try-to-free pages for make this cgroup empty */
5038 lru_add_drain_all();
5039 /* try to free all pages in this cgroup */
5040 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5041 int progress;
5042
5043 if (signal_pending(current))
5044 return -EINTR;
5045
5046 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5047 false);
5048 if (!progress) {
5049 nr_retries--;
5050 /* maybe some writeback is necessary */
5051 congestion_wait(BLK_RW_ASYNC, HZ/10);
5052 }
5053
5054 }
5055 lru_add_drain();
5056 mem_cgroup_reparent_charges(memcg);
5057
5058 return 0;
5059 }
5060
5061 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5062 unsigned int event)
5063 {
5064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5065
5066 if (mem_cgroup_is_root(memcg))
5067 return -EINVAL;
5068 return mem_cgroup_force_empty(memcg);
5069 }
5070
5071 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5072 struct cftype *cft)
5073 {
5074 return mem_cgroup_from_css(css)->use_hierarchy;
5075 }
5076
5077 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5078 struct cftype *cft, u64 val)
5079 {
5080 int retval = 0;
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5082 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5083
5084 mutex_lock(&memcg_create_mutex);
5085
5086 if (memcg->use_hierarchy == val)
5087 goto out;
5088
5089 /*
5090 * If parent's use_hierarchy is set, we can't make any modifications
5091 * in the child subtrees. If it is unset, then the change can
5092 * occur, provided the current cgroup has no children.
5093 *
5094 * For the root cgroup, parent_mem is NULL, we allow value to be
5095 * set if there are no children.
5096 */
5097 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5098 (val == 1 || val == 0)) {
5099 if (list_empty(&memcg->css.cgroup->children))
5100 memcg->use_hierarchy = val;
5101 else
5102 retval = -EBUSY;
5103 } else
5104 retval = -EINVAL;
5105
5106 out:
5107 mutex_unlock(&memcg_create_mutex);
5108
5109 return retval;
5110 }
5111
5112
5113 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5114 enum mem_cgroup_stat_index idx)
5115 {
5116 struct mem_cgroup *iter;
5117 long val = 0;
5118
5119 /* Per-cpu values can be negative, use a signed accumulator */
5120 for_each_mem_cgroup_tree(iter, memcg)
5121 val += mem_cgroup_read_stat(iter, idx);
5122
5123 if (val < 0) /* race ? */
5124 val = 0;
5125 return val;
5126 }
5127
5128 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5129 {
5130 u64 val;
5131
5132 if (!mem_cgroup_is_root(memcg)) {
5133 if (!swap)
5134 return res_counter_read_u64(&memcg->res, RES_USAGE);
5135 else
5136 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5137 }
5138
5139 /*
5140 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5141 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5142 */
5143 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5144 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5145
5146 if (swap)
5147 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5148
5149 return val << PAGE_SHIFT;
5150 }
5151
5152 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5153 struct cftype *cft)
5154 {
5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5156 u64 val;
5157 int name;
5158 enum res_type type;
5159
5160 type = MEMFILE_TYPE(cft->private);
5161 name = MEMFILE_ATTR(cft->private);
5162
5163 switch (type) {
5164 case _MEM:
5165 if (name == RES_USAGE)
5166 val = mem_cgroup_usage(memcg, false);
5167 else
5168 val = res_counter_read_u64(&memcg->res, name);
5169 break;
5170 case _MEMSWAP:
5171 if (name == RES_USAGE)
5172 val = mem_cgroup_usage(memcg, true);
5173 else
5174 val = res_counter_read_u64(&memcg->memsw, name);
5175 break;
5176 case _KMEM:
5177 val = res_counter_read_u64(&memcg->kmem, name);
5178 break;
5179 default:
5180 BUG();
5181 }
5182
5183 return val;
5184 }
5185
5186 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5187 {
5188 int ret = -EINVAL;
5189 #ifdef CONFIG_MEMCG_KMEM
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5191 /*
5192 * For simplicity, we won't allow this to be disabled. It also can't
5193 * be changed if the cgroup has children already, or if tasks had
5194 * already joined.
5195 *
5196 * If tasks join before we set the limit, a person looking at
5197 * kmem.usage_in_bytes will have no way to determine when it took
5198 * place, which makes the value quite meaningless.
5199 *
5200 * After it first became limited, changes in the value of the limit are
5201 * of course permitted.
5202 */
5203 mutex_lock(&memcg_create_mutex);
5204 mutex_lock(&set_limit_mutex);
5205 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5206 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5207 ret = -EBUSY;
5208 goto out;
5209 }
5210 ret = res_counter_set_limit(&memcg->kmem, val);
5211 VM_BUG_ON(ret);
5212
5213 ret = memcg_update_cache_sizes(memcg);
5214 if (ret) {
5215 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5216 goto out;
5217 }
5218 static_key_slow_inc(&memcg_kmem_enabled_key);
5219 /*
5220 * setting the active bit after the inc will guarantee no one
5221 * starts accounting before all call sites are patched
5222 */
5223 memcg_kmem_set_active(memcg);
5224 } else
5225 ret = res_counter_set_limit(&memcg->kmem, val);
5226 out:
5227 mutex_unlock(&set_limit_mutex);
5228 mutex_unlock(&memcg_create_mutex);
5229 #endif
5230 return ret;
5231 }
5232
5233 #ifdef CONFIG_MEMCG_KMEM
5234 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5235 {
5236 int ret = 0;
5237 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5238 if (!parent)
5239 goto out;
5240
5241 memcg->kmem_account_flags = parent->kmem_account_flags;
5242 /*
5243 * When that happen, we need to disable the static branch only on those
5244 * memcgs that enabled it. To achieve this, we would be forced to
5245 * complicate the code by keeping track of which memcgs were the ones
5246 * that actually enabled limits, and which ones got it from its
5247 * parents.
5248 *
5249 * It is a lot simpler just to do static_key_slow_inc() on every child
5250 * that is accounted.
5251 */
5252 if (!memcg_kmem_is_active(memcg))
5253 goto out;
5254
5255 /*
5256 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5257 * memcg is active already. If the later initialization fails then the
5258 * cgroup core triggers the cleanup so we do not have to do it here.
5259 */
5260 static_key_slow_inc(&memcg_kmem_enabled_key);
5261
5262 mutex_lock(&set_limit_mutex);
5263 memcg_stop_kmem_account();
5264 ret = memcg_update_cache_sizes(memcg);
5265 memcg_resume_kmem_account();
5266 mutex_unlock(&set_limit_mutex);
5267 out:
5268 return ret;
5269 }
5270 #endif /* CONFIG_MEMCG_KMEM */
5271
5272 /*
5273 * The user of this function is...
5274 * RES_LIMIT.
5275 */
5276 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5277 const char *buffer)
5278 {
5279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5280 enum res_type type;
5281 int name;
5282 unsigned long long val;
5283 int ret;
5284
5285 type = MEMFILE_TYPE(cft->private);
5286 name = MEMFILE_ATTR(cft->private);
5287
5288 switch (name) {
5289 case RES_LIMIT:
5290 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5291 ret = -EINVAL;
5292 break;
5293 }
5294 /* This function does all necessary parse...reuse it */
5295 ret = res_counter_memparse_write_strategy(buffer, &val);
5296 if (ret)
5297 break;
5298 if (type == _MEM)
5299 ret = mem_cgroup_resize_limit(memcg, val);
5300 else if (type == _MEMSWAP)
5301 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5302 else if (type == _KMEM)
5303 ret = memcg_update_kmem_limit(css, val);
5304 else
5305 return -EINVAL;
5306 break;
5307 case RES_SOFT_LIMIT:
5308 ret = res_counter_memparse_write_strategy(buffer, &val);
5309 if (ret)
5310 break;
5311 /*
5312 * For memsw, soft limits are hard to implement in terms
5313 * of semantics, for now, we support soft limits for
5314 * control without swap
5315 */
5316 if (type == _MEM)
5317 ret = res_counter_set_soft_limit(&memcg->res, val);
5318 else
5319 ret = -EINVAL;
5320 break;
5321 default:
5322 ret = -EINVAL; /* should be BUG() ? */
5323 break;
5324 }
5325 return ret;
5326 }
5327
5328 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5329 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5330 {
5331 unsigned long long min_limit, min_memsw_limit, tmp;
5332
5333 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5334 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5335 if (!memcg->use_hierarchy)
5336 goto out;
5337
5338 while (css_parent(&memcg->css)) {
5339 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5340 if (!memcg->use_hierarchy)
5341 break;
5342 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5343 min_limit = min(min_limit, tmp);
5344 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5345 min_memsw_limit = min(min_memsw_limit, tmp);
5346 }
5347 out:
5348 *mem_limit = min_limit;
5349 *memsw_limit = min_memsw_limit;
5350 }
5351
5352 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5353 {
5354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355 int name;
5356 enum res_type type;
5357
5358 type = MEMFILE_TYPE(event);
5359 name = MEMFILE_ATTR(event);
5360
5361 switch (name) {
5362 case RES_MAX_USAGE:
5363 if (type == _MEM)
5364 res_counter_reset_max(&memcg->res);
5365 else if (type == _MEMSWAP)
5366 res_counter_reset_max(&memcg->memsw);
5367 else if (type == _KMEM)
5368 res_counter_reset_max(&memcg->kmem);
5369 else
5370 return -EINVAL;
5371 break;
5372 case RES_FAILCNT:
5373 if (type == _MEM)
5374 res_counter_reset_failcnt(&memcg->res);
5375 else if (type == _MEMSWAP)
5376 res_counter_reset_failcnt(&memcg->memsw);
5377 else if (type == _KMEM)
5378 res_counter_reset_failcnt(&memcg->kmem);
5379 else
5380 return -EINVAL;
5381 break;
5382 }
5383
5384 return 0;
5385 }
5386
5387 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5388 struct cftype *cft)
5389 {
5390 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5391 }
5392
5393 #ifdef CONFIG_MMU
5394 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5395 struct cftype *cft, u64 val)
5396 {
5397 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5398
5399 if (val >= (1 << NR_MOVE_TYPE))
5400 return -EINVAL;
5401
5402 /*
5403 * No kind of locking is needed in here, because ->can_attach() will
5404 * check this value once in the beginning of the process, and then carry
5405 * on with stale data. This means that changes to this value will only
5406 * affect task migrations starting after the change.
5407 */
5408 memcg->move_charge_at_immigrate = val;
5409 return 0;
5410 }
5411 #else
5412 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5413 struct cftype *cft, u64 val)
5414 {
5415 return -ENOSYS;
5416 }
5417 #endif
5418
5419 #ifdef CONFIG_NUMA
5420 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5421 {
5422 struct numa_stat {
5423 const char *name;
5424 unsigned int lru_mask;
5425 };
5426
5427 static const struct numa_stat stats[] = {
5428 { "total", LRU_ALL },
5429 { "file", LRU_ALL_FILE },
5430 { "anon", LRU_ALL_ANON },
5431 { "unevictable", BIT(LRU_UNEVICTABLE) },
5432 };
5433 const struct numa_stat *stat;
5434 int nid;
5435 unsigned long nr;
5436 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5437
5438 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5439 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5440 seq_printf(m, "%s=%lu", stat->name, nr);
5441 for_each_node_state(nid, N_MEMORY) {
5442 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443 stat->lru_mask);
5444 seq_printf(m, " N%d=%lu", nid, nr);
5445 }
5446 seq_putc(m, '\n');
5447 }
5448
5449 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5450 struct mem_cgroup *iter;
5451
5452 nr = 0;
5453 for_each_mem_cgroup_tree(iter, memcg)
5454 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5455 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5456 for_each_node_state(nid, N_MEMORY) {
5457 nr = 0;
5458 for_each_mem_cgroup_tree(iter, memcg)
5459 nr += mem_cgroup_node_nr_lru_pages(
5460 iter, nid, stat->lru_mask);
5461 seq_printf(m, " N%d=%lu", nid, nr);
5462 }
5463 seq_putc(m, '\n');
5464 }
5465
5466 return 0;
5467 }
5468 #endif /* CONFIG_NUMA */
5469
5470 static inline void mem_cgroup_lru_names_not_uptodate(void)
5471 {
5472 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5473 }
5474
5475 static int memcg_stat_show(struct seq_file *m, void *v)
5476 {
5477 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5478 struct mem_cgroup *mi;
5479 unsigned int i;
5480
5481 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5482 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5483 continue;
5484 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5485 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5486 }
5487
5488 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5489 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5490 mem_cgroup_read_events(memcg, i));
5491
5492 for (i = 0; i < NR_LRU_LISTS; i++)
5493 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5494 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5495
5496 /* Hierarchical information */
5497 {
5498 unsigned long long limit, memsw_limit;
5499 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5500 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5501 if (do_swap_account)
5502 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5503 memsw_limit);
5504 }
5505
5506 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5507 long long val = 0;
5508
5509 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5510 continue;
5511 for_each_mem_cgroup_tree(mi, memcg)
5512 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5513 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5514 }
5515
5516 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5517 unsigned long long val = 0;
5518
5519 for_each_mem_cgroup_tree(mi, memcg)
5520 val += mem_cgroup_read_events(mi, i);
5521 seq_printf(m, "total_%s %llu\n",
5522 mem_cgroup_events_names[i], val);
5523 }
5524
5525 for (i = 0; i < NR_LRU_LISTS; i++) {
5526 unsigned long long val = 0;
5527
5528 for_each_mem_cgroup_tree(mi, memcg)
5529 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5530 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5531 }
5532
5533 #ifdef CONFIG_DEBUG_VM
5534 {
5535 int nid, zid;
5536 struct mem_cgroup_per_zone *mz;
5537 struct zone_reclaim_stat *rstat;
5538 unsigned long recent_rotated[2] = {0, 0};
5539 unsigned long recent_scanned[2] = {0, 0};
5540
5541 for_each_online_node(nid)
5542 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5543 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5544 rstat = &mz->lruvec.reclaim_stat;
5545
5546 recent_rotated[0] += rstat->recent_rotated[0];
5547 recent_rotated[1] += rstat->recent_rotated[1];
5548 recent_scanned[0] += rstat->recent_scanned[0];
5549 recent_scanned[1] += rstat->recent_scanned[1];
5550 }
5551 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5552 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5553 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5554 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5555 }
5556 #endif
5557
5558 return 0;
5559 }
5560
5561 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5562 struct cftype *cft)
5563 {
5564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5565
5566 return mem_cgroup_swappiness(memcg);
5567 }
5568
5569 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5570 struct cftype *cft, u64 val)
5571 {
5572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5573 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5574
5575 if (val > 100 || !parent)
5576 return -EINVAL;
5577
5578 mutex_lock(&memcg_create_mutex);
5579
5580 /* If under hierarchy, only empty-root can set this value */
5581 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5582 mutex_unlock(&memcg_create_mutex);
5583 return -EINVAL;
5584 }
5585
5586 memcg->swappiness = val;
5587
5588 mutex_unlock(&memcg_create_mutex);
5589
5590 return 0;
5591 }
5592
5593 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5594 {
5595 struct mem_cgroup_threshold_ary *t;
5596 u64 usage;
5597 int i;
5598
5599 rcu_read_lock();
5600 if (!swap)
5601 t = rcu_dereference(memcg->thresholds.primary);
5602 else
5603 t = rcu_dereference(memcg->memsw_thresholds.primary);
5604
5605 if (!t)
5606 goto unlock;
5607
5608 usage = mem_cgroup_usage(memcg, swap);
5609
5610 /*
5611 * current_threshold points to threshold just below or equal to usage.
5612 * If it's not true, a threshold was crossed after last
5613 * call of __mem_cgroup_threshold().
5614 */
5615 i = t->current_threshold;
5616
5617 /*
5618 * Iterate backward over array of thresholds starting from
5619 * current_threshold and check if a threshold is crossed.
5620 * If none of thresholds below usage is crossed, we read
5621 * only one element of the array here.
5622 */
5623 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5624 eventfd_signal(t->entries[i].eventfd, 1);
5625
5626 /* i = current_threshold + 1 */
5627 i++;
5628
5629 /*
5630 * Iterate forward over array of thresholds starting from
5631 * current_threshold+1 and check if a threshold is crossed.
5632 * If none of thresholds above usage is crossed, we read
5633 * only one element of the array here.
5634 */
5635 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5636 eventfd_signal(t->entries[i].eventfd, 1);
5637
5638 /* Update current_threshold */
5639 t->current_threshold = i - 1;
5640 unlock:
5641 rcu_read_unlock();
5642 }
5643
5644 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5645 {
5646 while (memcg) {
5647 __mem_cgroup_threshold(memcg, false);
5648 if (do_swap_account)
5649 __mem_cgroup_threshold(memcg, true);
5650
5651 memcg = parent_mem_cgroup(memcg);
5652 }
5653 }
5654
5655 static int compare_thresholds(const void *a, const void *b)
5656 {
5657 const struct mem_cgroup_threshold *_a = a;
5658 const struct mem_cgroup_threshold *_b = b;
5659
5660 if (_a->threshold > _b->threshold)
5661 return 1;
5662
5663 if (_a->threshold < _b->threshold)
5664 return -1;
5665
5666 return 0;
5667 }
5668
5669 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5670 {
5671 struct mem_cgroup_eventfd_list *ev;
5672
5673 list_for_each_entry(ev, &memcg->oom_notify, list)
5674 eventfd_signal(ev->eventfd, 1);
5675 return 0;
5676 }
5677
5678 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5679 {
5680 struct mem_cgroup *iter;
5681
5682 for_each_mem_cgroup_tree(iter, memcg)
5683 mem_cgroup_oom_notify_cb(iter);
5684 }
5685
5686 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5687 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5688 {
5689 struct mem_cgroup_thresholds *thresholds;
5690 struct mem_cgroup_threshold_ary *new;
5691 u64 threshold, usage;
5692 int i, size, ret;
5693
5694 ret = res_counter_memparse_write_strategy(args, &threshold);
5695 if (ret)
5696 return ret;
5697
5698 mutex_lock(&memcg->thresholds_lock);
5699
5700 if (type == _MEM)
5701 thresholds = &memcg->thresholds;
5702 else if (type == _MEMSWAP)
5703 thresholds = &memcg->memsw_thresholds;
5704 else
5705 BUG();
5706
5707 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5708
5709 /* Check if a threshold crossed before adding a new one */
5710 if (thresholds->primary)
5711 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5712
5713 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5714
5715 /* Allocate memory for new array of thresholds */
5716 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5717 GFP_KERNEL);
5718 if (!new) {
5719 ret = -ENOMEM;
5720 goto unlock;
5721 }
5722 new->size = size;
5723
5724 /* Copy thresholds (if any) to new array */
5725 if (thresholds->primary) {
5726 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5727 sizeof(struct mem_cgroup_threshold));
5728 }
5729
5730 /* Add new threshold */
5731 new->entries[size - 1].eventfd = eventfd;
5732 new->entries[size - 1].threshold = threshold;
5733
5734 /* Sort thresholds. Registering of new threshold isn't time-critical */
5735 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5736 compare_thresholds, NULL);
5737
5738 /* Find current threshold */
5739 new->current_threshold = -1;
5740 for (i = 0; i < size; i++) {
5741 if (new->entries[i].threshold <= usage) {
5742 /*
5743 * new->current_threshold will not be used until
5744 * rcu_assign_pointer(), so it's safe to increment
5745 * it here.
5746 */
5747 ++new->current_threshold;
5748 } else
5749 break;
5750 }
5751
5752 /* Free old spare buffer and save old primary buffer as spare */
5753 kfree(thresholds->spare);
5754 thresholds->spare = thresholds->primary;
5755
5756 rcu_assign_pointer(thresholds->primary, new);
5757
5758 /* To be sure that nobody uses thresholds */
5759 synchronize_rcu();
5760
5761 unlock:
5762 mutex_unlock(&memcg->thresholds_lock);
5763
5764 return ret;
5765 }
5766
5767 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5768 struct eventfd_ctx *eventfd, const char *args)
5769 {
5770 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5771 }
5772
5773 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5774 struct eventfd_ctx *eventfd, const char *args)
5775 {
5776 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5777 }
5778
5779 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5780 struct eventfd_ctx *eventfd, enum res_type type)
5781 {
5782 struct mem_cgroup_thresholds *thresholds;
5783 struct mem_cgroup_threshold_ary *new;
5784 u64 usage;
5785 int i, j, size;
5786
5787 mutex_lock(&memcg->thresholds_lock);
5788 if (type == _MEM)
5789 thresholds = &memcg->thresholds;
5790 else if (type == _MEMSWAP)
5791 thresholds = &memcg->memsw_thresholds;
5792 else
5793 BUG();
5794
5795 if (!thresholds->primary)
5796 goto unlock;
5797
5798 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5799
5800 /* Check if a threshold crossed before removing */
5801 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5802
5803 /* Calculate new number of threshold */
5804 size = 0;
5805 for (i = 0; i < thresholds->primary->size; i++) {
5806 if (thresholds->primary->entries[i].eventfd != eventfd)
5807 size++;
5808 }
5809
5810 new = thresholds->spare;
5811
5812 /* Set thresholds array to NULL if we don't have thresholds */
5813 if (!size) {
5814 kfree(new);
5815 new = NULL;
5816 goto swap_buffers;
5817 }
5818
5819 new->size = size;
5820
5821 /* Copy thresholds and find current threshold */
5822 new->current_threshold = -1;
5823 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5824 if (thresholds->primary->entries[i].eventfd == eventfd)
5825 continue;
5826
5827 new->entries[j] = thresholds->primary->entries[i];
5828 if (new->entries[j].threshold <= usage) {
5829 /*
5830 * new->current_threshold will not be used
5831 * until rcu_assign_pointer(), so it's safe to increment
5832 * it here.
5833 */
5834 ++new->current_threshold;
5835 }
5836 j++;
5837 }
5838
5839 swap_buffers:
5840 /* Swap primary and spare array */
5841 thresholds->spare = thresholds->primary;
5842 /* If all events are unregistered, free the spare array */
5843 if (!new) {
5844 kfree(thresholds->spare);
5845 thresholds->spare = NULL;
5846 }
5847
5848 rcu_assign_pointer(thresholds->primary, new);
5849
5850 /* To be sure that nobody uses thresholds */
5851 synchronize_rcu();
5852 unlock:
5853 mutex_unlock(&memcg->thresholds_lock);
5854 }
5855
5856 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5857 struct eventfd_ctx *eventfd)
5858 {
5859 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5860 }
5861
5862 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5863 struct eventfd_ctx *eventfd)
5864 {
5865 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5866 }
5867
5868 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5869 struct eventfd_ctx *eventfd, const char *args)
5870 {
5871 struct mem_cgroup_eventfd_list *event;
5872
5873 event = kmalloc(sizeof(*event), GFP_KERNEL);
5874 if (!event)
5875 return -ENOMEM;
5876
5877 spin_lock(&memcg_oom_lock);
5878
5879 event->eventfd = eventfd;
5880 list_add(&event->list, &memcg->oom_notify);
5881
5882 /* already in OOM ? */
5883 if (atomic_read(&memcg->under_oom))
5884 eventfd_signal(eventfd, 1);
5885 spin_unlock(&memcg_oom_lock);
5886
5887 return 0;
5888 }
5889
5890 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5891 struct eventfd_ctx *eventfd)
5892 {
5893 struct mem_cgroup_eventfd_list *ev, *tmp;
5894
5895 spin_lock(&memcg_oom_lock);
5896
5897 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5898 if (ev->eventfd == eventfd) {
5899 list_del(&ev->list);
5900 kfree(ev);
5901 }
5902 }
5903
5904 spin_unlock(&memcg_oom_lock);
5905 }
5906
5907 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5908 {
5909 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5910
5911 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5912 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5913 return 0;
5914 }
5915
5916 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5917 struct cftype *cft, u64 val)
5918 {
5919 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5920 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5921
5922 /* cannot set to root cgroup and only 0 and 1 are allowed */
5923 if (!parent || !((val == 0) || (val == 1)))
5924 return -EINVAL;
5925
5926 mutex_lock(&memcg_create_mutex);
5927 /* oom-kill-disable is a flag for subhierarchy. */
5928 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5929 mutex_unlock(&memcg_create_mutex);
5930 return -EINVAL;
5931 }
5932 memcg->oom_kill_disable = val;
5933 if (!val)
5934 memcg_oom_recover(memcg);
5935 mutex_unlock(&memcg_create_mutex);
5936 return 0;
5937 }
5938
5939 #ifdef CONFIG_MEMCG_KMEM
5940 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5941 {
5942 int ret;
5943
5944 memcg->kmemcg_id = -1;
5945 ret = memcg_propagate_kmem(memcg);
5946 if (ret)
5947 return ret;
5948
5949 return mem_cgroup_sockets_init(memcg, ss);
5950 }
5951
5952 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5953 {
5954 mem_cgroup_sockets_destroy(memcg);
5955 }
5956
5957 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5958 {
5959 if (!memcg_kmem_is_active(memcg))
5960 return;
5961
5962 /*
5963 * kmem charges can outlive the cgroup. In the case of slab
5964 * pages, for instance, a page contain objects from various
5965 * processes. As we prevent from taking a reference for every
5966 * such allocation we have to be careful when doing uncharge
5967 * (see memcg_uncharge_kmem) and here during offlining.
5968 *
5969 * The idea is that that only the _last_ uncharge which sees
5970 * the dead memcg will drop the last reference. An additional
5971 * reference is taken here before the group is marked dead
5972 * which is then paired with css_put during uncharge resp. here.
5973 *
5974 * Although this might sound strange as this path is called from
5975 * css_offline() when the referencemight have dropped down to 0
5976 * and shouldn't be incremented anymore (css_tryget would fail)
5977 * we do not have other options because of the kmem allocations
5978 * lifetime.
5979 */
5980 css_get(&memcg->css);
5981
5982 memcg_kmem_mark_dead(memcg);
5983
5984 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5985 return;
5986
5987 if (memcg_kmem_test_and_clear_dead(memcg))
5988 css_put(&memcg->css);
5989 }
5990 #else
5991 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5992 {
5993 return 0;
5994 }
5995
5996 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5997 {
5998 }
5999
6000 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6001 {
6002 }
6003 #endif
6004
6005 /*
6006 * DO NOT USE IN NEW FILES.
6007 *
6008 * "cgroup.event_control" implementation.
6009 *
6010 * This is way over-engineered. It tries to support fully configurable
6011 * events for each user. Such level of flexibility is completely
6012 * unnecessary especially in the light of the planned unified hierarchy.
6013 *
6014 * Please deprecate this and replace with something simpler if at all
6015 * possible.
6016 */
6017
6018 /*
6019 * Unregister event and free resources.
6020 *
6021 * Gets called from workqueue.
6022 */
6023 static void memcg_event_remove(struct work_struct *work)
6024 {
6025 struct mem_cgroup_event *event =
6026 container_of(work, struct mem_cgroup_event, remove);
6027 struct mem_cgroup *memcg = event->memcg;
6028
6029 remove_wait_queue(event->wqh, &event->wait);
6030
6031 event->unregister_event(memcg, event->eventfd);
6032
6033 /* Notify userspace the event is going away. */
6034 eventfd_signal(event->eventfd, 1);
6035
6036 eventfd_ctx_put(event->eventfd);
6037 kfree(event);
6038 css_put(&memcg->css);
6039 }
6040
6041 /*
6042 * Gets called on POLLHUP on eventfd when user closes it.
6043 *
6044 * Called with wqh->lock held and interrupts disabled.
6045 */
6046 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6047 int sync, void *key)
6048 {
6049 struct mem_cgroup_event *event =
6050 container_of(wait, struct mem_cgroup_event, wait);
6051 struct mem_cgroup *memcg = event->memcg;
6052 unsigned long flags = (unsigned long)key;
6053
6054 if (flags & POLLHUP) {
6055 /*
6056 * If the event has been detached at cgroup removal, we
6057 * can simply return knowing the other side will cleanup
6058 * for us.
6059 *
6060 * We can't race against event freeing since the other
6061 * side will require wqh->lock via remove_wait_queue(),
6062 * which we hold.
6063 */
6064 spin_lock(&memcg->event_list_lock);
6065 if (!list_empty(&event->list)) {
6066 list_del_init(&event->list);
6067 /*
6068 * We are in atomic context, but cgroup_event_remove()
6069 * may sleep, so we have to call it in workqueue.
6070 */
6071 schedule_work(&event->remove);
6072 }
6073 spin_unlock(&memcg->event_list_lock);
6074 }
6075
6076 return 0;
6077 }
6078
6079 static void memcg_event_ptable_queue_proc(struct file *file,
6080 wait_queue_head_t *wqh, poll_table *pt)
6081 {
6082 struct mem_cgroup_event *event =
6083 container_of(pt, struct mem_cgroup_event, pt);
6084
6085 event->wqh = wqh;
6086 add_wait_queue(wqh, &event->wait);
6087 }
6088
6089 /*
6090 * DO NOT USE IN NEW FILES.
6091 *
6092 * Parse input and register new cgroup event handler.
6093 *
6094 * Input must be in format '<event_fd> <control_fd> <args>'.
6095 * Interpretation of args is defined by control file implementation.
6096 */
6097 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6098 struct cftype *cft, const char *buffer)
6099 {
6100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6101 struct mem_cgroup_event *event;
6102 struct cgroup_subsys_state *cfile_css;
6103 unsigned int efd, cfd;
6104 struct fd efile;
6105 struct fd cfile;
6106 const char *name;
6107 char *endp;
6108 int ret;
6109
6110 efd = simple_strtoul(buffer, &endp, 10);
6111 if (*endp != ' ')
6112 return -EINVAL;
6113 buffer = endp + 1;
6114
6115 cfd = simple_strtoul(buffer, &endp, 10);
6116 if ((*endp != ' ') && (*endp != '\0'))
6117 return -EINVAL;
6118 buffer = endp + 1;
6119
6120 event = kzalloc(sizeof(*event), GFP_KERNEL);
6121 if (!event)
6122 return -ENOMEM;
6123
6124 event->memcg = memcg;
6125 INIT_LIST_HEAD(&event->list);
6126 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6127 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6128 INIT_WORK(&event->remove, memcg_event_remove);
6129
6130 efile = fdget(efd);
6131 if (!efile.file) {
6132 ret = -EBADF;
6133 goto out_kfree;
6134 }
6135
6136 event->eventfd = eventfd_ctx_fileget(efile.file);
6137 if (IS_ERR(event->eventfd)) {
6138 ret = PTR_ERR(event->eventfd);
6139 goto out_put_efile;
6140 }
6141
6142 cfile = fdget(cfd);
6143 if (!cfile.file) {
6144 ret = -EBADF;
6145 goto out_put_eventfd;
6146 }
6147
6148 /* the process need read permission on control file */
6149 /* AV: shouldn't we check that it's been opened for read instead? */
6150 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6151 if (ret < 0)
6152 goto out_put_cfile;
6153
6154 /*
6155 * Determine the event callbacks and set them in @event. This used
6156 * to be done via struct cftype but cgroup core no longer knows
6157 * about these events. The following is crude but the whole thing
6158 * is for compatibility anyway.
6159 *
6160 * DO NOT ADD NEW FILES.
6161 */
6162 name = cfile.file->f_dentry->d_name.name;
6163
6164 if (!strcmp(name, "memory.usage_in_bytes")) {
6165 event->register_event = mem_cgroup_usage_register_event;
6166 event->unregister_event = mem_cgroup_usage_unregister_event;
6167 } else if (!strcmp(name, "memory.oom_control")) {
6168 event->register_event = mem_cgroup_oom_register_event;
6169 event->unregister_event = mem_cgroup_oom_unregister_event;
6170 } else if (!strcmp(name, "memory.pressure_level")) {
6171 event->register_event = vmpressure_register_event;
6172 event->unregister_event = vmpressure_unregister_event;
6173 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6174 event->register_event = memsw_cgroup_usage_register_event;
6175 event->unregister_event = memsw_cgroup_usage_unregister_event;
6176 } else {
6177 ret = -EINVAL;
6178 goto out_put_cfile;
6179 }
6180
6181 /*
6182 * Verify @cfile should belong to @css. Also, remaining events are
6183 * automatically removed on cgroup destruction but the removal is
6184 * asynchronous, so take an extra ref on @css.
6185 */
6186 rcu_read_lock();
6187
6188 ret = -EINVAL;
6189 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6190 &mem_cgroup_subsys);
6191 if (cfile_css == css && css_tryget(css))
6192 ret = 0;
6193
6194 rcu_read_unlock();
6195 if (ret)
6196 goto out_put_cfile;
6197
6198 ret = event->register_event(memcg, event->eventfd, buffer);
6199 if (ret)
6200 goto out_put_css;
6201
6202 efile.file->f_op->poll(efile.file, &event->pt);
6203
6204 spin_lock(&memcg->event_list_lock);
6205 list_add(&event->list, &memcg->event_list);
6206 spin_unlock(&memcg->event_list_lock);
6207
6208 fdput(cfile);
6209 fdput(efile);
6210
6211 return 0;
6212
6213 out_put_css:
6214 css_put(css);
6215 out_put_cfile:
6216 fdput(cfile);
6217 out_put_eventfd:
6218 eventfd_ctx_put(event->eventfd);
6219 out_put_efile:
6220 fdput(efile);
6221 out_kfree:
6222 kfree(event);
6223
6224 return ret;
6225 }
6226
6227 static struct cftype mem_cgroup_files[] = {
6228 {
6229 .name = "usage_in_bytes",
6230 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6231 .read_u64 = mem_cgroup_read_u64,
6232 },
6233 {
6234 .name = "max_usage_in_bytes",
6235 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6236 .trigger = mem_cgroup_reset,
6237 .read_u64 = mem_cgroup_read_u64,
6238 },
6239 {
6240 .name = "limit_in_bytes",
6241 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6242 .write_string = mem_cgroup_write,
6243 .read_u64 = mem_cgroup_read_u64,
6244 },
6245 {
6246 .name = "soft_limit_in_bytes",
6247 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6248 .write_string = mem_cgroup_write,
6249 .read_u64 = mem_cgroup_read_u64,
6250 },
6251 {
6252 .name = "failcnt",
6253 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6254 .trigger = mem_cgroup_reset,
6255 .read_u64 = mem_cgroup_read_u64,
6256 },
6257 {
6258 .name = "stat",
6259 .seq_show = memcg_stat_show,
6260 },
6261 {
6262 .name = "force_empty",
6263 .trigger = mem_cgroup_force_empty_write,
6264 },
6265 {
6266 .name = "use_hierarchy",
6267 .flags = CFTYPE_INSANE,
6268 .write_u64 = mem_cgroup_hierarchy_write,
6269 .read_u64 = mem_cgroup_hierarchy_read,
6270 },
6271 {
6272 .name = "cgroup.event_control", /* XXX: for compat */
6273 .write_string = memcg_write_event_control,
6274 .flags = CFTYPE_NO_PREFIX,
6275 .mode = S_IWUGO,
6276 },
6277 {
6278 .name = "swappiness",
6279 .read_u64 = mem_cgroup_swappiness_read,
6280 .write_u64 = mem_cgroup_swappiness_write,
6281 },
6282 {
6283 .name = "move_charge_at_immigrate",
6284 .read_u64 = mem_cgroup_move_charge_read,
6285 .write_u64 = mem_cgroup_move_charge_write,
6286 },
6287 {
6288 .name = "oom_control",
6289 .seq_show = mem_cgroup_oom_control_read,
6290 .write_u64 = mem_cgroup_oom_control_write,
6291 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6292 },
6293 {
6294 .name = "pressure_level",
6295 },
6296 #ifdef CONFIG_NUMA
6297 {
6298 .name = "numa_stat",
6299 .seq_show = memcg_numa_stat_show,
6300 },
6301 #endif
6302 #ifdef CONFIG_MEMCG_KMEM
6303 {
6304 .name = "kmem.limit_in_bytes",
6305 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6306 .write_string = mem_cgroup_write,
6307 .read_u64 = mem_cgroup_read_u64,
6308 },
6309 {
6310 .name = "kmem.usage_in_bytes",
6311 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6312 .read_u64 = mem_cgroup_read_u64,
6313 },
6314 {
6315 .name = "kmem.failcnt",
6316 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6317 .trigger = mem_cgroup_reset,
6318 .read_u64 = mem_cgroup_read_u64,
6319 },
6320 {
6321 .name = "kmem.max_usage_in_bytes",
6322 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6323 .trigger = mem_cgroup_reset,
6324 .read_u64 = mem_cgroup_read_u64,
6325 },
6326 #ifdef CONFIG_SLABINFO
6327 {
6328 .name = "kmem.slabinfo",
6329 .seq_show = mem_cgroup_slabinfo_read,
6330 },
6331 #endif
6332 #endif
6333 { }, /* terminate */
6334 };
6335
6336 #ifdef CONFIG_MEMCG_SWAP
6337 static struct cftype memsw_cgroup_files[] = {
6338 {
6339 .name = "memsw.usage_in_bytes",
6340 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6341 .read_u64 = mem_cgroup_read_u64,
6342 },
6343 {
6344 .name = "memsw.max_usage_in_bytes",
6345 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6346 .trigger = mem_cgroup_reset,
6347 .read_u64 = mem_cgroup_read_u64,
6348 },
6349 {
6350 .name = "memsw.limit_in_bytes",
6351 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6352 .write_string = mem_cgroup_write,
6353 .read_u64 = mem_cgroup_read_u64,
6354 },
6355 {
6356 .name = "memsw.failcnt",
6357 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6358 .trigger = mem_cgroup_reset,
6359 .read_u64 = mem_cgroup_read_u64,
6360 },
6361 { }, /* terminate */
6362 };
6363 #endif
6364 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6365 {
6366 struct mem_cgroup_per_node *pn;
6367 struct mem_cgroup_per_zone *mz;
6368 int zone, tmp = node;
6369 /*
6370 * This routine is called against possible nodes.
6371 * But it's BUG to call kmalloc() against offline node.
6372 *
6373 * TODO: this routine can waste much memory for nodes which will
6374 * never be onlined. It's better to use memory hotplug callback
6375 * function.
6376 */
6377 if (!node_state(node, N_NORMAL_MEMORY))
6378 tmp = -1;
6379 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6380 if (!pn)
6381 return 1;
6382
6383 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6384 mz = &pn->zoneinfo[zone];
6385 lruvec_init(&mz->lruvec);
6386 mz->usage_in_excess = 0;
6387 mz->on_tree = false;
6388 mz->memcg = memcg;
6389 }
6390 memcg->nodeinfo[node] = pn;
6391 return 0;
6392 }
6393
6394 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6395 {
6396 kfree(memcg->nodeinfo[node]);
6397 }
6398
6399 static struct mem_cgroup *mem_cgroup_alloc(void)
6400 {
6401 struct mem_cgroup *memcg;
6402 size_t size = memcg_size();
6403
6404 /* Can be very big if nr_node_ids is very big */
6405 if (size < PAGE_SIZE)
6406 memcg = kzalloc(size, GFP_KERNEL);
6407 else
6408 memcg = vzalloc(size);
6409
6410 if (!memcg)
6411 return NULL;
6412
6413 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6414 if (!memcg->stat)
6415 goto out_free;
6416 spin_lock_init(&memcg->pcp_counter_lock);
6417 return memcg;
6418
6419 out_free:
6420 if (size < PAGE_SIZE)
6421 kfree(memcg);
6422 else
6423 vfree(memcg);
6424 return NULL;
6425 }
6426
6427 /*
6428 * At destroying mem_cgroup, references from swap_cgroup can remain.
6429 * (scanning all at force_empty is too costly...)
6430 *
6431 * Instead of clearing all references at force_empty, we remember
6432 * the number of reference from swap_cgroup and free mem_cgroup when
6433 * it goes down to 0.
6434 *
6435 * Removal of cgroup itself succeeds regardless of refs from swap.
6436 */
6437
6438 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6439 {
6440 int node;
6441 size_t size = memcg_size();
6442
6443 mem_cgroup_remove_from_trees(memcg);
6444
6445 for_each_node(node)
6446 free_mem_cgroup_per_zone_info(memcg, node);
6447
6448 free_percpu(memcg->stat);
6449
6450 /*
6451 * We need to make sure that (at least for now), the jump label
6452 * destruction code runs outside of the cgroup lock. This is because
6453 * get_online_cpus(), which is called from the static_branch update,
6454 * can't be called inside the cgroup_lock. cpusets are the ones
6455 * enforcing this dependency, so if they ever change, we might as well.
6456 *
6457 * schedule_work() will guarantee this happens. Be careful if you need
6458 * to move this code around, and make sure it is outside
6459 * the cgroup_lock.
6460 */
6461 disarm_static_keys(memcg);
6462 if (size < PAGE_SIZE)
6463 kfree(memcg);
6464 else
6465 vfree(memcg);
6466 }
6467
6468 /*
6469 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6470 */
6471 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6472 {
6473 if (!memcg->res.parent)
6474 return NULL;
6475 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6476 }
6477 EXPORT_SYMBOL(parent_mem_cgroup);
6478
6479 static void __init mem_cgroup_soft_limit_tree_init(void)
6480 {
6481 struct mem_cgroup_tree_per_node *rtpn;
6482 struct mem_cgroup_tree_per_zone *rtpz;
6483 int tmp, node, zone;
6484
6485 for_each_node(node) {
6486 tmp = node;
6487 if (!node_state(node, N_NORMAL_MEMORY))
6488 tmp = -1;
6489 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6490 BUG_ON(!rtpn);
6491
6492 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6493
6494 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6495 rtpz = &rtpn->rb_tree_per_zone[zone];
6496 rtpz->rb_root = RB_ROOT;
6497 spin_lock_init(&rtpz->lock);
6498 }
6499 }
6500 }
6501
6502 static struct cgroup_subsys_state * __ref
6503 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6504 {
6505 struct mem_cgroup *memcg;
6506 long error = -ENOMEM;
6507 int node;
6508
6509 memcg = mem_cgroup_alloc();
6510 if (!memcg)
6511 return ERR_PTR(error);
6512
6513 for_each_node(node)
6514 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6515 goto free_out;
6516
6517 /* root ? */
6518 if (parent_css == NULL) {
6519 root_mem_cgroup = memcg;
6520 res_counter_init(&memcg->res, NULL);
6521 res_counter_init(&memcg->memsw, NULL);
6522 res_counter_init(&memcg->kmem, NULL);
6523 }
6524
6525 memcg->last_scanned_node = MAX_NUMNODES;
6526 INIT_LIST_HEAD(&memcg->oom_notify);
6527 memcg->move_charge_at_immigrate = 0;
6528 mutex_init(&memcg->thresholds_lock);
6529 spin_lock_init(&memcg->move_lock);
6530 vmpressure_init(&memcg->vmpressure);
6531 INIT_LIST_HEAD(&memcg->event_list);
6532 spin_lock_init(&memcg->event_list_lock);
6533
6534 return &memcg->css;
6535
6536 free_out:
6537 __mem_cgroup_free(memcg);
6538 return ERR_PTR(error);
6539 }
6540
6541 static int
6542 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6543 {
6544 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6545 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6546 int error = 0;
6547
6548 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6549 return -ENOSPC;
6550
6551 if (!parent)
6552 return 0;
6553
6554 mutex_lock(&memcg_create_mutex);
6555
6556 memcg->use_hierarchy = parent->use_hierarchy;
6557 memcg->oom_kill_disable = parent->oom_kill_disable;
6558 memcg->swappiness = mem_cgroup_swappiness(parent);
6559
6560 if (parent->use_hierarchy) {
6561 res_counter_init(&memcg->res, &parent->res);
6562 res_counter_init(&memcg->memsw, &parent->memsw);
6563 res_counter_init(&memcg->kmem, &parent->kmem);
6564
6565 /*
6566 * No need to take a reference to the parent because cgroup
6567 * core guarantees its existence.
6568 */
6569 } else {
6570 res_counter_init(&memcg->res, NULL);
6571 res_counter_init(&memcg->memsw, NULL);
6572 res_counter_init(&memcg->kmem, NULL);
6573 /*
6574 * Deeper hierachy with use_hierarchy == false doesn't make
6575 * much sense so let cgroup subsystem know about this
6576 * unfortunate state in our controller.
6577 */
6578 if (parent != root_mem_cgroup)
6579 mem_cgroup_subsys.broken_hierarchy = true;
6580 }
6581
6582 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6583 mutex_unlock(&memcg_create_mutex);
6584 return error;
6585 }
6586
6587 /*
6588 * Announce all parents that a group from their hierarchy is gone.
6589 */
6590 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6591 {
6592 struct mem_cgroup *parent = memcg;
6593
6594 while ((parent = parent_mem_cgroup(parent)))
6595 mem_cgroup_iter_invalidate(parent);
6596
6597 /*
6598 * if the root memcg is not hierarchical we have to check it
6599 * explicitely.
6600 */
6601 if (!root_mem_cgroup->use_hierarchy)
6602 mem_cgroup_iter_invalidate(root_mem_cgroup);
6603 }
6604
6605 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6606 {
6607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6608 struct mem_cgroup_event *event, *tmp;
6609
6610 /*
6611 * Unregister events and notify userspace.
6612 * Notify userspace about cgroup removing only after rmdir of cgroup
6613 * directory to avoid race between userspace and kernelspace.
6614 */
6615 spin_lock(&memcg->event_list_lock);
6616 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6617 list_del_init(&event->list);
6618 schedule_work(&event->remove);
6619 }
6620 spin_unlock(&memcg->event_list_lock);
6621
6622 kmem_cgroup_css_offline(memcg);
6623
6624 mem_cgroup_invalidate_reclaim_iterators(memcg);
6625 mem_cgroup_reparent_charges(memcg);
6626 mem_cgroup_destroy_all_caches(memcg);
6627 vmpressure_cleanup(&memcg->vmpressure);
6628 }
6629
6630 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6631 {
6632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6633
6634 memcg_destroy_kmem(memcg);
6635 __mem_cgroup_free(memcg);
6636 }
6637
6638 #ifdef CONFIG_MMU
6639 /* Handlers for move charge at task migration. */
6640 #define PRECHARGE_COUNT_AT_ONCE 256
6641 static int mem_cgroup_do_precharge(unsigned long count)
6642 {
6643 int ret = 0;
6644 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6645 struct mem_cgroup *memcg = mc.to;
6646
6647 if (mem_cgroup_is_root(memcg)) {
6648 mc.precharge += count;
6649 /* we don't need css_get for root */
6650 return ret;
6651 }
6652 /* try to charge at once */
6653 if (count > 1) {
6654 struct res_counter *dummy;
6655 /*
6656 * "memcg" cannot be under rmdir() because we've already checked
6657 * by cgroup_lock_live_cgroup() that it is not removed and we
6658 * are still under the same cgroup_mutex. So we can postpone
6659 * css_get().
6660 */
6661 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6662 goto one_by_one;
6663 if (do_swap_account && res_counter_charge(&memcg->memsw,
6664 PAGE_SIZE * count, &dummy)) {
6665 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6666 goto one_by_one;
6667 }
6668 mc.precharge += count;
6669 return ret;
6670 }
6671 one_by_one:
6672 /* fall back to one by one charge */
6673 while (count--) {
6674 if (signal_pending(current)) {
6675 ret = -EINTR;
6676 break;
6677 }
6678 if (!batch_count--) {
6679 batch_count = PRECHARGE_COUNT_AT_ONCE;
6680 cond_resched();
6681 }
6682 ret = __mem_cgroup_try_charge(NULL,
6683 GFP_KERNEL, 1, &memcg, false);
6684 if (ret)
6685 /* mem_cgroup_clear_mc() will do uncharge later */
6686 return ret;
6687 mc.precharge++;
6688 }
6689 return ret;
6690 }
6691
6692 /**
6693 * get_mctgt_type - get target type of moving charge
6694 * @vma: the vma the pte to be checked belongs
6695 * @addr: the address corresponding to the pte to be checked
6696 * @ptent: the pte to be checked
6697 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6698 *
6699 * Returns
6700 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6701 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6702 * move charge. if @target is not NULL, the page is stored in target->page
6703 * with extra refcnt got(Callers should handle it).
6704 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6705 * target for charge migration. if @target is not NULL, the entry is stored
6706 * in target->ent.
6707 *
6708 * Called with pte lock held.
6709 */
6710 union mc_target {
6711 struct page *page;
6712 swp_entry_t ent;
6713 };
6714
6715 enum mc_target_type {
6716 MC_TARGET_NONE = 0,
6717 MC_TARGET_PAGE,
6718 MC_TARGET_SWAP,
6719 };
6720
6721 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6722 unsigned long addr, pte_t ptent)
6723 {
6724 struct page *page = vm_normal_page(vma, addr, ptent);
6725
6726 if (!page || !page_mapped(page))
6727 return NULL;
6728 if (PageAnon(page)) {
6729 /* we don't move shared anon */
6730 if (!move_anon())
6731 return NULL;
6732 } else if (!move_file())
6733 /* we ignore mapcount for file pages */
6734 return NULL;
6735 if (!get_page_unless_zero(page))
6736 return NULL;
6737
6738 return page;
6739 }
6740
6741 #ifdef CONFIG_SWAP
6742 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6743 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6744 {
6745 struct page *page = NULL;
6746 swp_entry_t ent = pte_to_swp_entry(ptent);
6747
6748 if (!move_anon() || non_swap_entry(ent))
6749 return NULL;
6750 /*
6751 * Because lookup_swap_cache() updates some statistics counter,
6752 * we call find_get_page() with swapper_space directly.
6753 */
6754 page = find_get_page(swap_address_space(ent), ent.val);
6755 if (do_swap_account)
6756 entry->val = ent.val;
6757
6758 return page;
6759 }
6760 #else
6761 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6762 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6763 {
6764 return NULL;
6765 }
6766 #endif
6767
6768 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6769 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6770 {
6771 struct page *page = NULL;
6772 struct address_space *mapping;
6773 pgoff_t pgoff;
6774
6775 if (!vma->vm_file) /* anonymous vma */
6776 return NULL;
6777 if (!move_file())
6778 return NULL;
6779
6780 mapping = vma->vm_file->f_mapping;
6781 if (pte_none(ptent))
6782 pgoff = linear_page_index(vma, addr);
6783 else /* pte_file(ptent) is true */
6784 pgoff = pte_to_pgoff(ptent);
6785
6786 /* page is moved even if it's not RSS of this task(page-faulted). */
6787 page = find_get_page(mapping, pgoff);
6788
6789 #ifdef CONFIG_SWAP
6790 /* shmem/tmpfs may report page out on swap: account for that too. */
6791 if (radix_tree_exceptional_entry(page)) {
6792 swp_entry_t swap = radix_to_swp_entry(page);
6793 if (do_swap_account)
6794 *entry = swap;
6795 page = find_get_page(swap_address_space(swap), swap.val);
6796 }
6797 #endif
6798 return page;
6799 }
6800
6801 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6802 unsigned long addr, pte_t ptent, union mc_target *target)
6803 {
6804 struct page *page = NULL;
6805 struct page_cgroup *pc;
6806 enum mc_target_type ret = MC_TARGET_NONE;
6807 swp_entry_t ent = { .val = 0 };
6808
6809 if (pte_present(ptent))
6810 page = mc_handle_present_pte(vma, addr, ptent);
6811 else if (is_swap_pte(ptent))
6812 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6813 else if (pte_none(ptent) || pte_file(ptent))
6814 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6815
6816 if (!page && !ent.val)
6817 return ret;
6818 if (page) {
6819 pc = lookup_page_cgroup(page);
6820 /*
6821 * Do only loose check w/o page_cgroup lock.
6822 * mem_cgroup_move_account() checks the pc is valid or not under
6823 * the lock.
6824 */
6825 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6826 ret = MC_TARGET_PAGE;
6827 if (target)
6828 target->page = page;
6829 }
6830 if (!ret || !target)
6831 put_page(page);
6832 }
6833 /* There is a swap entry and a page doesn't exist or isn't charged */
6834 if (ent.val && !ret &&
6835 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6836 ret = MC_TARGET_SWAP;
6837 if (target)
6838 target->ent = ent;
6839 }
6840 return ret;
6841 }
6842
6843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6844 /*
6845 * We don't consider swapping or file mapped pages because THP does not
6846 * support them for now.
6847 * Caller should make sure that pmd_trans_huge(pmd) is true.
6848 */
6849 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6850 unsigned long addr, pmd_t pmd, union mc_target *target)
6851 {
6852 struct page *page = NULL;
6853 struct page_cgroup *pc;
6854 enum mc_target_type ret = MC_TARGET_NONE;
6855
6856 page = pmd_page(pmd);
6857 VM_BUG_ON(!page || !PageHead(page));
6858 if (!move_anon())
6859 return ret;
6860 pc = lookup_page_cgroup(page);
6861 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6862 ret = MC_TARGET_PAGE;
6863 if (target) {
6864 get_page(page);
6865 target->page = page;
6866 }
6867 }
6868 return ret;
6869 }
6870 #else
6871 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6872 unsigned long addr, pmd_t pmd, union mc_target *target)
6873 {
6874 return MC_TARGET_NONE;
6875 }
6876 #endif
6877
6878 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6879 unsigned long addr, unsigned long end,
6880 struct mm_walk *walk)
6881 {
6882 struct vm_area_struct *vma = walk->private;
6883 pte_t *pte;
6884 spinlock_t *ptl;
6885
6886 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6887 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6888 mc.precharge += HPAGE_PMD_NR;
6889 spin_unlock(ptl);
6890 return 0;
6891 }
6892
6893 if (pmd_trans_unstable(pmd))
6894 return 0;
6895 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6896 for (; addr != end; pte++, addr += PAGE_SIZE)
6897 if (get_mctgt_type(vma, addr, *pte, NULL))
6898 mc.precharge++; /* increment precharge temporarily */
6899 pte_unmap_unlock(pte - 1, ptl);
6900 cond_resched();
6901
6902 return 0;
6903 }
6904
6905 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6906 {
6907 unsigned long precharge;
6908 struct vm_area_struct *vma;
6909
6910 down_read(&mm->mmap_sem);
6911 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6912 struct mm_walk mem_cgroup_count_precharge_walk = {
6913 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6914 .mm = mm,
6915 .private = vma,
6916 };
6917 if (is_vm_hugetlb_page(vma))
6918 continue;
6919 walk_page_range(vma->vm_start, vma->vm_end,
6920 &mem_cgroup_count_precharge_walk);
6921 }
6922 up_read(&mm->mmap_sem);
6923
6924 precharge = mc.precharge;
6925 mc.precharge = 0;
6926
6927 return precharge;
6928 }
6929
6930 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6931 {
6932 unsigned long precharge = mem_cgroup_count_precharge(mm);
6933
6934 VM_BUG_ON(mc.moving_task);
6935 mc.moving_task = current;
6936 return mem_cgroup_do_precharge(precharge);
6937 }
6938
6939 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6940 static void __mem_cgroup_clear_mc(void)
6941 {
6942 struct mem_cgroup *from = mc.from;
6943 struct mem_cgroup *to = mc.to;
6944 int i;
6945
6946 /* we must uncharge all the leftover precharges from mc.to */
6947 if (mc.precharge) {
6948 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6949 mc.precharge = 0;
6950 }
6951 /*
6952 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6953 * we must uncharge here.
6954 */
6955 if (mc.moved_charge) {
6956 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6957 mc.moved_charge = 0;
6958 }
6959 /* we must fixup refcnts and charges */
6960 if (mc.moved_swap) {
6961 /* uncharge swap account from the old cgroup */
6962 if (!mem_cgroup_is_root(mc.from))
6963 res_counter_uncharge(&mc.from->memsw,
6964 PAGE_SIZE * mc.moved_swap);
6965
6966 for (i = 0; i < mc.moved_swap; i++)
6967 css_put(&mc.from->css);
6968
6969 if (!mem_cgroup_is_root(mc.to)) {
6970 /*
6971 * we charged both to->res and to->memsw, so we should
6972 * uncharge to->res.
6973 */
6974 res_counter_uncharge(&mc.to->res,
6975 PAGE_SIZE * mc.moved_swap);
6976 }
6977 /* we've already done css_get(mc.to) */
6978 mc.moved_swap = 0;
6979 }
6980 memcg_oom_recover(from);
6981 memcg_oom_recover(to);
6982 wake_up_all(&mc.waitq);
6983 }
6984
6985 static void mem_cgroup_clear_mc(void)
6986 {
6987 struct mem_cgroup *from = mc.from;
6988
6989 /*
6990 * we must clear moving_task before waking up waiters at the end of
6991 * task migration.
6992 */
6993 mc.moving_task = NULL;
6994 __mem_cgroup_clear_mc();
6995 spin_lock(&mc.lock);
6996 mc.from = NULL;
6997 mc.to = NULL;
6998 spin_unlock(&mc.lock);
6999 mem_cgroup_end_move(from);
7000 }
7001
7002 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7003 struct cgroup_taskset *tset)
7004 {
7005 struct task_struct *p = cgroup_taskset_first(tset);
7006 int ret = 0;
7007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7008 unsigned long move_charge_at_immigrate;
7009
7010 /*
7011 * We are now commited to this value whatever it is. Changes in this
7012 * tunable will only affect upcoming migrations, not the current one.
7013 * So we need to save it, and keep it going.
7014 */
7015 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7016 if (move_charge_at_immigrate) {
7017 struct mm_struct *mm;
7018 struct mem_cgroup *from = mem_cgroup_from_task(p);
7019
7020 VM_BUG_ON(from == memcg);
7021
7022 mm = get_task_mm(p);
7023 if (!mm)
7024 return 0;
7025 /* We move charges only when we move a owner of the mm */
7026 if (mm->owner == p) {
7027 VM_BUG_ON(mc.from);
7028 VM_BUG_ON(mc.to);
7029 VM_BUG_ON(mc.precharge);
7030 VM_BUG_ON(mc.moved_charge);
7031 VM_BUG_ON(mc.moved_swap);
7032 mem_cgroup_start_move(from);
7033 spin_lock(&mc.lock);
7034 mc.from = from;
7035 mc.to = memcg;
7036 mc.immigrate_flags = move_charge_at_immigrate;
7037 spin_unlock(&mc.lock);
7038 /* We set mc.moving_task later */
7039
7040 ret = mem_cgroup_precharge_mc(mm);
7041 if (ret)
7042 mem_cgroup_clear_mc();
7043 }
7044 mmput(mm);
7045 }
7046 return ret;
7047 }
7048
7049 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7050 struct cgroup_taskset *tset)
7051 {
7052 mem_cgroup_clear_mc();
7053 }
7054
7055 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7056 unsigned long addr, unsigned long end,
7057 struct mm_walk *walk)
7058 {
7059 int ret = 0;
7060 struct vm_area_struct *vma = walk->private;
7061 pte_t *pte;
7062 spinlock_t *ptl;
7063 enum mc_target_type target_type;
7064 union mc_target target;
7065 struct page *page;
7066 struct page_cgroup *pc;
7067
7068 /*
7069 * We don't take compound_lock() here but no race with splitting thp
7070 * happens because:
7071 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7072 * under splitting, which means there's no concurrent thp split,
7073 * - if another thread runs into split_huge_page() just after we
7074 * entered this if-block, the thread must wait for page table lock
7075 * to be unlocked in __split_huge_page_splitting(), where the main
7076 * part of thp split is not executed yet.
7077 */
7078 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7079 if (mc.precharge < HPAGE_PMD_NR) {
7080 spin_unlock(ptl);
7081 return 0;
7082 }
7083 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7084 if (target_type == MC_TARGET_PAGE) {
7085 page = target.page;
7086 if (!isolate_lru_page(page)) {
7087 pc = lookup_page_cgroup(page);
7088 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7089 pc, mc.from, mc.to)) {
7090 mc.precharge -= HPAGE_PMD_NR;
7091 mc.moved_charge += HPAGE_PMD_NR;
7092 }
7093 putback_lru_page(page);
7094 }
7095 put_page(page);
7096 }
7097 spin_unlock(ptl);
7098 return 0;
7099 }
7100
7101 if (pmd_trans_unstable(pmd))
7102 return 0;
7103 retry:
7104 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7105 for (; addr != end; addr += PAGE_SIZE) {
7106 pte_t ptent = *(pte++);
7107 swp_entry_t ent;
7108
7109 if (!mc.precharge)
7110 break;
7111
7112 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7113 case MC_TARGET_PAGE:
7114 page = target.page;
7115 if (isolate_lru_page(page))
7116 goto put;
7117 pc = lookup_page_cgroup(page);
7118 if (!mem_cgroup_move_account(page, 1, pc,
7119 mc.from, mc.to)) {
7120 mc.precharge--;
7121 /* we uncharge from mc.from later. */
7122 mc.moved_charge++;
7123 }
7124 putback_lru_page(page);
7125 put: /* get_mctgt_type() gets the page */
7126 put_page(page);
7127 break;
7128 case MC_TARGET_SWAP:
7129 ent = target.ent;
7130 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7131 mc.precharge--;
7132 /* we fixup refcnts and charges later. */
7133 mc.moved_swap++;
7134 }
7135 break;
7136 default:
7137 break;
7138 }
7139 }
7140 pte_unmap_unlock(pte - 1, ptl);
7141 cond_resched();
7142
7143 if (addr != end) {
7144 /*
7145 * We have consumed all precharges we got in can_attach().
7146 * We try charge one by one, but don't do any additional
7147 * charges to mc.to if we have failed in charge once in attach()
7148 * phase.
7149 */
7150 ret = mem_cgroup_do_precharge(1);
7151 if (!ret)
7152 goto retry;
7153 }
7154
7155 return ret;
7156 }
7157
7158 static void mem_cgroup_move_charge(struct mm_struct *mm)
7159 {
7160 struct vm_area_struct *vma;
7161
7162 lru_add_drain_all();
7163 retry:
7164 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7165 /*
7166 * Someone who are holding the mmap_sem might be waiting in
7167 * waitq. So we cancel all extra charges, wake up all waiters,
7168 * and retry. Because we cancel precharges, we might not be able
7169 * to move enough charges, but moving charge is a best-effort
7170 * feature anyway, so it wouldn't be a big problem.
7171 */
7172 __mem_cgroup_clear_mc();
7173 cond_resched();
7174 goto retry;
7175 }
7176 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7177 int ret;
7178 struct mm_walk mem_cgroup_move_charge_walk = {
7179 .pmd_entry = mem_cgroup_move_charge_pte_range,
7180 .mm = mm,
7181 .private = vma,
7182 };
7183 if (is_vm_hugetlb_page(vma))
7184 continue;
7185 ret = walk_page_range(vma->vm_start, vma->vm_end,
7186 &mem_cgroup_move_charge_walk);
7187 if (ret)
7188 /*
7189 * means we have consumed all precharges and failed in
7190 * doing additional charge. Just abandon here.
7191 */
7192 break;
7193 }
7194 up_read(&mm->mmap_sem);
7195 }
7196
7197 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7198 struct cgroup_taskset *tset)
7199 {
7200 struct task_struct *p = cgroup_taskset_first(tset);
7201 struct mm_struct *mm = get_task_mm(p);
7202
7203 if (mm) {
7204 if (mc.to)
7205 mem_cgroup_move_charge(mm);
7206 mmput(mm);
7207 }
7208 if (mc.to)
7209 mem_cgroup_clear_mc();
7210 }
7211 #else /* !CONFIG_MMU */
7212 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7213 struct cgroup_taskset *tset)
7214 {
7215 return 0;
7216 }
7217 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7218 struct cgroup_taskset *tset)
7219 {
7220 }
7221 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7222 struct cgroup_taskset *tset)
7223 {
7224 }
7225 #endif
7226
7227 /*
7228 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7229 * to verify sane_behavior flag on each mount attempt.
7230 */
7231 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7232 {
7233 /*
7234 * use_hierarchy is forced with sane_behavior. cgroup core
7235 * guarantees that @root doesn't have any children, so turning it
7236 * on for the root memcg is enough.
7237 */
7238 if (cgroup_sane_behavior(root_css->cgroup))
7239 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7240 }
7241
7242 struct cgroup_subsys mem_cgroup_subsys = {
7243 .name = "memory",
7244 .subsys_id = mem_cgroup_subsys_id,
7245 .css_alloc = mem_cgroup_css_alloc,
7246 .css_online = mem_cgroup_css_online,
7247 .css_offline = mem_cgroup_css_offline,
7248 .css_free = mem_cgroup_css_free,
7249 .can_attach = mem_cgroup_can_attach,
7250 .cancel_attach = mem_cgroup_cancel_attach,
7251 .attach = mem_cgroup_move_task,
7252 .bind = mem_cgroup_bind,
7253 .base_cftypes = mem_cgroup_files,
7254 .early_init = 0,
7255 };
7256
7257 #ifdef CONFIG_MEMCG_SWAP
7258 static int __init enable_swap_account(char *s)
7259 {
7260 if (!strcmp(s, "1"))
7261 really_do_swap_account = 1;
7262 else if (!strcmp(s, "0"))
7263 really_do_swap_account = 0;
7264 return 1;
7265 }
7266 __setup("swapaccount=", enable_swap_account);
7267
7268 static void __init memsw_file_init(void)
7269 {
7270 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7271 }
7272
7273 static void __init enable_swap_cgroup(void)
7274 {
7275 if (!mem_cgroup_disabled() && really_do_swap_account) {
7276 do_swap_account = 1;
7277 memsw_file_init();
7278 }
7279 }
7280
7281 #else
7282 static void __init enable_swap_cgroup(void)
7283 {
7284 }
7285 #endif
7286
7287 /*
7288 * subsys_initcall() for memory controller.
7289 *
7290 * Some parts like hotcpu_notifier() have to be initialized from this context
7291 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7292 * everything that doesn't depend on a specific mem_cgroup structure should
7293 * be initialized from here.
7294 */
7295 static int __init mem_cgroup_init(void)
7296 {
7297 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7298 enable_swap_cgroup();
7299 mem_cgroup_soft_limit_tree_init();
7300 memcg_stock_init();
7301 return 0;
7302 }
7303 subsys_initcall(mem_cgroup_init);
This page took 0.296108 seconds and 5 git commands to generate.